WO2022137768A1 - 積層体およびその利用 - Google Patents

積層体およびその利用 Download PDF

Info

Publication number
WO2022137768A1
WO2022137768A1 PCT/JP2021/039079 JP2021039079W WO2022137768A1 WO 2022137768 A1 WO2022137768 A1 WO 2022137768A1 JP 2021039079 W JP2021039079 W JP 2021039079W WO 2022137768 A1 WO2022137768 A1 WO 2022137768A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic resin
resin film
laminate
graft copolymer
less
Prior art date
Application number
PCT/JP2021/039079
Other languages
English (en)
French (fr)
Inventor
治規 小山
花子 長谷部
幸展 嶋本
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2022571907A priority Critical patent/JPWO2022137768A1/ja
Priority to EP21909925.6A priority patent/EP4269101A1/en
Priority to CN202180086350.2A priority patent/CN116761840A/zh
Publication of WO2022137768A1 publication Critical patent/WO2022137768A1/ja
Priority to US18/340,504 priority patent/US20230340218A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/14Polyurethanes having carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a laminate containing an acrylic resin film as a base material.
  • Acrylic resin films made by processing and molding acrylic resin compositions containing elastic bodies are used and developed for various purposes by taking advantage of their excellent properties such as transparency, hardness, weather resistance, and secondary moldability. Has been done.
  • Acrylic resin films are used, for example, for decoration / protection as a paint substitute for laminating film on interior / exterior parts of automobiles, and for decoration / protection of exteriors of products such as portable electronic devices, personal computers, and home appliances. And the use as a building material.
  • Patent Document 1 describes a specific methacrylic acid ester resin (A), a four-stage structure polymer having an average particle size of rubber particles of 0.2 to 0.4 ⁇ m.
  • An acrylic resin film obtained by forming (D) into a film, a laminated product containing the acrylic resin film, and the like are described.
  • Patent Document 2 describes both a graft copolymer particle (A) having a multilayer structure having an average particle diameter of 20 nm or more and 150 nm or less and a graft having a multilayer structure larger than the average particle diameter of the graft copolymer particles (A).
  • An acrylic resin film containing the polymer particles (B), a laminated film containing the acrylic resin film, and the like are described.
  • Patent Documents 1 and 2 Although the techniques described in Patent Documents 1 and 2 are excellent, there is room for further improvement in terms of moldability and wear resistance.
  • an object of the present invention is to provide a laminate containing an acrylic resin film, which is excellent in moldability and abrasion resistance.
  • the present inventors have formed by using an acrylic resin film having specific physical characteristics in the laminated body and a specific (for example, ultraviolet curable) hard coat layer. For the first time, it has been found that a laminated body having excellent properties and abrasion resistance can be obtained. Further, they have found for the first time that the laminated body can be obtained by devising the manufacturing process of the laminated body, and have completed the present invention.
  • one aspect of the present invention is a laminated body including an acrylic resin film and a hard coat layer laminated on at least one surface of the acrylic resin film, and the acrylic resin film has a glass transition temperature ( Tg) is 140 ° C. or lower and the breaking point elongation at 120 ° C. is 200% or more, and the laminate has a crack elongation at 120 ° C. of 50% or more and 50 g / cm.
  • Tg glass transition temperature
  • this laminated body having a ⁇ haze of 1.0% or less in a steel wool wear test in 2 or 5 round trips.
  • one aspect of the present invention is a method for manufacturing a laminated body including an acrylic resin film and a hard coat layer laminated on at least one surface of the acrylic resin film, and the acrylic resin film is placed on a cooling roll.
  • a step of irradiating the hard coat layer coated on at least one surface of the resin film with UV to cure the hard coat layer is included, and the UV integrated light amount of the UV irradiation is 150 to 500 mJ / cm 2 , and the cooling roll has a UV irradiation amount of 150 to 500 mJ / cm 2.
  • the temperature is 25 to 70 ° C.
  • the acrylic resin film has a glass transition temperature of 140 ° C. or lower, the breaking point elongation at 120 ° C.
  • a method for manufacturing a laminate wherein the crack elongation in the film is 50% or more, and the ⁇ haze of the steel wool wear test at 50 g / cm 2 , 5 reciprocations is 1.0% or less (hereinafter, “main laminate”). It is referred to as "a method for manufacturing a body”).
  • one aspect of the present invention is a method for manufacturing a molded body (hereinafter, "manufacturing of the present molded body", which comprises a step of shaping the laminated body shown below at a molding temperature of 140 ° C. or lower at the time of preform. Method ”): A laminate including an acrylic resin film and a hard coat layer laminated on at least one surface of the acrylic resin film.
  • the acrylic resin film has a glass transition temperature of 140 ° C. or lower and 120.
  • the break point elongation at ° C. is 200% or more
  • the crack elongation at 120 ° C. is 50% or more
  • the steel wool wear test ⁇ at 50 g / cm 2 , 5 reciprocations.
  • a film for an in-vehicle display it is a film that can be formed into a curved surface and has clear qualities such as abrasion resistance (also referred to as scratch resistance and scratch resistance), antireflection, and reliability. Is required.
  • a film used for such an application it has a multilayer film in which a polycarbonate resin and an acrylic resin are laminated, and further has functionality such as scratch resistance, antiglare property, antireflection property, and antifouling property.
  • a functional film having a functional layer formed by coating or the like is widely used.
  • the acrylic resin film has excellent properties such as transparency, hardness, weather resistance, excellent optical properties with little phase difference even during stretching, and secondary formability. Therefore, the present inventors have studied the application of an acrylic resin film to an in-vehicle display.
  • the present inventors tried to increase the strength of the hard coat layer from the viewpoint of enhancing the wear resistance in the laminate containing the acrylic resin film and the hard coat layer. As a result, although it was easy to increase the strength of the hardcoat layer itself, if the strength of the hardcoat layer is increased, the hardcoat layer may crack during molding and molding may not be possible. I found a problem.
  • the present inventors have succeeded in obtaining the following findings as a result of diligent studies on a laminate capable of achieving both moldability and wear resistance.
  • Excellent moldability is ensured by using an acrylic resin film having a glass transition temperature (Tg) of 140 ° C. or lower and a breaking point elongation at 120 ° C. of 200% or more.
  • Tg glass transition temperature
  • the UV integrated light intensity is controlled to 150 to 500 mJ / cm 2
  • the cooling roll temperature during UV irradiation is controlled to 25 to 70 ° C (preferably 40 to 70 ° C).
  • the wear resistance of the laminate is enhanced.
  • this laminate can simultaneously achieve excellent moldability and wear resistance. This can contribute to the achievement of Sustainable Development Goals (SDGs) such as Goal 12 “Securing Sustainable Consumption Production”.
  • SDGs Sustainable Development Goals
  • the present laminate includes an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film.
  • the acrylic resin film is composed of an acrylic resin and an acrylic resin composition containing graft copolymer particles containing a rubber component.
  • the graft copolymer particles containing the rubber component it is preferable to include the graft copolymer particles (A) having an average particle diameter of 20 nm or more and 200 nm or less, and in addition to the graft copolymer particles (A), the graft co-polymer particles are used.
  • the graft copolymer particles (B) having a larger average particle diameter than the polymer particles (A) may be included.
  • the graft copolymer particles (A) are dispersed in the acrylic resin or the matrix containing the acrylic resin and other components, or the graft copolymer particles (A).
  • the graft copolymer particles (B) are dispersed.
  • acrylic resin used for the acrylic resin film conventionally known acrylic resins can be used.
  • the methyl methacrylate unit is 50% by mass or more and 100% by mass or less, and the other constituent units are 0% by mass or more and 50% by mass. It is preferable to contain 20% by mass or more and 100% by mass or less of the thermoplastic acrylic polymer composed of 20% by mass or less.
  • Examples of other structural units include structural units derived from acrylic acid, acrylic acid derivatives, methacrylic acid, methacrylic acid derivatives, aromatic vinyl derivatives, vinyl cyanide derivatives, vinylidene halide and the like.
  • the other structural units contained in the acrylic resin may be one kind or a combination of two or more kinds.
  • acrylic acid derivative examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, cyclohexyl acrylate, 2-hydroxyethyl acrylate, and 2 acrylic acid.
  • -Acrylic acid esters such as phenoxyethyl, benzyl acrylate, 2- (N, N-dimethylamino) ethyl acrylate, and glycidyl acrylate can be mentioned.
  • methacrylic acid derivative examples include ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, phenyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, and 2-phenoxyethyl methacrylate.
  • Methacrylic acid esters such as isobornyl methacrylate, dicyclopentenyl methacrylate, glycidyl methacrylate, and adamantyl methacrylate.
  • aromatic vinyl derivative examples include styrene, vinyltoluene, ⁇ -methylstyrene and the like.
  • vinyl cyanide derivative examples include acrylonitrile and methacrylonitrile.
  • halogenated vinylidene examples include vinylidene chloride and vinylidene fluoride.
  • a structural unit having a specific structure with respect to the acrylic resin may be introduced by copolymerization, functional group modification, modification, or the like.
  • specific structures include, for example, glutarimide structures as shown in JP-A-62-89705, JP-A-02-178310, WO2005 / 54311, etc., JP-A-2004-168882, and JP-A-2004-16882.
  • Glutaric acid obtained by thermally condensing and cyclizing a lactone ring structure as shown in JP-A-2006-171464 and the like (meth) acrylic acid unit as shown in JP-A-2004-307834.
  • Examples thereof include an anhydride structure, a maleic anhydride structure as shown in JP-A-5-119217, and an N-substituted maleimide structure and an unsubstituted maleimide structure as shown in WO2009 / 84541.
  • anhydride structure a maleic anhydride structure as shown in JP-A-5-119217
  • an N-substituted maleimide structure a maleimide structure and an unsubstituted maleimide structure as shown in WO2009 / 84541.
  • the method for producing the acrylic resin is not particularly limited, and for example, known polymerization methods such as suspension polymerization method, bulk polymerization method, solution polymerization method, emulsion polymerization method, and dispersion polymerization method can be applied. Further, any of a known radical polymerization method, living radical polymerization method, anion polymerization method, and cationic polymerization method can be applied.
  • the acrylic resin film preferably contains the graft copolymer particles (A) as the graft copolymer particles containing the rubber component, and is added to the graft copolymer particles (A) as necessary. Further, the graft copolymer particles (B) may be contained.
  • the graft copolymer particles (A) have a core-shell structure (multilayer structure) including a crosslinked elastomer (A1) which is a rubber component and a graft polymer layer (A2) located on the surface layer side of the crosslinked elastomer (A1). Is preferable.
  • the crosslinked elastomer (A1) may be a known crosslinked elastomer.
  • the crosslinked elastomer (A1) is an acrylic acid ester-based crosslinked elastomer (a crosslinked elastomer composed of a polymer containing an acrylic acid ester as a main component).
  • the particles of the acrylic acid ester-based crosslinked elastomer (A1) may have a concentric spherical multilayer structure having a hard or semi-hard crosslinked resin layer inside the crosslinked elastomer layer.
  • a hard or semi-hard crosslinked resin layer include hard crosslinked methacrylic resin particles as shown in Japanese Patent Publication No. 55-27576 and the like, and methyl methacrylate-acrylic acid as shown in JP-A-4-270751.
  • Examples thereof include semi-hard crosslinked particles made of ester-styrene, and crosslinked rubber particles having a high degree of crosslinkage.
  • the graft copolymer particles (A) have a core-shell structure formed by graft-polymerizing the graft polymer layer (A2) in the presence of the particles of the above-mentioned acrylic acid ester-based crosslinked elastomer (A1). preferable.
  • the average particle size of the graft copolymer particles (A) is 20 nm or more and 200 nm or less, more preferably 50 nm or more and 150 nm or less, and particularly preferably 50 nm or more and 120 nm or less.
  • the average particle size of the graft copolymer particles (A) When the average particle size of the graft copolymer particles (A) is too small, the impact resistance and bending crack resistance of the acrylic resin film tend to decrease. When the average particle size of the graft copolymer particles (A) is excessive, the transparency of the acrylic resin film tends to deteriorate and whitening due to bending tends to occur.
  • the acrylic acid ester-based crosslinked elastomer (A1) can be copolymerized with an acrylic acid ester, another vinyl-based monomer that can be optionally copolymerized with an acrylic acid ester, and an acrylic acid ester, and can be copolymerized with an acrylic acid ester per molecule.
  • Crosslinked elastomer particles obtained by polymerizing a monomer mixture (a-1) containing a polyfunctional monomer having two or more non-conjugated double bonds can be preferably used.
  • Acrylic acid esters, other vinyl-based monomers, and polyfunctional monomers may be all mixed and polymerized in one step. Further, for the purpose of adjusting the toughness, whitening resistance, etc. of the acrylic resin film, the composition of the acrylic acid ester, other vinyl-based monomer, and the polyfunctional monomer is appropriately changed or the same.
  • the acrylic acid ester, the other vinyl-based monomer, and the polyfunctional monomer may be polymerized in two or more stages while maintaining the composition.
  • acrylic acid ester an aliphatic ester of acrylic acid is preferable, an acrylic acid alkyl ester is more preferable, and the number of carbon atoms of the alkyl group is more preferable, because it is excellent in polymerizable property, inexpensive, and gives a polymer having a low Tg.
  • Acrylic acid alkyl esters having a value of 1 or more and 22 or less can be particularly preferably used.
  • preferable acrylic acid alkyl esters include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, and isobornyl acrylate. , Cyclohexyl acrylate, dodecyl acrylate, stearyl acrylate, heptadecyl acrylate, octadecyl acrylate and the like. These may be used alone or in combination of two or more.
  • the amount of the acrylic acid ester is preferably 50% by mass or more, more preferably 70% by mass or more, and most preferably 80% by mass or more in 100% by mass of the monomer mixture (a-1). preferable.
  • the amount of the acrylic acid ester is 50% by mass or more, the impact resistance of the acrylic resin film and the elongation at the time of tensile breakage are good, and cracks are less likely to occur during the secondary molding.
  • Examples of other vinyl-based monomers include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, phenyl methacrylate, benzyl methacrylate and methacrylic acid.
  • Methacrylic acid esters such as cyclohexyl, phenoxyethyl methacrylate, isobornyl methacrylate, and dicyclopentenyl methacrylate; vinyl halides such as vinyl chloride and vinyl bromide; vinyl cyanide derivatives such as acrylonitrile and methacrylic acid; formic acid.
  • Vinyl esters such as vinyl, vinyl acetate, and vinyl propionate; aromatic vinyl derivatives such as styrene, vinyltoluene, and ⁇ -methylstyrene; vinylidene chlorides such as vinylidene chloride and vinylidene fluoride; acrylic acid; sodium acrylic acid. , And salts of acrylic acids such as calcium acrylate; acrylics such as ⁇ -hydroxyethyl acrylate, phenoxyethyl acrylate, benzyl acrylate, dimethylaminoethyl acrylate, glycidyl acrylate, acrylamide, and N-methacrylic acrylamide.
  • Methacrylic Acid Methacrylic Acid Salts such as Sodium Methacrylic Acid and Calcium methacrylate
  • Methacrylic Acid Derivatives such as Methacrylic Acid, ⁇ -Hydroxyethyl Methacrylate, Dimethylaminoethyl Methacrylate, and Glycidyl Methacrylate
  • Maleic Anhydrous N-alkylmaleimide, methacrylic acid derivatives such as N-phenylmaleimide and the like can be mentioned.
  • One of these may be used alone, or two or more thereof may be used in combination.
  • one or more selected from the group consisting of methacrylic acid esters and aromatic vinyl derivatives is particularly preferable from the viewpoint of weather resistance and transparency.
  • the amount of the other vinyl-based monomer is preferably 0% by mass or more and 49.9% by mass or less, and 0% by mass or more and 30% by mass or less in 100% by mass of the monomer mixture (a-1). It is more preferable, and it is most preferable that it is 0% by mass or more and 20% by mass or less.
  • the amount of other vinyl-based monomers exceeds 49.9% by mass, the impact resistance of the acrylic resin film tends to decrease, the elongation at tensile breakage decreases, and cracks easily occur during secondary molding. In some cases.
  • polyfunctional monomer those usually used as a cross-linking agent and / or a graft crossover agent may be used.
  • examples of the polyfunctional monomer include allyl methacrylate, allyl acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl maleate, divinyl adipate, divinyl benzene, ethylene glycol dimethacrylate, and propylene glycol dimethacrylate.
  • Diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, trimethyllol propanetrimethacrylate, polyethylene glycol dimethacrylate, dipropylene glycol dimethacrylate and the like can be used.
  • One of these polyfunctional monomers may be used alone, or two or more thereof may be used in combination.
  • those having a function as a graft cross-linking agent improve the number of graft bonds of the graft polymer layer (A2) described later with respect to the crosslinked elastomer (A1), and as a result, the graft copolymer is used. It is more preferable because it provides good dispersibility of the polymer (A) in the acrylic resin, improves crack resistance against tensile and bending deformation, and reduces stress whitening.
  • polyfunctional monomer having the function of such a graft crossing agent those having an allyl group such as allyl methacrylate, allyl acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, and diallyl maleate are preferable. , Allyl methacrylate, allyl acrylate and the like are particularly preferable.
  • the amount of the polyfunctional monomer is preferably 0.1% by mass or more and 10% by mass or less, and 1.0% by mass or more and 4% by mass or less in 100% by mass of the monomer mixture (a-1). It is more preferable to have. As long as the blending amount of the polyfunctional monomer is within such a range, it is preferable from the viewpoint of bending crack resistance and bending whitening resistance of the acrylic resin film, and fluidity of the resin during molding.
  • the amount of the polyfunctional monomer is adjusted to the inside and the surface of the crosslinked elastomer (A1) for the purpose of increasing the graft coating efficiency of the graft polymer layer (A2) described later. It may be changed in the vicinity. Specifically, as shown in Japanese Patent No. 1460364 and Japanese Patent No. 1786959, a polyfunctional monomer having a function as a graft copolymer in the vicinity of the surface of the crosslinked elastomer (A1).
  • the coating of the graft copolymer particles (A) with the graft polymer layer is improved, the dispersibility in the acrylic resin is improved, and the graft copolymer particles (A) and acrylic are improved. It is possible to suppress a decrease in crack resistance due to peeling of the resin interface. Further, since sufficient coating can be obtained with a relatively small amount of the graft polymer layer (A2), the graft copolymer particles (A) for introducing a predetermined amount of the crosslinked elastomer (A1) into the acrylic resin composition. ) Can be reduced, and therefore the melt viscosity of the acrylic resin composition can be reduced, and the melt processability of the acrylic resin film, the improvement of the film processing accuracy, the improvement of the surface hardness, and the like can be expected.
  • the molecular weight and the crosslink density of the acrylic acid ester-based crosslinked elastomer (A1) are controlled, and the double bond terminal of the polymer associated with the disproportionation termination reaction during polymerization is added.
  • a chain transfer agent may be added for the purpose of controlling thermal stability and the like by reducing the amount.
  • the chain transfer agent can be selected and used from those usually used for radical polymerization.
  • chain transfer agent examples include monofunctional or polyfunctional mercaptan compounds having 2 to 20 carbon atoms such as n-octyl mercaptan, n-dodecyl mercaptan, and t-dodecyl mercaptan, mercapto acids, thiophenols, and tetrachloride. Phenol or a mixture thereof and the like are preferable.
  • the amount of the chain transfer agent added is preferably 0 parts by mass or more and 1.0 part by mass or less, and more preferably 0 parts by mass or more and 0 parts by mass with respect to 100 parts by mass of the total amount of the monomer mixture (a-1). .2 parts by mass or less.
  • the particles of the crosslinked elastomer (A1) may be a single layer made of the above-mentioned acrylic acid ester-based crosslinked elastomer (A1), or two or more layers made of the above acrylic acid ester-based crosslinked elastomer (A1). It may have a multilayer structure including, or may have an acrylic acid ester-based crosslinked elastomer (A1) in at least one layer of the multilayer particles including a hard or semi-hard crosslinked resin layer.
  • Examples of the monomer constituting the hard or semi-hard crosslinked resin layer include methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, benzyl methacrylate, and phenoxyethyl methacrylate, methyl acrylate, and ethyl acrylate. , Acrylic acid alkyl esters such as propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, -2-ethylhexyl acrylate, and n-octyl acrylate, styrene, and aromatics such as ⁇ -methylstyrene. Examples thereof include group vinyl derivatives, vinyl cyanide derivatives such as acrylonitrile, maleic acid derivatives such as maleic anhydride and maleimides, and polyfunctional monomers having two or more non-conjugated double bonds per molecule.
  • one or more selected from the group consisting of methyl methacrylate, butyl methacrylate, butyl acrylate, ethyl acrylate, styrene, acrylonitrile and the like is particularly preferable.
  • the polyfunctional monomer the same one used for the polymerization of the crosslinked elastomer (A1) layer of the acrylic acid ester type can be used.
  • a chain transfer agent is used for the purpose of controlling the crosslink density and controlling the thermal stability by reducing the double bond terminal of the polymer. It may be used together.
  • the same chain transfer agent as the polymerization of the acrylic acid ester-based crosslinked elastomer (A1) layer can be used.
  • the amount of the chain transfer agent added is preferably 0 parts by mass or more and 2 parts by mass or less, and more preferably 0 parts by mass or more and 0.5 parts by mass with respect to 100 parts by mass of the total amount of the hard or semi-hard crosslinked resin layer. It is less than a part.
  • the graft copolymer particles (A) When the graft copolymer particles (A) have a two-layer structure of the crosslinked elastomer particles (A1) which are core particles and the graft polymer layer (A2), the graft copolymer particles (A) are typically. In the presence of crosslinked elastomer particles (A1), 50% by mass or more and 100% by mass or less of the methacrylic acid ester and 0% by mass or more and 50% by mass or less of other vinyl-based monomers copolymerizable with the methacrylic acid ester. It can be obtained by graft-copolymerizing the containing monomer mixture (a-2) to form a graft polymer layer (A2).
  • the amount of methacrylic acid ester in the monomer mixture (a-2) reduces the toughness of the coating film due to ensuring compatibility with the acrylic resin as a matrix and impregnating the acrylic resin film with a solvent. From the viewpoint of preventing whitening and cracking due to stretching during molding, it is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more.
  • the graft polymer layer (A2) preferably has 70% by mass or more and 99% by mass or less of the methacrylic acid alkyl ester and the number of carbon atoms of the alkyl group in the presence of 5 parts by mass or more and 90 parts by mass or less of the crosslinked elastomer particles (A1). 2 or more acrylic acid alkyl esters 10 parts by mass or more and 95 parts by mass or more of a monomer mixture containing 0.5% by mass or more and 30% by mass or less of other vinyl-based monomers and 0% by mass or more and 19% by mass or less of other vinyl-based monomers. It is obtained by graft-copolymerizing less than a part by mass in at least one step or more. However, it is assumed that the total amount of the crosslinked elastomer particles (A1) and the monomer mixture (a-2) satisfies 100 parts by mass.
  • examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, hexyl methacrylate and methacrylic acid.
  • examples thereof include methacrylic acid alkyl esters such as cyclohexyl, 2-ethylhexyl methacrylate, octyl methacrylate, phenyl methacrylate, and benzyl methacrylate. Of these, a methacrylic acid alkyl ester having an alkyl group having 1 to 4 carbon atoms is preferable.
  • an acrylic acid alkyl ester having an alkyl group having 2 or more carbon atoms can be used as the other vinyl-based monomer.
  • Acrylic acid alkyl esters having two or more carbon atoms in the alkyl group include ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, hexyl acrylate, cyclohexyl acrylate, and acrylic.
  • One or more selected from the group consisting of octyl acrylate, dodecyl acrylate, stearyl acrylate and the like is preferable, and it is selected from the group consisting of ethyl acrylate, n-butyl acrylate, isobutyl acrylate, and t-butyl acrylate.
  • One or more is more preferable, and n-butyl acrylate is particularly preferable.
  • vinyl-based monomers that can be used in the monomer mixture (a-2) include aromatic vinyl derivatives such as styrene and its nuclear substituents, vinyl cyanide derivatives such as acrylonitrile, methacrylic acid and its derivatives. Examples thereof include acrylic acid and its derivatives, N-substituted maleimides, maleic anhydride, methacrylic acid, acrylamide and the like.
  • the monomer mixture (a-2) preferably contains a reactive ultraviolet absorber as another vinyl-based monomer. That is, it is preferable that the graft polymer layer (A2) contains a structural unit derived from the reactive ultraviolet absorber. When the monomer mixture (a-2) contains a reactive ultraviolet absorber, it is easy to obtain an acrylic resin film having good weather resistance and chemical resistance.
  • the reactive ultraviolet absorber a known reactive ultraviolet absorber can be used and is not particularly limited. From the viewpoint of moldability and weather resistance of the acrylic resin film, the reactive ultraviolet absorber is preferably a compound represented by the following general formula (1).
  • X is a hydrogen atom or a halogen atom
  • R 1 is a hydrogen atom, a methyl group, or a t-alkyl group having 4 or more and 6 or less carbon atoms
  • R 2 is linear. Alternatively, it is a branched alkylene group having 2 or more and 10 or less carbon atoms
  • R3 is a hydrogen atom or a methyl group.
  • Specific examples of the reactive ultraviolet absorber represented by the general formula (1) include 2- (2'-hydroxy-5'-(meth) acryloyloxyethylphenyl) -2H-benzotriazoles.
  • 2- (2'-hydroxy-5'-acryloyloxyethylphenyl) -2H-benzotriazole 2- (2'-hydroxy-5'-methacryloyloxyethylphenyl-2H-benzotriazole, 2- (2'-Hydroxy-5'-methacryloyloxyethylphenyl) -5-chloro-2H-benzotriazole, 2- (2'-hydroxy-5'-methacryloyloxypropylphenyl) -2H-benzotriazole, 2- Examples thereof include (2'-hydroxy-5'-methacryloyloxyethyl-3'-t-butylphenyl) -2H-benzotriazole, and 2- (2'-hydroxy-5' is preferable from the viewpoint of cost and handleability.
  • -Methacryloxyethylphenyl) -2H-benzotriazole is used.
  • the content of the structural unit derived from the reactive ultraviolet absorber in the graft polymer layer (A2) is preferably 0.01% by mass or more and 5% by mass or less, preferably 0.1% by mass or more and 3% by mass or less. It is more preferable to have.
  • the graft copolymer particles (A) especially in the graft copolymerization of the crosslinked elastomer particles (A1), for example, the monomer mixture (a-2) in the presence of the acrylic acid ester-based crosslinked elastomer particles (A1).
  • a polymer component (free polymer) that is not graft-bonded to the acrylic acid ester-based crosslinked elastomer particles (A1) may be generated.
  • a free polymer can be used as a component of a part or all of the acrylic resin constituting the matrix phase of the acrylic resin composition and the acrylic resin film.
  • the molecular weight of the polymer is controlled, the graft ratio to the crosslinked elastomer (A1), the amount of the free polymer not bonded to the crosslinked elastomer (A1), and the polymerization.
  • a chain transfer agent may be added for the purpose of controlling thermal stability and the like by reducing the double-bonded ends of the polymer due to the disproportionation termination reaction at the time.
  • a chain transfer agent similar to the chain transfer agent that can be used for the polymerization of the crosslinked elastomer (A1) can be used.
  • the amount of the chain transfer agent used is 0 parts by mass or more and 2 parts by mass or less, preferably 0 parts by mass or more and 0.5 parts by mass or less, based on 100 parts by mass of the total amount of the monomer mixture (a-2).
  • the graft ratio of the monomer mixture (a-2) to the crosslinked elastomer particles (A1) is preferably 5% or more and 250% or less, more preferably 10% or more and 200% or less, and further preferably 20% or more and 150% or less.
  • the graft ratio is less than 5%, the bending whitening resistance of the acrylic resin film is lowered, the transparency is lowered, the elongation at the time of tensile fracture is lowered, and cracks are likely to occur during secondary molding. Tend to become.
  • the graft ratio exceeds 250%, the melt viscosity of the acrylic resin composition tends to increase during film molding, and the moldability of the acrylic resin film tends to decrease.
  • the average particle diameter d (nm) of the crosslinked elastomer particles (A1) in the acrylic resin film and the amount w (mass%) of the polyfunctional monomer used in the acrylic acid ester-based crosslinked elastomer have a relational expression: It is preferable to satisfy 0.015d ⁇ w ⁇ 0.06d, and more preferably 0.02d ⁇ w ⁇ 0.05d.
  • the amount of the polyfunctional monomer is within the range of the above relational expression, the elongation of the acrylic resin film during secondary molding is unlikely to decrease, cracks are unlikely to occur during molding and cutting, and the acrylic resin film is transparent.
  • the graft copolymer particles (B) used as needed also include the crosslinked elastomer (B1) which is a rubber component, like the graft copolymer particles (A).
  • the graft copolymer particles (B) typically include, like the graft copolymer particles (A), a graft polymer layer (B2) located on the surface side of the crosslinked elastomer (B1). That is, the graft copolymer particles (B) preferably include a crosslinked elastomer (B1) and a graft polymer layer (B2).
  • the graft copolymer particles (B) are almost the same as the graft copolymer particles (A) in terms of raw materials, production method, etc., except that the average particle size is larger than that of the graft copolymer particles (A). It is also good.
  • the particles of the acrylic acid ester-based crosslinked elastomer (B1) have a concentric spherical multilayer structure having a hard or semi-hard crosslinked resin layer inside the crosslinked elastomer layer. Examples of such a hard or semi-hard crosslinked resin layer include hard crosslinked methacrylic resin particles as shown in Japanese Patent Publication No. 55-27576, and Japanese Patent Laid-Open No. 4-270751 and WO2014 / 41803.
  • Examples thereof include crosslinked particles having a semi-hard layer made of a methyl methacrylate-acrylic acid ester-styrene copolymer or the like.
  • a hard or semi-hard crosslinked resin layer By introducing such a hard or semi-hard crosslinked resin layer, the transparency, bending whitening resistance, and folding resistance of the graft copolymer particles (B) having a larger particle diameter than the graft copolymer particles (A) are obtained. Bending crackability and the like can be improved.
  • the average particle size of the graft copolymer particles (B) is preferably 150 nm or more and 400 nm or less, and more preferably 200 nm or more and 350 nm or less.
  • the average particle size of the graft copolymer particles (B) is larger than the average particle size of the graft copolymer particles (A).
  • the graft copolymer particles (B) having a large average particle size more effectively induce plastic deformation (claise) in the acrylic resin phase around the graft copolymer particles against the action of an external force on the acrylic resin material. do. Therefore, the graft copolymer particles (B) are extremely excellent in the effect of imparting impact resistance and crack resistance to the acrylic resin material.
  • the graft copolymer particles (B) are inferior to the graft copolymer particles (A) in bending whitening resistance, solvent whitening resistance, and the like.
  • a soft component for the acrylic resin film can be obtained.
  • the total content is not lowered to reduce the surface hardness of the acrylic resin film, and the whitening property when an external stress is applied to the acrylic resin film, when a coating liquid containing an organic solvent is applied, or during molding. It is difficult to deteriorate, and the effect of efficiently improving the crack resistance, secondary formability, etc. of the functional film can be expected.
  • the average particle size of the graft copolymer particles (A) and the graft copolymer particles (B) is a laser diffraction type using a Microtrac particle size distribution measuring device MT3000 manufactured by Nikkiso Co., Ltd. It can be measured by using the light scattering method in the latex state using the particle size distribution measuring device of.
  • the method for producing the graft copolymer particles (A) and the graft copolymer particles (B) is not particularly limited, and is known as an emulsification polymerization method, a mini-emulsion polymerization method, a suspension polymerization method, a bulk polymerization method, and a solution weight.
  • a legal or dispersion polymerization method can be applied.
  • the emulsification polymerization method is particularly preferable because the adjustment range of the resin structure is large.
  • Suitable initiators used in the emulsion polymerization of the graft copolymer particles (A) or the graft copolymer particles (B) include organic peroxides, inorganic peroxides, azo compounds and the like. Agents can be used.
  • t-butyl hydroperoxide 1,1,3,3-tetramethylbutyl hydroperoxide, succinic acid peroxide, peroxymaleic acid t-butyl ester, cumene hydroperoxide
  • Organic peroxides such as benzoyl peroxide and lauroyl peroxide
  • inorganic peroxides such as potassium persulfate, sodium persulfate and ammonium persulfate
  • azo compounds such as azobisisobutyronitrile can be used. These may be used alone or in combination of two or more.
  • initiators may be used as thermally decomposable radical polymerization initiators, or may be sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate, ascorbic acid, hydroxyacetone acid, ferrous sulfate, etc. It may be used as a redox-type polymerization initiator system in combination with a reducing agent. In addition, ferrous sulfate may be used in combination with a complex such as ethylenediaminetetraacetic acid-2-sodium.
  • inorganic peroxides such as potassium persulfate, sodium persulfate, and ammonium persulfate are used, or t-butyl hydroperoxide, cumene hydroperoxide, etc. are used from the viewpoint of polymerization stability and particle size control. It is recommended to use a redox initiator system in which the organic progress oxide of the above is combined with an inorganic reducing agent such as a divalent iron salt and / or an organic reducing agent such as sodium formaldehyde sulfoxylate, a reducing sugar and ascorbic acid. More preferred.
  • the above-mentioned inorganic peroxide or organic peroxide is added by a known method such as a method of adding it to a polymerization system as it is, a method of adding it by mixing it with a monomer, or a method of dispersing it in an aqueous emulsifier solution.
  • a method of mixing the acrylic resin film with the monomer and adding the film, and a method of dispersing the acrylic resin film in an aqueous emulsifier solution and adding the film are preferable.
  • the surfactant (also referred to as an emulsifier) used for the emulsion polymerization of the graft copolymer particles (A) or the graft copolymer particles (B) is not particularly limited.
  • Known surfactants can be widely used for emulsion polymerization.
  • Preferred surfactants include, for example, alkyl sulphonic acid, alkylbenzene sulphonic acid, dioctyl sulphosuccinic acid, alkyl sulfuric acid, sodium fatty acid, polyoxyethylene alkyl ether acetic acid, alkyl phosphoric acid, alkyl ether phosphoric acid, alkyl phenyl ether phosphoric acid.
  • Sodium salts such as surfactins, anionic surfactants such as potassium salts and ammonium salts, and nonionic surfactants such as alkylphenols, aliphatic alcohols and propylene oxide, reaction products of ethylene oxide, etc.
  • anionic surfactants such as potassium salts and ammonium salts
  • nonionic surfactants such as alkylphenols, aliphatic alcohols and propylene oxide, reaction products of ethylene oxide, etc.
  • alkyl ether phosphoric acid and its salt for example, polyoxyethylene lauryl ether phosphoric acid and its sodium salt can be preferably used.
  • One of these surfactants may be used alone, or two or more thereof may be used in combination.
  • the graft copolymer particles (A) or the graft copolymer particles (A) by a known method.
  • B) can be separated and recovered.
  • a water-soluble electrolyte such as calcium chloride or magnesium sulfate
  • the graft copolymer particles are subjected to the operations of filtering, washing and drying the solid content.
  • (A) or the graft copolymer particles (B) can be separated and recovered.
  • the graft copolymer particles (A) or the graft copolymer particles (B) can be separated and recovered by a treatment such as spray drying or freeze-drying of the latex.
  • the graft copolymer particles (A) or the graft copolymer particles (B) are separated and recovered in advance for the purpose of reducing appearance defects and internal foreign substances of the acrylic resin film.
  • the latex of (A) or the latex of the graft copolymer particles (B) is filtered with a filter or a mesh to remove substances that cause foreign matter defects such as environmental foreign matter and polymerization scale.
  • the filter or mesh a known filter or mesh used for filtering a liquid medium can be used.
  • the type of filter or mesh, the opening of the filter, the accuracy of filtration, the filtration capacity, etc. are appropriately selected according to the target application, the type of foreign matter to be removed, and the size and amount. It is preferable that the opening and the filtration accuracy of the filter and the mesh are, for example, twice or more larger than the average particle size of the graft copolymer particles (A) or the graft copolymer particles (B), respectively.
  • the content of the graft copolymer particles (A) in the acrylic resin film is not particularly limited, but is preferably 1% by mass or more and 70% by mass or less, and 5% by mass or more and 65% by mass or less. It is more preferably 10% by mass or more and 60% by mass or less.
  • the content of the graft copolymer particles (B) in the acrylic resin film is not particularly limited, but is preferably 20% by mass or less, more preferably 10% by mass or less, and 5% by mass or less. Most preferably.
  • the lower limit value is not particularly limited, but is, for example, 1% by mass or more.
  • the total content of the crosslinked elastomer (A1) and the crosslinked elastomer (B1) in the acrylic resin film is not particularly limited, but is preferably 15% by mass or less, more preferably 13% by mass or less, and 12% by mass. % Or less is most preferable.
  • the acrylic resin film (acrylic resin composition constituting the acrylic resin film) is a thermoplastic resin having at least partial compatibility with the acrylic resin, if necessary, as long as the object of the present invention is not impaired. It may be included.
  • thermoplastic resins include styrene resins, polyvinyl chloride resins, polycarbonate resins, amorphous saturated polyester resins, polyamide resins, phenoxy resins, polyarylate resins, olefin-methacrylic acid derivative resins, and olefins.
  • Acrylic acid derivative resin cellulose derivative (cellulose acylate, etc.), vinyl acetate resin, polyvinyl alcohol resin, polyvinyl acetal resin, polylactic acid resin, and PHBH (poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)).
  • the styrene resin include styrene-acrylonitrile resin, styrene-methacrylic acid resin, styrene-acrylic acid resin, styrene-maleic anhydride resin, styrene-N-substituted maleimide resin, and styrene-unsubstituted maleimide.
  • thermoplastic resins selected from the group consisting of styrene resins, polycarbonate resins, and cellulose acylate resins.
  • the acrylic resin film (acrylic resin composition constituting the acrylic resin film) is also a conventionally known additive used for the acrylic resin film, if necessary, as long as the object of the present invention is not impaired. May include. Such additives include antioxidants, UV absorbers, light stabilizers, light diffusing agents, matting agents, lubricants, colorants such as pigments and dyes, fibrous fillers, organic particles and inorganic particles. Examples thereof include anti-blocking agents, ultraviolet reflectors made of metals and metal oxides, plasticizers, antistatic agents and the like. Additives are not limited to these. These additives can be used in any amount depending on the type of the additive, as long as the object of the present invention is not impaired or in order to enhance the effect of the present invention.
  • the glass transition temperature (Tg) of the acrylic resin film is 140 ° C. or lower, preferably 135 ° C. or lower, and more preferably 130 ° C. or lower.
  • the lower limit is not particularly limited, but it is preferably 100 ° C. or higher, for example, from the viewpoint of preventing printing misalignment and improving reliability when printing is dried.
  • the glass transition temperature of the acrylic resin film is measured by the method described in Examples.
  • the elongation at break point of the acrylic resin film at 120 ° C. is 200% or more, preferably 210% or more, and more preferably 220% or more.
  • the break point elongation of the acrylic resin film at 120 ° C. is 200% or more, there is an advantage that the shape followability of molding is excellent.
  • the elongation at break at 120 ° C. of the acrylic resin film is measured by the method described in Examples.
  • the elongation at break point of the acrylic resin film at 23 ° C. is preferably 20% or more, more preferably 25% or more, still more preferably 30% or more.
  • the elongation at break point of the acrylic resin film at 23 ° C. is measured by the method described in Examples.
  • the film thickness of the acrylic resin film is not particularly limited, but is, for example, 75 to 500 ⁇ m, preferably 75 to 300 ⁇ m, and more preferably 100 to 250 ⁇ m.
  • the film thickness of the acrylic resin film is measured by the method described in Examples.
  • the pencil hardness of the surface of the acrylic resin film on which the hard coat layer is not laminated is preferably B or higher, and more preferably HB or higher, from the viewpoint of scratch resistance.
  • the pencil hardness of the surface of the acrylic resin film on which the hard coat layer is not laminated is measured by the person described in the examples according to JIS K5600-5-4.
  • the acrylic resin film can be produced by a known processing method.
  • known processing methods include a melting processing method, a calendar forming method, a press forming method, a solvent casting method, and the like.
  • the melt processing method include an inflation method and a T-die extrusion method.
  • the solvent casting method the acrylic resin composition is dissolved and dispersed in a solvent, and then the obtained dispersion liquid (dope) is poured into a film on a belt-shaped substrate. Then, the solvent is volatilized from the flown film-like dope to obtain an acrylic resin film.
  • melt processing method that does not use a solvent, particularly a T-die extrusion method is preferable.
  • the melt processing method there are few restrictions on the thickness of the film to be manufactured, a film with excellent surface properties can be manufactured with high productivity, and the load on the natural environment and work environment due to the solvent and the manufacturing cost are reduced. be able to.
  • the appearance defect of the acrylic resin film is defective by using a filter or filtration using a mesh from the viewpoint of improving the appearance quality of the acrylic resin film. It is preferable to remove environmental foreign substances, polymerization scales, deteriorated resins and the like in the acrylic resin composition, which cause foreign substances inside and the like.
  • filtration is performed at any one or more of the preparation of the acrylic resin composition by melt mixing, the pelletization of the molten acrylic resin composition, and the film forming process by T-die. It can be carried out.
  • the acrylic resin, the graft copolymer particles (A), (B) and other components may be mixed with the solvent and then filtered before the cast film formation.
  • a known filter or mesh can be used without particular limitation as long as the filter or mesh has heat resistance and durability according to the melting processing conditions and resistance to a solvent for casting, a dope, etc. can.
  • the film thickness distribution in the TD direction (direction perpendicular to the extrusion direction) of the extruded film is online.
  • An automatic die device can be used that measures and automatically adjusts the lip clearance of the T-die during extrusion of the film based on this. By applying an automatic die using an appropriate control method, it may be possible to improve the thickness accuracy of the acrylic resin film.
  • both sides of the melted film are brought into contact with (sandwich) the cooling roll or cooling belt at the same time to obtain a film with better surface properties.
  • the molten film is simultaneously brought into contact with a roll or a cooling belt maintained at a glass transition temperature of ⁇ 80 ° C. or higher, preferably a glass transition temperature of ⁇ 70 ° C. or higher of the acrylic resin composition.
  • a roll having an elastic metal sleeve as disclosed in, for example, JP-A-2000-153547 and JP-A-11-235747 is used.
  • the film surface is excellent in smoothness or has an appropriate surface roughness, and the film surface is excellent in slipperiness, and blocking between films is suppressed. , A film with less internal distortion can be obtained.
  • Uniaxial stretching or biaxial stretching can be performed using a known stretching device.
  • Biaxial stretching can be carried out in a known format such as a method of sequentially biaxial stretching, simultaneous biaxial stretching, longitudinal stretching, and then lateral stretching while relaxing the longitudinal direction to reduce bowing of the film. be.
  • any surface shape of may be imparted.
  • a surface shape can be imparted by a known method.
  • the surface shape of a roll is formed by sandwiching both sides of a melted film immediately after extrusion or a molded film unwound from a feeding device between two rolls or belts having a surface shape on at least one surface. Examples include a method of transfer.
  • the hard coat layer in this laminate is a functional layer laminated on at least one side of the acrylic resin film.
  • the hard coat layer may be laminated on one side of the acrylic resin film, or may be laminated on both sides.
  • the hard coat layer in this laminate is preferably a cured product of a resin composition containing a polyfunctional (meth) acrylate and a photopolymerization initiator.
  • the hard coat layer is preferably obtained by curing by a known curing method such as thermosetting or active energy ray curing. More preferably, it is obtained by curing by irradiation with active energy rays such as ultraviolet rays.
  • the hard coat layer may be a monomer, oligomer, resin, or a monomer having a radically reactive functional group such as polyfunctional (meth) acrylate, epoxy acrylate, urethane acrylate, polyester acrylate, silicon acrylate, polycarbonate acrylate, and polyacrylic acrylate. It can be formed by curing a composition containing a mixture of.
  • a hard coat layer can be formed by curing a composition containing a monomer having a cationic or anionic curable functional group such as an epoxy group and an oxetane group, an oligomer, a resin, or a mixture thereof.
  • a hardcourt layer can be formed by thermally curing a polysiloxane-based resin obtained by hydrolyzing and partially condensing an alkoxy group-substituted silyl compound.
  • a hardcourt layer can be formed by introducing a reactive functional group into the silyl compound and reacting it to cure it.
  • the above-mentioned component used for forming the hard coat layer one kind may be used alone, or two or more components may be appropriately mixed and used.
  • polyfunctional (meth) acrylate and epoxy acrylate, urethane acrylate, etc. are described separately for convenience of explanation described later, but “polyfunctional (meth) acrylate” is described separately.
  • "" Is a general term for compounds such as monomers, oligomers, and polymers containing two or more (meth) acryloyl functional groups in the structure, and includes epoxy acrylates, urethane acrylates, and alkyls, alkenyls, aryls, esters, and amides.
  • Any main chain or skeletal structure such as ethers, fluoroalkyls, silyloxys, and compounds containing two or more (meth) acryloyl functional groups. That is, when described as "polyfunctional (meth) acrylate", as those skilled in the art usually understand, epoxy acrylates, urethane acrylates, and even polyvalent (meth) acrylates having any structure as described above. Intended to contain compounds.
  • the polyfunctional (meth) acrylate is not particularly limited as long as it has at least two (meth) acryloyl groups. Specifically, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, penta.
  • Examples include polyfunctional (meth) acrylates such as erythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethanetri (meth) acrylate, hexanediol di (meth) acrylate, and diethylene glycol di (meth) acrylate. Be done. These may be used individually by 1 type, or may be used by mixing 2 or more types. Further, those commercially available as an ultraviolet curable hard coat agent can be mentioned.
  • (meth) acrylate is meant to include methacrylate and acrylate.
  • the (meth) acryloyl group is meant to include a methacryloyl group and an acryloyl group.
  • epoxy acrylate-based monomer there are no particular restrictions on the epoxy acrylate-based monomer. Specifically, glycidyl (meth) acrylate, ⁇ -methylglycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, and vinylcyclohexene monooxide (ie, 1,2-epoxy-4-vinylcyclohexane). ) Etc. can be mentioned.
  • the urethane acrylate resin can be obtained, for example, by mixing a polyhydric alcohol, a polyhydric isocyanate, and a hydroxyl group-containing (meth) acrylate to generate a urethane bond by the reaction between the isocyanate group and the hydroxyl group.
  • the hydroxyl group-containing (meth) acrylate is not particularly limited, and the hydroxyl group-containing (meth) acrylate, for example, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and, if necessary, at least one hydroxyl group.
  • Compounds with ethylenically unsaturated bonds such as 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, trimetyl propane mono (meth).
  • the polyvalent isocyanate is not particularly limited.
  • Examples of the polyvalent isocyanate compound which is a compound containing two or more isocyanate groups include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, and 1,4-xylylene diisocyanate.
  • polyhydric alcohol examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, and 1,8.
  • An organic tin-based urethanization catalyst is used to promote the reaction of the isocyanate component with the isocyanate group.
  • the organic tin-based urethanization catalyst may be any catalyst generally used for the urethanization reaction, and examples thereof include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dialkylmalate, tin stearate, and tin octylate. Be done.
  • the amount of these organotin-based urethanization catalysts used is not particularly limited, but it is appropriate to use them within the range of 0.005% by mass or more and 3% by mass or less. If the lower limit is not reached, the urethane reaction does not proceed sufficiently, and if the upper limit is exceeded, heat generation during the urethane reaction makes reaction control difficult.
  • a composition for forming a hard coat composed of a polysiloxane-based resin composition preferably has the following general formula (2): R 4- (SiR 5 a (OR 6 ) 3-a ) ... (2) (In the general formula (2), at least a part of R4 is from an epoxy group, an oxetane group, a (meth) acryloyl group, a vinyl group, a hydroxyl group, a carboxyl group, an amino group, and an amino group protected with a functional group.
  • R5 is a monovalent hydrocarbon group selected from the above, independently of each other, a hydrogen atom, an alkyl group having 1 or more and 10 or less carbon atoms, an aryl group having 6 or more and 25 or less carbon atoms, and 7 carbon atoms. It is a monovalent hydrocarbon group selected from the group consisting of 12 or more aralkyl groups.
  • R 6 is an independently hydrogen atom or an alkyl group having 1 or more and 10 or less carbon atoms.
  • A is 0 or more and 2 or more.
  • a condensate (A) obtained by hydrolyzing and condensing a silane compound (Z) having a hydrolyzable silyl group represented by (the following integer), and a catalyst or a catalyst for reacting a reactive substituent. It is a curable composition containing a curing agent (B).
  • the weight average molecular weight of the condensate (A) is 30,000 or less. Further, it is preferable that the ratio of the silane compound having a reactive substituent is 10% by mass or more of the whole. In this case, the cured product as the hard coat layer is excellent in hardness, chemical resistance, durability and the like.
  • the catalyst or curing agent (B) is preferably one or more catalysts or curing agents selected from a photoradical generator, a photocation generator, and a photoanion generator from the viewpoint of photocurability of the composition.
  • the reactive substituent in the general formula (2) is an epoxy group or an oxetane group because it has less curing shrinkage during formation of the hardcoat layer and it is easy to obtain a functional film having excellent durability and suppressed curl. Is preferable.
  • a neutral salt catalyst as a catalyst for carrying out the hydrolysis / condensation reaction of the silane compound (Z). This is because when the reactive substituent is an epoxy group or an oxetane group, it is easy to suppress the decomposition of the reactive substituent during hydrolysis condensation.
  • the ratio Q / P of the number of moles Q of the OR 6 groups directly bonded to the silicon atom of the condensate (A) to the number of moles P of 6 is 0.2 or less. This is because the cured product has excellent hardness, chemical resistance, durability, and the like.
  • a known method can be applied as a method for curing the resin composition when forming the hard coat layer.
  • a method of irradiating with active energy rays typified by ultraviolet rays is preferable.
  • a photopolymerization initiator, a photoanion generator, a photocation generator, and the like are usually added to the composition for forming a hard coat layer.
  • photopolymerization initiator examples include, for example, acetophenone, benzophenone, benzoylmethyl ether, benzoylethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, dibenzyl, 1-hydroxy-cyclohexyl-phenyl-ketone, 2,2-dimethoxy-.
  • 2-Phenylacetophenone Tetramethylthium monosulfide, Tetramethylthium disulfide, Thioxanthone, 2-Chlorothioxanthone, 2-Methylthioxanthone, and 2-Methyl-1- [4- (Methylthio) phenyl] -2-morpholinopropane- Examples include 1-on compounds. Among these, 1-hydroxy-cyclohexyl-phenyl-ketone having excellent compatibility with the resin is preferable.
  • photocation generator examples include CPI-100P, CPI-101A, CPI-200K, and CPI-200S manufactured by San-Apro; WPI-124, WPI-113, and WPI- manufactured by Wako Pure Chemical Industries, Ltd.
  • photoanionic generators such as 116, WPI-169, WPI-170, and WPI-124; Rhodia's Rhodesyl 2074, etc. include, for example, acetophenone o-benzoyloxyum, nifedipine, 2- (9).
  • the curable composition When a coating film made of a curable composition is cured to form a hard coat layer, the curable composition is known for the purpose of improving coatability, scratch resistance after curing, antifouling property, and the like.
  • Various leveling agents may be blended.
  • As the leveling agent a fluorine-based leveling agent, an acrylic-based leveling agent, a silicone-based leveling agent, and an adduct or a mixture thereof can be used.
  • the blending amount of the leveling agent is not particularly limited, but is, for example, an amount within the range of 0.03 parts by mass or more and 3.0 parts by mass or less with respect to 100 parts by mass of the curable composition.
  • the curable composition When a hard coat layer is formed by applying a curable composition, the curable composition includes an ultraviolet absorber, a light stabilizer, a defoaming agent, an antioxidant, a light diffusing agent, a matting agent, and an antioxidant.
  • Various additives such as stains, lubricants, colorants such as pigments and dyes, organic particles, inorganic fine particles, and antistatic agents can be added as needed. Additives are not limited to these.
  • an organic solvent is usually blended.
  • the organic solvent is not particularly limited as long as it can impart the desired coatability to the curable composition and can form a hard coat layer having a desired film thickness and performance.
  • the boiling point of the organic solvent is preferably 50 ° C. or higher and 150 ° C. or lower from the viewpoint of coatability and drying property of the formed coating film.
  • organic solvent examples include saturated hydrocarbons such as hexane; aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as chloroform and methylene chloride; alcohols such as methanol, ethanol, isopropyl alcohol and butanol.
  • esters such as methyl acetate, ethyl acetate, and butyl acetate
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
  • ethers such as tetrahydrofuran, dioxane, propylene glycol monoethyl ether, methyl cellosolve, and ethyl cellosolve.
  • Classes N-methylpyrrolidone, amides such as dimethylformamide, and the like.
  • the organic solvent may be used alone or in combination of two or more.
  • any method can be adopted without particular limitation as the application method.
  • the coating method include a reverse coating method, a gravure coating method, a bar coating method, a die coating method, a spray coating method, a kiss coating method, a wire bar coating method, and a curtain coating method. These coating methods may be carried out individually or in combination of one or more.
  • the drying temperature of the coating film when the organic solvent is removed by drying is preferably 60 ° C. or higher and 120 ° C. or lower, and more preferably 70 ° C. or higher and 100 ° C. or lower. If the drying temperature is too low, the organic solvent may remain in the coating film. Further, if the drying temperature is too high, the flatness of the functional film (hard coat layer) may be impaired due to thermal deformation of the base film.
  • the wavelength of the ultraviolet rays emitted when the coating film is cured is preferably in the range of 200 nm or more and 400 nm or less.
  • the integrated amount of ultraviolet (UV) light will be described later [4.
  • the conditions described in [Method for manufacturing a laminate] are preferably used.
  • the ultraviolet exposure light irradiation device include lamp light sources such as high-pressure mercury lamps, low-pressure mercury lamps, metal halide lamps, electrodeless lamps, and excima lamps, and pulsed or continuous lasers such as argon ion lasers and helium neon lasers.
  • An irradiation device provided with a light source or the like can be used.
  • composition for forming a hard coat layer examples include a product name "Z-879” manufactured by Aika Kogyo Co., Ltd., a product name "Unidic ESS108” manufactured by DIC Corporation, "NSC-7312” manufactured by Dainichi Seika Kogyo Co., Ltd., and Arakawa.
  • Commercially available products such as "FA-3280H” may be used. Since it has elongation even after curing, it is possible to further increase the 120 ° C. crack elongation of the present laminate.
  • the film thickness of the hard coat layer is not particularly limited, but is, for example, 0.6 to 10.0 ⁇ m, preferably 0.7 to 7.0 ⁇ m, and more preferably 0.8 to 5.0 ⁇ m. preferable.
  • the film thickness of the hard coat layer is 0.6 to 10.0 ⁇ m, it has an advantage that both wear resistance and moldability can be achieved at the same time.
  • the film thickness of the hard coat layer is measured by the method described in Examples.
  • inorganic particles or metal particles may be added in order to improve the wear resistance of the hard coat layer.
  • the inorganic particles and metal particles are not particularly limited, but for example, silica, alumina, titanium oxide, zinc oxide, zirconia, graphene, nanocarbon, carbon black, nanodiamond, mica, barium titanate, boron nitride, metallic silver, etc.
  • Metallic copper and the like can be mentioned. These particles may be used without surface treatment, or may be surface-treated by a method known in advance to control the dispersed state, and the affinity with the hard coat layer may be appropriately controlled. ..
  • the present laminate may have other functional layers in addition to the hard coat layer.
  • the other functional layer is not particularly limited, and for example, various conventionally known functional layers can be adopted.
  • Specific examples of the functional layer include an antireflection layer, an antiglare layer, an antifouling layer, a fingerprint resistant layer, a scratch resistant layer, an antistatic layer, an ultraviolet shielding layer, an infrared shielding layer, a surface uneven layer, a light diffusion layer, and a matte layer.
  • Examples thereof include a layer, a polarizing layer, a colored layer, a design layer, an embossing layer, a conductive layer, a gas barrier layer, and a gas absorbing layer. Two or more kinds of these functional layers may be provided in combination.
  • one functional layer may have a plurality of functions of two or more.
  • the antireflection layer may be composed of a low refractive index layer, may be composed of both a high refractive index layer and a low refractive index layer, and may have a surface uneven shape finer than the wavelength of visible light. It may be configured by forming on the surface of.
  • this laminate is composed of a specific acrylic resin film and a hard coat layer, and is excellent in moldability and abrasion resistance.
  • the crack elongation of this laminate at 120 ° C. is 50% or more, preferably 52% or more, and more preferably 54% or more.
  • the crack elongation at 120 ° C. of this laminated body is measured by the method described in Examples.
  • the ⁇ haze of the steel wool wear test in 50 g / cm 2 , 5 reciprocations of this laminate is 1.0% or less, preferably 0.8% or less, and preferably 0.6% or less. More preferred. If the ⁇ haze of the steel wool wear test at 50 g / cm 2 or 5 round trips is 1.0% or less, it has the advantage of not being scratched even when wiped.
  • the ⁇ haze of the steel wool wear test at 50 g / cm 2 and 5 reciprocations is measured by the method described in Examples.
  • the ⁇ haze of the steel wool wear test at 50 g / cm 2 , 10 reciprocations of this laminate is, for example, 1.0% or less, preferably 0.9% or less, and preferably 0.8% or less. Is more preferable. If the ⁇ haze of the steel wool wear test at 50 g / cm 2 , 10 reciprocations is 1.0% or less, it has the advantage of not being scratched even when wiped.
  • the ⁇ haze of the steel wool wear test at 50 g / cm 2 , 10 reciprocations is measured by the method described in Examples.
  • the pencil hardness of this laminate is preferably H or higher, and more preferably 2H or higher, from the viewpoint of being less likely to be scratched.
  • the pencil hardness of this laminate is measured by the method described in Examples.
  • Step 2 The above “steel wool wear test” and “pencil hardness” are both indicators of wear resistance. “Steel wool wear test” evaluates wear resistance by scratches when wiped, and “pencil hardness” evaluates wear resistance by scratches when scratched. It is preferable that the present laminated body is effective in any index.
  • the phase difference (Re) of the present laminate is, for example, 38 nm or less, preferably 30 nm or less, more preferably 20 nm or less, further preferably 10 nm or less, and preferably 8 nm or less. Especially preferable.
  • the phase difference (Re) is 38 nm or less, the decrease in contrast can be suppressed in the liquid crystal display device.
  • the phase difference (Re) is measured by the method described in Examples.
  • the phase difference (Rth) of this laminated body is, for example,
  • the phase difference (Rth) is
  • the phase difference (Rth) is measured by the method described in Examples.
  • the ⁇ E (color difference) of this laminated body after the weather resistance test is, for example, 5.2% or less, preferably 4.0% or less, and more preferably 3.0% or less.
  • ⁇ E after the weather resistance test is 5.2% or less, it has an advantage of excellent long-term durability.
  • the ⁇ E after the weather resistance test is measured by the method described in Examples.
  • the formable radius of curvature of this laminated body is, for example, 1 mm or less, preferably 0.8 mm or less, and more preferably 0.6 mm or less.
  • the radius of curvature that can be formed is 1 mm or less, there is an advantage that even a complicated shape can be formed. Further, the radius of curvature that can be formed is measured by the method described in the examples.
  • This laminate may have a primer layer on the opposite surface to the surface on which the hard coat layer is provided.
  • a primer layer an ink used for printing performed in a post-processing step and a resin having good metal adhesion used for metal vapor deposition are used.
  • urethane-based resin, acrylic-based resin, polyester-based resin, polycarbonate, epoxy-based resin, melamine-based resin, copolymer of vinyl acetate and vinyl chloride, and the like are used.
  • the thickness of the primer layer is preferably 0.5 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, and most preferably 0.5 to 3 ⁇ m. When it is 0.5 ⁇ m or more, the adhesion can be guaranteed, and when it is 10 ⁇ m or less, the productivity is better.
  • main molded body a molded body including the present laminated body.
  • applications of this molded body include automobile interior applications such as instrument panels, in-vehicle display front panels, console boxes, meter covers, door lock peasels, steering wheels, power window switch bases, center clusters, and dashboards; weather strips, Bumpers, bumper guards, side mudguards, body panels, spoilers, front reels, strut mounts, wheel caps, center pillars, door mirrors, center ornaments, side moldings, door moldings, wind moldings, windows, headlamp covers, tail lamp covers, windshield parts, etc. Automotive exterior applications; housings, display windows, buttons, etc.
  • Applications for building interior materials such as toilet seats; applications for building exterior materials such as exterior walls such as siding, walls, roofs, gates, and windbreak boards; applications for surface decorative materials for furniture such as window frames, doors, handrail sill, and lintels; Applications for optical members such as various displays, lenses, mirrors, goggles, windowpanes; and interior / exterior applications for various vehicles other than automobiles such as trains, aircraft, and ships.
  • the present molded body is preferably used, for example, for applications such as an in-vehicle display front plate having a planar shape, a curved surface shape, and a three-dimensional shape. Therefore, in one embodiment of the present invention, an in-vehicle display front plate provided with the present molded body is provided.
  • a method for producing a laminated body including an acrylic resin film and a hard coat layer laminated on at least one side of the acrylic resin film.
  • the method for producing the laminate comprises a step of irradiating the hard coat layer coated on at least one surface of the acrylic resin film with UV on a cooling roll to cure the hard coat layer, and the UV irradiation UV.
  • the integrated light amount is 150 to 500 mJ / cm 2
  • the cooling roll temperature is 25 to 70 ° C.
  • the acrylic resin film has a glass transition temperature of 140 ° C. or less
  • the breaking point elongation at 120 ° C The crack elongation at 120 ° C. is 50% or more
  • the ⁇ haze of the steel wool wear test at 50 g / cm 2 , 5 reciprocations is 1.0% or less. Is.
  • the integrated ultraviolet (UV) light amount is, for example, 150 to 500 mJ / cm 2 , preferably 160 to 480 mJ / cm 2 , and more preferably 170 to 460 mJ / cm 2 . preferable.
  • the UV integrated light amount is 150 to 500 mJ / cm 2 , it is possible to obtain an appropriate hardness of the hard coat layer while ensuring moldability.
  • the cooling roll temperature is, for example, 25 to 70 ° C., preferably 30 to 70 ° C., more preferably 35 to 70 ° C., and 40 to 70 ° C. Is more preferable, 42 to 68 ° C. is particularly preferable, and 45 to 65 ° C. is particularly preferable.
  • the cooling roll temperature is 25 to 70 ° C.
  • the hard coat layer can be cured while suppressing the temperature rise during irradiation with ultraviolet rays, and a laminate having desired physical properties can be produced.
  • the method for producing the present laminate is a step of applying a curable composition for forming a hard coat layer to the surface of an acrylic resin film as a base film, which is formed in the above-mentioned step, before the step of curing the hard coat layer. It may include a step of removing the organic solvent from the coated coating film by drying.
  • a method for producing a molded product which comprises a step of shaping the laminate shown below at a molding temperature of 140 ° C. or lower at the time of preform.
  • a laminate including an acrylic resin film and a hard coat layer laminated on at least one surface of the acrylic resin film.
  • the acrylic resin film has a glass transition temperature of 140 ° C. or lower and a breaking point elongation at 120 ° C. of 200% or more.
  • the laminate has a crack elongation of 50% or more at 120 ° C. and a ⁇ haze of 1.0% or less in a steel wool wear test at 50 g / cm 2 , 5 reciprocations.
  • the film is shaped by preform at 140 ° C or lower. Since the present laminate contains the above-mentioned specific acrylic resin film, it is possible to perform molding at a low temperature when laminating and molding the resin on the present laminate.
  • the temperature at the time of preform is, for example, 140 ° C. or lower, preferably 130 ° C. or lower, and more preferably 120 ° C. or lower.
  • the lower limit is not particularly limited, but from the viewpoint of shape-imparting property, for example, it is preferably 100 ° C. or higher, and preferably 105 ° C. or higher.
  • the resin used for injection molding is not particularly limited, and examples thereof include a thermoplastic resin and a curable resin.
  • the thermoplastic resin include a polycarbonate resin having a bisphenol-based skeleton, a fluorene-based skeleton, an isosorbide-based skeleton, and the like, an acrylic resin, and a styrene resin (AS resin, ABS resin, and MAS resin, styrene maleimide resin, and styrene maleic acid anhydride.
  • Resins and the like saturated polyester resins, polyvinyl chloride resins, polyarylate resins, PPS resins, POM resins, polyamide resins, polylactic acid resins, cellulose acylate resins, polyolefin resins and the like.
  • the curable resin include epoxy resin, vinyl ester resin, unsaturated polyester resin, phenolic resin, melamine resin, benzoxazine resin and the like.
  • transparent resins such as polycarbonate resins, acrylic resins, styrene resins, polyarylate resins, and polyolefin resins are preferably used.
  • the printed main laminated body is preformed (curved surface molding) at 140 ° C. or lower in advance, trimmed, placed in a mold, and then injection-molded with a resin to be integrated. It can be manufactured by converting.
  • one embodiment of the present invention is as follows.
  • a laminated body including an acrylic resin film and a hard coat layer laminated on at least one surface of the acrylic resin film.
  • the acrylic resin film has a glass transition temperature of 140 ° C. or lower and a breaking point elongation at 120 ° C. of 200% or more.
  • the laminate has a crack elongation of 50% or more at 120 ° C. and a ⁇ haze of 1.0% or less in a steel wool wear test at 50 g / cm 2 , 5 reciprocations.
  • the laminate according to ⁇ 1> which has at least one of the following physical properties:
  • the phase difference (Re) is 38 nm or less.
  • the ⁇ E after the weather resistance test is 5.2% or less.
  • the acrylic resin film contains 1 to 70% by mass of graft copolymer particles (A) having an average particle diameter of 20 nm to 200 nm, and a graft having an average particle diameter larger than that of the graft copolymer particles (A). 20% by mass or less of the copolymer particles (B), and the total content of the crosslinked elastomer (A1) and the crosslinked elastomer (B1) in the acrylic resin film is 15% by mass or less, ⁇ 1>.
  • the pencil hardness of the surface of the acrylic resin film on which the hard coat layer is not laminated is B or more, and the breaking point elongation at 23 ° C. is 20% or more, ⁇ 1> to ⁇ 5. > The laminate according to any one of.
  • ⁇ 7> The laminate according to any one of ⁇ 4> to ⁇ 6>, wherein the graft copolymer particles (A) contain 0.01 to 5% by mass of a reactive ultraviolet absorber.
  • a molded product comprising the laminate according to any one of ⁇ 1> to ⁇ 7>.
  • An in-vehicle display front plate comprising the molded body according to ⁇ 8>.
  • the UV integrated light intensity of the UV irradiation is 150 to 500 mJ / cm 2 .
  • the temperature of the cooling roll is 25 to 70 ° C.
  • the acrylic resin film has a glass transition temperature of 140 ° C. or lower and a breaking point elongation at 120 ° C. of 200% or more.
  • the laminate has a crack elongation of 50% or more at 120 ° C. and a ⁇ haze of 1.0% or less in a steel wool wear test at 50 g / cm 2 , 5 reciprocations.
  • Method. ⁇ 11> A method for producing a molded product, which comprises a step of shaping the laminate shown below at a molding temperature of 140 ° C.
  • the acrylic resin film has a glass transition temperature of 140 ° C. or lower and a breaking point elongation at 120 ° C. of 200% or more.
  • the laminate has a crack elongation of 50% or more at 120 ° C. and a ⁇ haze of 1.0% or less in a steel wool wear test at 50 g / cm 2 , 5 reciprocations.
  • Glass transition temperature (Tg) A differential scanning calorimetry device (DSC) SSC-5200 manufactured by Seiko Instruments was used. The sample is once heated to 200 ° C. at a rate of 25 ° C./min, held for 10 minutes, and after preliminary adjustment to lower the temperature to 50 ° C. at a rate of 25 ° C./min, 200 at a rate of temperature increase of 10 ° C./min. Measurements were made while the temperature was raised to ° C. The differential value was obtained from the obtained DSC curve (SSDC), and the glass transition temperature was obtained from the maximum point.
  • SSDC DSC curve
  • the laminated film is cut into 10 mm (width) x 100 mm (length), and the residual heat time is 2 minutes using a Tensilon tensile tester (Shimadzu Corporation, AG-2000D) equipped with a high temperature bath set at 120 ° C. The measurement was performed under the conditions of a chuck distance of 50 mm and a tensile speed of 200 mm / min. The elongation at break of the laminated film was defined as the tensile break point elongation.
  • the value of tensile break point elongation is the average value excluding the highest value and the lowest value among the measurement results obtained using the five test pieces.
  • the crack elongation was measured on a laminated film (HC layer formation) in which a hard coat layer was formed on one side. Specifically, a Tensilon tensile tester (Shimadzu Corporation, AG-2000D), in which a laminated film was cut into a size of 10 mm (width) x 100 mm (length) and equipped with a high temperature bath set at 120 ° C., was used. The measurement was performed under the conditions of a residual heat time of 2 minutes, a distance between chucks of 50 mm, and a tensile speed of 200 mm / min. The elongation when cracks were generated in the hard coat layer was measured as the crack elongation at 120 ° C. The average values of the test results obtained by measuring the three samples are shown in Tables 5 and 6.
  • a vacuum compressed air molding machine manufactured by Fuse Vacuum Co., Ltd., NGF-0406-S was used.
  • the molding machine consists of an upper part and a lower part, and R (radius of curvature): 0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5.3.0 at the lower part.
  • Height A mold with multiple protrusions of 3 mm was installed, and a laminated film was installed on top. After that, the pressure was reduced to ⁇ 100 kPa in both the upper part and the lower part, and the laminated film was heated by the infrared heater installed in the upper part.
  • Phase difference A 40 mm ⁇ 40 mm test piece was cut out from the film. Using an automatic birefringence meter (KOBRA-WR manufactured by Oji Measurement Co., Ltd.), this test piece was subjected to in-plane phase difference Re and an in-plane phase difference Re and an incident angle of 0 ° at a temperature of 23 ⁇ 2 ° C and a humidity of 50 ⁇ 5%. The phase difference Rth in the thickness direction was measured.
  • the film thickness of the acrylic resin film was measured with a PEACOCK dial gauge No. 25 (manufactured by Ozaki Seisakusho Co., Ltd.).
  • the film thickness of the hard coat layer was measured by an F20 film thickness measurement system (manufactured by Filmometrics Co., Ltd.).
  • the opposite surface of the hard coat layer was painted black with a felt-tip pen, and the refractive index of the acrylic resin film was 1.49 and the refractive index of the hard coat layer was 1.50.
  • Pencil hardness was measured according to JIS K5600-5-4. Using an electric pencil hardness tester (manufactured by Mize Tester Co., Ltd.), five tests were carried out at a load of 750 g and a speed of 60 mm / min. If the number of scratches is one or less, it is judged as a pass.
  • the pencil hardness was measured on the hard coat layer of the functional film.
  • Monomer mixture -Vinyl monomer mixture (n-butyl (BA) 90% acrylate and 10% methyl methacrylate (MMA)) 30 parts-Allyl methacrylate (AlMA) 1 part-Cumen hydroperoxide (CHP) 0.2 parts.
  • AlMA Allyl methacrylate
  • CHP Cumen hydroperoxide
  • 0.05 parts by mass of sodium dioctyl sulphosuccinate was charged into the polymerization apparatus.
  • the internal temperature of the polymerization apparatus was set to 60 ° C., 70 parts of a vinyl monomer mixture (MMA 98%, BA 1%, and RUVA 1%) for forming a graft polymer layer (A2), and tertiary decyl mercaptan (t-DM) 0.
  • RUVA is a reactive ultraviolet absorber (2- (2'-hydroxy-5'-methacryloyloxyethylphenyl) -2-H-benzotriazole (manufactured by Otsuka Chemical Co., Ltd., RUVA-93)).
  • the internal temperature was set to 60 ° C., and a monomer mixture consisting of 7 parts of n-butyl acrylate and 63 parts of methyl methacrylate and cumene hydroperoxide 0.
  • the mixed solution of 2 parts was continuously added over 5 hours, and the polymerization was continued for another 1 hour to obtain a graft copolymer particle latex.
  • the polymerization conversion was 98.5%.
  • the obtained latex was salted out with calcium chloride, coagulated, washed with water and dried to obtain graft copolymer particles (A) in the form of white powder.
  • the blending amount of each component is as shown in Table 1.
  • the average particle size of the rubber particles of the graft copolymer particles (A) was 80 nm.
  • particles of the polymer to be the first layer of the core (crosslinked elastomer (B1)) were obtained.
  • the polymerization conversion was 99.0%.
  • a latex of a graft copolymer particle (B1) composed of a core (crosslinked elastomer (B1)) having a two-layer structure and a shell (graft polymer layer (B2)) was obtained.
  • the polymerization conversion was 100.0%.
  • the obtained latex was salted out and solidified with magnesium sulfate, and then the solidified solid content was washed with water and dried to obtain graft copolymer particles (B) in the form of white powder.
  • the average particle size of the graft copolymer particles was 250 nm.
  • the blending amount of each component is as shown in Table 2.
  • the obtained innermost layer polymer latex was kept at 80 ° C. in a nitrogen stream, 0.1 part of potassium persulfate was added, and then 41 parts of n-butyl acrylate, 9 parts of styrene, and 1 part of allyl methacrylate were simply composed.
  • the polymer mixture was added continuously over 5 hours. During this period, 0.1 part of potassium oleate was added in 3 portions. After the addition of the monomer mixture was completed, 0.05 part of potassium persulfate was further added to complete the polymerization, and the mixture was kept for 2 hours.
  • the polymerization conversion rate of the obtained rubber particles was 99%.
  • graft copolymer The obtained rubber particle latex was kept at 80 ° C., 0.02 part of potassium persulfate was added, and then a monomer mixture of 14 parts of methyl methacrylate and 1 part of n-butyl acrylate was continuously added for 1 hour. After the addition of the monomer mixture was completed, the mixture was held for 1 hour to obtain a graft copolymer latex. The polymerization conversion was 99%.
  • Preparation of graft copolymer particles The obtained rubber particle latex was kept at 80 ° C., and a monomer mixture of 5 parts of methyl methacrylate and 5 parts of n-butyl acrylate was continuously added over 0.5 hours. After the addition of the monomer mixture was completed, the mixture was held for 1 hour to obtain a graft copolymer particle latex. The polymerization conversion was 99%.
  • the obtained graft copolymer particle latex was subjected to salting and coagulation with calcium chloride, heat treatment, and drying to obtain white powdery graft copolymer particles (B).
  • the blending amount of each component is as shown in Table 2.
  • both the first extruder and the second extruder have a diameter of 75 mm and an L / D (ratio of the length L and the diameter D of the extruder) is 74, which is a meshing type isodirectional twin-screw extruder.
  • the raw material was supplied to the raw material supply port of the first extruder using a low-weight feeder (manufactured by Kubota Co., Ltd.).
  • the degree of decompression of each vent in the first extruder and the second extruder was ⁇ 0.095 MPa.
  • the first extruder and the second extruder is used as an internal pressure control mechanism that connects the first extruder and the second extruder with a pipe with a diameter of 38 mm and a length of 2 m, and connects the resin discharge port of the first extruder and the raw material supply port of the second extruder.
  • the resin discharged from the second extruder was cooled by a cooling conveyor and then cut into pellets by a pelletizer.
  • the discharge port of the first extruder, the first extruder and the first extruder are used.
  • a resin pressure gauge was provided at the center of the connecting parts between the two extruders and at the discharge port of the second extruder.
  • polymethyl methacrylate resin (Mw: 105,000) was used as a raw material resin, and monomethylamine was used as an imidizing agent to produce an imide resin intermediate 1.
  • the temperature of the maximum temperature part of the extruder was 280 ° C.
  • the screw rotation speed was 55 rpm
  • the supply amount of the raw material resin was 150 kg / hour
  • the amount of monomethylamine added was 2.0 parts with respect to 100 parts of the raw material resin.
  • the constant flow pressure valve was installed immediately before the raw material supply port of the second extruder, and the pressure of the monomethylamine press-fitting portion of the first extruder was adjusted to 8 MPa.
  • the imidizing agent and by-products remaining in the rear vent and the vacuum vent were degassed, and then dimethyl carbonate was added as an esterifying agent to produce the imide resin intermediate 2.
  • the temperature of each barrel of the extruder was 260 ° C.
  • the screw rotation speed was 55 rpm
  • the amount of dimethyl carbonate added was 3.2 parts with respect to 100 parts of the raw material resin.
  • the resin was extruded from a strand die, cooled in a water tank, and then pelletized with a pelletizer to obtain a glutarimide acrylic resin.
  • the imidization rate, the content of glutarimide units, the acid value, and the glass transition temperature were measured according to the above method.
  • the imidization rate was 13%
  • the content of glutarimide units was 7% by weight
  • the acid value was 0.4 mmol / g
  • the glass transition temperature was 124 ° C.
  • pellets It was melt-kneaded for a period of time, taken up in a strand shape, cooled in a water tank, and cut using a pelletizer to obtain pellets.
  • the die used a ⁇ 4.5 x 15 hole, and a leaf disk filter (manufactured by Nagase & Co., Ltd., filtration system 10 ⁇ , size 7 inches, number of sheets 33) was installed as a polymer filter between the die and the head of the extruder.
  • the obtained pellets are melt-kneaded at a cylinder set temperature of 180 ° C. to 240 ° C.
  • a touch roll equipped with a metallic cast roll temperature-controlled at 90 ° C and an elastic metal sleeve temperature-controlled at 60 ° C was brought into contact with both sides to form a film while being cooled and solidified, and wound to obtain a film having a thickness of 175 ⁇ m. rice field.
  • Alumina particles (Z-607-ALU, manufactured by Aica Kogyo Co., Ltd., manufactured by Aica Kogyo Co., Ltd., solid content concentration 30%) were blended with Z607-5AFH (solid content concentration 30%, manufactured by Aica Kogyo Co., Ltd.) at a ratio of 9: 1.
  • PGM Propylene glycol monomethyl ether
  • this laminate is excellent in moldability and wear resistance, it can be suitably used in various fields including automobile interior applications such as in-vehicle displays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、成形性および耐摩耗性に優れた、アクリル系樹脂フィルムを含む積層体を提供することを目的とする。特定のアクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層された特定の紫外線硬化型ハードコート層と、を含む積層体であり、積層体は、特定のクラック伸度を有し、50g/cm、5往復でのスチールウール摩耗試験のΔヘイズが1.0%以下である、積層体を提供することにより、上記課題を解決する。

Description

積層体およびその利用
 本発明は、アクリル系樹脂フィルムを基材として含む積層体に関する。
 弾性体を含むアクリル系樹脂組成物を加工成形してなるアクリル系樹脂フィルムは、透明性、硬度、耐候性、及び二次成形性等の優れた特性を活かして、様々な用途に使用、展開されている。アクリル系樹脂フィルムの用途として、例えば、自動車内外装部品にフィルムをラミネートして使用する塗装代替としての加飾・保護用途や、携帯電子機器やパソコンや家電等の製品の外装の加飾・保護や、建築材としての用途等が挙げられる。
 そのようなアクリル系樹脂フィルムとして、例えば、特許文献1には、特定のメタクリル酸エステル系樹脂(A)、ゴム粒子の平均粒子径が0.2~0.4μmである4段構造重合体のゴム含有グラフト共重合体(B)、および、ゴム粒子の平均粒子径が0.02~0.15μmである2層構造重合体のゴム含有グラフト共重合体(C)を含むメタクリル系樹脂組成物(D)をフィルム化してなるアクリル系樹脂フィルム、および当該アクリル系樹脂フィルムを含む積層品等が記載されている。
 特許文献2には、平均粒子径が20nm以上150nm以下である多層構造のグラフト共重合体粒子(A)と、前記グラフト共重合体粒子(A)の平均粒子径よりも大きい多層構造のグラフト共重合体粒子(B)と、を含むアクリル系樹脂フィルム、および当該アクリル系樹脂フィルムを含む積層フィルム等が記載されている。
国際公開第2013/051239号 国際公開第2019/181752号
 特許文献1および2に記載された技術は優れたものであるが、成形性および耐摩耗性に関して、さらなる改善の余地があった。
 そこで、本発明の目的は、成形性および耐摩耗性に優れた、アクリル系樹脂フィルムを含む積層体を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、積層体において特定の物性を有するアクリル系樹脂フィルムと、特定の(例えば、紫外線硬化型)のハードコート層を用いることにより、成形性および耐摩耗性に優れた積層体を得ることができることを初めて見出した。また、前記積層体は、積層体の製造工程を工夫することにより得られることを初めて見出し、本発明を完成するに至った。
 したがって、本発明の一態様は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、前記アクリル系樹脂フィルムは、ガラス転移温度(Tg)が140℃以下であり、かつ、120℃での破断点伸度が200%以上であり、前記積層体は、120℃でのクラック伸度が50%以上であり、かつ、50g/cm、5往復でのスチールウール摩耗試験のΔヘイズが1.0%以下である、積層体(以下、「本積層体」と称する。)である。
 また、本発明の一態様は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体の製造方法であり、冷却ロール上において、前記アクリル系樹脂フィルムの少なくとも片面に塗布した前記ハードコート層にUV照射して、前記ハードコート層を硬化する工程を含み、前記UV照射のUV積算光量が150~500mJ/cmであり、前記冷却ロールの温度が25~70℃であり、前記アクリル系樹脂フィルムは、ガラス転移温度が140℃以下であり、かつ、120℃での破断点伸度が200%以上であり、前記積層体は、120℃でのクラック伸度が50%以上であり、かつ、50g/cm、5往復でのスチールウール摩耗試験のΔヘイズが1.0%以下である、積層体の製造方法(以下、「本積層体の製造方法」と称する。)である。
 また、本発明の一態様は、以下で示す積層体に対して、プレフォーム時の成形温度が140℃以下で賦形する工程を含む、成形体の製造方法(以下、「本成形体の製造方法」と称する。)である:
 アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、前記アクリル系樹脂フィルムは、ガラス転移温度が140℃以下であり、かつ、120℃での破断点伸度が200%以上であり、前記積層体は、120℃でのクラック伸度が50%以上であり、かつ、50g/cm、5往復でのスチールウール摩耗試験のΔヘイズが1.0%以下である、積層体。
 本発明の一態様によれば、成形性および耐摩耗性に優れた、アクリル系樹脂フィルムを含む積層体を提供することができる。
 本発明の実施の一形態について、以下に詳細に説明する。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。また、本明細書中に記載された文献の全てが、本明細書中において参考文献として援用される。
 〔1.本発明の概要〕
 近年、車載ディスプレイの分野では、大型化・曲面化が進んでいる。そのような車載ディスプレイ用のフィルムとしては、曲面成形が可能であり、かつ、耐摩耗性(耐擦傷性、耐傷付性ともいう。)、反射防止、信頼性等の品質をクリアしたフィルムであることが要求される。このような用途に使用するフィルムとしては、ポリカーボネート系樹脂とアクリル系樹脂を積層した多層フィルムや、さらにその上に耐擦り傷性、防眩性、反射防止性、防汚性等の機能性を有する機能性層をコーティング等により形成した機能性フィルムが広く使用されている。しかしながら、このようなフィルムは、耐熱性の異なる二種類の基材層を積層しているために、適正な二次成形加工が難しく、白化、層間剥離、機能性層の剥離等を生じやすい。また、長時間の使用に伴い、ディスプレイ表面から剥離を生じることもある。更に、ポリカーボネート樹脂は固有位相差が大きく、二次成形に伴う延伸により、ディスプレイ表面に虹模様等が生じたり、コントラストが低下する事がある等の課題があった。一方、アクリル系樹脂フィルムは、上述の通り、透明性、硬度、耐候性、延伸時にも位相差の少ない優れた光学特性、及び二次成形性等の優れた特性を有する。そこで、本発明者らは、アクリル系樹脂フィルムを車載ディスプレイに適用することについて検討した。
 まず、本発明者らは、アクリル系樹脂フィルムとハードコート層とを含む積層体において、耐摩耗性を強化するとの観点から、前記ハードコート層の強度を高めることを試みた。その結果、前記ハードコート層自体の強度を高めることは容易であったものの、ハードコート層の強度を高くすると、成形の際にハードコート層が割れて成形ができなくなる場合があるとの新たな課題を見出した。
 そこで、本発明者らは、成形性と耐摩耗性とを両立し得る積層体について鋭意検討を行った結果、以下の知見を得ることに成功した。
・ガラス転移温度(Tg)が140℃以下であり、かつ、120℃での破断点伸度が200%以上であるアクリル系樹脂フィルムを用いることにより、優れた成形性が担保される。
・ハードコート層の製造工程において、UV積算光量を150~500mJ/cmに制御し、UV照射時の冷却ロール温度を25~70℃(好ましくは、40~70℃)に制御することで、積層体の耐摩耗性が強化される。
 本積層体は、上記の知見に基づき得られたものであり、優れた成形性および耐摩耗性を同時に達成できる。このように、成形性および耐摩耗性に優れた、アクリル系樹脂フィルムを含む積層体はこれまでに報告がなく、極めて優れた技術である。
 上述の通り、本積層体は、優れた成形性および耐摩耗性を同時に達成できる。これにより、例えば、目標12「持続可能な消費生産形態を確保する」等の持続可能な開発目標(SDGs)の達成に貢献できる。以下、本積層体の構成について詳説する。
 〔2.積層体〕
 本積層体は、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む。
 (アクリル系樹脂フィルム)
 アクリル系樹脂フィルムは、アクリル樹脂、及びゴム成分を含有するグラフト共重合体粒子を含むアクリル系樹脂組成物で構成されている。ゴム成分を含有するグラフト共重合体粒子として、平均粒子径が20nm以上200nm以下であるグラフト共重合体粒子(A)を含むことが好ましく、グラフト共重合体粒子(A)に加えて、グラフト共重合体粒子(A)より平均粒子径が大きいグラフト共重合体粒子(B)を含んでもよい。具体的には、アクリル系樹脂フィルムにおいて、アクリル樹脂、又は、アクリル樹脂及びその他の成分を含むマトリックス中に、グラフト共重合体粒子(A)が分散して、又は、グラフト共重合体粒子(A)及びグラフト共重合体粒子(B)が分散している。
 <アクリル樹脂>
 アクリル系樹脂フィルムに用いるアクリル樹脂としては、従来公知のものが使用できる。例えば、硬度、成形性の観点からは、アクリル樹脂が、アクリル樹脂の全量を100質量%とした場合、メタクリル酸メチル単位50質量%以上100質量%以下、及びその他の構成単位0質量%以上50質量%以下から構成される熱可塑性アクリル重合体を20質量%以上100質量%以下含むのが好ましい。
 その他の構成単位としては、例えば、アクリル酸、アクリル酸誘導体、メタクリル酸、メタクリル酸誘導体、芳香族ビニル誘導体、シアン化ビニル誘導体、及びハロゲン化ビニリデン等に由来する構成単位が挙げられる。アクリル樹脂に含まれるその他の構成単位は、1種であってもよく、2種以上の組み合わせであってもよい。
 アクリル酸誘導体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸シクロヘキシル、アクリル酸2-ヒドロキシエチル、アクリル酸2-フェノキシエチル、アクリル酸ベンジル、アクリル酸2-(N,N-ジメチルアミノ)エチル、及びアクリル酸グリシジル等のアクリル酸エステル類等が挙げられる。
 メタクリル酸誘導体としては、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸シクロヘキシル、メタクリル酸2-フェノキシエチル、メタクリル酸イソボルニル、メタクリル酸ジシクロペンテニル、メタクリル酸グリシジル、及びメタクリル酸アダマンチル等のメタクリル酸エステル等が挙げられる。
 芳香族ビニル誘導体としては、スチレン、ビニルトルエン、及びα-メチルスチレン等が挙げられる。
 シアン化ビニル誘導体としては、アクリロニトリル、及びメタクリロニトリル等が挙げられる。
 ハロゲン化ビニリデンとしては、塩化ビニリデン、及びフッ化ビニリデン等が挙げられる。
 アクリル樹脂の耐熱性、剛性や表面硬度等を改善するため、アクリル樹脂に対して特定の構造を有する構成単位を共重合、官能基修飾及び変性等により導入してもよい。このような特定の構造としては、例えば、特開昭62-89705号、特開平02-178310号、及びWO2005/54311等に示されているようなグルタルイミド構造、特開2004-168882号、及び特開2006-171464号等に示されているようなラクトン環構造、特開2004-307834号等に示されているような(メタ)アクリル酸単位が熱的に縮合環化して得られるグルタル酸無水物構造、特開平5-119217号に示されているようなマレイン酸無水物構造、並びにWO2009/84541号に示されるようなN-置換マレイミド構造及び非置換マレイミド構造等が挙げられる。例えば、これらの構造がアクリル樹脂に導入されることで、分子鎖が剛直となる。その結果、耐熱性の向上、表面硬度の向上、加熱収縮の低減、耐薬品性の向上等の効果が期待できる。
 アクリル樹脂の製造方法は、特に限定されず、例えば、公知の懸濁重合法、塊状重合法、溶液重合法、乳化重合法、分散重合法等の重合法を適用可能である。また、公知のラジカル重合法、リビングラジカル重合法、アニオン重合法、カチオン重合法のいずれを適用することも可能である。
 <ゴム成分を含有するグラフト共重合体>
 前述のとおり、アクリル系樹脂フィルムは、ゴム成分を含有するグラフト共重合体粒子として、グラフト共重合体粒子(A)を含むことが好ましく、必要に応じてグラフト共重合体粒子(A)に加えてさらにグラフト共重合体粒子(B)を含んでも良い。
 グラフト共重合体粒子(A)は、ゴム成分である架橋エラストマー(A1)と、架橋エラストマー(A1)よりも表層側に位置するグラフトポリマー層(A2)とを備えるコアシェル構造(多層構造)を有することが好ましい。
 架橋エラストマー(A1)は、公知の架橋エラストマーであってよい。好ましくは、架橋エラストマー(A1)は、アクリル酸エステル系の架橋エラストマー(アクリル酸エステルを主成分とした重合体からなる架橋エラストマー)である。
 アクリル酸エステル系の架橋エラストマー(A1)の粒子は、架橋エラストマー層の内部に硬質又は半硬質の架橋樹脂層を備える、同心球状の多層構造を有していてもよい。このような硬質又は半硬質の架橋樹脂層としては、例えば特公昭55-27576号等に示されるような硬質の架橋メタクリル樹脂粒子、特開平4-270751に示されるようなメタクリル酸メチル-アクリル酸エステル-スチレンからなる半硬質の架橋粒子、さらには架橋度の高い架橋ゴム粒子等が挙げられる。このような硬質又は半硬質の架橋樹脂層を備えることにより透明性や色調等の改善が期待できる場合がある。
 グラフト共重合体粒子(A)は、前述のアクリル酸エステル系の架橋エラストマー(A1)の粒子の存在下で、グラフトポリマー層(A2)をグラフト重合して形成される、コアシェル構造を有するのが好ましい。
 グラフト共重合体粒子(A)の平均粒子径は20nm以上200nm以下であり、50nm以上150nm以下がより好ましく、50nm以上120nm以下が特に好ましい。
 グラフト共重合体粒子(A)の平均粒子径が過小である場合、アクリル系樹脂フィルムの耐衝撃性及び耐折曲げ割れ性が低下する傾向がある。グラフト共重合体粒子(A)の平均粒子径が過大である場合、アクリル系樹脂フィルムの透明性が悪化する傾向や、折り曲げによる白化が発生しやすくなる傾向がある。
 アクリル酸エステル系の架橋エラストマー(A1)としては、アクリル酸エステルと、任意にアクリル酸エステルと共重合可能な他のビニル系単量体と、アクリル酸エステルと共重合可能であり、1分子あたり2個以上の非共役二重結合を有する多官能性単量体を含む単量体混合物(a-1)を重合して得られる架橋エラストマー粒子を好ましく使用できる。
 アクリル酸エステル、他のビニル系単量体、及び多官能性単量体は全部を混合して1段階で重合されてもよい。また、アクリル系樹脂フィルムの靱性、耐白化性等を調節する目的で、適宜、アクリル酸エステル、他のビニル系単量体、及び多官能性単量体の組成を変化させて、或いは同一の組成のまま、アクリル酸エステルと、他のビニル系単量体と、多官能性単量体とが、2段階以上の多段階に分けて重合されてもよい。
 アクリル酸エステルとしては、重合性に優れ、安価であり、Tgが低い重合体を与える等の点から、アクリル酸の脂肪族エステルが好ましく、アクリル酸アルキルエステルがより好ましく、アルキル基の炭素原子数が1以上22以下のアクリル酸アルキルエステルを特に好ましく用いることができる。
 好ましいアクリル酸アルキルエステルの具体例としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸イソボルニル、アクリル酸シクロヘキシル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸ヘプタデシル、アクリル酸オクタデシル等が挙げられる。これらは、1種を単独で使用されてもよく、2種以上を併用されてもよい。
 アクリル酸エステルの量は、単量体混合物(a-1)100質量%において50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが最も好ましい。アクリル酸エステル量が50質量%以上であれば、アクリル系樹脂フィルムの耐衝撃性や引張破断時の伸びが良好であり、二次成形時にクラックが発生しにくい。
 他のビニル系単量体としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸シクロヘキシル、メタクリル酸フェノキシエチル、メタクリル酸イソボルニル、及びメタクリル酸ジシクロペンテニル等のメタクリル酸エステル;塩化ビニル、及び臭化ビニル等のハロゲン化ビニル;アクリロニトリル、及びメタクリロニトリル等のシアン化ビニル誘導体;蟻酸ビニル、酢酸ビニル、及びプロピオン酸ビニル等のビニルエステル;スチレン、ビニルトルエン、及びα-メチルスチレン等の芳香族ビニル誘導体;塩化ビニリデン、及びフッ化ビニリデン等のハロゲン化ビニリデン;アクリル酸;アクリル酸ナトリウム、及びアクリル酸カルシウム等のアクリル酸の塩;アクリル酸β-ヒドロキシエチル、アクリル酸フェノキシエチル、アクリル酸ベンジル、アクリル酸ジメチルアミノエチル、アクリル酸グリシジル、アクリルアミド、及びN-メチロ-ルアクリルアミド等のアクリル酸誘導体;メタクリル酸;メタクリル酸ナトリウム、及びメタクリル酸カルシウム等のメタクリル酸の塩;メタクリルアミド、メタクリル酸β-ヒドロキシエチル、メタクリル酸ジメチルアミノエチル、及びメタクリル酸グリシジル等のメタクリル酸誘導体;無水マレイン酸;N-アルキルマレイミド、及びN-フェニルマレイミド等のマレイン酸誘導体等が挙げられる。これらは1種を単独で使用されてもよく、2種以上が併用されてもよい。これらの中でも、耐候性、透明性の点より、メタクリル酸エステル及び芳香族ビニル誘導体からなる群から選ばれる1種以上が特に好ましい。
 他のビニル系単量体の量は、単量体混合物(a-1)100質量%において0質量%以上49.9質量%以下であることが好ましく、0質量%以上30質量%以下であることがより好ましく、0質量%以上20質量%以下であることが最も好ましい。他のビニル系単量体の量が49.9質量%を超えると、アクリル系樹脂フィルムの耐衝撃性が低下しやすく、引張破断時の伸びが低下し、二次成形時にクラックが発生しやすい場合がある。
 多官能性単量体としては、架橋剤及び/又はグラフト交叉剤として通常使用されるものでよい。多官能性単量体としては、例えば、アリルメタクリレート、アリルアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレエート、ジビニルアジペート、ジビニルベンゼン、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、トリメチルロールプロパントリメタクリレート、ポリエチレングリコールジメタアクリレート、及びジプロピレングリコールジメタクリレート等を使用することができる。これらの多官能性単量体は、1種を単独で使用されてもよく、2種以上が併用されてもよい。
 これらの多官能性単量体としては、グラフト交叉剤としての機能を有するものが、架橋エラストマー(A1)に対する、後述するグラフトポリマー層(A2)のグラフト結合数を向上し、その結果としてグラフト共重合体(A)のアクリル樹脂への良好な分散性をもたらし、引張りや曲げ変形に対する耐割れ性が向上するとともに応力白化が低減するため、より好ましい。このようなグラフト交叉剤の機能を有する多官能性単量体としては、アリルメタクリレート、アリルアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレエート等のアリル基を有するものが好ましく、アリルメタクリレート、アリルアクリレート等が特に好ましい。
 多官能性単量体の量は、単量体混合物(a-1)100質量%において0.1質量%以上10質量%以下であることが好ましく、1.0質量%以上4質量%以下であることがより好ましい。多官能性単量体の配合量がかかる範囲内であれば、アクリル系樹脂フィルムの耐折り曲げ割れ性、及び耐折り曲げ白化性や、成形時における樹脂の流動性の観点から好ましい。
 また、アクリル酸エステル系の架橋エラストマー(A1)において、後述するグラフトポリマー層(A2)のグラフト被覆効率を高める目的で、多官能性単量体の量を、架橋エラストマー(A1)の内部と表面近傍で変更してもよい。具体的には、特許第1460364号公報や特許第1786959号公報等に示されているように、架橋エラストマー(A1)の表面近傍において、グラフト交叉剤としての機能をもつ多官能性単量体の含有量を内部よりも多くすることにより、グラフト共重合体粒子(A)のグラフトポリマー層による被覆を改善し、アクリル樹脂への分散性を良好にしたり、グラフト共重合体粒子(A)とアクリル樹脂の界面の剥離による耐割れ性の低下を抑制したりすることができる。さらに、相対的に少量のグラフトポリマー層(A2)で充分な被覆が得られることから、アクリル系樹脂組成物への所定量の架橋エラストマー(A1)を導入するためのグラフト共重合体粒子(A)の配合量を削減でき、それゆえアクリル系樹脂組成物の溶融粘度を低下し、アクリル系樹脂フィルムの溶融加工性、フィルム加工精度の向上、表面硬度の向上等が期待できる。
 また、単量体混合物(a-1)には、アクリル酸エステル系の架橋エラストマー(A1)の分子量や架橋密度の制御、及び重合時の不均化停止反応に伴うポリマーの二重結合末端の減少により熱安定性等を制御する目的で、連鎖移動剤を加えてもよい。連鎖移動剤は、通常ラジカル重合に用いられるものの中から選択して用いることができる。連鎖移動剤としては、例えば、n-オクチルメルカプタン、n-ドデシルメルカプタン、及びt-ドデシルメルカプタン等の炭素原子数2以上20以下の単官能或いは多官能のメルカプタン化合物、メルカプト酸類、チオフェノール、四塩化炭素或いはそれらの混合物等が好ましい。連鎖移動剤の添加量は、単量体混合物(a-1)の総量100質量部に対して、0質量部以上1.0質量部以下であることが好ましく、より好ましくは0質量部以上0.2質量部以下である。
 架橋エラストマー(A1)の粒子は、上記のアクリル酸エステル系の架橋エラストマー(A1)からなる単一層であってもよく、上記のアクリル酸エステル系の架橋エラストマー(A1)からなる層を2層以上含む多層構造であってもよく、硬質又は半硬質の架橋樹脂層を含む多層粒子の少なくとも1層にアクリル酸エステル系の架橋エラストマー(A1)を有するものでもよい。
 硬質又は半硬質の架橋樹脂層を構成する単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ベンジル、メタクリル酸フェノキシエチル等のメタクリル酸エステル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、及びアクリル酸n-オクチル等のアクリル酸アルキルエステル、スチレン、及びαメチルスチレン等の芳香族ビニル誘導体、アクリロニトリル等のシアン化ビニル誘導体、無水マレイン酸やマレイミド類等のマレイン酸誘導体、1分子あたり2個以上の非共役二重結合を有する多官能性単量体等が挙げられる。
 これらのなかでは特にメタクリル酸メチル、メタクリル酸ブチル、アクリル酸ブチル、アクリル酸エチル、スチレン、アクリロニトリル等からなる群から選ばれる1種以上が好ましい。また、多官能性単量体としては、アクリル酸エステル系の架橋エラストマー(A1)層の重合に使用するものと同様のものが使用できる。さらに硬質又は半硬質の架橋樹脂層の重合時には、これらの単量体に加えて、架橋密度の制御やポリマーの二重結合末端の減少により熱安定性等を制御する目的で、連鎖移動剤を併用してもよい。連鎖移動剤はアクリル酸エステル系の架橋エラストマー(A1)層の重合と同様の連鎖移動剤が使用できる。連鎖移動剤の添加量は、硬質又は半硬質の架橋樹脂層の総量100質量部に対して、0質量部以上2質量部以下であることが好ましく、より好ましくは0質量部以上0.5質量部以下である。
 グラフト共重合体粒子(A)が、コア粒子である架橋エラストマー粒子(A1)と、グラフトポリマー層(A2)との2層構造である場合、グラフト共重合体粒子(A)は、典型的には、架橋エラストマー粒子(A1)の存在下で、メタクリル酸エステル50質量%以上100質量%以下と、メタクリル酸エステルと共重合可能な他のビニル系単量体0質量%以上50質量%以下を含む単量体混合物(a-2)をグラフト共重合させてグラフトポリマー層(A2)を形成することにより得ることができる。
 単量体混合物(a-2)中のメタクリル酸エステルの量は、マトリクスであるアクリル樹脂との相溶性の確保及びアクリル系樹脂フィルムへのコーティング時の溶剤の含浸等によるコーティングフィルムの靱性低下や成形時の延伸による白化、割れの抑止の観点より、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 グラフトポリマー層(A2)は、好ましくは、架橋エラストマー粒子(A1)5質量部以上90質量部以下の存在下で、メタクリル酸アルキルエステル70質量%以上99質量%以下、アルキル基の炭素原子数が2以上のアクリル酸アルキルエステル0.5質量%以上30質量%以下、及び他のビニル系単量体0質量%以上19質量%以下を含む単量体混合物(a-2)10質量部以上95質量部以下を、少なくとも1段階以上でグラフト共重合させることにより得られるものである。ただし、架橋エラストマー粒子(A1)と、単量体混合物(a-2)との合計量が100質量部を満たすものとする。
 グラフトポリマー層(A2)において、メタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル、メタクリル酸フェニル、及びメタクリル酸ベンジル等のメタクリル酸アルキルエステルが挙げられる。中でも、アルキル基の炭素原子数が1~4のメタクリル酸アルキルエステルが好ましい。
 グラフトポリマー層(A2)において、他のビニル系単量体としては、アルキル基の炭素原子数が2以上のアクリル酸アルキルエステルを用いることができる。アルキル基の炭素原子数が2以上のアクリル酸アルキルエステルとしては、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸ヘキシル、アクリル酸シクロヘキシル、アクリル酸オクチル、アクリル酸ドデシル、及びアクリル酸ステアリル等からなる群から選ばれる1種以上が好ましく、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、及びアクリル酸t-ブチルからなる群から選ばれる1種以上がより好ましく、アクリル酸n-ブチルが特に好ましい。
 単量体混合物(a-2)において使用可能な他のビニル系単量体としては、スチレン及びその核置換体等の芳香族ビニル誘導体、アクリロニトリル等のシアン化ビニル誘導体、メタクリル酸及びその誘導体、アクリル酸及びその誘導体、N-置換マレイミド類、無水マレイン酸、メタクリルアミド、アクリルアミド等が挙げられる。
 単量体混合物(a-2)は、他のビニル系単量体として反応性紫外線吸収剤を含むことが好ましい。つまり、グラフトポリマー層(A2)が、反応性紫外線吸収剤に由来する構成単位を含むことが好ましい。単量体混合物(a-2)が反応性紫外線吸収剤を含む場合、耐候性、耐薬品性が良好であるアクリル系樹脂フィルムを得やすい。
 反応性紫外線吸収剤としては、公知の反応性紫外線吸収剤を使用することができ、特に限定されない。アクリル系樹脂フィルムの成形加工性及び耐候性の点から、反応性紫外線吸収剤としては、下記一般式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
 (一般式(1)中、Xは水素原子又はハロゲン原子であり、Rは水素原子、メチル基、又は炭素原子数4以上6以下のt-アルキル基であり、Rは直鎖状、又は分岐鎖状の炭素原子数2以上10以下のアルキレン基であり、Rは水素原子又はメチル基である。)
 一般式(1)で表される反応性紫外線吸収剤としては、具体的には、2-(2’-ヒドロキシ-5’-(メタ)アクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール類が挙げられ、より具体的には、2-(2’-ヒドロキシ-5’-アクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メタクリロイルオキシエチルフェニル-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メタクリロイルオキシエチルフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メタクリロイルオキシプロピルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メタクリロイルオキシエチル-3’-t-ブチルフェニル)-2H-ベンゾトリアゾール等が挙げられる。好ましくは、コスト及び取り扱い性から、2-(2’-ヒドロキシ-5’-メタクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾールを用いる。
 グラフトポリマー層(A2)における、反応性紫外線吸収剤に由来する構成単位の含有量は、0.01質量%以上5質量%以下であることが好ましく、0.1質量%以上3質量%以下であることがより好ましい。
 グラフト共重合体粒子(A)の製造において、とりわけ架橋エラストマー粒子(A1)、例えばアクリル酸エステル系の架橋エラストマー粒子(A1)の存在下における単量体混合物(a-2)のグラフト共重合に際して、アクリル酸エステル系の架橋エラストマー粒子(A1)に対してグラフト結合していない重合体成分(フリーポリマー)が生じる場合がある。このようなフリーポリマーは、アクリル系樹脂組成物及びアクリル系樹脂フィルムのマトリクス相を構成するアクリル樹脂の一部又は全部を構成するものとして使用できる。
 単量体混合物(a-2)には、重合体の分子量の制御、及び上記の架橋エラストマー(A1)へのグラフト率や架橋エラストマー(A1)に結合していないフリーポリマーの生成量、及び重合時の不均化停止反応に伴うポリマーの二重結合末端の減少により熱安定性等を制御する目的で、連鎖移動剤を加えてもよい。このような連鎖移動剤は、架橋エラストマー(A1)の重合に使用可能な連鎖移動剤と同様の連鎖移動剤が使用できる。連鎖移動剤の使用量は、単量体混合物(a-2)の総量100質量部に対して、0質量部以上2質量部以下、好ましくは0質量部以上0.5質量部以下である。
 架橋エラストマー粒子(A1)に対する単量体混合物(a-2)のグラフト率は、5%以上250%以下が好ましく、10%以上200%以下がより好ましく、20%以上150%以下がさらに好ましい。グラフト率が5%未満であると、アクリル系樹脂フィルムの耐折曲げ白化性が低下したり、透明性が低下したり、引張破断時の伸びが低下して二次成形時にクラックが発生しやすくなったりする傾向がある。グラフト率が250%を超えると、フィルム成形時にアクリル系樹脂組成物の溶融粘度が高くなりやすく、アクリル系樹脂フィルムの成形性が低下する傾向がある。
 アクリル系樹脂フィルム中の架橋エラストマー粒子(A1)の平均粒子径d(nm)と、アクリル酸エステル系の架橋エラストマーに用いられる多官能性単量体の量w(質量%)は、関係式:0.015d≦w≦0.06dを満たすのが好ましく、0.02d≦w≦0.05dを満たすのがより好ましい。多官能性単量体の量が、上記関係式の範囲であれば、アクリル系樹脂フィルムの二次成形時の伸びが低下しにくく、成形加工や切削の際にクラックが生じにくく、透明性に優れ、かつ、常温、アクリル系樹脂フィルムの軟化温度以上の高温、あるいは常温と架橋エラストマー粒子(A1)のTgとの間の低温における折り曲げや引張変形の際に応力白化が生じ難い、といった利点を有する。
 前述の通り、必要に応じて使用されるグラフト共重合体粒子(B)も、グラフト共重合体粒子(A)と同じく、ゴム成分である架橋エラストマー(B1)を備える。グラフト共重合体粒子(B)は、典型的には、グラフト共重合体粒子(A)と同じく、架橋エラストマー(B1)よりも表層側に位置するグラフトポリマー層(B2)を備える。つまり、グラフト共重合体粒子(B)は、架橋エラストマー(B1)と、グラフトポリマー層(B2)とを備えるのが好ましい。
 グラフト共重合体粒子(B)について、その平均粒子径がグラフト共重合体粒子(A)よりも大きいことを除いて、グラフト共重合体粒子(A)と原料、製造方法等概ね同様であってもよい。好ましくは、アクリル酸エステル系の架橋エラストマー(B1)の粒子は、架橋エラストマー層の内部に硬質或いは半硬質の架橋樹脂層を備える同心球状の多層構造を有する。このような硬質或いは半硬質の架橋樹脂層としては、例えば特公昭55-27576号等に示されるような硬質の架橋メタクリル樹脂粒子や、特開平4-270751号やWO2014/41803等に示されるようなメタクリル酸メチル-アクリル酸エステル-スチレン共重合体等からなる半硬質層を有する架橋粒子等が挙げられる。このような硬質或いは半硬質の架橋樹脂層を導入することにより、グラフト共重合体粒子(A)よりも粒子径の大きいグラフト共重合体粒子(B)の透明性、耐折り曲げ白化性、耐折曲げ割れ性等を改善させることができる。
 グラフト共重合体粒子(B)の平均粒子径は、150nm以上400nm以下であることが好ましく、200nm以上350nm以下であることがより好ましい。
 グラフト共重合体粒子(B)の平均粒子径は、グラフト共重合体粒子(A)の平均粒子径よりも大きい。平均粒子径の大きなグラフト共重合体粒子(B)は、アクリル系樹脂材料に対する外力の作用に対して、グラフト共重合体粒子の周囲のアクリル樹脂相に塑性変形(クレイズ)をより効果的に誘起する。このため、グラフト共重合体粒子(B)は、アクリル樹脂材料に耐衝撃性と耐クラック性とを付与する効果に非常に優れている。他方で、グラフト共重合体粒子(B)は、グラフト共重合体粒子(A)よりも、耐折曲げ白化性や耐溶剤白化性等に劣る。このため、例えば、アクリル樹脂とグラフト共重合体粒子(A)を含むアクリル系樹脂組成物に対して、グラフト共重合体粒子(B)を少量添加することで、アクリル系樹脂フィルムに対する軟質成分の総含有量を低くしてアクリル系樹脂フィルムの表面硬度を低下させず、アクリル系樹脂フィルムに外部応力が加わった時や、有機溶剤を含む塗布液を塗布した時や成形加工時の白化性は悪化させにくく、機能性フィルムの耐割れ性、二次成形性等は効率的に向上させる効果が期待できる。
 本発明の1以上の実施態様において、グラフト共重合体粒子(A)、及びグラフト共重合体粒子(B)の平均粒子径は、日機装株式会社製のMicrotrac粒度分布測定装置MT3000等のレーザー回折式の粒度分布測定装置を使用し、ラテックス状態での光散乱法を用いて測定できる。
 グラフト共重合体粒子(A)、及びグラフト共重合体粒子(B)の製造方法は、特に限定されず、公知の乳化重合法、ミニエマルジョン重合法、懸濁重合法、塊状重合法、溶液重合法、又は分散重合法が適用可能である。樹脂構造の調整幅が大きい点から、乳化重合法が特に好ましい。
 グラフト共重合体粒子(A)、又はグラフト共重合体粒子(B)の乳化重合において使用される開始剤としては、有機系過酸化物、無機系過酸化物、及びアゾ化合物等の公知の開始剤を使用することができる。具体的には、t-ブチルハイドロパ-オキサイド、1,1,3,3-テトラメチルブチルハイドロパ-オキサイド、スクシン酸パ-オキサイド、パ-オキシマレイン酸t-ブチルエステル、クメンハイドロパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド等の有機系過酸化物;過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機系過酸化物;アゾビスイソブチロニトリル等のアゾ化合物を使用できる。これらは1種を単独で使用してもよく、2種以上を併用してもよい。
 これらの開始剤は、熱分解型のラジカル重合開始剤として使用されてもよく、或いは、亜硫酸ナトリウム、チオ硫酸ナトリウム、ナトリウムホルムアルデヒドスルフォキシレート、アスコルビン酸、ヒドロキシアセトン酸、硫酸第一鉄等の還元剤と組み合わせた、レドックス型重合開始剤系として使用されてもよい。なお、硫酸第一鉄はエチレンジアミン四酢酸-2-ナトリウム等の錯体と併用してもよい。
 これらの中でも、重合安定性、粒子径制御の点から、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機系過酸化物を用いるか、或いは、t-ブチルハイドロパーオキサイドやクメンハイドロパーオキサイド等の有機経過酸化物を2価の鉄塩等の無機系還元剤及び/又はナトリウムホルムアルデヒドスルフォキシレート、還元糖、アスコルビン酸等の有機系還元剤と組み合わせたレドックス開始剤系を使用するのがより好ましい。
 上記の無機過酸化物又は有機系過酸化物は、重合系にそのまま添加する方法、単量体に混合して添加する方法、乳化剤水溶液に分散させて添加する方法等の公知の方法で添加することができる。アクリル系樹脂フィルムの透明性の観点から、単量体に混合して添加する方法、及び乳化剤水溶液に分散させて添加する方法が好ましい。
 グラフト共重合体粒子(A)、又はグラフト共重合体粒子(B)の乳化重合に使用される界面活性剤(乳化剤とも称される。)には特に限定はない。乳化重合には、公知の界面活性剤が広く使用できる。好ましい界面活性剤としては、例えば、アルキルスルフォン酸、アルキルベンゼンスルフォン酸、ジオクチルスルフォコハク酸、アルキル硫酸、脂肪酸ナトリウム、ポリオキシエチレンアルキルエーテル酢酸、アルキルリン酸、アルキルエーテルリン酸、アルキルフェニルエーテルリン酸、サーファクチン等のナトリウム塩、カリウム塩、アンモニウム塩等の陰イオン性界面活性剤や、アルキルフェノール類、脂肪族アルコール類とプロピレンオキサイド、エチレンオキサイドとの反応生成物等の非イオン性界面活性剤等が挙げられる。アルキルエーテルリン酸及びその塩としては、例えば、ポリオキシエチレンラウリルエーテルリン酸及びそのナトリウム塩等を好適に用いることできる。これらの界面活性剤は1種を単独で使用してもよく、2種以上併用してもよい。
 乳化重合により得られるグラフト共重合体粒子(A)のラテックス、又はグラフト共重合体粒子(B)のラテックスから、公知の方法により、グラフト共重合体粒子(A)、又はグラフト共重合体粒子(B)を分離、回収することができる。例えば、ラテックスに、塩化カルシウム、硫酸マグネシウム等の水溶性電解質を添加して凝固させた後、もしくは凍結により凝固させた後、固形分の濾別、洗浄及び乾燥の操作により、グラフト共重合体粒子(A)、又はグラフト共重合体粒子(B)を分離、回収できる。また、ラテックスに対する噴霧乾燥、凍結乾燥等の処理により、グラフト共重合体粒子(A)、又はグラフト共重合体粒子(B)を分離、回収することもできる。
 好ましくは、アクリル系樹脂フィルムの外観欠陥や内部異物を低減する目的で、グラフト共重合体粒子(A)、又はグラフト共重合体粒子(B)の分離、回収に先立ち、予めグラフト共重合体粒子(A)のラテックス、又はグラフト共重合体粒子(B)のラテックスをフィルターやメッシュでろ過して、環境異物や、重合スケール等の、異物欠陥原因となる物質が除去される。
 フィルターやメッシュとしては、液状媒体のろ過に用いられる公知のフィルターやメッシュを使用可能である。フィルターやメッシュの形式、フィルターの目開き、濾過精度、及び濾過容量等は、対象となる用途、除去すべき異物の種類、大きさや量に応じて適宜選択される。フィルターやメッシュの目開きや濾過精度は、例えば、それぞれ、グラフト共重合体粒子(A)、又はグラフト共重合体粒子(B)の平均粒子径よりも2倍以上大きいものが好ましい。
 アクリル系樹脂フィルム中において、グラフト共重合体粒子(A)の含有量は特に限定されないが、1質量%以上70質量%以下であることが好ましく、5質量%以上65質量%以下であることがより好ましく、10質量%以上60質量%以下であることがさらに好ましい。
 アクリル系樹脂フィルム中において、グラフト共重合体粒子(B)の含有量は特に限定されないが、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが最も好ましい。下限値は、特に限定されないが、例えば、1質量%以上である。
 アクリル系樹脂フィルム中において、架橋エラストマー(A1)および架橋エラストマー(B1)の合計含有量は特に限定されないが、15質量%以下であることが好ましく、13質量%以下であることがより好ましく12質量%以下であることが最も好ましい。
 <他の成分>
 アクリル系樹脂フィルム(アクリル系樹脂フィルムを構成するアクリル系樹脂組成物)は、本発明の目的を損なわない範囲で、必要に応じて、アクリル樹脂と少なくとも部分的に相溶性を有する熱可塑性樹脂を含んでもよい。このような熱可塑性樹脂としては、例えば、スチレン系樹脂、ポリ塩化ビニル樹脂、ポリカーボネート樹脂、非晶質の飽和ポリエステル樹脂、ポリアミド樹脂、フェノキシ樹脂、ポリアリレート樹脂、オレフィン-メタクリル酸誘導体樹脂、オレフィン-アクリル酸誘導体樹脂、セルロース誘導体(セルロースアシレート等)、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリ乳酸樹脂、及びPHBH(ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)樹脂等が挙げられる。スチレン系樹脂としては、例えば、スチレン-アクリロニトリル樹脂、スチレン-メタクリル酸樹脂、スチレン-アクリル酸樹脂、スチレン-無水マレイン酸樹脂、スチレン-N置換マレイミド樹脂、スチレン-非置換マレイミド樹脂、スチレン-アクリロニトリル-ブタジエン樹脂、及びスチレン-アクリロニトリル-アクリル酸エステル樹脂等が挙げられる。中でも、スチレン系樹脂、ポリカーボネート樹脂、及びセルロースアシレート樹脂からなる群から選ばれる1種以上の熱可塑性樹脂が、アクリル樹脂との相溶性に優れ、アクリル系樹脂フィルムの耐折り曲げ割れ性、耐溶剤性、低吸湿性、また積層体のガラス飛散防止性能等を向上できる可能性があることから好ましい。
 アクリル系樹脂フィルム(アクリル系樹脂フィルムを構成するアクリル系樹脂組成物)は、また、本発明の目的を損なわない範囲で、必要に応じて、アクリル系樹脂フィルムに使用される従来公知の添加剤を含んでも良い。このような添加剤としては、酸化防止剤、紫外線吸収剤、光安定剤、光拡散剤、艶消し剤、滑剤、顔料及び染料等の着色料、繊維状充填材、有機粒子や無機粒子からなるアンチブロッキング剤、金属や金属酸化物からなる赤外線反射剤、可塑剤、帯電防止剤等が挙げられる。添加剤は、これらに限定されない。これらの添加剤は、本発明の目的を阻害しない範囲で、もしくは本発明の効果を増強するため、添加剤の種類に応じた任意の量用いることができる。
 <物性>
 アクリル系樹脂フィルムのガラス転移温度(Tg)は、140℃以下であり、135℃以下であることが好ましく、130℃以下であることがより好ましい。アクリル系樹脂フィルムのガラス転移温度が140℃以下であると、成形温度を高くすることなく成形が可能であり、成形時のクラック発生を抑制できるとの利点を有する。また、下限は特に限定されないが、印刷の乾燥時の印刷ズレ防止や信頼性向上の観点から、例えば、100℃以上であることが好ましい。なお、アクリル系樹脂フィルムのガラス転移温度は、実施例に記載の方法により測定される。
 アクリル系樹脂フィルムの120℃での破断点伸度は、200%以上であり、210%以上であることが好ましく、220%以上であることがより好ましい。アクリル系樹脂フィルムの120℃での破断点伸度が200%以上であると、成形の形状追従性に優れる利点を有する。なお、アクリル系樹脂フィルムの120℃での破断点伸度は、実施例に記載の方法により測定される。
 アクリル系樹脂フィルムの23℃での破断点伸度は、20%以上であることが好ましく、25%以上であることがより好ましく、30%以上であることがさらに好ましい。アクリル系樹脂フィルムの23℃での破断点伸度が20%以上であると、常温下でのアクリル系樹脂フィルムもしくは本積層体の搬送や切削加工等の取扱い時に割れ等を生じにくく、取扱いが容易になる。なお、アクリル系樹脂フィルムの23℃での破断点伸度は、実施例に記載の方法により測定される。
 アクリル系樹脂フィルムの膜厚は、特に限定されないが、例えば、75~500μmであり、75~300μmであることが好ましく、100~250μmであることがより好ましい。アクリル系樹脂フィルムの膜厚が75~500μmであると、フィルムにコシが出て取り扱い性に優れるとの利点を有する。なお、アクリル系樹脂フィルムの膜厚は、実施例に記載の方法により測定される。
 ハードコート層を積層していないアクリル系樹脂フィルムの表面の鉛筆硬度は、傷がつきにくいとの観点から、B以上であることが好ましく、HB以上であることがより好ましい。なお、ハードコート層を積層していないアクリル系樹脂フィルムの表面の鉛筆硬度は、JIS K5600-5-4に準じて、実施例に記載の方により測定される。
 <アクリル系樹脂フィルムの製造方法>
 アクリル系樹脂フィルムは、公知の加工方法により製造できる。公知の加工方法の具体例としては、溶融加工法、カレンダー成形法、プレス成形法、及び溶剤キャスト法等が挙げられる。溶融加工法としては、インフレーション法やTダイ押出法等が挙げられる。また、溶剤キャスト法では、アクリル樹脂組成物を溶剤に溶解・分散させた後、得られた分散液(ドープ)を、ベルト状基材上にフィルム状に流涎する。次いで、流涎されたフィルム状のドープから溶剤を揮発させることにより、アクリル系樹脂フィルムを得る。
 これらの方法の中では、溶剤を使用しない溶融加工法、特にTダイ押出法が好ましい。溶融加工法によれば、製造するフィルムの厚さの制限が少なく、表面性に優れたフィルムを高い生産性で製造でき、且つ溶剤による自然環境や作業環境への負荷や、製造コストを低減することができる。
 アクリル樹脂組成物を、溶融加工法又は溶剤キャスト法によりフィルムに成形する場合、アクリル系樹脂フィルムの外観品質の向上の点から、フィルター又はメッシュを用いるろ過を用いて、アクリル系樹脂フィルムの外観欠陥や内部異物等の原因となる、アクリル樹脂組成物中の環境異物や重合スケール、劣化樹脂等を除去することが好ましい。
 溶融加工によるフィルム製造時には、溶融混合によるアクリル樹脂組成物の調製時、溶融したアクリル樹脂組成物のペレット化時、及びTダイによるフィルム製膜工程のうちの、1以上の任意のタイミングでろ過を行うことができる。溶剤キャスト法では、アクリル樹脂、グラフト共重合体粒子(A)、(B)及び他の成分を溶剤と混合した後、キャスト製膜を行う前にろ過を行えばよい。
 このようなフィルターやメッシュとしては、フィルターやメッシュが溶融加工条件に応じた耐熱性、耐久性や、キャスト用の溶剤、ドープ等に対する耐性を有する限りにおいて、公知のフィルターやメッシュを特に制限なく利用できる。
 アクリル系樹脂フィルムを溶融加工により製造する場合、特に高品質のアクリル系樹脂フィルムを得るためには、濾過容量が大きく、フィルムの品質を損なう樹脂劣化物や架橋物等の発生原因となる、溶融樹脂の滞留が少ないフィルターが好ましい。例えばリーフディスク型フィルターやプリーツ型フィルターを用いるのが、ろ過効率や生産性の上で好ましい 。
 アクリル系樹脂フィルムをTダイ押出法により製造する場合、フィルムの厚み精度を向上させるために、たとえば押出成形されたフィルムのTD方向(押出方向に対して垂直な方向)のフィルム厚み分布をオンラインで測定し、これに基づいてフィルムを押出中のTダイのリップクリアランスを自動調整する、自動ダイ装置を使用することができる。適切な制御方法を用いて自動ダイを適用することにより、アクリル系樹脂フィルムの厚み精度を向上できる可能性がある。
 アクリル系樹脂フィルムの製造において、必要に応じて、フィルムを成形加工する際に、溶融状態のフィルム両面を冷却ロール又は冷却ベルトに同時に接触させる(挟み込む)ことにより、表面性のより優れたフィルムを得ることができる。この場合、溶融状態のフィルムを、アクリル樹脂組成物のガラス転移温度-80℃以上、好ましくはガラス転移温度-70℃以上の温度に維持したロール又は冷却ベルトに同時に接触させるのが好ましい。
 より好ましくは、このような挟み込みを行うためのロールの少なくとも一方として、例えば特開2000-153547号や特開平11-235747等に開示されたような弾性を有する金属スリーブを有するロールを使用し、低い挟み込み圧力を用いてロール鏡面又は特定の表面形状の転写を行うことで、平滑性に優れた、あるいは適度な表面粗度を有しフィルム表面の滑り性が優れフィルム同士のブロッキングが抑制された、内部歪のより少ないフィルムを得ることができる。
 また、目的に応じて、フィルムの成形に引続いて、一軸延伸あるいは二軸延伸を行うことも可能である。一軸あるいは二軸延伸は、公知の延伸装置を用いて実施できる。二軸延伸は、逐次二軸延伸、同時二軸延伸、縦延伸の後、縦方向を緩和しつつ横延伸を行い、フィルムのボウイングを低減させる方法等、公知の形式で実施することが可能である。
 さらに、用途の必要に応じて、アクリル系樹脂フィルムの片面又は両面に、ヘアライン、プリズム、凹凸形状、立体装飾、艶消し表面、一定の表面粗度を有する粗面、フィルム端部へのナーリング等の任意の表面形状を付与してもよい。このような表面形状の付与は、公知の方法で実施できる。例えば、押出直後の溶融状態のフィルム、又は繰り出し装置から繰り出された成形済みのフィルムの両面を、少なくとも一方の表面に表面形状を有する2本のロール又はベルトで挟み込むことにより、ロールの表面形状を転写する方法が挙げられる。
 (ハードコート層)
 本積層体におけるハードコート層は、前記アクリル系樹脂フィルムの少なくとも片面に積層された機能層である。ハードコート層は、前記アクリル系樹脂フィルムの片面に積層されていてもよく、両面に積層されていてもよい。
 本積層体におけるハードコート層は、好ましくは、多官能(メタ)アクリレートと、光重合開始剤とを含む樹脂組成物の硬化物である。ハードコート層は、好ましくは、熱硬化、活性エネルギー線硬化等の公知の硬化方法にて硬化することにより得られる。より好ましくは、紫外線等の活性エネルギー線の照射により硬化して得られる。
 ハードコート層としては、従来より種々の機能性フィルムや樹脂成形品等において設けられている種々の紫外線硬化型ハードコート層を特に限定なく採用することができる。ハードコート層は、例えば、多官能(メタ)アクリレート、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、シリコンアクリレート、ポリカーボネートアクリレート、及びポリアクリルアクリレート等のラジカル反応性官能基を有するモノマー、オリゴマー、樹脂、或いはこれらの混合物を含む組成物を硬化させることにより形成できる。また、例えば、エポキシ基、及びオキセタン基等のカチオン硬化性又はアニオン硬化性官能基を有するモノマー、オリゴマー、樹脂、或いはこれらの混合物を含む組成物を硬化させることにより、ハードコート層を形成できる。さらに、アルコキシ基置換シリル化合物を加水分解及び部分的に縮合させたポリシロキサン系樹脂を、熱的に硬化させることにより、ハードコート層を形成できる。或いは、シリル化合物に反応性官能基を導入しこれを反応させて硬化させることにより、ハードコート層を形成できる。ハードコート層の形成に用いられる上記成分は、1種を単独で使用してもよく、適宜2以上の成分を混合して使用してもよい。
 なお、上記のハードコート層の例示では、後述する説明の便宜上、「多官能(メタ)アクリレート」と、エポキシアクリレート、ウレタンアクリレート等とを分けて記載しているが、「多官能(メタ)アクリレート」は、構造内に(メタ)アクリロイル官能基を二個以上含む単量体、オリゴマー、ポリマー等の化合物の総称であり、エポキシアクリレート、ウレタンアクリレート、さらには、アルキル、アルケニル、アリール、エステル、アミド、エーテル、フルオロアルキル、シリルオキシ等の任意の主鎖或いは骨格構造及び、二個以上の(メタ)アクリロイル官能基を含む化合物を含む概念である。すなわち、「多官能(メタ)アクリレート」と記載した場合は、当業者が通常理解するように、エポキシアクリレート、ウレタンアクリレート、さらには、上述のような任意の構造を有する多価の(メタ)アクリレート化合物を含むことを意図する。
 多官能(メタ)アクリレートは、(メタ)アクリロイル基を少なくとも2個以上有する限り特に制限されない。具体的には、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、及びジエチレングリコールジ(メタ)アクリレート等の多官能(メタ)アクリレートが挙げられる。これらは、1種を単独で使用しても良く、2種以上を混合して使用しても良い。さらに紫外線硬化性ハードコート剤として市販されているもの等が挙げられる。本明細書において、(メタ)アクリレートは、メタクリレート及びアクリレートを包含する意味である。本明細書において、(メタ)アクリロイル基は、メタクリロイル基及びアクリロイル基を包含する意味である。
 エポキシアクリレート系モノマーとしては特に制限がない。具体的には、グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、3、4-エポキシシクロヘキシルメチル(メタ)アクリレート、及びビニルシクロヘキセンモノオキサイド(すなわち、1,2-エポキシ-4-ビニルシクロヘキサン)等が挙げられる。
 ウレタンアクリレート樹脂は、例えば、多価アルコールと、多価イソシアネートと、水酸基含有(メタ)アクリレートとを混合して、イソシアネート基と水酸基との反応によりウレタン結合を生成させることにより得ることができる。
 ウレタンアクリレート樹脂の各種特性は、多価アルコールの構造と、多価イソシアネートの種類と、水酸基含有(メタ)アクリレートに由来する、アクリロイル基又はメタクリロイル基(CH=CH-CO-、又は、CH=C(CH)-CO-)の数によって適宜調整でき、特に制限されない。さらに紫外線硬化性ハードコート剤として市販されているウレタンアクリレート樹脂等も挙げられる。
 水酸基含有(メタ)アクリレートとしては、特に制限されることなく、ヒドロキシル基含有(メタ)アクリレート、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタアクリレートのほか、必要により、少なくとも1個のヒドロキシル基を有するエチレン性不飽和結合を持つ化合物、例えば2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチルアクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、トリメチールプロパンモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、アリルアルコール、エチレングリコールアリルエーテル、グリセリン(モノ、ジ)アリルエーテル、N-メチロール(メタ)アクリルアミド等或いはこれらの混合物が添加可能である。
 多価イソシアネートとしては特に制限されない。2つ以上のイソシアネート基を含有する化合物である多価イソシアネート化合物として、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、1,5-ナフタレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、3,3'-ジメチル-4,4'-ジフェニルメタンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、4,4'-ジフェニルメタントリイソシアネート、3,3'-ジメチルフェニレンジイソシアネート、4,4'-ビフェニレンジイソシアネート、1,6-ヘキサンジイソシアネート、イソフォロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、2,2,4-トリメチルヘキサメチレンジイソシアネート、ビス(2-イソシアネートエチル)フマレート、6-イソプロピル-1,3-フェニルジイソシアネート、4-ジフェニルプロパンジイソシアネート、トリジンジイソシアネート、水添ジフェニルメタンジイソシアネート、水添キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,5-ビス(イソシアネートメチル)-ビシクロ[2.2.1]ヘプタン、2,6-ビス(イソシアネートメチル)-ビシクロ[2.2.1]ヘプタン、トリエチレンジイソシアネートのトリメチロールプロパンアダクト体、トリエチレンジイソシアネートのイソシアヌレート体、ジフェニルメタン-4,4'-ジイソシアネートのオリゴマー、ヘキサメチレンジイソシアネートのビウレット体、ヘキサメチレンジイソシアネートのイソシアヌレート体、ヘキサメチレンジイソシアネートのウレトジオン、イソホロンジイソシアネートのイソシアヌレート体等が挙げられる。また、これらのポリイソシアネートは、1種を単独或いは2種以上を組み合わせて用いることができる。
 多価アルコールの具体例としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、2-メチル-1,8-オクタンジオール、1,4-シクロヘキサンジメタノール、及びポリテトラメチレングリコール等が挙げられる。これらの多価アルコールは、1種を単独で用いてもよく、2種以上を併用してもよい。
 イソシアネート成分のイソシアネート基との反応を促進するために、有機錫系ウレタン化触媒が使用される。有機錫系ウレタン化触媒としては、ウレタン化反応に一般に使用されるものであればよく、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジアルキルマレート、ステアリン酸錫、オクチル酸錫等が挙げられる。これら有機錫系ウレタン化触媒の使用量は特に制限されるものではないが、0.005質量%以上3質量%以下の範囲内で用いるのが適当である。下限に満たないとウレタン反応が十分に進行せず、上限を超えるとウレタン反応時の発熱により反応制御が困難となる。
 ポリシロキサン系樹脂組成物からなるハードコート形成用の組成物は、好ましくは、下記一般式(2):
-(SiR (OR3-a)・・・(2)
 (一般式(2)中、Rは、少なくとも一部の末端が、エポキシ基、オキセタン基、(メタ)アクリロイル基、ビニル基、水酸基、カルボキシル基、アミノ基、官能基保護されたアミノ基からなる群から選ばれる反応性置換基で置換された、炭素原子数1以上10以下のアルキル基、炭素原子数6以上25以下のアリール基、及び炭素原子数7以上12以下のアラルキル基からなる群より選ばれる1価の炭化水素基である。Rはそれぞれ独立して、水素原子、炭素原子数1以上10以下のアルキル基、炭素原子数6以上25以下のアリール基、及び炭素原子数7以上12以下のアラルキル基からなる群より選ばれる1価の炭化水素基である。Rはそれぞれ独立して水素原子、又は炭素原子数1以上10以下のアルキル基である。aは0以上2以下の整数である。)で表される、加水分解性シリル基を有するシラン化合物(Z)を加水分解及び縮合させて得られる縮合物(A)、及び、反応性置換基を反応せしめる触媒或いは硬化剤(B)を含有する、硬化性組成物である。
 好ましくは、縮合物(A)の重量平均分子量は30,000以下である。また、反応性置換基を有するシラン化合物の使用割合が全体の10質量%以上であるのが好ましい。この場合、ハードコート層としての硬化物が、硬度、耐薬品性、及び耐久性等に優れる。
 触媒或いは硬化剤(B)は、組成物の光硬化性の点から、光ラジカル発生剤、光カチオン発生剤、光アニオン発生剤から選ばれる1種以上の触媒或いは硬化剤であるのが好ましい。
 一般式(2)における反応性置換基は、ハードコート層形成時の硬化収縮が少ない点と、耐久性に優れカールが抑制された機能性フィルムを得やすい点から、エポキシ基又はオキセタン基であるのが好ましい。
 シラン化合物(Z)の加水分解縮合反応を行う際の触媒としては、中性塩触媒を用いることがより好ましい。反応性置換基がエポキシ基、オキセタン基である場合に、加水分解縮合時の反応性置換基の分解を抑制しやすいためである。
 縮合物(A)の原料であるシラン化合物(Z)が有するケイ素原子に直接結合したOR
 6基のモル数Pに対する、縮合物(A)が有するケイ素原子に直接結合したOR 6基のモル数Qの比Q/Pが0.2以下であることがより好ましい。硬化物の硬度、耐薬品性、耐久性等が優れるためである。
 ハードコート層を形成する際に樹脂組成物を硬化させる方法としては、公知の方法を適用できる。硬化方法としては、紫外線に代表される活性エネルギー線を照射する方法が好ましい。活性エネルギー線の照射により硬化を行う場合には、通常、ハードコート層形成用の組成物に、光重合開始剤、光アニオン発生剤、及び光カチオン発生剤等が添加される。
 光重合開始剤の具体例としては、例えば、アセトフェノン、ベンゾフェノン、ベンゾイルメチルエーテル、ベンゾイルエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ジベンジル、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2,2-ジメトキシ-2-フェニルアセトフェノン、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、及び2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン化合物等が挙げられる。これらの中では、樹脂との相溶性に優れる1-ヒドロキシ-シクロヘキシル-フェニル-ケトンが好ましい。
 光カチオン発生剤の具体例としては、例えば、サンアプロ社製のCPI-100P、CPI-101A、CPI-200K、及びCPI-200S;和光純薬工業社製のWPI-124、WPI-113、WPI-116、WPI-169、WPI-170、及びWPI-124;ローディア社製のロードシル2074等が挙げられる
 光アニオン発生剤の具体例としては、例えば、アセトフェノンo-ベンゾイルオキシウム、ニフェジピン、2-(9-オキソキサンテン2-イル)プロピオン酸1,5,7-トリアザビシクロ〔4.4.0〕デカ-5-エン、2-ニトロフェニルメチル4-メタクリロイルオキシピペリジン-1-カルボキシラート、1,2-ジイソプロピル-3-〔ビス(ジメルアミノ)メチレン〕グアニジウム2-(3-ベンゾイルフェニル)プロピオナート、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルピグアニジウム、及びn-ブチルトリフェニルバラート等が挙げられる。
 硬化性組成物からなる塗布膜を硬化させてハードコート層を形成する場合、硬化性組成物には、塗布性や、硬化後の耐擦り傷性、防汚性などの改善等の目的で、公知の各種レベリング剤が配合されてもよい。レベリング剤としては、フッ素系レベリング剤、アクリル系レベリング剤、シリコーン系レベリング剤、及びそれらの付加物或いは混合物を使用することができる。レベリング剤の配合量は特に限定されないが、例えば、硬化性組成物100質量部に対し0.03質量部以上3.0質量部以下の範囲内の量である。
 硬化性組成物を塗布することによりハードコート層を形成する場合、硬化性組成物には、紫外線吸収剤、光安定化剤、消泡剤、酸化防止剤、光拡散剤、艶消し剤、防汚剤、滑剤、顔料及び染料等の着色料、有機粒子、無機微粒子、及び帯電防止剤等の各種添加剤を、必要に応じて添加できる。添加剤は、これらに限定されない。
 硬化性組成物に適切な塗布性を付与するためには、通常、有機溶剤が配合される。有機溶剤としては、硬化性組成物に所望する塗布性を付与でき、所望する膜厚及び性能のハードコート層を形成できる限り特に限定されない。有機溶剤の沸点は50℃以上150℃以下が、塗布性と、形成される塗布膜の乾燥性の点から好ましい。
 有機溶剤の具体例としては、ヘキサン等の飽和炭化水素;トルエン、及びキシレン等の芳香族炭化水素;クロロホルム、及び塩化メチレン等のハロゲン化炭化水素;メタノール、エタノール、イソプロピルアルコール、及びブタノール等のアルコール類;酢酸メチル、酢酸エチル、及び酢酸ブチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、及びシクロヘキサノン等のケトン類;テトラヒドロフラン、ジオキサン、プロピレングリコールモノエチルエーテル、メチルセロソルブ、及びエチルセロソルブ等のエーテル類;Nメチルピロリドン、及びジメチルホルムアミド等のアミド類等が挙げられる。有機溶剤は、1種を単独で、又は2種以上を組み合わせて使用することができる。
 硬化性組成物を、基材フィルムである前述のアクリル系樹脂フィルムの主面上に塗布する場合、塗布方法としては任意の方法を特に制限なく採用することができる。塗布方法としては、例えば、リバースコート法、グラビアコート法、バーコート法、ダイコート法、スプレーコート法、キスコート法、ワイヤーバーコート法、及びカーテンコート法等が挙げられる。これらの塗布方法は、1種を単独又は複数組み合わせて実施されてもよい。
 以上説明したハードコート層形成用の硬化性組成物を基材フィルムである前述のアクリル系樹脂フィルムの表面に塗布した後、乾燥による塗布膜からの有機溶剤の除去と、紫外線照射による硬化とを行うことにより、ハードコート層が形成される。
 乾燥により有機溶剤を除去する際の塗布膜の乾燥温度は、60℃以上120℃以下であることが好ましく、70℃以上100℃以下であることがより好ましい。乾燥温度が低すぎると、塗布膜中に有機溶剤が残留する場合がある。また、乾燥温度が高すぎると、基材フィルムの熱変形により、機能性フィルム(ハードコート層)の平坦性が損なわれる場合がある。
 塗布膜を硬化させる際に照射される紫外線の波長は200nm以上400nm以下の範囲が好ましい。紫外線(UV)積算光量は、後述する〔4.積層体の製造方法〕に記載の条件が好ましく使用される。紫外線の露光光の照射装置としては、例えば、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、無電極ランプ、及びエキシマランプ等のランプ光源や、アルゴンイオンレーザー及びヘリウムネオンレーザー等のパルス又は連続のレーザー光源等を備える照射装置を用いることができる。
 紫外線照射時には熱が発生し温度が上昇するため、ロールの温度を下げて冷却しながら紫外線照射することが好ましい。このときの冷却ロール温度は、後述する〔4.積層体の製造方法〕に記載の条件が好ましく使用される。
 ハードコート層形成用組成物としては、例えば、アイカ工業株式会社製の品名「Z-879」、DIC株式会社製の品名「ユニディックESS108」、大日精化工業株式会社「NSC-7312」、荒川化学工業株式会社製の品名「ビームセット575」、日本合成化学工業株式会社製の品名「UV-1700B」、大成ファインケミカル株式会社製の品名「8BR-600」、日本化工塗料株式会社製の品名「FA-3280H」等の市販品を用いてもよい。硬化後にも伸度を有することから、本積層体の120℃クラック伸度をより高めることができる。
 ハードコート層の膜厚は、特に限定されないが、例えば、0.6~10.0μmであり、0.7~7.0μmであることが好ましく、0.8~5.0μmであることがより好ましい。ハードコート層の膜厚が0.6~10.0μmであると、耐摩耗性と成形性とを両立できる利点を有する。なお、ハードコート層の膜厚は、実施例に記載の方法により測定される。
 また、本発明の一実施形態において、ハードコート層の耐摩耗性等を向上するために、無機粒子や金属粒子を添加してもよい。無機粒子や金属粒子としては、特に限定されないが、例えば、シリカ、アルミナ、酸化チタン、酸化亜鉛、ジルコニア、グラフェン、ナノカーボン、カーボンブラック、ナノダイヤモンド、マイカ、チタン酸バリウム、窒化ホウ素、金属銀、金属銅等が挙げられる。これらの粒子は、表面処理を行わずに使用してもよく、また分散状態の制御のためにあらかじめ公知の方法で表面処理を実施し、ハードコート層との親和性を適宜制御してもよい。
 <その他の機能層>
 本積層体は、ハードコート層に加えて、その他の機能層を有していてもよい。そのような他の機能層としては、特に限定されず、例えば、従来公知の種々の機能層を採用することができる。機能層の具体例としては、反射防止層、防眩層、防汚層、耐指紋層、耐傷付き層、帯電防止層、紫外線遮蔽層、赤外線遮蔽層、表面凹凸層、光拡散層、艶消層、偏光層、着色層、意匠層、エンボス層、導電層、ガスバリア層、ガス吸収層等が挙げられる。これらの機能層を、2種以上組み合わせて備えていてもよい。また一つの機能層が、二つ以上の複数の機能を兼ね備えても良い。反射防止層は、低屈折率層で構成されてもよく、高屈折率層及び低屈折率層の両方で構成されてもよく、また、可視光の波長よりも微細な表面凹凸形状を機能層の表面に形成することにより構成しても良い。
 (積層体)
 本積層体は、上述の通り、特定のアクリル系樹脂フィルムと、ハードコート層とから構成され、成形性および耐摩耗性に優れる。
 本積層体の120℃でのクラック伸度は、50%以上であり、52%以上であることが好ましく、54%以上であることがより好ましい。本積層体の120℃でのクラック伸度が50%以上であると、成形時にクラックが発生しないとの利点を有する。なお、本積層体の120℃でのクラック伸度は、実施例に記載の方法により測定される。
 本積層体の50g/cm、5往復でのスチールウール摩耗試験のΔヘイズは、1.0%以下であり、0.8%以下であることが好ましく、0.6%以下であることがより好ましい。50g/cm、5往復でのスチールウール摩耗試験のΔヘイズが1.0%以下であると、拭いても傷が付かない利点を有する。なお、50g/cm、5往復でのスチールウール摩耗試験のΔヘイズは、実施例に記載の方法により測定される。
 本積層体の50g/cm、10往復でのスチールウール摩耗試験のΔヘイズは、例えば、1.0%以下であり、0.9%以下であることが好ましく、0.8%以下であることがより好ましい。50g/cm、10往復でのスチールウール摩耗試験のΔヘイズが1.0%以下であると、拭いても傷が付かない利点を有する。なお、50g/cm、10往復でのスチールウール摩耗試験のΔヘイズは、実施例に記載の方法により測定される。
 本積層体の鉛筆硬度は、傷がつきにくいとの観点から、H以上であることが好ましく、2H以上であることがより好ましい。なお、本積層体の鉛筆硬度は、実施例に記載の方法により測定される。
 上記「スチールウール摩耗試験」および「鉛筆硬度」は、いずれも耐摩耗性の指標である。「スチールウール摩耗試験」は、拭いた時の傷により耐摩耗性を評価し、「鉛筆硬度」は、引っ掻いた時の傷により耐摩耗性を評価する。本積層体は、いずれの指標でも効果を奏することが好ましい。
 本積層体の位相差(Re)は、例えば、38nm以下であり、30nm以下であることが好ましく、20nm以下であることがより好ましく、10nm以下であることがさらに好ましく、8nm以下であることが特に好ましい。位相差(Re)が38nm以下であると、液晶表示装置においてコントラストの低下を抑制できる。なお、位相差(Re)は、実施例に記載の方法により測定される。
 本積層体の位相差(Rth)は、例えば、|30|nm以下であり、|20|nm以下であることが好ましく、|10|nm以下であることがより好ましい。位相差(Rth)が|30|nm以下であると、液晶表示装置においてコントラストの低下を抑制できる。なお、位相差(Rth)は、実施例に記載の方法により測定される。
 本積層体の耐候性試験後のΔE(色差)は、例えば、5.2%以下であり、4.0%以下であることが好ましく、3.0%以下であることがより好ましい。耐候性試験後のΔEが5.2%以下であると、長期耐久性に優れる利点を有する。なお、耐候性試験後のΔEは、実施例に記載の方法により測定される。
 本積層体の成形可能曲率半径は、例えば、1mm以下であり、0.8mm以下であることが好ましく、0.6mm以下であることがより好ましい。成形可能曲率半径が1mm以下であると、複雑な形状でも成形できる利点を有する。また、なお、成形可能曲率半径は、実施例に記載の方法により測定される。
 本積層体は、ハードコート層を設けた面に対し反対面にプライマー層を有しても良い。プライマー層の組成としては、後加工工程で行われる印刷に用いられるインキ、金属蒸着に用いられる金属の密着性の良い樹脂が用いられる。例えばウレタン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリカーボネート、エポキシ系樹脂、メラミン系樹脂、酢酸ビニルと塩化ビニルとの共重合体等が用いられる。プライマー層を設けることにより、射出樹脂、インキ等との密着性を強化することができる。
 プライマー層の厚みは0.5~10μmが好ましく、0.5~5μmがより好ましく、0.5~3μmが最も好ましい。0.5μm以上であると、密着性が担保でき、10μm以下であると生産性がよりよい。
 〔3.成形体〕
 本発明の一実施形態において、本積層体を備える、成形体(以下、「本成形体」と称する。)を提供する。
 本成形体の用途の具体例としては、インストルメントパネル、車載ディスプレイ前面板、コンソールボックス、メーターカバー、ドアロックペゼル、ステアリングホイール、パワーウィンドウスイッチベース、センタークラスター、ダッシュボード等の自動車内装用途;ウェザーストリップ、バンパー、バンパーガード、サイドマッドガード、ボディーパネル、スポイラー、フロンリル、ストラットマウント、ホイールキャップ、センターピラー、ドアミラー、センターオーナメント、サイドモール、ドアモール、ウインドモール等、窓、ヘッドランプカバー、テールランプカバー、風防部品等の自動車外装用途;スマートフォンや携帯電話、タブレット等の携帯電子機器の携帯電話等のハウジング、表示窓、ボタン等、テレビ、DVDプレイヤー、ステレオ装置、炊飯器、洗濯機、冷蔵庫、エアコン、加湿器、除湿機、扇風機、その他の家庭用電子電気機器;家具製品等の筐体、フロントパネル、ボタン、エンブレム、表面化粧材等の用途、さらには家具用外装材用途;壁面、天井、床、バスタブ、便座、等の建築用内装材用途;サイディング等の外壁、塀、屋根、門扉、破風板等の建築用外装材用途;窓枠、扉、手すり敷居、鴨居等の家具類の表面化粧材用途;各種ディスプレイ、レンズ、ミラー、ゴーグル、窓ガラス等の光学部材用途;電車、航空機、船舶等の自動車以外の各種乗り物の内外装用途等が挙げられる。
 本積層体を用いると、複雑な立体形状であり、表面の硬度、耐擦傷性、耐薬品性、防汚性、反射特性、及び防眩性等が制御された、外観にすぐれる成形体を容易に製造できる。このため、本成形体は、上記の用途の中でも、例えば、平面形状あるいは曲面形状、立体形状を有する車載ティスプレイ前面板等の用途に好ましく用いられる。したがって、本発明の一実施形態において、本成形体を備える、車載ディスプレイ前面板を提供する。
 〔4.積層体の製造方法〕
 本発明の一実施形態において、アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体の製造方法を提供する。本積層体の製造方法は、冷却ロール上において、前記アクリル系樹脂フィルムの少なくとも片面に塗布した前記ハードコート層にUV照射して、前記ハードコート層を硬化する工程を含み、前記UV照射のUV積算光量が150~500mJ/cmであり、冷却ロール温度が25~70℃であり、前記アクリル系樹脂フィルムは、ガラス転移温度が140℃以下であり、かつ、120℃での破断点伸度が200%以上であり、前記積層体は、120℃でのクラック伸度が50%以上であり、かつ、50g/cm、5往復でのスチールウール摩耗試験のΔヘイズが1.0%以下である。
 本積層体の製造方法において、紫外線(UV)積算光量は、例えば、150~500mJ/cmであり、160~480mJ/cmであることが好ましく、170~460mJ/cmであることがより好ましい。UV積算光量が150~500mJ/cmであると、成形性を担保しながら、ハードコート層の適度な硬度を得ることができる。
 本積層体の製造方法において、冷却ロール温度は、例えば、25~70℃であり、30~70℃であることが好ましく、35~70℃であることがより好ましく、40~70℃であることがさらに好ましく、42~68℃であることが特に好ましく、45~65℃であることがとりわけ好ましい。冷却ロール温度が25~70℃であると、紫外線照射時の温度上昇を抑制しながら、ハードコート層の硬化を行うことができ、所望の物性の積層体を製造し得る。
 本積層体の製造方法は、上記ハードコート層を硬化する工程の前に、ハードコート層形成用の硬化性組成物を基材フィルムであるアクリル系樹脂フィルムの表面に塗布する工程、前記で形成された塗布膜から乾燥により有機溶剤を除去する工程等を含んでいてもよい。
 なお、本積層体の製造方法における上記条件以外の事項については、上記〔2.積層体〕において記載したものが、援用される。
 〔5.成形体の製造方法〕
 本発明の一実施形態において、以下で示す積層体に対して、プレフォーム時の成形温度が140℃以下で賦形する工程を含む、成形体の製造方法を提供する:
 アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
 前記アクリル系樹脂フィルムは、ガラス転移温度が140℃以下であり、かつ、120℃での破断点伸度が200%以上であり、
 前記積層体は、120℃でのクラック伸度が50%以上であり、かつ、50g/cm、5往復でのスチールウール摩耗試験のΔヘイズが1.0%以下である、積層体。
 本成形体の製造方法では、140℃以下でのプレフォームにより、フィルムを賦形する。本積層体は、上述した特定のアクリル系樹脂フィルムを含むため、本積層体に樹脂を積層成形するに際して、低温での成形が可能である。
 本成形体の製造方法において、プレフォーム時の温度は、例えば、140℃以下であり、130℃以下であることが好ましく、120℃以下であることがより好ましい。プレフォーム時の温度が140℃以下であると、ハードコート層にクラックが発生しにくい利点を有する。また、下限は特に限定されないが、形状付与性の観点から、例えば、100℃以上であり、105℃以上であることが好ましい。
 射出成形に用いられる樹脂としては、特に限定されないが、例えば、熱可塑性樹脂又は硬化性樹脂等があげられる。熱可塑性樹脂としては、ビスフェノール系骨格、フルオレン系骨格あるいはイソソルバイド系骨格等を有するポリカーボネート樹脂、アクリル系樹脂、スチレン系樹脂(AS樹脂、ABS樹脂、及びMAS樹脂、スチレンマレイミド系樹脂、スチレン無水マレイン酸樹脂等)、飽和ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリアリレート樹脂、PPS系樹脂、POM系樹脂、ポリアミド樹脂、ポリ乳酸樹脂、セルロースアシレート系樹脂、及びポリオレフィン系樹脂等が挙げられる。硬化性樹脂としては、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、フェノール系樹脂、メラミン系樹脂、及びベンゾキサジン樹脂等が挙げられる。中でも、ポリカーボネート樹脂、アクリル系樹脂、スチレン系樹脂、ポリアリレート樹脂、及びポリオレフィン系樹脂等の透明性を有する樹脂が好ましく使用される。
 本発明の一実施形態において、本成形体は、印刷した本積層体を事前に140℃以下でプレフォーム(曲面成形)し、トリミング後に金型内に配置した後、樹脂を射出成形して一体化することにより製造され得る。
 なお、本成形体の製造方法における上記条件以外の事項については、上記〔2.積層体〕において記載したものが、援用される。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 すなわち、本発明の一実施形態は、以下である。
<1>アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
 前記アクリル系樹脂フィルムは、ガラス転移温度が140℃以下であり、かつ、120℃での破断点伸度が200%以上であり、
 前記積層体は、120℃でのクラック伸度が50%以上であり、かつ、50g/cm、5往復でのスチールウール摩耗試験のΔヘイズが1.0%以下である、積層体。
<2>以下の物性のうち少なくとも1つを有する、<1>に記載の積層体:
 位相差(Re)が38nm以下である、
 耐候性試験後のΔEが5.2%以下である。
<3>前記ハードコート層が、多官能(メタ)アクリレートと、光重合開始剤とを含む樹脂組成物の硬化物である、<1>または<2>に記載の積層体。
<4>前記アクリル系樹脂フィルムが、平均粒子径が20nm~200nmのグラフト共重合体粒子(A)を1~70質量%と、前記グラフト共重合体粒子(A)より平均粒子径が大きいグラフト共重合体粒子(B)を20質量%以下と、を含み、前記アクリル系樹脂フィルム中の架橋エラストマー(A1)および架橋エラストマー(B1)の合計含有量が15質量%以下である、<1>~<3>のいずれかに記載の積層体。
<5>前記グラフト共重合体粒子(B)の平均粒子径が150nm以上であり、かつ、当該グラフト共重合体粒子(B)を1~10質量%含む、<4>に記載の積層体。
<6>ハードコート層を積層していない前記アクリル系樹脂フィルムの表面の鉛筆硬度がB以上であり、かつ、23℃での破断点伸度が20%以上である、<1>~<5>のいずれかに記載の積層体。
<7>前記グラフト共重合体粒子(A)が、反応性紫外線吸収剤を0.01~5質量%含む、<4>~<6>のいずれかに記載の積層体。
<8><1>~<7>のいずれかに記載の積層体を備える、成形体。
<9><8>に記載の成形体を備える、車載ディスプレイ前面板。
<10>アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体の製造方法であり、
 冷却ロール上において、前記アクリル系樹脂フィルムの少なくとも片面に塗布した前記ハードコート層にUV照射して、前記ハードコート層を硬化する工程を含み、
 前記UV照射のUV積算光量が150~500mJ/cmであり、
 前記冷却ロールの温度が25~70℃であり、
 前記アクリル系樹脂フィルムは、ガラス転移温度が140℃以下であり、かつ、120℃での破断点伸度が200%以上であり、
 前記積層体は、120℃でのクラック伸度が50%以上であり、かつ、50g/cm、5往復でのスチールウール摩耗試験のΔヘイズが1.0%以下である、積層体の製造方法。
<11>以下で示す積層体に対して、プレフォーム時の成形温度が140℃以下で賦形する工程を含む、成形体の製造方法:
 アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
 前記アクリル系樹脂フィルムは、ガラス転移温度が140℃以下であり、かつ、120℃での破断点伸度が200%以上であり、
 前記積層体は、120℃でのクラック伸度が50%以上であり、かつ、50g/cm、5往復でのスチールウール摩耗試験のΔヘイズが1.0%以下である、積層体。
 以下、本発明を実施例に基づいてより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 〔測定および評価方法〕
 実施例および比較例における測定および評価を、以下の方法で行った。
 (ガラス転移温度(Tg))
 セイコーインスツルメンツ製の示差走査熱量分析装置(DSC)SSC-5200を用いた。試料を一旦200℃まで25℃/分の速度で昇温した後10分間ホールドし、25℃/分の速度で50℃まで温度を下げる予備調整を経て、10℃/分の昇温速度で200℃まで昇温する間の測定を行った。得られたDSC曲線から微分値を求め(SSDC)、その極大点からガラス転移温度を求めた。
 (引張破断点伸度)
 積層フィルムを10mm(幅)×100mm(長さ)に切り出し、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離50mm、引張速度200mm/分の条件で測定を行った。積層フィルムが破断した際の伸度を引張破断点伸度とした。
 引張破断点伸度の値は、5つの試験片を用いて得られた測定結果のうち、最も高い値と、最も低い値とを除いた平均値である。
 (クラック伸度)
 クラック伸度の測定は、片面にハードコート層が形成された積層フィルム(HC層形成)に対して行われた。具体的には、積層フィルムを10mm(幅)×100mm(長さ)に切り出し、120℃に設定された高温槽が取り付けられたテンシロン引張試験機(株式会社島津製作所、AG-2000D)を用いて、余熱時間2分、チャック間距離50mm、引張速度200mm/分の条件で測定を行った。ハードコート層にクラックが発生した時の伸度を120℃クラック伸度として測定を行った。3つの試料に対して測定を行って得られた試験結果の平均値を、表5および6に記す。
 (成形可能曲率半径)
 真空圧空成形機(布施真空株式会社製、NGF-0406-S)を用いた。成形機は上部と下部からなっており、下部にR(曲率半径):0.3、0.5、0.8、1.0、1.5、2.0、2.5.3.0で高さ:3mmの複数の凸がある金型を設置し、上部に積層フィルムを設置した。その後、上部及び下部ともに-100kPaまで減圧し、上部に設置されていた赤外線加熱器で積層フィルムを加熱した。実施例1~12、比較例1~4および比較例8~12は120℃、比較例5~7は160℃まで加熱された段階で、積層フィルムを金型に押し当て、続いて、上部に圧空を導入して300kPaとし、成形を行った。〇:凸部にクラック無、△:凸部の周の1部にクラック、×:凸部の全周にクラックとした。
 (摩耗試験)
 表面性測定機HEIDON Type 14DR(新東科学株式会社製)を用いた。直径1mmの測定子にスチールウール♯0000を装着し、50gの錘を載せた。積層フィルムのハードコート面にスチールウールを載せ、ストローク:50mm、スピード6000mm/minで5往復および10往復試験を実施した。試験前後のヘイズを測定した。ヘイズはヘイズメーターNDH4000(日本電色工業株式会社製)を用いてISO14782に準じて測定した。
 (位相差)
 フィルムから、40mm×40mmの試験片を切り出した。この試験片を、自動複屈折計(王子計測株式会社製 KOBRA-WR)を用いて、温度23±2℃、湿度50±5%において、波長590nm、入射角0゜で面内位相差Reおよび厚み方向位相差Rthを測定した。
 (耐候性試験)
 Suga SX2D-75(スガ試験機株式会社製)を用いた。照射照度180(W/m2、300~400nm)、ブラックパネル温度83±3℃、相対湿度50±5%とした。ガラスフィルター構成は内側に石英、外側にポリシリケート♯275を使用し、500時間試験をした。試験前後で色差(ΔE)を測定した。ΔEは、分光色彩計SE7700(日本電飾工業株式会社製)で測定した。
モード:透過、光源:D65、視野:2°、測定径:28mm。
 (膜厚)
 アクリル系樹脂フィルムの膜厚は、PEACOCKダイアルゲージNo25(株式会社尾崎製作所製)で測定した。
 ハードコート層の膜厚は、F20膜厚測定システム(フィルメトリクス株式会社製)で測定した。ハードコート層の反対面をサインペンで黒塗りし、アクリル系樹脂フィルムの屈折率を1.49、ハードコート層の屈折率を1.50として測定した。
 (鉛筆硬度)
 JIS K5600-5-4に準じて鉛筆硬度を測定した。電動鉛筆硬度試験機(株式会社マイズ試験機製)を使用し、750g荷重、60mm/minの速度で、5本試験を実施した。傷が1本以下であれば合格判定とした。
 鉛筆硬度の測定は、機能性フィルムのハードコート層に対して実施した。
 〔製造例1:グラフト共重合体粒子(A)〕
 撹拌機付き8L重合装置に、以下の物質を仕込んだ。
・脱イオン水 200部
・ジオクチルスルフォコハク酸ナトリウム 0.24部
・ソディウムホルムアルデヒドスルフォキシレート 0.15部
・エチレンジアミン四酢酸-2-ナトリウム 0.001部
・硫酸第一鉄 0.00025部
 重合装置内を窒素ガスで充分に置換し実質的に酸素のない状態とした。その後、重合装置の内温を60℃にした。次いで、下記単量体混合物30部を10質量部/時間の割合で連続的に重合装置内に添加した。添加終了後、さらに0.5時間重合を継続し、架橋エラストマー(A1)の粒子(平均粒子径90nm)を得た。重合転化率は99.5%であった。
 単量体混合物:
・ビニル単量体混合物(アクリル酸n-ブチル(BA)90%及びメタクリル酸メチル(MMA)10%) 30部
・アリルメタクリレート(AlMA) 1部
・クメンハイドロパーオキサイド(CHP) 0.2部
 その後、ジオクチルスルフォコハク酸ナトリウム0.05質量部を重合装置内に仕込んだ。次いで、重合装置の内温を60℃にし、グラフトポリマー層(A2)形成用のビニル単量体混合物(MMA98%、BA1%、及びRUVA1%)70部、ターシャリードデシルメルカプタン(t-DM)0.5部及びCHP0.5部からなる単量体混合物70部を10部/時間の割合で連続的に重合装置内に添加した。さらに1時間重合を継続し、グラフト共重合体粒子(平均粒子径90nm)を得た。重合転化率は98.2%であった。得られたラテックスを塩化カルシウムで塩析、凝固させた後、凝固した固形分を水洗、及び乾燥させてグラフト共重合体粒子(A)の粉末を得た。なお、各成分の配合量は表1に示した通りである。
 また、RUVAは、反応性紫外線吸収剤(2-(2’-ヒドロキシ-5’-メタクリロイルオキシエチルフェニル)-2-H-ベンゾトリアゾール(大塚化学(株)製、RUVA-93))である。
 〔製造例2:グラフト共重合体粒子(A)〕
 攪拌機付き8L重合装置に、以下の物質を仕込んだ。
脱イオン水                     200部
ジオクチルスルフォコハク酸ナトリウム        0.25部
ソディウムホルムアルデヒドスルフォキシレート    0.15部
エチレンジアミン四酢酸-2-ナトリウム       0.001部
硫酸第一鉄                       0.00025部
 重合機内を窒素ガスで充分に置換し実質的に酸素のない状態とした後、内温を60℃にし、アクリル酸n-ブチル27部、メタクリル酸メチル3部、メタクリル酸アリル0.9部からなる単量体混合物とクメンハイドロパーオキサイド0.2部との混合液を3時間かけて連続的に添加し、添加終了後、さらに0.5時間重合を継続し、ゴム粒子を得た。重合転化率は99.5%であった。
 その後、ジオクチルスルフォコハク酸ナトリウム0.05部を仕込んだ後、内温を60℃にし、アクリル酸n-ブチル7部、メタクリル酸メチル63部からなる単量体混合物とクメンハイドロパーオキサイド0.2部との混合液を5時間かけて連続的に添加し、さらに1時間重合を継続し、グラフト共重合体粒子ラテックスを得た。重合転化率は98.5%であった。得られたラテックスを塩化カルシウムで塩析、凝固し、水洗、乾燥を行い、白色粉末状のグラフト共重合体粒子(A)を得た。なお、各成分の配合量は表1に示した通りである。
 グラフト共重合体粒子(A)のゴム粒子の平均粒子径は80nmであった。
Figure JPOXMLDOC01-appb-T000002
 〔製造例3:グラフト共重合体粒子(B)〕
 撹拌機付き8L重合装置に、以下の物質を仕込んだ。
・脱イオン水 180部
・ポリオキシエチレンラウリルエーテルリン酸 0.002部
・ホウ酸 0.4725部
・炭酸ナトリウム 0.04725部
・水酸化ナトリウム 0.0098部
 重合装置内を窒素ガスで充分に置換し実質的に酸素のない状態とした。その後、重合装置の内温を80℃にした。過硫酸カリウム0.027部を2%水溶液として重合装置内に入れた後、ビニル単量体混合物(MMA97%、及びBA3%)27部と、メタクリル酸アリル0.036部とからなる混合液を81分かけて連続的に重合装置内に添加した。
 さらに60分重合を継続することにより、コア(架橋エラストマー(B1))の1層目となる重合物の粒子を得た。重合転化率は99.0%であった。
 その後、水酸化ナトリウム0.0267部を2%水溶液として重合装置内に添加した。次いで、過硫酸カリウム0.08部を2%水溶液として重合装置内に添加した。その後、ビニル単量体混合物(BA83%、及びスチレン(St)17%)50部と、メタクリル酸アリル0.375部とからなる混合液を150分かけて連続的に重合装置内に添加した。添加終了後、過硫酸カリウム0.015部を2%水溶液として重合装置内に添加した。次いで、120分重合を継続し、1層目と2層目とからなるコア(架橋エラストマー(B1))を得た。重合転化率は99.0%であり、平均粒子径は230nmであった。
 その後、過硫酸カリウム0.023部を2%水溶液として重合装置内に添加した。次いで、ビニル単量体混合物(MMA80%、及びBA20%)23部を45分かけて連続的に重合装置内に添加した。さらに30分重合を継続することにより、2層構造のコア(架橋エラストマー(B1))とシェル(グラフトポリマー層(B2))とからなるグラフト共重合体粒子(B1)のラテックスを得た。重合転化率は100.0%であった。得られたラテックスを硫酸マグネシウムで塩析、凝固させた後、凝固した固形分を水洗、及び乾燥させて、白色粉末状のグラフト共重合体粒子(B)を得た。グラフト共重合体粒子の平均粒子径は250nmであった。なお、各成分の配合量は表2に示した通りである。
 〔製造例4:グラフト共重合体粒子(B)〕
 最内層重合体の作成:
 以下の組成の混合物をガラス製反応器に仕込み、窒素気流中で撹拌しながら80℃に昇温したのち、メタクリル酸メチル25部、メタクリル酸アリル1部からなる単量体混合物とt-ブチルハイドロパーオキサイド0.1部との混合液のうち25%を一括して仕込み、45分間の重合を行なった。
脱イオン水                     220部
ホウ酸                      0.3部
炭酸ナトリウム                  0.03部
N-ラウロイルサルコシン酸ナトリウム       0.09部
ソディウムホルムアルデヒドスルフォキシレート  0.0 9部
エチレンジアミン四酢酸-2-ナトリウム     0.006部
硫酸第1鉄                    0.002部
 続いてこの混合液の残り75%を1時間にわたって連続添加した。添加終了後、同温度で2時間保持し重合を完結させた。また、この間に0.2部のN-ラウロイルサルコシン酸ナトリウムを追加した。得られた最内層架橋メタクリル系重合体ラテックスの重合転化率(重合生成量/モノマー仕込量)は98%であった。
 ゴム粒子の作製:
 得られた最内層重合体ラテックスを窒素気流中で80℃に保ち、過硫酸カリウム0.1部を添加したのち、アクリル酸n-ブチル41部、スチレン9部、メタクリル酸アリル1部からなる単量体混合物を5時間にわたって連続添加した。この間にオレイン酸カリウム0.1部を3回に分けて添加した。モノマー混合液の添加終了後、重合を完結させるためにさらに過硫酸カリウムを0.05部添加し2時間保持した。得られたゴム粒子の重合転化率は99%であった。
 グラフト共重合体の作製:
 得られたゴム粒子ラテックスを80℃に保ち、過硫酸カリウム0.02部を添加したのちメタクリル酸メチル14部、アクリル酸n-ブチル1部の単量体混合物を1時間にわたって連続添加した。モノマー混合液の追加終了後1時間保持しグラフト共重合体ラテックスを得た。重合転化率は99%であった。
 グラフト共重合体粒子の作製:
 得られたゴム粒子ラテックスを80℃に保ち、メタクリル酸メチル5部、アクリル酸n-ブチル5部の単量体混合物を0.5時間にわたって連続添加した。モノマー混合液の追加終了後1時間保持しグラフト共重合体粒子ラテックスを得た。重合転化率は99%であった。
 得られたグラフト共重合体粒子ラテックスを塩化カルシウムで塩析凝固、熱処理、乾燥を行ない、白色粉末状のグラフト共重合体粒子(B)を得た。なお、各成分の配合量は表2に示した通りである。
Figure JPOXMLDOC01-appb-T000003
 〔製造例5 グルタルイミドの製造例〕
 原料としてポリメタクリル酸メチル、イミド化剤としてモノメチルアミンを用いて、グルタルイミドアクリル系樹脂を製造した。
 この製造においては、押出反応機を2台直列に並べたタンデム型反応押出機を用いた。タンデム型反応押出機に関しては、第1押出機、第2押出機共に直径が75mm、L/D(押出機の長さLと直径Dの比)が74の噛合い型同方向二軸押出機を使用し、低重量フィーダー(クボタ(株)製)を用いて、第一押出機の原料供給口に原料を供給した。第一押出機、第二押出機における各ベントの減圧度は-0.095MPaとした。更に、直径38mm、長さ2mの配管で第一押出機と第二押出機を接続し、第一押出機の樹脂吐出口と第二押出機の原料供給口を接続する部品内圧力制御機構には定流圧力弁を用いた。第二押出機から吐出された樹脂は、冷却コンベアで冷却した後、ペレタイザーでカッティングペレットとした。ここで、第一押出機の樹脂吐出口と第二押出機の原料供給口を接続する部品内圧力調整、又は押出変動を見極める為に、第一押出機の吐出口、第一押出機と第二押出機間の接続部品の中央部、および、第二押出機の吐出口に樹脂圧計を設けた。
 第一押出機において、原料樹脂としてポリメタクリル酸メチル樹脂(Mw:10.5万)を使用し、イミド化剤として、モノメチルアミンを用いてイミド樹脂中間体1を製造した。この際、押出機の最高温部の温度は280℃、スクリュー回転数は55rpm、原料樹脂供給量は150kg/時間、モノメチルアミンの添加量は原料樹脂100部に対して2.0部とした。定流圧力弁は第二押出機の原料供給口直前に設置し、第一押出機のモノメチルアミン圧入部圧力を8MPaになるように調整した。
 第二押出機において、リアベント及び真空ベントで残存しているイミド化剤及び副生成物を脱気したのち、エステル化剤として炭酸ジメチルを添加しイミド樹脂中間体2を製造した。この際、押出機の各バレル温度は260℃、スクリュー回転数は55rpm、炭酸ジメチルの添加量は原料樹脂100部に対して3.2部とした。更に、ベントでエステル化剤を除去した後、ストランドダイから押出し、水槽で冷却した後、ペレタイザーでペレット化する事で、グルタルイミドアクリル系樹脂を得た。
 得られたグルタルイミドアクリル系樹脂について、上記の方法に従って、イミド化率、グルタルイミド単位の含有量、酸価、ガラス転移温度を測定した。その結果、イミド化率は13%、グルタルイミド単位の含有量は7重量%、酸価は0.4mmol/g、ガラス転移温度は124℃であった。
 〔製造例6〕
 得られた粉末状のグラフト共重合体粒子(A)および(B)、ならびにパラペットHM(株式会社クラレ製、メタクリル酸メチル100重量%)およびAO60(株式会社ADEKA製)を、各々表3に示す配合量(部)で配合した。得られた混合物を、ヘンシェルミキサーを用いて混合した。次いで、シリンダ温度を190℃~250℃に調整した58mmΦベント式同方向二軸押出機(東芝機械株式会社製TEM58 L/D=41.7)を使用し、スクリュー回転数150rpm、吐出量180kg/時間にて溶融混練を行い、ストランド状に引き取り、水槽にて冷却後、ペレタイザーを用いて切断して、ペレット得た。ダイスはΦ4.5×15穴を使用し、ダイスと押出機のヘッドの間にポリマーフィルターとして、リーフディスクフィルター(長瀬産業製、濾過制度10μ、サイズ7インチ、枚数33枚)を設置した。得られたペレットを、Tダイ付90mmΦ単軸押出機を用いて、シリンダ設定温度180℃~240℃にて吐出量150kg/hrにて溶融混練し、ダイス温度240℃にてTダイより吐出し、90℃に温調した金属性キャストロールと60℃に温調した弾性金属スリーブを備えたタッチロールに両面を接触させて冷却固化しつつ成膜して巻き取り、厚さ175μmのフィルムを得た。
 〔製造例7〕
 パラペットHM(株式会社クラレ製、メタクリル酸メチル100重量%)をスミペックスEX(住友化学製、メタクリル酸メチル95重量%/アクリル酸メチル5重量%のメタクリル酸エステル系樹脂)に変更した以外は製造例5と同様の方法で、フィルムを製造した。
 〔製造例8〕
 パラペットHM(株式会社クラレ製、メタクリル酸メチル100重量%)をグルタルイミドアクリル系樹脂に変更した以外は製造例5と同様の方法で、フィルムを製造した。
 〔製造例9~11〕
 ゴムの種類および各成分の配合量を表3に記載の通り変更し、添加剤を加えなかったこと以外は製造例6と同様の方法で、フィルムを製造した。
Figure JPOXMLDOC01-appb-T000004
 〔塗料の調製〕
 (塗料1)
 Z607-5AFH(固形分濃度30%、アイカ工業株式会社製)に固形分濃度が20%になるようにプロピレングリコールモノメチルエーテル(PGM)を配合した。
 (塗料2)
 Z607-5AFH(固形分濃度30%、アイカ工業株式会社製)にアルミナ粒子(Z-607-ALU、アイカ工業株式会社製、固形分濃度30%)を9:1の比率で配合した。固形分濃度は20%になるようにプロピレングリコールモノメチルエーテル(PGM)を配合した。
 (塗料3~7)
 表4の配合で塗料1および2と同様に配合した。なお、表4中の主剤は、いずれも、ウレタンアクリレート樹脂である。
Figure JPOXMLDOC01-appb-T000005
 〔実施例1~12、比較例1~12〕
 製造例6~11で得られたフィルム、またはAW10U(PCPMMA多層フィルム)上に、塗料1~7を表5および6に記載の組み合わせで、塗布した。1μは200線、2μは150線、3.5μは120線のグラビアロールを使用し、ライン速度は20m/min、グラビアロールの回転数は20rpmとした。コーティング後、80℃、1min乾燥し溶媒を揮発させ、表5および6に記載のUV積算光量で紫外線を照射し、表5および6に記載の膜厚を有するハードコート層を形成した。得られたフィルムおよび積層体について種々の特性を評価した。結果を表5および6に示す。
 なお、PCPMMA多層フィルムを用いた比較例5~7では、PMMAのTg(115℃)およびPCのTg(144℃)が出たが、多層フィルムの場合は高い方のTgをアクリル系樹脂フィルムのTgとみなして求めた。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 〔結果〕
 表5および6より、ガラス転移温度が140℃以下であり、かつ、120℃での破断点伸度が200%以上である、特定のアクリル系樹脂フィルムと、特定のハードコート層と、を備え、120℃でのクラック伸度が50%以上であり、かつ、50g/cm、5往復でのスチールウール摩耗試験のΔヘイズが1.0%以下である、実施例の積層体は、成形性および耐摩耗性に優れることが分かった。一方、前記パラメータの少なくとも一つを満たさない比較例の積層体は、成形性および耐摩耗性を同時に達成することができないことが分かった。
 本積層体は、成形性および耐摩耗性に優れることから、車載ディスプレイ等の自動車内装用途を含む種々の分野において、好適に利用することができる。

Claims (11)

  1.  アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
     前記アクリル系樹脂フィルムは、ガラス転移温度が140℃以下であり、かつ、120℃での破断点伸度が200%以上であり、
     前記積層体は、120℃でのクラック伸度が50%以上であり、かつ、50g/cm、5往復でのスチールウール摩耗試験のΔヘイズが1.0%以下である、積層体。
  2.  以下の物性のうち少なくとも1つを有する、請求項1に記載の積層体:
     位相差(Re)が38nm以下である、
     耐候性試験後のΔEが5.2%以下である。
  3.  前記ハードコート層が、多官能(メタ)アクリレートと、光重合開始剤とを含む樹脂組成物の硬化物である、請求項1または2に記載の積層体。
  4.  前記アクリル系樹脂フィルムが、平均粒子径が20nm~200nmのグラフト共重合体粒子(A)を1~70質量%と、前記グラフト共重合体粒子(A)より平均粒子径が大きいグラフト共重合体粒子(B)を20質量%以下と、を含み、前記アクリル系樹脂フィルム中の架橋エラストマー(A1)および架橋エラストマー(B1)の合計含有量が15質量%以下である、請求項1~3のいずれか1項に記載の積層体。
  5.  前記グラフト共重合体粒子(B)の平均粒子径が150nm以上であり、かつ、当該グラフト共重合体粒子(B)を1~10質量%含む、請求項4に記載の積層体。
  6.  ハードコート層を積層していない前記アクリル系樹脂フィルムの表面の鉛筆硬度がB以上であり、かつ、23℃での破断点伸度が20%以上である、請求項1~5のいずれか1項に記載の積層体。
  7.  前記グラフト共重合体粒子(A)が、反応性紫外線吸収剤を0.01~5質量%含む、請求項4~6のいずれか1項に記載の積層体。
  8.  請求項1~7のいずれか1項に記載の積層体を備える、成形体。
  9.  請求項8に記載の成形体を備える、車載ディスプレイ前面板。
  10.  アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体の製造方法であり、
     冷却ロール上において、前記アクリル系樹脂フィルムの少なくとも片面に塗布した前記ハードコート層にUV照射して、前記ハードコート層を硬化する工程を含み、
     前記UV照射のUV積算光量が150~500mJ/cmであり、
     前記冷却ロールの温度が25~70℃であり、
     前記アクリル系樹脂フィルムは、ガラス転移温度が140℃以下であり、かつ、120℃での破断点伸度が200%以上であり、
     前記積層体は、120℃でのクラック伸度が50%以上であり、かつ、50g/cm、5往復でのスチールウール摩耗試験のΔヘイズが1.0%以下である、積層体の製造方法。
  11.  以下で示す積層体に対して、プレフォーム時の成形温度が140℃以下で賦形する工程を含む、成形体の製造方法:
     アクリル系樹脂フィルムと、前記アクリル系樹脂フィルムの少なくとも片面に積層されたハードコート層と、を含む積層体であり、
     前記アクリル系樹脂フィルムは、ガラス転移温度が140℃以下であり、かつ、120℃での破断点伸度が200%以上であり、
     前記積層体は、120℃でのクラック伸度が50%以上であり、かつ、50g/cm、5往復でのスチールウール摩耗試験のΔヘイズが1.0%以下である、積層体。

     
PCT/JP2021/039079 2020-12-25 2021-10-22 積層体およびその利用 WO2022137768A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022571907A JPWO2022137768A1 (ja) 2020-12-25 2021-10-22
EP21909925.6A EP4269101A1 (en) 2020-12-25 2021-10-22 Laminate and use thereof
CN202180086350.2A CN116761840A (zh) 2020-12-25 2021-10-22 层叠体及其利用
US18/340,504 US20230340218A1 (en) 2020-12-25 2023-06-23 Laminate and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020217637 2020-12-25
JP2020-217637 2020-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/340,504 Continuation US20230340218A1 (en) 2020-12-25 2023-06-23 Laminate and use thereof

Publications (1)

Publication Number Publication Date
WO2022137768A1 true WO2022137768A1 (ja) 2022-06-30

Family

ID=82158959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039079 WO2022137768A1 (ja) 2020-12-25 2021-10-22 積層体およびその利用

Country Status (5)

Country Link
US (1) US20230340218A1 (ja)
EP (1) EP4269101A1 (ja)
JP (1) JPWO2022137768A1 (ja)
CN (1) CN116761840A (ja)
WO (1) WO2022137768A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042922A1 (ja) * 2021-09-17 2023-03-23 三菱ケミカル株式会社 多層フィルムの製造方法、メラミン化粧板の製造方法、多層フィルム、メラミン化粧板用保護フィルム、及びメラミン化粧板
WO2024203401A1 (ja) * 2023-03-30 2024-10-03 株式会社カネカ 積層体及びそれを含む樹脂成形体

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527576B2 (ja) 1971-11-05 1980-07-22
JPS6289705A (ja) 1985-08-27 1987-04-24 ロ−ム・アンド・ハ−ス・カンパニ− イミドポリマ−
JPH02178310A (ja) 1988-12-29 1990-07-11 Mitsubishi Rayon Co Ltd メタクリルイミド含有重合体およびこれを含む樹脂組成物
JPH04270751A (ja) 1991-02-26 1992-09-28 Kanegafuchi Chem Ind Co Ltd 耐衝撃性メタクリル系樹脂組成物
JPH05119217A (ja) 1991-10-23 1993-05-18 Kanegafuchi Chem Ind Co Ltd 偏光膜保護用フイルム
JPH11235747A (ja) 1998-02-24 1999-08-31 Hitachi Zosen Corp シート・フィルムの成形用ロール装置
JP2000153547A (ja) 1998-11-19 2000-06-06 Toshiba Mach Co Ltd シート成形装置
JP2004168882A (ja) 2002-11-20 2004-06-17 Toray Ind Inc 共重合体およびその製造方法
EP1460364A2 (en) 2003-03-19 2004-09-22 Calsonic Kansei UK Limited Automotive heat exchangers
JP2004307834A (ja) 2003-03-26 2004-11-04 Toray Ind Inc 熱可塑性共重合体の製造方法
WO2005054311A1 (ja) 2003-12-02 2005-06-16 Kaneka Corporation イミド樹脂、並びにその製造方法及び利用
JP2006171464A (ja) 2004-12-16 2006-06-29 Nippon Shokubai Co Ltd 光学フィルム
EP1786959A1 (en) 2004-09-06 2007-05-23 Xorella AG Method and plant for the treatment of fibrous material susceptible to degradation by biological activity
WO2009084541A1 (ja) 2007-12-27 2009-07-09 Asahi Kasei Chemicals Corporation アクリル系熱可塑性樹脂、及び光学材料用成形体
WO2013051239A1 (ja) 2011-10-05 2013-04-11 株式会社カネカ 耐折曲げ白化性および割れ性に優れたアクリル樹脂フィルム
JP2013087136A (ja) * 2011-10-13 2013-05-13 Kaneka Corp 熱成形用フィルム向け硬化性樹脂組成物とこの樹脂組成物を積層した熱成形用フィルム
JP2013086279A (ja) * 2011-10-13 2013-05-13 Kaneka Corp 熱成形用フィルム向け硬化性樹脂組成物とこの樹脂組成物を積層した熱成形用フィルム
WO2014041803A1 (ja) 2012-09-13 2014-03-20 株式会社カネカ アクリル系樹脂フィルム
JP2017177615A (ja) * 2016-03-30 2017-10-05 大日本印刷株式会社 プラスチックカード
JP2019020708A (ja) * 2017-07-12 2019-02-07 王子ホールディングス株式会社 防眩性シートおよび防眩性合わせガラス
WO2019073953A1 (ja) * 2017-10-11 2019-04-18 Jnc株式会社 自動車内外装部品用表面改質フィルム
JP2019069582A (ja) * 2017-10-11 2019-05-09 Dic株式会社 積層体、及び積層体の製造方法
JP2019119206A (ja) * 2017-12-27 2019-07-22 東山フイルム株式会社 インサート成形用多層フィルムおよびインサート成形物
WO2019181752A1 (ja) 2018-03-22 2019-09-26 株式会社カネカ アクリル系樹脂フィルム、積層フィルム、積層フィルムの製造方法、及び成形品
WO2019235160A1 (ja) * 2018-06-04 2019-12-12 株式会社カネカ ガラス積層体、その製造方法、及びそれを用いた表示装置の前面板

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527576B2 (ja) 1971-11-05 1980-07-22
JPS6289705A (ja) 1985-08-27 1987-04-24 ロ−ム・アンド・ハ−ス・カンパニ− イミドポリマ−
JPH02178310A (ja) 1988-12-29 1990-07-11 Mitsubishi Rayon Co Ltd メタクリルイミド含有重合体およびこれを含む樹脂組成物
JPH04270751A (ja) 1991-02-26 1992-09-28 Kanegafuchi Chem Ind Co Ltd 耐衝撃性メタクリル系樹脂組成物
JPH05119217A (ja) 1991-10-23 1993-05-18 Kanegafuchi Chem Ind Co Ltd 偏光膜保護用フイルム
JPH11235747A (ja) 1998-02-24 1999-08-31 Hitachi Zosen Corp シート・フィルムの成形用ロール装置
JP2000153547A (ja) 1998-11-19 2000-06-06 Toshiba Mach Co Ltd シート成形装置
JP2004168882A (ja) 2002-11-20 2004-06-17 Toray Ind Inc 共重合体およびその製造方法
EP1460364A2 (en) 2003-03-19 2004-09-22 Calsonic Kansei UK Limited Automotive heat exchangers
JP2004307834A (ja) 2003-03-26 2004-11-04 Toray Ind Inc 熱可塑性共重合体の製造方法
WO2005054311A1 (ja) 2003-12-02 2005-06-16 Kaneka Corporation イミド樹脂、並びにその製造方法及び利用
EP1786959A1 (en) 2004-09-06 2007-05-23 Xorella AG Method and plant for the treatment of fibrous material susceptible to degradation by biological activity
JP2006171464A (ja) 2004-12-16 2006-06-29 Nippon Shokubai Co Ltd 光学フィルム
WO2009084541A1 (ja) 2007-12-27 2009-07-09 Asahi Kasei Chemicals Corporation アクリル系熱可塑性樹脂、及び光学材料用成形体
WO2013051239A1 (ja) 2011-10-05 2013-04-11 株式会社カネカ 耐折曲げ白化性および割れ性に優れたアクリル樹脂フィルム
JP2013087136A (ja) * 2011-10-13 2013-05-13 Kaneka Corp 熱成形用フィルム向け硬化性樹脂組成物とこの樹脂組成物を積層した熱成形用フィルム
JP2013086279A (ja) * 2011-10-13 2013-05-13 Kaneka Corp 熱成形用フィルム向け硬化性樹脂組成物とこの樹脂組成物を積層した熱成形用フィルム
WO2014041803A1 (ja) 2012-09-13 2014-03-20 株式会社カネカ アクリル系樹脂フィルム
JP2017177615A (ja) * 2016-03-30 2017-10-05 大日本印刷株式会社 プラスチックカード
JP2019020708A (ja) * 2017-07-12 2019-02-07 王子ホールディングス株式会社 防眩性シートおよび防眩性合わせガラス
WO2019073953A1 (ja) * 2017-10-11 2019-04-18 Jnc株式会社 自動車内外装部品用表面改質フィルム
JP2019069582A (ja) * 2017-10-11 2019-05-09 Dic株式会社 積層体、及び積層体の製造方法
JP2019119206A (ja) * 2017-12-27 2019-07-22 東山フイルム株式会社 インサート成形用多層フィルムおよびインサート成形物
WO2019181752A1 (ja) 2018-03-22 2019-09-26 株式会社カネカ アクリル系樹脂フィルム、積層フィルム、積層フィルムの製造方法、及び成形品
WO2019235160A1 (ja) * 2018-06-04 2019-12-12 株式会社カネカ ガラス積層体、その製造方法、及びそれを用いた表示装置の前面板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042922A1 (ja) * 2021-09-17 2023-03-23 三菱ケミカル株式会社 多層フィルムの製造方法、メラミン化粧板の製造方法、多層フィルム、メラミン化粧板用保護フィルム、及びメラミン化粧板
WO2024203401A1 (ja) * 2023-03-30 2024-10-03 株式会社カネカ 積層体及びそれを含む樹脂成形体

Also Published As

Publication number Publication date
JPWO2022137768A1 (ja) 2022-06-30
CN116761840A (zh) 2023-09-15
US20230340218A1 (en) 2023-10-26
EP4269101A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP7142090B2 (ja) ガラス積層体、その製造方法、及びそれを用いた表示装置の前面板
JP4406304B2 (ja) 多層構造重合体及びこれを含む樹脂組成物、並びに、アクリル樹脂フィルム状物、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、積層フィルム又はシート、及び、これらを積層した積層成形品
JP5158852B2 (ja) アクリル樹脂組成物、アクリル樹脂フィルム、熱成形用艶消しアクリル樹脂フィルム、光硬化性アクリル樹脂フィルム及びこれらを積層した積層体
WO2004063238A1 (ja) 多層構造重合体及び樹脂組成物、並びに、アクリル樹脂フィルム状物、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、積層フィルム又はシート、及び、これを積層した積層成形品
US20230416556A1 (en) Laminate and method for producing same
WO2014041803A1 (ja) アクリル系樹脂フィルム
JPWO2016199847A1 (ja) 積層フィルム
WO2006043672A1 (ja) 熱成形用艶消しアクリル樹脂フィルム状物、その製造方法、および、それを含む積層体
US20230340218A1 (en) Laminate and use thereof
JP6883043B2 (ja) 2段硬化性積層板
JP2007283665A (ja) 熱成形用艶消しアクリル樹脂フィルム状物、熱成形用艶消しアクリル樹脂フィルム状物の製造方法、および、この熱成形用艶消しアクリル樹脂フィルム状物を含む積層体
JP2008260202A (ja) 射出成形用ハードコートフィルム及び該フィルムを利用した射出成形体の製造方法
US11760855B2 (en) Acrylic resin film, laminated film, production method for laminated film, and molded article
JP2008265029A (ja) 金属調加飾シートおよびそれを用いた金属調成形品
JP7245082B2 (ja) フィルム用アクリル樹脂組成物、及びアクリル樹脂フィルム
JPWO2017022704A1 (ja) 成型用コーティングフィルム
JP2015038173A (ja) 光硬化性樹脂組成物、積層シート、積層成形品及び積層成形品の製造方法
JP2008296539A (ja) 熱成形用ハードコートアクリル樹脂フィルム、その製造方法、およびそれを含む成形品
WO2020179524A1 (ja) 高硬度成形用樹脂シートおよびそれを用いた成形品
WO2024203401A1 (ja) 積層体及びそれを含む樹脂成形体
CN116963907A (zh) 层叠体及其制造方法
JP2023145140A (ja) 樹脂成形体被覆用機能性フィルム、その製造方法、樹脂成形体、及びその製造方法
JP2023145141A (ja) 樹脂成形体被覆用機能性フィルム、その製造方法、樹脂成形体、及びその製造方法
WO2021029266A1 (ja) 成形用樹脂シートおよびそれを用いた成形品
JP7477281B2 (ja) 積層フィルム、成形体、及び車載ディスプレイ用前面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571907

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086350.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021909925

Country of ref document: EP

Effective date: 20230725