WO2017134701A1 - ポジ型感光性樹脂組成物 - Google Patents

ポジ型感光性樹脂組成物 Download PDF

Info

Publication number
WO2017134701A1
WO2017134701A1 PCT/JP2016/000618 JP2016000618W WO2017134701A1 WO 2017134701 A1 WO2017134701 A1 WO 2017134701A1 JP 2016000618 W JP2016000618 W JP 2016000618W WO 2017134701 A1 WO2017134701 A1 WO 2017134701A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
film
resin composition
group
formula
Prior art date
Application number
PCT/JP2016/000618
Other languages
English (en)
French (fr)
Inventor
大作 松川
惟允 中村
Original Assignee
日立化成デュポンマイクロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成デュポンマイクロシステムズ株式会社 filed Critical 日立化成デュポンマイクロシステムズ株式会社
Priority to CN201680081033.0A priority Critical patent/CN108604059B/zh
Priority to JP2017564970A priority patent/JP6673370B2/ja
Priority to US16/075,441 priority patent/US11592744B2/en
Priority to PCT/JP2016/000618 priority patent/WO2017134701A1/ja
Priority to KR1020187022235A priority patent/KR20180101441A/ko
Priority to SG11201806631WA priority patent/SG11201806631WA/en
Priority to EP16889192.7A priority patent/EP3413132B1/en
Priority to TW106103600A priority patent/TWI729065B/zh
Publication of WO2017134701A1 publication Critical patent/WO2017134701A1/ja
Priority to PH12018501573A priority patent/PH12018501573B1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/0226Quinonediazides characterised by the non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a positive photosensitive resin composition, a cured product of the positive photosensitive resin composition, an interlayer insulating film using the cured product, a cover coat layer or a surface protective film, an electronic component including them, and a pattern
  • the present invention relates to a method for producing a cured film.
  • an organic solvent such as N-methylpyrrolidone was used in the development process.
  • a naphthoquinonediazide compound was mixed as a photosensitizer with a polyimide precursor or polybenzoxazole precursor.
  • Resin compositions that can be developed with an alkaline aqueous solution are proposed (for example, Patent Documents 1 and 2).
  • the multi-die fanout wafer level package (Multi-die Fanout Wafer Level Packaging) is a package that is manufactured by encapsulating multiple dies in one package. Since a lower cost and higher performance can be expected than a conventional fan-out wafer level package in which a single die is encapsulated, it is attracting a great deal of attention.
  • the rewiring forming layer is required to have characteristics equivalent to or higher than those at high-temperature curing.
  • the rewiring forming layer is required to have characteristics equivalent to or higher than those at high-temperature curing.
  • it is required to have high chemical resistance and high adhesiveness.
  • Chemical resistance is necessary to cope with the copper rewiring plating process in the production of multi-die fan-out packages.
  • a resist stripping solution that is a strong chemical solution is used to remove the resist, but resistance to the chemical solution is required.
  • Adhesiveness is very important from the viewpoint of ensuring reliability.
  • a conventional resin composition for a rewiring layer positive photosensitive resin composition using a polybenzoxazole precursor
  • the package could not be produced.
  • Patent Document 4 discloses that high sensitivity and high resolution can be achieved by combining a polybenzoxazole precursor with a specific crosslinking agent and a photosensitizer, but the properties of the cured film during low-temperature curing are low. It was.
  • An object of the present invention is to provide a positive photosensitive resin composition that is excellent in chemical resistance even when cured at a low temperature of 200 ° C. or lower.
  • the present inventors combine a specific polybenzoxazole precursor and a specific photosensitizer, and are excellent in chemical resistance even when cured at low temperatures.
  • the following positive photosensitive resin composition and the like are provided. 1.
  • the (a) polybenzoxazole precursor includes a structure represented by the following formula (1)
  • the positive photosensitive resin composition, wherein the (c) photosensitive agent is a compound having a structure represented by the following formula (2).
  • a or B only needs to include either A or B, and may include both.
  • process is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used as long as the intended action of the process is achieved. included.
  • the numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity.
  • the exemplary materials may be used singly or in combination of two or more unless otherwise specified.
  • the positive photosensitive resin composition of the present invention comprises (a) a polybenzoxazole precursor, (b) a crosslinking agent, (c) a photosensitive agent, and (d) a solvent, and (a) a polybenzox
  • the oxazole precursor is a compound including a structure represented by the following formula (1)
  • (c) a photosensitive agent is a compound including a structure represented by the following formula (2).
  • U is a divalent organic group, a single bond, —O— or —SO 2 —
  • V is a group containing an aliphatic structure, and the aliphatic structure has 1 to 30.
  • the positive type photosensitive resin composition of the present invention contains the above-mentioned components, and even when cured at a low temperature of 200 ° C. or lower and a pattern having a high chemical resistance equal to or higher than the pattern cured film obtained at the time of high temperature curing. A cured film can be formed. Moreover, a pattern with high resolution can be formed with high sensitivity, and the adhesiveness to copper or the like is excellent. Therefore, it can be suitably applied to the production of a laminated device structure represented by a multi-die fan-out wafer level package.
  • a polybenzoxazole precursor (b) a crosslinking agent, (c) a photosensitizing agent, and (d) a solvent are respectively referred to as (a) component, (b) component, (c) component, and (d) component. It may be noted.
  • the polybenzoxazole precursor preferably has a high transmittance of a light source (i-line) used at the time of patterning and a high cured film characteristic even at a low temperature curing of 200 ° C. or lower. Therefore, the polybenzoxazole precursor preferably has a structure represented by the above formula (1).
  • V in the formula (1) is a group containing an aliphatic structure (1 to 30 carbon atoms).
  • the “aliphatic structure” includes an alicyclic structure.
  • the aliphatic structure is preferably an aliphatic chain structure, and more preferably an aliphatic linear structure.
  • the number of carbon atoms in the aliphatic structure is preferably 5 to 20, and more preferably 5 to 10.
  • V preferably has a structure derived from dicarboxylic acid.
  • the raw material dicarboxylic acid that gives V include dodecanedioic acid, decanedioic acid, nonanedioic acid, cyclohexanedicarboxylic acid, and 2,2-bis (4-carboxyphenyl). -1,1,1,3,3,3-hexafluoropropane, 5-tert-butylisophthalic acid and the like.
  • dodecanedioic acid or decanedioic acid is preferable as the raw material dicarboxylic acid from the viewpoint of ensuring the i-line transmittance and the elongation at break of the cured film.
  • the polybenzoxazole precursor of component (a) may have a structural unit other than the structural unit represented by the formula (1) in part.
  • the proportion of the structural unit represented by the formula (1) is preferably 50 mol% or more, more preferably 60 mol% or more in all the structural units.
  • Examples of the structural unit other than the structural unit represented by the formula (1) include those in which V is a skeleton derived from a diphenyl ether compound in the formula (1).
  • U is preferably a group containing a structure represented by the following formula (u-1).
  • R 1 and R 2 are each independently a hydrogen atom, a fluorine atom, an alkyl group having 1 to 6 carbon atoms or a fluorinated alkyl group having 1 to 6 carbon atoms, and a is 1 to 30 Is an integer.
  • Specific examples of R 1 and R 2 include a methyl group and a trifluoromethyl group, and a trifluoromethyl group is preferred from the viewpoint of transparency of the polybenzoxazole precursor.
  • a is preferably an integer of 1 to 5.
  • a polybenzoxazole is obtained by dehydrating and ring-closing the polybenzoxazole precursor.
  • the polybenzoxazole precursor is usually developed with an aqueous alkaline solution. Therefore, it is preferable that it is soluble in alkaline aqueous solution.
  • the alkaline aqueous solution include an organic ammonium aqueous solution such as a tetramethylammonium hydroxide (TMAH) aqueous solution, a metal hydroxide aqueous solution, and an organic amine aqueous solution.
  • TMAH tetramethylammonium hydroxide
  • a metal hydroxide aqueous solution a metal hydroxide aqueous solution
  • an organic amine aqueous solution it is preferable to use a TMAH aqueous solution having a concentration of 2.38% by mass. That is, the component (a) is preferably soluble in the TMAH aqueous solution.
  • the molecular weight of the component (a) is preferably a weight average molecular weight in terms of polystyrene of 10,000 to 100,000, more preferably 15,000 to 100,000, and 20,000 to 85,000. More preferably.
  • weight average molecular weight of the component (a) is 10,000 or more, there is a tendency that appropriate solubility in an alkali developer can be secured.
  • weight average molecular weight of the component (a) is 100,000 or less, good solubility in a solvent tends to be obtained, and the viscosity of the solution tends to increase and the handleability tends to be reduced. is there.
  • the dispersity obtained by dividing the weight average molecular weight by the number average molecular weight is preferably 1 to 4, and more preferably 1 to 3.
  • a weight average molecular weight can be calculated
  • ((B) component: crosslinking agent) The component (b) reacts with the polybenzoxazole precursor of the component (a) (crosslinking reaction) in the step of heat-treating the patterned resin film obtained by applying, exposing and developing the positive photosensitive resin composition. To do. Moreover, the crosslinking agent itself of (b) component can also superpose
  • the component (b) is not particularly limited as long as it is a compound that crosslinks or polymerizes in the heat treatment step, but when it is a compound having a hydroxyalkyl group such as a methylol group or an alkoxyalkyl group such as an alkoxymethyl group, it is cured at low temperature. From the viewpoint of high reactivity at the time, it is preferable.
  • the alkyl group contained in the hydroxyalkyl group and the alkoxyalkyl group include a methyl group, an ethyl group, and a butyl group.
  • a compound having two or more hydroxyalkyl groups or alkoxyalkyl groups from the viewpoint of good sensitivity and varnish stability, and prevention of melting of the photosensitive resin film upon curing of the photosensitive resin film after pattern formation Is more preferable.
  • each R 3 is independently a hydrogen atom or —CH 2 —O—R 4 , and at least one of the plurality of R 3 is —CH 2 —O—R 4.
  • 4 is each independently a hydrogen atom, a methyl group, an ethyl group or a butyl group.
  • R 3 , 2 to 6 are preferably —CH 2 —O—R 4 , and all R 3 are more preferably —CH 2 —O—R 4 .
  • R 4 is preferably a methyl group.
  • the compound represented by following formula (4) is the most preferable.
  • this compound is used, a cured film having excellent chemical resistance and adhesiveness can be obtained when the positive photosensitive resin composition is cured at a low temperature of 200 ° C. or lower.
  • the content of the component (b) in the positive photosensitive resin composition of the present invention is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the component (a), and 5 to 30 in order to ensure good mechanical properties. More preferred is 10 parts by mass, and more preferred is 10 to 30 parts by mass from the viewpoint of achieving both mechanical properties and photosensitive properties.
  • the positive photosensitive resin composition of this invention contains the compound (diazonaphthoquinone compound) containing the structure represented by following formula (2) as (c) component.
  • the component (c) is preferably represented by the following formula (2 ′).
  • n is an integer of 1 to 4.
  • X is a monovalent to tetravalent residue of a hydroxy group-containing compound or a monovalent to tetravalent residue of an amino group-containing compound. is there.
  • the residue of the hydroxy group-containing compound refers to a group obtained by removing the hydrogen atom of the hydroxy group from the compound.
  • the residue of an amino group-containing compound refers to a group obtained by removing a hydrogen atom of an amino group from the compound.
  • X in the formula (2 ′) is preferably represented by the following formula (11).
  • R 11 and R 12 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a fluorinated alkyl group having 1 to 6 carbon atoms, or the following formula (12) It is a group.
  • R 13 and R 14 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a fluorinated alkyl group having 1 to 6 carbon atoms.
  • * is a bonding position with the structure in parentheses in the formula (2 ′). At least one * may be bonded to the structure, and all * may be bonded to the structure.
  • the compound represented by the formula (2) is obtained by, for example, condensing 1,2-naphthoquinone-2-diazide-4-sulfonyl chloride with a hydroxy group-containing compound or an amino group-containing compound in the presence of a dehydrochlorinating agent. It is obtained by reacting.
  • hydroxy group-containing compound there are no particular restrictions on the hydroxy group-containing compound, but hydroquinone, resorcinol, pyrogallol, bisphenol A, bis (4-hydroxyphenyl) methane, 2,2-bis (4- Hydroxyphenyl) hexafluoropropane, 2,3,4-trihydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2,3,4, 2 ′, 3′-pentahydroxybenzophenone, 2,3,4,3 ′, 4 ′, 5′-hexahydroxybenzophenone, bis (2,3,4-trihydroxyphenyl) methane, bis (2,3,4) -Trihydroxyphenyl) propane, 4b, 5,9b, 10-tetrahydro-1,3,6,8 Tetrahydroxy-5,10-dimethyl-indeno [2,1-a] indene, tris (4-hydroxyphenyl) methane, or tris (4
  • amino group-containing compounds examples include p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl sulfide.
  • 1,2-Naphthoquinone-2-diazide-4-sulfonyl chloride and a hydroxy group-containing compound or amino group-containing compound include a hydroxy group and an amino group per 1 mol of naphthoquinone-1,2-diazido-4-sulfonyl chloride. It is preferable that the total amount of the groups is 0.5 to 1 equivalent.
  • a preferred ratio (molar ratio) between the dehydrochlorinating agent and 1,2-naphthoquinone-2-diazide-4-sulfonyl chloride is in the range of 0.95 / 1 to 1 / 0.95.
  • a preferred reaction temperature is 0 to 40 ° C., and a preferred reaction time is 1 to 10 hours.
  • reaction solvent for the above reaction dioxane, acetone, methyl ethyl ketone, tetrahydrofuran, diethyl ether, N-methylpyrrolidone and the like can be used.
  • dehydrochlorinating agent sodium carbonate, sodium hydroxide, sodium hydrogen carbonate, potassium carbonate, potassium hydroxide, trimethylamine, triethylamine, pyridine and the like can be used.
  • a compound represented by the following formula (5) is each independently a hydrogen atom or a group represented by the following formula (6). At least one Q is a group represented by the following formula (6).
  • the content of the component (c) in the positive photosensitive resin composition of the present invention may be appropriately adjusted in consideration of dissolution contrast and the like, but particularly in the case of a thick film, the diazonaphthoquinone compound itself absorbs i-line. Therefore, when blended in a large amount, the i-line does not reach the bottom of the film, exposure to the diazonaphthoquinone compound is insufficient and the photoreaction is difficult, and an opening pattern may not be formed.
  • 1 to 20 parts by mass is preferable with respect to 100 parts by mass of the component, and 5 to 15 parts by mass is more preferable.
  • the component (c) is preferably highly compatible with the component (a) from the viewpoint of film forming properties and high sensitivity.
  • component (d) component: solvent As component (d), ⁇ -butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, benzyl acetate, n-butyl acetate, ethoxyethyl propionate, 3-methylmethoxypropionate, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphorylamide, tetramethylene sulfone, cyclohexanone, cyclopentanone, diethyl ketone, diisobutyl ketone, methyl amyl ketone and the like can be mentioned.
  • the content of the component (d) in the positive photosensitive resin composition of the present invention is not particularly limited, but is preferably 50 to 300 parts by mass, more preferably 100 to 200 parts by mass with respect to 100 parts by mass of the component (a). preferable.
  • the positive photosensitive resin composition of the present invention may consist essentially of components (a), (b), (c) and (d) (consisting essentially of). For example, 80% by mass or more, 90% by mass or more, 95% by mass or more, or 98% by mass or more of the positive photosensitive resin composition of the present invention comprises (a), (b), (c) and (d) components. It may be. Further, the positive photosensitive resin composition of the present invention may consist only of the components (a), (b), (c) and (d) (consisting of). In this case, inevitable impurities may be included.
  • the resin composition of the present invention comprises, as necessary, (1) a coupling agent, (2) a dissolution accelerator, (3) a dissolution inhibitor, (4 ) A surfactant or a leveling agent may be contained.
  • the coupling agent (compound different from the above-mentioned (b) crosslinking agent) is usually a step of heat-treating the photosensitive resin composition after application, exposure and development, and (a) a polybenzoxazole precursor as a component. It is presumed that the coupling agent itself is polymerized in the process of crosslinking by reaction or heat treatment. Thereby, the adhesiveness of the cured film obtained and a board
  • a silane coupling agent having a urea bond (—NH—CO—NH—) in the molecule is added to the composition of the present invention, curing may be performed at a low temperature of 200 ° C. or less. The adhesion with the substrate can be further enhanced.
  • Preferred examples of the silane coupling agent include compounds having a urea bond, and a compound represented by the following formula (7) is more preferable because it exhibits excellent adhesion when cured at a low temperature.
  • R 5 and R 6 are each independently an alkyl group having 1 to 5 carbon atoms.
  • A is an integer of 1 to 10
  • b is an integer of 1 to 3.
  • Specific examples of the compound represented by the formula (7) include ureidomethyltrimethoxysilane, ureidomethyltriethoxysilane, 2-ureidoethyltrimethoxysilane, 2-ureidoethyltriethoxysilane, and 3-ureidopropyltrimethoxysilane. , 3-ureidopropyltriethoxysilane, 4-ureidobutyltrimethoxysilane, 4-ureidobutyltriethoxysilane, and the like, preferably 3-ureidopropyltriethoxysilane.
  • the adhesion of the cured film to the substrate during low-temperature curing is further improved. Is effective.
  • silane coupling agent having a hydroxyl group or glycidyl group in the molecule examples include methylphenylsilanediol, ethylphenylsilanediol, n-propylphenylsilanediol, isopropylphenylsilanediol, n-butylphenylsilanediol, and isobutylphenylsilanediol.
  • Tert-butylphenylsilanediol diphenylsilanediol, ethylmethylphenylsilanol, n-propylmethylphenylsilanol, isopropylmethylphenylsilanol, n-butylmethylphenylsilanol, isobutylmethylphenylsilanol, tert-butylmethylphenylsilanol, ethyln -Propylphenylsilanol, ethylisopropylphenylsilanol, n-butylethylphenylsilanol , Isobutylethylphenylsilanol, tert-butylethylphenylsilanol, methyldiphenylsilanol, ethyldiphenylsilanol, n-propyldip
  • R 7 is a monovalent organic group having a hydroxy group or a glycidyl group
  • R 8 and R 9 are each independently an alkyl group having 1 to 5 carbon atoms
  • c is an integer of 1 to 10
  • d is (It is an integer from 0 to 2.)
  • the compound represented by the formula (8) is particularly preferable because the adhesion to the substrate is further improved.
  • silane coupling agents include hydroxymethyltrimethoxysilane, hydroxymethyltriethoxysilane, 2-hydroxyethyltrimethoxysilane, 2-hydroxyethyltriethoxysilane, 3-hydroxypropyltrimethoxysilane, 3-hydroxypropyl.
  • Triethoxysilane 4-hydroxybutyltrimethoxysilane, 4-hydroxybutyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, 2-glycidoxyethyltrimethoxysilane, 2-glycid Xylethyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 4-glycidoxybutyltrimethoxysilane, 4-glycidoxybuty Triethoxysilane, and the like.
  • the silane coupling agent having a hydroxy group or glycidyl group in the molecule may be a silane coupling agent having a hydroxy group or glycidyl group and further containing a nitrogen atom, specifically an amino group or an amide bond.
  • examples of the silane coupling agent having an amino group include bis (2-hydroxymethyl) -3-aminopropyltriethoxysilane, bis (2-hydroxymethyl) -3-aminopropyltrimethoxysilane, and bis (2-glycidoxy And methyl) -3-aminopropyltriethoxysilane and bis (2-hydroxymethyl) -3-aminopropyltrimethoxysilane.
  • silane coupling agent having an amide bond examples include silane coupling agents having an amide bond such as a compound represented by the following formula.
  • X is a hydroxy group or a glycidyl group
  • e and f are each independently an integer of 1 to 3
  • R are each independently a methyl group, an ethyl group or a propyl group.
  • the content is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 10 parts by mass with respect to 100 parts by mass of the component (a). More preferably, it is 1 to 10 parts by mass.
  • dissolution promoter In order to further promote the solubility of the polybenzoxazole precursor in an alkaline aqueous solution, a dissolution accelerator may be added.
  • the dissolution accelerator include compounds having a phenolic hydroxyl group.
  • the compound having a phenolic hydroxyl group is not particularly limited, but a compound having a relatively small molecular weight is preferable.
  • Such compounds include o-cresol, m-cresol, p-cresol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, bisphenol A, B, C, E, F and G, 4,4 ′, 4 ′′ -methylidynetrisphenol, 2,6-[(2-hydroxy-5-methylphenyl) methyl] -4-methylphenol, 4,4 ′-[1- [4- [1 -(4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene] bisphenol, 4,4 '-[1- [4- [2- (4-hydroxyphenyl) -2-propyl] phenyl] ethylidene] bisphenol, 4,4 ′, 4 ′′ -Ethyridine trisphenol, 4-
  • the content is preferably 1 to 30 parts by mass, more preferably 3 to 25 parts by mass with respect to 100 parts by mass of component (a) from the viewpoint of development time and sensitivity.
  • ((3) dissolution inhibitor) A dissolution inhibitor that is a compound that inhibits the solubility of the polybenzoxazole precursor in an alkaline aqueous solution can be contained.
  • the dissolution inhibitor inhibits the solubility of the component (a) and thereby plays a role of adjusting the remaining film thickness and the development time.
  • the generated acid is easily volatilized, it is considered not to participate in the cyclization dehydration reaction of the polybenzoxazole precursor.
  • diphenyliodonium salts such as diphenyliodonium nitrate, bis (p-tert-butylphenyl) iodonium nitrate, diphenyliodonium bromide, diphenyliodonium chloride, and diphenyliodonium iodide are preferable.
  • the blending amount is preferably 0.01 to 50 parts by weight, more preferably 0.01 to 30 parts by weight with respect to 100 parts by weight of component (a), from the viewpoint of sensitivity and development time. 0.1 to 20 parts by mass is more preferable.
  • a surfactant or a leveling agent may be added to the photosensitive resin composition of the present invention in order to improve applicability (for example, suppression of striation (film thickness unevenness)) and developability.
  • surfactant or leveling agent examples include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, and the like.
  • "F171”, “F173", “R-08” above, manufactured by Dainippon Ink & Chemicals, Inc.
  • trade names "Florard FC430”, “FC431” above, manufactured by Sumitomo 3M Limited
  • the content is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight, and more preferably 0.05 to 3 parts per 100 parts by weight of component (a). Part by mass is more preferable.
  • the method for producing a cured pattern film of the present invention comprises a step of applying the above-mentioned positive photosensitive resin composition onto a substrate and drying to form a photosensitive resin film (resin film forming step), and a photosensitive resin film.
  • a step of exposing a predetermined pattern (exposure step), a step of developing the exposed photosensitive resin film using an alkaline aqueous solution to form a pattern resin film (development step), and a heat treatment of the pattern resin film Process (heat treatment process).
  • exposure step exposing a predetermined pattern
  • development step a step of developing the exposed photosensitive resin film using an alkaline aqueous solution to form a pattern resin film
  • heat treatment process heat treatment process
  • the substrate examples include glass, semiconductors, metal oxide insulators such as TiO 2 and SiO 2 , silicon nitride, copper, and copper alloys. Although there is no restriction
  • Drying can be performed using a hot plate, an oven, or the like.
  • the heating temperature is preferably 90 to 150 ° C., and more preferably 90 to 120 ° C. in order to suppress the reaction between the component (a) and the component (b) from the viewpoint of ensuring dissolution contrast.
  • the heating time is preferably 30 seconds to 5 minutes. Thereby, the resin film which formed the above-mentioned resin composition in the film form can be obtained.
  • the thickness of the resin film is preferably 5 to 100 ⁇ m, more preferably 8 to 50 ⁇ m, and even more preferably 10 to 30 ⁇ m.
  • a predetermined pattern can be exposed through a mask.
  • the actinic rays to be irradiated include ultraviolet rays including i-rays, visible rays, and radiation, but i-rays are preferable.
  • a parallel exposure machine, a projection exposure machine, a stepper, a scanner exposure machine, or the like can be used as the exposure apparatus.
  • a patterned resin film By performing the development treatment, a patterned resin film (pattern resin film) can be obtained.
  • the exposed portion is removed with a developer.
  • the aqueous alkali solution used as the developer include sodium hydroxide, potassium hydroxide, sodium silicate, ammonia, ethylamine, diethylamine, triethylamine, triethanolamine, tetramethylammonium hydroxide, and tetramethylammonium hydroxide is preferable.
  • the concentration of the aqueous alkaline solution is preferably 0.1 to 10% by mass.
  • the development time varies depending on the type of component (a) to be used, but is preferably 10 seconds to 15 minutes, more preferably 10 seconds to 5 minutes, and from the viewpoint of productivity, 30 seconds to 4 minutes. More preferably, it is minutes.
  • An alcohol or a surfactant may be added to the developer.
  • the addition amount is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the developer.
  • the heating temperature is not particularly limited, but is preferably 250 ° C. or lower, more preferably 230 ° C. or lower, and further preferably 200 ° C. or lower.
  • the lower limit of the heating temperature is not particularly limited, but is preferably 120 ° C. or higher, and more preferably 160 ° C. or higher.
  • the heating time is preferably 5 hours or less, more preferably 30 minutes to 3 hours. By being within the above range, the crosslinking reaction or dehydration ring-closing reaction can sufficiently proceed.
  • the atmosphere for the heat treatment may be in the air or in an inert atmosphere such as nitrogen. From the viewpoint of preventing the pattern resin film from being oxidized, a nitrogen atmosphere is preferable.
  • Examples of the apparatus used in the heat treatment step include a quartz tube furnace, a hot plate, rapid thermal annealing, a vertical diffusion furnace, an infrared curing furnace, an electron beam curing furnace, and a microwave curing furnace.
  • the cured product of the present invention is a cured product of the positive photosensitive resin composition of the present invention, and can be made into a cured product by applying the heat treatment step described above to the positive photosensitive resin composition of the present invention.
  • the cured product of the present invention may be the above-described pattern cured film or a cured film having no pattern.
  • the pattern cured film and the cured product produced by the above method can be used as an interlayer insulating film, a cover coat layer, or a surface protective film.
  • Electronic components such as highly reliable semiconductor devices, multilayer wiring boards, and various electronic devices can be manufactured using the interlayer insulating film, the cover coat layer, the surface protective film, and the like.
  • FIG. 1 to 7 are schematic cross-sectional views for explaining a manufacturing process of a fan-out package having a multilayer wiring structure, and show a series of processes from the first process to the seventh process.
  • FIG. 8 is a schematic cross-sectional view of a fan-out package having a UBM (Under Bump Metal) free structure.
  • UBM Under Bump Metal
  • a semiconductor substrate 1 such as a Si substrate having a circuit element (not shown) is covered with a protective film 2 such as a silicon oxide film except for a predetermined portion of the circuit element, and the first circuit element is exposed on the first circuit element.
  • a conductor layer 3 is formed.
  • a film of polyimide resin or the like as the interlayer insulating film 4 is formed on the semiconductor substrate by a spin coat method or the like (first step, FIG. 1).
  • a photosensitive resin layer 5 such as chlorinated rubber or phenol novolac is formed on the interlayer insulating film 4 by a spin coating method, and a predetermined portion of the interlayer insulating film 4 is exposed by a known method using this as a mask.
  • a window 6A is provided (second step, FIG. 2).
  • the interlayer insulating film 4 exposed in the window 6A is selectively etched by dry etching means using a gas such as oxygen or carbon tetrafluoride to form the window 6B.
  • the photosensitive resin layer 5 is completely removed using an etching solution that corrodes only the photosensitive resin layer 5 without corroding the first conductor layer 3 exposed from the window 6B (third step). FIG. 3).
  • the second conductor layer 7 is formed using a known method, and electrical connection with the first conductor layer 3 is performed (fourth step, FIG. 4).
  • the above steps are repeated to form each layer.
  • the surface protective film 8 is formed as follows using the positive photosensitive resin composition of the present invention. That is, the resin composition of the present invention is applied and dried by a spin coating method, irradiated with light from a mask on which a pattern for forming a window 6C is formed at a predetermined portion, and then developed with an alkaline aqueous solution to form a patterned resin film. Form. Thereafter, the patterned resin film is heated to form a polybenzoxazole pattern cured film as the surface protective film 8 (fifth step, FIG. 5). This surface protective film (pattern cured film of polybenzoxazole) 8 has a function of protecting the conductor layer from external stress, ⁇ rays, and the like.
  • a plating resist is formed in accordance with the window 6C using a known method, and the exposed metal thin film portion is plated by UBM.
  • a metal layer 9 called (Under Bump Metal) is deposited. Then, the plating resist is peeled off, and the metal foil film other than the formation region of the UBM 9 is removed by etching to form a UBM (sixth step, FIG. 6). Further, external connection terminals 10 called bumps are formed on the surface of the metal layer 9 (seventh step, FIG. 7).
  • the metal layer 9 is formed for the purpose of relaxing the stress acting on the bump 10 and improving the electrical connection reliability.
  • UBM-free structure in which the bumps 10 are directly formed after the windows 6C are formed in the surface protective film 8 has been proposed in order to omit the process of forming the metal layer 9 (UBM).
  • UBM-free structure the second conductor layer 7 connected to the bump 10 needs to be formed thicker than usual in order to suppress an increase in electrical resistance due to the generation of intermetallic compounds. Further, it is necessary to relieve the stress acting on the bump 10 only by the surface protective film 8. For this reason, in order to cover the thick second conductor layer 7 and enhance the stress relaxation ability, it is necessary to form the surface protective film 8 thickly (FIG. 8).
  • Synthesis example 1 [Component (a): Synthesis of Polybenzoxazole Precursor (Polymer I)] A 0.2 liter flask equipped with a stirrer and a thermometer was charged with 60 g of N-methylpyrrolidone, and 13.92 g (38 mmol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane was added. Added and stirred to dissolve.
  • polymer I When the weight average molecular weight of the polymer I was calculated
  • the measurement apparatus and measurement conditions are as follows. ⁇ Measurement device> Detector: L4000 manufactured by Hitachi, Ltd. UV pump: L6000 manufactured by Hitachi, Ltd. Shimadzu Corporation C-R4A Chromatopac column: Hitachi Chemical Co., Ltd.
  • Synthesis example 2 [Component (a): Synthesis of Polybenzoxazole Precursor (Polymer II)]
  • Example 1 Synthesis was performed in the same manner to obtain a polybenzoxazole precursor having a structure represented by the formula (1) (hereinafter referred to as polymer II).
  • Polymer II had a weight average molecular weight of 38,000 and a dispersity of 2.0.
  • Synthesis example 3 [Component (a ′): Synthesis of Polybenzoxazole Precursor (Polymer III)] A 0.2 liter flask equipped with a stirrer and a thermometer was charged with 60 g of N-methylpyrrolidone, and 13.92 g (38 mmol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane was added. Added and stirred to dissolve.
  • polymer III a polybenzoxazole precursor (hereinafter referred to as polymer III).
  • the weight average molecular weight of polymer III was 22,400, and the degree of dispersion was 3.2.
  • Examples 1-9, Comparative Examples 1-5 [Preparation of positive photosensitive resin composition] Positive photosensitive resin compositions of Examples 1 to 9 and Comparative Examples 1 to 5 were prepared using the components and blending amounts shown in Table 1.
  • the blending amounts in Table 1 are the parts by mass of the components (b) to (d) and (c ′) with respect to 100 parts by mass of each polymer as the component (a) and / or (a ′).
  • Each component used is as follows.
  • B-1 Compound represented by the following structural formula (manufactured by Sanwa Chemical Co., Ltd., trade name: Nicalak MW-390)
  • B-2 Compound represented by the following structural formula (manufactured by Sanwa Chemical Co., Ltd., trade name: Nicalak MX-270)
  • the obtained positive photosensitive resin composition was spin-coated on a silicon wafer, dried at 110 ° C. for 3 minutes and then dried. A resin film having a film thickness of 12 ⁇ m was formed.
  • the obtained resin film was exposed using an i-line stepper (trade name: FPA-3000iW, manufactured by Canon Inc.). After exposure, the resist film was developed with a 2.38 mass% aqueous solution of tetramethylammonium hydroxide (TMAH) at 23 ° C. until the remaining film ratio in the unexposed area reached approximately 75%, and then rinsed with water to form a pattern. A resin film was obtained.
  • TMAH tetramethylammonium hydroxide
  • the exposure amount when the exposed portion was opened was defined as sensitivity, and the following evaluation was performed according to the exposure amount.
  • the obtained cured film was put into a pressure cooker (PCT) apparatus and treated for 100 hours under the conditions of 121 ° C., 2 atm and 100% RH (PCT treatment). Then, the crosscut test was done with respect to the cured film, and the adhesiveness with respect to a copper wafer was evaluated.
  • the cross cut test was performed as follows. First, at the center of the surface of the cured film on the copper wafer, 11 vertical and horizontal parallel lines perpendicular to each other are drawn at 1 mm intervals using a cutter guide, and 100 1 mm square cured films are drawn in 1 cm 2. A grid cut was made so that it could be done.
  • a cured pattern film was immersed in a resist stripping solution (manufactured by Dynaloy, trade name: Dynastrip 7700) at 70 ° C. for 120 minutes, and then the surface of the pattern cured film was observed with an optical microscope. From the difference in film thickness before and after being immersed in the chemical solution, the film thickness change by immersion was evaluated as A, 5% or more but less than 10% as B, and 10% or more as C. Moreover, the thing which resist stripping solution soaked in the pattern part by immersion, and the thing from which the pattern part peeled were evaluated as D (not practical level).
  • Table 1 shows that the positive photosensitive resin compositions of Examples 1 to 8 are excellent in sensitivity and resolution. Further, it can be seen that even when cured at a low temperature of 175 ° C., the adhesiveness is excellent, and even when cured at a low temperature of 200 ° C., it is excellent in chemical resistance. Further, Example 9 is a system using only (b-2) as the component (b), but it can be seen that it has better sensitivity and chemical resistance than the comparative example. On the other hand, Comparative Examples 1 to 5 are inferior in chemical resistance.
  • the photosensitive resin composition of the present invention can be used for electronic parts such as semiconductor devices, multilayer wiring boards, and various electronic devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

(a)ポリベンゾオキサゾール前駆体と、(b)架橋剤と、(c)感光剤と、(d)溶剤とを含有し、前記(a)ポリベンゾオキサゾール前駆体が下記式(1)で表される構造を含み、前記(c)感光剤が下記式(2)で表される構造を含む化合物であるポジ型感光性樹脂組成物。式(1)中、Uは2価の有機基、単結合、-O-又は-SO-であり、Vは脂肪族構造を含む基であり、前記脂肪族構造の炭素数は1~30である。

Description

ポジ型感光性樹脂組成物
 本発明は、ポジ型感光性樹脂組成物、そのポジ型感光性樹脂組成物の硬化物、その硬化物を用いた層間絶縁膜、カバーコート層又は表面保護膜、それらを含む電子部品、及びパターン硬化膜の製造方法に関する。
 従来、半導体素子の表面保護膜及び層間絶縁膜には、優れた耐熱性、電気特性及び機械特性等を併せ持つポリイミドやポリベンゾオキサゾールが用いられている。近年、これらの樹脂自身に感光特性を付与した感光性樹脂組成物が用いられており、これによってパターン硬化膜の製造工程が簡略化でき、煩雑な製造工程を短縮できる。
 パターン硬化膜の製造工程において、現像工程ではN-メチルピロリドン等の有機溶剤が用いられていたが、環境への配慮から、ポリイミド前駆体又はポリベンゾオキサゾール前駆体に感光剤としてナフトキノンジアジド化合物を混合する方法により、アルカリ水溶液で現像可能な樹脂組成物が提案されている(例えば、特許文献1、2)。
 ところで、近年、コンピュータの高性能化を支えてきたトランジスタの微細化はスケーリング則の限界に直面しており、さらなる高性能化や高速化のために半導体素子を3次元的に積層する技術が必須と考えられている。このような背景のもと、TSV(Through Silicon Via)を用いた3次元パッケージ、インターポーザを用いた2.5次元パッケージ、又は2.1次元パッケージが提案されており、これらに代表される積層デバイス構造が注目を集めている(例えば、非特許文献1)。
 積層デバイス構造の中でも、マルチダイファンアウトウエハレベルパッケージ(Multi-die Fanout Wafer Level Packaging)は、1つのパッケージの中に複数のダイを一括封止して製造するパッケージであり、1つのパッケージの中に1つのダイを封止して製造する従来のファンアウトウエハレベルパッケージよりも低コスト化、高性能化が期待できるので、非常に注目を集めている。
 しかしながら、マルチダイファンアウトウエハレベルパッケージの製造において、高性能なダイの保護や耐熱性の低い封止材を保護し歩留まりを向上させる観点から、200℃超の熱処理を行うことはできない。このため、銅の再配線を行うための再配線形成層として使用するポリベンゾオキサゾール前駆体にも、低温硬化性が強く求められている(特許文献3)。
 200℃以下の低温硬化の場合であっても、高温硬化時と同等以上の特性が再配線形成層には要求される。具体的に、微細なパターニングを行うために高い解像度を有することに加え、高い薬液耐性と高い接着性を有することが要求される。
 薬液耐性は、マルチダイファンアウトパッケージ作製時における銅再配線のめっきプロセスへの対応に必要である。具体的に、めっきプロセスでは、めっき作製用のレジストを用いて銅めっきした後、レジストを除去するために強力な薬液であるレジスト剥離液を使用するが、この薬液に対する耐性が求められる。接着性(銅の再配線と再配線形成層の間の接着性)は、信頼性確保の観点から非常に重要である。
 しかしながら、従来の再配線形成層用の樹脂組成物(ポリベンゾオキサゾール前駆体を用いたポジ型感光性樹脂組成物)にとって、低温硬化した場合に高い薬液耐性と接着性を有することは難しく、当該パッケージの作製に対応できなかった。
 特許文献4には、ポリベンゾオキサゾール前駆体に特定の架橋剤と感光剤を組み合わせることで高感度及び高解像度が達成されることが開示されているが、低温硬化時の硬化膜の特性は低かった。
特開2009-265520号公報 国際公開2014/115233号パンフレット 国際公開2008/111470号パンフレット 特開2011-164289号公報
「半導体技術年鑑2013 パッケージング/実装編」、株式会社日経BP、2012年12月、p.41-50
 本発明の目的は、200℃以下の低温で硬化させた場合であっても薬液耐性に優れるポジ型感光性樹脂組成物を提供することである。
 本発明者らは、上記問題に鑑みて鋭意検討を重ねた結果、特定のポリベンゾオキサゾール前駆体と特定の感光剤を組み合わせることで、低温で硬化させた場合であっても薬液耐性に優れることを見出した。
 本発明によれば、以下のポジ型感光性樹脂組成物等が提供される。
1.(a)ポリベンゾオキサゾール前駆体と、(b)架橋剤と、(c)感光剤と、(d)溶剤とを含有し、
 前記(a)ポリベンゾオキサゾール前駆体が下記式(1)で表される構造を含み、
 前記(c)感光剤が下記式(2)で表される構造を含む化合物である
 ポジ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Uは2価の有機基、単結合、-O-又は-SO-であり、Vは脂肪族構造を含む基であり、前記脂肪族構造の炭素数は1~30である。)
Figure JPOXMLDOC01-appb-C000002
2.前記(b)架橋剤が下記式(3)で表される1に記載のポジ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
(式(3)中、Rは、各々独立に、水素原子又は-CH-O-Rであり、複数のRの少なくとも1つは-CH-O-Rである。Rは、各々独立に、水素原子、メチル基、エチル基又はブチル基である。)
3.前記(b)架橋剤が下記式(4)で表される1又は2に記載のポジ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
4.前記(c)感光剤が下記式(5)で表される1~3のいずれかに記載のポジ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
(式(5)中、Qは、各々独立に、水素原子又は下記式(6)で表される基である。少なくとも1つのQは下記式(6)で表される基である。)
Figure JPOXMLDOC01-appb-C000006
5.前記式(1)のVの脂肪族構造が、炭素数5~10の脂肪族直鎖構造である1~4のいずれかに記載のポジ型感光性樹脂組成物。
6.1~5のいずれかに記載のポジ型感光性樹脂組成物を基板上に塗布、乾燥して感光性樹脂膜を形成する工程と、
 前記感光性樹脂膜を所定のパターンに露光する工程と、
 前記露光を行った感光性樹脂膜を、アルカリ水溶液を用いて現像してパターン樹脂膜を形成する工程と、
 前記パターン樹脂膜を加熱処理する工程と、
 を含むパターン硬化膜の製造方法。
7.前記パターン樹脂膜を加熱処理する工程において、加熱処理温度が200℃以下である6に記載のパターン硬化膜の製造方法。
8.1~5のいずれかに記載のポジ型感光性樹脂組成物の硬化物。
9.8に記載の硬化物を用いた層間絶縁膜、カバーコート層又は表面保護膜。
10.9に記載の層間絶縁膜、カバーコート層又は表面保護膜を有する電子部品。
 本発明によれば、200℃以下の低温で硬化させた場合であっても薬液耐性に優れるポジ型感光性樹脂組成物が提供できる。
多層配線構造を有するファンアウトパッケージの製造工程の一部を説明する概略断面図である。 多層配線構造を有するファンアウトパッケージの製造工程の一部を説明する概略断面図である。 多層配線構造を有するファンアウトパッケージの製造工程の一部を説明する概略断面図である。 多層配線構造を有するファンアウトパッケージの製造工程の一部を説明する概略断面図である。 多層配線構造を有するファンアウトパッケージの製造工程の一部を説明する概略断面図である。 多層配線構造を有するファンアウトパッケージの製造工程の一部を説明する概略断面図である。 多層配線構造を有するファンアウトパッケージの製造工程の一部を説明する概略断面図である。 UBM(アンダーバンプメタル)フリーの構造を有するファンアウトパッケージの概略断面図である。
 以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、本明細書において「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。さらに、例示材料は特に断らない限り単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
[ポジ型感光性樹脂組成物]
 本発明のポジ型感光性樹脂組成物は、(a)ポリベンゾオキサゾール前駆体と、(b)架橋剤と、(c)感光剤と、(d)溶剤とを含有し、(a)ポリベンゾオキサゾール前駆体が下記式(1)で表される構造を含み、(c)感光剤が下記式(2)で表される構造を含む化合物である。
Figure JPOXMLDOC01-appb-C000007
(式(1)中、Uは2価の有機基、単結合、-O-又は-SO-であり、Vは脂肪族構造を含む基であり、前記脂肪族構造の炭素数は1~30である。)
Figure JPOXMLDOC01-appb-C000008
 本発明のポジ型感光性樹脂組成物は、上記の成分を含むことによって200℃以下と低温で硬化を行った場合でも、高温硬化時に得られるパターン硬化膜と同等以上の高い薬液耐性を有するパターン硬化膜を形成できる。また、解像度の高いパターンを感度よく形成でき、銅等への接着性にも優れる。そのため、マルチダイファンアウトウエハレベルパッケージに代表される積層デバイス構造の作製に好適に適用することが可能である。
 以下、各成分について説明する。以下、(a)ポリベンゾオキサゾール前駆体、(b)架橋剤、(c)感光剤、(d)溶剤を、それぞれ(a)成分、(b)成分、(c)成分、(d)成分と記す場合がある。
((a)成分:ポリベンゾオキサゾール前駆体)
 ポリベンゾオキサゾール前駆体は、パターニング時に使用する光源(i線)の透過率が高く、200℃以下の低温硬化時にも高い硬化膜特性を示すものが好ましい。そのため、ポリベンゾオキサゾール前駆体は、上記式(1)で表される構造を有することが好ましい。
 式(1)中のVは、脂肪族構造(炭素数1~30)を含む基である。本発明において「脂肪族構造」は脂環式構造を含む。当該脂肪族構造は脂肪族鎖状構造であると好ましく、脂肪族直鎖構造であるとより好ましい。また、当該脂肪族構造の炭素数は、好ましくは5~20であり、より好ましくは5~10である。
 Vはジカルボン酸に由来する構造であることが好ましく、Vを与える原料ジカルボン酸としては、ドデカン二酸、デカン二酸、ノナン二酸、シクロヘキサンジカルボン酸、2,2-ビス(4-カルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、5-tert-ブチルイソフタル酸等が挙げられる。特に、i線透過率の確保と硬化膜の破断伸び特性を両立する観点から、原料ジカルボン酸としてはドデカン二酸又はデカン二酸が好ましい。
 (a)成分のポリベンゾオキサゾール前駆体は、その一部に式(1)で示される構造単位以外の構造単位を有していてもよい。この場合、式(1)で示される構造単位の割合は全構造単位中50モル%以上であることが好ましく、60モル%以上であることがより好ましい。
 式(1)で示される構造単位以外の構造単位としては、例えば、式(1)において、Vがジフェニルエーテル化合物由来の骨格であるもの等が挙げられる。
 Uは下記式(u-1)で表される構造を含む基であると好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(u-1)中、R及びRは各々独立に水素原子、フッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフッ素化アルキル基であり、aは1~30の整数である。
 R及びRとしては、具体的に、メチル基、トリフルオロメチル基等が挙げられ、ポリベンゾオキサゾール前駆体の透明性の観点から、トリフルオロメチル基が好ましい。aは1~5の整数が好ましい。
 上記のポリベンゾオキサゾール前駆体を脱水閉環することによりポリベンゾオキサゾールが得られる。
 上記のポリベンゾオキサゾール前駆体は、通常、アルカリ水溶液で現像する。そのため、アルカリ水溶液に可溶であることが好ましい。アルカリ水溶液としては、テトラメチルアンモニウムヒドロキシド(TMAH)水溶液等の有機アンモニウム水溶液、金属水酸化物水溶液、有機アミン水溶液等が挙げられる。一般には、濃度が2.38質量%のTMAH水溶液を用いることが好ましい。即ち、(a)成分はTMAH水溶液に対して可溶であることが好ましい。
 尚、(a)成分がアルカリ水溶液に可溶であることの1つの基準を以下に説明する。(a)成分を任意の溶剤に溶かして溶液とした後、シリコンウエハ等の基板上にスピン塗布して膜厚5μm程度の樹脂膜を形成する。これをテトラメチルアンモニウムヒドロキシド水溶液、金属水酸化物水溶液、有機アミン水溶液のいずれか1つに20~25℃において浸漬する。この結果、溶解して溶液となったとき、用いた(a)成分はアルカリ水溶液に可溶であると判断する。
 (a)成分の分子量は、ポリスチレン換算での重量平均分子量が10,000~100,000であることが好ましく、15,000~100,000であることがより好ましく、20,000~85,000であることがさらに好ましい。(a)成分の重量平均分子量が10,000以上の場合、アルカリ現像液への適度な溶解性が確保できる傾向にある。また、(a)成分の重量平均分子量が100,000以下の場合、溶剤への良好な溶解性が得られる傾向にあり、溶液の粘度が増大して取り扱い性が低下することを抑制できる傾向にある。
 また、重量平均分子量を数平均分子量で除した分散度は1~4が好ましく、1~3がより好ましい。
 重量平均分子量は、ゲルパーミエーションクロマトグラフ法によって測定し、標準ポリスチレン検量線を用いて換算することによって求めることができる。
((b)成分:架橋剤)
 (b)成分は、ポジ型感光性樹脂組成物を塗布、露光及び現像して得られたパターン樹脂膜を加熱処理する工程において、(a)成分のポリベンゾオキサゾール前駆体と反応(架橋反応)する。また、(b)成分の架橋剤自身が重合することもできる。これにより、ポジ型感光性樹脂組成物を比較的低い温度、例えば200℃以下で硬化した場合であっても、良好な機械特性、例えば薬液耐性及び接着性を付与させることができる。
 (b)成分は、加熱処理する工程において架橋又は重合する化合物であれば特に制限はないが、メチロール基等のヒドロキシアルキル基、アルコキシメチル基等のアルコキシアルキル基を有する化合物であると、低温硬化時の反応性の高さの観点から好ましい。
 ヒドロキシアルキル基、アルコキシアルキル基に含まれるアルキル基としては、メチル基、エチル基、ブチル基等が挙げられる。
 中でも良好な感度及びワニスの安定性、パターン形成後の感光性樹脂膜の硬化時に感光性樹脂膜の溶融を防ぐことができるという観点から、2個以上のヒドロキシアルキル基又はアルコキシアルキル基を有する化合物がより好ましい。
 N位がヒドロキシアルキル基又はアルコキシアルキル基で置換されたメラミン樹脂、又は下記式(3)で示される化合物を用いることが、反応温度の低さの観点から特に好ましい。
Figure JPOXMLDOC01-appb-C000010
(式(3)中、Rは、各々独立に、水素原子又は-CH-O-Rであり、複数のRの少なくとも1つは-CH-O-Rである。Rは、各々独立に、水素原子、メチル基、エチル基又はブチル基である。)
 複数のRのうち、2~6つが-CH-O-Rであると好ましく、全てのRが-CH-O-Rであるとより好ましい。Rはメチル基が好ましい。
 また、下記式(4)で表される化合物が最も好ましい。この化合物であると、ポジ型感光性樹脂組成物を200℃以下の低温で硬化した場合に優れた薬液耐性と接着性を有する硬化膜が得られる。
Figure JPOXMLDOC01-appb-C000011
 本発明のポジ型感光性樹脂組成物における(b)成分の含有量は、(a)成分100質量部に対して1~50質量部が好ましく、良好な機械特性の確保のために5~30質量部がより好ましく、機械特性と感光特性の両立の観点から、10~30質量部がさらに好ましい。
((c)成分:感光剤)
 本発明のポジ型感光性樹脂組成物は、(c)成分として下記式(2)で表される構造を含む化合物(ジアゾナフトキノン化合物)を含む。
Figure JPOXMLDOC01-appb-C000012
 (c)成分は、好ましくは下記式(2’)で表される。
Figure JPOXMLDOC01-appb-C000013
(式(2’)中、nは1~4の整数である。Xは、ヒドロキシ基含有化合物の1価~4価の残基、又はアミノ基含有化合物の1価~4価の残基である。)
 ヒドロキシ基含有化合物の残基とは、当該化合物からヒドロキシ基の水素原子を除いて得られる基をいう。アミノ基含有化合物の残基とは、当該化合物からアミノ基の水素原子を除いて得られる基をいう。
 式(2’)のXは、好ましくは下記式(11)で表される。
Figure JPOXMLDOC01-appb-C000014
 式(11)中、R11とR12は、各々独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のフッ素化アルキル基、又は下記式(12)で表される基である。
Figure JPOXMLDOC01-appb-C000015
 式(12)中、R13とR14は、各々独立に、水素原子、炭素数1~6のアルキル基、又は炭素数1~6のフッ素化アルキル基である。
 式(11)、(12)中、*は式(2’)の括弧内の構造との結合位置である。少なくとも1つの*において当該構造と結合すればよく、全ての*において当該構造と結合してもよい。
 式(2)で表される化合物は、例えば、1,2-ナフトキノン-2-ジアジド-4-スルホニルクロリドと、ヒドロキシ基含有化合物又はアミノ基含有化合物等とを、脱塩酸剤の存在下で縮合反応させることで得られる。
 ヒドロキシ基含有化合物としては特に制限はないが、未露光部の溶解阻害効果を高める観点から、ヒドロキノン、レゾルシノール、ピロガロール、ビスフェノールA、ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,3,4-トリヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,3,4,2’,3’-ペンタヒドロキシベンゾフェノン,2,3,4,3’,4’,5’-ヘキサヒドロキシベンゾフェノン、ビス(2,3,4-トリヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)プロパン、4b,5,9b,10-テトラヒドロ-1,3,6,8-テトラヒドロキシ-5,10-ジメチルインデノ[2,1-a]インデン、トリス(4-ヒドロキシフェニル)メタン、又はトリス(4-ヒドロキシフェニル)エタンが好ましい。
 アミノ基含有化合物としては、p-フェニレンジアミン、m-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(4-アミノ-3-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパン等が使用できる。
 1,2-ナフトキノン-2-ジアジド-4-スルホニルクロリドと、ヒドロキシ基含有化合物又はアミノ基含有化合物とは、ナフトキノン-1,2-ジアジド-4-スルホニルクロリド1モルに対して、ヒドロキシ基とアミノ基の合計が0.5~1当量になるように配合されることが好ましい。
 脱塩酸剤と1,2-ナフトキノン-2-ジアジド-4-スルホニルクロリドの好ましい割合(モル比)は、0.95/1~1/0.95の範囲である。好ましい反応温度は0~40℃、好ましい反応時間は1~10時間である。
 上記反応の反応溶媒としては、ジオキサン、アセトン、メチルエチルケトン、テトラヒドロフラン、ジエチルエーテル、N-メチルピロリドン等を用いることができる。
 脱塩酸剤としては、炭酸ナトリウム、水酸化ナトリウム、炭酸水素ナトリウム、炭酸カリウム、水酸化カリウム、トリメチルアミン、トリエチルアミン、ピリジン等を用いることができる。
 (c)成分としては、高感度化と高解像度化の観点から下記式(5)で表される化合物を用いることが特に好ましい。
Figure JPOXMLDOC01-appb-C000016
(式(5)中、Qは、各々独立に水素原子又は下記式(6)で表される基である。少なくとも1つのQは下記式(6)で表される基である。)
Figure JPOXMLDOC01-appb-C000017
 本発明のポジ型感光性樹脂組成物における(c)成分の含有量は、溶解コントラスト等を考慮して適宜調整すればよいが、特に厚膜の場合、ジアゾナフトキノン化合物自身がi線に吸収を有するために、多量に配合すると、膜の底部までi線が到達せず、ジアゾナフトキノン化合物への露光が不充分で光反応しにくくなり、開口パターンを形成できなくなる恐れがあることから、(a)成分100質量部に対して1~20質量部が好ましく、5~15質量部がより好ましい。
 また、(c)成分は、(a)成分と相溶性の高いものであることが、製膜性と高感度化の観点から好ましい。
((d)成分:溶剤)
 (d)成分としては、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、酢酸ベンジル、n-ブチルアセテート、エトキシエチルプロピオネート、3-メチルメトキシプロピオネート、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリルアミド、テトラメチレンスルホン、シクロヘキサノン、シクロペンタノン、ジエチルケトン、ジイソブチルケトン、メチルアミルケトン等が挙げられる。通常、感光性樹脂組成物中の他の成分を充分に溶解できるものであれば特に制限はない。
 この中でも、各成分の溶解性と樹脂膜形成時の塗布性に優れる観点から、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドを用いることが好ましい。
 本発明のポジ型感光性樹脂組成物における(d)成分の含有量は特に制限はないが、(a)成分100質量部に対して50~300質量部が好ましく、100~200質量部がより好ましい。
 本発明のポジ型感光性樹脂組成物は、本質的に(a)、(b)、(c)及び(d)成分からなってもよい(consisting essentially of)。本発明のポジ型感光性樹脂組成物の、例えば、80質量%以上、90質量%以上、95質量%以上又は98質量%以上が(a)、(b)、(c)及び(d)成分であってもよい。また、本発明のポジ型感光性樹脂組成物は、(a)、(b)、(c)及び(d)成分のみからなってもよい(consisting of)。この場合、不可避不純物を含んでもよい。
 本発明の樹脂組成物は、上記の(a)~(d)成分に加えて、必要に応じて、(1)カップリング剤、(2)溶解促進剤、(3)溶解阻害剤、(4)界面活性剤又はレベリング剤等を含有してもよい。
((1)カップリング剤)
 カップリング剤(上記の(b)架橋剤とは異なる化合物)は、通常、感光性樹脂組成物を塗布、露光、現像後に加熱処理する工程において、(a)成分であるポリベンゾオキサゾール前駆体と反応して架橋する、又は加熱処理する工程においてカップリング剤自身が重合すると推定される。これにより、得られる硬化膜と基板との密着性をより向上させることができる。
 本発明において、分子内にウレア結合(-NH-CO-NH-)を有するシランカップリング剤を本発明の組成物に加えて用いることにより、200℃以下の低温下で硬化を行った場合も基板との密着性をさらに高めることができる。
 好ましいシランカップリング剤としては、ウレア結合を有する化合物が挙げられ、低温での硬化を行った際の密着性の発現に優れる点で、下記式(7)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000018
(式中、R及びRは、各々独立に炭素数1~5のアルキル基である。aは、1~10の整数であり、bは、1~3の整数である。)
 式(7)で表される化合物の具体例としては、ウレイドメチルトリメトキシシラン、ウレイドメチルトリエトキシシラン、2-ウレイドエチルトリメトキシシラン、2-ウレイドエチルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、4-ウレイドブチルトリメトキシシラン、4-ウレイドブチルトリエトキシシラン等が挙げられ、好ましくは3-ウレイドプロピルトリエトキシシランである。
 さらに上記の分子内にウレア結合を有するシランカップリング剤に加えて、分子内にヒドロキシ基又はグリシジル基を有するシランカップリング剤を併用すると、さらに低温硬化時の硬化膜の基板への密着性向上に効果がある。
 分子内にヒドロキシ基又はグリシジル基を有するシランカップリング剤としては、メチルフェニルシランジオール、エチルフェニルシランジオール、n-プロピルフェニルシランジオール、イソプロピルフェニルシランジオール、n-ブチルフェニルシランジオール、イソブチルフェニルシランジオール、tert-ブチルフェニルシランジオール、ジフェニルシランジオール、エチルメチルフェニルシラノール、n-プロピルメチルフェニルシラノール、イソプロピルメチルフェニルシラノール、n-ブチルメチルフェニルシラノール、イソブチルメチルフェニルシラノール、tert-ブチルメチルフェニルシラノール、エチルn-プロピルフェニルシラノール、エチルイソプロピルフェニルシラノール、n-ブチルエチルフェニルシラノール、イソブチルエチルフェニルシラノール、tert-ブチルエチルフェニルシラノール、メチルジフェニルシラノール、エチルジフェニルシラノール、n-プロピルジフェニルシラノール、イソプロピルジフェニルシラノール、n-ブチルジフェニルシラノール、イソブチルジフェニルシラノール、tert-ブチルジフェニルシラノール、フェニルシラントリオール、1,4-ビス(トリヒドロキシシリル)ベンゼン、1,4-ビス(メチルジヒドロキシシリル)ベンゼン、1,4-ビス(エチルジヒドロキシシリル)ベンゼン、1,4-ビス(プロピルジヒドロキシシリル)ベンゼン、1,4-ビス(ブチルジヒドロキシシリル)ベンゼン、1,4-ビス(ジメチルヒドロキシシリル)ベンゼン、1,4-ビス(ジエチルヒドロキシシリル)ベンゼン、1,4-ビス(ジプロピルヒドロキシシリル)ベンゼン、1,4-ビス(ジブチルヒドロキシシリル)ベンゼン等や、下記式(8)で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000019
(式中、Rはヒドロキシ基又はグリシジル基を有する1価の有機基、R及びRは各々独立に炭素数1~5のアルキル基である。cは1~10の整数、dは0~2の整数である。)
 上記の化合物のうち、特に、式(8)で示される化合物が、基板との密着性をより向上させるため、好ましい。
 このようなシランカップリング剤としては、ヒドロキシメチルトリメトキシシラン、ヒドロキシメチルトリエトキシシラン、2-ヒドロキシエチルトリメトキシシラン、2-ヒドロキシエチルトリエトキシシラン、3-ヒドロキシプロピルトリメトキシシラン、3-ヒドロキシプロピルトリエトキシシラン、4-ヒドロキシブチルトリメトキシシラン、4-ヒドロキシブチルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、2-グリシドキシエチルトリメトキシシラン、2-グリシドキシエチルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、4-グリシドキシブチルトリメトキシシラン、4-グリシドキシブチルトリエトキシシラン等が挙げられる。
 分子内にヒドロキシ基又はグリシジル基を有するシランカップリング剤は、ヒドロキシ基又はグリシジル基と共に、さらに、窒素原子を含む基、具体的にはアミノ基やアミド結合を有するシランカップリング剤であることが好ましい。
 アミノ基を有するシランカップリング剤としては、ビス(2-ヒドロキシメチル)-3-アミノプロピルトリエトキシシラン、ビス(2-ヒドロキシメチル)-3-アミノプロピルトリメトキシシラン、ビス(2-グリシドキシメチル)-3-アミノプロピルトリエトキシシラン、ビス(2-ヒドロキシメチル)-3-アミノプロピルトリメトキシシラン等が挙げられる。
 アミド結合を有するシランカップリング剤としては、下記式で示される化合物等のアミド結合を有するシランカップリング剤等が挙げられる。
X-(CH-CO-NH-(CH-Si(OR)
(式中、Xはヒドロキシ基又はグリシジル基であり、e及びfは各々独立に1~3の整数であり、Rは各々独立に、メチル基、エチル基又はプロピル基である。)
 シランカップリング剤を用いる場合の含有量は、(a)成分100質量部に対して、0.1~20質量部であることが好ましく、0.3~10質量部であることがより好ましく、1~10質量部であることがさらに好ましい。
((2)溶解促進剤)
 (a)ポリベンゾオキサゾール前駆体のアルカリ水溶液に対する溶解性をより促進させるために、溶解促進剤を加えてもよい。溶解促進剤としては、例えばフェノール性水酸基を有する化合物が挙げられる。フェノール性水酸基を有する化合物は、感光性樹脂組成物に加えることで、アルカリ水溶液を用いて現像する際に露光部の溶解速度が増加し感度が上がり、また、パターン形成後の感光性樹脂膜の硬化時に、感光性樹脂膜の溶融を防ぐことができる。
 フェノール性水酸基を有する化合物に特に制限はないが、比較的分子量の小さい化合物が好ましい。このような化合物としては、o-クレゾール、m-クレゾール、p-クレゾール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、ビスフェノールA、B、C、E、F及びG、4,4’,4’’-メチリジントリスフェノール、2,6-[(2-ヒドロキシ-5-メチルフェニル)メチル]-4-メチルフェノール、4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール、4,4’-[1-[4-[2-(4-ヒドロキシフェニル)-2-プロピル]フェニル]エチリデン]ビスフェノール、4,4’,4’’-エチリジントリスフェノール、4-[ビス(4-ヒドロキシフェニル)メチル]-2-エトキシフェノール、4,4’-[(2-ヒドロキシフェニル)メチレン]ビス[2,3-ジメチルフェノール]、4,4’-[(3-ヒドロキシフェニル)メチレン]ビス[2,6-ジメチルフェノール]、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス[2,6-ジメチルフェノール]、2,2’-[(2-ヒドロキシフェニル)メチレン]ビス[3,5-ジメチルフェノール]、2,2’-[(4-ヒドロキシフェニル)メチレン]ビス[3,5-ジメチルフェノール]、4,4’-[(3,4-ジヒドロキシフェニル)メチレン]ビス[2,3,6-トリメチルフェノール]、4-[ビス(3-シクロヘキシル-4-ヒドロキシ-6-メチルフェニル)メチル]-1,2-ベンゼンジオール、4,6-ビス[(3,5-ジメチル-4-ヒドロキシフェニル)メチル]-1,2,3-ベンゼントリオール、4,4’-[(2-ヒドロキシフェニル)メチレン]ビス[3-メチルフェノール]、4,4’,4’’-(3-メチル-1-プロパニル-3-イリジン)トリスフェノール、4,4’,4’’,4’’’-(1,4-フェニレンジメチリジン)テトラキスフェノール、2,4,6-トリス[(3,5-ジメチル-4-ヒドロキシフェニル)メチル]-1,3-ベンゼンジオール、2,4,6-トリス[(3,5-ジメチル-2-ヒドロキシフェニル)メチル]-1,3-ベンゼンジオール、4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-3,5-ビス[(ヒドロキシ-3-メチルフェニル)メチル]フェニル]-フェニル]エチリデン]ビス[2,6-ビス(ヒドロキシ-3-メチルフェニル)メチル]フェノール等が挙げられる。
 溶解促進剤を用いる場合の含有量は、現像時間及び感度の点から、(a)成分100質量部に対して1~30質量部が好ましく、3~25質量部がより好ましい。
((3)溶解阻害剤)
 (a)ポリベンゾオキサゾール前駆体のアルカリ水溶液に対する溶解性を阻害する化合物である溶解阻害剤を含有させることができる。溶解阻害剤は(a)成分の溶解性を阻害することで、残膜厚や現像時間を調整する役割を果たす。一方、発生する酸が揮発し易いことから、ポリベンゾオキサゾール前駆体の環化脱水反応には関与しないと考えられる。
 溶解阻害剤として用いることのできる化合物としては、ジフェニルヨードニウムニトラート、ビス(p-tert-ブチルフェニル)ヨードニウムニトラート、ジフェニルヨードニウムブロマイド、ジフェニルヨードニウムクロリド、ジフェニルヨードニウムヨーダイト等のジフェニルヨードニウム塩が好ましい。
 溶解阻害剤を用いる場合の配合量は、感度及び現像時間の観点から、(a)成分100質量部に対して0.01~50質量部が好ましく、0.01~30質量部がより好ましく、0.1~20質量部がさらに好ましい。
((4)界面活性剤又はレベリング剤)
 また、本発明の感光性樹脂組成物は、塗布性(例えばストリエーション(膜厚のムラ)の抑制)及び現像性の向上のために、界面活性剤又はレベリング剤を加えてもよい。
 界面活性剤又はレベリング剤としては、例えば、ポリオキシエチレンウラリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェノールエーテル等が挙げられ、市販品としては、商品名「メガファックスF171」、「F173」、「R-08」(以上、大日本インキ化学工業株式会社製)、商品名「フロラードFC430」、「FC431」(以上、住友スリーエム株式会社製)、商品名「オルガノシロキサンポリマーKP341」、「KBM303」、「KBM403」、「KBM803」(以上、信越化学工業株式会社製)等が挙げられる。
 界面活性剤又はレベリング剤を用いる場合の含有量は、(a)成分100質量部に対して0.01~10質量部が好ましく、0.05~5質量部がより好ましく、0.05~3質量部がさらに好ましい。
[パターン硬化膜の製造方法]
 本発明のパターン硬化膜の製造方法は、上記のポジ型感光性樹脂組成物を基板上に塗布、乾燥して感光性樹脂膜を形成する工程(樹脂膜形成工程)と、感光性樹脂膜を所定のパターンに露光する工程(露光工程)と、露光を行った感光性樹脂膜を、アルカリ水溶液を用いて現像しパターン樹脂膜を形成する工程(現像工程)と、パターン樹脂膜を加熱処理する工程(加熱処理工程)と、を含む。
 以下、各工程について説明する。
(樹脂膜形成工程)
 基板としては、ガラス、半導体、TiO、SiO等の金属酸化物絶縁体、窒化ケイ素、銅、銅合金等が挙げられる。塗布方法に特に制限はないが、スピナー等を用いて行うことができる。
 乾燥は、ホットプレート、オーブン等を用いて行うことができる。加熱温度は90~150℃であることが好ましく、溶解コントラスト確保の観点から、(a)成分と(b)成分の反応を抑制するために90~120℃であることがより好ましい。加熱時間は、30秒間~5分間が好ましい。これにより、上述の樹脂組成物を膜状に形成した樹脂膜を得ることができる。
 樹脂膜の膜厚は、5~100μmが好ましく、8~50μmがより好ましく、10~30μmがさらに好ましい。
(露光工程)
 露光工程では、マスクを介して所定のパターンに露光することができる。照射する活性光線は、i線を含む紫外線、可視光線、放射線等が挙げられるが、i線であることが好ましい。露光装置としては、平行露光機、投影露光機、ステッパ、スキャナ露光機等を用いることができる。
(現像工程)
 現像処理することで、パターン形成された樹脂膜(パターン樹脂膜)を得ることができる。一般的に、ポジ型感光性樹脂組成物を用いた場合には、露光部を現像液で除去する。
 現像液として用いるアルカリ水溶液は、水酸化ナトリウム、水酸化カリウム、ケイ酸ナトリウム、アンモニア、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド等が挙げられ、テトラメチルアンモニウムヒドロキシドが好ましい。
 アルカリ水溶液の濃度は、0.1~10質量%が好ましい。
 現像時間は、用いる(a)成分の種類によっても異なるが、10秒間~15分間であることが好ましく、10秒間~5分間であることがより好ましく、生産性の観点からは、30秒間~4分間であることがさらに好ましい。
 上記現像液にアルコール類又は界面活性剤を添加してもよい。添加量としては、現像液100質量部に対して、0.01~10質量部が好ましく、0.1~5質量部がより好ましい。
(加熱処理工程)
 パターン樹脂膜を加熱処理することにより、(a)成分の官能基同士、又は、(a)成分と(b)成分間等に架橋構造を形成し、パターン硬化膜を得ることができる。また、(a)成分はポリベンゾオキサゾール前駆体であるので、加熱処理工程によって脱水閉環反応を起こし、対応するポリベンゾオキサゾールとすることができる。
 加熱温度は、特に限定されるものではないが、250℃以下であることが好ましく、230℃以下であることがより好ましく、200℃以下であることがさらに好ましい。また、加熱温度の下限値も特に限定されるものではないが、120℃以上であることが好ましく、160℃以上であることがより好ましい。上記範囲内であることにより、基板やデバイスへのダメージを小さく抑えることができ、デバイスを歩留り良く生産することが可能となり、プロセスの省エネルギー化を実現することができる。
 加熱時間は、5時間以下が好ましく、30分間~3時間がより好ましい。
 上記範囲内であることにより、架橋反応又は脱水閉環反応を充分に進行することができる。また、加熱処理の雰囲気は大気中であっても、窒素等の不活性雰囲気中であってもよいが、パターン樹脂膜の酸化を防ぐことができる観点から、窒素雰囲気下が好ましい。
 加熱処理工程に用いられる装置としては、石英チューブ炉、ホットプレート、ラピッドサーマルアニール、縦型拡散炉、赤外線硬化炉、電子線硬化炉、マイクロ波硬化炉等が挙げられる。
[硬化物]
 本発明の硬化物は本発明のポジ型感光性樹脂組成物の硬化物であり、本発明のポジ型感光性樹脂組成物について前述した加熱処理工程を適用することにより硬化物とすることができる。
 本発明の硬化物は、前述したパターン硬化膜であってもよいし、パターンを有さない硬化膜であってもよい。
[電子部品]
 上記の方法により製造したパターン硬化膜及び硬化物は、層間絶縁膜、カバーコート層又は表面保護膜として用いることができる。この層間絶縁膜、カバーコート層、表面保護膜等を用いて、信頼性の高い半導体装置、多層配線板、各種電子デバイス等の電子部品を製造することができる。
[半導体装置の製造工程]
 本発明によるパターン硬化膜の製造方法の一例として、半導体装置の製造工程を図面に基づいて説明する。図1~図7は、多層配線構造を有するファンアウトパッケージの製造工程を説明する概略断面図であり、第1の工程から第7の工程へと一連の工程を表している。図8はUBM(Under Bump Metal)フリーの構造を有するファンアウトパッケージの概略断面図である。
 これらの図において、回路素子(図示しない)を有するSi基板等の半導体基板1は、回路素子の所定部分を除いてシリコン酸化膜等の保護膜2で被覆され、露出した回路素子上に第1導体層3が形成されている。
 前記半導体基板上にスピンコート法等で層間絶縁膜4としてのポリイミド樹脂等の膜が形成される(第1の工程、図1)。
 次に、塩化ゴム系、フェノールノボラック系等の感光性樹脂層5が、前記層間絶縁膜4上にスピンコート法で形成され、これをマスクとして公知の方法によって所定部分の層間絶縁膜4が露出するように窓6Aが設けられる(第2の工程、図2)。この窓6A部分に露出している層間絶縁膜4は、酸素、四フッ化炭素等のガスを用いるドライエッチング手段によって選択的にエッチングされ、窓6Bが形成される。次いで、窓6Bから露出した第1導体層3を腐食することなく、感光性樹脂層5のみを腐食するようなエッチング溶液を用いて感光性樹脂層5が完全に除去される(第3の工程、図3)。
 さらに、公知の方法を用いて、第2導体層7が形成され、第1導体層3との電気的接続が行われる(第4の工程、図4)。3層以上の多層配線構造を形成する場合は、前記の工程を繰り返して行い各層が形成される。
 次に、本発明のポジ型感光性樹脂組成物を用いて表面保護膜8を以下のようにして形成する。即ち、本発明の樹脂組成物をスピンコート法にて塗布、乾燥し、所定部分に窓6Cを形成するパターンを描いたマスク上から光を照射した後、アルカリ水溶液にて現像してパターン樹脂膜を形成する。その後、このパターン樹脂膜を加熱して表面保護膜8としてのポリベンゾオキサゾールのパターン硬化膜とする(第5の工程、図5)。この表面保護膜(ポリベンゾオキサゾールのパターン硬化膜)8は、導体層を外部からの応力、α線等から保護する機能を担う。
 さらに、通常、表面保護膜8の表面に、スパッタ処理によって金属薄膜を形成した後、めっきレジストを公知の方法を用いて窓6Cに合わせて形成し、露出している金属薄膜部にめっきによってUBM(Under Bump Metal)と呼ばれる金属層9を析出させる。そして、めっきレジストをはく離し、UBM9の形成領域以外の金属箔膜をエッチング除去してUBMを形成する(第6の工程、図6)。さらに、金属層9の表面にバンプと呼ばれる外部接続端子10が形成される(第7の工程、図7)。金属層9はバンプ10に作用する応力を緩和したり、電気的接続信頼性を向上させる目的で形成される。
 近年、製造コスト低減の観点から、このような金属層9(UBM)の形成工程を省略するために、表面保護膜8に窓6Cを形成した後、バンプ10を直接形成するUBMフリー構造が提案されている。UBMフリー構造では、金属間化合物の生成による電気抵抗上昇を抑制するために、バンプ10と接続される第2導体層7を通常よりも厚く形成する必要がある。さらに、バンプ10に作用する応力を表面保護膜8のみで緩和する必要がある。このため、厚く形成された第2導体層7を被覆し、応力緩和能を高めるために、表面保護膜8を厚く形成する必要がある(図8)。
 従って、UBMフリー構造では、先述した表面保護膜8に窓6Cを形成する際、樹脂膜をより厚く塗布し、露光、現像する必要がある。
 以下、実施例及び比較例に基づき、本発明についてさらに具体的に説明する。尚、本発明は下記実施例に限定されるものではない。
合成例1
[(a)成分:ポリベンゾオキサゾール前駆体(ポリマーI)の合成]
 撹拌機、温度計を備えた0.2リットルのフラスコ中に、N-メチルピロリドン60gを仕込み、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン13.92g(38mmol)を添加し、撹拌溶解した。続いて、温度を0~5℃に保ちながら、ドデカン二酸ジクロリド7.48g(28mmol)及び4,4’-ジフェニルエーテルジカルボン酸ジクロリド3.56g(12mmol)を10分間で滴下した後、フラスコ中の溶液を60分間撹拌した。上記溶液を3リットルの水に投入し、析出物を回収し、これを純水で3回洗浄した後、減圧して、式(1)で表される構造を有するポリベンゾオキサゾール前駆体を得た(以下、ポリマーIとする)。ポリマーIの重量平均分子量をゲルパーミエーションクロマトグラフ(GPC)法にて標準ポリスチレン換算により求めたところ42,000であり、分散度は2.0であった。
 尚、GPC法による重量平均分子量は、0.5mgのポリマーIに対して溶剤[テトラヒドロフラン(THF)/ジメチルホルムアミド(DMF)=1/1(容積比)]1mlの溶液を用いて測定した。
 測定装置及び測定条件は、以下の通りである。
<測定装置>
検出器:株式会社日立製作所製L4000
UVポンプ:株式会社日立製作所製L6000
      株式会社島津製作所製C-R4A Chromatopacカラム:日立化成株式会社製Gelpack GL-S300MDT-5×2本
<測定条件>
溶離液:THF/DMF=1/1(容積比)
   LiBr(0.03mol/l)、HPO(0.06mol/l)
流速:1.0ml/min
検出器:UV270nm
合成例2
[(a)成分:ポリベンゾオキサゾール前駆体(ポリマーII)の合成]
 合成例1で使用したドデカン二酸ジクロリド7.48g(28mmol)及び4,4’-ジフェニルエーテルジカルボン酸ジクロリド3.56g(12mmol)をデカン二酸クロリド(40mmol)に置き換えた以外は、合成例1と同様に合成を行い、式(1)で表される構造を有するポリベンゾオキサゾール前駆体を得た(以下、ポリマーIIとする)。ポリマーIIの重量平均分子量は38,000であり、分散度は2.0であった。
合成例3
[(a’)成分:ポリベンゾオキサゾール前駆体(ポリマーIII)の合成]
 撹拌機、温度計を備えた0.2リットルのフラスコ中に、N-メチルピロリドン60gを仕込み、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン13.92g(38mmol)を添加し、撹拌溶解した。続いて、温度を0~5℃に保ちながら、4,4’-ジフェニルエーテルジカルボン酸ジクロリド11.86g(40mmol)を10分間で滴下した後、室温に戻しフラスコ中の溶液を3時間撹拌した。上記溶液を3リットルの水に投入し、析出物を回収し、これを純水で3回洗浄した後、減圧して、ポリベンゾオキサゾール前駆体を得た(以下、ポリマーIIIとする)。ポリマーIIIの重量平均分子量は22,400であり、分散度は3.2であった。
実施例1~9、比較例1~5
[ポジ型感光性樹脂組成物の調製]
 表1に示す成分及び配合量にて、実施例1~9及び比較例1~5のポジ型感光性樹脂組成物を調製した。表1の配合量は、(a)成分及び/又は(a’)成分である各ポリマー100質量部に対する(b)~(d)、(c’)成分の質量部である。
 用いた各成分は以下の通りである。
〔(a)成分:ポリベンゾオキサゾール前駆体〕
・ポリマーI:合成例1で得られたポリマーI
・ポリマーII:合成例2で得られたポリマーII
〔(a’)成分:ポリベンゾオキサゾール前駆体〕
・ポリマーIII:合成例3で得られたポリマーIII
〔(b)成分:架橋剤〕
・(b-1):下記構造式で表される化合物(株式会社三和ケミカル製、商品名:ニカラックMW-390)
Figure JPOXMLDOC01-appb-C000020
・(b-2):下記構造式で表される化合物(株式会社三和ケミカル製、商品名:ニカラックMX-270)
Figure JPOXMLDOC01-appb-C000021
〔(c)成分:感光剤〕
・(c-1):下記構造式で表される化合物(ダイトーケミックス株式会社製、商品名:TPPA428)
Figure JPOXMLDOC01-appb-C000022
〔(c’)成分:感光剤〕
・(c-2):下記構造式で表される化合物(ダイトーケミックス株式会社製、商品名:TPPA528)
Figure JPOXMLDOC01-appb-C000023
〔(d)成分:溶剤〕
・BLO:γ-ブチロラクトン
[ポジ型感光性樹脂組成物の評価]
 実施例1~9及び比較例1~5で得られたポジ型感光性樹脂組成物について、感度、解像度、接着性、薬液耐性を以下に示す方法でそれぞれ評価した。結果を表1に示す。
<感度の評価>
 塗布装置(東京エレクトロン株式会社製、商品名:CLEAN TRACK ACT8)を用いて、得られたポジ型感光性樹脂組成物をシリコンウエハ上にスピンコートして、110℃で3分間乾燥して乾燥後膜厚が12μmの樹脂膜を形成した。得られた樹脂膜に、i線ステッパ(キヤノン株式会社製、商品名:FPA-3000iW)を用いて露光を行った。露光後、テトラメチルアンモニウムヒドロキシド(TMAH)の2.38質量%水溶液にて、23℃で、未露光部の残膜率がおよそ75%となるまで現像した後、水でリンスして、パターン樹脂膜を得た。露光部が開口した際の露光量を感度とし、露光量によって以下のように評価した。
200mJ/cm未満:A
200mJ/cm以上230mJ/cm未満:B
230mJ/cm以上250mJ/cm未満:C
250mJ/cm以上:D
<解像度の評価>
 上記感度の評価と同様の方法によって、i線ステッパにて露光して得られたパターン樹脂膜について、ラインアンドスペース部のパターンが、はがれなく、かつ残渣もなくパターニングできている最小の線幅を解像度とした。
<接着性の評価>
 塗布装置(東京エレクトロン株式会社製、商品名「CLEAN TRACK ACT8」)を用いて、得られたポジ型感光性樹脂組成物を銅ウエハ上にスピンコートして、110℃で3分間乾燥して乾燥後膜厚が10μmの樹脂膜を形成した。得られた樹脂膜を縦型拡散炉μ-TF(光洋サーモシステム株式会社製)を用いて窒素雰囲気下、175℃で1時間加熱し、硬化膜(硬化後膜厚8μm)を得た。
 得られた硬化膜をプレッシャークッカー(PCT)装置に入れ、121℃、2atm、100%RHの条件下で100時間処理した(PCT処理)。その後、硬化膜に対してクロスカット試験を行って、銅ウエハに対する接着性を評価した。クロスカット試験は以下のように行った。まず、銅ウエハ上の硬化膜表面の中央に、カッターガイドを用いて直交する縦横11本ずつの平行線を1mmの間隔で引き、1cmの中に100個の1mm角の正方形の硬化膜ができるように碁盤目状の切り傷をつけた。次に碁盤目に対してセロハンテープによるピーリングテストを行い、試験後銅ウエハ上に残った1mm角の正方形の硬化膜の数を数えた。硬化膜が100個残った場合をA、50~99個残った場合をB、49個以下残った場合をCと評価した。
<薬液耐性の評価>
 塗布装置(東京エレクトロン株式会社製、商品名:CLEAN TRACK ACT8)を用いて、得られたポジ型感光性樹脂組成物をシリコンウエハ上にスピンコートして、110℃で3分間乾燥して乾燥膜厚が12μmの樹脂膜を形成した。得られた樹脂膜に、i線ステッパ(キヤノン株式会社製、商品名:FPA-3000iW)を用いて上記感度の評価の1.2倍の露光を行い、未露光部の残膜率が75%となるように現像し、パターン樹脂膜を得た。
 上記のようにして得られたパターン樹脂膜を縦型拡散炉μ-TF(光洋サーモシステム株式会社製)を用いて窒素雰囲気下、200℃で1時間加熱し、パターン硬化膜を得た。得られたパターン硬化膜をレジスト剥離液(Dynaloy社製、商品名:Dynastrip7700)中に70℃で120分間浸漬した後、パターン硬化膜表面を光学顕微鏡で観察した。薬液に浸漬する前後の膜厚の差から、浸漬による膜厚変化が5%未満のものをA、5%以上10%未満をB、10%以上のものをCと評価した。また、浸漬により、パターン部にレジスト剥離液がしみ込んだものやパターン部が剥離したものをD(実用レベルではない)と評価した。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~8のポジ型感光性樹脂組成物は、感度及び解像度に優れることが分かる。また、175℃と低温で硬化させた場合においても接着性に優れ、200℃と低温で硬化させた場合においても薬液耐性に優れることが分かる。また、実施例9は(b)成分として(b-2)のみを用いた系であるが、比較例と比べ、良好な感度及び薬液耐性を有することが分かる。一方、比較例1~5は、薬液耐性に劣ることが分かる。
 本発明の感光性樹脂組成物は、半導体装置や多層配線板、各種電子デバイス等の電子部品に使用できる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (10)

  1.  (a)ポリベンゾオキサゾール前駆体と、(b)架橋剤と、(c)感光剤と、(d)溶剤とを含有し、
     前記(a)ポリベンゾオキサゾール前駆体が下記式(1)で表される構造を含み、
     前記(c)感光剤が下記式(2)で表される構造を含む化合物である
     ポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000024
    (式(1)中、Uは2価の有機基、単結合、-O-又は-SO-であり、Vは脂肪族構造を含む基であり、前記脂肪族構造の炭素数は1~30である。)
    Figure JPOXMLDOC01-appb-C000025
  2.  前記(b)架橋剤が下記式(3)で表される請求項1に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000026
    (式(3)中、Rは、各々独立に、水素原子又は-CH-O-Rであり、複数のRの少なくとも1つは-CH-O-Rである。Rは、各々独立に、水素原子、メチル基、エチル基又はブチル基である。)
  3.  前記(b)架橋剤が下記式(4)で表される請求項1又は2に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000027
  4.  前記(c)感光剤が下記式(5)で表される請求項1~3のいずれかに記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000028
    (式(5)中、Qは、各々独立に、水素原子又は下記式(6)で表される基である。少なくとも1つのQは下記式(6)で表される基である。)
    Figure JPOXMLDOC01-appb-C000029
  5.  前記式(1)のVの脂肪族構造が、炭素数5~10の脂肪族直鎖構造である請求項1~4のいずれかに記載のポジ型感光性樹脂組成物。
  6.  請求項1~5のいずれかに記載のポジ型感光性樹脂組成物を基板上に塗布、乾燥して感光性樹脂膜を形成する工程と、
     前記感光性樹脂膜を所定のパターンに露光する工程と、
     前記露光を行った感光性樹脂膜を、アルカリ水溶液を用いて現像してパターン樹脂膜を形成する工程と、
     前記パターン樹脂膜を加熱処理する工程と、
     を含むパターン硬化膜の製造方法。
  7.  前記パターン樹脂膜を加熱処理する工程において、加熱処理温度が200℃以下である請求項6に記載のパターン硬化膜の製造方法。
  8.  請求項1~5のいずれかに記載のポジ型感光性樹脂組成物の硬化物。
  9.  請求項8に記載の硬化物を用いた層間絶縁膜、カバーコート層又は表面保護膜。
  10.  請求項9に記載の層間絶縁膜、カバーコート層又は表面保護膜を有する電子部品。
PCT/JP2016/000618 2016-02-05 2016-02-05 ポジ型感光性樹脂組成物 WO2017134701A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201680081033.0A CN108604059B (zh) 2016-02-05 2016-02-05 正型感光性树脂组合物
JP2017564970A JP6673370B2 (ja) 2016-02-05 2016-02-05 ポジ型感光性樹脂組成物
US16/075,441 US11592744B2 (en) 2016-02-05 2016-02-05 Positive-type photosensitive resin composition
PCT/JP2016/000618 WO2017134701A1 (ja) 2016-02-05 2016-02-05 ポジ型感光性樹脂組成物
KR1020187022235A KR20180101441A (ko) 2016-02-05 2016-02-05 포지티브형 감광성 수지 조성물
SG11201806631WA SG11201806631WA (en) 2016-02-05 2016-02-05 Positive-type photosensitive resin composition
EP16889192.7A EP3413132B1 (en) 2016-02-05 2016-02-05 Positive-type photosensitive resin composition
TW106103600A TWI729065B (zh) 2016-02-05 2017-02-03 正型感光性樹脂組成物、圖案硬化膜的製造方法、硬化物、層間絕緣膜、面塗層、表面保護膜以及電子零件
PH12018501573A PH12018501573B1 (en) 2016-02-05 2018-07-24 Positive-type photosensitive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/000618 WO2017134701A1 (ja) 2016-02-05 2016-02-05 ポジ型感光性樹脂組成物

Publications (1)

Publication Number Publication Date
WO2017134701A1 true WO2017134701A1 (ja) 2017-08-10

Family

ID=59500126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000618 WO2017134701A1 (ja) 2016-02-05 2016-02-05 ポジ型感光性樹脂組成物

Country Status (9)

Country Link
US (1) US11592744B2 (ja)
EP (1) EP3413132B1 (ja)
JP (1) JP6673370B2 (ja)
KR (1) KR20180101441A (ja)
CN (1) CN108604059B (ja)
PH (1) PH12018501573B1 (ja)
SG (1) SG11201806631WA (ja)
TW (1) TWI729065B (ja)
WO (1) WO2017134701A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201806171XA (en) * 2016-02-05 2018-08-30 Hitachi Chemical Dupont Microsystems Ltd Positive-type photosensitive resin composition
JP7440224B2 (ja) * 2019-08-21 2024-02-28 太陽ホールディングス株式会社 ポジ型感光性樹脂組成物

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109099A1 (ja) * 2004-05-07 2005-11-17 Hitachi Chemical Dupont Microsystems Ltd. ポジ型感光性樹脂組成物、パターンの製造方法及び電子部品
WO2008111470A1 (ja) * 2007-03-12 2008-09-18 Hitachi Chemical Dupont Microsystems, Ltd. 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
JP2008224984A (ja) * 2007-03-12 2008-09-25 Hitachi Chemical Dupont Microsystems Ltd 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
WO2009057638A1 (ja) * 2007-10-29 2009-05-07 Hitachi Chemical Dupont Microsystems, Ltd. ポジ型感光性樹脂組成物、パターンの製造方法及び電子部品
WO2009081950A1 (ja) * 2007-12-26 2009-07-02 Asahi Kasei E-Materials Corporation 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物
WO2010001780A1 (ja) * 2008-07-03 2010-01-07 旭化成イーマテリアルズ株式会社 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物
JP2010096927A (ja) * 2008-10-15 2010-04-30 Hitachi Chemical Dupont Microsystems Ltd 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
JP2011148971A (ja) * 2009-08-14 2011-08-04 Asahi Kasei E-Materials Corp アルカリ可溶性重合体、それを含む感光性樹脂組成物、及びその用途
WO2011135887A1 (ja) * 2010-04-28 2011-11-03 旭化成イーマテリアルズ株式会社 感光性樹脂組成物
JP2013205801A (ja) * 2012-03-29 2013-10-07 Sumitomo Bakelite Co Ltd 感光性樹脂組成物及びその硬化膜、保護膜、絶縁膜並びに半導体装置及び表示体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4245074B1 (ja) * 2008-01-11 2009-03-25 住友ベークライト株式会社 ポジ型感光性樹脂組成物、硬化膜、保護膜、絶縁膜およびそれを用いた半導体装置、表示体装置。
JP5169446B2 (ja) * 2008-04-28 2013-03-27 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、該樹脂組成物を用いたポリベンゾオキサゾール膜、パターン硬化膜の製造方法及び電子部品
KR20080111470A (ko) 2008-10-10 2008-12-23 톰슨 라이센싱 디플렉스 프론트 엔드를 이용한 능동 분배기 장치 및 방법
JP5515399B2 (ja) * 2009-05-12 2014-06-11 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物、硬化膜、パターン硬化膜の製造方法及び電子部品
JP5620686B2 (ja) 2010-02-08 2014-11-05 旭化成イーマテリアルズ株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP5859257B2 (ja) 2010-09-15 2016-02-10 旭化成イーマテリアルズ株式会社 フェノール樹脂組成物並びに硬化レリーフパターン及び半導体の製造方法
JP5920345B2 (ja) * 2011-06-15 2016-05-18 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
EP2793082B1 (en) 2011-12-13 2019-12-18 Hitachi Chemical Company, Ltd. Photosensitive resin composition, method for manufacturing patterned cured film, and electronic component
JPWO2014115233A1 (ja) 2013-01-28 2017-01-19 日立化成デュポンマイクロシステムズ株式会社 樹脂組成物、パターン硬化膜の製造方法及び半導体素子
KR102042128B1 (ko) 2013-03-20 2019-11-07 한국전자통신연구원 복합 광원을 이용한 광학영상화 시스템 및 그에 따른 구동 제어방법
SG11201806171XA (en) * 2016-02-05 2018-08-30 Hitachi Chemical Dupont Microsystems Ltd Positive-type photosensitive resin composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109099A1 (ja) * 2004-05-07 2005-11-17 Hitachi Chemical Dupont Microsystems Ltd. ポジ型感光性樹脂組成物、パターンの製造方法及び電子部品
WO2008111470A1 (ja) * 2007-03-12 2008-09-18 Hitachi Chemical Dupont Microsystems, Ltd. 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
JP2008224984A (ja) * 2007-03-12 2008-09-25 Hitachi Chemical Dupont Microsystems Ltd 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
WO2009057638A1 (ja) * 2007-10-29 2009-05-07 Hitachi Chemical Dupont Microsystems, Ltd. ポジ型感光性樹脂組成物、パターンの製造方法及び電子部品
WO2009081950A1 (ja) * 2007-12-26 2009-07-02 Asahi Kasei E-Materials Corporation 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物
WO2010001780A1 (ja) * 2008-07-03 2010-01-07 旭化成イーマテリアルズ株式会社 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物
JP2010096927A (ja) * 2008-10-15 2010-04-30 Hitachi Chemical Dupont Microsystems Ltd 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
JP2011148971A (ja) * 2009-08-14 2011-08-04 Asahi Kasei E-Materials Corp アルカリ可溶性重合体、それを含む感光性樹脂組成物、及びその用途
WO2011135887A1 (ja) * 2010-04-28 2011-11-03 旭化成イーマテリアルズ株式会社 感光性樹脂組成物
JP2013205801A (ja) * 2012-03-29 2013-10-07 Sumitomo Bakelite Co Ltd 感光性樹脂組成物及びその硬化膜、保護膜、絶縁膜並びに半導体装置及び表示体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3413132A4 *

Also Published As

Publication number Publication date
CN108604059B (zh) 2021-07-02
PH12018501573A1 (en) 2019-04-15
US11592744B2 (en) 2023-02-28
EP3413132A4 (en) 2019-09-25
CN108604059A (zh) 2018-09-28
TW201740196A (zh) 2017-11-16
JPWO2017134701A1 (ja) 2018-11-01
EP3413132B1 (en) 2020-12-16
PH12018501573B1 (en) 2019-04-15
KR20180101441A (ko) 2018-09-12
SG11201806631WA (en) 2018-09-27
US20190049842A1 (en) 2019-02-14
TWI729065B (zh) 2021-06-01
EP3413132A1 (en) 2018-12-12
JP6673370B2 (ja) 2020-03-25

Similar Documents

Publication Publication Date Title
JP5736993B2 (ja) 感光性樹脂組成物、パターン硬化膜の製造方法及び電子部品
KR101910220B1 (ko) 감광성 수지 조성물, 그 수지 조성물을 사용한 패턴 경화막의 제조 방법 및 전자 부품
JP6225585B2 (ja) 耐熱性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
JP5515399B2 (ja) ポジ型感光性樹脂組成物、硬化膜、パターン硬化膜の製造方法及び電子部品
JP6673370B2 (ja) ポジ型感光性樹脂組成物
JP2018097209A (ja) ポジ型感光性樹脂組成物、硬化パターンの製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP5029386B2 (ja) ポジ型感光性樹脂前駆体組成物、パターン硬化膜の製造方法及び電子部品
JP6673369B2 (ja) ポジ型感光性樹脂組成物
JP2020003699A (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP5029385B2 (ja) ポジ型感光性樹脂前駆体組成物、パターン硬化膜の製造方法及び電子部品
JP7363901B2 (ja) 樹脂組成物、硬化物の製造方法、硬化物、パターン硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP6776733B2 (ja) ポジ型感光性樹脂組成物
JP2013250429A (ja) 感光性樹脂組成物
JP2018109699A (ja) ポジ型感光性樹脂組成物、硬化パターンの製造方法、硬化物、層間絶縁膜、カバーコート層又は表面保護膜、及び電子部品
JP6756957B2 (ja) ポジ型感光性樹脂組成物、パターン硬化膜の製造方法、層間絶縁膜、カバーコート層又は表面保護膜及び電子部品
JP2021173929A (ja) 感光性樹脂組成物、それを用いた半導体装置、及び半導体装置の製造方法
JP2018097210A (ja) ポジ型感光性樹脂組成物、硬化パターンの製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP5655262B2 (ja) 半導体装置、その製造方法及び感光性樹脂組成物
WO2019064540A1 (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜、及び電子部品
JP2018105994A (ja) 感光性樹脂組成物、その硬化膜、パターン硬化膜の製造方法、層間絶縁膜、表面保護膜及び電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889192

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017564970

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12018501573

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20187022235

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022235

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11201806631W

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016889192

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016889192

Country of ref document: EP

Effective date: 20180905