WO2009081950A1 - 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物 - Google Patents

耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物 Download PDF

Info

Publication number
WO2009081950A1
WO2009081950A1 PCT/JP2008/073472 JP2008073472W WO2009081950A1 WO 2009081950 A1 WO2009081950 A1 WO 2009081950A1 JP 2008073472 W JP2008073472 W JP 2008073472W WO 2009081950 A1 WO2009081950 A1 WO 2009081950A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
resin
acid
resin composition
Prior art date
Application number
PCT/JP2008/073472
Other languages
English (en)
French (fr)
Inventor
Takayuki Kanada
Yuka Sasaki
Satoshi Shibui
Original Assignee
Asahi Kasei E-Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E-Materials Corporation filed Critical Asahi Kasei E-Materials Corporation
Priority to CN200880111801.8A priority Critical patent/CN101827880B/zh
Priority to KR1020107008436A priority patent/KR101175080B1/ko
Priority to JP2009547116A priority patent/JP5498170B2/ja
Publication of WO2009081950A1 publication Critical patent/WO2009081950A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention relates to an insulating material for electronic components and display elements, and an alkali-soluble resin used for forming a relief pattern of a heat-resistant resin material used for a passivation film, a buffer coat film, an interlayer insulating film, etc. in a semiconductor device, and
  • the present invention relates to a positive or negative photosensitive resin composition containing the alkali-soluble resin.
  • a polyimide resin having excellent heat resistance, electrical characteristics, and mechanical characteristics is suitable for use as a surface protective film or an interlayer insulating film of a semiconductor device.
  • the polyimide resin used in this application is generally provided in the form of a photosensitive polyimide precursor composition, which is applied to a substrate such as a silicon wafer, and sequentially subjected to patterning exposure using active light, development, and thermal imidization treatment. By applying, a heat resistant resin film having a fine relief pattern can be easily formed on the substrate.
  • Photoactive components such as polybenzoxazole (hereinafter also referred to as “PBO”) precursor and photosensitive diazonaphthoquinone compound (hereinafter also referred to as “NQD”), which are polyhydroxyamides that are soluble in dilute alkaline aqueous solution.
  • a photosensitive resin composition hereinafter also referred to as “PAC”
  • PAC photosensitive resin composition
  • Many combinations, such as a combination of a polymer and PAC have been proposed and used as heat-resistant photosensitive resin compositions that can be developed with dilute aqueous alkali solutions.
  • the alkali-soluble resin used in combination with PAC is mainly a polyamide having a phenolic hydroxyl group such as a polyimide precursor or a PBO precursor.
  • a method of introducing a phenolic hydroxyl group into a polymer is a dehydration condensation with a carboxylic acid using an aromatic diamine having an amino group and a phenolic hydroxyl group (hereinafter also referred to as “phenolic diamine”) in an ortho position as a polyamide raw material.
  • the method of making it is common.
  • the acidity of the hydroxyl group of the phenolic diamine is low, the polyamide may not be dissolved in the dilute alkaline aqueous solution, and the undissolved portion of the exposed portion may be generated during development, or the development itself may be impossible.
  • the acidity of the hydroxyl group of the phenolic diamine is high, the interaction with the PAC is weak and the unexposed area is melted during development, so that a high-quality relief pattern cannot be obtained.
  • 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane is an excellent phenolic diamine that balances the acidity and transparency of the phenolic diamine hydroxyl group described above, and is a positive photosensitive resin.
  • a reduction projection exposure machine called an i-line stepper using i-line of a mercury lamp is mainly used in an exposure process at the time of manufacturing a semiconductor device. Since this stepper is a very expensive machine, if the photosensitive resin composition has a low sensitivity, the exposure time required to form a relief pattern becomes longer, and the number of required steppers increases and the exposure process becomes more expensive. This leads to cost reduction.
  • the photosensitivity of the photosensitive resin composition in order to improve the photosensitivity, first, it is necessary to improve the i-line transmittance of the polymer and not to prevent the decomposition of the PAC in the exposed portion. Therefore, the polymer used for the positive photosensitive resin composition is required to improve i-ray transmission. Furthermore, the stronger the interaction between the phenolic hydroxyl group of the polymer and the PAC, the greater the difference in dissolution rate between the unexposed area and the exposed area in the alkaline developer, resulting in higher photosensitivity. Therefore, the polymer used in the positive photosensitive resin composition is required to have a strong interaction with PAC.
  • a neutral solvent such as ⁇ -butyrolactone
  • an amide solvent such as N-methylpyrrolidone having a high basicity. Is listed as a request. Therefore, the polymer used in the positive photosensitive resin composition is required to be dissolved in ⁇ -butyrolactone.
  • a dilute alkaline developer used for forming a pattern using the heat-resistant photosensitive resin composition is a 2.38 wt% tetramethylammonium hydroxide aqueous solution (hereinafter referred to as “2.38% TMAH aqueous solution”).
  • 2.38% TMAH aqueous solution 2.38 wt% tetramethylammonium hydroxide aqueous solution
  • the surface of a silicon wafer to which a photosensitive composition for a protective film is applied in the manufacturing process of a semiconductor device is not uniform because wiring circuits and external connection terminals are already formed.
  • the film thickness of the photosensitive resin composition layer is not uniform in the wafer plane.
  • the margin (margin) of the process is narrow. Therefore, there is a strong demand for a photosensitive resin composition having a wide film thickness margin when a pattern is formed with the same exposure amount and the same development time.
  • Patent Document 2 a positive type photosensitive resin composition comprising a PAC and a condensate of this with a dicarboxylic acid
  • Patent Document 2 a compound having a fluorine atom is used for dicarboxylic acid, and the developer is not a 2.38% TMAH aqueous solution usually used in the semiconductor manufacturing process, but 0.79%. A TMAH aqueous solution is used.
  • Patent Document 3 discloses tetracarboxylic dianhydrides including bicyclo (2,2,2) -oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bis (3-amino A polycondensate having a structure obtained by dehydration condensation with an aromatic diamine containing -4-hydroxyphenyl) sulfone, and when obtaining the polycondensate, the total tetracarboxylic dianhydride and the total aromatic diamine were combined.
  • bis (3-amino-4-hydroxyphenyl) sulfone is in the range of 20 mol% to 40 mol% when the raw materials are charged, and the total tetracarboxylic dianhydride in obtaining the polycondensate is
  • the ratio of the number of moles to the number of moles of wholly aromatic diamine is in the range of 1: 0.75 to 0.87 or 0.75 to 0.87: 1, and the weight average molecular weight of the polycondensate is 5,000 to 17 Polymers in the range of 1,000 It is.
  • Patent Document 3 by using bis (3-amino-4-hydroxyphenyl) sulfone as a phenolic diamine, a halogen atom is not contained in the molecule, and an interaction between alkali solubility and PAC is expressed.
  • 2,2,2) -oct-7-ene-2,3,5,6-tetracarboxylic dianhydride solubility in ⁇ -butyrolactone and i-line transparency are improved, and bis ( By controlling the amount of 3-amino-4-hydroxyphenyl) sulfone introduced and the weight average molecular weight, the strong alkali solubility derived from bis (3-amino-4-hydroxyphenyl) sulfone is controlled.
  • ⁇ -butyrolactone Type photosensitive resin containing no halogen atom, soluble in water and sufficiently transparent to i-line, and capable of forming a pattern with 2.38% TMAH developer It discloses a Narubutsu.
  • the amount of bis (3-amino-4-hydroxyphenyl) sulfone introduced is limited due to its high alkali solubility, which reduces the density of phenolic hydroxyl groups in the polymer, and bis (3-amino-4 Since a phenolic hydroxyl group derived from -hydroxyphenyl) sulfone has a weak interaction with PAC, a positive photosensitive resin composition with higher sensitivity is desired.
  • Patent Document 4 discloses a PBO precursor composed of an alicyclic dicarboxylic acid and a phenolic diamine, and cyclohexanedicarboxylic acid is described as a suitable dicarboxylic acid.
  • a halogen atom is included in the molecule.
  • a positive photosensitive resin composition in which a polycondensate containing no benzene is dissolved in N-methyl-2-pyrrolidone.
  • the polycondensate of 2,2-bis (3-amino-4-hydroxyphenyl) ether and cyclohexanedicarboxylic acid does not dissolve in ⁇ -butyrolactone, and the sensitivity of the positive photosensitive resin composition Is not considered satisfactory.
  • Patent Documents 5 to 7 are disclosed as PBO precursors using alicyclic dicarboxylic acids, but do not contain a halogen atom in the molecule, are soluble in ⁇ -butyrolactone, and have a photosensitivity thereof. It is considered that a polymer having a high sensitivity and a wide film thickness margin when a pattern is formed with the same exposure amount and the same development time has not yet been provided.
  • Patent Document 8 tricyclo [5,2,1,0 2,6] thermostable polyamide using acid chloride with decane structure is disclosed.
  • Patent Document 9 discloses a polybenzoazole resin having a tricyclodecane structure in the field of gas barrier films.
  • Patent Document 10 discloses a negative photosensitive resin composition containing a PBO precursor resin, a compound that generates an acid upon irradiation, and a compound that can be crosslinked by the action of the acid.
  • the present inventors examined a phenolic hydroxyl group-containing polyamide (PBO precursor) derived from a dehydration condensate of many phenolic diamines and aromatic dicarboxylic acids not containing a halogen atom.
  • PBO precursor phenolic hydroxyl group-containing polyamide
  • a resin having a specific structure is soluble in ⁇ -butyrolactone, has high transparency with respect to i-line of a mercury lamp, has sufficiently strong interaction with PAC, and is highly sensitive. It has become possible to obtain a positive photosensitive resin composition containing no halogen atom in the molecule.
  • the present invention has been completed.
  • Z 3 represents a tetravalent organic group containing no halogen atom
  • m 2 and m 5 each independently represents an integer of 0 to 200
  • m 3 represents 0 to 2
  • An integer is shown
  • m 4 is an integer of 0 to 1
  • the arrangement order of each unit of m 1 , m 2 and m 4 is not limited.
  • numerator the resin represented by structure.
  • R 1 and R 2 are each independently a hydrogen atom, a kind of group selected from the group consisting of a benzene ring which may optionally be alkyl groups having 1 to 6 carbon atoms, and substituted, R 1 And R 2 may be linked, and R 3 and R 4 are each independently a hydrogen atom or an organic group having 1 to 4 carbon atoms.
  • R 1 and R 2 are each independently a hydrogen atom, a kind of group selected from the group consisting of a benzene ring which may optionally be alkyl groups having 1 to 6 carbon atoms, and substituted
  • R 1 And R 2 may be linked
  • R 3 and R 4 are each independently a hydrogen atom or an organic group having 1 to 4 carbon atoms.
  • Z 2 in the general formula (3) is the following structural formula (14): ⁇ Wherein L 5 represents the following organic group: (Wherein L 6 represents a monovalent alkyl group having 1 to 4 carbon atoms). ⁇
  • the polyimide group-containing unit portion in the general formula (3) is represented by the following formula (15) and the following formula (16):
  • the end of the resin has the following structure:
  • the photosensitive diazonaphthoquinone compound (B) is represented by the following general formula (17): At least one compound selected from the group consisting of 1,2-naphthoquinonediazide-4-sulfonic acid ester of a polyhydroxy compound represented by formula (1) and 1,2-naphthoquinonediazide-5-sulfonic acid ester of the polyhydroxy compound.
  • the positive photosensitive resin composition according to the above [16] or [17].
  • the alkoxysilane compound has the following general formulas (18) to (25): ⁇ Wherein X 1 and X 2 represent a divalent organic group, X 3 and X 4 represent a monovalent organic group, and s represents an integer of 0 to 2 ⁇ , ⁇ Wherein X 7 and X 9 represent a divalent organic group, X 8 represents a tetravalent organic group, and X 5 , X 6 , X 10 and X 11 represent a monovalent organic group. And s represents an integer of 0-2.
  • ⁇ , ⁇ Wherein X 13 represents a divalent organic group, X 12 , X 14 and X 15 represent a monovalent organic group, s represents an integer of 0 to 2, and t represents 0 to 5 Indicates an integer.
  • ⁇ , ⁇ Wherein X 16 is —NH—R 20 or —O—R 21 (wherein R 20 and R 21 are monovalent organic groups not containing a COOH group), X 17 is divalent X 18 and X 19 each represent a monovalent organic group, and s represents an integer of 0 to 2.
  • X 22 represents a divalent organic group
  • X 23 and X 24 represent a monovalent organic group
  • s represents an integer of 0 to 2 ⁇
  • X 25 represents a divalent organic group
  • X 26 and X 27 represent a monovalent organic group
  • s represents an integer of 0 to 2.
  • X 28 represents a hydrogen atom or a methyl group
  • X 29 represents the following formula group:
  • X 30 represents a divalent organic group
  • X 31 and X 32 represent a monovalent organic group
  • s represents an integer of 0 to 2
  • u represents an integer of 1 to 3.
  • X 33 and X 34 represent a divalent organic group
  • X 35 and X 36 represent a monovalent organic group
  • s represents an integer of 0 to 2.
  • the compound that causes a thermal crosslinking reaction by heat is at least one compound selected from the group consisting of an epoxy group, a methylol group, an alkoxymethyl group, an oxetane group, and a bisallylnadiimide compound.
  • a method for forming a cured relief pattern comprising: a developing step for heating, and a heating step for heating the obtained relief pattern.
  • a coating process of applying the negative photosensitive resin composition according to [28] or [29] onto a substrate, an exposure process of exposing the layer, a process of heating after exposure, and developing an unexposed part A method for forming a cured relief pattern, comprising: a developing step for elution and removal with a liquid; and a heating step for heating the obtained relief pattern.
  • the film when a photosensitive resin composition containing no halogen atom in a molecule is used, the film has a high sensitivity and a wide film thickness margin when a pattern is formed with the same exposure amount and the same development time.
  • a pattern can be formed by a developer (2.38 wt% tetramethylammonium hydroxide aqueous solution) usually used in the production process, and an alkali-soluble resin that is soluble in a ⁇ -butyrolactone solvent is provided.
  • the present invention also provides the composition, a method of forming a cured relief pattern on a substrate using the composition, and a semiconductor device having the cured relief pattern.
  • the resin (a) according to the present invention has the following general formula (1): ⁇ Wherein X 1 represents a tetravalent organic group containing no halogen atom, and Z 1 represents the following general formula (2): (Wherein L 1 , L 2 and L 3 each independently represents a hydrogen atom or a methyl group, and L 4 represents a hydrogen atom, a methyl group or a hydroxyl group). Represents a group.
  • numerator it is resin which has the structure of description represented by.
  • the structure of the general formula (1) is preferably a repeating unit.
  • the resin (a) according to the present invention may have a solvent-soluble hydroxy group-containing polyimide unit, and the following general formula (3): ⁇ Wherein X 1 and X 2 represent a tetravalent organic group not containing a halogen atom, and may be the same or different, and Z 1 represents the following general formula (2): (Wherein L 1 , L 2 and L 3 each independently represents a hydrogen atom or a methyl group, and L 4 represents a hydrogen atom, a methyl group or a hydroxyl group).
  • Z 2 represents a divalent organic group not containing a halogen atom having an aromatic ring
  • m 1 represents an integer of 1 to 200
  • X 3 is a divalent to tetravalent group not containing a halogen atom.
  • Z 3 represents a tetravalent organic group containing no halogen atom
  • m 2 and m 5 each independently represents an integer of 0 to 200
  • m 3 represents an integer of 0 to 2
  • M 4 is 0 to 1
  • May have a structure represented by:
  • the organic group represented by the above general formula (2) further includes the following structural group (a): It is preferable that it is at least one selected from.
  • a resin (a) of the present invention is a dicarboxylic acid having the general formula (2) structure
  • a diamine having an X 1 structure and phenolic hydroxyl group can be used as a raw material.
  • the compound can be synthesized by the synthesis method according to Production Example A of JP-A No. 58-110538, the synthesis method according to Example 1 of JP-T-2002-504891, or the synthesis by Synthesis Example 2 of JP-A No. 09-15846. Can be obtained according to the method.
  • the following manufacturing method is more preferable in that no heavy metal is used. That is, tricyclo (5,2,1,0) decanedimethanol (catalog No. T0850, manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in acetonitrile or the like, and 2,2,6,6-tetramethylpiperidine-1-oxyl (hereinafter referred to as “Catalyst No. T0850”) was dissolved.
  • tricyclo (5,2,1,0) decanedimethanol catalog No. T0850, manufactured by Tokyo Chemical Industry Co., Ltd.
  • Catalyst No. T0850 2,2,6,6-tetramethylpiperidine-1-oxyl
  • Catalyst such as “TEMPO”
  • TEMPO disodium hydrogen phosphate, sodium dihydrogen phosphate, etc.
  • sodium chlorite and sodium dichlorite is a compound in the purification bis (carboxy) tricyclo can [5,2,1,0 2,6] to produce decane.
  • dicarboxylic acid compounds having the structure of the structural group (a) are methylcyclopentadiene dimer (catalog No. M0920 manufactured by Tokyo Chemical Industry), 1-methyldicyclopentadiene (Tokyo Chemical Industry). Catalog No. M0910), 1-hydroxydicyclopentadiene (Tokyo Chemical Industry catalog No. H0684) as a raw material, and the above raw material was prepared by the method known in J. Org. Chem., 45, 3527 (1980). After adding hydrogen bromide or hydrogen chloride to the unsaturated bond site of, according to the method known in J. Am. Chem. Soc., 95, 249 (1973), carbon monoxide and water are further added.
  • tricyclo [5,2,1,0 2,6] can be introduced two hydroxymethyl groups decane skeleton.
  • 9-borabicyclo (3,3,3) is added to the unsaturated bond site by a method known in J. Am. Chem. Soc., 91, 2150 (1969).
  • Nonane is added to form an intermediate, which is then reacted with carbon monoxide and reduced with LiAlH (OCH 3 ) 3 to produce a dihydroxymethyl compound.
  • OCH 3 LiAlH
  • a dicarboxylic acid having a Z 2 structure can be copolymerized for the purpose of adjusting mechanical properties such as improvement of mechanical elongation and improvement of glass transition temperature.
  • Examples of the dicarboxylic acid having a Z 2 structure include divalent organic groups having an aromatic ring and not containing a halogen atom, and include aromatic dicarboxylic acids having 8 to 36 carbon atoms and fatty acids having 6 to 34 carbon atoms. It is preferably at least one compound selected from the group consisting of cyclic dicarboxylic acids.
  • L 5 represents a group shown below: (Wherein L 6 represents a monovalent alkyl group having 1 to 4 carbon atoms).
  • these dicarboxylic acids may be used alone or in combination of two or more.
  • Z 2 is an aromatic dicarboxylic acid, it is preferably 30 moles or less, more preferably 10 moles or less, from the viewpoint of i-line permeability when used as a resin.
  • dicarboxylic acids used in synthesizing the resin (a) can be used in the form of acid chloride using thionyl chloride.
  • the acid chloride is synthesized by reacting a dicarboxylic acid with an excess amount of thionyl chloride in the presence of a catalyst such as N, N-dimethylformamide, pyridine, benzyltriethylamine chloride, etc.
  • a catalyst such as N, N-dimethylformamide, pyridine, benzyltriethylamine chloride, etc.
  • the method of distilling off by heating and pressure reduction is mentioned, It can obtain by recrystallizing the residue of this reaction liquid with solvents, such as hexane and toluene. It can also be used for resin polymerization without purification.
  • a catalyst in which a dicarboxylic acid and N-hydroxybenzotriazole (hereinafter also referred to as “HOBT”) are made into a HOBT active ester using a dehydration condensing agent such as dicyclohexylcarbodiimide can be used.
  • diamines having an X 1 structure and a phenolic hydroxyl group examples include 2,2-bis (3-amino-4-hydroxyphenyl) propane, 2,2-bis (4-amino-3-hydroxyphenyl) propane, 3, 5-diamino-1-hydroxybenzene, 4,6-diamino-1,3-dihydroxybenzene, 3,3′-dihydroxy-4,4′-diaminobiphenyl, 4,4′-dihydroxy-3,3′-diamino Biphenyl, 3,4-dihydroxy-3 ′, 4′-diaminobiphenyl, bis (3-amino-4-hydroxyphenyl) sulfone, bis (3-amino-4-hydroxyphenyl) sulfide, bis (3-amino-4-) Hydroxyphenyl) methane, bis (4-amino-3-hydroxyphenyl) methane, bis (4-amino-3-hydroxyphenyl) Sulfone, and the following compounds: Are preferably used
  • the said phenolic diamine can be used individually or in combination of 2 or more types. Further, 2,2-bis (3-amino-4-hydroxyphenyl) propane and bis (4-amino-3-hydroxyphenyl) sulfone, and the following compound group: However, it is preferable from the viewpoint of high photosensitivity when a resin composition is used and a high film thickness margin during development.
  • 2,2-bis (3-amino-4-hydroxyphenyl) propane has a high photosensitivity when used as a resin composition and a high film thickness margin at the time of development, and after heat curing. It is preferable from the viewpoint of high mechanical elongation of the film.
  • the concentration of the phenolic hydroxyl group in 1 g of the resin using bis (4-amino-3-hydroxyphenyl) sulfone is preferably 2.0 to 5.0 mmol, more preferably 2.5 to 4.5 mmol. And most preferably from 3.0 to 4.0 mmol.
  • Diamines having the X 2 structure and phenolic hydroxyl groups may also be used the same compounds as the diamine having a X 1 structure a phenolic hydroxyl group described above.
  • non-phenolic diamine a diamine having no phenolic hydroxyl group
  • the non-phenolic diamine is a divalent to tetravalent organic group containing no halogen atom.
  • aromatic diamines having 6 to 30 carbon atoms and having no phenolic hydroxyl group, and diaminopolysiloxane are preferred.
  • a phenolic diamine or a non-phenolic diamine is dissolved in a suitable solvent such as N-methylpyrrolidone or N, N-dimethylacetamide, and pyridine, triethylamine, etc.
  • a suitable solvent such as N-methylpyrrolidone or N, N-dimethylacetamide, and pyridine, triethylamine, etc.
  • the above-mentioned phenolic diamine or non-phenolic diamine is prepared by adding a tertiary amine as a catalyst, dissolving the above-mentioned dicarboxylic acid acid chloride compound in an appropriate solvent such as ⁇ -butyrolactone or acetone and cooling to ⁇ 30 ° C. to 15 ° C.
  • the desired polycondensation structure can be obtained by adding dropwise to the solution.
  • the resin (a) according to the present invention may be used only in the above-mentioned polybenzoxazole precursor unit, but cyclized and condensed tetracarboxylic dianhydride and an aromatic diamine having a phenolic hydroxyl group. If necessary, a polyimide unit having a phenolic hydroxyl group can be copolymerized.
  • the tetracarboxylic dianhydride used for synthesizing a polyimide unit containing a phenolic hydroxyl group is a tetravalent organic group which is Z 3 and does not contain a halogen atom, but is particularly an aromatic having 8 to 36 carbon atoms.
  • Compounds selected from tetracarboxylic dianhydrides and alicyclic tetracarboxylic dianhydrides having 6 to 34 carbon atoms are preferred.
  • 2,2-bis (3-amino-4-hydroxyphenyl) propane is more preferable because of its high photosensitivity when used as a resin composition.
  • the dehydration condensation reaction when synthesizing an imide unit having a phenolic hydroxyl group is carried out by subjecting the tetracarboxylic dianhydride and the phenolic diamine to 30 ° C. to 220 ° C. in the presence of an acid or base catalyst, preferably 170 ° C. to It can carry out by heating to 200 degreeC.
  • an acid catalyst it is possible to use an inorganic acid such as sulfuric acid or an organic acid such as p-toluenesulfonic acid that is usually used in the production of polyimide. ⁇ -valerolactone and pyridine may be used.
  • Examples of the base catalyst include pyridine, triethylamine, dimethylaminopyridine, 1,8-diazabicyclo (5,4,0) undecene-7, 1,3,5,7-tetraazatricyclo (3,3,1,1, 3,7) Decane, triethylenediamine or the like may be used.
  • the temperature of the reaction solution is maintained at a temperature higher than the temperature at which the imidization reaction occurs, and the water generated by the dehydration reaction is removed from the reaction system using an azeotropic solvent with water such as toluene.
  • the imidation dehydration condensation reaction may be completed.
  • a reaction solvent for performing the dehydration condensation reaction it is preferable to use a polar organic solvent for dissolving the resin, in addition to toluene which is a solvent for azeotropically distilling water.
  • polar solvents ⁇ -butyrolactone, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, tetramethylurea, sulfolane and the like are used.
  • a block copolycondensate using a sequential reaction may be used, or a raw material having three or more components is charged.
  • the resin (a) according to the present invention may be a copolymer of the above polybenzoxazole precursor unit and a polyimide unit.
  • the copolymerization ratio at the time of copolymerization is arbitrarily selected, but the ratio of polybenzoxazole precursor unit: polyimide unit is preferably in the range of 10:90 to 100: 0 from the viewpoint of photosensitivity.
  • the terminal of the resin (a) according to the present invention may be modified with a terminal group.
  • methods for modifying the terminal include maleic anhydride, succinic anhydride, cinnamic anhydride, 5-norbornene anhydride, 4-ethynylphthalic anhydride, phenylethynylphthalic anhydride, 3,6- Epoxy-1,2,3,6-tetrahydrophthalic anhydride, 4-cyclohexene-1,2-dicarboxylic anhydride, cyclohexane-1,2-dicarboxylic anhydride, 4-methylcyclohexane-1,2-dicarboxylic An appropriate amount of acid anhydride, 4-aminostyrene, 4-ethynylaniline, 3-ethynylaniline, etc.
  • the resin may be added during the synthesis of the resin.
  • the following structures are used to improve mechanical elongation and glass transition temperature:
  • at least one end group selected from the group consisting of is added.
  • the weight average molecular weight in terms of polystyrene is preferably 3,000 to 100,000, and the mechanical properties are further improved when the molecular weight is 5,000 or more, and 70,000 or less. Therefore, the dispersibility in the 2.38% TMAH aqueous solution is improved, and the resolution performance of the relief pattern is improved.
  • the manufactured resin solution may be used after isolating the resin (a) through a purification step and redissolving it in an organic solvent.
  • a poor solvent such as methanol, ethanol, isopropanol
  • water is added to the resin solution obtained by the above-described production method to precipitate the resin.
  • a good solvent such as ⁇ -butyrolactone and N-methylpyrrolidone
  • the solution is passed through a column packed with an ion exchange resin to remove ionic impurities.
  • it is a purification step including dropping the solution into pure water and filtering the precipitate, followed by vacuum drying. Thereby, a low molecular weight component, an ionic impurity, etc. can also be removed.
  • an alkali-soluble resin containing the resin (a) according to the present invention is an essential component.
  • the alkali-soluble resin other than the resin (a) include a resin having at least one group selected from the group consisting of a phenolic hydroxyl group and a carboxyl group and soluble in an alkaline aqueous solution or a precursor thereof.
  • phenolic resins represented by novolak resins and resol resins and derivatives thereof, polyhydroxystyrene and derivatives thereof, resins having a structure obtained by copolymerizing these resins in the molecule, resins according to the present invention Alkaline aqueous solution-soluble polymers other than a), alkaline aqueous solution-soluble polyimides having phenolic hydroxyl groups, polyimide precursors derived from tetracarboxylic acid and diamine and having a carboxyl group at the amide bond ortho position Can be mentioned.
  • the ratio of the resin (a) according to the present invention to the (A) alkali-soluble resin is preferably 10% by mass or more, and 20% by mass. % Or more is more preferable, 40 mass% or more is more preferable, and 60 mass% or more is the most preferable.
  • the upper limit is preferably 100% by mass.
  • the photosensitive diazonaphthoquinone compound used when producing a positive photosensitive resin composition has a specific structure described in detail below.
  • 1,2-naphthoquinonediazide-4-sulfonic acid ester of a polyhydroxy compound and at least one compound selected from the group consisting of 1,2-naphthoquinonediazide-5-sulfonic acid ester of the polyhydroxy compound hereinafter, It is also referred to as “NQD product of polyhydroxy compound”.
  • the NQD product of the polyhydroxy compound is obtained by subjecting the naphthoquinone diazide sulfonic acid compound to sulfonyl chloride with chlorosulfonic acid or thionyl chloride according to a conventional method, and subjecting the resulting naphthoquinone diazide sulfonyl chloride to a polyhydroxy compound. can get.
  • a predetermined amount of a polyhydroxy compound and 1,2-naphthoquinonediazide-5-sulfonyl chloride or 1,2-naphthoquinonediazide-4-sulfonyl chloride in a solvent such as dioxane, acetone or tetrahydrofuran, and a basic such as triethylamine It is obtained by reacting in the presence of a catalyst for esterification, and washing the resulting product with water and drying.
  • NQD compounds of polyhydroxy compounds represented by the following general formula (B1) ⁇ Wherein k, l, m and n each independently represent 1 or 2, and R 1 to R 10 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group or an alkoxy group.
  • An allyl group, and an acyl group, Y 1 to Y 3 each independently represents a single bond, —O—, —S—, —SO—, —SO 2 —, — CO—, —CO 2 —, cyclopentylidene, cyclohexylidene, phenylene, and the following chemical formula: (Wherein R 11 and R 12 each independently represents at least one monovalent group selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an allyl group, and a substituted allyl group).
  • R 13 to R 16 each independently represents a hydrogen atom or an alkyl group, and w represents an integer of 1 to 5
  • R 17 to R 20 each independently represents a hydrogen atom or an alkyl group
  • R 17 to R 20 each independently represents a hydrogen atom or an alkyl group
  • the compound examples include NQD compounds of polyhydroxy compounds described in [Chemical Formula 18] to [Chemical Formula 32] of JP-A No. 2001-109149.
  • the following polyhydroxy compounds NQD products are preferred from the viewpoint of high sensitivity of the positive photosensitive resin composition.
  • Z represents the following chemical formula: At least one tetravalent group selected from organic groups represented by: R 21 , R 22 , R 23 , and R 24 each independently represents a monovalent organic group, and b is 0 or 1, a, c, d, and e each independently represent an integer of 0 to 3, and f, g, h, and i each independently represent an integer of 0 to 2, provided that The sum of f, g, h, and i is 1 or more. ⁇ .
  • the NQD product is preferable because of its high sensitivity and low precipitation in the positive photosensitive resin composition.
  • the following polyhydroxy compounds ⁇ Wherein p is an integer of 0 to 9.
  • the NQD compound is preferred because of its high sensitivity and low precipitation in the positive photosensitive resin composition.
  • Specific compounds include those described in [Chemical Formula 22] to [Chemical Formula 28] of JP-A No. 2003-131368.
  • the NQD product is preferable because of its high sensitivity and low precipitation in the positive photosensitive resin composition.
  • R 25 represents the following general formula:
  • each R 26 independently represents at least one monovalent organic group selected from an alkyl group and a cycloalkyl group, and r each independently represents an integer of 0 to 2.
  • q is each independently an integer of 0 to 2.
  • Specific examples of the compound include NQD compounds of polyhydroxy compounds described in [Chemical Formula 17] to [Chemical Formula 22] of JP-A No. 2004-109849.
  • the NQD product is preferable because of its high sensitivity and low precipitation in the positive photosensitive resin composition.
  • NQD compounds of polyhydroxy compounds represented by the following general formula (B6)
  • R 27 represents a group selected from the group consisting of a hydrogen atom, an alkyl group, an alkoxy group, and a cycloalkyl group. ⁇ .
  • Specific compounds include those described in [Chemical Formula 18] to [Chemical Formula 22] of JP-A No. 2001-356475.
  • NQD product is preferable because of its high sensitivity and low precipitation in the positive photosensitive resin composition. 7).
  • Specific examples of the compound include NQD compounds of polyhydroxy compounds described in [Chemical 15] and [Chemical 16] of JP-A-2005-008626.
  • the NQD product is preferable because of its high sensitivity and low precipitation in the positive photosensitive resin composition.
  • the NQD product is most preferable because the photosensitive resin composition has high sensitivity, a wide film thickness margin when a pattern is formed with the same exposure amount and the same development time, and low precipitation.
  • the naphthoquinone diazide sulfonyl group in the photosensitive diazonaphthoquinone compound either a 5-naphthoquinone diazide sulfonyl group or a 4-naphthoquinone diazide sulfonyl group is preferably used.
  • the 4-naphthoquinonediazide sulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure.
  • the 5-naphthoquinonediazide sulfonyl ester compound has an absorption extending to the g-line region of a mercury lamp and is suitable for g-line exposure.
  • a naphthoquinone diazide sulfonyl ester compound can be obtained by using a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group in the same molecule, or a 4-naphthoquinone diazide sulfonyl ester compound and a 5-naphthoquinone diazide sulfonyl ester compound. Can also be used in combination.
  • the addition amount of (B) the photosensitive diazonaphthoquinone compound is 1 to 100 parts by weight, preferably 3 to 40 parts by weight, more preferably 100 parts by weight of the (A) alkali-soluble resin. Is in the range of 10 to 30 parts by mass. The sensitivity is improved with an addition amount of 1 part by mass or more, and a residue after exposure is not generated with an addition amount of 100 parts by mass or less.
  • organic solvent used in preparing the resin composition using the resin of the present invention includes N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N- Examples include dimethylformamide, dimethyl sulfoxide, tetramethylurea, ⁇ -butyrolactone, and morpholine.
  • this polar solvent ketones, esters, lactones, ethers, halogenated hydrocarbons, and hydrocarbons that are general organic solvents may be mixed.
  • the pre-bake film has excellent in-plane uniformity, high sensitivity, the same exposure, and the same development time. It is most preferable from the viewpoint of a wide film thickness margin, low precipitation of a photosensitive agent such as a photosensitive diazonaphthoquinone compound, and high stability of the composition (evaluated by the rate of change in viscosity of the composition).
  • a photosensitive agent such as a photosensitive diazonaphthoquinone compound
  • the addition amount is preferably 100 to 2000 parts by mass with respect to 100 parts by mass of the (A) alkali-soluble resin, and by changing the addition amount of the organic solvent, Viscosity can be controlled. More preferred is 120 to 700 parts by mass, and still more preferred is a range of 150 to 500 parts by mass.
  • the addition amount is 100 parts by mass or more, the viscosity of the resin composition becomes low, the film thickness uniformity of the coating film is improved, and 2000 parts by mass or less is preferable from the viewpoint of the viscosity of the resin composition. It becomes easy to apply the film thickness.
  • (D) Alkoxysilane compound You may add the adhesion promoter for improving the adhesiveness with a board
  • adhesion assistants include alkyl imidazoline, butyric acid, polyhydroxystyrene, polyvinyl methyl ether, t-butyl novolac, epoxy silane, epoxy polymer, 3-aminopropyltriethoxysilane, and various alkoxysilane compounds.
  • alkoxysilane compound examples include 3-methacryloxypropyltrialkoxysilane, 3-methacryloxypropyl dialkoxyalkylsilane, 3-glycidoxypropyltrialkoxysilane, 3-glycidoxypropyl dialkoxyalkyl.
  • Silane, 3-aminopropyltrialkoxysilane or 3-aminopropyl dialkoxyalkylsilane and acid anhydride or acid dianhydride reaction product, 3-aminopropyltrialkoxysilane or 3-aminopropyl dialkoxyalkylsilane amino The thing which converted group into a urethane group and a urea group is mentioned.
  • the alkyl group includes a methyl group, an ethyl group, a butyl group
  • the acid anhydride includes maleic anhydride, phthalic anhydride
  • the acid dianhydride includes pyromellitic dianhydride, 3, 3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, etc.
  • urethane group is t-butoxycarbonylamino group
  • urea group is phenylaminocarbonylamino Groups and the like.
  • alkoxysilane compound when the following alkoxysilane compound is used as a photosensitive resin composition, the pattern at the time of development is in good contact with the substrate, and the adhesiveness with the substrate after heat curing is high,
  • a photosensitive agent such as a photosensitive diazonaphthoquinone compound in the photosensitive resin composition and the high temporal stability of the composition
  • X 1 and X 2 represent a divalent organic group
  • X 3 and X 4 represent a monovalent organic group
  • s represents an integer of 0 to 2 ⁇
  • X 8 represents a tetravalent organic group
  • X 5 , X 6 , X 10 and X 11 represent a monovalent organic group.
  • s represents an integer of 0-2.
  • ⁇ Wherein X 13 represents a divalent organic group, X 12 , X 14 and X 15 represent a monovalent organic group, s represents an integer of 0 to 2, and t represents 0 Indicates an integer of ⁇ 5.
  • ⁇ Wherein X 16 is —NH—R 20 or —O—R 21 (R 20 and R 21 are monovalent organic groups not containing a COOH group), and X 17 is a divalent organic group.
  • X 18 and X 19 represent a monovalent organic group, and s represents an integer of 0 to 2.
  • X 22 represents a divalent organic group
  • X 23 and X 24 represent a monovalent organic group
  • s represents an integer of 0 to 2.
  • X 25 represents a divalent organic group
  • X 26 and X 27 represent a monovalent organic group, and s represents an integer of 0 to 2.
  • X 28 represents a hydrogen atom or a methyl group
  • X 29 represents the following formula group:
  • X 30 represents a divalent organic group
  • X 31 and X 32 represent a monovalent organic group
  • s represents an integer of 0 to 2
  • ⁇ ,as well as ⁇ Wherein X 33 and X 34 represent a divalent organic group
  • X 35 and X 36 represent a monovalent organic group
  • s represents an integer of 0 to 2.
  • the amount of addition in the case of adding an adhesion assistant is preferably in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of (A) alkali-soluble resin.
  • (E) Compound causing cross-linking reaction by heat For the purpose of improving the glass transition temperature of the film after thermosetting or improving the solvent resistance against various organic solvents as necessary, the resin composition according to the present invention.
  • a compound that causes a crosslinking reaction by heat (hereinafter also referred to as a thermal crosslinking agent) may be added.
  • the temperature for causing the crosslinking reaction is preferably 150 to 350 ° C.
  • the crosslinking reaction occurs during the heat treatment after pattern formation by development.
  • the specific component is preferably at least one compound selected from the group consisting of a compound having an epoxy group, a methylol group, an alkoxymethyl group, or an oxetane group, and a bisallylnadiimide compound.
  • the compound having an epoxy group examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, glycidylamine type epoxy resin, polysulfide.
  • Type epoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, glycidylamine type epoxy resin, polysulfide.
  • E 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • numerator is preferable.
  • compounds having an alkoxymethyl group are preferred from the viewpoint of viscosity stability when stored at room temperature as a photosensitive resin composition.
  • compounds having a methylol group or compounds having an alkoxymethyl group compounds having a phenolic hydroxyl group, general formula (B): ⁇ Wherein E 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Examples of the compound having a phenolic hydroxyl group described above include the following compounds: Is mentioned.
  • Examples of the compound containing a divalent organic group represented by the general formula (B) include the following compounds: These may be used alone or in combination.
  • E 2 in the general formula (B) is a monovalent organic group and is preferably an alkyl group having 1 to 20 carbon atoms, but from 1 to 10 carbon atoms in terms of solubility with the resin composition. Are more preferable, and an alkyl group having 1 to 4 carbon atoms is most preferable.
  • Examples of the compound containing a divalent organic group represented by the general formula (C) include the following compounds: Is mentioned.
  • E 3 in the general formula (C) is a monovalent organic group and is preferably an alkyl group having 1 to 20 carbon atoms, but from 1 to 10 carbon atoms in terms of solubility with the resin composition. Are more preferable, and an alkyl group having 1 to 4 carbon atoms is most preferable.
  • the compound having an oxetane group is a compound having at least one 4-membered cyclic ether structure in one molecule, and can be subjected to cationic ring-opening polymerization reaction or addition reaction with carboxylic acid, thiol and phenol. Is.
  • Examples of the bisallylnadiimide compound include the following compounds: Is mentioned. These may be used alone or in combination.
  • the blending amount in the case of containing a thermal crosslinking agent component depends on the crosslinking agent to be selected in terms of the crosslinking effect, in terms of the deformation of the pattern in the heat treatment after development and the allowable width of the residue (scum) generated during development.
  • An optimum addition amount can be selected, and is preferably 0.5 to 50 parts by mass, more preferably 5 to 30 parts by mass with respect to 100 parts by mass of the (A) alkali-soluble resin.
  • (F) At least one compound selected from the group consisting of an acrylate compound, a methacrylate compound, an allyl group-containing compound, a methoxy group-containing compound, and a phenylester compound.
  • the compound (F) may be contained so that development can be performed within an appropriate development time range with respect to the alkali dissolution rate of the polymer that changes accordingly.
  • An acrylate compound and a methacrylate compound are compounds selected from the group consisting of acrylic acid esters, methacrylates, acrylamides, and methacrylamides.
  • Specific examples of preferable ones include NK-ester series M-20G, M-40G, M-90G, M-230G, CB-1, SA, S, AMP-10G, AMP-20G, AMP manufactured by Shin-Nakamura Chemical Co., Ltd.
  • Kyoeisha Chemical Epoxy Ester Series M-600A, 40EM, 70PA, 200PA, 80MFA, 3002M, and 3002A can be mentioned.
  • examples include DMAEA, DMAPAA, DMAA, ACMO, NIPAM, and DEAA manufactured by Kojin Co., Ltd. These compounds may be used alone or in combination of two or more.
  • allyl group-containing compounds include allyl alcohol, allyl anisole, benzoic acid allyl ester, cinnamic acid allyl ester, N-allyloxyphthalimide, allyl phenol, allyl phenyl sulfone, allyl urea, diallyl phthalate, diallyl isophthalate, terephthalic acid Diallyl, diallyl maleate, diallyl isocyanurate, triallylamine, triallyl isocyanurate, triallyl cyanurate, triallylamine, triallyl 1,3,5-benzenetricarboxylate, triallyl trimelliate (TRIAM705 manufactured by Wako Pure Chemical Industries, Ltd.), pyro Triaryl merit acid (TRIAM805 manufactured by Wako Pure Chemical Industries, Ltd.), triallyl oxydiphthalate, triallyl phosphate, triallyl phosphite, triallyl citrate It is below. These compounds are used alone or in combination.
  • Examples of the methoxy group-containing compound include the following compounds: Is mentioned.
  • the blending amount is preferably 0.5 to 50 parts by weight, more preferably 1 to 20 parts by weight with respect to 100 parts by weight of the (A) alkali-soluble resin. If the amount of the inhibitor is less than 1 part by mass, a sufficient dissolution inhibiting effect cannot be obtained. Conversely, if the amount exceeds 50 parts by mass, these dissolution inhibitors evaporate during heat curing, resulting in a decrease in the remaining film rate. By doing so, it becomes impossible to secure the film thickness of the target cured film.
  • an organic compound having a carboxyl group in the molecule (hereinafter also referred to as “carboxylic acid compound”)
  • an organic compound having a carboxyl group in the molecule may be added.
  • a carboxylic acid compound having 4 to 20 carbon atoms is preferable, having a straight chain structure, a branched or cyclic structure, and more preferably having 6 to 12 carbon atoms in the organic group.
  • sorbic acid lauric acid, myristic acid, adipic acid, 2-methyl-4-pentenoic acid, 4-methyl-2-pentenoic acid, 2-methyl-2-pentenoic acid, 2-methyl-n- Valeric acid, 3-methyl-n-valeric acid, 4-methyl-n-valeric acid, 2-ethylbutyric acid, heptanoic acid, octanoic acid, n-nonanoic acid, isononanoic acid, decanoic acid, DL-leucine acid, 2- Heptenoic acid, 2-octenoic acid, 2-nonenoic acid, 2-decenoic acid, 9-decenoic acid, 2-dodecenoic acid, 10-undecenoic acid, 3-cyclohexene-1-carboxylic acid, 1-cyclohexene-3-carboxylic acid Cyclohexanecarboxylic acid, cyclopentylacetic acid, cyclohexylacetic
  • the amount of (G) carboxylic acid compound added is preferably 5 to 20 parts by mass, more preferably 5 to 10 parts by mass.
  • the amount of the carboxylic acid compound is 5 parts by mass or more, the development residue in the exposed area is reduced, the sensitivity is improved, and the adhesion to the silicon substrate is good.
  • the amount is 20 parts by mass or less, film loss due to curing is small, and the tensile elongation of the film after curing is good.
  • additives It is also possible to add a dye, a surfactant, and a dissolution accelerator to the photosensitive resin composition according to the present invention as necessary. More specifically, the additives include methyl violet, crystal violet, malachite green and the like. When the dye is added, the addition amount is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the (A) alkali-soluble resin.
  • non-ionic surfactants made of polyglycols such as polypropylene glycol and polyoxyethylene lauryl ether or derivatives thereof, Fluorard (trade name, manufactured by Sumitomo 3M), Megafuck (trade name, Fluorosurfactants such as Dainippon Ink and Chemicals), Sulflon (trade name, manufactured by Asahi Glass Co., Ltd.), KP341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), DBE (trade name, manufactured by Chisso), Granol ( Organic siloxane surfactants such as trade name, manufactured by Kyoeisha Chemical Co., Ltd.) can be mentioned. From the viewpoint of non-fluorine, organosiloxane surfactants are preferred.
  • the amount of addition of the surfactant is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the (A) alkali-soluble resin.
  • the dissolution accelerator a compound having a phenolic hydroxyl group is preferable.
  • linear phenol compounds such as bisphenol, MtrisPC, and MtetraPC (manufactured by Honshu Chemical Industry Co., Ltd.), TrisP-HAP, TrisP-PHBA, TrisP-PA Non-linear phenolic compounds (manufactured by Honshu Chemical Industry Co., Ltd.), 5-n-hexylresorcinol, compounds in which 2-5 hydrogen atoms of the phenyl group of diphenylmethane are substituted with hydroxyl groups, phenyl group of 3,3-diphenylpropane And compounds having 1 to 5 hydrogen atoms substituted with a hydroxyl group, a one-to-two reaction product of bis (3-amino-4-hydroxyphenyl) sulfone and 1,2-cyclohexyldicarboxylic anhydride, and the like.
  • the addition amount is preferably in the range of 0.5 to 20 parts by mass with respect to 100 parts by mass of the (A) alkal
  • a negative photosensitive resin composition is prepared by including (H) a compound capable of generating an acid upon irradiation with actinic rays and (I) a compound capable of crosslinking by the action of an acid in (A) the alkali-soluble resin according to the present invention.
  • H Compound that generates acid upon irradiation with actinic ray
  • H The compound that generates acid upon irradiation with actinic ray used in the present invention is a compound that generates acid upon irradiation with actinic ray. For example, the following compounds may be mentioned.
  • Trichloromethyl-s-triazines Tris (2,4,6-trichloromethyl) -s-triazine, 2-phenyl-bis (4,6-trichloromethyl) -s-triazine, 2- (3-chlorophenyl) -Bis (4,6-trichloromethyl) -s-triazine, 2- (2-chlorophenyl) -bis (4,6-trichloromethyl) -s-triazine, 2- (4-methoxyphenyl) -bis (4 6-trichloromethyl) -s-triazine, 2- (3-methoxyphenyl) -bis (4,6 -Trichloromethyl) -s-triazine, 2- (2-methoxyphenyl) -bis (4,6-trichloromethyl) -s-triazine, 2- (4-methylthiophenyl) -bis (4,6-trichloromethyl) -S-triazine, 2-
  • Triarylsulfonium salts Triphenylsulfonium tetrafluoroborate, triphenylsulfonium hexafluorophosphonate, triphenylsulfonium hexafluoroarsenate, triphenylsulfonium methanesulfonate, triphenylsulfonium trifluoroacetate, triphenylsulfonium-p-toluenesulfo NATO, 4-methoxyphenyldiphenylsulfonium tetrafluoroborate, 4-methoxyphenyldiphenylsulfonium hexafluorophosphonate, 4-methoxyphenyldiphenylsulfonium hexafluoroarsenate, 4-methoxyphenyldiphenylsulfonium methanesulfonate, 4-methoxyphenyldiphenylsulfonium tri Fluoroa
  • trichloromethyl-S-triazines include 2- (3-chlorophenyl) -bis (4,6-trichloromethyl) -S-triazine, 2- (4-chlorophenyl) -bis (4, 6-trichloromethyl) -S-triazine, 2- (4-methylthiophenyl) -bis (4,6-trichloromethyl) -S-triazine, 2- (4-methoxy- ⁇ -styryl) -bis (4,6- Trichloromethyl) -S-triazine, 2- (4-methoxynaphthyl) -bis (4,6-trichloromethyl) -S-triazine, etc.
  • diaryl iodonium salts include diphenyl iodonium trifluoroacetate, diphenyl iodonium trifluoromethane sulfone.
  • triarylsulfonium salts include triphenylsulfonium methanesulfonate, triphenylsulfonium trifluoroacetate, 4-methoxyphenyldiphenylsulfonium methanesulfonate, 4-methoxyphenyldiphenyl, and the like.
  • Sulfonium trifluoroacetate, 4-phenylthiophenyl diphenyl trifluoromethanesulfonate, 4-phenylthiophenyl diphenyl trifluoroacetate and the like can be mentioned as suitable ones.
  • Diazoketone compound examples include 1,3-diketo-2-diazo compound, diazobenzoquinone compound, diazonaphthoquinone compound, and the like. Specific examples include 1,2-naphthoquinone diazide of phenols. There may be mentioned 4-sulfonic acid ester compounds.
  • Sulfone Compounds of the sulfone compound include ⁇ -ketosulfone compounds, ⁇ -sulfonylsulfone compounds and ⁇ -diazo compounds of these compounds. Specific examples include 4-trisphenacylsulfone, mesitylphena. Examples include silsulfone and bis (phenacylsulfonyl) methane.
  • Sulfonic acid compound examples include alkyl sulfonic acid esters, haloalkyl sulfonic acid esters, aryl sulfonic acid esters, and imino sulfonates.
  • Preferred examples include benzoin tosylate, pyrogallol tris trifluoromethane sulfonate, o-nitrobenzyl trifluoromethane sulfonate, o-nitrobenzyl p-toluene sulfonate, and the like.
  • Sulfonimide Compound Specific examples of the sulfonimide compound include N- (trifluoromethylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- (trifluoromethylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) naphthylimide and the like can be mentioned.
  • Oxime ester compound 2- [2- (4-methylphenylsulfonyloxyimino)]-2,3-dihydrothiophene-3-ylidene] -2- (2-methylphenyl) acetonitrile (trade name of Ciba Specialty Chemicals) “Irgacure PAG121”), [2- (propylsulfonyloxyimino) -2,3-dihydrothiophene-3-ylidene] -2- (2-methylphenyl) acetonitrile (Ciba Specialty Chemicals, Inc., trade name “Irgacure PAG103”), etc. Can be mentioned.
  • Diazomethane compound examples include bis (trifluoromethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (phenylsulfonyl) diazomethane, and the like.
  • the above (5) oxime ester compound is preferable.
  • the addition amount of the compound capable of generating an acid upon irradiation with actinic rays is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the heat-resistant polymer containing the copolymer of the present invention. If the added amount is 0.5 parts by mass or more, the amount of acid generated by irradiation with actinic rays is sufficient, and the sensitivity is improved.
  • action of an acid is chosen from the melamine resin substituted by the methylol group or the alkoxymethyl group and its monomer, and the urea resin and its monomer.
  • these include alkoxymethylated melamine resins, alkoxymethylated benzoguanamine resins, alkoxymethylated glycoluril resins, alkoxymethylated urea resins, and monomers thereof.
  • alkoxymethylated melamine resin, alkoxymethylated benzoguanamine resin, alkoxymethylated glycoluril resin, alkoxymethylated urea resin, and these monomers are the corresponding known methylolated melamine resin, methylolated benzoguanamine resin.
  • Methylolated urea resins, and methylol groups of monomers thereof can be obtained by converting them into alkoxymethyl groups.
  • alkoxymethyl group examples include methoxymethyl group, ethoxymethyl group, propoxymethyl group, butoxymethyl group and the like, but commercially available Cymel 300, 301, 303, 370, 325. 327, 701, 266, 267, 238, 1141, 272, 202, 1156, 1158, 1123, 1170, 1174, UFR65, 300 (manufactured by Mitsui Cytec Co., Ltd.), Nicarax MX-270, -280, -290, Nicalac MS-11, Nicalac MW-30, -100, -300, -390, -750 (manufactured by Sanwa Chemical Co., Ltd.) and the like can be preferably used. These compounds can be used alone or in combination.
  • the monomer of the resin described above is also used as a crosslinking agent, and examples thereof include hexamethoxymethylmelamine and dimethoxymethylurea.
  • the amount of the compound capable of crosslinking by the action of (I) acid is preferably 3 to 50 parts by mass with respect to 100 parts by mass of (A) alkali-soluble resin. When the addition amount is 3 parts by mass or more, crosslinking proceeds sufficiently and the patterning property is improved. When the addition amount is 50 parts by mass or less, the mechanical properties after curing are maintained.
  • the negative photosensitive resin composition includes (C) an organic solvent, (D) an adhesion aid, (E) a compound that causes a crosslinking reaction by heat, (other additions) described in the above positive photosensitive resin composition Agent) may be added as necessary.
  • ⁇ Method for forming cured relief pattern> An example of a method for forming a cured relief pattern on a substrate using the photosensitive resin composition according to the present invention (hereinafter also referred to as “the present method”) is shown below.
  • substrate in the form of a layer or a film is performed.
  • the substrate is applied to a silicon wafer, a ceramic substrate, an aluminum substrate, or the like.
  • an adhesion assistant such as a silane coupling agent may be applied to the substrate in advance.
  • the composition is applied by spin coating using a spinner, spray coating using a spray coater, dipping, printing, roll coating, or the like.
  • the layer or film is exposed to actinic radiation through a mask using an exposure apparatus such as a contact aligner, mirror projection, or stepper, or An exposure step of directly irradiating with a light beam, an electron beam or an ion beam is performed.
  • an exposure apparatus such as a contact aligner, mirror projection, or stepper
  • An exposure step of directly irradiating with a light beam, an electron beam or an ion beam is performed.
  • the actinic radiation X-rays, electron beams, ultraviolet rays, visible rays and the like can be used, but those having a wavelength of 200 to 500 nm are preferable.
  • the light source wavelength preferably includes i-line, and i-line alone is more preferable.
  • a contact aligner, a mirror projection, and a stepper are particularly preferable.
  • PEB post exposure bake
  • the developing method can be selected from methods such as an immersion method, a paddle method, and a rotary spray method.
  • Developers include inorganic alkalis such as sodium hydroxide, sodium carbonate, sodium silicate, aqueous ammonia, organic amines such as ethylamine, diethylamine, triethylamine, triethanolamine, tetramethylammonium hydroxide, tetrabutylammonium hydroxide.
  • An aqueous solution such as a quaternary ammonium salt such as quaternary ammonium salts, and an aqueous solution to which an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant is added as required can be used.
  • a quaternary ammonium salt such as quaternary ammonium salts
  • an aqueous solution to which an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant is added as required
  • an aqueous tetramethylammonium hydroxide solution is preferable, and the concentration thereof is 0.5% to 10%, and more preferably 1.0% to 5%. More preferably, 2.38% is particularly preferable in that it is usually used in a semiconductor manufacturing process.
  • a relief pattern formed on the substrate can be obtained by washing with a rinsing solution and removing the developer.
  • the rinsing liquid distilled water, methanol, ethanol, isoprop
  • a heating step of heating the relief pattern of the alkali-soluble resin thus obtained is performed.
  • the heating temperature is preferably 180 ° C. or higher. Usually, it is heated to 250 ° C to 400 ° C to decompose and dissipate components with low heat resistance contained in the additive component, and to polybenzoxazole through a dehydration cyclization reaction to convert it to heat resistance. A high relief pattern can be obtained.
  • a hot plate, an oven, and a temperature rising oven capable of setting a temperature program can be used.
  • Air may be used as the atmospheric gas when performing the heat treatment, and an inert gas such as nitrogen or argon may be used.
  • an inert gas such as nitrogen or argon may be used.
  • heating may be performed under reduced pressure using a vacuum pump or the like.
  • the resin according to the present invention can complete the dehydration cyclization reaction to polybenzoxazole at a relatively low temperature of 250 ° C. as compared with the conventional PBO precursor resin, resulting in a mechanical elongation of 40%. It will exceed. This is also preferable for improving the reliability of the semiconductor device.
  • a semiconductor device can be manufactured by combining the above-described method for forming a cured relief pattern with a known semiconductor device manufacturing method as a method for forming a buffer coat film or an interlayer insulating film of a semiconductor device.
  • reaction solution is cooled to 12 ° C., an aqueous solution in which 75 g of sodium sulfite is dissolved in 300 ml of ion-exchanged water is added dropwise to the reaction solution, the excess sodium chlorite is deactivated, and 500 ml of acetic acid is then added. Washed with ethyl. Thereafter, 115 ml of 10% hydrochloric acid was added dropwise to adjust the pH of the reaction solution to 3-4, and the precipitate was collected by decantation. This precipitate was dissolved in 200 ml of tetrahydrofuran.
  • reaction solution 1 This was ice-cooled to 0 ° C., and 5.35 g (45 mmol) of thionyl chloride dissolved in 15 g of ⁇ -butyrolactone was added dropwise over 30 minutes so as not to exceed 10 ° C. After stirring for 1 hour while cooling with ice so that the temperature does not exceed 10 ° C., the temperature is returned to room temperature. Using a vacuum pump, unreacted thionyl chloride and by-product sulfurous acid gas are distilled off to obtain a ⁇ -aminoisophthalic acid derivative. Synthesized. This is designated reaction solution 1.
  • reaction solution 2 a 1,3-phenylenediacetic acid derivative
  • reaction solution 4 The reaction vessel was immersed in an ice bath, cooled to 3 to 5 ° C., 32.84 g (276 mmol) of thionyl chloride was added dropwise to the reaction solution, and the mixture was stirred for 30 minutes. Further, using a vacuum pump, unreacted thionyl chloride and by-product sulfurous acid gas were distilled off under reduced pressure for 30 minutes to synthesize a 1,4-cyclohexanedicarboxylic acid derivative. This is designated reaction solution 4.
  • the filtrate obtained here was added dropwise with stirring to a 3 L beaker in which 1640 g of pure water and 30 g of hydrochloric acid were mixed and stirred to obtain a precipitate. This precipitate was washed with water, filtered, and then dried under reduced pressure at 40 ° C. for 48 hours to obtain a photosensitizer (PAC-1).
  • PAC-1 photosensitizer
  • ⁇ Reference Example 7> As a reaction vessel, a glass separable three-necked flask equipped with a Teflon (registered trademark) vertical stirrer was used. A reaction vessel was charged with 131.0 g of di-t-butyl dicarbonate and 780 g of ⁇ -butyrolactone, and a solution in which 132.8 g of 3-aminopropyltriethoxysilane and 270 g of ⁇ -butyrolactone were mixed at room temperature slowly. It was dripped. The reaction solution exothermed to about 40 ° C as it was added dropwise. In addition, the generation of carbon dioxide gas was confirmed with the reaction.
  • Teflon registered trademark
  • Example 1 Manufacture of alkali-soluble resin
  • Bis (3-amino-4-hydroxyphenyl) propane manufactured by Clariant Japan
  • BAP Teflon (registered trademark) vertical stirrer 69.17 g (268 mmol)
  • NMP 276 g NMP 276 g
  • 12.7 g 160 mmol
  • the reaction vessel was cooled by immersing it in a vessel obtained by adding dry ice to methanol.
  • Ethanol was added to the above reaction solution to precipitate a polymer, and then recovered and dissolved in 350 ml of NMP. Subsequently, ion exchange was performed with 78 g of cation exchange resin (Amberlyst A21, manufactured by Organo) and 75 g of anion exchange resin (Amberlyst 15, manufactured by Organo). This solution is dropped into 3 liters of ion-exchanged water under high-speed stirring, and the polymer is dispersed and precipitated, recovered, appropriately washed with water, dehydrated and then vacuum-dried to obtain an alkali-soluble resin powder comprising a PBO precursor unit. It was.
  • cation exchange resin Amberlyst A21, manufactured by Organo
  • anion exchange resin Amberlyst 15, manufactured by Organo
  • N-methylpyrrolidone 40 ° C Flow rate: 1.0 ml / min Detector: Trade name RI-930 manufactured by JASCO Corporation
  • Mw weight average molecular weight
  • ⁇ -Butyrolactone was added to this alkali-soluble resin to prepare an alkali-soluble resin solution having a resin concentration of 35% by mass (P-1).
  • Example 2 With 66.25g (253.7 mmol) instead of bis Example 1 (chlorocarbonyl) tricyclo [5,2,1,0 2,6] decane 69.99G (268 mmol), as in Example 1 As a result, a PBO precursor having a weight average molecular weight (Mw) of 28500 was obtained. ⁇ -Butyrolactone was added to this alkali-soluble resin to obtain an alkali-soluble resin solution having a resin concentration of 35% by mass (P-2).
  • Example 3 Similar to Example 1 except that 73.7 g (282 mmol) was used instead of 69.99 g (268 mmol) of bis (chlorocarbonyl) tricyclo [5,2,1,0 2,6 ] decane of Example 1. The operation was performed to obtain a PBO precursor having a molecular weight in terms of polystyrene of a weight average molecular weight (Mw) of 53745. ⁇ -Butyrolactone was added to the alkali-soluble resin to obtain an alkali-soluble resin solution having a resin concentration of 35% by mass (P-3).
  • Example 4 As the reaction vessel, a glass separable three-necked flask equipped with a Teflon (registered trademark) vertical stirrer was used. During the synthesis, stirring was performed while passing nitrogen gas. 38.75 g (150 mmol) of BAP, 154 g of NMP, and 7.12 g (90 mmol) of pyridine were placed in a reaction vessel, and stirred and dissolved while flowing nitrogen. After the BAP was dissolved, the reaction vessel was cooled by immersing it in a vessel obtained by adding dry ice to methanol.
  • Teflon registered trademark
  • the total amount of the reaction solution 1 prepared in Reference Example 2 (5-aminoisophthalic acid derivative 15 mmol) was all added dropwise to the above reaction solution while maintaining at ⁇ 19 to ⁇ 23 ° C. Then, bis prepared in Example 2 (chlorocarbonyl) tricyclo [5,2,1,0 2,6] decane 35.29G (135 mmol) was dissolved in ⁇ - butyrolactone 110g, to -19 ⁇ -23 ° C. The solution was added dropwise to the reaction vessel. After completion of the dropping, the reaction vessel was immersed in an ice bath and stirred at 2 ° C. for 2 hours. Further, 16.6 g (210 mmol) of pyridine was added.
  • Example 5 Instead of 69.99 g (268 mmol) of bis (chlorocarbonyl) tricyclo [5,2,1,0 2,6 ] decane of Example 1, 67.7 g (259.1 mmol) were used, and bis (chlorocarbonyl) tricyclo [5,2,1,0 2,6] after decane completion of the dropwise addition, 2,3-5-norbornene anhydride (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 2.92 g (17.8 mmol) was added, 50 ° C.
  • Example 2 After stirring for 20 hours, the same operation as in Example 1 was performed to obtain a PBO precursor having a polystyrene-equivalent molecular weight of 19600 in weight average molecular weight (Mw). ⁇ -Butyrolactone was added to this alkali-soluble resin to obtain an alkali-soluble resin solution having a resin concentration of 35% by mass (P-5). The result of 13 C-NMR of the obtained polymer is shown in FIG.
  • Example 6 A condenser tube with a Dean-Stark trap was attached to a glass separable three-necked flask equipped with a Teflon (registered trademark) vertical stirrer. Bis (3,4-dicarboxyphenyl) ether dianhydride (manac) (18.61 g, 60 mmol) and BAP (32.16 g, 120 mmol) were charged. Further, 110 g of ⁇ -butyrolactone and 22 g of toluene were added as a solvent. The mixture was heated to 40 ° C. and stirred at 100 rpm for 90 minutes in a nitrogen atmosphere.
  • This solution is dropped into 2 liters of ion-exchanged water under high-speed stirring, and the polymer is dispersed and precipitated, collected, appropriately washed with water and dehydrated, followed by vacuum drying to obtain a powder of a copolymer of PBO precursor and PI. It was.
  • the molecular weight in terms of polystyrene was a copolymer of PBO precursor and PI having a weight average molecular weight (Mw) of 17,000.
  • Mw weight average molecular weight
  • ⁇ -Butyrolactone was added to this alkali-soluble resin to prepare an alkali-soluble resin solution having a resin concentration of 35% by mass (P-6).
  • Example 7 Instead of 69.17 g (268 mmol) of BAP from Example 5, the following compound: After using 85.9 g (268 mmol), the same operation as in Example 5 was performed to obtain a PBO precursor having a polystyrene equivalent weight average molecular weight (Mw) of 22000. ⁇ -Butyrolactone was added to this alkali-soluble resin to obtain an alkali-soluble resin solution having a resin concentration of 35% by mass (P-13). The results of 13 C-NMR of the obtained polymer are shown in FIG.
  • Example 8> Instead of 69.17 g (268 mmol) of BAP from Example 5, the following compound: After using 102.5 g (268 mmol), the same operation as in Example 5 was performed to obtain a PBO precursor having a polystyrene-equivalent molecular weight of 24,000 in weight average molecular weight (Mw). ⁇ -Butyrolactone was added to this alkali-soluble resin to obtain an alkali-soluble resin solution having a resin concentration of 35% by mass (P-14). The result of 13 C-NMR of the obtained polymer is shown in FIG.
  • Example 9> Instead of 69.17 g (268 mmol) of BAP from Example 6, the following compound: After using 79.97 g (268 mmol), the same operation as in Example 6 was performed to obtain a PBO precursor having a polystyrene-equivalent molecular weight of 20000 in weight average molecular weight (Mw). ⁇ -Butyrolactone was added to this alkali-soluble resin to obtain an alkali-soluble resin solution having a resin concentration of 35% by mass (P-15). The results of 13 C-NMR of the obtained polymer are shown in FIG.
  • Example 10> instead of 69.17 g (268 mmol) of BAP from Example 6, the following compound: After using 80.51 g (268 mmol), the same operation as in Example 5 was performed to obtain a PBO precursor having a polystyrene-equivalent molecular weight of 21,000 as a weight average molecular weight (Mw). ⁇ -Butyrolactone was added to this alkali-soluble resin to obtain an alkali-soluble resin solution having a resin concentration of 35% by mass (P-16). The result of 13 C-NMR of the obtained polymer is shown in FIG.
  • Example 11> instead of 69.17 g (268 mmol) of BAP from Example 6, the following compound: After using 75.12 g (268 mmol), the same operation as in Example 5 was performed to obtain a PBO precursor having a polystyrene-equivalent molecular weight of 20800 in weight average molecular weight (Mw). ⁇ -Butyrolactone was added to this alkali-soluble resin to obtain an alkali-soluble resin solution having a resin concentration of 35% by mass (P-17). The result of 13 C-NMR of the obtained polymer is shown in FIG.
  • Example 13> Instead of 69.17 g (268 mmol) of BAP from Example 5, the following compound: After using 62.23 g (268 mmol), the same operation as in Example 5 was performed to obtain a PBO precursor having a polystyrene-equivalent molecular weight of 23,000 in weight average molecular weight (Mw). ⁇ -Butyrolactone was added to this alkali-soluble resin to obtain an alkali-soluble resin solution having a resin concentration of 35% by mass (P-19).
  • FIG. 11 shows the result of 13 C-NMR of the obtained polymer.
  • Example 14> Instead of 69.17 g (268 mmol) of BAP from Example 5, the following compound: After using 75.00 g (231 mmol) (manufactured by Nippon Pure Chemicals Co., Ltd.), the same operation as in Example 5 was performed to obtain a PBO precursor having a polystyrene-equivalent molecular weight of 16,000 in weight average molecular weight (Mw). . ⁇ -Butyrolactone was added to this alkali-soluble resin to obtain an alkali-soluble resin solution having a resin concentration of 35% by mass (P-20).
  • a glass separable three-necked flask equipped with a Teflon (registered trademark) vertical stirrer was used as a reaction vessel. During the synthesis, stirring was performed while passing nitrogen gas. 29.52 g (114 mmol) of BAP, 118 g of NMP, and 5.27 g (67 mmol) of pyridine were placed in a reaction vessel, and stirred and dissolved while flowing nitrogen. After the BAP was dissolved, the reaction vessel was cooled by immersing it in a vessel in which dry ice was added to Solmix.
  • reaction solution 2 prepared in Reference Example 3 (1,3-phenylenediacetic acid derivative 100 mmol) was all added dropwise to the above reaction solution while maintaining at ⁇ 19 to ⁇ 23 ° C. After completion of the dropping, the reaction vessel was immersed in an ice bath and stirred at 2 ° C. for 2 hours. Further, 10.6 g (134 mmol) of pyridine was added. Ethanol was added to the reaction solution to precipitate a polymer, which was recovered and dissolved in 300 ml of NMP. Next, ion exchange was performed with 50 g of cation exchange resin and 50 g of anion exchange resin.
  • This solution was dropped into 2 liters of ion-exchanged water under high-speed stirring to disperse and precipitate the polymer, recovered, washed with water and dehydrated as appropriate, and then vacuum dried to obtain a PBO precursor powder.
  • a molecular weight in terms of polystyrene was obtained as a PBO precursor having a weight average molecular weight (Mw) of 21,000.
  • Mw weight average molecular weight
  • ⁇ -Butyrolactone was added to this alkali-soluble resin, but gelled when left overnight. Therefore, the alkali-soluble resin was dissolved in N-methylpyrrolidone to obtain an alkali-soluble resin solution having a resin concentration of 35% by mass (P-7).
  • the reaction was cooled to -5 ° C. 73.45 g (249 mmol) of 4,4′-oxybisbenzoic acid chloride (manufactured by Nippon Agricultural Chemicals Co., Ltd.) (hereinafter also referred to as “DEDC”) was dissolved in 200 g of ⁇ -butyrolactone, charged into a dropping funnel, and added to the reaction solution. It was added dropwise over 50 minutes. 30 minutes after the completion of dropping, 29.4 g (374 mmol) of pyridine was added. Stir at room temperature for 2 hours.
  • DEDC 4,4′-oxybisbenzoic acid chloride
  • the molecular weight in terms of polystyrene is a single sharp curve having a weight average molecular weight (Mw) of 14500 and is a single composition.
  • Mw weight average molecular weight
  • ⁇ -Butyrolactone was added to this alkali-soluble resin, but gelled when left overnight. Therefore, the alkali-soluble resin was dissolved in N-methylpyrrolidone to obtain an alkali-soluble resin solution (P-10) having a resin concentration of 35% by mass.
  • Tg glass transition temperature of cured film of positive photosensitive resin composition
  • the positive photosensitive resin compositions obtained in Examples 15 to 28 and Comparative Examples 8 to 14 were applied onto a 6 inch silicon 6 inch silicon wafer by a spin coater (clean track Mark 7 manufactured by Tokyo Electron). After drying at 130 ° C. for 180 seconds, a heat-resistant cured film having a thickness of 10.0 ⁇ m was obtained by heating at 320 ° C. for 1 hour in a nitrogen atmosphere using a temperature rising oven (VF200B manufactured by Koyo Thermo Systems Co., Ltd.).
  • VF200B temperature rising oven
  • This cured film was cut to a width of 3 mm, immersed in a dilute hydrofluoric acid aqueous solution overnight to peel off the film piece, and dried, using a TMA apparatus (TMA-50, manufactured by Shimadzu Corporation) with a nitrogen flow rate of 50 ml / The glass transition temperature was measured under the conditions of min and a heating rate of 10 ° C./min. The results are shown in Table 2. In addition, Tg was not measured about the comparative example whose sensitivity was unobservable by evaluation of the positive photosensitive resin composition mentioned later.
  • the relief pattern was observed with a microscope, and the minimum exposure amount that the 3.5 ⁇ m square relief pattern in the exposed area could be dissolved and removed was defined as sensitivity.
  • the results are shown in Table 2. Further, a coating film having a thickness of 0.2 ⁇ m is produced with respect to the film thickness of 7.9 ⁇ m before development, and 25 mJ / cm 2 is added to the minimum exposure amount obtained when the initial film thickness is 7.9 ⁇ m.
  • the exposure is performed, and the development time is fixed at the development time obtained when the initial film thickness is 7.9 ⁇ m, and development is performed, and when the film thickness is increased with respect to the original 7.9 ⁇ m, 3.
  • the film thickness margin that can dissolve and remove the 5 ⁇ m square relief pattern was determined.
  • Comparative Examples 8 to 11 Positive type photosensitive resin compositions could not be prepared with ⁇ -butyrolactone and were prepared using NMP.
  • development was performed in 9 seconds, which is the minimum development time of the developing machine, but the dissolution rate of the unexposed area was very fast, and the film thickness after development was 6 The thickness could not be adjusted to be .75 ⁇ m, and as a result, a desired relief pattern could not be obtained.
  • the inhibition of dissolution of the alkali-soluble resin by naphthoquinonediazide contained in PAC-1 is not effective, and as a result, the difference in dissolution rate between the unexposed area and the exposed area cannot be obtained.
  • Comparative Examples 12 and 14 the desired pattern of 3.5 ⁇ m could be obtained, but the sensitivity required for obtaining the pattern was low.
  • the film thickness could be adjusted to be 6.75 ⁇ m by adjusting the development time, but a desired pattern could be obtained with an exposure dose of 800 mJ / cm 2 or less. There wasn't.
  • the film thickness can be adjusted to 6.75 ⁇ m by adjusting the development time, and the film has relatively high sensitivity, but contains F atoms that are halogen atoms.
  • Example 5 The polymer (P-5) obtained in Example 5 was dissolved in the solvent shown in Table 3 instead of GBL, and a positive photosensitive resin was prepared in the same manner as in Example 19 except that the patterning characteristics were evaluated. .
  • the flatness of the coating film before development was determined. 7 points on the diameter on a 6-inch silicon wafer were measured, the difference between the maximum film thickness and the minimum film thickness was obtained, and the value divided by the average film thickness of 7 points (defined as surface smoothness) is shown in Table 3. Show. If this value is small, it can be said that the surface smoothness is good.
  • Example 33 In the acetone of Example 33, the solvent quickly diffused during the coating, so that a coating film was formed in a star shape and could not be uniformly coated on the silicon wafer. With the butyl acetate of Example 34, the resin did not dissolve and the composition could not be prepared. Further, the composition was allowed to stand at room temperature for 2 weeks with the air released, and the viscosity change rate of the composition was determined. NMP of Example 30 and dimethylacetamide of Example 31 were slightly turbid in white after 2 weeks due to the influence of moisture in the air. In Examples 32 and 33, the viscosity of the composition was increased.
  • the GBL of Example 29 is excellent from the viewpoints of the flatness, sensitivity, film thickness margin, and stability of the coating film.
  • Examples 35 to 43 a small pattern of 3 microns or less adhered. Further, the positive photosensitive resin compositions obtained in Examples 35 to 46 were applied onto a 6-inch silicon 6-inch silicon wafer by a spin coater (Tokyo Electron Clean Track Mark 7) and dried at 130 ° C. for 180 seconds. Then, using a temperature rising oven (VF200B, manufactured by Koyo Thermo Systems Co., Ltd.), heating was performed at 320 ° C. for 1 hour in a nitrogen atmosphere to obtain a heat-resistant cured film having a thickness of 10.0 ⁇ m.
  • VF200B temperature rising oven
  • the sample after forming this cured film was treated with a pressure cooker (131 ° C., 3.0 atm) for 100 hours, and then a cutter knife so that 100 squares of 1 mm square could be formed in a cross-cut test (JIS K5400).
  • the water-resistant adhesiveness was evaluated by counting the number of squares that did not adhere to the cellophane (registered trademark) and remained on the substrate. .
  • Table 5 shows the number of squares remaining on the silicon wafer after the tape peeling test. The greater the number, the better the adhesion.
  • the cured films of Examples 35 to 43 have good water-resistant adhesion. Examples 35 to 43 are more preferable because they satisfy all of the adhesiveness of the pattern after development, the adhesiveness to the silicon wafer after thermosetting, and the storage stability of the photosensitive resin composition.
  • the results are shown in Table 7.
  • the patterned silicon wafer thus obtained was heated at 320 ° C. for 1 hour in a nitrogen atmosphere using a temperature rising oven (VF200B manufactured by Koyo Thermo Systems Co., Ltd.) to obtain a heat-resistant cured film.
  • VF200B temperature rising oven
  • the silicon wafer was immersed in a bath filled with a resist stripping solution TOK105 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) heated to 80 ° C. for 30 minutes. After washing with water, the film thickness was measured and the remaining film ratio was measured. Furthermore, the state of the pattern was observed.
  • TOK105 manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • Example 7 the glass transition temperature (Tg) of the cured film of the positive photosensitive resin composition was measured. The results are shown in Table 7. Moreover, the viscosity change rate after leaving each photosensitive resin composition to stand at room temperature for 4 weeks was measured. The results are also shown in Table 7. Examples 47 to 62 are more preferable because they have a higher glass transition temperature and improved chemical resistance as compared with the non-added product of Example 63.
  • F-1 to F-7 are as follows: ⁇ Wherein n2 is an integer of 1 to 20, with an average of 9. ⁇
  • the positive photosensitive resin composition of the present invention can be suitably used in the fields of semiconductor protective films, interlayer insulating films, liquid crystal alignment films, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 分子中にハロゲン原子を含まず、高感度であり、同一露光量、同一現像時間でパターンを形成する場合の膜厚マージンが広く、半導体装置の製造工程で通常使用される現像液(2.38%TMAH水溶液)による現像が可能であり、γ-ブチロラクトンに溶解する感光性樹脂組成物に適したアルカリ可溶性樹脂が提供される。下記一般式(1): {式中、X1は、ハロゲン原子を含まない4価の有機基を示し、そしてZ1は、下記一般式(2): (式中、L1、L2及びL3は、それぞれ独立に、水素原子又はメチル基を表し、そしてL4は、水素原子、メチル基又は水酸基を表す。)で表される2価の有機基を表す。}で表される構造を分子内に有する樹脂が提供される。

Description

耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物
 本発明は、電子部品や表示素子の絶縁材料、並びに半導体装置におけるパッシベーション膜、バッファーコート膜、層間絶縁膜などに用いられる耐熱性樹脂材料のレリーフパターンを形成するために用いられるアルカリ可溶性樹脂、及び該アルカリ可溶性樹脂を含むポジ型又はネガ型感光性樹脂組成物に関する。
 半導体装置の表面保護膜又は層間絶縁膜の用途には、優れた耐熱性、電気特性、及び機械特性を併せ持つポリイミド樹脂が好適であることは広く知られている。この用途に使用されるポリイミド樹脂は、一般に感光性ポリイミド前駆体組成物の形で提供され、これをシリコンウェハー等の基板に塗布し、活性光線によるパターニング露光、現像、及び熱イミド化処理を順次施すことにより、微細なレリーフパターンを有する耐熱性樹脂皮膜を該基板上に容易に形成させることができる。
 ところが、上記感光性ポリイミド前駆体組成物を使用する場合、その現像工程においては、現像液として多量の有機溶剤を用いる必要があり、コストの観点、安全性、および近年の環境問題への関心の高まりから、脱有機溶剤対策が求められてきている。これを受け、最近になってフォトレジストと同様に、希薄アルカリ水溶液で現像可能な耐熱性感光性樹脂材料の提案が各種なされている。
 希薄アルカリ水溶液に可溶性を有するポリヒドロキシアミドである、ポリベンゾオキサゾール(以下、「PBO」ともいう。)前駆体と感光性ジアゾナフトキノン化合物(以下、「NQD」ともいう。)などの光活性成分(以下、「PAC」ともいう。)からなる感光性樹脂組成物(以下、特許文献1参照)が最近注目され、実際に使用されている。この他にも、側鎖にフェノール性水酸基を導入したアルカリ可溶性樹脂とPACとの組合せ、及び骨格にトリメリット酸を利用しポリイミド前駆体ユニットとPBO前駆体ユニットが交互に連なるポリイミド-PBO前駆体ポリマーとPACとの組合せ等多数のものが、希薄アルカリ水溶液で現像可能な耐熱性感光性樹脂組成物として提案され、使用されている。
 上述した耐熱性感光性樹脂組成物においてPACと併用して使用されるアルカリ可溶性樹脂は、ポリイミド前駆体又はPBO前駆体等のフェノール性水酸基を有するポリアミドが主流である。該フェノール性水酸基をポリマー骨格に導入することにより、現像時に露光部が希薄アルカリ水溶液に溶解し、かつ未露光部はフェノール性水酸基とPACが相互作用を持つことで溶解が抑制され、ポジ型のレリーフパターンを形成することができる。
 ポリマー中にフェノール性水酸基を導入する方法は、互いにオルト位にあるアミノ基及びフェノール性水酸基を有する芳香族ジアミン(以下、「フェノール性ジアミン」ともいう。)をポリアミドの原料としてカルボン酸と脱水縮合させる方法が一般的である。このフェノール性ジアミンの水酸基の酸性度が低い場合は、ポリアミドが希薄アルカリ水溶液に溶解せず、現像時に露光部の溶け残りが生じたり、現像そのものが不可能となることがある。一方、フェノール性ジアミンの水酸基の酸性度が高い場合にはPACとの相互作用が弱く、現像時に未露光部も溶けてしまい、良質なレリーフパターンを得ることができない。
 上述したフェノール性ジアミン水酸基の酸性度と透明性とのバランスがとれたフェノール性ジアミンとしては、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンが優れ、ポジ型感光性樹脂組成物のフェノール性ジアミン成分として現在広く使用されている。しかしながら、近年、半導体装置の信頼性の向上や環境に対する配慮からフッ素原子のようなハロゲン原子を含まない材料が強く求められている。
 また、半導体装置の製造時の露光工程では水銀ランプのi線を利用したi線ステッパと呼ばれる縮小投影露光機が主に用いられている。このステッパは非常に高価な機械であるので、感光性樹脂組成物が低感度であるとレリーフパターンを形成するために要する露光時間が長くなり、必要となるステッパの台数が増えて露光プロセスの高コスト化に繋がる。
 そこで感光性樹脂組成物の光感度を向上させることが強く求められている。ポジ型感光性樹脂組成物において、光感度を向上させるには、まず、ポリマーのi線の透過性を向上し、露光部のPACの分解を妨げないことが必要である。そのため、ポジ型感光性樹脂組成物に使用するポリマーには、i線透過性向上が求められる。更に、ポリマーのフェノール性水酸基とPACの相互作用が強い程、未露光部と露光部のアルカリ現像液に対する溶解速度の差が大きくなり、結果として光感度が高くなる。従って、ポジ型感光性樹脂組成物に使用するポリマーにはPACとの相互作用が強いことが求められる。
 一方、近年、耐熱性感光性樹脂組成物に使用する溶媒として、塩基性の高いN-メチルピロリドンといったアミド系の溶媒よりもγ-ブチロラクトンといった中性の溶媒が好まれる傾向があり、半導体製造工程の要望として挙がっている。そのため、ポジ型感光性樹脂組成物に使用するポリマーにはγ-ブチロラクトンに溶解することが求められている。
 また、耐熱性感光性樹脂組成物を使用して、パターンを形成する際に使用する希薄アルカリ現像液としては、2.38重量%テトラメチルアンモニウムヒドロキシド水溶液(以下、「2.38%TMAH水溶液」ともいう)が、通常、半導体製造工程に使用されるため、2.38%TMAH水溶液で現像が可能なことが強く求められている。
 さらに、半導体装置の製造工程で、保護膜用途の感光性組成物を塗布するシリコンウェハーは、既に配線回路や外部接続用端子が形成されているため、表面が均一ではない。その影響で、感光性樹脂組成物を配線回路や外部接続用端子が形成されたシリコンウェハーに塗布した場合、感光性樹脂組成物層の膜厚が、ウェハー面内で均一でなくなる。通常の保護膜用途の感光性樹脂組成物では、塗布された膜厚が変化した場合、パターン形成に必要とする露光量と現像時間を変化させる必要があり、膜厚が変化した場合のパターン形成プロセスの余裕度(マージン)が狭いといった問題がある。そこで、同一露光量、同一現像時間でパターンを形成する場合の膜厚マージンが広い感光性樹脂組成物が強く求められている。
 分子内にハロゲン原子を含まないPBO前駆体として、フッ素原子を含む2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンの代わりに、フェノール性水酸基の酸性度が高いビス(3-アミノ-4-ヒドロキシフェニル)スルホンを用い、これとジカルボン酸との縮合物とPACからなるポジ型感光性樹脂組成物が提案されている(以下、特許文献2参照)。しかし、特許文献2における実施例では、ジカルボン酸にフッ素原子を有する化合物を使用しており、さらに、現像液も半導体製造行程で通常使用される2.38%TMAH水溶液ではなく、0.79%TMAH水溶液を使用している。これらは、ビス(3-アミノ-4-ヒドロキシフェニル)スルホンのフェノール性水酸基に由来する強いポリマーのアルカリ溶解性をコントロールするために行われたと思われる。本願発明者が、ジカルボン酸として特許文献2に記載のハロゲン原子を含まない4,4’-オキシビス安息香酸とビス(3-アミノ-4-ヒドロキシフェニル)スルホンの重縮合物を合成したところ、得られたポリマーはγ-ブチロラクトンに溶解せず、i線に対する透明性は高いが、PACとの相互作用が低いため、光感度が十分に満足できるものではなかった。
 分子内にハロゲン原子を含まないフェノール性水酸基含有溶剤可溶性ポリイミドとPACからなるポジ型感光性樹脂組成物も提案されている(以下、特許文献3参照)。特許文献3には、ビシクロ(2,2,2)-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物を含むテトラカルボン酸二無水物と、ビス(3-アミノ-4-ヒドロキシフェニル)スルホンを含む芳香族ジアミンとが脱水縮合した構造を有する重縮合物であって、重縮合物を得る場合に全テトラカルボン酸二無水物と全芳香族ジアミンとを合わせた全原料モノマーの中でビス(3-アミノ-4-ヒドロキシフェニル)スルホンが、原料仕込み時に20モル%~40モル%の範囲にあり、重縮合物を得る際の全テトラカルボン酸二無水物のモル数と全芳香族ジアミンのモル数の比が1:0.75~0.87又は0.75~0.87:1の範囲であり、重縮合物の重量平均分子量が5,000~17,000の範囲にあるポリマーが記載されている。特許文献3では、フェノール性ジアミンにビス(3-アミノ-4-ヒドロキシフェニル)スルホンを使用することで分子中にハロゲン原子を含まず、アルカリ溶解性とPACとの相互作用を発現し、ビシクロ(2,2,2)-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物を使用することで、γ-ブチロラクトンに対する溶解性とi線透明性を向上し、ビス(3-アミノ-4-ヒドロキシフェニル)スルホンの導入量と重量平均分子量をコントロールすることで、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン由来の強いアルカリ溶解性を制御しており、γ-ブチロラクトンに可溶でi線に対して十分に透明で、2.38%TMAH現像液でパターンを形成することが可能なハロゲン原子を含まないポジ型感光性樹脂組成物を開示している。しかしながら、ビス(3-アミノ-4-ヒドロキシフェニル)スルホンの導入量がそのアルカリ溶解性の高さから制限され、そのためポリマー内のフェノール性水酸基の密度が下がり、また、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン由来のフェノール性水酸基がPACとの相互作用が弱いため、より高感度なポジ型感光性樹脂組成物が望まれている。
 以下の特許文献4には、脂環式ジカルボン酸とフェノール性ジアミンからなるPBO前駆体が開示されており、好適なジカルボン酸としてシクロヘキサンジカルボン酸が記載されており、実施例3では分子にハロゲン原子を含まない重縮合物をN-メチルー2-ピロリドンに溶解したポジ型感光性樹脂組成物が開示されている。しかし、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)エーテルとシクロヘキサンジカルボン酸の縮合物では、重縮合物はγ-ブチロラクトンに溶解せず、また、ポジ型感光性樹脂組成物の感度も十分に満足できるものではないと考えられる。
 その他、脂環式ジカルボン酸を使用したPBO前駆体として、以下の特許文献5~7が開示されているが、分子内にハロゲン原子を含まず、γ-ブチロラクトンに溶解し、かつ、その感光性樹脂組成物が高感度であり、同一露光量、同一現像時間でパターンを形成する場合の膜厚マージンが広いポリマーは未だ提供されていないと考えられる。
 さらに、以下の特許文献8には、トリシクロ[5,2,1,02,6]デカン構造を有する酸クロリドを使用した耐熱性ポリアミドが開示されている。以下の特許文献9には、ガスバリヤフィルムの分野であるが、トリシクロデカン構造を有するポリベンゾアゾール樹脂が開示されている。そして以下の特許文献10には、PBO前駆体樹脂と放射線照射により酸を発生する化合物及び酸の作用により架橋し得る化合物を含むネガ型感光性樹脂組成物が開示されている。
日本国特開昭63-96162号公報 日本国特開平11-119426号公報 国際公開第07/029614号パンフレット 日本国特開2004-18594号公報 日本国特開2004-18593号公報 日本国特開2006-143943号公報 日本国特開2006-349700号公報 日本国特開昭58-110538号公報 日本国特開2006-218647号公報 日本国特許第3966590号公報
 本発明は、感光性樹脂組成物としたときに、ハロゲン原子を含まず、同一露光量、同一現像時間でパターンを形成する場合の膜厚マージンが広く、高感度であり、半導体装置の製造工程で通常使用される現像液(2.38重量%テトラメチルアンモニウムヒドロキシド水溶液)によるパターンの形成が可能であり、γ-ブチロラクトン溶媒に可溶であるアルカリ可溶性樹脂を提供することを目的とする。また、本発明は、該組成物該組成物を用いて基板上に硬化レリーフパターンを形成する方法、及び該硬化レリーフパターンを有してなる半導体装置を提供することを目的とする。
 本発明者らは、前記課題を解決するため、ハロゲン原子を含まない数多くのフェノール性ジアミンと芳香族ジカルボン酸の脱水縮合物より誘導されるフェノール性水酸基含有ポリアミド(PBO前駆体)を検討した。その結果、特定構造を有する樹脂が、γ-ブチロラクトンに可溶であり、水銀ランプのi線に対する透明性が高く、PACとの相互作用も十分に強く高感度であることを見出し、アルカリ可溶性樹脂分子内にハロゲン原子を含まないポジ型感光性樹脂組成物を得ることが可能となった。このアルカリ可溶性樹脂を使用したポジ型感光性樹脂組成物を検討した結果、本発明を完成するに至った。
 さらに、活性光線照射により酸を発生する化合物及び酸の作用により架橋し得る化合物を本発明に係る樹脂と組み合わせて検討した結果、上記課題を解決するネガ型感光性樹脂組成物を得ることもでき、本発明を完成するに至った。
 すなわち、本発明は、具体的には以下のとおりである。
 [1]下記一般式(1):
Figure JPOXMLDOC01-appb-C000029
{式中、Xは、ハロゲン原子を含まない4価の有機基を示し、そしてZは、下記一般式(2):
Figure JPOXMLDOC01-appb-C000030
(式中、L、L及びLは、それぞれ独立に、水素原子又はメチル基を表し、そしてLは、水素原子、メチル基又は水酸基を表す。)で表される2価の有機基を表す。}で表される構造を分子内に有する樹脂。
 [2]下記一般式(3):
Figure JPOXMLDOC01-appb-C000031
{式中、X及びXは、ハロゲン原子を含まない4価の有機基を示し、それぞれ同じであっても異なっていてもよき、Zは、下記一般式(2):
Figure JPOXMLDOC01-appb-C000032
(式中、L、L及びLは、それぞれ独立に、水素原子又はメチル基を表し、そしてLは、水素原子、メチル基又は水酸基を表す。)で表される2価の有機基を示し、Zは、芳香環を有するハロゲン原子を含まない2価の有機基を示し、mは、1~200の整数を示し、Xは、ハロゲン原子を含まない2~4価の有機基を示し、Zは、ハロゲン原子を含まない4価の有機基を示し、m及びmは、それぞれ独立に、0~200の整数を示し、mは、0~2の整数を示し、mは、0~1の整数であり、そしてm、m及びm個の各単位の配列順序は問わない。}で表される構造を分子内に有する樹脂。
 [3]下記一般式(4):
Figure JPOXMLDOC01-appb-C000033
{式中、R1及びRは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、及び置換されていてもよいベンゼン環からなる群より選ばれる一種の基であり、RとRは連結されていてもよく、そしてR及びRは、それぞれ独立に、水素原子又は炭素数1~4の有機基である。}で表される構造を有する、前記[1]又は[2]に記載の樹脂。
 [4]下記式(5):
Figure JPOXMLDOC01-appb-C000034
で表される構造を有する、前記[1]又は[2]に記載の樹脂。
 [5]下記式(6):
Figure JPOXMLDOC01-appb-C000035
で表される構造を有する、前記[1]又は[2]に記載の樹脂。
 [6]下記式(7):
Figure JPOXMLDOC01-appb-C000036
で表される構造を有する、前記[1]又は[2]に記載の樹脂。
 [7]下記式(8):
Figure JPOXMLDOC01-appb-C000037
で表される構造を有する、前記[1]又は[2]に記載の樹脂。
 [8]下記式(9):
Figure JPOXMLDOC01-appb-C000038
で表される構造を有する、前記[1]又は[2]に記載の樹脂。
 [9]下記式(10):
Figure JPOXMLDOC01-appb-C000039
{式中、Rは、炭素数1~4の一価の有機基である。}で表される構造を有する、前記[1]又は[2]に記載の樹脂。
 [10]下記式(11):
Figure JPOXMLDOC01-appb-C000040
で表される構造を有する、前記[1]又は[2]に記載の樹脂。
 [11]下記式(12):
Figure JPOXMLDOC01-appb-C000041
で表される構造を有する、前記[1]又は[2]に記載の樹脂。
 [12]下記式(13):
Figure JPOXMLDOC01-appb-C000042
で表される構造を有する、前記[1]又は[2]に記載の樹脂。
 [13]前記一般式(3)中のZが、下記構造式(14):
Figure JPOXMLDOC01-appb-C000043
{式中、Lは、以下の有機基:
Figure JPOXMLDOC01-appb-C000044
(式中、Lは、炭素数1~4の1価のアルキル基を表す。)から選択される1価の基である。}からなる群から選択される少なくとも1つの構造である、前記[2]に記載の樹脂。
 [14]前記一般式(3)中のポリイミド基含有ユニット部が、下記式(15)及び下記式(16):
Figure JPOXMLDOC01-appb-C000045
からなる群から選択される少なくとも1つの構造を有する、前記[2]に記載の樹脂。
 [15]樹脂の末端が下記構造:
Figure JPOXMLDOC01-appb-C000046
からなる群から選択される少なくとも1つの末端基である、前記[1]~[14]のいずれかに記載の樹脂。
 [16](A)前記[1]~[15]のいずれかに記載の樹脂を含むアルカリ可溶性樹脂100質量部に対して、(B)感光性ジアゾナフトキノン化合物1~100質量部を含むポジ型感光性樹脂組成物。
 [17](C)有機溶剤100~2000質量部をさらに含む、前記[16]に記載のポジ型感光性樹脂組成物。
 [18](B)感光性ジアゾナフトキノン化合物が、下記一般式(17):
Figure JPOXMLDOC01-appb-C000047
で表されるポリヒドロキシ化合物の1,2-ナフトキノンジアジド-4-スルホン酸エステル、及び該ポリヒドロキシ化合物の1,2-ナフトキノンジアジド-5-スルホン酸エステルからなる群から選択される少なくとも一種の化合物である、前記[16]又は[17]に記載のポジ型感光性樹脂組成物。
 [19](C)有機溶剤が、γ-ブチロラクトンである、前記[17]に記載のポジ型感光性樹脂組成物。
 [20](D)アルコキシシラン化合物0.01~20質量部をさらに含む、前記[16]~[19]のいずれか一つに記載のポジ型感光性樹脂組成物。
 [21](D)アルコキシシラン化合物が、下記一般式(18)~(25):
Figure JPOXMLDOC01-appb-C000048
{式中、X及びXは、2価の有機基を示し、X及びXは、1価の有機基を示し、そしてsは、0~2の整数を示す}、
Figure JPOXMLDOC01-appb-C000049
{式中、X及びXは、2価の有機基を示し、Xは、4価の有機基を示し、X、X、X10及びX11は、1価の有機基を示し、そしてsは、0~2の整数を示す。}、
Figure JPOXMLDOC01-appb-C000050
{式中、X13は、2価の有機基を示し、X12、X14及びX15は、1価の有機基を示し、sは0~2の整数を示し、そしてtは0~5の整数を示す。}、
Figure JPOXMLDOC01-appb-C000051
{式中、X16は、-NH-R20又は-O-R21(ここで、R20とR21はCOOH基を含まない1価の有機基である。)、X17は、2価の有機基を示し、X18及びX19は、1価の有機基を示し、そしてsは、0~2の整数を示す。}、
Figure JPOXMLDOC01-appb-C000052
{式中、X22は、2価の有機基を示し、X23及びX24は1価の有機基を示し、そしてsは、0~2の整数を示す}、
Figure JPOXMLDOC01-appb-C000053
{式中、X25は、2価の有機基を示し、X26及びX27は、1価の有機基を示し、そしてsは、0~2の整数を示す。}、
Figure JPOXMLDOC01-appb-C000054
{式中、X28は、水素原子又はメチル基を示し、X29は、下記式群:
Figure JPOXMLDOC01-appb-C000055
から選ばれる2価の基であり、X30は、2価の有機基を示し、X31及びX32は、1価の有機基を示し、sは、0~2の整数を示し、そしてuは、1~3の整数を示す。}、及び
Figure JPOXMLDOC01-appb-C000056
{式中、X33及びX34は、2価の有機基を示し、X35及びX36は、1価の有機基を示し、そしてsは、0~2の整数を示す。}で表される化合物からなる群より選ばれる少なくとも一種の化合物である、前記[20]に記載のポジ型感光性樹脂組成物。
 [22](E)熱により架橋反応を起こす化合物5~20質量部をさらに含む、前記[16]~[21]のいずれか一つに記載のポジ型感光性樹脂組成物。
 [23](E)熱により熱架橋反応を起こす化合物が、エポキシ基、メチロール基、アルコキシメチル基又はオキセタン基を有する化合物、及びビスアリルナジイミド化合物からなる群より選ばれる少なくとも一種の化合物である、前記[22]に記載のポジ型感光性樹脂組成物。
 [24](F)アクリレート化合物、メタクリレート化合物、アリル基含有化合物、メトキシ基含有化合物、及びフェニルエステル化合物からなる群から選ばれる少なくとも1種の化合物1~30質量部をさらに含む、前記[16]~[23]のいずれか一つに記載のポジ型感光性樹脂組成物。
 [25](G)カルボキシル基を分子内に有する有機化合物1~30質量部をさらに含む、前記[16]~[24]のいずれか一つに記載のポジ型感光性樹脂組成物。
 [26]前記[16]~[25]のいずれかに記載のポジ型感光性樹脂組成物を、基板上に塗布する塗布工程、該層を露光する露光工程、露光部を現像液で溶出除去する現像工程、及び得られたレリーフパターンを加熱する加熱工程を含む、硬化レリーフパターンの形成方法。
 [27]前記[26]に記載の形成方法により得られる硬化レリーフパターンを有してなる半導体装置。
 [28](A)前記[1]~[15]のいずれかに記載の樹脂100質量部、(H)活性光線照射により酸を発生する化合物0.5~30質量部、及び(I)酸の作用により架橋し得る化合物5~50質量部を含むネガ型感光性樹脂組成物。
 [29](I)酸の作用により架橋し得る化合物が、分子内にメチロール基又はアルコキシメチル基を有する化合物である、前記[28]に記載のネガ型感光性樹脂組成物。
 [30]前記[28]又は[29]に記載のネガ型感光性樹脂組成物を、基板上に塗布する塗布工程、該層を露光する露光工程、露光後に加熱する工程、未露光部を現像液で溶出除去する現像工程、及び得られたレリーフパターンを加熱する加熱工程を含む、硬化レリーフパターンの形成方法。
 [31]前記[30]に記載の形成方法により得られる硬化レリーフパターンを有してなる半導体装置。
 本発明により、ハロゲン原子を分子に含まず、感光性樹脂組成物としたときに、高感度であり、同一露光量、同一現像時間でパターンを形成する場合の膜厚マージンが広く、半導体装置の製造工程で通常使用される現像液(2.38重量%テトラメチルアンモニウムヒドロキシド水溶液)によるパターンの形成が可能であり、γ-ブチロラクトン溶媒に可溶であるアルカリ可溶性樹脂が提供される。また、本発明により、該組成物、該組成物を用いて基板上に硬化レリーフパターンを形成する方法、及び該硬化レリーフパターンを有してなる半導体装置も提供される。
ビス(カルボキシ)トリシクロ[5,2,1,02,6]デカンのH-NMRスペクトル ビス(カルボキシ)トリシクロ[5,2,1,02,6]デカンの13C-NMRスペクトル ビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカンのH-NMRスペクトル ビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカンの13C-NMRスペクトル P-5の13C-NMRスペクトル P-13の13C-NMRスペクトル P-14の13C-NMRスペクトル P-15の13C-NMRスペクトル P-16の13C-NMRスペクトル P-17の13C-NMRスペクトル P-19の13C-NMRスペクトル
 まず、本発明に係る樹脂(a)について、説明する。
 本発明に係る樹脂(a)は、下記一般式(1):
Figure JPOXMLDOC01-appb-C000057
{式中、Xは、ハロゲン原子を含まない4価の有機基を示し、そしてZは、下記一般式(2):
Figure JPOXMLDOC01-appb-C000058
(式中、L、L及びLは、それぞれ独立に、水素原子又はメチル基を表し、そしてLは、水素原子、メチル基又は水酸基を表す。)で表される2価の有機基を表す。}で表される記載の構造を分子内に有する樹脂である。上記一般式(1)の構造が繰り返し単位であることが好ましい。
 さらに、本発明に係る樹脂(a)は、溶剤可溶性のヒドロキシ基含有ポリイミドユニットを有していてもよく、下記一般式(3):
Figure JPOXMLDOC01-appb-C000059
{式中、X及びXは、ハロゲン原子を含まない4価の有機基を示し、それぞれ同じであっても異なっていてもよく、Zは下記一般式(2):
Figure JPOXMLDOC01-appb-C000060
(式中、L、L及びLは、それぞれ独立に、水素原子又はメチル基を表し、そしてLは水素原子、メチル基又は水酸基を表す。)で表される2価の有機基を示し、Zは、芳香環を有するハロゲン原子を含まない2価の有機基を示し、mは、1~200の整数を示し、Xは、ハロゲン原子を含まない2~4価の有機基を示し、Zは、ハロゲン原子を含まない4価の有機基を示し、m及びmは、それぞれ独立に、0~200の整数を示し、mは、0~2の整数を示し、mは、0~1であり、ここで、m、m、及びm個の各単位の配列順序は問わない。}で表される構造を有していてもよい。
 上述の一般式(2)で表される有機基は、さらに下記構造群(a):
Figure JPOXMLDOC01-appb-C000061
から選択される少なくとも1つであることが好ましい。
 これらの中でも、特に下記化合物:
Figure JPOXMLDOC01-appb-C000062
であることがより好ましい。
 以下、本発明の樹脂(a)を詳細に説明する。
 樹脂(a)を得るには、上記一般式(2)構造を有するジカルボン酸と、X構造とフェノール性水酸基とを有するジアミンとを原料とすることができる。
 上記一般式(2)構造を有するジカルボン酸として代表的な化合物としては、ビス(カルボキシ)トリシクロ[5,2,1,02,6]デカンが挙げられる。該化合物は、特開昭58-110538号の製造例Aによる合成方法や、特表2002-504891号の実施例1による合成方法や、日本国特開平09-15846号公報の合成例2による合成方法に従って得ることができる。しかしながら、この方法では、酸化剤として重金属を使用するため、下記の製法が重金属を使用しない点でより望ましい。すなわち、トリシクロ(5,2,1,0)デカンジメタノール(東京化成工業製 カタログNo.T0850)をアセトニトリル等に溶解し、2,2,6,6-テトラメチルピペリジン-1-オキシル(以下、「TEMPO」ともいう)などの触媒を加え、リン酸水素二ナトリウム、リン酸二水素ナトリウムなどを使用してpHを調整しながら、亜塩素酸ナトリウム、ジ亜塩素酸ナトリウムを加えて酸化し、精製することで目的の化合物であるビス(カルボキシ)トリシクロ[5,2,1,02,6]デカンを製造することができる。
 また、上述した化合物以外の、他の上記構造群(a)の構造を有するジカルボン酸化合物は、メチルシクロペンタジエンダイマー(東京化成工業製 カタログNo.M0920)、1-メチルジシクロペンタジエン(東京化成工業製 カタログNo.M0910)、1-ヒドロキシジシクロペンタジエン(東京化成工業製 カタログNo.H0684)を原料として、J.Org.Chem.,45,3527(1980)で知られている方法により、上記原料の不飽和結合部位に臭化水素又は塩化水素を付加させた後、J.Am.Chem.Soc.,95,249(1973)で知られている方法に従い、さらに一酸化炭素、水を付加させることでトリシクロ[5,2,1,02,6]デカンの骨格にヒドロキシメチル基を2個導入することができる。ジヒドロキシメチル体を合成する方法としては、他には、J.Am.Chem.Soc.,91,2150(1969)で知られている方法により、不飽和結合部位に9-ボラビシクロ(3,3,1)ノナンを付加させて中間体を形成した後、一酸化炭素と反応させ、LiAlH(OCHで還元することでもジヒドロキシメチル体を製造することができる。このようにして得られたジヒドロキシメチル体をビス(カルボキシ)トリシクロ[5,2,1,02,6]デカンを得る際に説明した方法に従って、ジヒドロキシメチル基を同様に酸化することで、目的のジカルボン酸を得ることができる。
 Z構造を有するジカルボン酸に加えて、機械伸度の向上や、ガラス転移温度の向上といった機械物性を調整する目的で、Z構造を有するジカルボン酸を共重合させることもできる。Z構造を有するジカルボン酸としては、芳香環を有するハロゲン原子を含まない2価の有機基が挙げられるが、炭素数が8~36の芳香族ジカルボン酸、及び炭素数が6~34の脂環式ジカルボン酸からなる群から選択される少なくとも1つの化合物であることが好ましい。
 具体的には、例えば、イソフタル酸、テレフタル酸、4,4’-ビフェニルジカルボン酸、3,4’-ビフェニルジカルボン酸、3,3’-ビフェニルジカルボン酸、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-スルホニルビス安息香酸、3,4’-スルホニルビス安息香酸、3,3’-スルホニルビス安息香酸、4,4’-オキシビス安息香酸、3,4’-オキシビス安息香酸、3,3’-オキシビス安息香酸、2,2-ビス(4-カルボキシフェニル)プロパン、2,2-ビス(3-カルボキシフェニル)プロパン、2,2’-ジメチル-4,4’-ビフェニルジカルボン酸、3,3’-ジメチル-4,4’-ビフェニルジカルボン酸、2,2’-ジメチル-3,3’-ビフェニルジカルボン酸、9,9-ビス(4-(4-カルボキシフェノキシ)フェニル)フルオレン、9,9-ビス(4-(3-カルボキシフェノキシ)フェニル)フルオレン、4,4’-ビス(4-カルボキシフェノキシ)ビフェニル、4,4’-ビス(3-カルボキシフェノキシ)ビフェニル、3,4’-ビス(4-カルボキシフェノキシ)ビフェニル、3,4’-ビス(3-カルボキシフェノキシ)ビフェニル、3,3’-ビス(4-カルボキシフェノキシ)ビフェニル、3,3’-ビス(3-カルボキシフェノキシ)ビフェニル、4,4’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、4,4’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、3,4’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、3,3’-ビス(4-カルボキシフェノキシ)-p-ターフェニル、3,4’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、3,3’-ビス(4-カルボキシフェノキシ)-m-ターフェニル、4,4’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、4,4’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、3,4’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、3,3’-ビス(3-カルボキシフェノキシ)-p-ターフェニル、3,4’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、3,3’-ビス(3-カルボキシフェノキシ)-m-ターフェニル、1,1-シクロブタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4,4’-ベンゾフェノンジカルボン酸、1,3-フェニレン二酢酸、1,4-フェニレン二酢酸、国際公開第05/068535号パンフレットに記載の5-アミノイソフタル酸誘導体が挙げられる。
 これらの中でも、感光性樹脂組成物とする場合は、下記一般式(14):
Figure JPOXMLDOC01-appb-C000063
{式中、Lは、以下に示す基:
Figure JPOXMLDOC01-appb-C000064
(式中、Lは、炭素数1~4の1価のアルキル基を表す。)から選択される1価の基である。}で表される化合物が、γ-ブチロラクトンに対する溶解性、希薄アルカリ水溶液への溶解性の点から好ましい。
 本発明の樹脂(a)を製造するにあたって、これらのジカルボン酸は単独で用いても2種類以上組み合わせて使用してもよい。芳香族ジカルボン酸を共重合に用いる場合、水銀ランプにおけるi線透過性が著しく低下する。そのため、Z構造を有するジカルボン酸に対してZ構造を有するジカルボン酸は、Z構造を有するジカルボン酸+Z構造を有するジカルボン酸=100モルとしたときに、Z構造を有するジカルボン酸は10~100モルが好ましく、Z構造を有するジカルボン酸は0~90モルが好ましい。特に、Zが芳香族ジカルボン酸である場合には、樹脂としたときのi線透過性の観点から、30モル以下が好ましく、10モル以下がより好ましい。
 樹脂(a)を合成する際に使用されるこれらジカルボン酸は、塩化チオニルを用いて、酸クロリドの状態で使用することもできる。酸クロリドの合成法としては、具体的には、N,N-ジメチルホルムアミド、ピリジン、塩化ベンジルトリエチルアミン等の触媒存在下で、ジカルボン酸と過剰量の塩化チオニルとを反応させ、過剰の塩化チオニルを加熱及び減圧により留去する方法が挙げられ、この反応液の残渣をヘキサン、トルエン等の溶媒で再結晶することにより得ることができる。また、精製せずに、樹脂の重合に用いることも可能である。また、ジカルボン酸とN-ヒドロキシベンゾトリアゾール(以下、「HOBT」とも言う。)を、ジシクロヘキシルカルボジイミドなどの脱水縮合剤を使用して、HOBT活性エステル体とした触媒を使用することもできる。
 X構造とフェノール性水酸基とを有するジアミンとしては、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-アミノ-3-ヒドロキシフェニル)プロパン、3,5-ジアミノ-1-ヒドロキシベンゼン、4,6-ジアミノ-1,3-ジヒドロキシベンゼン、3,3'-ジヒドロキシ-4,4'-ジアミノビフェニル、4,4'-ジヒドロキシー3,3'-ジアミノビフェニル、3,4-ジヒドロキシ-3’, 4'-ジアミノビフェニル、ビス(3-アミノー4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)スルフィド、ビス(3-アミノ-4-ヒドロキシフェニル)メタン、ビス(4-アミノー3-ヒドロキシフェニル)メタン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、及び下記化合物群:
Figure JPOXMLDOC01-appb-C000065
が好適に用いられる。
 上記フェノール性ジアミンは、単独で又は2種以上を組み合わせて用いることができる。さらに、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパンとビス(4-アミノ-3-ヒドロキシフェニル)スルホン、及び下記化合物群:
Figure JPOXMLDOC01-appb-C000066
が、樹脂組成物としたときの光感度が高い点と現像時の膜厚マージンが高い点から好ましい。
 さらに好ましくは、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパンが、樹脂組成物としたときの光感度が高い点と現像時の膜厚マージンが高い点に加え、加熱硬化後フィルムの機械伸度が高い点から好ましい。
 その他には、下記化合物群:
Figure JPOXMLDOC01-appb-C000067
が、光感度が高い点と現像時の膜厚マージンが高い点に加え、加熱硬化後のレリーフパターンの有機溶剤に対する耐薬品性が高い点で好ましい。
 その他には、下記化合物群:
Figure JPOXMLDOC01-appb-C000068
が、光感度が高い点と現像時の膜厚マージンが高い点に加え、加熱硬化後の膜と封止樹脂との密着性が高いこと、及びプリベーク膜が半導体製造工程で広く使用されているプロピレングリコールモノメチルエーテルによるリワークが可能である点で好ましい。
 ビス(4-アミノ-3-ヒドロキシフェニル)スルホンを用いる場合は、フェノール性水酸基の酸性度を考慮して、フェノール性水酸基を持たないジアミンとこれを共重合させる、又は分子量の大きなジカルボン酸を用いて、フェノール性水酸基の濃度を調整することが好ましい。ビス(4-アミノ-3-ヒドロキシフェニル)スルホンを用いた樹脂1g中のフェノール性水酸基の濃度は、2.0~5.0ミリモルが好ましく、さらに好ましくは、2.5~4.5ミリモルであり、最も好ましくは3.0~4.0ミリモルである。
 X構造とフェノール性水酸基とを有するジアミンも、上述のX構造とフェノール性水酸基とを有するジアミンと同じ化合物を用いることができる。
 本発明に係る樹脂(a)を製造する際、前述のフェノール性ジアミン以外に必要に応じてフェノール性水酸基を有さないジアミン(以下、「非フェノール性ジアミン」という。)を共重合することで、アルカリ水溶液に対する溶解性や物性をコントロールすることができる。非フェノール性ジアミンは、ハロゲン原子を含まない2~4価の有機基であるが、中でも、フェノール性水酸基を有さない炭素数が6~30の芳香族ジアミン、及びジアミノポリシロキサンが好ましい。
 具体的には、4,4’-(又は3,4’-、3,3’-、2,4’-)ジアミノジフェニルエーテル、4,4’-(又は3,3’-)ジアミノジフェニルスルフォン、4,4’-(又は3,3’-)ジアミノジフェニルスルフィド、4,4’-ベンゾフェノンジアミン、3,3’-ベンゾフェノンジアミン、4,4’-ジ(4-アミノフェノキシ)フェニルスルフォン、4,4’-ジ(3-アミノフェノキシ)フェニルスルフォン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス{4-(4-アミノフェノキシ)フェニル}プロパン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’,6,6’-テトラメチル-4,4’-ジアミノビフェニル、2,2’,6,6’-テトラトリフルオロメチル-4,4’-ジアミノビフェニル、ビス{(4-アミノフェニル)-2-プロピル}1,4-ベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノフェノキシフェニル)フルオレン、3,3’-ジメチルベンチジン、3,3’-ジメトキシベンチジン、3,5-ジアミノ安息香酸等の芳香族ジアミン、2,6-ジアミノピリジン、2,4-ジアミノピリジン、ビス(4-アミノフェニル-2-プロピル)-1,4-ベンゼン、ジアミノポリシロキサン化合物等のジアミンが挙げられる。非フェノール性ジアミンは、単独で又は2種以上を組み合わせて用いることができる。
 本発明に係る樹脂(a)を実際に合成するためには、フェノール性ジアミンや非フェノール性ジアミンをN-メチルピロリドンやN,N-ジメチルアセトアミド等の適当な溶媒に溶解し、ピリジン、トリエチルアミンといった3級アミンを触媒として加え、上述したジカルボン酸を酸クロリド化した化合物をγ-ブチロラクトン、アセトンといった適当な溶媒に溶かし、-30℃~15℃に冷却した上述のフェノール性ジアミンや非フェノール性ジアミンの溶液に滴下することで、目的の重縮合構造を得ることができる。
 本発明に係る樹脂(a)は、上述のポリベンゾオキサゾール前駆体ユニットのみで使用しても構わないが、テトラカルボン酸二無水物とフェノール性水酸基を有する芳香族ジアミンとを環化縮合させることにより得られるフェノール性水酸基を持つポリイミドユニットを必要に応じて共重合させることもできる。
 フェノール性水酸基を含むポリイミドユニットを合成する際のテトラカルボン酸二無水物としては、Zでありハロゲン原子を含まない4価の有機基であるが、とりわけ、炭素数が8~36の芳香族テトラカルボン酸二無水物、及び炭素数が6~34の脂環式テトラカルボン酸二無水物から選択される化合物が好ましい。具体的には、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-シクロヘキセン-1,2ジカルボン酸無水物、ピロメリット酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、1,4-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、2,2-ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1-エチリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、2,2-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、rel-[1S,5R,6R]-3-オキサビシクロ[3,2,1]オクタン-2,4-ジオン-6-スピロ-3'-(テトラヒドロフラン-2',5'-ジオン)、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、エチレングリコール-ビス-(3,4-ジカルボン酸無水物フェニル)エーテルなどが挙げられるが、その中でも、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-シクロヘキセン-1,2-ジカルボン酸無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、4,4'-(4,4'-イソプロピリデンジフェノキシ)ビス(フタル酸無水物)が好ましく、更にその中でも5-(2,5-ジオキソテトラヒドロ-3-フリル)-3-メチル-シクロヘキセン-1,2ジカルボン酸無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物が、水銀ランプのi線に対する透明性の観点、アルカリ水溶液に対する溶解性、光感度の点で好ましい。
 フェノール性水酸基を有するイミドユニットを合成する際に使用するXで表されるフェノール性水酸基を有するジアミンは、上述したフェノール性ジアミン(m=2のとき)又は非フェノール性ジアミン(m=0のとき)から選ばれるか、又は2,4-ジアミノフェノール(m=1のとき)が挙げられる。その中でも2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパンが、樹脂組成物としたときの光感度が高いことからより好ましい。
 フェノール性水酸基を有するイミドユニットを合成する際の脱水縮合反応は、上記テトラカルボン酸二無水物と上記フェノール性ジアミンとを酸又は塩基触媒の存在下、30℃~220℃、好ましくは170℃~200℃に加熱することにより行うことができる。酸触媒としては、ポリイミドの製造に通常用いられている硫酸のような無機酸やp-トルエンスルホン酸のような有機酸を用いることが可能である。γ-バレロラクトンとピリジンを使用してもよい。塩基触媒としては、ピリジン、トリエチルアミン、ジメチルアミノピリジン、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、1,3,5,7-テトラアザトリシクロ(3,3,1,1,3,7)デカン、トリエチレンジアミンなどを用いてもよい。
 さらに、特に重縮合触媒等を加えずに、反応液の温度をイミド化反応が生ずる温度以上で保持し、脱水反応により生ずる水をトルエン等の水との共沸溶媒を利用して反応系外へ除き、イミド化脱水縮合反応を完結させる方法でもよい。
 脱水縮合反応を行う反応溶媒としては、水を共沸させるための溶媒であるトルエンに加え、樹脂を溶解させるための極性の有機溶媒を使用することが好ましい。これらの極性溶媒としては、γ-ブチロラクトン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、テトラメチル尿素、スルホラン等が用いられる。
 ポリイミドユニットを製造する際には、前述のフェノール性ジアミン以外に必要に応じて前述の非フェノール性ジアミンを共重合することで、アルカリ水溶液に対する溶解性や物性をコントロールしてもよい。
 なお、2以上のテトラカルボン酸二無水物若しくは2以上のフェノール性ジアミン又は非フェノール性ジアミンを用いる場合、逐次反応を利用したブロック共重縮合体としてもよいし、3成分以上の原料を仕込む場合に、反応系に同時に原料を仕込み、ランダム共重縮合体として構わない。
 本発明に係る樹脂(a)は、上述のポリベンゾオキサゾール前駆体ユニットとポリイミドユニットを共重合してもよい。共重合する際の共重合比率は、任意に選ばれるが、ポリベンゾオキサゾール前駆体ユニット:ポリイミドユニットの比率が10:90~100:0の範囲であることが、光感度の観点から好ましい。
 本発明に係る樹脂(a)の末端は、末端基で修飾されてもよい。末端を修飾する方法としては、マレイン酸無水物、コハク酸無水物、けい皮酸無水物、5-ノルボルネン酸無水物、4-エチニルフタル酸無水物、フェニルエチニルフタル酸無水物、3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸無水物、4-シクロヘキセン-1,2-ジカルボン酸無水物、シクロヘキサン-1,2-ジカルボン酸無水物、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物、4-アミノスチレン、4-エチニルアニリン、3-エチニルアニリン等を樹脂の合成時に適量添加すればよい。中でも、機械伸度の向上や、ガラス転移温度の向上には、下記構造:
Figure JPOXMLDOC01-appb-C000069
からなる群から選択される少なくとも1つの末端基を添加することが好ましい。また、本発明で用いるジカルボン酸を末端として残してもよい。
 樹脂(a)の重量平均分子量に関しては、ポリスチレン換算での重量平均分子量が3,000~100,000であることが好ましく、分子量が5,000以上で機械物性がより向上し、70,000以下で2.38%TMAH水溶液への分散性がより良くなり、レリーフパターンの解像性能が向上する。
 製造された樹脂溶液は、精製工程を経て樹脂(a)を単離し、有機溶剤に再溶解させてから使用してもよい。具体的な精製工程としては、まず、上記製法により得られた樹脂溶液にメタノール、エタノール、イソプロパノール、水といった貧溶媒を加えて樹脂を析出させる。次にγ-ブチロラクトンやN-メチルピロリドン等の良溶媒に再度溶解させ、その溶解液を、イオン交換樹脂を充填したカラムに通すことでイオン性の不純物を取り除く。最後に、その溶解液を純水に滴下し、析出物を濾別した後、真空乾燥を行うことを含む精製工程である。これにより、低分子量成分やイオン性の不純物等を取り除くこともできる。
<ポジ型感光性樹脂組成物>
(A)アルカリ可溶性樹脂
 ポジ型感光性樹脂組成物とするには、本発明に係る樹脂(a)を含む(A)アルカリ可溶性樹脂が必須成分となる。樹脂(a)以外のアルカリ可溶性樹脂としては、例えば、フェノール性水酸基及びカルボキシル基からなる群から選択される少なくとも1つの基を有し、アルカリ水溶液に可溶な樹脂又はそれらの前駆体であるが、具体的には、ノボラック樹脂やレゾール樹脂に代表されるフェノール樹脂及びその誘導体、及びポリヒドロキシスチレン及びその誘導体、並びにこれら樹脂を分子内に共重合した構造を有する樹脂、本発明に係る樹脂(a)以外のPBO前駆体であるアルカリ水溶液可溶性重合体、フェノール性水酸基を有するアルカリ水溶液可溶性のポリイミド、テトラカルボン酸とジアミンより誘導され、アミド結合のオルト位にカルボキシル基を有すポリイミド前駆体が挙げられる。これら(A)アルカリ可溶性樹脂のなかで、所望の効果を奏するためには、本発明に係る樹脂(a)の(A)アルカリ可溶性樹脂に占める比率は、10質量%以上が好ましくで、20質量%以上がより好ましく、40質量%以上がさらに好ましく、60質量%以上が最も好ましい。上限値は、100質量%が好ましい。
(B)感光性ジアゾナフトキノン化合物
 ポジ型感光性樹脂組成物(以下、「本組成物」ともいう。)を作製する場合に用いられる感光性ジアゾナフトキノン化合物は、以降に詳述する特定構造を有するポリヒドロキシ化合物の1,2-ナフトキノンジアジド-4-スルホン酸エステル、及び、該ポリヒドロキシ化合物の1,2-ナフトキノンジアジド-5-スルホン酸エステルからなる群から選択される少なくとも一種の化合物(以下、「ポリヒドロキシ化合物のNQD化物」ともいう。)である。
 該ポリヒドロキシ化合物のNQD化物は、常法に従って、ナフトキノンジアジドスルホン酸化合物を、クロロスルホン酸または塩化チオニルでスルホニルクロライドとし、得られたナフトキノンジアジドスルホニルクロライドと、ポリヒドロキシ化合物とを縮合反応させることにより得られる。例えば、ポリヒドロキシ化合物と1,2-ナフトキノンジアジド-5-スルホニルクロリド又は1,2-ナフトキノンジアジド-4-スルホニルクロリドの所定量を、ジオキサン、アセトン又はテトラヒドロフラン等の溶媒中で、トリエチルアミン等の塩基性触媒の存在下、反応させてエステル化を行い、得られた生成物を水洗、乾燥することにより得られる。
 以下、本発明の樹脂と組み合わせることにより、高感度であり、かつ、膨潤することのない良好なレリーフパターンが得られる感光性ジアゾナフトキノン化合物を示す。
1.下記一般式(B1)で表されるポリヒドロキシ化合物のNQD化物
Figure JPOXMLDOC01-appb-C000070
{式中、k、l、m、及びnは、それぞれ独立に、1又はは2を示し、R~R10は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルケニル基、アルコキシ基、アリル基、及びアシル基からなる群から選択される基を示し、Y~Yは、それぞれ独立に、単結合、-O-、-S-、-SO-、-SO-、-CO-、-CO-、シクロペンチリデン、シクロヘキシリデン、フェニレン、及び下記化学式:
Figure JPOXMLDOC01-appb-C000071
(式中、R11及びR12は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アリル基、及び置換アリル基からなる群から選択される少なくとも1つの1価の基を示す。)、
Figure JPOXMLDOC01-appb-C000072
(式中、R13~R16は、それぞれ独立に、水素原子またはアルキル基を示し、そしてwは1~5の整数を示す。)、及び
Figure JPOXMLDOC01-appb-C000073
(式中、R17~R20は、それぞれ独立に、水素原子またはアルキル基を示す。)で示される有機基からなる群から選択される基を示す。}。
 具体的な化合物としては、特開2001-109149号公報の[化18]~[化32]に記載されたポリヒドロキシ化合物のNQD化物が挙げられる。
 そのなかでも、以下のポリヒドロキシ化合物:
Figure JPOXMLDOC01-appb-C000074
のNQD化物が、ポジ型感光性樹脂組成物の感度が高い点から好ましい。
2.下記一般式(B2)で表されるポリヒドロキシ化合物のNQD化物
Figure JPOXMLDOC01-appb-C000075
{式中、Zは、下記化学式:
Figure JPOXMLDOC01-appb-C000076
で表される有機基から選ばれる少なくとも1つの4価の基を示し、R21、R22、R23、及びR24は、それぞれ独立に、1価の有機基を示し、bは、0又は1を示し、a、c、d、及びeは、それぞれ独立に、0~3の整数を示し、f、g、h、及びiは、それぞれ独立に、0~2の整数を示し、但し、f、g、h、及びiの合計は、1以上である。}。
 具体的な化合物としては、特開2001-092138号公報の[化23]~[化28]に記載してある。そのなかでも、以下のポリヒドロキシ化合物:
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
のNQD化物が、感度が高く、ポジ型感光性樹脂組成物中での析出性が低いことから好ましい。
3.下記一般式(B3)で表されるポリヒドロキシ化合物のNQD化物
Figure JPOXMLDOC01-appb-C000081
{式中、kは、3~8の整数を示し、k×j個のLは、それぞれ独立に、1個以上の炭素原子を有する1価の有機基を示し、jは1~5の整数を示し、k個のT、及びk個のSは、それぞれ独立に、水素原子、及び1価の有機基からなる群から選択される1価の基を示す。}。
 具体的な好ましい例としては、特開2004-347902号公報の[化24]、[化25]に記載されたものが挙げられる。
 そのなかでも、以下のポリヒドロキシ化合物:
Figure JPOXMLDOC01-appb-C000082
{式中、pは、0~9の整数である。}のNQD化物が、感度が高く、ポジ型感光性樹脂組成物中での析出性が低いことから好ましい。
4.下記一般式(B4)で表されるポリヒドロキシ化合物のNQD化物
Figure JPOXMLDOC01-appb-C000083
{式中、Aは、脂肪族の3級又は4級炭素を含む2価の有機基を示し、そしてMは、下記の化学式:
Figure JPOXMLDOC01-appb-C000084
で表される基から選ばれる少なくとも1つの2価の基を示す。}。
 具体的な化合物としては、特開2003-131368号公報の[化22]~[化28]に記載されたものが挙げられる。
 そのなかでも、以下のポリヒドロキシ化合物:
Figure JPOXMLDOC01-appb-C000085
のNQD化物が、感度が高く、ポジ型感光性樹脂組成物中での析出性が低いことから好ましい。
5.下記一般式(B5)で表されるポリヒドロキシ化合物のNQD化物
Figure JPOXMLDOC01-appb-C000086
{式中、R25は、下記の一般式:
Figure JPOXMLDOC01-appb-C000087
(式中、R26は、それぞれ独立に、アルキル基、及びシクロアルキル基から選ばれる少なくとも1つの1価の有機基を示し、そしてrは、それぞれ独立に、0~2の整数である。)で表される1価の有機基を示し、それぞれ同じであっても異なっていてもよく、そしてqは、それぞれ独立に、0~2の整数である。}。
 具体的な化合物としては、特開2004-109849号公報の[化17]~[化22]に記載されたポリヒドロキシ化合物のNQD化物である。
 そのなかでも、以下のポリヒドロキシ化合物:
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
のNQD化物が、感度が高く、ポジ型感光性樹脂組成物中での析出性が低いことから好ましい。
6.下記一般式(B6)で表されるポリヒドロキシ化合物のNQD化物
Figure JPOXMLDOC01-appb-C000091
{式中、R27は、水素原子、アルキル基、アルコキシ基、及びシクロアルキル基からなる群から選ばれる基を示す。}。
 具体的な化合物としては、特開2001-356475号公報の[化18]~[化22]に記載されたものが挙げられる。
 そのなかでも、以下のポリヒドロキシ化合物:
Figure JPOXMLDOC01-appb-C000092
のNQD化物が、感度が高く、ポジ型感光性樹脂組成物中での析出性が低いことから好ましい。
7.下記一般式(B7)で表されるポリヒドロキシ化合物のNQD化物
Figure JPOXMLDOC01-appb-C000093
{式中、複数のR28は、それぞれ独立に、下記の一般式:
Figure JPOXMLDOC01-appb-C000094
(式中、R30は、それぞれ独立に、アルキル基又はシクロアルキル基を示し、そしてtは、それぞれ独立に、0~2の整数を示す。)で表される1価の有機基を示し、sは、それぞれ独立に、0~2の整数を示し、そしてR29は、水素原子、アルキル基又はシクロアルキル基を示す。}。
 具体的な化合物としては、特開2005-008626号公報の[化15]、[化16]に記載されたポリヒドロキシ化合物のNQD化物が挙げられる。
 そのなかでも、以下のポリヒドロキシ化合物:
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
のNQD化物が、感度が高く、ポジ型感光性樹脂組成物中での析出性が低いことから好ましい。
 上記した感光性ジアゾナフトキノン化合物の中で、以下のポリヒドロキシ化合物:
Figure JPOXMLDOC01-appb-C000097
のNQD化物が、その感光性樹脂組成物が高感度であり、同一露光量、同一現像時間でパターンを形成する場合の膜厚マージンが広いこと、析出性が低い点から最も好ましい。
 本組成物において、感光性ジアゾナフトキノン化合物におけるナフトキノンジアジドスルホニル基としては、5-ナフトキノンジアジドスルホニル基又は4-ナフトキノンジアジドスルホニル基のいずれも好ましく用いられる。4-ナフトキノンジアジドスルホニルエステル化合物は、水銀灯のi線領域に吸収を持っており、i線露光に適している。5-ナフトキノンジアジドスルホニルエステル化合物は、水銀灯のg線領域まで吸収が伸びており、g線露光に適している。本発明においては、露光する波長によって4-ナフトキノンジアジドスルホニルエステル化合物、5-ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。また、同一分子中に4-ナフトキノンジアジドスルホニル基、5-ナフトキノンジアジドスルホニル基を併用した、ナフトキノンジアジドスルホニルエステル化合物を得ることもできるし、4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物を混合して使用することもできる。
 本組成物において、(B)感光性ジアゾナフトキノン化合物の添加量は、(A)アルカリ可溶性樹脂100質量部に対して1~100質量部であり、好ましくは3~40質量部であり、さらに好ましくは10~30質量部の範囲である。1質量部以上の添加量で感度が向上し、100質量部以下の添加量で露光後の残渣が発生しない。
(C)有機溶剤
 本発明の樹脂を用いて樹脂組成物を作製する場合に用いられる有機溶剤としては、極性溶媒であるN-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、γ-ブチロラクトン、モルフォリン等が挙げられる。その他、この極性溶媒以外に、一般的有機溶媒であるケトン類、エステル類、ラクトン類、エーテル類、ハロゲン化炭化水素類、炭化水素類を混合してもよく、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチル、乳酸エチル、乳酸メチル、乳酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ベンジルアルコール、フェニルグリコール、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、ジクロロメタン、1,2-ジクロロエタン、1,4-ジクロロブタン、クロロベンゼン、o-ジクロロベンゼン、アニソール、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン等も使用することができる。これらの中で、γ-ブチロラクトンが、感光性樹脂組成物にした場合に、プリベーク膜の面内均一性が優れる点、感度が高い点、同一露光量、同一現像時間でパターンを形成する場合の膜厚マージンが広い点、感光性ジアゾナフトキノン化合物等の感光剤の析出性が低く、組成物の安定性が高い(組成物の粘度変化率で評価)点から、最も好ましい。
 本組成物において、(C)有機溶剤を添加する場合の添加量は、(A)アルカリ可溶性樹脂100質量部に対して100~2000質量部が好ましく、有機溶媒の添加量を変化させることで、粘度をコントロールできる。より好ましくは120~700質量部であり、さらに好ましくは150~500質量部の範囲である。100質量部以上の添加量で樹脂組成物の粘度が低くなり、塗布膜の膜厚均一性が向上し、樹脂組成物の粘度の観点から2000質量部以下が好ましく、通常、必要とするパターンの膜厚を塗布することが容易になる。
(D)アルコキシシラン化合物
 本発明に係る樹脂組成物には、必要に応じて基板との密着性を高めるための接着助剤を加えてもよい。そのような接着助剤としては、アルキルイミダゾリン、酪酸、ポリヒドロキシスチレン、ポリビニルメチルエーテル、t-ブチルノボラック、エポキシシラン、エポキシポリマー、3-アミノプロピルトリエトキシシラン、各種アルコキシシラン化合物が挙げられる。アルコキシシラン化合物の具体的な好ましい例としては、3-メタクリロキシプロピルトリアルコキシシラン、3-メタクリロキシプロピルジアルコキシアルキルシラン、3-グリシドキシプロピルトリアルコキシシラン、3-グリシドキシプロピルジアルコキシアルキルシラン、3-アミノプロピルトリアルコキシシラン又は3-アミノプロピルジアルコキシアルキルシランと、酸無水物又は酸二無水物の反応物、3-アミノプロピルトリアルコキシシラン又は3-アミノプロピルジアルコキシアルキルシランのアミノ基をウレタン基やウレア基に変換したものが挙げられる。この際のアルキル基としてはメチル基、エチル基、ブチル基などが、酸無水物としてはマレイン酸無水物、フタル酸無水物などが、酸二無水物としてはピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物などが、ウレタン基としてはt-ブトキシカルボニルアミノ基などが、ウレア基としてはフェニルアミノカルボニルアミノ基などが挙げられる。
 好ましいアルコキシシラン化合物としては、以下のアルコキシシラン化合物が、感光性樹脂組成物にした場合に、現像時のパターンが基板と良く密着しており、更に加熱硬化後の基板との密着性が高く、感光性樹脂組成物中での感光性ジアゾナフトキノン化合物等の感光剤の反応性が低く、組成物の経時安定性が高い点から、好ましい:
Figure JPOXMLDOC01-appb-C000098
{式中、X及びXは、2価の有機基を示し、X及びXは1価の有機基を示し、そしてsは、0~2の整数を示す}、
Figure JPOXMLDOC01-appb-C000099
{式中、X及びXは、2価の有機基を示し、Xは、4価の有機基を示し、X、X、X10及びX11は、1価の有機基を示し、そしてsは、0~2の整数を示す。}、
Figure JPOXMLDOC01-appb-C000100
{式中、X13は、2価の有機基を示し、X12、X14及びX15は、1価の有機基を示し、sは、0~2の整数を示し、そしてtは、0~5の整数を示す。}、
Figure JPOXMLDOC01-appb-C000101
{式中、X16は、-NH-R20又は-O-R21(R20及びR21はCOOH基を含まない1価の有機基である)、X17は、2価の有機基を示し、X18及びX19は、1価の有機基を示し、そしてsは、0~2の整数を示す。}、
Figure JPOXMLDOC01-appb-C000102
{式中、X22は、2価の有機基を示し、X23及びX24は、1価の有機基を示し、そしてsは、0~2の整数を示す。}、
Figure JPOXMLDOC01-appb-C000103
{式中、X25は、2価の有機基を示し、X26及びX27は、1価の有機基を示し、そしてsは、0~2の整数を示す。}、
Figure JPOXMLDOC01-appb-C000104
{式中、X28は、水素原子又はメチル基を示し、X29は、下記式群:
Figure JPOXMLDOC01-appb-C000105
から選ばれる2価の基であり、X30は、2価の有機基を示し、X31及びX32は、1価の有機基を示し、sは、0~2の整数を示し、そしてuは1~3の整数を示す。}、及び
Figure JPOXMLDOC01-appb-C000106
{式中、X33及びX34は、2価の有機基を示し、X35及びX36は、1価の有機基を示し、そしてsは、0~2の整数を示す。}。
 接着助剤を添加する場合の添加量は、(A)アルカリ可溶性樹脂100質量部に対して0.01~20質量部の範囲が好ましい。
(E)熱により架橋反応を起こす化合物
 本発明に係る樹脂組成物には、必要に応じて熱硬化後の膜のガラス転移温度を向上したり、各種有機溶媒に対する耐溶剤性を向上する目的で、熱により架橋反応を起こす化合物(以下、熱架橋剤ともいう)を添加してもよい。ここで、架橋反応を起こす温度としては、150~350℃が好ましい。架橋反応は、現像によりパターン形成をした後の加熱処理の際に生じる。具体的な成分としては、エポキシ基、メチロール基、アルコキシメチル基、又はオキセタン基を有する化合物、及びビスアリルナジイミド化合物からなる群より選ばれる少なくとも一種の化合物が好ましい。
 エポキシ基を持つ化合物としては、具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ポリスルフィド型エポキシ樹脂が挙げられる。
 メチロール基を有する化合物、又はアルコキシメチル基を有する化合物としては、具体的には、一般式(A):
Figure JPOXMLDOC01-appb-C000107
{式中、Eは、水素原子又は炭素数1~6のアルキル基である。}で表される1価の有機基を分子内に2つ以上有する化合物が好ましい。
 メチロール基を有する化合物、又はアルコキシメチル基を有する化合物の中では、感光性樹脂組成物としたときの室温で保管した時の粘度安定性の観点から、アルコキシメチル基を有する化合物が好ましい。
 メチロール基を有する化合物、又はアルコキシメチル基を有する化合物の中でも、さらにフェノール性水酸基を有する化合物、一般式(B):
Figure JPOXMLDOC01-appb-C000108
{式中、Eは、水素原子又は炭素数1~6のアルキル基である。}で表される2価の有機基を含む化合物、及び一般式(C):
Figure JPOXMLDOC01-appb-C000109
{式中、Eは、水素原子又は炭素数1~6のアルキル基である。}で表される化合物からなる群から選択される少なくとも1つの化合物が好ましい。
 前述のフェノール性水酸基を有する化合物としては、以下の化合物:
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
が挙げられる。
 一般式(B)で表される2価の有機基を含む化合物としては、以下の化合物:
Figure JPOXMLDOC01-appb-C000112
が挙げられ、これらは単独でも複数組み合わせて用いてもよい。
 一般式(B)のEは、1価の有機基であり、炭素数1から20までのアルキル基であることが好ましいが、樹脂組成物との溶解性の点から炭素数1から10までのアルキル基がより好ましく、炭素数1から4までのアルキル基が最も好ましい。
 一般式(C)で表される2価の有機基を含む化合物としては、以下の化合物:
Figure JPOXMLDOC01-appb-C000113
が挙げられる。
 一般式(C)のEは、1価の有機基であり、炭素数1から20までのアルキル基であることが好ましいが、樹脂組成物との溶解性の点から炭素数1から10までのアルキル基がより好ましく、炭素数1から4までのアルキル基が最も好ましい。
 オキセタン基を持つ化合物としては、具体的に4員環環状エーテル構造を一分子中に1個以上持つ化合物であり、カチオン開環重合反応、又はカルボン酸、チオール、フェノールとの付加反応が可能なものである。例えば1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、ビス[1-エチル(3-オキセタニル)]メチルエーテル、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、4,4′-ビス(3-エチル-3-オキセタニルメトキシ)ビフェニル、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ジエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ビス(3-エチル-3-オキセタニルメチル)ジフェノエート、トリメチロールプロパントリス(3-エチル-3-オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル、ポリ[[3-[(3-エチル-3-オキセタニル)メトキシ]プロピル]シラセスキオキサン]誘導体、オキセタニルシリケート、フェノールノボラック型オキセタン、1,3-ビス[(3-エチルオキセタンー3-イル)メトキシ]ベンゼン等が挙げられるが、これらに限定されない。これらは単独でも複数組み合わせて用いてもよい。
 ビスアリルナジイミド化合物としては、例えば、以下の化合物:
Figure JPOXMLDOC01-appb-C000114
が、挙げられる。これらは単独でも複数組み合わせて用いてもよい。
 熱架橋剤成分を含有する場合の配合量は、その架橋効果に対して、現像後の熱処理におけるパターンの変形と、現像時に発生する残渣(スカム)の許容幅の点から、選択する架橋剤によって最適な添加量を選ぶことができ、(A)アルカリ可溶性樹脂100質量部に対して0.5~50質量部が好ましく、5~30質量部がより好ましい。
(F)アクリレート化合物、メタクリレート化合物、アリル基含有化合物、メトキシ基含有化合物、フェニルエステル化合物からなる群から選ばれた少なくとも1種の化合物
 本発明に係る樹脂組成物には、ポリマーの種類や分子量に応じて変化するポリマーのアルカリ溶解速度に対して、適正な現像時間の範囲内で現像が可能となるように、上記(F)化合物を含有してもよい。
 アクリレート化合物、メタクリレート化合物としては、アクリル酸エステル、メタクル酸エステル、アクリルアミド、及びメタクリルアミドからなる群から選択される化合物をいう。好ましいものの具体例としては、新中村化学工業社製NK-エステルシリーズ M-20G、M-40G、M-90G、M-230G、CB-1、SA、S、AMP-10G、AMP-20G、AMP-60G、AM-90G、A-SA、LA、1G、2G、3G、4G、9G、14G、23G、BG、HD、NPG、9PG、701、BPE-100、BPE-200、BPE-500、BPE-1300、A-200、A-400、A-600、A-HD、A-NPG、APG-200、APG-400、APG-700、A-BPE-4、701A、TMPT、A-TMPT、A-TMM-3、A-TMM-3L、A-TMMTが挙げられる。
 また、共栄社化学製ライトエステルシリーズ M、E、NB、IB、EH、ID、L、L-5、L-7、TD、L-8、S、MC、130MA、041MA、CH、THF、BZ、PO、IB-X、HO、HOP、HOA、HOP-A、HOB、A、HO-MS、HO-HH、HO-MPP、G、P-1M、P-2M、EG、2EG、1.4BG、1.6HX、1.9ND、TMP、G-101P、G-201P、BP-2EM、TB、IS、MTG、BO、CL、3EG、4EG、9EG、14EG、NP、M-3F、M-4F、M-6F、FM-108、1.3BG、1.10DCが挙げられる。
 また、共栄社化学製ライトアクリレートシリーズ IAA、L-A、S-A、BO-A、EC-A、MTG-A、130A、DPM-A、PO-A、P-200A、NP-4EA、NP-8EA、THF-A、IB-XA、HOA、HOP-A、M-600A、HOA-MS、HOA-MPE、3EG-A、4EG-A、9EG-A、14EG-A、NP-A、1.6HX-A、1.9ND-A、DCP-A、BP-4EA、BP-4PA、TMP-A、TMP-6EO-3A、PE-3A、PE-4A、DPE-6A、BA-104、BA-134、G-201Pが挙げられる。
 また、共栄社化学製エポキシエステルシリーズ M-600A、40EM、70PA、200PA、80MFA、3002M、及び3002Aが挙げられる。
 また、東亜合成社製アロニックスシリーズ M-101、M-102、M-110、M-111、M-113、M-117、M-120、M-208、M-210、M-211、M-215、M-220、M-225、M-233、M-240、M-245、M-260、M-270、M-305、M-309、M-310、M-315、M-320、M-350、M-360、M-400、M-408、M-450、M-5300、M-5400、M-5600、M-5700が挙げられる。
 さらに、興人社製DMAEA、DMAPAA、DMAA、ACMO、NIPAM、及びDEAA等が挙げられる。これらの化合物は単独で使用しても2つ以上混合して使用してもよい。
 アリル基含有化合物としては、例えば、アリルアルコール、アリルアニソール、安息香酸アリルエステル、桂皮酸アリルエステル、N-アリロキシフタルイミド、アリルフェノール、アリルフェニルスルフォン、アリルウレア、フタル酸ジアリル、イソフタル酸ジアリル、テレフタル酸ジアリル、マレイン酸ジアリル、イソシアヌル酸ジアリル、トリアリルアミン、イソシアヌル酸トリアリル、シアヌル酸トリアリル、トリアリルアミン、1,3,5-ベンゼントリカルボン酸トリアリル、トリメリット酸トリアリル(和光純薬工業社製 TRIAM705)、ピロメリット酸トリアリル(和光純薬工業社製 TRIAM805)、オキシジフタル酸トリアリル、トリアリルホスフェート、トリアリルホスファイト、クエン酸トリアリルが挙げられる。これら化合物は単独で又は混合して用いられる。
 メトキシ基含有化合物としては、以下の化合物:
Figure JPOXMLDOC01-appb-C000115
が挙げられる。
 フェニルエステル化合物としては、以下の化合物:
Figure JPOXMLDOC01-appb-C000116
が挙げられる。
 これら溶解阻害剤を配合する場合の配合量は、(A)アルカリ可溶性樹脂100質量部に対して0.5~50質量部が好ましく、1~20質量部がより好ましい。該阻害剤の配合量が1質量部未満だと十分な溶解阻害効果が得られず、逆に50質量部を超えると、熱硬化時にこれら溶解阻害剤が蒸発気散し、残膜率が低下することで、目的の硬化膜の膜厚を確保できなくなる。
(G)カルボキシル基を分子内に有する有機化合物(以下、「カルボン酸化合物」ともいう)
 感度を向上する目的でカルボキシル基を分子内に有する有機化合物を添加してもよい。具体的には、炭素原子数4~20のカルボン酸化合物が好ましく、直鎖構造、分岐又は環式構造を有し、該有機基の炭素数が6~12であることがより好ましい。具体的には、ソルビン酸、ラウリン酸、ミリスチン酸、アジピン酸、2-メチル-4-ペンテン酸、4-メチル-2-ペンテン酸、2-メチル-2-ペンテン酸、2-メチル-n-吉草酸、3-メチル-n-吉草酸、4-メチル-n-吉草酸、2-エチル酪酸、ヘプタン酸、オクタン酸、n-ノナン酸、イソノナン酸、デカン酸、DL-ロイシン酸、2-ヘプテン酸、2-オクテン酸、2-ノネン酸、2-デセン酸、9-デセン酸、2-ドデセン酸、10-ウンデセン酸、3-シクロヘキセン-1-カルボン酸、1-シクロヘキセン-3-カルボン酸、シクロヘキサンカルボン酸、シクロペンチル酢酸、シクロヘキシル酢酸、シクロヘキシルプロピオン酸、4-シクロヘキサン酪酸、5-ノルボルネン-2-カルボン酸、p-アニス酸、2,4-ジヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸、o-トルイル酸、m-トルイル酸、p-トルイル酸、o-アニス酸、 m-アニス酸、p-アニ酸、サリチル酸、2,4-ジヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸、3-フェニル乳酸、4-ヒドロキシフェニル乳酸、4-ヒドロキシマンデル酸、3,4-ジヒドロキシマンデル酸、4-ヒドロキシ-3-メトキシマンデル酸、2-メトキシ-2-(1-ナフチル)プロピオン酸、マンデル酸、アトロラクチ酸、アセチルマンデル酸、α-メトキシフェニル酢酸等が挙げられる。これらのカルボン酸化合物の中で、m-トルイル酸、α-メトキシフェニル酢酸が、感度の向上、現像時のパターンの基材との密着性が高い点から、特に好ましい。(G)カルボン酸化合物を添加する場合の添加量は、5~20質量部が好ましく、更に5~10質量部が好ましい。カルボン酸化合物の配合量が5質量部以上であると露光部の現像残渣が少なくなり、感度も向上し、また、シリコン基板との密着性も良好である。20質量部以下だと硬化時による膜減りが少なく、硬化後の膜の引っ張り伸び率と良好である。
(その他添加剤)
 本発明に係る感光性樹脂組成物には、必要に応じて、染料、界面活性剤、溶解促進剤を添加することも可能である。
 上記添加剤について更に具体的に述べると、染料としては、メチルバイオレット、クリスタルバイオレット、マラカイトグリーン等が挙げられる。
 染料を添加する場合の添加量は、(A)アルカリ可溶性樹脂100質量部に対して0.01~5質量部の範囲が好ましい。
 また、界面活性剤としては、ポリプロピレングリコール、ポリオキシエチレンラウリルエーテル等のポリグリコール類又はその誘導体からなる非イオン系界面活性剤、フロラード(商品名、住友3M社製)、メガファック(商品名、大日本インキ化学工業社製)、スルフロン(商品名、旭硝子社製)等のフッ素系界面活性剤、KP341(商品名、信越化学工業社製)、DBE(商品名、チッソ社製)、グラノール(商品名、共栄社化学社製)等の有機シロキサン界面活性剤が挙げられるが、非フッ素であるという観点から、有機シロキサン界面活性剤が好ましい。
 界面活性剤を添加する場合の添加量は、(A)アルカリ可溶性樹脂100質量部に対して0.01~5質量部の範囲が好ましい。
 また、溶解促進剤としては、フェノール性水酸基を有する化合物が好ましく、例えば、ビスフェノール、MtrisPC、MtetraPC等の直鎖状フェノール化合物(本州化学工業社製)、TrisP-HAP、TrisP-PHBA、TrisP-PA等の非直鎖状フェノール化合物(本州化学工業社製)、5-n-ヘキシルレゾルシノール、ジフェニルメタンのフェニル基の水素原子2~5個を水酸基に置換した化合物、3,3-ジフェニルプロパンのフェニル基の水素原子1~5個を水酸基に置換した化合物、ビス(3-アミノ-4-ヒドロキシフェニル)スルホンと1,2-シクロヘキシルジカルボン酸無水物の1対2反応物などを挙げることができる。
 溶解促進剤を添加する場合の添加量は、(A)アルカリ可溶性樹脂100質量部に対して0.5~20質量部の範囲が好ましい。
<ネガ型感光性樹脂組成物>
 本発明に係る(A)アルカリ可溶性樹脂に、(H)活性光線照射により酸を発生する化合物、及び(I)酸の作用により架橋し得る化合物を含むことでネガ型感光性樹脂組成物を作製することができ。以下、詳細に説明する。
(H)活性光線照射により酸を発生する化合物
 本発明に使用される(H)活性光線照射により酸を発生する化合物は、活性光線照射により酸を発生する化合物であり、このような化合物としては、例えば、以下の化合物が挙げられる。
i)トリクロロメチル-s-トリアジン類
 トリス(2,4,6-トリクロロメチル)-s-トリアジン、2-フェニル-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-クロロフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(2-クロロフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(4-メトキシフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-メトキシフェニル)-ビス(4,6
-トリクロロメチル)-s-トリアジン、2-(2-メトキシフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(4-メチルチオフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-メチルチオフェニル)ビス(4,6-トリクロロメチル-s-トリアジン、2-(2-メチルチオフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-メトキシナフチル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(2-メトキシナフチル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3,4,5-トリメトキシ-β-スチリル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(4-メチルチオ-β-スチリル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-メチルチオ-β-スチリル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(2-メチルチオ-β-スチリル)-ビス(4,6-トリクロロメチル)-s-トリアジン等。
ii)ジアリルヨードニウム類
 ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラフルオロホスフェート、ジフェニルヨードニウムテトラフルオロアルセネート、ジフェニルヨードニウムトリフルオロメタンスルホナート、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウム-p-トルエンスルホナート、4-メトキシフェニルフェニルヨードニウムテトラフルオロボレート、4-メトキシフェニルフェニルヨードニウムヘキサフルオロホスホネート、4-メトキシフェニルフェニルヨードニウムヘキサフルオロアルセネート、4-メトキシフェニルフェニルヨードニウムトリフルオロメタンスホナート、4-メトキシフェニルフェニルヨードニウムトリフルオロアセテート、4-メトキシフェニルフェニルヨードニウム-p-トルエンスルホナート、ビス(4-ter-ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(4-ter-ブチルフェニル)ヨードニウムヘキサフルオロアルセネート、ビス(4-ter-ブチルフェニル)ヨードニウムトリフルオロメタンスルホナート、ビス(4-ter-ブチルフェニル)ヨードニウムトリフルオロアセテート、ビス(4-ter-ブチルフェニル)ヨードニウム-p-トルエンスルホナート等。
iii)トリアリルスルホニウム塩類
 トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロホスホネート、トリフェニルスルホニウムヘキサフルオロアルセネート、トリフェニルスルホニウムメタンスルホナート、トリフェニルスルホニウムトリフルオロアセテート、トリフェニルスルホニウム-p-トルエンスルホナート、4-メトキシフェニルジフェニルスルホニウムテトラフルオロボレート、4-メトキシフェニルジフェニルスルホニウムヘキサフルオロホスホネート、4-メトキシフェニルジフェニルスルホニウムヘキサフルオロアルセネート、4-メトキシフェニルジフェニルスルホニウムメタンスルホナート、4-メトキシフェニルジフェニルスルホニウムトリフルオロアセテート、4-メトキシフェニルジフェニルスルホニウム-p-トルエンスルホナート、4-フェニルチオフェニルジフェニルテトラフルオロボレート、4-フェニルチオフェニルジフェニルヘキサフルオロホスホネート、4-フェニルチオフェニルジフェニルヘキサフルオロアルセネート、4-フェニルチオフェニルジフェニルトリフルオロメタンスルホナート、4-フェニルチオフェニルジフェニルトリフルオロアセテート、4-フェニルチオフェニルジフェニルーp-トルエンスルホナート等。
 これらの化合物の内、トリクロロメチル-S-トリアジン類としては、2-(3-クロロフェニル)-ビス(4,6-トリクロロメチル)-S-トリアジン、2-(4-クロロフェニル)-ビス(4,6-トリクロロメチル)-S-トリアジン、2-(4-メチルチオフェニル)-ビス(4,6-トリクロロメチル)-S-トリアジン、2-(4-メトキシーβ-スチリル)-ビス(4,6-トリクロロメチル)-S-トリアジン、2-(4-メトキシナフチル)-ビス(4,6-トリクロロメチル)-S-トリアジン等を、ジアリールヨードニウム塩類としては、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウムトリフルオロメタンスルホナート、4-メトキシフェニルフェニルヨードニウムトリフルオロメタンスルホナート、4-メトキシフェニルフェニルヨードニウムトリフルオロアセテート等を、トリアリールスルホニウム塩類としては、トリフェニルスルホニウムメタンスルホナート、トリフェニルスルホニウムトリフルオロアセテート、4-メトキシフェニルジフェニルスルホニウムメタンスルホナート、4-メトキシフェニルジフェニルスルホニウムトリフルオロアセテート、4-フェニルチオフェニルジフェニルトリフルオロメタンスルホナート、4-フェニルチオフェニルジフェニルトリフルオロアセテート等を、好適なものとして挙げることができる。
 この他にも、以下に示す化合物を用いることができる。
(1)ジアゾケトン化合物
 ジアゾケトン化合物として、例えば、1,3-ジケト-2-ジアゾ化合物、ジアゾベンゾキノン化合物、ジアゾナフトキノン化合物等を挙げることができ、具体例としてはフェノール類の1,2-ナフトキノンジアジド-4-スルホン酸エステル化合物を挙げることができる。
(2)スルホン化合物
 スルホン化合物として、例えば、β-ケトスルホン化合物、β-スルホニルスルホン化合物及びこれらの化合物のα-ジアゾ化合物を挙げることができ、具体例として、4-トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェナシルスルホニル)メタン等を挙げることができる。
(3)スルホン酸化合物
 スルホン酸化合物として、例えば、アルキルスルホン酸エステル類、ハロアルキルスルホン酸エステル類、アリールスルホン酸エステル類、イミノスルホネート類等を挙げることができる。好ましい具体例としては、ベンゾイントシレート、ピロガロールトリストリフルオロメタンスルホネート、o-ニトロベンジルトリフルオロメタンスルホネート、o-ニトロベンジルp-トルエンスルホネート等を挙げることができる。
(4)スルホンイミド化合物
 スルホンイミド化合物の具体例として、例えば、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメチルスルホニルオキシ)ナフチルイミド等を挙げることができる。
(5)オキシムエステル化合物
 2-[2-(4-メチルフェニルスルホニルオキシイミノ)]-2,3-ジヒドロチオフェン-3-イリデン]-2-(2-メチルフェニル)アセトニトリル(チバスペシャルティケミカルズ社商品名「イルガキュアPAG121」)、[2-(プロピルスルホニルオキシイミノ)-2,3-ジヒドロチオフェン-3-イリデン]-2-(2-メチルフェニル)アセトニトリル(チバスペシャルティケミカルズ社商品名「イルガキュアPAG103」)等を挙げることができる。
(6)ジアゾメタン化合物
 ジアゾメタン化合物の具体例として、例えば、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン等を挙げることができる。
 とりわけ、感度の観点から、上記(5)オキシムエステル化合物が好ましい。
 (H)活性光線照射により酸を発生する化合物の添加量は、本発明の共重合体を含む耐熱性ポ
リマー100質量部に対して、好ましくは0.5~20質量部である。この添加量が0.5質量部以上だと、活性光線照射により発生する酸の量が十分となり、感度が向上し、この添加量が20質量部以下だと硬化後の機械物性が低下しない。
(I)酸の作用により架橋し得る化合物
 以下、(I)酸の作用により架橋し得る化合物について説明する。(I)酸の作用により架橋し得る化合物を添加すると、塗膜を加熱硬化する際に、上記(A)アルカリ可溶性樹脂を架橋しうるか、又はそれ自身が架橋ネットワークを形成しうるので、耐熱性を強化することができる。
 (I)酸の作用により架橋し得る化合物成分は、N位がメチロール基又は
アルコキシメチル基で置換されたメラミン樹脂及びその単量体、並びに尿素樹脂及びその単量体から選ばれることが好ましい。これらの例として、アルコキシメチル化メラミン樹脂、アルコキシメチル化ベンゾグアナミン樹脂、アルコキシメチル化グリコールウリル樹脂、アルコキシメチル化尿素樹脂、及びこれらの単量体を挙げることができる。これらの内、アルコキシメチル化メラミン樹脂、アルコキシメチル化ベンゾグアナミン樹脂、アルコキシメチル化グリコールウリル樹脂、アルコキシメチル化尿素樹脂、及びこれらの単量体は、対応する公知のメチロール化メラミン樹脂、メチロール化ベンゾグアナミン樹脂、メチロール化尿素樹脂、及びその単量体のメチロール基をアルコキシメチル基に変換することにより得られる。
 このアルコキシメチル基の種類については、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基等を挙げることができるが、実用上市販されているサイメル300、301、303、370、325、327、701、266、267、238、1141、272、202、1156、1158、1123、1170、1174、UFR65、300(三井サイテック(株)製)、ニカラックMX-270、-280、-290、ニカラックMS-11、ニカラックMW-30、-100、-300、-390、-750(三和ケミカル社製)等を好ましく使用することができる。これらの化合物は単独で又は混合して使用することができる。
 前記記載の樹脂の単量体も架橋剤として用いられ、例えば、ヘキサメトキシメチルメラミン、ジメトキシメチル尿素等を挙げることができる。これらの(I)酸の作用により架橋し得る化合物の添加量は、(A)アルカリ可溶性樹脂100質量部に対して、好ましくは、3~50質量部である。この添加量が3質量部以上だと架橋が十分に進行し、パターニング性が良好となり、この添加量が50質量部以下だと、キュア後の機械物性は保たれる。
 その他、ネガ型感光性樹脂組成物には、上記ポジ型感光性樹脂組成物で説明した(C)有機溶剤、(D)接着助剤、(E)熱により架橋反応を起こす化合物、(その他添加剤)を必要に応じて添加してもよい。
<硬化レリーフパターンの形成方法>
 本発明に係る感光性樹脂組成物を用いて基板上に硬化レリーフパターンを形成する方法(以下、「本方法」ともいう。)の一例を以下に示す。
 まず、該組成物を、層又はフィルムの形で基板上に形成する塗布工程を行う。該基板としては、例えばシリコンウェハー、セラミック基板、アルミ基板などに塗布する。この時、形成するレリーフパターンと基板との接着性を向上させるため、予め該基板にシランカップリング剤などの接着助剤を塗布しておいてもよい。該組成物の塗布方法は、スピンナーを用いた回転塗布、スプレーコーターを用いた噴霧塗布、浸漬、印刷、ロールコーティング等で行う。
 次に、80~140℃でプリベークして塗膜を乾燥後、コンタクトアライナー、ミラープロジェクション、ステッパー等の露光装置を用いて、該層又はフィルムを、マスクを介して化学線で露光するか、又は光線、電子線若しくはイオン線を直接照射する露光工程を行う。該化学線としては、X線、電子線、紫外線、可視光線などが使用できるが、200~500nmの波長のものが好ましい。パターンの解像度及び取扱い性の点で、その光源波長はi線を含むことが好ましく、i線単独がより好ましい。露光装置としてはコンタクトアライナー、ミラープロジェクション、ステッパが特に好ましい。
 次にネガ型感光性組成物の場合にのみ露光後に再度、80~140℃で30秒~600秒間加熱する。これをポストイクスポージャーベーク(以下、PEBともいう)という。この工程により、露光により発生した酸を触媒にして、露光部の(I)酸の作用により架橋し得る化合物が熱架橋反応を起こし、アルカリ水溶液に対して不溶化する。
 次に、ポジ型感光性組成物の場合は該露光部を、ネガ型感光性組成物の場合は該未露光部を、現像液で溶出除去する現像工程を行う。現像方法は、浸漬法、パドル法、回転スプレー法等の方法から選択されうる。現像液としては、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミン等の有機アミン類、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等の4級アンモニウム塩類等の水溶液、及び必要に応じメタノール、エタノール、等の水溶性有機溶媒や界面活性剤を適当量添加した水溶液を使用することができる。この中で、テトラメチルアンモニウムヒドロキシド水溶液が好ましく、その濃度は、0.5%~10%であり、さらに好ましくは、1.0%~5%である。さらに好ましくは2.38%が、通常、半導体製造工程で使用されている点で特に好ましい。現像後、リンス液により洗浄を行い、現像液を除去することにより、基板上に形成されたレリーフパターンを得ることができる。リンス液としては、蒸留水、メタノール、エタノール、イソプロパノール等を単独又は組み合わせて用いることができる。
 最後に、このようにして得られたアルカリ可溶性樹脂のレリーフパターンを加熱する加熱工程を行う。加熱温度は180℃以上が好ましい。通常は250℃~400℃に加熱し、添加剤成分に含まれる耐熱性の低い成分を、分解、気散させると共に、ポリベンゾオキサゾールに、脱水環化反応を経て、変換することで、耐熱性の高いレリーフパターンが得られる。
 このような加熱処理装置として、ホットプレート、オーブン、温度プログラムを設定できる昇温式オーブンを用いることができる。加熱処理を行う際の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。また、より低温にて熱処理を行う必要が有る際には、真空ポンプ等を利用して減圧下にて加熱を行ってもよい。本発明に係る樹脂は、従来のPBO前駆体樹脂に比較して、250℃という比較的低温でポリベンゾオキサゾールに脱水環化閉環反応を完結することができ、結果として機械伸度も40%を超えるようになる。これは、半導体装置の信頼性を高める上でも好ましい。
 上述の硬化レリーフパターンの形成方法を、半導体装置のバッファーコート膜又は層間絶縁膜の形成方法として公知の半導体装置製造方法と組み合わせることで、半導体装置を製造することが可能となる。
 以下、参考例、実施例及び比較例により、本発明の実施形態の例を詳細に説明する。
<参考例1>
(ビス(カルボキシ)トリシクロ[5,2,1,02,6]デカンの製造)
 テフロン(登録商標)製の碇型攪拌器を取り付けたガラス製のセパラブル3つ口フラスコに、トリシクロ[5,2,1,02,6]デカンジメタノール(東京化成工業社製)71.9g(0.366モル)をアセトニトリル1Lに溶解ししたもの、及びイオン交換水1.4Lにりん酸水素二ナトリウム256.7g(1.808モル)、りん酸二水素ナトリウム217.1g(1.809モル)を溶解したものを反応溶液に加えた。これに、2,2,6,6-テトラメチルピペリジン-1-オキシル(東京化成工業社製以下、「TEMPO」ともいう)2.8g(0.0179モル)を添加し、攪拌して溶解させた。
 80%亜塩素酸ナトリウム143.2g(1.267モル)をイオン交換水850ミリリットルで希釈し、上記反応液に滴下した。次いで、5%ジ亜塩素酸ナトリウム水溶液3.7ミリリットルをイオン交換水7ミリリットルで希釈し、反応液に滴下した。この反応液を、恒温層により35~38℃に保ち、20時間攪拌して反応させた。
 反応後、反応液を12℃に冷却し、イオン交換水300ミリリットルに亜硫酸ナトリウム75gを溶解させた水溶液を反応液に滴下し、過剰の亜塩素酸ナトリウムを失活させた後、500ミリリットルの酢酸エチルで洗浄した。その後、10%塩酸115ミリリットルを滴下して反応液のpHを3-4に調整し、デカンテーションにより沈殿物を回収した。この沈殿物をテトラヒドロフラン200ミリリットルに溶解した。また、水層を500ミリリットルの酢酸エチルで2回抽出した後、食塩水で洗浄し、析出物を同じくテトラヒドロフランの溶液に溶解した。上記テトラヒドロフラン溶液を混ぜて、無水硫酸ナトリウムで乾燥させた。この溶液をエバポレーターで濃縮、乾燥させることで、ビス(カルボキシ)トリシクロ[5,2,1,02,6]デカン58.4g(収率71.1%)の白い結晶物を得た。
 得られたビス(カルボキシ)トリシクロ[5,2,1,02,6]デカンを、H-NMR、13C-NMRで解析を行い、アルコールが完全にカルボン酸に酸化されたことを確認した。H-NMRの結果を図1に、13C-NMRの結果を図2に示す。
 それぞれのNMRの測定条件を下記に記す。
H-NMRの測定条件]
装置:Varian Merccury社  MVX 300 MHzNMR
溶媒:DMSO-d6
測定温度:室温(25℃)
13C-NMRの測定条件]
装置:ブルカー・バイオスピン株式会社製 Avance600 スペクトロメーター
溶媒:試料をガンマブチロラクトンに5質量%で溶解
NMR試料管:2重管(内管:ロック溶媒としてDMSO-d6、外管:試料溶液)
測定法:完全プロトンデカップリング法
積算回数:3000回
測定温度:室温(約25℃)
<参考例2>
 ガラス製100ミリリットル3つ口フラスコに5-アミノイソフタル酸(メルク社製)2.71g(15ミリモル)をN-メチル-2-ピロリドン30g、ピリジン2.37g(30ミリモル)に溶解し、γ-ブチロラクトン5.4gに溶解したクロロ蟻酸エチル(東京化成工業社製)1.79g(15.7ミリモル)を滴下した。これを、0℃まで氷冷し、γ-ブチロラクトン15gに溶解した塩化チオニル5.35g(45ミリモル)を30分かけて10℃を超えないように滴下した。10℃を超えないように氷冷しながら1時間攪拌した後、室温に戻し、真空ポンプを用いて、未反応の塩化チオニルと副生物の亜硫酸ガスを留去し、γ-アミノイソフタル酸誘導体を合成した。これを反応液1とする。
<参考例3>
 ガラス製のセパラブル3つ口フラスコに、1,3-フェニレン二酢酸(東京化成工業株式会社製)19.42g(100ミリモル)、N-メチル-2-ピロリドン(以後「NMP」ともいう)77g、N,N-ジメチルホルムアミド2滴を反応容器に入れ、テフロン(登録商標)製の攪拌子とマグネチックスターラーを用いて、攪拌し、溶解させた。この反応液をドライアイスで冷却したメタノールバスを用いて、-7~-15℃に冷却し、塩化チオニル(東京化成工業株式会社製)28.56g(240ミリモル)を反応液に滴下した後、反応容器を氷浴に浸して1時間攪拌した。さらに、真空ポンプを用いて、未反応の塩化チオニルと副生物の亜硫酸ガスを30分減圧留去し、1,3-フェニレン二酢酸誘導体を合成した。これを反応液2とする。
<参考例4>
 参考例3の1,3-フェニレン二酢酸(東京化成工業株式会社製)19.42g(100ミリモル)の代わりに、1,4-フェニレン二酢酸(東京化成工業株式会社製)19.80g(115ミリモル)、を用いて、参考例3と同様の操作を行い、1,4-フェニレン二酢酸誘導体を合成した。これを反応液3とする。
<参考例5>
 ガラス製の3つ口フラスコを用い、1,4-シクロヘキサンジカルボン酸(東京化成工業株式会社製)19.80g(115ミリモル)、γ-ブチロラクトン60g、塩化ベンジルトリエチルアミン(東京化成工業株式会社製)0.28g(1.24ミリモル)を反応容器に入れ、テフロン(登録商標)製の攪拌子とマグネチックスターラーを用いて、攪拌し、溶解させた。反応容器を氷浴に浸し、3~5℃に冷却し、塩化チオニル32.84g(276ミリモル)を反応液に滴下した後、30分間攪拌した。さらに、真空ポンプを用いて、未反応の塩化チオニルと副生物の亜硫酸ガスを30分減圧留去し、1,4-シクロヘキサンジカルボン酸誘導体を合成した。これを反応液4とする。
<参考例6>
 撹拌機、滴下ロート及び温度計を付した1Lセパラブルフラスコにポリヒドロキシ化合物として4,4’-(1-(2-(4-ヒドロキシフェニル)-2-プロピル)フェニル)エチリデン)ビスフェノール(本州化学工業社製 商品名 Tris-PA)の化合物30g(0.071モル)を用い、このOH基の83.3モル%に相当する量の1,2-ナフトキノンジアジド-4-スルフォン酸クロライド47.49g(0.177モル)をアセトン300gに撹拌溶解した後、フラスコを恒温槽にて30℃に調整した。次にアセトン18gにトリエチルアミン17.9gを溶解し、滴下ロートに仕込んだ後、これを30分かけてフラスコ中へ滴下した。滴下終了後更に30分間撹拌を続け、その後塩酸を滴下し、更に30分間撹拌し、反応を終了させた。その後濾過し、トリエチルアミン塩酸塩を除去した。ここで得られた濾液を純水1640gと塩酸30gを混合撹拌した3Lビーカーに撹拌しながら滴下し、析出物を得た。この析出物を水洗、濾過した後、40℃減圧下で48時間乾燥し、感光剤(PAC-1)を得た。
<参考例7>
 反応容器として、テフロン(登録商標)製の碇型攪拌器を取り付けた、ガラス製のセパラブル3つ口フラスコを用いた。反応容器に、二炭酸ジ-t-ブチル131.0gとγ-ブチロラクトン780gを入れ、室温下で3-アミノプロピルトリエトキシシラン132.8gとγ-ブチロラクトン270gを混合させた溶液をゆっくり室温下で滴下した。滴下するに従い、反応液は約40℃まで発熱した。また、反応に伴い、炭酸ガスの発生が確認された。滴下終了後、室温で2時間攪拌した後、高速液体クロマトグラフィー(HPLC)にて反応液を確認したところ、原料は全く検出されず、生成物が単一ピークとして純度98%で検出された。この様にして、接着助剤溶液(D-1)を得た。
<参考例8>
 撹拌機、滴下ロート及び温度計を付した1Lセパラブルフラスコにポリヒドロキシ化合物として4,4’-(1-(2-(4-ヒドロキシフェニル)-2-プロピル)フェニル)エチリデン)ビスフェノール(本州化学工業社製 商品名 Tris-PA)の化合物30g(0.071モル)を用い、このOH基の83.3モル%に相当する量の1,2-ナフトキノンジアジド-5-スルフォン酸クロライド47.49g(0.177モル)をアセトン300gに撹拌溶解した後、フラスコを恒温槽にて30℃に調整した。次にアセトン18gにトリエチルアミン17.9gを溶解し、滴下ロートに仕込んだ後、これを30分かけてフラスコ中へ滴下した。滴下終了後更に30分間撹拌を続け、その後塩酸を滴下し、更に30分間撹拌をおこない反応を終了させた。その後濾過し、トリエチルアミン塩酸塩を除去した。ここで得られた濾液を純水1640gと塩酸30gを混合撹拌した3Lビーカーに撹拌しながら滴下し、析出物を得た。この析出物を水洗、濾過した後、40℃減圧下で48時間乾燥し、感光剤(PAC-2)を得た。
<参考例9>
 撹拌機、滴下ロート及び温度計を付した500ml3つ口フラスコにフタル酸無水物14.813g(0.1モル)、溶媒としてGBL(ガンマブチロラクトン)147.8gを加えて攪拌し、フラスコを恒温槽にて30℃に調整した。γ-アミノプロピルトリエトキシシラン22.14g(0.1モル)を滴下ロートに仕込んだ後、これを30分かけてフラスコ中へ滴下し、室温で12時間攪拌し、接着助剤(D-2)を得た。
<参考例10>
 撹拌機、滴下ロート及び温度計を付した500ml3つ口フラスコに3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物16.11g(0.05モル)、溶媒としてGBL(ガンマブチロラクトン)153gを加えて攪拌し、フラスコを恒温槽にて30℃に調整した。γ-アミノプロピルトリエトキシシラン22.14g(0.1モル)を滴下ロートに仕込んだ後、これを30分かけてフラスコ中へ滴下し、室温で12時間攪拌し、接着助剤(D-3)を得た。
<参考例11>
 撹拌機、滴下ロート及び温度計を付した500ml3つ口フラスコにγ-アミノプロピルトリエトキシシラン22.14g(0.1モル)、溶媒としてGBL(ガンマブチロラクトン)116.6gを加えて攪拌し、フラスコを恒温槽にて30℃に調整した。フェニルイソシアネート11.9g(0.1モル)を滴下ロートに仕込んだ後、これを30分かけてフラスコ中へ滴下し、液温が50℃まで上昇した。室温で12時間攪拌した後、接着助剤(D-4)を得た。
<参考例12>
(ビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカンの製造)
 参考例1で得たビス(カルボキシ)トリシクロ[5,2,1,02,6]デカン62.5g(278ミリモル)、塩化チオニル97ミリリットル(1.33モル)、ピリジン0.4ミリリットル(5.0ミリモル)を反応容器に仕込み、25~50℃で18時間攪拌し、反応させた。反応終了後、トルエンを加え、減圧下で、過剰の塩化チオニルをトルエンと共沸させることで濃縮し、オイル状のビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカンを73.3g(収率100%)得た。
 得られたビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカンは、H-NMR、13C-NMRで解析を行い、カルボン酸が完全に酸クロライド体に変換されたされたことを確認した。H-NMRの結果を、図3に、13C-NMRの結果を、図4に示す。それぞれのNMRの測定条件を下記に記す。
H-NMRの測定条件]
装置:装置:Varian Merccury社 MVX 300 MHzNMR
溶媒:CDCl3
測定温度:室温(約25℃)
13C-NMRの測定条件]
装置:ブルカー・バイオスピン株式会社製 Avance600 スペクトロメーター
溶媒:試料をガンマブチロラクトンに5質量%で溶解
NMR試料管:2重管(内管:ロック溶媒としてDMSO-d6、外管:試料溶液)
測定法:完全プロトンデカップリング法
積算回数:3000回
測定温度:室温(約25℃)
<実施例1>
(アルカリ可溶性樹脂の製造)
 テフロン(登録商標)製の碇型攪拌器を取り付けた、ガラス製のセパラブル3つ口フラスコにビス(3-アミノ-4-ヒドロキシフェニル)プロパン(クラリアントジャパン社製)(以下、「BAP」とも呼ぶ。)69.17g(268ミリモル)、NMP276g、ピリジン12.7g(160ミリモル)を反応容器に入れ、窒素導入管を取り付け、窒素ガスを流した状態で攪拌し、溶解させた。BAPが溶解した後、反応容器をメタノールにドライアイスを加えた容器に浸して冷却した。参考例12で製造したビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカン69.99g(268ミリモル)をγ-ブチロラクトン280gに溶解させ、-10~-19℃に保って30分を要して反応容器に滴下した。滴下終了後、反応容器を氷浴に浸し、0~10℃に保って2時間攪拌した。さらにピリジン29.65g(375ミリモル)を加えた。
 上記反応液にエタノールを加えていき、重合体を析出させた後、回収し、NMP350ミリリットルに溶解させた。次いで、陽イオン交換樹脂(オルガノ社製、アンバーリストA21)78g、陰イオン交換樹脂(オルガノ社製、アンバーリスト15)75gでイオン交換した。この溶液をイオン交換水3リットルに高速攪拌下で滴下し、重合体を分散析出させ、回収し、適宜水洗、脱水の後に真空乾燥を施し、PBO前駆体ユニットからなるアルカリ可溶性樹脂の紛体を得た。
 この溶液の一部をN-メチルピロリドンに希釈して高速液体クロマトグラフィー(以下、「GPC」ともいう。)(昭和電工製 Shodex KD-806M、KD-806M、直列 展開溶媒 N-メチルピロリドン 40℃)で分子量及び分子量分布を測定した。GPCの分析条件を以下に記す。
     カラム:昭和電工社製 商標名 Shodex 805M/806M直列
     容離液:N-メチルピロリドン 40℃
     流速:1.0ml/分
     検出器:日本分光社製 商標名  RI-930
 ポリスチレン換算の分子量は重量平均分子量(Mw)36800の単一のシャープな曲線であり、単一組成物であった。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えて、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を調整した(P-1)。
<実施例2>
 実施例1のビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカン69.99g(268ミリモル)の代わりに66.25g(253.7ミリモル)を用い、実施例1と同様の操作を行い、ポリスチレン換算の分子量は重量平均分子量(Mw)28500のPBO前駆体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えて、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-2)。
<実施例3>
 実施例1のビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカン69.99g(268ミリモル)の代わりに、73.7g(282ミリモル)を用い、実施例1と同様の操作を行い、ポリスチレン換算の分子量は重量平均分子量(Mw)53745のPBO前駆体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えて、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-3)。
<実施例4>
 反応容器は、テフロン(登録商標)製の碇型攪拌器を取り付けた、ガラス製のセパラブル3つ口フラスコを用いた。合成中は、窒素ガスを通じながら攪拌した。BAP38.75g(150ミリモル)、NMP154g、ピリジン7.12g(90ミリモル)を反応容器に入れ、窒素を流した状態で攪拌し、溶解させた。BAPが溶解した後、反応容器をメタノールにドライアイスを加えた容器に浸して冷却した。参考例2で製造した反応液1全量(5-アミノイソフタル酸誘導体15ミリモル)を、-19~-23℃に保って全て上記反応液に滴下した。次いで、実施例2で製造したビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカン35.29g(135ミリモル)をγ-ブチロラクトン110gに溶解させ、-19~-23℃に保って反応容器に滴下した。滴下終了後、反応容器を氷浴に浸し、0~10℃に保って2時間攪拌した。さらにピリジン16.6g(210ミリモル)を加えた。
 上記反応液に貧溶媒を加えていき、重合体を析出させた後、回収し、テトラヒドロフラン300ミリリットルに溶解させた。次いで、陽イオン交換樹脂51g、陰イオン交換樹脂50gでイオン交換した。この溶液をイオン交換水2リットルに高速攪拌下で滴下し、重合体を分散析出させ、回収し、適宜水洗、脱水の後に真空乾燥を施し、PBO前駆体の紛体を得た。ポリスチレン換算の分子量は重量平均分子量(Mw)40600であった。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えて、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を調整した(P-4)。
<実施例5>
 実施例1のビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカン69.99g(268ミリモル)の代わりに67.7g(259.1ミリモル)を用い、ビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカン滴下終了後、5-ノルボルネン酸-2,3-無水物(東京化成工業社製)2.92g(17.8ミリモル)を加え、50℃で20時間攪拌した後は、実施例1と同様の操作を行い、ポリスチレン換算の分子量は重量平均分子量(Mw)19600のPBO前駆体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えて、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-5)。得られたポリマーの13C-NMRの結果を、図5に示す。
<実施例6>
 テフロン(登録商標)製の碇型攪拌器を取り付けたガラス製のセパラブル3つ口フラスコに、ディーンスタークトラップ付冷却管を取り付けた。ビス(3,4-ジカルボキシフェニル)エーテル二無水物(マナック社製)18.61g(60ミリモル)、BAP32.16g(120ミリモル)を仕込んだ。さらに、溶媒としてγ-ブチロラクトン110g、トルエン22gを加えた。40℃に加温し、窒素雰囲気下、100rpmで90分攪拌した。その後、NMPを150g、ピリジン2.37g(30ミリモル)を反応溶液に加え、メタノールにドライアイスを加えた容器に浸して冷却した。ビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカン13.05g(50ミリモル)をγ-ブチロラクトン26gに溶解し、これを-5~-10℃に保って全て上記反応液に滴下した。滴下終了後、反応容器を氷浴に浸し、0~10℃に保って2時間攪拌した。さらにピリジン5.53g(70ミリモル)を加えた。次に、5-ノルボルネン酸-2,3-無水物(東京化成工業社製)3.28g(20ミリモル)を加え、50℃で20時間攪拌した。
 その後、180℃の油浴につけて加熱を始め、液全体を180rpmで攪拌した。反応中、副生成物である水がトルエンと共沸して留出し、30分毎に還流管の底に溜まっている水を抜いた。加熱してから2時間後、室温に戻し、上記反応液に貧溶媒を加えていき、重合体を析出させた後、回収し、NMP300ミリリットルに溶解させた。次いで、陽イオン交換樹脂50g、陰イオン交換樹脂50gでイオン交換した。この溶液をイオン交換水2リットルに高速攪拌下で滴下し、重合体を分散析出させ、回収し、適宜水洗、脱水の後に真空乾燥を施し、PBO前駆体とPIの共重合体の紛体を得た。ポリスチレン換算の分子量は重量平均分子量(Mw)17000のPBO前駆体とPIの共重合体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えて、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を調整した(P-6)。
<実施例7>
 実施例5のBAP 69.17g(268ミリモル)の代わりに下記化合物:
Figure JPOXMLDOC01-appb-C000117
85.9g(268ミリモル)を用いた後は、実施例5と同様の操作を行い、ポリスチレン換算の重量平均分子量(Mw)22000のPBO前駆体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えて、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-13)。得られたポリマーの13C-NMRの結果を、図6に示す。
<実施例8>
 実施例5のBAP 69.17g(268ミリモル)の代わりに下記化合物:
Figure JPOXMLDOC01-appb-C000118
102.5g(268ミリモル)を用いた後は、実施例5と同様の操作を行い、ポリスチレン換算の分子量は重量平均分子量(Mw)24000のPBO前駆体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えて、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-14)。得られたポリマーの13C-NMRの結果を、図7に示す。
<実施例9>
 実施例6のBAP 69.17g(268ミリモル)の代わりに下記化合物:
Figure JPOXMLDOC01-appb-C000119
79.97g(268ミリモル)を用いた後は、実施例6と同様の操作を行い、ポリスチレン換算の分子量は重量平均分子量(Mw)20000のPBO前駆体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えて、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-15)。得られたポリマーの13C-NMRの結果を、図8に示す。
<実施例10>
 実施例6のBAP 69.17g(268ミリモル)の代わりに下記化合物:
Figure JPOXMLDOC01-appb-C000120
80.51g(268ミリモル)を用いた後は、実施例5と同様の操作を行い、ポリスチレン換算の分子量は重量平均分子量(Mw)21000のPBO前駆体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えて、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-16)。得られたポリマーの13C-NMRの結果を、図9に示す。
<実施例11>
 実施例6のBAP 69.17g(268ミリモル)の代わりに下記化合物:
Figure JPOXMLDOC01-appb-C000121
75.12g(268ミリモル)を用いた後は、実施例5と同様の操作を行い、ポリスチレン換算の分子量は重量平均分子量(Mw)20800のPBO前駆体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えて、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-17)。得られたポリマーの13C-NMRの結果を、図10に示す。
<実施例12>
 実施例6のBAP 69.17g(268ミリモル)の代わりにビス(3-アミノ-4-ヒドロキシフェニル)スルホン75.12g(小西化学工業社製)(268ミリモル)を用いた後は、実施例5と同様の操作を行い、ポリスチレン換算の分子量は重量平均分子量(Mw)17800のPBO前駆体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えて、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-18)。
<実施例13>
 実施例5のBAP 69.17g(268ミリモル)の代わりに下記化合物:
Figure JPOXMLDOC01-appb-C000122
62.23g(268ミリモル)を用いた後は、実施例5と同様の操作を行い、ポリスチレン換算の分子量は重量平均分子量(Mw)23000のPBO前駆体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えて、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-19)。得られたポリマーの13C-NMRの結果を、図11に示す。
<実施例14>
 実施例5のBAP 69.17g(268ミリモル)の代わりに下記化合物:
Figure JPOXMLDOC01-appb-C000123
75.00g(231ミリモル)(日本純良薬業社製)を用いた後は、実施例5と同様の操作を行い、ポリスチレン換算の分子量は重量平均分子量(Mw)16000のPBO前駆体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えて、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-20)。
<比較例1>
 反応容器として、テフロン(登録商標)製の碇型攪拌器を取り付けた、ガラス製のセパラブル3つ口フラスコを用いた。合成中は、窒素ガスを通じながら攪拌した。BAP29.52g(114ミリモル)、NMP118g、ピリジン5.27g(67ミリモル)を反応容器に入れ、窒素を流した状態で攪拌し、溶解させた。BAPが溶解した後、反応容器をソルミックスにドライアイスを加えた容器に浸して冷却した。参考例3で製造した反応液2全量(1,3-フェニレン二酢酸誘導体100ミリモル)を、-19~-23℃に保って全て上記反応液に滴下した。滴下終了後、反応容器を氷浴に浸し、0~10℃に保って2時間攪拌した。さらにピリジン10.6g(134ミリモル)を加えた。上記反応液にエタノールを加えていき、重合体を析出させた後、回収し、NMP300ミリリットルに溶解させた。次いで、陽イオン交換樹脂50g、陰イオン交換樹脂50gでイオン交換した。この溶液をイオン交換水2リットルに高速攪拌下で滴下し、重合体を分散析出させ、回収し、適宜水洗、脱水の後に真空乾燥を施し、PBO前駆体の紛体を得た。ポリスチレン換算の分子量は重量平均分子量(Mw)21000のPBO前駆体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えたが、一晩放置するとゲル化した。そこでアルカリ可溶性樹脂をN-メチルピロリドンに溶解し、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-7)。
<比較例2>
 比較例1のBAP29.52g(114ミリモル)の代わりに、BAP27.98g(108ミリモル)、反応液2の代わりに参考例4で作成した反応液3全量(1,4-フェニレン二酢酸誘導体115ミリモル)を用いた以外は、比較例1と同様の操作を行い、ポリスチレン換算の分子量は重量平均分子量(Mw)31600のPBO前駆体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えたが、一晩放置するとゲル化した。そこでアルカリ可溶性樹脂をN-メチルピロリドンに溶解し、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-8)。
<比較例3>
 比較例1のBAP29.52g(114ミリモル)の代わりに、BAP31.56g(122ミリモル)、反応液2の代わりに、参考例5で作成した反応液4全量(1,4-シクロヘキサンジカルボン酸誘導体115ミリモル)を用い、比較例1と同様の操作を行い、ポリスチレン換算の分子量は重量平均分子量(Mw)18300のPBO前駆体を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えたが、一晩放置するとゲル化した。そこでアルカリ可溶性樹脂をN-メチルピロリドンに溶解し、35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-9)。
<比較例4>
 テフロン(登録商標)製の碇型攪拌器を取り付けたガラス製のセパラブル3つ口フラスコに、窒素ガス導入管、温度計を取り付け、窒素ガスを通じながら、上記フラスコをシリコンオイル浴につけて100rpmで攪拌した。
 ビス(3-アミノ-4-ヒドロキシフェニル)スルホン78.48g(小西化学工業社製)(280ミリモル)(以後、「SO2-HOAB」、ともいう)をN,N-ジメチルアセトアミド300g、ピリジン14.7g(187ミリモル)を加えて、SO2-HOABを溶解した。反応液を-5℃に冷却した。4,4’-オキシビス安息香酸クロライド(日本農薬社製)(以後、「DEDC」、とも言う)73.45g(249ミリモル)をγ-ブチロラクトン200gに溶解し、滴下ロートに充填し、反応液に50分を要して滴下した。滴下終了30分後、ピリジン29.4g(374ミリモル)を添加した。室温で2時間攪拌した。5-ノルボルネン-2、3-ジカルボン酸無水物(東京化成工業株式会社製)10.21g(62ミリモル)を加えて、窒素ガスを通じながらシリコン浴温度50℃で、100rpmで8時間加熱攪拌した。その後、NMP500gで置換された陽イオン交換樹脂及び陰イオン交換樹脂各100gがそれぞれ充填されたガラスカラムに流す処理を行った。上記反応液を3Lの水に高速攪拌下で滴下し、重合体を分散析出させ、これを回収し、適宜水洗、脱水の後に真空乾燥を施しアルカリ可溶性樹脂の紛体を得た。
 ポリスチレン換算の分子量は重量平均分子量(Mw)14500の単一のシャープな曲線であり、単一組成物である。このアルカリ可溶性樹脂にγ-ブチロラクトンを加えたが、一晩放置するとゲル化した。そこでアルカリ可溶性樹脂をN-メチルピロリドンに溶解し、35質量%樹脂濃度のアルカリ可溶性樹脂溶液(P-10)を得た。
<比較例5>
 テフロン(登録商標)製の碇型攪拌器を取り付けたガラス製のセパラブル3つ口フラスコに、ディーンスタークトラップ付冷却管を取り付けた。ビシクロ(2,2,2)-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物(東京化成工業株式会社製)14.89g(60ミリモル)、4,4-ジアミノジフェニルエーテル(和歌山精化工業社製)6.01g(30ミリモル)を仕込んだ。さらに、溶媒としてγ-ブチロラクトン95.5g、トルエン30gを系に加えた。室温において窒素雰囲気下、100rpmで20分攪拌した後、180℃の油浴につけて加熱を始め、液全体を180rpmで攪拌した。反応中、副生成物である水がトルエンと共沸して留出し、30分毎に還流管の底に溜まっている水を抜いた。加熱してから2時間後、2段階目の仕込みをスタートし、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン16.82g(60ミリモル)を加え1時間攪拌を行った。続いてビス(3,4-ジカルボキシフェニル)エーテル二無水物15.34g(49.5ミリモル)を系に加えた。180℃、180rpmで3時間加熱攪拌後、油浴を下げ、加熱を止めた。反応中、反応の副生成物である水とトルエンの留出分を除去した。このようにして製造されたアルカリ可溶性樹脂のポリスチレン換算重量平均分子量は12000であった。こうして35質量%樹脂濃度のアルカリ可溶性樹脂溶液を得た(P-11)。
<比較例6>
 比較例4のSO2-HOAB78.48g(280ミリモル)の代わりに、BAP72.28g(280ミリモル)を用い、比較例4と同様の操作を行い、ポリスチレン換算の分子量は重量平均分子量(Mw)14000のアルカリ可溶性樹脂を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加え、溶解し、35%樹脂濃度のアルカリ可溶性樹脂溶液(P-12)を得た。
<比較例7>
 比較例4のSO2-HOAB78.48g(280ミリモル)の代わりに、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン102.55g(280ミリモル)を用い、比較例4と同様の操作を行い、ポリスチレン換算の分子量は重量平均分子量(Mw)15500のアルカリ可溶性樹脂を得た。このアルカリ可溶性樹脂にγ-ブチロラクトンを加え、溶解し、35%樹脂濃度のアルカリ可溶性樹脂溶液(P-21)を得た。
<実施例15~28、比較例8~14>
(ポジ型感光性樹脂組成物の調製)
 下記表1の組合せで、上記各実施例1~14、及び比較例1~7にて得られたアルカリ可溶性樹脂溶液(P-1~P-21)に、参考例6で得られた感光性ジアゾナフトキノン化合物PAC-1をアルカリ可溶性樹脂純分100質量部に対して22質量部溶解した後、5-n-ヘキシルレゾルシノール(和光純薬工業株式会社製)を4質量部溶解し、更に参考例7で得られた接着助剤溶液を30質量部を加え溶解した後、1μmのフィルターで濾過し、ポジ型感光性樹脂組成物を得た。
<ポジ型感光性樹脂組成物の硬化膜のガラス転移温度(Tg)の測定>
 上記実施例15~28、及び比較例8~14で得たポジ型感光性樹脂組成物を、6インチシリコン6インチシリコンウェハー上に、スピンコーター(東京エレクトロン社製 クリーントラックMark7)により塗布し、130℃で180秒間乾燥した後、昇温式オーブン(光洋サーモシステム社製 VF200B)を用いて窒素雰囲気下、320℃で1時間加熱、膜厚10.0μmの耐熱性硬化膜を得た。
 この硬化膜を、3mm幅にカットし、希フッ酸水溶液に一晩浸してフィルム片を剥離し、乾燥させたものを、TMA装置(島津製作所製 TMA-50)を用いて、窒素流量50ml/min、昇温速度10℃/minの条件によりガラス転移温度を測定した。その結果を表2に示す。尚、後述のポジ型感光性樹脂組成物の評価で、感度の観測不可であった比較例については、Tgの測定を行わなかった。
<アルカリ可溶性樹脂における水銀ランプのi線透過性の測定>
 上記各実施例1~14、及び比較例1~7で得られたアルカリ可溶性樹脂溶液をさらに溶媒で希釈して、アルカリ可溶性樹脂濃度が1質量%となるように調整し、これを1cm石英製のセルに充填し、島津製作所社製UV-1600PC吸光度測定機にて水銀ランプのi線である365nm吸光度(ランバートベールの式より算出)を測定した。その結果を表2に示す。
<ポジ型感光性樹脂組成物の評価>
(1)パタ-ニング特性評価
 6インチシリコンウェハー上に、上記ポジ型感光性樹脂組成物をスピンコーター(東京エレクトロン社製 クリーントラックMark7)により塗布し、130℃で180秒間乾燥し、7.9μmの膜厚の塗膜を得た。
 この塗膜に、i線ステッパー露光機(ニコン社製 NSR2005i8A)により、レチクルを通して露光量を25mJ/cmづつ段階的に変化させて露光した。このウェハーを2.38%TMAH水溶液(クラリアントジャパン社製 AZ300MIF)により23℃の条件下で、現像後膜厚が6.75μmとなるように現像時間を調整して現像を行い、純水で15秒間リンスし、ポジ型のレリーフパターンを得た。
 このレリーフパターンを顕微鏡にて観察し、露光部の3.5μmの正方形レリーフパターンが溶解除去しうる最小露光量を感度と定義し、その結果を表2に示す。更に、現像前の膜厚7.9μmに対して0.2μmづつ膜厚を厚くした塗布膜を作製し、初期膜厚が7.9μmの際に求めた最小露光量に25mJ/cmを加算して露光を行い、現像時間は、初期膜厚が7.9μmの際に求めた現像時間に固定して現像を行い、元の7.9μmに対して、膜厚を増やした場合に3.5μmの正方形レリーフパターンが溶解除去しうる膜厚マージンを求めた。
 比較例8~11ポジ型感光性樹脂組成物は、γ-ブチロラクトンで作成することができず、NMPを用いて調整した。比較例8~11のポジ型感光性樹脂組成物では、現像機の最小現像時間である9秒で現像を行ったが、未露光部の溶解速度が非常に速く、現像後の膜厚を6.75μmとなるように調節することができず、結果として所望のレリーフパターンを得ることができなかった。これは、未露光部において、PAC-1に含まれるナフトキノンジアジドによるアルカリ可溶性樹脂の溶解抑止が効かず、結果として未露光部と露光部の溶解速度の差が得られないことが原因である。比較例12、14では、所望する3.5μmのパターンを得ることができたが、パターンを得る際に必要とする感度は低い結果となった。比較例13では、現像時間を調整することで、6.75μmになるように膜厚を調整することが可能であったが、800mJ/cm以下の露光量で所望のパターンを得ることが出来なかった。比較例14では、現像時間を調整することで、6.75μmになるように膜厚を調整することが可能であり、比較的高感度であったが、ハロゲン原子であるF原子を含む。
 実施例15~28では、ハロゲン原子を含まず、高感度で、同一現像時間、同一露光量で処理した場合の膜厚マージンが良好なレリーフパターンを得ることができた。
<硬化レリーフパターンの作成>
 実施例15~28で得られたレリーフパターン付きシリコンウェハーを昇温式オーブン(光洋サーモシステム社製 VF200B)を用いて窒素雰囲気下、320℃で1時間加熱し、膜厚が5μmの硬化レリーフパターンを得た。特に、実施例19~28のレリーフパターンの形状は現像後のパターンを保持しており、パターン形状に優れていた。これは、ポリマー末端が5-ノルボルネン酸無水物で封止されている影響である。
<最適な溶媒の評価>
 実施例5で得られたポリマー(P-5)をGBLの代わりに、表3に示す溶媒に溶かし、その他は実施例19と同様にポジ型感光性樹脂を作製し、パターニング特性評価を行った。この際に現像前の塗布膜の平坦性を求めた。6インチシリコンウェハー上の直径上の7点を測定し、その最大膜厚と最小膜厚の差を求め、7点の平均膜厚で割った値(表面平滑性と定義する)を表3に示す。この値が小さければ表面平滑性が良いといえる。実施例33のアセトンでは、塗布中に溶媒がすぐに気散するため、星型に塗布膜が形成され、シリコンウェハー上に均一に塗布することが出来なかった。実施例34の酢酸ブチルでは樹脂が溶解せず、組成物を作製することが出来なかった。更に、組成物を空気開放化で室温で2週間放置し、組成物の粘度変化率を求めた。実施例30のNMP、実施例31のジメチルアセトアミドでは2週間後、若干、空気中の水分の影響で白く濁っていた。実施例32、33では組成物の粘度が上昇していた。実施例29のGBLが塗布膜の平坦性、感度、膜厚マージン、安定性の観点から優れている。
<最適なアルコキシシラン化合物の評価>
 上記各実施例5にて得られたアルカリ可溶性樹脂溶液(P-5)に、参考例6で得られた感光性ジアゾナフトキノン化合物PAC-1をアルカリ可溶性樹脂純分100質量部に対して22質量部溶解した後、5-n-ヘキシルレゾルシノール(和光純薬工業株式会社製)を4質量部溶解し下記表4の組合せで、参考例7、9~11で得られた接着助剤溶液を30質量部、又は市販のシリコンカプラ-6質量部を加え、溶解した後、1μmのフィルターで濾過し、ポジ型感光性樹脂組成物を得た。これを上記、実施例19と同様にパターニング特性評価を行い、最小露光量より100mJ/cm露光量の高いパターンを観察し、長さが1cmの1:1のラインアンドスペースが5本並んだパターンを観測し、5本とも完全に接着している最小サイズのラインアンドスペースパターンを最小接着パターンと定義し、現像時のパターンの接着性を比較した。この結果を表5に示す。この場合、小さいサイズのラインアンドスペースが接着している方が、現像接着性が良い。
 実施例35~43では3ミクロン以下の小さなパターンが接着した。さらに、実施例35~46で得たポジ型感光性樹脂組成物を、6インチシリコン6インチシリコンウェハー上に、スピンコーター(東京エレクトロン社製 クリーントラックMark7)により塗布し、130℃で180秒間乾燥した後、昇温式オーブン(光洋サーモシステム社製 VF200B)を用いて窒素雰囲気下、320℃で1時間加熱、膜厚10.0μmの耐熱性硬化膜を得た。この硬化フィルム形成後のサンプルをプレッシャークッカー(131℃、3.0気圧)で100時間処理を行った後、碁盤目試験(JIS K5400)にて、1mm角の正方形100個ができるようにカッターナイフで傷をつけ、上からセロハン(登録商標)テープを貼り付けた後剥離し、セロハン(登録商標)テープに付着せず基板上に残った正方形の数を数えることにより、耐水接着性を評価した。表5にテープ剥離試験後にシリコンウェハー上に残っている正方形の個数を示す。個数が多いほど、接着性が良い。実施例35~43のキュア後フィルムの耐水接着性が良い。実施例35~43は、現像後のパターンの接着性、熱硬化後のシリコンウェハーとの接着性、感光性樹脂組成物の保存安定性を全て満たしていたため、より好ましい。
<熱により架橋反応を起こす化合物の評価>
 上記各実施例5にて得られたアルカリ可溶性樹脂溶液(P-5)に、参考例5で得られた感光性ジアゾナフトキノン化合物PAC-1をアルカリ可溶性樹脂純分100質量部に対して22質量部溶解した後、5-n-ヘキシルレゾルシノール(和光純薬工業株式会社製)を4質量部溶解し、参考例7で得られた接着助剤溶液30質量部を加え、下記表6の組合せで熱により架橋反応を起こす化合物を、溶解した後、1μmのフィルターで濾過し、ポジ型感光性樹脂組成物を得た。これを上記、実施例19と同様にパターニング特性評価を行った。結果を表7に示す。この様にして得られたパターン付きシリコンウェハーを昇温式オーブン(光洋サーモシステム社製 VF200B)を用いて窒素雰囲気下、320℃で1時間加熱し、耐熱性硬化膜を得た。このパターン付きシリコンウェハーの耐熱製硬化膜の膜厚を測定した後に、これらシリコンウェハーを80℃に加熱されたレジスト剥離液TOK105(東京応化工業社製)が満たされたバスに30分間浸し、純水で洗浄後、膜厚を計測し、その残膜率を測定した。さらにパターンの状態を観測した。結果を表7に示す。
 さらに実施例19と同様に、ポジ型感光性樹脂組成物の硬化膜のガラス転移温度(Tg)の測定をそれぞれ行った。結果を表7に示す。また、それぞれの感光性樹脂組成物を室温で4週間放置した後の粘度変化率を測定した。その結果も表7に示す。実施例47~62は、実施例63の未添加の物と比較してガラス転移温度も高く、耐薬品性も向上したのでより好ましい。
 表7中、CL-1~CL-13は以下のとおりのものである:
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
<アクリレート化合物、メタクリレート化合物、アリル基含有化合物、メトキシ基含有化合物、フェニルエステル化合物からなる群から選ばれた少なくとも1種の化合物の評価>
 上記各実施例5にて得られたアルカリ可溶性樹脂溶液(P-5)に、参考例5で得られた感光性ジアゾナフトキノン化合物PAC-1をアルカリ可溶性樹脂純分100質量部に対して12質量部溶解した後、参考例7で得られた接着助剤溶液30質量部、CL-8を6質量部、CL-9を4質量部、メトキシフェニル酢酸6質量部を溶解した後、表8に示す組合せでアクリレート化合物、メタクリレート化合物、アリル基含有化合物、メトキシ基含有化合物、フェニルエステル化合物からなる群から選ばれた少なくとも1種の化合物を加え、1μmのフィルターで濾過し、ポジ型感光性樹脂組成物を得た。これを上記、実施例19と同様にパターニング特性評価を行った。結果を表9に示す。また、この際に必要とした現像時間も併せて表9に示す。この様にして得られたパターン付きシリコンウェハーを昇温式オーブン(光洋サーモシステム社製 VF200B)を用いて窒素雰囲気下、320℃で1時間加熱し、現像後のパターン形状を保持した耐熱性硬化膜を得た。実施例64~76は光感度が高い点、膜厚マージンが、より広い点で好ましい。
 表8中、F-1~F-7は以下のとおりのものである:
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
{式中、n2は、1~20の整数であり、平均が9である。}
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
<モノカルボン酸化合物の評価>
 上記各実施例5にて得られたアルカリ可溶性樹脂溶液(P-5)に、参考例6で得られた感光性ジアゾナフトキノン化合物PAC-1をアルカリ可溶性樹脂純分100質量部に対して12質量部溶解した後、参考例7で得られた接着助剤溶液30質量部、CL-8を6質量部、CL-9を4質量部、溶解抑止剤F-1を6質量部溶解した後、表10に示す組合せでモノカルボン酸化合物を加え、1μmのフィルターで濾過し、ポジ型感光性樹脂組成物を得た。これを上記、実施例19と同様にパターニング特性評価を行った。また、最小露光量より100mJ/cm露光量の高いパターンを観察し、長さが1cmの1:1のラインアンドスペースが5本並んだパターンを観測し、5本とも完全に接着している最小サイズのラインアンドスペースパターンを最小接着パターンと定義し、現像時のパターンの接着性を比較した。これら結果を表11に示す。また、この際に必要とした現像時間も併せて表11に示す。この様にして得られたパターン付きシリコンウェハーを昇温式オーブン(光洋サーモシステム社製 VF200B)を用いて窒素雰囲気下、320℃で1時間加熱し、現像後のパターン形状を保持した耐熱性硬化膜を得た。実施例79~85では、感度が高い点、膜厚マージンが、より広い点で好ましい。
<実施例89~99、比較例15~21>
(ネガ型感光性樹脂組成物の調製)
 下記表12の組合せで、上記各実施例4~14、及び比較例1~7にて得られたアルカリ可溶性樹脂溶液(P-4~P-21)に、活性光線照射により酸を発生する化合物(PAG)として、2-[2-(4-メチルフェニルスルホニルオキシイミノ)-2,3-ジヒドロチオフェン-3-イリデン]-2-(2-メチルフェニル)アセトニトリル(Irgacure PAG121、チバ・ジャパン社製)5質量部、酸の作用により架橋し得る化合物として、CL-4:アルコキシメチル化尿素樹脂(品番MX-270、三和ケミカル社製、商標名ニカラック、単量体95%以上)30質量部を溶解し、更に参考例7で得られた接着助剤溶液D-1を30質量部加え、溶解した後、1μmのフィルターで濾過し、ネガ型感光性樹脂組成物を得た。
<ネガ型感光性樹脂組成物の評価>
パタ-ニング特性評価
 上記実施例89~99、及び比較例15~21から得られたネガ型感光性樹脂組成物を使って、6インチシリコンウエハー上にスピンコートしそしてホットプレート上で110℃で3分間ベーキングして厚さ約15μmのフィルムを得た。このフィルムにi線ステッパー露光機(ニコン社製、NSR2005i8A)によりレチクルを通して露光量を段階的に変化させて露光した。露光されたウエハーを120℃で3分間露光後ベーキングし、2.38%のTMAH水溶液(クラリアントジャパン社製 AZ300MIF)を使用して現像し、次いで脱イオン水でリンスしてレリーフパターンを得た。このレリーフパターンを顕微鏡下で観察し、露光領域でのフィルム厚さの約90%が保持された部分の露光量を感度とし(最小露光量とする)、未露光部の正方形レリーフパターンが完全に溶解除去したビアサイズを解像度とし定義した。結果を以下の表13に示す。また、初期膜厚を15μmから0.5μmづつ厚くしたシリコンウエハーを作製し、初期膜厚が15μmの際に求めた最小露光量及び現像時間を固定し、リソ評価を行った場合に、現像できうる膜厚マージンを求めた。結果を表13に記載する。実施例89~99は、比較例15~21と比較して高感度で、膜厚マージンが広く、ハロゲン原子を含まない点で優れている。
Figure JPOXMLDOC01-appb-T000144
Figure JPOXMLDOC01-appb-T000145
Figure JPOXMLDOC01-appb-T000146
Figure JPOXMLDOC01-appb-T000147
Figure JPOXMLDOC01-appb-T000148
Figure JPOXMLDOC01-appb-T000149
Figure JPOXMLDOC01-appb-T000151
Figure JPOXMLDOC01-appb-T000152
Figure JPOXMLDOC01-appb-T000153
Figure JPOXMLDOC01-appb-T000154
Figure JPOXMLDOC01-appb-T000155
Figure JPOXMLDOC01-appb-T000156
 本発明のポジ型感光性樹脂組成物は、半導体用の保護膜、層間絶縁膜、液晶配向膜等の分野で、好適に使用することができる。

Claims (31)

  1.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    {式中、Xは、ハロゲン原子を含まない4価の有機基を示し、そしてZは、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、L、L及びLは、それぞれ独立に、水素原子又はメチル基を表し、そしてLは、水素原子、メチル基又は水酸基を表す。)で表される2価の有機基を表す。}で表される構造を分子内に有する樹脂。
  2.  下記一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    {式中、X及びXは、ハロゲン原子を含まない4価の有機基を示し、それぞれ同じであっても異なっていてもよき、Zは、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000004
    (式中、L、L及びLは、それぞれ独立に、水素原子又はメチル基を表し、そしてLは、水素原子、メチル基又は水酸基を表す。)で表される2価の有機基を示し、Zは、芳香環を有するハロゲン原子を含まない2価の有機基を示し、mは、1~200の整数を示し、Xは、ハロゲン原子を含まない2~4価の有機基を示し、Zは、ハロゲン原子を含まない4価の有機基を示し、m及びmは、それぞれ独立に、0~200の整数を示し、mは、0~2の整数を示し、mは、0~1の整数であり、そしてm、m及びm個の各単位の配列順序は問わない。}で表される構造を分子内に有する樹脂。
  3.  下記一般式(4):
    Figure JPOXMLDOC01-appb-C000005
    {式中、R1及びRは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、及び置換されていてもよいベンゼン環からなる群より選ばれる一種の基であり、RとRは連結されていてもよく、そしてR及びRは、それぞれ独立に、水素原子又は炭素数1~4の有機基である。}で表される構造を有する、請求項1又は2に記載の樹脂。
  4.  下記式(5):
    Figure JPOXMLDOC01-appb-C000006
    で表される構造を有する、請求項1又は2に記載の樹脂。
  5.  下記式(6):
    Figure JPOXMLDOC01-appb-C000007
    で表される構造を有する、請求項1又は2に記載の樹脂。
  6.  下記式(7):
    Figure JPOXMLDOC01-appb-C000008
    で表される構造を有する、請求項1又は2に記載の樹脂。
  7.  下記式(8):
    Figure JPOXMLDOC01-appb-C000009
    で表される構造を有する、請求項1又は2に記載の樹脂。
  8.  下記式(9):
    Figure JPOXMLDOC01-appb-C000010
    で表される構造を有する、請求項1又は2に記載の樹脂。
  9.  下記式(10):
    Figure JPOXMLDOC01-appb-C000011
    {式中、Rは、炭素数1~4の一価の有機基である。}で表される構造を有する、請求項1又は2に記載の樹脂。
  10.  下記式(11):
    Figure JPOXMLDOC01-appb-C000012
    で表される構造を有する、請求項1又は2に記載の樹脂。
  11.  下記式(12):
    Figure JPOXMLDOC01-appb-C000013
    で表される構造を有する、請求項1又は2に記載の樹脂。
  12.  下記式(13):
    Figure JPOXMLDOC01-appb-C000014
    で表される構造を有する、請求項1又は2に記載の樹脂。
  13.  前記一般式(3)中のZが、下記構造式(14):
    Figure JPOXMLDOC01-appb-C000015
    {式中、Lは、以下の有機基:
    Figure JPOXMLDOC01-appb-C000016
    (式中、Lは、炭素数1~4の1価のアルキル基を表す。)から選択される1価の基である。}からなる群から選択される少なくとも1つの構造である、請求項2に記載の樹脂。
  14.  前記一般式(3)中のポリイミド基含有ユニット部が、下記式(15)及び下記式(16):
    Figure JPOXMLDOC01-appb-C000017
    からなる群から選択される少なくとも1つの構造を有する、請求項2に記載の樹脂。
  15.  樹脂の末端が下記構造:
    Figure JPOXMLDOC01-appb-C000018
    からなる群から選択される少なくとも1つの末端基である、請求項1~14のいずれか1項に記載の樹脂。
  16.  (A)請求項1~15のいずれか1項に記載の樹脂を含むアルカリ可溶性樹脂100質量部に対して、(B)感光性ジアゾナフトキノン化合物1~100質量部を含むポジ型感光性樹脂組成物。
  17.  (C)有機溶剤100~2000質量部をさらに含む、請求項16に記載のポジ型感光性樹脂組成物。
  18.  (B)感光性ジアゾナフトキノン化合物が、下記一般式(17):
    Figure JPOXMLDOC01-appb-C000019
    で表されるポリヒドロキシ化合物の1,2-ナフトキノンジアジド-4-スルホン酸エステル、及び該ポリヒドロキシ化合物の1,2-ナフトキノンジアジド-5-スルホン酸エステルからなる群から選択される少なくとも一種の化合物である、請求項16又は17に記載のポジ型感光性樹脂組成物。
  19.  (C)有機溶剤が、γ-ブチロラクトンである、請求項17に記載のポジ型感光性樹脂組成物。
  20.  (D)アルコキシシラン化合物0.01~20質量部をさらに含む、請求項16又は17に記載のポジ型感光性樹脂組成物。
  21.  (D)アルコキシシラン化合物が、下記一般式(18)~(25):
    Figure JPOXMLDOC01-appb-C000020
    {式中、X及びXは、2価の有機基を示し、X及びXは、1価の有機基を示し、そしてsは、0~2の整数を示す}、
    Figure JPOXMLDOC01-appb-C000021
    {式中、X及びXは、2価の有機基を示し、Xは、4価の有機基を示し、X、X、X10及びX11は、1価の有機基を示し、そしてsは、0~2の整数を示す。}、
    Figure JPOXMLDOC01-appb-C000022
    {式中、X13は、2価の有機基を示し、X12、X14及びX15は、1価の有機基を示し、sは0~2の整数を示し、そしてtは0~5の整数を示す。}、
    Figure JPOXMLDOC01-appb-C000023
    {式中、X16は、-NH-R20又は-O-R21(ここで、R20とR21はCOOH基を含まない1価の有機基である。)、X17は、2価の有機基を示し、X18及びX19は、1価の有機基を示し、そしてsは、0~2の整数を示す。}、
    Figure JPOXMLDOC01-appb-C000024
    {式中、X22は、2価の有機基を示し、X23及びX24は1価の有機基を示し、そしてsは、0~2の整数を示す}、
    Figure JPOXMLDOC01-appb-C000025
    {式中、X25は、2価の有機基を示し、X26及びX27は、1価の有機基を示し、そしてsは、0~2の整数を示す。}、
    Figure JPOXMLDOC01-appb-C000026
    {式中、X28は、水素原子又はメチル基を示し、X29は、下記式群:
    Figure JPOXMLDOC01-appb-C000027
    から選ばれる2価の基であり、X30は、2価の有機基を示し、X31及びX32は、1価の有機基を示し、sは、0~2の整数を示し、そしてuは、1~3の整数を示す。}、及び
    Figure JPOXMLDOC01-appb-C000028
    {式中、X33及びX34は、2価の有機基を示し、X35及びX36は、1価の有機基を示し、そしてsは、0~2の整数を示す。}で表される化合物からなる群より選ばれる少なくとも一種の化合物である、請求項20に記載のポジ型感光性樹脂組成物。
  22.  (E)熱により架橋反応を起こす化合物5~20質量部をさらに含む、請求項16又は17に記載のポジ型感光性樹脂組成物。
  23.  (E)熱により熱架橋反応を起こす化合物が、エポキシ基、メチロール基、アルコキシメチル基又はオキセタン基を有する化合物、及びビスアリルナジイミド化合物からなる群より選ばれる少なくとも一種の化合物である、請求項22に記載のポジ型感光性樹脂組成物。
  24.  (F)アクリレート化合物、メタクリレート化合物、アリル基含有化合物、メトキシ基含有化合物、及びフェニルエステル化合物からなる群から選ばれる少なくとも1種の化合物1~30質量部をさらに含む、請求項16又は17に記載のポジ型感光性樹脂組成物。
  25.  (G)カルボキシル基を分子内に有する有機化合物1~30質量部をさらに含む、請求項16又は17に記載のポジ型感光性樹脂組成物。
  26.  請求項16~25のいずれか一項に記載のポジ型感光性樹脂組成物を、基板上に塗布する塗布工程、該層を露光する露光工程、露光部を現像液で溶出除去する現像工程、及び得られたレリーフパターンを加熱する加熱工程を含む、硬化レリーフパターンの形成方法。
  27.  請求項26に記載の形成方法により得られる硬化レリーフパターンを有してなる半導体装置。
  28.  (A)請求項1~15のいずれか1項に記載の樹脂100質量部、(H)活性光線照射により酸を発生する化合物0.5~30質量部、及び(I)酸の作用により架橋し得る化合物5~50質量部を含むネガ型感光性樹脂組成物。
  29.  (I)酸の作用により架橋し得る化合物が、分子内にメチロール基又はアルコキシメチル基を有する化合物である、請求項28に記載のネガ型感光性樹脂組成物。
  30.  請求項28又は29に記載のネガ型感光性樹脂組成物を、基板上に塗布する塗布工程、該層を露光する露光工程、露光後に加熱する工程、未露光部を現像液で溶出除去する現像工程、及び得られたレリーフパターンを加熱する加熱工程を含む、硬化レリーフパターンの形成方法。
  31.  請求項30に記載の形成方法により得られる硬化レリーフパターンを有してなる半導体装置。
PCT/JP2008/073472 2007-12-26 2008-12-24 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物 WO2009081950A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200880111801.8A CN101827880B (zh) 2007-12-26 2008-12-24 耐热性树脂前体及使用其的感光性树脂组合物
KR1020107008436A KR101175080B1 (ko) 2007-12-26 2008-12-24 내열성 수지 전구체 및 그것을 사용한 감광성 수지 조성물
JP2009547116A JP5498170B2 (ja) 2007-12-26 2008-12-24 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007335077 2007-12-26
JP2007-335077 2007-12-26

Publications (1)

Publication Number Publication Date
WO2009081950A1 true WO2009081950A1 (ja) 2009-07-02

Family

ID=40801250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073472 WO2009081950A1 (ja) 2007-12-26 2008-12-24 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物

Country Status (5)

Country Link
JP (1) JP5498170B2 (ja)
KR (1) KR101175080B1 (ja)
CN (1) CN101827880B (ja)
TW (1) TWI386436B (ja)
WO (1) WO2009081950A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001780A1 (ja) * 2008-07-03 2010-01-07 旭化成イーマテリアルズ株式会社 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物
WO2010047271A1 (ja) * 2008-10-20 2010-04-29 日本化薬株式会社 ポリイミド樹脂及びその組成物
JP2011013644A (ja) * 2009-07-06 2011-01-20 Asahi Kasei E-Materials Corp 感光性樹脂組成物
WO2011135887A1 (ja) * 2010-04-28 2011-11-03 旭化成イーマテリアルズ株式会社 感光性樹脂組成物
JP5079089B2 (ja) * 2008-05-29 2012-11-21 旭化成イーマテリアルズ株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP2015087715A (ja) * 2013-11-01 2015-05-07 国立大学法人横浜国立大学 反応現像画像形成法
JP2015179153A (ja) * 2014-03-19 2015-10-08 東レ株式会社 感光性樹脂組成物
WO2017073481A1 (ja) * 2015-10-28 2017-05-04 東レ株式会社 ポジ型感光性樹脂組成物、感光性シート、硬化膜、層間絶縁膜、半導体保護膜、半導体装置の製造方法、半導体電子部品および半導体装置
JP2017097381A (ja) * 2012-03-05 2017-06-01 味の素株式会社 感光性樹脂組成物
WO2017134700A1 (ja) * 2016-02-05 2017-08-10 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物
WO2017134701A1 (ja) * 2016-02-05 2017-08-10 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物
WO2018056013A1 (ja) * 2016-09-20 2018-03-29 太陽ホールディングス株式会社 ポジ型感光性樹脂組成物、ドライフィルム、硬化物、プリント配線板および半導体素子
JP2020160338A (ja) * 2019-03-27 2020-10-01 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物、及び、電子部品

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342878B (zh) * 2013-06-21 2015-12-09 华东理工大学 基于聚苯并唑和热固性树脂的分子复合材料及制备方法
CN107430334B (zh) * 2015-01-23 2021-07-30 艾曲迪微系统股份有限公司 正型感光性树脂组合物、图案固化膜的制造方法、图案固化膜和电子部件
CN108027555B (zh) * 2015-10-21 2020-12-18 昭和电工株式会社 正型感光性树脂组合物
US10752805B2 (en) * 2015-11-16 2020-08-25 Mitsui Chemicals, Inc. Semiconductor film composition, method for manufacturing semiconductor film composition, method for manufacturing semiconductor member, method for manufacturing semiconductor processing material, and semiconductor device
KR102590314B1 (ko) * 2017-04-20 2023-10-17 삼성전자주식회사 폴리(아미드-이미드) 코폴리머, 폴리(아미드-이미드) 코폴리머를 포함하는 성형품, 및 표시 장치
JP6800105B2 (ja) * 2017-07-21 2020-12-16 信越化学工業株式会社 有機膜形成用組成物、パターン形成方法、及び有機膜形成用樹脂
CN114303096A (zh) * 2019-08-27 2022-04-08 三菱瓦斯化学株式会社 光刻用膜形成组合物、抗蚀图案形成方法、电路图案形成方法及纯化方法
CN114599686A (zh) * 2019-10-16 2022-06-07 住友电木株式会社 聚合物及树脂组合物
CN116041201A (zh) * 2022-12-30 2023-05-02 黑龙江迪诺医药有限公司 碘佛醇中间体的制备方法
CN117866200A (zh) * 2023-12-18 2024-04-12 上海交通大学 聚苯并噁唑前体及其制备方法、感光性树脂组合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865720A (ja) * 1981-10-14 1983-04-19 Japan Synthetic Rubber Co Ltd ポリアミド系熱可塑性樹脂
JP2001125267A (ja) * 1999-10-29 2001-05-11 Hitachi Chemical Dupont Microsystems Ltd ネガ型感光性樹脂組成物、パターンの製造法及び電子部品
JP2002258485A (ja) * 2001-02-28 2002-09-11 Asahi Kasei Corp 感光性樹脂組成物
JP2004294553A (ja) * 2003-03-25 2004-10-21 Hitachi Chem Co Ltd 感光性樹脂組成物、これを用いた感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
JP2006349700A (ja) * 2005-05-18 2006-12-28 Hitachi Chemical Dupont Microsystems Ltd 感光性樹脂組成物、パターンの製造方法及び電子部品
WO2007029614A1 (ja) * 2005-09-05 2007-03-15 Asahi Kasei Emd Corporation ポジ型感光性樹脂組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674566B2 (en) * 2005-10-26 2010-03-09 Asahi Kasei Emd Corporation Positive photosensitive resin composition
JP2007199685A (ja) * 2005-12-28 2007-08-09 Fujifilm Electronic Materials Co Ltd 光硬化性着色組成物及びカラーフィルタ、並びに液晶表示装置
JP4625769B2 (ja) * 2006-01-24 2011-02-02 富士フイルム株式会社 感光性樹脂組成物及びそれを用いた半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865720A (ja) * 1981-10-14 1983-04-19 Japan Synthetic Rubber Co Ltd ポリアミド系熱可塑性樹脂
JP2001125267A (ja) * 1999-10-29 2001-05-11 Hitachi Chemical Dupont Microsystems Ltd ネガ型感光性樹脂組成物、パターンの製造法及び電子部品
JP2002258485A (ja) * 2001-02-28 2002-09-11 Asahi Kasei Corp 感光性樹脂組成物
JP2004294553A (ja) * 2003-03-25 2004-10-21 Hitachi Chem Co Ltd 感光性樹脂組成物、これを用いた感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
JP2006349700A (ja) * 2005-05-18 2006-12-28 Hitachi Chemical Dupont Microsystems Ltd 感光性樹脂組成物、パターンの製造方法及び電子部品
WO2007029614A1 (ja) * 2005-09-05 2007-03-15 Asahi Kasei Emd Corporation ポジ型感光性樹脂組成物

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079089B2 (ja) * 2008-05-29 2012-11-21 旭化成イーマテリアルズ株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
WO2010001780A1 (ja) * 2008-07-03 2010-01-07 旭化成イーマテリアルズ株式会社 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物
JP5498382B2 (ja) * 2008-07-03 2014-05-21 旭化成イーマテリアルズ株式会社 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物
WO2010047271A1 (ja) * 2008-10-20 2010-04-29 日本化薬株式会社 ポリイミド樹脂及びその組成物
JPWO2010047271A1 (ja) * 2008-10-20 2012-03-22 日本化薬株式会社 ポリイミド樹脂及びその組成物
JP5649118B2 (ja) * 2008-10-20 2015-01-07 日本化薬株式会社 ポリイミド樹脂及びその組成物
JP2011013644A (ja) * 2009-07-06 2011-01-20 Asahi Kasei E-Materials Corp 感光性樹脂組成物
WO2011135887A1 (ja) * 2010-04-28 2011-11-03 旭化成イーマテリアルズ株式会社 感光性樹脂組成物
JP4878662B2 (ja) * 2010-04-28 2012-02-15 旭化成イーマテリアルズ株式会社 感光性樹脂組成物
JP2017097381A (ja) * 2012-03-05 2017-06-01 味の素株式会社 感光性樹脂組成物
JP2015087715A (ja) * 2013-11-01 2015-05-07 国立大学法人横浜国立大学 反応現像画像形成法
JP2015179153A (ja) * 2014-03-19 2015-10-08 東レ株式会社 感光性樹脂組成物
WO2017073481A1 (ja) * 2015-10-28 2017-05-04 東レ株式会社 ポジ型感光性樹脂組成物、感光性シート、硬化膜、層間絶縁膜、半導体保護膜、半導体装置の製造方法、半導体電子部品および半導体装置
TWI714717B (zh) * 2016-02-05 2021-01-01 日商艾曲迪微系統股份有限公司 正型感光性樹脂組成物、圖案硬化膜的製造方法、硬化膜、層間絕緣膜、面塗層、表面保護膜以及電子零件
WO2017134700A1 (ja) * 2016-02-05 2017-08-10 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物
WO2017134701A1 (ja) * 2016-02-05 2017-08-10 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物
US11592743B2 (en) 2016-02-05 2023-02-28 Hd Microsystems, Ltd. Positive-type photosensitive resin composition
JPWO2017134701A1 (ja) * 2016-02-05 2018-11-01 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物
JPWO2017134700A1 (ja) * 2016-02-05 2018-11-01 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物
US11592744B2 (en) 2016-02-05 2023-02-28 Hd Microsystems, Ltd. Positive-type photosensitive resin composition
KR20190054128A (ko) * 2016-09-20 2019-05-21 다이요 홀딩스 가부시키가이샤 포지티브형 감광성 수지 조성물, 드라이 필름, 경화물, 프린트 배선판 및 반도체 소자
JP7011591B2 (ja) 2016-09-20 2022-01-26 太陽ホールディングス株式会社 ポジ型感光性樹脂組成物、ドライフィルム、硬化物、プリント配線板および半導体素子
KR102385641B1 (ko) 2016-09-20 2022-04-12 다이요 홀딩스 가부시키가이샤 포지티브형 감광성 수지 조성물, 드라이 필름, 경화물, 프린트 배선판 및 반도체 소자
JPWO2018056013A1 (ja) * 2016-09-20 2019-07-04 太陽ホールディングス株式会社 ポジ型感光性樹脂組成物、ドライフィルム、硬化物、プリント配線板および半導体素子
WO2018056013A1 (ja) * 2016-09-20 2018-03-29 太陽ホールディングス株式会社 ポジ型感光性樹脂組成物、ドライフィルム、硬化物、プリント配線板および半導体素子
JP2020160338A (ja) * 2019-03-27 2020-10-01 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物、及び、電子部品
JP7264688B2 (ja) 2019-03-27 2023-04-25 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物、及び、電子部品

Also Published As

Publication number Publication date
CN101827880B (zh) 2013-08-21
JPWO2009081950A1 (ja) 2011-05-06
JP5498170B2 (ja) 2014-05-21
KR101175080B1 (ko) 2012-10-26
TW200940601A (en) 2009-10-01
KR20100054163A (ko) 2010-05-24
TWI386436B (zh) 2013-02-21
CN101827880A (zh) 2010-09-08

Similar Documents

Publication Publication Date Title
JP5498170B2 (ja) 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物
JP5498382B2 (ja) 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物
JP4330798B2 (ja) ポジ型レジスト組成物
KR101274327B1 (ko) 알칼리 가용성 중합체, 그것을 포함하는 감광성 수지 조성물, 및 그 용도
KR101344125B1 (ko) 감광성 수지 조성물
JP5636456B2 (ja) 感光性樹脂組成物
JP5421585B2 (ja) 感光性樹脂組成物
JP4721845B2 (ja) ポジ型感光性樹脂組成物
JP5241280B2 (ja) ポジ型感光性樹脂組成物
JP5620686B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP5762706B2 (ja) 感光性樹脂組成物及び硬化レリーフパターンの製造方法
JP5079089B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP2007192936A (ja) ポジ型感光性樹脂組成物
JP5562585B2 (ja) 感光性樹脂組成物
JP5072462B2 (ja) ポジ型感光性樹脂組成物
JP4514542B2 (ja) ポジ型感光性樹脂組成物
JP5030743B2 (ja) ポリマー及びポジ型感光性樹脂組成物
JP2011100097A (ja) 感光性樹脂組成物、硬化レリーフパターン及び半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880111801.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863645

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009547116

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107008436

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08863645

Country of ref document: EP

Kind code of ref document: A1