WO1991013105A1 - Methacrylic resin molding material for optical information recording medium - Google Patents

Methacrylic resin molding material for optical information recording medium Download PDF

Info

Publication number
WO1991013105A1
WO1991013105A1 PCT/JP1991/000225 JP9100225W WO9113105A1 WO 1991013105 A1 WO1991013105 A1 WO 1991013105A1 JP 9100225 W JP9100225 W JP 9100225W WO 9113105 A1 WO9113105 A1 WO 9113105A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
molding material
information recording
optical information
copolymer
Prior art date
Application number
PCT/JP1991/000225
Other languages
French (fr)
Japanese (ja)
Inventor
Suehiro Tayama
Yasunori Kawachi
Shigeaki Sasaki
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2043996A external-priority patent/JPH03247611A/en
Priority claimed from JP2096857A external-priority patent/JPH03294314A/en
Priority claimed from JP2308164A external-priority patent/JPH04180906A/en
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to KR1019910701419A priority Critical patent/KR920702857A/en
Publication of WO1991013105A1 publication Critical patent/WO1991013105A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate

Definitions

  • the present invention relates to a methacrylic resin molding material for an optical information recording medium such as a video disk.
  • Methacrylic resin is used for various optical devices because it has good moldability, and the molded product has excellent transparency and useful optical properties. Recently, it has been used as a substrate for optical information recording media such as video discs, taking advantage of its excellent properties.
  • Optical information recording medium substrates require resin materials that have low optical strain, satisfy mechanical strength in practical use, and have excellent heat resistance and moldability. Due to the growing demand for discs, there is a strong demand in the market to improve the productivity of discs in injection molding, that is, to shorten the molding cycle. Therefore, the performance required of the resin material must be good fluidity and high heat resistance. As long as the material has the same fluidity, a material having higher heat resistance can be removed from the mold even at a higher temperature, thereby shortening the molding cycle.
  • Methacryl resin for optical information recording media is A copolymer of acrylate and ethyl acrylate has been proposed (JP-A-57-123208).
  • JP-A-57-123208 A copolymer of acrylate and ethyl acrylate has been proposed (JP-A-57-123208).
  • JP-A-57-123208 A copolymer of acrylate and ethyl acrylate has been proposed (JP-A-57-123208).
  • JP-A-57-123208 JP-A-57-123208.
  • the copolymerization ratio of ethyl acrylate is increased in order to improve the fluidity, the heat resistance is greatly reduced, which is not preferable for practical use.
  • the method of decreasing the molecular weight is used while maintaining the copolymerization ratio of ethyl acrylate in order to increase the fluidity while maintaining the heat resistance, the mechanical strength becomes practically unsatisfactory. .
  • substrates for optical information recording media are mainly manufactured by injection molding, and the molding cycle is made in consideration of productivity, and the heat resistance of resin and Determined by liquidity.
  • productivity in injection molding the optical distortion is small, transparency and mechanical strength are not impaired, but the resin fluidity is improved, and the cooling time during injection molding is reduced. It is necessary to improve the heat resistance for the purpose of the above.
  • known molding materials have a problem that when the heat resistance is improved, the flowability and the mechanical strength are lowered. Disclosure of the invention
  • the present inventors have conducted various studies focusing on methacrylic resin as a molding material for an optical information recording medium. However, they have found that a substrate for an optical information recording medium without the above-mentioned problems can be manufactured with high productivity, and arrived at the present invention.
  • the present invention relates to a method of preparing a methyl methacrylate unit of 80 to 99.5% by weight and 2,2,2-trifluoroethyl acrylate, a silicone acrylate, Enirua click Li rate, small selected from Benjirua click Li rate, Lee Seo Borunirua click Li rate and Application Benefits consequent ⁇ [5, 2, 1, 0 ⁇ ⁇ 6 ] the group consisting of deca Nirua click re, single DOO It is intended to provide a resin molding material for optical information recording media, comprising a copolymer comprising at least one kind of acrylate monomer unit in an amount of 20 to 0.5% by weight.
  • FIG. 1 is a graph showing the relationship between the heat deformation temperature and the melt flow rate, which shows the excellent heat resistance and fluidity of the methacrylic resin molding material according to the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION When the copolymerization ratio of the copolymer constituting the methacrylic resin molding material of the present invention is out of the above range, while maintaining the mechanical strength of the molded article, It is not possible to improve heat resistance to increase productivity during mass production. That is, if the methyl methacrylate unit exceeds 99.5% by weight, the molecular weight must be reduced in order to maintain the molding fluidity of the resin, and as a result, the mechanical strength decreases. On the other hand, if the acrylic rate unit exceeds 20% by weight, The mechanical strength is remarkably inferior or the heat resistance is inferior, which is not preferable.
  • the melt flow rate of the copolymer is 0.5 to 50 g / 10 minutes, especially 5 to 50 g, measured at a load of 3.8 kg based on ASTM-Dl'238. / 10 minutes is preferred. If the melt flow rate is less than 0.5 g / 10 minutes, the transferability of information from the mold is inferior, and the optical distortion of the molded product tends to increase. On the other hand, if it is greater than 50 g / 10 minutes, the mechanical strength tends to decrease.
  • machine ⁇ is a strength, 3 0 0 kg / cm 2 or more on the basis of tensile strength A STM D 638, and particularly preferably between 4 0 0 kg / cm 2 or more.
  • the thermal deformation temperature of the copolymer is preferably a value measured at a load of 8.56 based on ASTM D648, preferably 70 ° C or more, to prevent thermal deformation during molding and use. More preferably, the number is 80 or more. If the heat distortion temperature is lower than 70, the heat resistance of the molded body is inferior, and particularly, the heat deformation during molding and during use may increase, which is not preferable.
  • a conventional method for producing an acrylic resin such as suspension polymerization, bulk polymerization or solution polymerization is used. Can be. If necessary, a stabilizer, a release agent, a lubricant, a plasticizer, a dye, and the like can be added to the acrylic resin molding material of the present invention.
  • the molding material of the present invention thus obtained can be applied to both injection molding and compression molding.
  • the methacrylic resin molding material of the present invention has excellent heat resistance and good fluidity while maintaining the excellent optical and mechanical properties inherent to methacrylic resin.
  • a dumbbell A-type test piece was injection-molded with Nissei Resin Co., Ltd., PS-60E, and measured according to ASTM-D638.
  • Disk (1.2 mm t) was injection-molded using a Meiki Seisakusho M-200 dynamometer by cylinder injection (cylinder temperature 260 ° (:), ⁇ cm from center. was measured in the range of 500 to 900 nm using Shimadzu UV-160A. (5) birefringence (retardation)
  • % and part in the examples indicate% by weight and part by weight, respectively.
  • the mixture was kept at 95'C for 30 minutes, cooled, filtered, washed with water and dried to obtain a beaded polymer.
  • the obtained polymer was kneaded with a 40 mm extruder manufactured by Tanabe Plastics Machinery Co., Ltd. with 240, and pelletized.
  • Example 2 The same operation as in Example 1 was carried out except that 100 parts of the monomer mixture in the proportions shown in Table 2 were used, and the results shown in Table 2 were obtained.
  • the polymer obtained by copolymerizing 30 parts of hexyl acrylate and 70 parts of methyl methacrylate (Comparative Example 2) has extremely low heat resistance, so that it can be used for extrusion molding. Cannot be pelletized and lacks practicality.
  • the copolymer of phenylacrylate and methyl methacrylate has about 7 • C improvement in HDT compared to the copolymer of methyl methacrylate and ethyl methacrylate. Is recognized.
  • the copolymer of methyl methacrylate and the acrylate shown in Table 1 is more effective than the copolymer of methyl methacrylate and ethyl acrylate. It can be said that its formability is good in terms of productivity. Industrial applicability
  • the methacrylic resin molding material of the present invention can be advantageously used for producing an optical information recording medium.
  • Table 1

Abstract

A methacrylic resin molding material comprising a copolymer composed of 80 to 99.5 wt. % of methyl methacrylate units and 20 to 0.5 wt % of the units of at least one acrylate monomer selected from the group consisting of 2,2,2-trifluoroethyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, isobornyl acrylate and tricyclo[5.2.1.0?2,6]decanyl acrylate. It can be used advantageously as an excellent molding material for producing an optical information recording medium, because it has excellent heat resistance and good fluidity while retaining excellent optical and mechanical characteristics inherent in methacrylic resins, so that it can enhance the productivity in molding.

Description

明 細 書 光学式情報記録体用メ タ ク リ ル榭脂成形材料 技術分野  Description Metallic resin molding materials for optical information recording media
本発明はビデオディ スク等の光学式情報記録体用メ タ ク リ ル樹脂成形材料に閬する ものである。 背景技術  The present invention relates to a methacrylic resin molding material for an optical information recording medium such as a video disk. Background art
メ タク リ ル樹脂は、 成形性がよ く 、 その成形体は透明性に 優れ、 有用な光学特性を示すため、 種々の光学機器用に使用 されている。 また、 最近は、 その優れた特性を生かし、 ビデ ォディ スク等、 光学式情報記録体用基板と しても使用されて いる。  Methacrylic resin is used for various optical devices because it has good moldability, and the molded product has excellent transparency and useful optical properties. Recently, it has been used as a substrate for optical information recording media such as video discs, taking advantage of its excellent properties.
光学式情報記録体用基板には、 光学歪が小さ く 、 機械的強 度が実用上満足され、 優れた耐熱性、 成形性を併せ持った榭 脂材料が要求される上、 近年においては、 ビデオディ スク の 需要拡大により、 市場では射出成形におけるディ スクの生産 性向上、 即ち、 成形サイ クルの短縮が強く 望まれている。 そ のため、 樹脂材料に要求される性能と しては、 流動性が良い こ と、 および耐熱性が高いこ とが必要である。 流動性が同じ 材料ならば、 耐熱性の高い材料の方が、 金型からの取り出し が高い温度でも可能となる こ とによ り、 成形サイ クルの短縮 が達成される。  Optical information recording medium substrates require resin materials that have low optical strain, satisfy mechanical strength in practical use, and have excellent heat resistance and moldability. Due to the growing demand for discs, there is a strong demand in the market to improve the productivity of discs in injection molding, that is, to shorten the molding cycle. Therefore, the performance required of the resin material must be good fluidity and high heat resistance. As long as the material has the same fluidity, a material having higher heat resistance can be removed from the mold even at a higher temperature, thereby shortening the molding cycle.
光学式情報記録体用メ タク リ ル樹脂と しては、 メ チルメ タ ク リ レー ト とェチルァク リ レー トの共重合体が提案されてい る (特開昭 57— 123208 ) 。 しかしながら、 メ チルメ タク リ レ ー トとェチルァク リ レー トを用いた場合、 流動性を向上させ ると光学歪は滅少するが、 耐熱性が低下したり、 機械的強度 が低下するという欠点が表面化して く るため、 成形時の生産 性を向上させることは困難であった。 即ち、 流動性を向上さ せるためにェチルァク リ レー 卜の共重合比率を上げると耐熱 性が大き く低下し、 実用上好まし く ない。 また、 耐熱性を維 持したまま流動性を上げるためにェチルァク リ レー トの共重 合比率は不変のまま、 分子量を低下させる方法をとつた場合、 機械的強度が実用上満足できないものとなる。 Methacryl resin for optical information recording media is A copolymer of acrylate and ethyl acrylate has been proposed (JP-A-57-123208). However, when using methyl methacrylate and ethyl acrylate, if the fluidity is improved, the optical distortion is reduced, but the heat resistance is reduced and the mechanical strength is reduced. Because of the surface, it was difficult to improve productivity during molding. That is, if the copolymerization ratio of ethyl acrylate is increased in order to improve the fluidity, the heat resistance is greatly reduced, which is not preferable for practical use. Also, if the method of decreasing the molecular weight is used while maintaining the copolymerization ratio of ethyl acrylate in order to increase the fluidity while maintaining the heat resistance, the mechanical strength becomes practically unsatisfactory. .
現在、 光学式情報記録体用基板、 特にビデオディ スクゃォ 一ディォディスクは、 主として射出成形により製造されてお り、 その成形サイ クルは生産性を考慮し、 樹脂の耐熱性およ び流動性により、 決定されている。 射出成形における生産性 向上のためには、 光学歪が小さ く、 透明性および機械的強度 に優れている いう特性を損なう ことなく、 樹脂の流動性を 向上させ、 かつ射出成形時における冷却時間短縮の目的で耐 熱性を向上させる必要があるが、 既知の成形材料では耐熱性 を向上させると、 流動性の低下や機械的強度の低下を伴う と いう問題点を有している。 発明の開示  At present, substrates for optical information recording media, especially video discs and discs, are mainly manufactured by injection molding, and the molding cycle is made in consideration of productivity, and the heat resistance of resin and Determined by liquidity. In order to improve productivity in injection molding, the optical distortion is small, transparency and mechanical strength are not impaired, but the resin fluidity is improved, and the cooling time during injection molding is reduced. It is necessary to improve the heat resistance for the purpose of the above. However, known molding materials have a problem that when the heat resistance is improved, the flowability and the mechanical strength are lowered. Disclosure of the invention
本発明者らは、 このような現状に鑑み、 光学式情報記録体 用成形材料としてのメ タク リル樹脂に着目して種々検討した ところ、 上述の問題点のない光学式情報記録体用基板が生産 性よ く製造するこ とができるこ とを見出し、 本発明に到達し た。 In view of this situation, the present inventors have conducted various studies focusing on methacrylic resin as a molding material for an optical information recording medium. However, they have found that a substrate for an optical information recording medium without the above-mentioned problems can be manufactured with high productivity, and arrived at the present invention.
即ち、 本発明は、 メ チルメ タ ク リ レー ト単位 8 0〜 9 9. 5 重量%と 2 , 2, 2 - ト リ フルォ ロェチルァ ク リ レー ト、 シク 口へ キ シルァ ク リ レー ト、 フ エニルァ ク リ レー ト、 ベンジルァ ク リ レー ト、 イ ソ ボルニルァ ク リ レー ト および ト リ シク π [ 5 , 2 , 1 , 0 Ζ · 6〕 デカ ニルァ ク リ レ一 トからなる群から選ばれる少 な く とも 1種のァク リ レー ト系単量体単位 2 0〜0. 5重量% とからなる共重合体を舍む光学式情報記録体用メ タグリ ル樹 脂成形材料を提供する。 図面の簡単な説明 That is, the present invention relates to a method of preparing a methyl methacrylate unit of 80 to 99.5% by weight and 2,2,2-trifluoroethyl acrylate, a silicone acrylate, Enirua click Li rate, small selected from Benjirua click Li rate, Lee Seo Borunirua click Li rate and Application Benefits consequent π [5, 2, 1, 0 Ζ · 6 ] the group consisting of deca Nirua click re, single DOO It is intended to provide a resin molding material for optical information recording media, comprising a copolymer comprising at least one kind of acrylate monomer unit in an amount of 20 to 0.5% by weight. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明に係るメ タク リル榭脂成形材料の優れた 耐熱性および流動性を示す、 熱変形温度とメ ル ト フ ロー レ一 ト との閲係のグラフである。 発明を実施するための最良の形態 本発明のメ タク リル樹脂成形材料を構成する共重合体の共 重合比率が上記の範囲を外れる場合には、 成形品の機械的強 度を維持しつつ、 耐熱性を向上させて、 量産時の生産性を高 める こ とができない。 即ち、 メ チルメ タ ク リ レー ト単位が 9 9. 5重量%を超えると、 樹脂の成形流動性を維持するために 分子量を低く しなければならず、 その結果機械的強度が低下 する。 一方、 ァク リ レー ト単位が 2 0重量%を超えると、 機 械的強度の著し く劣ったもの或いは耐熱性の劣ったものとな り、 好まし く ない。 FIG. 1 is a graph showing the relationship between the heat deformation temperature and the melt flow rate, which shows the excellent heat resistance and fluidity of the methacrylic resin molding material according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION When the copolymerization ratio of the copolymer constituting the methacrylic resin molding material of the present invention is out of the above range, while maintaining the mechanical strength of the molded article, It is not possible to improve heat resistance to increase productivity during mass production. That is, if the methyl methacrylate unit exceeds 99.5% by weight, the molecular weight must be reduced in order to maintain the molding fluidity of the resin, and as a result, the mechanical strength decreases. On the other hand, if the acrylic rate unit exceeds 20% by weight, The mechanical strength is remarkably inferior or the heat resistance is inferior, which is not preferable.
共重合体のメ ル ト フ ロー レー トは、 A STM— D l '238 に基づき 荷重 3. 8 k gで測定した値で 0. 5〜 5 0 g / 1 0分、 特に 5〜 5 0 g / 1 0分の範囲にあるのが好ま しい。 メ ル ト フ ロー レ 一卜が 0. 5 g / 1 0分より小さいと、 金型からの情報の転写 性が劣り、 かつ成形物の光学歪が大き く なりやすい。 一方、 5 0 g / 1 0分より大きいと、 機械的強度が低下する傾向に ある。 なお、 情報記録体の用途を考!;すれば、 機栻的強度と しては、 引張強度で A STM— D 638に基づき 3 0 0 k g / c m 2 以上、 特に 4 0 0 kg / cm 2 以上であるのが好ましい。 The melt flow rate of the copolymer is 0.5 to 50 g / 10 minutes, especially 5 to 50 g, measured at a load of 3.8 kg based on ASTM-Dl'238. / 10 minutes is preferred. If the melt flow rate is less than 0.5 g / 10 minutes, the transferability of information from the mold is inferior, and the optical distortion of the molded product tends to increase. On the other hand, if it is greater than 50 g / 10 minutes, the mechanical strength tends to decrease. Consider the use of information recording media! ; If, machine栻的is a strength, 3 0 0 kg / cm 2 or more on the basis of tensile strength A STM D 638, and particularly preferably between 4 0 0 kg / cm 2 or more.
また、 共重合体の熱変形温度は、 成形時および使用時の熱 変形防止のため、 A STM— D648に基づき荷重 1 8. 5 6で測定し た値で好ま しく は 7 0 'C以上、 より好ましく は 8 0て以上で あるのがよい。 熱変形温度が 7 0 てより低い場合には、 成形 体の耐熱性が劣り、 特に成形時および使用時の熱変形が大き く なることがあり、 好ましく ない。  The thermal deformation temperature of the copolymer is preferably a value measured at a load of 8.56 based on ASTM D648, preferably 70 ° C or more, to prevent thermal deformation during molding and use. More preferably, the number is 80 or more. If the heat distortion temperature is lower than 70, the heat resistance of the molded body is inferior, and particularly, the heat deformation during molding and during use may increase, which is not preferable.
上記のような条件を満足するメ タク リル樹脂成形材料を使 用することにより、 従来より も成形時の生産性を向上させる ことができ、 光学歪の小さい、 優れた透明性および機搣的強 度を有する成形体を得ることができる。 また、 本究明のメ タ ク リル樹脂成形材料が、 流動性と耐熱性とのバラ ンスに優れ ているものであることは添付の第 1図より明らかである。  By using a methacrylic resin molding material that satisfies the above-mentioned conditions, productivity during molding can be improved compared to before, and excellent optical transparency and mechanical strength with small optical distortion can be achieved. A molded article having a degree can be obtained. Also, it is clear from the attached FIG. 1 that the resin composition of the present invention has excellent balance between fluidity and heat resistance.
本究明の成形材料の製造に際しては、 懸濁重合、 塊状重合 溶液重合等のァク リ ル樹脂の製造のための慣用法を用いる 二 とができる。 本発明のァク リ ル樹脂成形材料には、 必要に応 じて、 安定剤、 離型剤、 滑剤、 可塑剤、 染料等を添加するこ ともできる。 In producing the molding material of the present invention, a conventional method for producing an acrylic resin such as suspension polymerization, bulk polymerization or solution polymerization is used. Can be. If necessary, a stabilizer, a release agent, a lubricant, a plasticizer, a dye, and the like can be added to the acrylic resin molding material of the present invention.
このようにして得られる本発明の成形材料は、 射出成形お よび圧縮成形のいずれにも適用することができる。  The molding material of the present invention thus obtained can be applied to both injection molding and compression molding.
本発明のメ タク リ ル樹脂成形材料は、 メ タク リ ル樹脂が本 来有する優れた光学的および機械的特性を維持したまま、 耐 熱性に優れ、 流動性が良好で、 従って成形時の生産性をも向 上させるこ とのできる優れた成形材料として、 光学式情報記 録体の製造に有利に用いることができる。  The methacrylic resin molding material of the present invention has excellent heat resistance and good fluidity while maintaining the excellent optical and mechanical properties inherent to methacrylic resin. As an excellent molding material that can also improve its properties, it can be advantageously used in the production of optical information recording media.
以下、 実施例により本発明をさ らに説明する。 なお、 例中 の各特性値の測定は、 次の方法で行った。  Hereinafter, the present invention will be further described with reference to examples. The measurement of each characteristic value in the examples was performed by the following method.
(1) 熱変形温度 ( H D T )  (1) Heat deformation temperature (HDT)
ASTM— D648に準じて荷重 1 8. 5 6 kgで測定した。  Measured under a load of 18.56 kg according to ASTM D648.
(2) メ ノレ ト フ ロ ー レー ト (M F R )  (2) Molelet flow rate (MFR)
ASTM-D1238 に準じて荷重 3. 8 kgで測定した。  It was measured with a load of 3.8 kg according to ASTM-D1238.
(3) 引張強度および引張伸度  (3) Tensile strength and tensile elongation
日精樹脂㈱ P S — 6 0 Eによりダンベル A型試験片を 射出成形し、 ASTM— D638に準じて測定した。  A dumbbell A-type test piece was injection-molded with Nissei Resin Co., Ltd., PS-60E, and measured according to ASTM-D638.
(4) 光線透過率  (4) Light transmittance
名機製作所 M— 200 ダイ ナメ ルタにより Φ 3 0 0 mm® ディ スク ( 1. 2 mm t)を射出成形 (シリ ンダー温度 2 6 0 ·(: ) により作製し、.中心より Ί cmの地点の透過率を島津製作所 U V — 160 Aにより 5 0 0 〜 9 0 0 nmの領域で測定した。 (5) 複屈折 (retardation) A 300 mm dia. Disk (1.2 mm t) was injection-molded using a Meiki Seisakusho M-200 dynamometer by cylinder injection (cylinder temperature 260 ° (:), Ί cm from center. Was measured in the range of 500 to 900 nm using Shimadzu UV-160A. (5) birefringence (retardation)
上記と同じディ スク成形品の中心より 7 cmの地点の複 屈折 (retardation)を偏光顕微鏡 (Nikon, ΟΡΠΡΗΟΤ-POL 、 SENARMONT COMPENSATOR 、 使用波長 546nms single pass)に より測定した。 Birefringence of point 7 cm from the center of the same disk molded article as described above (Retardation) a polarizing microscope (Nikon, ΟΡΠΡΗΟΤ-POL, SENARMONT COMPENSATOR, used wavelength 546nm s single pass) was measured with a.
また、 例中の%および部はそれぞれ重量%および重量部を 示すものである。  In addition,% and part in the examples indicate% by weight and part by weight, respectively.
実施例 1 〜 1 8 Examples 1 to 18
第 1表に示す割合の単量体混合物 1 0 0部に、 n —ォクチ ルメ ルカブタ ン 0. 3 5部を溶解し、 重合触媒としてラウロイ ルバーオキサイ ド 0. 4 4部、 離型剤としてステアリ ルアルコ ール 0. 1部、 慈濁重合分散剤としてメ タク リ ル酸メ チルと 3 ーメ タク リ ロイ ルォキシプロパンスルホン酸力 リ ゥムとの共 重合体 0. 0 1部、 硫酸ナ ト リ ウム 0. 1 5部、 および分散媒と して水 1 4 5部を、 攪拌機および温度計付きのガラス製フラ スコ重合装置に? ΐ入し、 8 0てで重合させ、 内温がビーク に 達した後、 9 5 'Cで 3 0分間保持後冷却し、 濾過、 水洗およ び乾燥をすることにより、 ビーズ状ボリマーを得た。 得られ たポリ マーを、 田辺ブラスチックス機械製、 4 0 mm押出機に て、 2 4 0てで混練し、 ペレッ ト化した。  In 100 parts of the monomer mixture in the proportions shown in Table 1, 0.35 parts of n-octylmercaptane were dissolved, 0.44 parts of lauroyl baroxide as a polymerization catalyst, and stearyl alcohol as a release agent. 0.1 part, copolymer of methyl methacrylate and 3-methacryloyl oxypropane sulfonic acid resin as a mesogenic polymerization dispersant 0.01 part, sodium sulfate 0.15 parts of lithium and 145 parts of water as a dispersion medium were introduced into a glass flask polymerization apparatus equipped with a stirrer and a thermometer, and the mixture was polymerized at 80 ° C. After reaching, the mixture was kept at 95'C for 30 minutes, cooled, filtered, washed with water and dried to obtain a beaded polymer. The obtained polymer was kneaded with a 40 mm extruder manufactured by Tanabe Plastics Machinery Co., Ltd. with 240, and pelletized.
得られたペレツ トを用いて、 各種の評価をしたところ、 第 1表の結果を得た。 なお、 光線透過率は、 何れの実施例にお いても、 5 0 0〜 9 0 0 nmの波長領域で 9 1 %以上であり、 また複屈折 (retardation)は何れも 2 0 nm以下と良好であつ. た。 比較例 1 〜 9 Various evaluations were performed using the obtained pellets, and the results shown in Table 1 were obtained. In each of the examples, the light transmittance was 91% or more in the wavelength range of 500 to 900 nm, and the birefringence (retardation) was as good as 20 nm or less. And. Comparative Examples 1 to 9
第 2表に示す割合の単量体混合物 1 0 0部を使用した以外 は実施例 1 と全く 同様の操作を実施したところ'、 第 2表に示 す結果を得た。 なお、 2,2,2- ト リ フルォ ロェチルァ ク リ レー ト 3 0部とメ チルメ タク リ レー ト 7 0部とを共重合して得ら れたポリ マー (比較例 1 ) 、 およびシク ロへキシルァク リ レ ー ト 3 0部とメ チルメ タク リ レー ト 7 0部とを共重合して得 られたボリ マ ー (比較例 2 ) は、 耐熱性が非常に低いため、 押し出し賦形時にペレツ ト化するこ とができず、 実用性に欠 ける。 また、 フ エ ニルァ ク リ レー ト 3 0部とメ 手ルメ タ ク リ レー ト 7 0部とを共重合して得られたポリ マー (比較例 3 ) 、 ベンジルァク リ レー ト 3 0部とメ チルメ タク リ レー ト 7 0部 とを共重合して得られたポリ マー (比較例 4 ) 、 イ ソ ボル二 ルァ ク リ レー ト 3 0部とメ チルメ タ ク リ レー ト 7 0部とを共 重合して得られたポリ マー (比較例 5 ) 、 および ト リ シクロ The same operation as in Example 1 was carried out except that 100 parts of the monomer mixture in the proportions shown in Table 2 were used, and the results shown in Table 2 were obtained. The polymer obtained by copolymerizing 30 parts of 2,2,2-trifluoroethyl acrylate and 70 parts of methyl methacrylate (Comparative Example 1), and cyclohexane The polymer obtained by copolymerizing 30 parts of hexyl acrylate and 70 parts of methyl methacrylate (Comparative Example 2) has extremely low heat resistance, so that it can be used for extrusion molding. Cannot be pelletized and lacks practicality. Further, a polymer obtained by copolymerizing 30 parts of phenylacrylate and 70 parts of methylacrylate (Comparative Example 3), 30 parts of benzylacrylate, and A polymer obtained by copolymerizing 70 parts of methyl methacrylate (Comparative Example 4), 30 parts of isobutyl acrylate and 70 parts of methyl methacrylate A polymer obtained by copolymerization (Comparative Example 5), and tricyclo
(5,2, 1.02· 6 J デカニルァ ク リ レー ト 2 0部とメ チルメ タク リ レー ト 8 0部とを共重合して得られたポリマー (比較例 6 ) は、 機械的強度が小さいため、 実用性に欠ける。 また、 メ チ ルメ タク リ レー ト 100部を重合して得られたポリマー (比較 例 9 ) は、 M F Rが 2 2. 5 g Z 1 0分であり、 比較例 7 とほ ぼ同等の流動性であるが、 引張強度が比較例 7の半分以下で あり、 実用性に欠ける。 (5,2, 1.0 2 · 6 J Dekanirua click Li rate 2 0 parts of main Chirume Tak Li rate 8 0 parts of a copolymerized to the polymer (Comparative Example 6), the mechanical strength is small In addition, the polymer obtained by polymerizing 100 parts of methyl methacrylate (Comparative Example 9) had an MFR of 22.5 g Z 10 minutes, and the polymer of Comparative Example 7 Although the fluidity is almost the same as that of Comparative Example 7, the tensile strength is less than half of that of Comparative Example 7, and is not practical.
実施例 1 〜 1 8および比較例 7〜 8 の結果より、 M F Rと H D Tの閔係は第 1図のようになり、 例えば、 M F Rが 2 0 g Z I O分の成形材料を得よう とする場合、 ベ ンジルァク リ レー ト とメ チルメ タ ク リ レー トの共重合体は、 メ チルメ タク リ レー ト とェチルァク リ レー ト との共重合体より も、 H D T で約 2. 5て向上が認められる。 2,2,2- ト リ フルォロェチルァ ク リ レー ト とメ チルメ タク リ レー ト との共重合体およびシク 口へキシルァク リ レー ト とメ チルメ タ ク リ レ一 ト との共重合 体は、 メ チルメ タク リ レー ト とェチルァク リ レー ト との共重 合体より も、 H D Tで約 4 向上が認められる。 また、 ト リ シク ロ 〔5,2,1,02· 6〕 デカニルァク リ レー ト とメ チルメ タ ク リ レー ト との共重合体、 ィ ソボルニルァク リ レー.卜 とメチル メ タク リ レー ト との共重合体およびフエニルァク リ レー ト と メ チルメ タク リ レー ト との共重合体は、 メ チルメ タク リ レー ト とェチルァク リ レー ト との共重合体よりも、 H D Tで約 7 •C向上が認められる。 このこ とにより、 メ チルメ タク リ レー トと第 1表に示したァク リ レー トとの共重合体は、 メ チルメ タ ク リ レー ト とェチルァク リ レー ト との共重合体より も、 そ の成形性が、 生産性の意味において、 良好であるといえる。 産業上の利用可能性 From the results of Examples 1 to 18 and Comparative Examples 7 to 8, the relationship between MFR and HDT is as shown in Fig. 1.For example, when MFR is to obtain a molding material of 20 g ZIO, Benjiakuri The copolymer of methacrylate and methyl methacrylate has about 2.5 improvement in HDT compared to the copolymer of methyl methacrylate and ethyl acrylate. Copolymers of 2,2,2-trifluoroethyl acrylate and methyl methacrylate, and copolymers of hexyl acrylate and methyl methacrylate, The HDT shows about 4 improvement over the copolymer of chilmethacrylate and etilacrylate. Also, a copolymer of tricyclo [5,2,1,0 26 ] decanyl acrylate and methyl methacrylate, isobornyl acrylate and methyl methacrylate The copolymer of phenylacrylate and methyl methacrylate has about 7 • C improvement in HDT compared to the copolymer of methyl methacrylate and ethyl methacrylate. Is recognized. As a result, the copolymer of methyl methacrylate and the acrylate shown in Table 1 is more effective than the copolymer of methyl methacrylate and ethyl acrylate. It can be said that its formability is good in terms of productivity. Industrial applicability
本発明のメ タク リ ル樹脂成形材料は、 光学式情報記録体の 製造に有利に用いることができる。 第 1表 The methacrylic resin molding material of the present invention can be advantageously used for producing an optical information recording medium. Table 1
Figure imgf000011_0001
Figure imgf000011_0001
第 1 ¾ (铳き) First 1
Figure imgf000012_0001
Figure imgf000012_0001
第 2表 比較 W 1 比較 W2 比較 比較例 4 比 5 比較 比較例 7 比較例 8 比較 メ チルメ タク リ レー ト 70 70 70 70 70 80 90 85 100Table 2 Comparison W1 Comparison W2 Comparison Comparison Example 4 Comparison 5 Comparison Comparison Example 7 Comparison Example 8 Comparison Methylmethacrylate 70 70 70 70 70 80 90 85 100
2, 2, 2一ト リ フルォ α 30 2, 2, 2 Trifluoride α 30
ェチルァク リ レー ト  Etylac Relate
単 シク οへ丰シル 30 Simple Shio ο 丰 sil 30
量 ァク リ レー ト  Quantify rate
Rest
{± フエニルァク リ レー ト 30 {± phenylacrylate 30
Including
Pair
成 ベンジルアタ リ レー ト ― [%] 一 一 30 一 ― Benzyl benzylate-[%]
ィ ソポルニルァク リ レー ト 一 ― 一 一 30 一 ― ト リ シク ロ . 2. 1, 0'· 4] 20 I Soporuniruaku re-rate one - eleven 30 one -. Door Li Sik Russia 2.1, 0 ', 4] 20
デカニルァク リ レー ト  Decanilac Relate
ェチルァク リ レー ト 10 15  Etylac Rerate 10 15
η ォクチルメルカプタ ン 0.35 0.62 η Octyl mercaptan 0.35 0.62
【部 1 [Part 1
ラウ ロイ ルパ一ォキサイ ド 0.44  Lau Roy Rupaxide 0.44
120.0 140.5 132.0 . 38.2 22.5 42.3 22.5-120.0 140.5 132.0 .38.2 22.5 42.3 22.5-
HDTCC1 75.6 64.3 73.2 88.8 81.9 73.8 103.1 引張強度 ikg/oil 250 290 240 290 640 550 210 引張伸度【%1 0.8 1.0 0.9 2.0. 3.4 2.5 0.7 HDTCC1 75.6 64.3 73.2 88.8 81.9 73.8 103.1 Tensile strength ikg / oil 250 290 240 290 640 550 210 210 Tensile elongation [% 1 0.8 1.0 0.9 2.0. 3.4 2.5 0.7

Claims

請 求 の 範 囲 The scope of the claims
1. メ チルメ タ ク リ レー ト単位 8 0 〜 9 9. 5'重量%と2, 2, 2- ト リ フルォ ロェチルァ ク リ レー ト、 シク ロ へキ シルァ ク リ レー ト、 フ ユニルァ ク リ レー ト、 ベンジルァ ク リ レー ト、 ィ ソ ボル二ルァク リ レー トおよび ト リ シク ロ 〔 5 , 2, 1 , 02· 6〕 デ 力 二ルァク リ レー トからなる群から選ばれる少なく と も 1種 のァ ク リ レー ト系単量体単位 2 0 〜 0. 5重量%とからなる共 重合体を舍む光学式情報記録体用メ タク リル樹脂成形材料。 1. Methyl methacrylate unit: 80 to 99.5% by weight, 2,2,2-trifluoroethyl acrylate, cyclohexyl acrylate, and funicular acrylate At least one selected from the group consisting of rate, benzyl acrylate, isovol acrylate, and tricyclo [5, 2, 1, 0 2 · 6 ] power acrylate. A methacrylic resin molding material for an optical information recording medium, comprising a copolymer comprising 20 to 0.5% by weight of one type of acrylic monomer unit.
2. 共重合体のメ ル トフローレー トが ASTM— D1238 に準じ て荷重 3. 8 kgで測定した値で 0. 5 〜 5 0 g / 1 0分である、 請求項 1記載の成形材料。  2. The molding material according to claim 1, wherein the melt flow rate of the copolymer is 0.5 to 50 g / 10 minutes as measured at a load of 3.8 kg according to ASTM-D1238.
3. メ ル ト フ ローレー トが 5 〜 5 0 g / 1 0分である、 請 求項 2記載の成形材料。  3. The molding material according to claim 2, wherein the melt flow rate is 5 to 50 g / 10 minutes.
4. 共重合体の熱変形温度が ASTM - D648に基づき荷重 1 8. 5 kgで測定した ί直で 7 0 て以上である、 請求項 1記載の成形 材料。  4. The molding material according to claim 1, wherein the heat distortion temperature of the copolymer is 70 or more directly measured at a load of 18.5 kg based on ASTM-D648.
5. 熱変形温度が 8 0 'C以上である、 請求項 4記載の成形 材料。  5. The molding material according to claim 4, wherein the heat distortion temperature is 80'C or higher.
6. 共重合体の引張強度が ASTM— D638に基づき 3 0 0 kg/ cm2 以上である、 請求項 1記載の成形材料。 6. Both the tensile strength of the polymer is ASTM- D638 in basis 3 0 0 kg / cm 2 or more, the molding material of claim 1, wherein.
7. 引張強度が 4 0 0 kg/cm2 以上である、 請求項 6記載 の成形材料。 7. The molding material according to claim 6, having a tensile strength of 400 kg / cm 2 or more.
PCT/JP1991/000225 1990-02-23 1991-02-22 Methacrylic resin molding material for optical information recording medium WO1991013105A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019910701419A KR920702857A (en) 1990-02-23 1991-02-22 Methacrylate resin molding materials for optical information recording media

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2043996A JPH03247611A (en) 1990-02-23 1990-02-23 Methacrylate resin for optical information recording medium
JP2/43996 1990-02-23
JP2/96857 1990-04-12
JP2096857A JPH03294314A (en) 1990-04-12 1990-04-12 Methacrylic resin for optical information recording medium
JP2/308164 1990-11-14
JP2308164A JPH04180906A (en) 1990-11-14 1990-11-14 Methacrylic resin for optical information recording medium

Publications (1)

Publication Number Publication Date
WO1991013105A1 true WO1991013105A1 (en) 1991-09-05

Family

ID=27291749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000225 WO1991013105A1 (en) 1990-02-23 1991-02-22 Methacrylic resin molding material for optical information recording medium

Country Status (3)

Country Link
EP (1) EP0470260A4 (en)
KR (1) KR920702857A (en)
WO (1) WO1991013105A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084541A1 (en) * 2007-12-27 2009-07-09 Asahi Kasei Chemicals Corporation Thermoplastic acrylic resin and molded body for optical member
US8895682B2 (en) * 2008-07-31 2014-11-25 Asahi Kasei Chemicals Corporation Thermoplastic acrylic resin, and molded product thereof
US9827748B2 (en) * 2012-09-28 2017-11-28 Kuraray Co., Ltd. Multilayer plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585318A (en) * 1981-07-02 1983-01-12 Mitsubishi Rayon Co Ltd Lowly hygroscopic methacrylic resin
JPS59159807A (en) * 1983-03-02 1984-09-10 Konishiroku Photo Ind Co Ltd Resin composition for optical information recording disc
JPS59197412A (en) * 1983-04-25 1984-11-09 Showa Denko Kk Optical material
JPS6099111A (en) * 1983-11-01 1985-06-03 Hitachi Chem Co Ltd Polymer
JPS60115605A (en) * 1983-11-28 1985-06-22 Mitsubishi Rayon Co Ltd Lowly moisture-absorptive methacrylate resin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585318A (en) * 1991-09-27 1993-04-06 Mazda Motor Corp Braking device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585318A (en) * 1981-07-02 1983-01-12 Mitsubishi Rayon Co Ltd Lowly hygroscopic methacrylic resin
JPS59159807A (en) * 1983-03-02 1984-09-10 Konishiroku Photo Ind Co Ltd Resin composition for optical information recording disc
JPS59197412A (en) * 1983-04-25 1984-11-09 Showa Denko Kk Optical material
JPS6099111A (en) * 1983-11-01 1985-06-03 Hitachi Chem Co Ltd Polymer
JPS60115605A (en) * 1983-11-28 1985-06-22 Mitsubishi Rayon Co Ltd Lowly moisture-absorptive methacrylate resin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0470260A4 *

Also Published As

Publication number Publication date
EP0470260A4 (en) 1992-04-08
KR920702857A (en) 1992-10-28
EP0470260A1 (en) 1992-02-12

Similar Documents

Publication Publication Date Title
US4509163A (en) Process for producing a low hygroscopic methacrylic resin and information recording substrates made therefrom
JP3870670B2 (en) Non-birefringent pickup lens resin composition and pickup lens using the same
WO1998004601A1 (en) Process for the preparation of non-birefringent optical resin and optical elements made by using the resin prepared by the process
WO1991013105A1 (en) Methacrylic resin molding material for optical information recording medium
JPS62112612A (en) Acrylic resin
JPH04254928A (en) Methacrylic resin for optical information recording medium
JP2856794B2 (en) Methacrylic resin for optical
JPS62156115A (en) Heat-resistant resin, production thereof and optical element composed therewith
JP3870715B2 (en) Non-birefringent pickup lens resin composition and pickup lens using the same
JPH03153715A (en) Optical methacrylic resin
JPH0120642B2 (en)
JPH061903A (en) Polymer composition
JPS60115605A (en) Lowly moisture-absorptive methacrylate resin
JPH04247342A (en) Methacrylic resin for optical information recording body
JPS61141715A (en) Heat-resistant copolymer resin, its production and optical element comprising the same
JPS59122509A (en) Methacrylic resin having low hygroscopicity
JP2966236B2 (en) Optical element
JP3623891B2 (en) Method for producing polymer
JP2000239325A (en) Transparent resin composition
JP4187504B2 (en) Copolymer
JPH04236209A (en) Methacrylic resin for optical information recording unit
JPS59159807A (en) Resin composition for optical information recording disc
JPH04106113A (en) Heat-resistant methacrylic resin
JPH03247611A (en) Methacrylate resin for optical information recording medium
JPH01261447A (en) Methacryl resin composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1991904333

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991904333

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1991904333

Country of ref document: EP