WO2011135887A1 - 感光性樹脂組成物 - Google Patents

感光性樹脂組成物 Download PDF

Info

Publication number
WO2011135887A1
WO2011135887A1 PCT/JP2011/052766 JP2011052766W WO2011135887A1 WO 2011135887 A1 WO2011135887 A1 WO 2011135887A1 JP 2011052766 W JP2011052766 W JP 2011052766W WO 2011135887 A1 WO2011135887 A1 WO 2011135887A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
photosensitive resin
resin composition
general formula
Prior art date
Application number
PCT/JP2011/052766
Other languages
English (en)
French (fr)
Inventor
智史 渋井
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to KR1020117020165A priority Critical patent/KR101344125B1/ko
Priority to JP2011526335A priority patent/JP4878662B2/ja
Priority to CN201180001254.XA priority patent/CN102439520B/zh
Publication of WO2011135887A1 publication Critical patent/WO2011135887A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/085Photosensitive compositions characterised by adhesion-promoting non-macromolecular additives

Definitions

  • the present invention relates to a photosensitive resin composition serving as a precursor of a heat-resistant resin used as a surface protective film and an interlayer insulating film of a semiconductor device, and a cured relief pattern having heat resistance using the photosensitive resin composition.
  • the present invention relates to a manufacturing method and a semiconductor device having the cured relief pattern.
  • Polyimide resins having excellent heat resistance, electrical characteristics, mechanical characteristics, and the like are widely used for surface protection films and interlayer insulating films of semiconductor devices.
  • This polyimide resin is often provided today in the form of a photosensitive polyimide precursor composition.
  • this photosensitive polyimide precursor composition needs to use an organic solvent such as N-methyl-2-pyrrolidone as a developing solution in the developing process. Countermeasures are being sought.
  • various proposals have been made on heat-resistant photosensitive resin materials that can be developed with an alkaline aqueous solution, as with photoresists.
  • an alkaline aqueous solution-soluble hydroxypolyamide resin that becomes a heat-resistant resin after curing such as a polybenzoxazole (hereinafter also referred to as “PBO”) precursor, mixed with a photoacid generator such as a naphthoquinonediazide compound, is a PBO precursor.
  • PBO polybenzoxazole
  • Methods for using the composition as a photosensitive resin composition are disclosed in Patent Documents 1 and 2 below.
  • the development mechanism of this photosensitive resin composition is such that the naphthoquinone diazide compound and PBO precursor in the unexposed area have a low dissolution rate in an alkaline aqueous solution, whereas the photosensitive diazoquinone compound is converted into an indenecarboxylic acid compound by exposure.
  • the above-mentioned PBO precursor composition can form a positive relief pattern by exposure and development with an alkaline aqueous solution. Furthermore, an oxazole ring is generated by heat, and the cured PBO film has thermosetting film characteristics equivalent to those of a polyimide film.
  • Patent Document 6 proposes a photosensitive resin composition comprising a phenolic hydroxyl group-containing solvent-soluble polyimide capable of alkali development (hereinafter also referred to as “soluble PI”) and a naphthoquinonediazide compound.
  • a photosensitive resin composition comprising a PBO precursor polymer containing an ester bond and a naphthoquinone diazide compound has been proposed in the following Patent Document 7, and comprises a PI precursor polymer containing an ester bond and a naphthoquinone diazide compound.
  • Photosensitive resin compositions are proposed in Patent Documents 8, 9, and 10.
  • Patent Documents 1 to 10 have room for improvement due to the following problems. Since the surface protective film and interlayer insulating film of a semiconductor element using a conventional heat-resistant photosensitive resin material that can be developed with an alkaline aqueous solution have low sensitivity with respect to i-line (365 nm) permeability of the polymer skeleton, industrial production It will reduce the sex.
  • the sensitivity for practical use in industrial production is reduced by reducing the development residual film ratio to about 80 to 85%.
  • the pattern-to-pattern interval is getting shorter, and when the development residual film ratio is lowered to 80 to 85%, the unexposed part is dissolved in the unexposed part adjacent to the exposed exposed part.
  • the speed is low, the development is performed not only from the upper part of the film but also from the side surface at the time of development, so that the pattern shape becomes too thin, and the reliability of the semiconductor package is lowered in the manufacturing process of the semiconductor device.
  • Patent Document 5 proposes a method of increasing the residual film ratio by making the alkali solubility of the polyimide precursor itself very low, but its sensitivity is low.
  • Patent Document 7 proposes a polyamide resin into which an ester group has been introduced. However, since all of the divalent linking organic groups in the resin have an aromatic structure, i-line (365 nm) permeability is low and sensitivity is low. The evaluation is similar to that of the prior art.
  • Patent Documents 8, 9, and 10 propose a polyimide precursor resin in which an ester group is introduced.
  • Patent Document 8 as in Patent Document 7, since all of the divalent linking organic groups in the resin have an aromatic structure, i-line (365 nm) permeability is low and sensitivity is low.
  • Patent Document 9 the transparency of the resin itself is increased by introducing an alicyclic structure into a divalent linking organic group in the resin, and by using a specific bulky structure and an ester group, a polyimide is obtained.
  • the alkali solubility of the precursor is controlled, there is no disclosure of data in sensitivity evaluation.
  • the interaction between the carboxyl group of the polyimide precursor and diazonaphthoquinone has a low alkali dissolution inhibiting effect due to the difference in pKa when compared with the interaction between the phenol group of hydroxypolyamide resin and diazonaphthoquinone, and high transparency. If so, it does not necessarily mean that the sensitivity is high.
  • the carboxyl group is not sealed with a protective group, the polyimide precursor has a problem that imidization easily proceeds even at room temperature and storage stability of the varnish is deteriorated.
  • Patent Document 10 since all of the divalent linking organic groups in the resin have an aromatic structure, i-line (365 nm) permeability is low and the elongation is also low. When the elongation is low, a test such as a thermal cycle test (TCT) that repeats heating and cooling causes problems such as cracks in the buffer layer, which lowers the reliability.
  • TCT thermal cycle test
  • the problem to be solved by the present invention is to use a hydroxypolyamide resin containing both an alicyclic structure or an aliphatic structure and an ester bond. Furthermore, by providing a photosensitive resin composition having high elongation and high storage stability, a method for producing a cured relief pattern using the composition, and a semiconductor device and a light emitting device having the cured relief pattern. is there.
  • the present inventor has obtained a polymer and a photosensitive resin that can solve the above-described problems by using a hydroxypolyamide resin having a specific structure.
  • the present inventors have found that a composition can be obtained and have completed the present invention.
  • the present invention is as follows.
  • the following general formula (1) ⁇ In the formula, Z 1 , Z 2 and Z 3 are each independently a divalent organic group, and at least one of Z 1 , Z 2 and Z 3 has an alicyclic structure or an aliphatic structure. And m 1 is an integer of 0 or 1.
  • the following general formula (2) ⁇ In the formula, Z 1 , Z 2 and Z 3 are each independently a divalent organic group, and at least one of Z 1 , Z 2 and Z 3 has an alicyclic structure or an aliphatic structure. And m 1 is an integer of 0 or 1.
  • a photosensitive resin composition comprising a hydroxypolyamide resin (A) having at least one structure selected from the group consisting of structures represented by the formula: and a photoacid generator (B).
  • the hydroxy polyamide resin (A) is represented by the following general formula (3): ⁇ Wherein X 1 and Y 1 are divalent to tetravalent organic groups having at least 2 carbon atoms, and R 1 to R 3 are each independently a hydrogen atom or a C 1-10 carbon atom.
  • a hydrocarbon group is an integer from 1 to 1000, n 1 is an integer from 1 or 2, n 2 to n 4 are each independently an integer from 0 to 2, and At least one of the structures represented by Y 1 (OR 1 ) n2 (COOR 3 ) n4 in the general formula (1) or the following general formula (4): Wherein Y 2 is a divalent to tetravalent organic group having at least 2 carbon atoms, Z 1 is a divalent organic group, and at least one of Y 2 and Z 1 is Having an alicyclic structure or an aliphatic structure, R 4 and R 5 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and m 3 is an integer of 1 to 100 And n 5 and n 6 are each independently an integer of 0 to 2.) or the general formula (2) or the following general formula (5): Wherein Y 2 is a divalent to tetravalent organic group having at least 2 carbon atoms, Z 1 is a divalent
  • the photoacid generator (B) is a naphthoquinone diazide compound, and the content of the naphthoquinone diazide compound is 1 to 50 parts by mass with respect to 100 parts by mass of the hydroxypolyamide resin (A).
  • the photosensitive resin composition further includes 1 to 100 parts by mass of a compound (C) that promotes solubility in an alkaline aqueous solution with respect to 100 parts by mass of the hydroxypolyamide resin (A). 2].
  • the photosensitive resin composition as described in 2].
  • the compound [C], wherein the compound (C) that promotes solubility in an alkaline aqueous solution contains at least one group selected from the group consisting of a phenolic hydroxyl group, a carboxyl group, and a sulfonyl group.
  • the photosensitive resin composition according to any one of to [3].
  • Photosensitive resin composition The composition according to any one of [1] to [4], further including 1 to 50 parts by mass of a compound (D) that causes a crosslinking reaction by heat with respect to 100 parts by mass of the hydroxypolyamide resin (A).
  • a semiconductor device comprising a semiconductor element and a cured film provided on the semiconductor element, wherein the cured film is the cured relief pattern according to [9].
  • a display device comprising a display element and a cured film provided on the display element, wherein the cured film is the cured relief pattern according to [9].
  • Photosensitivity comprising at least one alkali-soluble polymer selected from the group consisting of a polybenzoxazole precursor having a (thio) ester structure in the main chain, a polyimide precursor, and a phenol group-containing polyimide, and a naphthoquinonediazide compound.
  • a functional resin composition comprising: (I) The following steps (a), (b), and (c): (A) The alkali-soluble polymer is dissolved in ⁇ -butyrolactone at a concentration of 35% by mass of resin solids to prepare an alkali-soluble polymer solution; (B) A film when the solution of the alkali-soluble polymer prepared in (a) above is applied on a 6-inch silicon wafer, pre-baked at 125 ° C. for 180 seconds, and measured using a contact-type film thickness meter.
  • a film having a thickness of 10 ⁇ m ⁇ 0.2 ⁇ m is formed; and (c) a film thickness obtained by measuring the film after pre-baking with an arbitrary refractive index n f1 using a non-contact film thickness measuring instrument.
  • the refractive index (n r1 ) of the alkali-soluble polymer obtained by sequentially performing the steps is from 1.570 to 1.650, (Ii) The following (a ′), (b ′), and (c ′): (A ′) 100 parts by mass of the alkali-soluble polymer is dissolved in ⁇ -butyrolactone at a concentration of 35% by mass of the resin solid content, and further 15 parts by mass of the
  • the said photosensitive resin composition satisfy
  • a photosensitive resin composition having a high development residual film ratio and high sensitivity, a high elongation and a high storage stability, and a cured relief pattern using the positive photosensitive resin composition.
  • a manufacturing method and a semiconductor device or a light emitting device having the cured relief pattern are provided.
  • hydroxy polyamide resin (A) used in the photosensitive resin composition of the present invention has the following general formula (1): ⁇ In the formula, Z 1 , Z 2 and Z 3 are each independently a divalent organic group, and at least one of Z 1 , Z 2 and Z 3 has an alicyclic structure or an aliphatic structure. And m 1 is an integer of 0 or 1.
  • Z 1 , Z 2 and Z 3 are each independently a divalent organic group, and at least one of Z 1 , Z 2 and Z 3 has an alicyclic structure or an aliphatic structure.
  • m 1 is an integer of 0 or 1.
  • Has at least one structure selected from the group consisting of structures represented by:
  • the structure represented by the general formula (1) is referred to as an “ester group-containing structure”, and the structure represented by the general formula (2) is also referred to as a “thioester group-containing structure”. It is also called “(thio) ester group-containing structure”.
  • At least one of the Z 1 , Z 2 and Z 3 structures is an alicyclic structure or an aliphatic structure.
  • the hydroxy polyamide resin (A) is a structure synthesized from at least one carboxylic acid compound selected from the group consisting of a polyvalent carboxylic acid and a derivative thereof and a polyvalent amino compound in addition to the above (thio) ester group-containing structure.
  • carboxylic acid and derivatives thereof include dicarboxylic acids, tricarboxylic acids, acid chloride compounds thereof, and acid anhydride compounds.
  • polyvalent amino compound include compounds having at least two amino groups, specifically, diamines such as diaminobenzoic acid, diaminophenol, and bis (aminophenol). These compounds may be substituted.
  • the hydroxy polyamide resin (A) is derived from dicarboxylic acid, tricarboxylic acid and derivatives thereof and bis (aminophenol), and is a polyamide which is a PBO precursor having a phenol group at the ortho position of the amide bond, and dicarboxylic acid, tricarboxylic acid. It is preferable to have a structure selected from a polyamide derived from an acid and derivatives thereof and diaminophenol and having a phenol group; and the (thio) ester group-containing structure described above.
  • the hydroxy polyamide resin (A) has an alicyclic or aliphatic structure in its resin skeleton, thereby realizing high transparency with respect to i-line (365 nm), which leads to an improvement in sensitivity and further increases the elastic modulus. Since it can be lowered (in the case of a wholly aromatic structure, the polymer skeleton becomes rigid and the elastic modulus becomes high), the elongation becomes high. In addition, since it has a (thio) ester group-containing structure, the proportion of amide bonds is relatively reduced, and aggregation of the hydroxypolyamide resin (A) due to hydrogen bonds derived from the amide bonds is suppressed, so that storage stability is maintained. (It becomes easy to dissolve in a solvent and gelation is suppressed).
  • the hydroxypolyamide resin (A) according to the present invention has an effect that the development residual film ratio is high.
  • the reason for this is not clear, but the inventor presumes the reason as follows.
  • the interaction between the resins is moderately reduced (in the case of an aromatic structure, the aromatics have a ⁇ - ⁇ stacking effect between them). Since it is considered to be present, it is relatively lower than that of the case), so that it is appropriate for an alkali developer (2.38 mass% tetramethylammonium hydroxide aqueous solution) used for general alkali development. It becomes an alkali solubility.
  • the said hydroxy polyamide resin (A) is the following general formula (3): ⁇ Wherein X 1 and Y 1 are divalent to tetravalent organic groups having at least 2 carbon atoms, and R 1 to R 3 are each independently a hydrogen atom or a C 1-10 carbon atom.
  • a hydrocarbon group is an integer from 1 to 1000, n 1 is an integer from 1 or 2, n 2 to n 4 are each independently an integer from 0 to 2, and At least one of the structures represented by Y 1 (OR 1 ) n2 (COOR 3 ) n4 in the general formula (1) or the following general formula (4): Wherein Y 2 is a divalent to tetravalent organic group having at least 2 carbon atoms, Z 1 is a divalent organic group, and at least one of Y 2 and Z 1 is Having an alicyclic structure or an aliphatic structure, R 4 and R 5 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and m 3 is an integer of 1 to 100 And n 5 and n 6 are each independently an integer of 0 to 2.) or the general formula (2) or the following general formula (5): Wherein Y 2 is a divalent to tetravalent organic group having at least 2 carbon atoms, Z 1 is a divalent
  • the (thio) ester group-containing structure includes (1) a hydroxyl group-containing compound or thiol compound having the structure of Z 1 and (2) a polyvalent carboxylic acid having the structures of Z 2 and Z 3 and derivatives thereof. It can be obtained by reacting with at least one carboxylic acid compound selected from the group consisting of:
  • the hydroxyl group-containing compound or thiol compound having the Z 1 structure will be described.
  • the hydroxyl group-containing compound include a phenol compound and an alcohol compound.
  • phenol compound examples include hydroquinone, resorcinol, 4,4′-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxydiphenylmethane, 4,4′-methylenebis (2-methylphenol), 4 , 4′-methylenebis (2,6-dimethylphenol), 2,2′-methylenebis (6-tert-butyl-4-ethylphenol), 4,4′-ethylidenebisphenol, 4,4′-dihydroxydiphenylpropane, TM124 (Degussa Japan: trade name) 2,2-bis (4-hydroxyphenyl) butane, 4,4 '-(1,3-dimethylbutylidene) diphenol, 4,4'-(2-ethylhexyl) Den) diphenol, hexestrol, 2,2-bis (4-hydroxy-3-methyl) Phenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4
  • the phenolic compound containing a functional group can also be used as a phenolic compound.
  • the functional group include an amide group, an imide group, a urea group, and a urethane group.
  • Examples of a method for synthesizing a phenol compound containing these functional groups include a method of reacting an amino group with a phenol compound having an amino group as a starting material.
  • a phenol compound containing an amide group can be obtained by reacting an amino group of a starting phenol compound with a carboxylic acid or an acid chloride thereof.
  • a phenol compound containing an imide group can be obtained by reacting an amino group with a carboxylic acid anhydride
  • a phenol compound containing a urea group can be obtained by reacting an amino group with an isocyanate compound.
  • the phenol compound containing a urethane group can be obtained by reacting an amino group with a carbonate compound such as di-t-butyl dicarbonate.
  • alcohol compound examples include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, , 9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, 1,2-pentanediol, 1,2-hexanediol, 1,2-heptanediol, 1,2-octanediol, 1, 2-nonanediol, 1,2-decanediol, 1,2-dodecanediol, 2,5-hexanediol, cis-2 butene-1,4-diol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanedi
  • an alcohol compound containing a functional group can also be used.
  • the functional group include an amide group, an imide group, a urea group, and a urethane group.
  • the method of introducing these functional groups into the alcohol compound is the same as the method of introducing functional groups into the phenol compound.
  • thiol compound examples include 1,4-benzenedithiol, 4,4′-biphenyldithiol, 4,4′-thiobisbenzenethiol, 3,7-dithia-1,9-nonanedithiol, 1,4- Examples include butanedithiol, 1,5-pentanedithiol, 1,6-hexanedithiol, 1,10-decanedithiol, Karenz BD1 (Showa Denko: trade name), and the like.
  • a thiol compound containing a functional group can also be used.
  • the functional group include an amide group, an imide group, a urea group, and a urethane group.
  • the method of introducing these functional groups into the thiol compound is the same as the method of introducing functional groups into the phenol compound.
  • At least one carboxylic acid compound selected from the group consisting of polyvalent carboxylic acids having the structures of Z 2 and Z 3 and derivatives thereof will be described.
  • the polyvalent carboxylic acid having the Z 2 and Z 3 structures include dicarboxylic acids each having a Z 2 or Z 3 structure selected from the following: ⁇ Wherein A 1 is selected from the group consisting of —CH 2 —, —O—, —S—, —SO 2 —, —CO—, —NHCO—, —C (CF 3 ) 2 —, and a single bond.
  • n 10 is an integer of 1 to 12.
  • L 2 , L 3 and L 4 each independently represents a hydrogen atom or a methyl group
  • L 5 represents a hydrogen atom, a methyl group or a hydroxyl group.
  • the polyvalent carboxylic acid having a Y 1 (COOH) 2 (OR 1 ) n2 (COOR 3 ) n4 structure has the aforementioned Z 2 and Z 3 structures. It can be the same as the group of polyvalent carboxylic acids.
  • the polyvalent carboxylic acid having a Y 2 (OR 4 ) n5 (COOR 5 ) n6 structure is the above-described Z 2 and Z 3. Can be the same as the group of polyvalent carboxylic acids corresponding to.
  • the above general formula (1), the above general formula (2), the above general formula (4), or the above general formula (4) representing a (thio) ester group-containing structure Z 1 in the structure represented by 5) is aromatic, and both Z 2 and Z 3 are preferably an alicyclic structure or an aliphatic structure, from the viewpoint of solubility in a solvent. Therefore, it is preferable that the number of carbon atoms of Z 1 is 1 to 30, and the number of carbon atoms of Z 2 and Z 3 is 1 to 15.
  • Z 1 , Z 2 and Z 3 each contain at least one group selected from the group consisting of hydrocarbon groups, ether groups, amide groups, imide groups, urea groups, urethane groups, sulfonyl groups and fluorine-containing groups. preferable.
  • the hydroxypolyamide resin (A) more preferably has a structure represented by the general formula (9) or the general formula (10).
  • Z 1 is represented by the following general formula (9): ⁇ Wherein R 10 represents a hydrocarbon group having 1 to 18 carbon atoms, and R 11 each independently represents a hydrogen atom, a hydrocarbon group having 1 to 17 carbon atoms, an ether group, an amide group, or an imide group. And at least one group selected from the group consisting of a urea group and a urethane group.
  • Z 1 in the structure represented by the formula (4) or the general formula (5) is preferably an alicyclic structure or an aliphatic structure, and Z 2 and Z 3 are preferably aromatic. Further, from the viewpoint of solubility in a solvent, it is preferable that Z 1 , Z 2 and Z 3 are organic groups having 1 to 15 carbon atoms.
  • Z 1 , Z 2 and Z 3 contain at least one group selected from the group consisting of hydrocarbon groups, ether groups, amide groups, imide groups, urea groups, urethane groups, sulfonyl groups, and fluorine-containing groups. Is preferred.
  • the hydroxypolyamide resin (A) preferably has a structure represented by the following general formula (11).
  • Z 1 is represented by the following general formula (11): ⁇ Wherein A 1 is selected from the group consisting of —CH 2 —, —O—, —S—, —SO 2 —, —CO—, —NHCO—, —C (CF 3 ) 2 —, and a single bond.
  • L 1 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms
  • L 2 to L 4 are each independently a hydrogen atom or a methyl group
  • L 5 is a hydrogen atom, a methyl group or a hydroxyl group
  • n 10 is an integer of 1 to 8.
  • a plurality of L 1 may be the same or different, and R 12 is a hydrocarbon group having 1 to 10 carbon atoms. ⁇ Is preferable.
  • Examples of the method for producing the hydroxypolyamide resin (A) include a method in which the above hydroxyl group-containing compound or thiol compound and polyvalent carboxylic acid are polycondensed and then a polyvalent amino compound is polycondensed.
  • Hydroxy polyamide resin (A) is obtained by reacting an excess amount of a dicarboxylic acid with a hydroxyl group-containing compound or thiol compound in the range of ⁇ 25 ° C. to 40 ° C. in the presence of a base catalyst such as pyridine, triethylamine, benzyltriethylamine chloride, A (thio) ester group-containing structure in which both ends are carboxylic acid or a derivative thereof is synthesized, and then a (thio) ester group-containing structure in which both ends are carboxylic acid or a derivative thereof and bis (aminophenol) ) And other polyvalent amino compounds can be synthesized by polycondensation in the range of ⁇ 25 ° C. to 10 ° C.
  • the “derivative” refers to carboxylic acid chloride.
  • Dicarboxylic acid can also be used in the state of acid chloride using thionyl chloride.
  • the acid chloride is synthesized by reacting a dicarboxylic acid with an excess amount of thionyl chloride in the presence of a catalyst such as N, N-dimethylformamide, pyridine, benzyltriethylamine chloride, and the like.
  • a catalyst such as N, N-dimethylformamide, pyridine, benzyltriethylamine chloride, and the like.
  • a method of distilling off by heating and decompression can be mentioned, and the residue of this reaction solution can be obtained by recrystallization with a solvent such as hexane or toluene, and can also be used for polymerization of a resin without purification. It is.
  • a catalyst in which a dicarboxylic acid and N-hydroxybenzotriazole (hereinafter also referred to as “HOBT”) are made into a HOBT active ester using a dehydration condensing agent such as dicyclohexylcarbodiimide can also be used.
  • m 3 in the above general formula (4) or general formula (5) is 1 in that the solubility in an alkali developer and the mechanical properties of the resulting resin film are good. It is preferably an integer of ⁇ 100, more preferably an integer of 2 to 50, and even more preferably an integer of 3 to 30. Also, the above general formula (1) for the structure represented by the above general formula (3) synthesized from at least one carboxylic acid compound selected from the group consisting of polyvalent carboxylic acids and derivatives thereof and a polyvalent amino compound.
  • the ratio of the (thio) ester group-containing structure represented by the general formula (2), the general formula (4) or the general formula (5) is determined by the solubility in an alkali developer and the resulting resin film machine. From the viewpoint of good physical properties, it is preferably 0.05 to 0.80.
  • the photosensitive resin composition of the present invention can be used as a positive type or a negative type.
  • the ratio of the (thio) ester group-containing structure is more preferably 0.10 to 0.50, and more preferably 0.15 to 0.40 in the case of a positive composition.
  • In the case of a negative composition it is preferably 0.20 to 0.80, and more preferably 0.30 to 0.60.
  • the hydroxy polyamide resin (A) containing an ester group is superior to the hydroxy polyamide resin (A) containing a thioester group.
  • the hydroxypolyamide structure which is a structure other than the (thio) ester group-containing structure, in the structure represented by the general formula (3) will be described.
  • the hydroxypolyamide structure is composed of a raw material X 1 (NH 2 ) 2 (OH) n1 (COOR 2 ) n3 and a polyvalent compound consisting of Y 1 (COOH) 2 (OR 1 ) n2 (COOR 3 ) n4. It is formed by a condensation reaction with carboxylic acid.
  • the polyvalent carboxylic acid represented by the general formula (3) that is, Y 1 (COOH) 2 (OR 1 ) n2 (COOR 3 ) n4 is represented by the general formula (4) and the general formula (5).
  • the polyvalent carboxylic acid Y 2 (COOH) 2 (OR 4 ) n5 (COOR 5 ) n6 may be the same as the general formula (4) or Y 2 in the general formula (5).
  • Y 1 in 3) is synonymous with the preferable range, and is preferably at least one organic group selected from the group consisting of organic groups described later, represented by n 2 in the general formula (3).
  • the value represented by n 5 in the general formula (4) or general formula (5) show the same range, and the value represented by n 4 in the general formula (3) and the general formula (4) or The same applies to the value represented by n 6 in the general formula (5).
  • the PBO precursor is a hydroxypolyamide resin having a structure obtained by polycondensing a bis (aminophenol) having a structure of X 1 (NH 2 ) 2 (OH) 2 and a dicarboxylic acid having a structure of Y 1 (COOH) 2 This is the case.
  • the two groups of amino group and hydroxy group of the bis (aminophenol) are each in the ortho position.
  • Dihydroxydiamide (hydroxypolyamide resin) is ring-closed by being heated to about 250 to 400 ° C. to be changed to PBO which is a heat-resistant resin.
  • X 1 is preferably a tetravalent organic group having 2 or more and 30 or less carbon atoms in view of good solubility in an alkali developer and heat resistance of the resulting resin film.
  • Y 1 is preferably a divalent organic group having 2 to 30 carbon atoms in view of good solubility in an alkali developer and heat resistance of the resulting resin film.
  • m 2 is an integer of 1 to 1000, more preferably an integer of 2 to 200, in view of good solubility in an alkali developer and mechanical properties of the resulting resin film. An integer is more preferable, and an integer of 3 to 60 is most preferable.
  • Examples of the bis (aminophenol) having the structure of X 1 (NH 2 ) 2 (OH) 2 include 3,3′-dihydroxybenzidine, 3,3′-diamino-4,4′-dihydroxybiphenyl, 4 , 4'-diamino-3,3'-dihydroxybiphenyl, 3,3'-diamino-4,4'-dihydroxydiphenylsulfone, 4,4'-diamino-3,3'-dihydroxydiphenylsulfone, bis- (3 -Amino-4-hydroxyphenyl) methane, 2,2-bis- (3-amino-4-hydroxyphenyl) propane, 2,2-bis- (3-amino-4-hydroxy-5-methylphenyl) propane, 1,1-bis- (3-amino-4-hydroxyphenyl) -1-phenylethane, 3,3′-diamino-4,4′-dihydroxytetraphenylmethane, 2, 2-bis- (3
  • X 1 is preferably as follows:
  • Bis (aminophenol) which is an aromatic group selected from The above bis (aminophenol) may be an amino group at the meta position, a hydroxyl group at the para position, a hydroxyl group at the meta position, or an amino group at the para position with respect to the bond connecting the benzene rings.
  • the meta position is preferably an amino group and the para position is preferably a hydroxyl group.
  • Examples of the dicarboxylic acid having a Y 1 (COOH) 2 structure include dicarboxylic acids in which Y 1 is selected from the group consisting of an aromatic group, an aliphatic group, and an alicyclic structure selected from the following: ⁇ Wherein A 1 is selected from the group consisting of —CH 2 —, —O—, —S—, —SO 2 —, —CO—, —NHCO—, —C (CF 3 ) 2 —, and a single bond.
  • n 10 is an integer of 1 to 12.
  • ⁇ , ⁇ In the formula, L 2 , L 3 and L 4 are each independently a hydrogen atom or a methyl group, and L 5 is a hydrogen atom, a methyl group or a hydroxyl group. ⁇ .
  • Representative compounds as the dicarboxylic acid having the above tricyclodecane skeleton, and a bis (carboxy) tricyclo [5,2,1,0 2,6] decane can be obtained according to a synthesis example of International Publication WO2009 / 081950.
  • a derivative of 5-aminoisophthalic acid can be used as a part or all of the dicarboxylic acid having the Y 1 (COOH) 2 structure.
  • Specific compounds to be reacted with 5-aminoisophthalic acid to obtain the derivative include 5-norbornene-2,3-dicarboxylic acid anhydride, exo-3,6-epoxy-1,2,3, 6-tetrahydrophthalic anhydride, 3-ethynyl-1,2-phthalic anhydride, 4-ethynyl-1,2-phthalic anhydride, cis-4-cyclohexene-1,2-dicarboxylic anhydride, -Cyclohexene-1,2-dicarboxylic anhydride, maleic anhydride, citraconic anhydride, itaconic anhydride, endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, allyl succ
  • the resin represented by the general formula (3) has a portion derived from a raw material diamine, but as a raw material diamine, in addition to dihydroxydiamine (X 1 (NH 2 ) 2 (OH) 2 ), it is necessary. Accordingly, a diamine having the structure of X 2 (NH 2 ) 2 may be used.
  • X 2 is synonymous with X 1 in the general formula (3), including a preferable range.
  • Diamine As a compound having a structure of X 2 (NH 2 ) 2 , two pairs of diamines having an amide bond and a phenolic hydroxyl group in the ortho position relative to each other (hereinafter referred to as “having a PBO precursor structure in the molecule”).
  • Diamine a compound having a structure of X 2 (NH 2 ) 2
  • Diamine Diamine
  • X 3 is synonymous with X 1 in the general formula (3), including a preferable range.
  • the dicarboxylic acid dichloride having the structure of Y 3 (COCl) 2 is reacted with two molecules of nitroaminophenol for reduction, and the following general formula ( 14): ⁇ Wherein Y 3 is a divalent organic group having at least two carbon atoms. ⁇
  • Y 3 is synonymous with Y 1 in the general formula (3), including a preferable range.
  • Examples of the diamine having the structure of X 2 (NH 2 ) 2 include aromatic diamine and silicon diamine.
  • aromatic diamine examples include m-phenylenediamine, p-phenylenediamine, 2,4-tolylenediamine, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, and 4,4′-diamino.
  • Diphenyl ether 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'- Diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl ketone, 4,4'-diaminodiphenyl ketone, 3,4'-diaminodiphenyl ketone, 2,2'-bis (4-aminophenyl) ) Propane, 2,2'-bis (4-aminophenyl) hexa Fluoropropane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy)
  • Silicon diamine can also be selected as part or all of the diamine having the structure of X 2 (NH 2 ) 2 in order to enhance the adhesion to the substrate.
  • silicon diamines include bis (4-aminophenyl) dimethylsilane, bis (4-aminophenyl) tetramethylsiloxane, bis (4-aminophenyl) tetramethyldisiloxane, bis ( ⁇ -aminopropyl) tetramethyldi Examples thereof include siloxane, 1,4-bis ( ⁇ -aminopropyldimethylsilyl) benzene, bis (4-aminobutyl) tetramethyldisiloxane, bis ( ⁇ -aminopropyl) tetraphenyldisiloxane, and the like.
  • dicarboxylic acid having a Y 1 (COOH) 2 structure examples include dicarboxylic acids that are aromatic groups or aliphatic groups used in the PBO precursor described above. Moreover, it is also possible to use two pairs of dicarboxylic acids having an amide bond and a phenolic hydroxyl group in the ortho position relative to each other in the molecule. For example, two molecules of trimellitic acid chloride are added to bis (aminophenol) having the structure of X 1 (NH 2 ) 2 (OH) 2 or diaminophenol having the structure of X 1 (NH 2 ) 2 (OH).
  • the hydroxy polyamide resin (A) is represented by the following general formula (16) from the viewpoint of lithography properties: ⁇ Wherein X 6 represents a tetravalent organic group having at least 2 carbon atoms, Z 1 represents at least one structure selected from the group consisting of the above general formula (9), and L 6 , L 7 and L 8 each independently represents a hydrogen atom or a methyl group, L 9 represents a hydrogen atom, a methyl group or a hydroxyl group, and m 2 and m 3 each independently represents 1 to 1000 Is an integer. ⁇ Is preferably included. X 6 is synonymous with X 1 in the general formula (3), including a preferable range.
  • the tricyclodecane moiety in the structure represented by the general formula (16) is represented by the following general formula (17): It is preferable that it is at least 1 selected from the structural group represented by these.
  • the tricyclodecane moiety is, in particular, the following general formula (18) in that the obtained resin film has good mechanical properties. It is more preferable that
  • the hydroxy polyamide resin (A) is represented by the following general formula (19) from the viewpoint of thermomechanical properties: ⁇
  • X 6 represents a tetravalent organic group having at least 2 carbon atoms
  • Y 4 represents the following general formula (20):
  • L 1 is at least one group selected from the group consisting of a hydrogen atom, a halogen atom, a hydrocarbon group, an amide group, a urea group, an imide group, and a urethane group
  • k 4.
  • a plurality of L 1 may be the same or different.
  • Z 1 is at least one structure selected from the group consisting of the general formula (9).
  • m 2 and m 3 are each independently an integer of 1 to 1000.
  • a plurality of Y 4 may be the same or different.
  • X 6 has the same meaning as X 1 in the general formula (3).
  • dicarboxylic acid and bis (aminophenol) for synthesizing dihydroxydiamide which is a hydroxy polyamide resin, after obtaining diacid chloride using dicarboxylic acid and thionyl chloride
  • examples thereof include a method in which bis (aminophenol) is allowed to act, a method in which dicarboxylic acid and bis (aminophenol) are polycondensed with dicyclohexylcarbodiimide, and the like.
  • hydroxybenztriazole can be allowed to act simultaneously.
  • the hydroxypolyamide having the repeating unit represented by the general formula (3) by sealing its end group with an organic group (hereinafter also referred to as “sealing group”).
  • an organic group hereinafter also referred to as “sealing group”.
  • a compound having an amino group or a hydroxyl group as a sealing group is used. It is preferable to use it.
  • Examples of such compounds include aniline, ethynylaniline, norborneneamine, butylamine, propargylamine, 2-aminobenzyl alcohol, 3-aminobenzyl alcohol, 4-aminobenzyl alcohol, ethanol, propargyl alcohol, benzyl alcohol, hydroxyethyl methacrylate, Examples thereof include nitrogen-containing cyclic compounds such as hydroxyethyl acrylate, 2-aminobenzotriazole, benzothiadiazole, and tetrazole.
  • the acid anhydride, carboxylic acid, acid chloride, isocyanate group as the compound having a blocking group It is preferable to use a compound having the above.
  • Examples of such compounds include benzoyl chloride, norbornene dicarboxylic anhydride, norbornene carboxylic acid, 5-benzimidazole carboxylic acid, ethynyl phthalic anhydride, glutaric anhydride, maleic anhydride, phthalic anhydride, cyclohexane dicarboxylic anhydride Products, methylcyclohexane dicarboxylic acid anhydride, cyclohexene dicarboxylic acid anhydride, methacryloyloxyethyl methacrylate, phenyl isocyanate, mesyl chloride, tosylic acid chloride and the like. Moreover, it can also be set as the oxetane terminal by making it react with the compound containing an amino group and a hydroxyl group using trimellitic acid chloride.
  • Preferred end groups include nitrogen-containing cyclic compounds such as benzotriazole, tetrazole, and 5-benzimidazolecarboxylic acid, methylol groups, alkoxymethyl groups, oxetane groups, and the following general formula (21): ⁇ Wherein L 10 represents —CH 2 —, —O— or —S—, and L 11 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • nitrogen-containing cyclic compounds such as benzotriazole, tetrazole, and 5-benzimidazolecarboxylic acid, methylol groups, alkoxymethyl groups, oxetane groups, and the following general formula (21): ⁇ Wherein L 10 represents —CH 2 —, —O— or —S—, and L 11 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • At least one terminal group selected from the group consisting of terminal groups represented by: Examples of the methylol group, alkoxymethyl group, and oxetane group include the following general formula (22): ⁇ Wherein R 14 and R 15 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and R 16 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group, an ester And at least one monovalent organic group selected from the group consisting of a group and a urethane group, n 12 is an integer of 1 to 5, and n 13 is an integer of 0 to 4, where n 12 + n 13 5.
  • R 15 and R 16 may be the same as or different from each other. ⁇ Is preferable.
  • the polystyrene-converted weight average molecular weight of the hydroxypolyamide resin having the structure represented by the general formula (3) by gel permeation chromatography (hereinafter also referred to as “GPC”) is 3,000 to 70,000. It is preferably 6,000 to 50,000.
  • the weight average molecular weight is preferably 3,000 or more from the viewpoint of physical properties of the cured relief pattern, and is preferably 70,000 or less from the viewpoint of resolution.
  • THF tetrahydrofuran
  • NMP N-methyl-2-pyrrolidone
  • the molecular weight is determined from a calibration curve prepared using standard monodisperse polystyrene.
  • the standard monodisperse polystyrene is recommended to be selected from STANDARD SM-105, an organic solvent standard sample manufactured by Showa Denko.
  • the photoacid generator (B) is a compound that generates an acid upon irradiation with actinic rays. Examples of such a compound include halogen-containing compounds, onium salts, and compounds having a naphthoquinone diazide structure (hereinafter referred to as “naphthoquinone diazide compounds”). Or the like.).
  • naphthoquinone diazide compounds compounds having a naphthoquinone diazide structure
  • naphthoquinone diazide compounds compounds having a naphthoquinone diazide structure
  • a positive photosensitive resin composition can be obtained.
  • the hydroxy polyamide resin of the present invention can be made into a negative type by an appropriate combination of the photoacid generator (B) and an additive.
  • halogen-containing compound examples include haloalkyl group-containing hydrocarbon compounds and the like, and trichloromethyltriazines are preferable.
  • trichloromethyl-s-triazines include tris (2,4,6-trichloromethyl) -s-triazine, 2-phenyl-bis (4,6-trichloromethyl) -s-triazine, 2- ( 3-chlorophenyl) -bis (4,6-trichloromethyl) -s-triazine, 2- (2-chlorophenyl) -bis (4,6-trichloromethyl) -s-triazine, 2- (4-methoxyphenyl)- Bis (4,6-trichloromethyl) -s-triazine, 2- (3-methoxyphenyl) -bis (4,6-trichloromethyl) -s-triazine, 2- (2-methoxyphenyl) -bis (4,6-trichloromethyl) -
  • onium salt examples include iodonium salts, sulfonium salts, phosphonium salts, ammonium salts, diazonium salts, and the like, and onium salts selected from the group consisting of diaryliodonium salts, triarylsulfonium salts, and trialkylsulfonium salts are preferable.
  • diallyliodonium examples include diphenyliodonium tetrafluoroborate, diphenyliodonium tetrafluorophosphate, diphenyliodonium tetrafluoroarsenate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium trifluoroacetate, diphenyliodonium-p-toluenesulfonate, 4-methoxyphenylphenyliodonium tetrafluoroborate, 4-methoxyphenylphenyliodonium hexafluorophosphonate, 4-methoxyphenylphenyliodonium hexafluoroarsenate, 4-methoxyphenylphenyliodonium trifluoromethanesulfonate, 4-methoxyphenylphenyliodonium trifluoro Acete 4-methoxyphenylphenyl io
  • triarylsulfonium salts include triphenylsulfonium tetrafluoroborate, triphenylsulfonium hexafluorophosphonate, triphenylsulfonium hexafluoroarsenate, triphenylsulfonium methanesulfonate, triphenylsulfonium trifluoroacetate, triphenylsulfonium- p-toluenesulfonate, 4-methoxyphenyldiphenylsulfonium tetrafluoroborate, 4-methoxyphenyldiphenylsulfonium hexafluorophosphonate, 4-methoxyphenyldiphenylsulfonium hexafluoroarsenate, 4-methoxyphenyldiphenylsulfonium methanesulfonate, 4-methoxy Phenyldiphenylsulfonium trifluoro
  • trichloromethyl-S-triazines include 2- (3-chlorophenyl) -bis (4,6-trichloromethyl) -S-triazine, 2- (4-chlorophenyl) -bis (4, 6-trichloromethyl) -S-triazine, 2- (4-methylthiophenyl) -bis (4,6-trichloromethyl) -S-triazine, 2- (4-methoxy- ⁇ -styryl) -bis (4,6- Trichloromethyl) -S-triazine, 2- (4-methoxynaphthyl) -bis (4,6-trichloromethyl) -S-triazine, etc.
  • diaryl iodonium salts include diphenyl iodonium trifluoroacetate, diphenyl iodonium trifluoromethane sulfone.
  • triarylsulfonium salts include triphenylsulfonium methanesulfonate, triphenylsulfonium trifluoroacetate, 4-methoxyphenyldiphenylsulfonium methanesulfonate, 4-methoxyphenyldiphenyl, and the like.
  • Suitable examples include sulfonium trifluoroacetate, 4-phenylthiophenyl diphenyl trifluoromethanesulfonate, 4-phenylthiophenyl diphenyl trifluoroacetate, and the like.
  • Sulfone Compounds of the sulfone compound include ⁇ -ketosulfone compounds, ⁇ -sulfonylsulfone compounds and ⁇ -diazo compounds of these compounds. Specific examples include 4-trisphenacylsulfone, mesityl. Examples thereof include phenacyl sulfone and bis (phenacylsulfonyl) methane.
  • Sulfonic acid compound examples include alkyl sulfonic acid esters, haloalkyl sulfonic acid esters, aryl sulfonic acid esters, imino sulfonates, and the like.
  • Preferred specific examples include benzoin tosylate.
  • Sulfonimide compound for example, N- (trifluoromethylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- (trifluoromethylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) naphthylimide and the like can be mentioned.
  • Oxime ester compound 2- [2- (4-methylphenylsulfonyloxyimino)]-2,3-dihydrothiophene-3-ylidene] -2- (2-methylphenyl) acetonitrile (trade name of Ciba Specialty Chemicals) “Irgacure PAG121”), [2- (propylsulfonyloxyimino) -2,3-dihydrothiophene-3-ylidene] -2- (2-methylphenyl) acetonitrile (Ciba Specialty Chemicals, Inc., trade name “Irgacure PAG103”), etc. Can be mentioned.
  • diazomethane compound examples include bis (trifluoromethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (phenylsulfonyl) diazomethane, and the like.
  • Diazoketone compound examples include 1,3-diketone-2-diazo compound, diazobenzoquinone compound, diazonaphthoquinone compound and the like, and specific examples thereof include 1,2-naphthoquinonediazide of phenols. -4-sulfonic acid ester compounds.
  • the above-mentioned (6) diazoketone compound is preferable from the viewpoint of solvent solubility and storage stability, and among these, from the viewpoint of sensitivity, a compound having a naphthoquinone diazide structure (hereinafter referred to as “naphtho”). Also referred to as “quinonediazide compound”). Moreover, when setting it as a negative photosensitive resin composition, the said (4) oxime ester compound is especially preferable from a sensitivity viewpoint.
  • the naphthoquinonediazide compound is typically a compound having a 1,2-benzoquinonediazide structure or a 1,2-naphthoquinonediazide structure.
  • the naphthoquinone diazide compound is typically a 1,2-naphthoquinone diazide-4-sulfonic acid ester of a polyhydroxy compound having the specific structure described below, and 1,2-naphthoquinone diazide-5- 5 of the polyhydroxy compound. It is at least one compound selected from the group consisting of sulfonate esters (hereinafter also referred to as “NQD compound”).
  • the NQD compound can be obtained by subjecting a naphthoquinone diazide sulfonic acid compound to sulfonyl chloride with chlorosulfonic acid or thionyl chloride and subjecting the obtained naphthoquinone diazide sulfonyl chloride to a polyhydroxy compound according to a conventional method.
  • An NQD compound can be obtained by reacting in the presence of a catalyst to carry out esterification and washing the resulting product with water and drying.
  • NQD compounds of polyhydroxy compounds represented by the following general formula (23)
  • X 7 represents the following chemical formula: R 17 , R 18 , R 19, and R 20 each independently represents a monovalent organic group, and l is 0 or 1 M 5 , m 6 , m 7 and m 8 represent integers of 0 to 3, and n 14 , n 15 , n 16 and n 17 are integers of 0 to 2.
  • NQD compounds of the following polyhydroxy compounds are preferred because of their high sensitivity and low precipitation in the positive photosensitive resin composition:
  • M 2 represents a divalent organic group containing an aliphatic tertiary or quaternary carbon
  • a 3 represents the following chemical formula: Represents at least one divalent group selected from the group represented by: ⁇ .
  • the compound examples include compounds described in [Chemical Formula 22] to [Chemical Formula 28] of JP-A No. 2003-131368.
  • the following NQD compounds of polyhydroxy compounds are preferable because of high sensitivity and low precipitation in the positive photosensitive resin composition.
  • L 12 represents —CH 2 —, —O— or —S—
  • L 13 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. ⁇ .
  • R 21 , R 22 and R 23 are each independently the following general formula:
  • each R 24 independently represents a hydrogen atom or at least one monovalent organic group selected from an alkyl group and a cycloalkyl group, and m 12 is an integer of 0 to 2.
  • m 9 , m 10 and m 11 are each independently an integer of 0-2. ⁇ .
  • the compound examples include NQD compounds of polyhydroxy compounds described in [Chemical Formula 17] to [Chemical Formula 22] of JP-A No. 2004-109849.
  • the following NQD compounds of polyhydroxy compounds are preferable because of high sensitivity and low precipitation in the positive photosensitive resin composition.
  • R 25 represents the following general formula: (In the formula, each R 29 independently represents a hydrogen atom or at least one monovalent organic group selected from the group consisting of an alkyl group and a cycloalkyl group, and m 16 represents an integer of 0 to 2)
  • R 26 , R 27 and R 28 are each a hydrogen atom or at least one monovalent organic group selected from the group consisting of an alkyl group and a cycloalkyl group.
  • m 13 , m 14 and m 15 are integers of 0-2.
  • the compound examples include NQD compounds of polyhydroxy compounds described in [Chemical 15] and [Chemical 16] of JP-A-2005-008626.
  • the following NQD compounds of polyhydroxy compounds are preferable because of high sensitivity and low precipitation in the positive photosensitive resin composition.
  • the naphthoquinone diazide sulfonyl group in the NQD compound is preferably either a 5-naphthoquinone diazide sulfonyl group or a 4-naphthoquinone diazide sulfonyl group.
  • the 4-naphthoquinonediazide sulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure.
  • the 5-naphthoquinonediazide sulfonyl ester compound has an absorption extending to the g-line region of a mercury lamp and is suitable for g-line exposure.
  • a 4-naphthoquinone diazide sulfonyl ester compound it is preferable to select either a 4-naphthoquinone diazide sulfonyl ester compound or a 5-naphthoquinone diazide sulfonyl ester compound depending on the wavelength used for exposure.
  • a naphthoquinone diazide sulfonyl ester compound having both a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group in the same molecule can be used, or a 4-naphthoquinone diazide sulfonyl ester compound and a 5-naphthoquinone diazide sulfonyl ester. It can also be used as a mixture with a compound.
  • the blending amount of the photoacid generator (B) is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the hydroxypolyamide resin (A), and is soluble in a solvent. From the viewpoint of the above, 2 to 40 parts by mass is more preferable, and from the viewpoint of sensitivity, 5 to 25 parts by mass is further preferable. If the compounding amount of the photoacid generator (B) is 1 part by mass or more, the patterning property of the resin is good. On the other hand, if it is 50 parts by mass or less, the tensile elongation rate of the cured film is good and exposure is performed. There is little development residue (scum) of the part.
  • the photosensitive resin composition according to the present invention preferably further contains a compound (C) that promotes solubility in an alkaline aqueous solution from the viewpoint of improving the solubility in alkali of the exposed portion and increasing the sensitivity.
  • the compound (C) that promotes solubility in an alkaline aqueous solution is a compound containing at least one group selected from the group consisting of a functional group that is soluble in an alkaline aqueous solution, that is, a phenolic hydroxyl group, a carboxyl group, and a sulfonyl group. Indicates.
  • Examples of the compound containing a phenolic hydroxyl group include a compound obtained by polymerizing a compound having at least one phenol group and the compound.
  • the compound having at least one phenol group is a compound having 6 to 40 carbon atoms, and specifically, a ballast agent having no more than the specified number of carbon atoms used in the photosensitive diazoquinone compound, paracumylphenol , Bisphenols, resorcinols, linear phenolic compounds such as MtrisPC, MtetraPC (Honshu Chemical Co., Ltd .: trade name), non-linear phenolic compounds such as TrisP-HAP, TrisP-PHBA, TrisP-PA (Honshu Chemical) Manufactured by Kogyo Co., Ltd .: trade name), compounds in which 2 to 5 hydrogen atoms of the phenyl group of diphenylmethane are substituted with hydroxyl groups, compounds in which 1 to 5 hydrogen atoms
  • ballast agent means the phenol compound currently used as a raw material for the above-mentioned photosensitive diazoquinone compound which is a phenol compound in which a part of the phenolic hydrogen atom is converted to naphthoquinonediazide sulfonic acid ester.
  • a phenol compound having two or more phenol groups is preferable from the viewpoint of promoting alkali dissolution, and resorcinols are more preferable from the viewpoint of suppressing the generation of residues.
  • resorcinols include resorcinol, 2-methylresorcinol, 4-methylresorcinol, 5-methylresorcinol, 2,5-dimethylresorcinol, 4-ethylresorcinol, 4-hexylresorcinol and the like.
  • Examples of the polymer obtained by polymerizing the compound include phenol resin and derivatives thereof, polyhydroxystyrene and derivatives thereof.
  • Specific examples of the phenol resin and derivatives thereof include novolak resins.
  • As the novolak type resin those widely used in the technical field of resists can be used.
  • This novolac resin can be obtained, for example, by reacting phenols with aldehydes or ketones in the presence of an acidic catalyst.
  • phenols include, in addition to the compounds described above, for example, phenol, orthocresol, metacresol, paracresol, 2,3-dimethylphenol, 2,5-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethyl.
  • aldehydes include formaldehyde, formalin, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, benzaldehyde, phenylacetaldehyde, ⁇ -phenylpropionaldehyde, ⁇ -phenylpropionaldehyde, o-hydroxybenzaldehyde, m-hydroxybenzaldehyde, p- Hydroxybenzaldehyde, o-chlorobenzaldehyde, m-chlorobenzaldehyde, p-chlorobenzaldehyde, o-methylbenzaldehyde, m-methylbenzaldehyde, p-methylbenzaldehyde, p-ethylbenzaldehyde, pn-butylbenzaldehyde, terephthalaldehyde, etc. It is done.
  • ketones include acetone, methyl ethyl
  • a novolak type resin obtained by concomitantly using metacresol and paracresol and subjecting these to formaldehyde, formalin or paraformaldehyde to condensation reaction is particularly preferable from the viewpoint of sensitivity controllability.
  • the weight ratio of methacresol and paracresol is usually 20:80 to 80:20, preferably 50:50 to 70:30.
  • the molecular weight is a weight average molecular weight and is usually in the range of 1,000 to 20,000, preferably 1,000 to 15,000, more preferably 1,000 to 10,000.
  • the weight average molecular weight of the resin can be controlled within a desired range by adjusting the synthesis conditions. In addition, the narrower the molecular weight distribution, the higher the photosensitivity.
  • the resin obtained by synthesis is subjected to solid-liquid extraction with an organic solvent having an appropriate solubility, or the resin is dissolved in a good solvent and dissolved in the poor solvent.
  • the molecular weight distribution may be controlled by dropping, or by adding a poor solvent to the solid-liquid or liquid-liquid extraction.
  • Specific examples of this phenolic resin include EP4000B (Asahi Organic Materials Industry: trade name), EP4020G (Asahi Organic Materials Industry: trade name), EP4050G (Asahi Organic Materials Industry: trade name), EP4080G (Asahi Organic Materials Industry: trade name). Name).
  • polyhydroxystyrene or derivatives thereof include, for example, poly-o-hydroxystyrene, poly-m-hydroxystyrene, poly-p-hydroxystyrene, poly- ⁇ -methyl-o-hydroxystyrene, poly- ⁇ - Examples thereof include methyl-m-hydroxystyrene, poly- ⁇ -methyl-p-hydroxystyrene, or a partially acetylated product or silylated product thereof.
  • the weight average molecular weight of these polyhydroxystyrenes or derivatives thereof is in the range of 3,000 to 100,000, particularly preferably 4,000 to 20,000.
  • the blending amount is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the hydroxypolyamide resin (A), and preferably 1 to 70 parts by weight from the viewpoint of the cured shape. If the said compounding quantity is less than 70 mass parts, the heat resistance of the film
  • a compound containing a carboxyl group (hereinafter also referred to as “carboxylic acid compound”) is a compound having at least one carboxyl group in the molecule and having 6 to 30 carbon atoms, and is a monocarboxylic acid compound. , Dicarboxylic acid compounds, tricarboxylic acid compounds, and the like. Further, from the viewpoint of adhesion, the carboxylic acid compound is preferably a monocarboxylic acid compound, and from the viewpoint of sensitivity, it is preferably a compound having a branched structure, a ring structure or an unsaturated double bond.
  • a carboxylic acid compound having 8 or more carbon atoms is preferable from the viewpoint of remaining in the pre-baked film, and the solubility in a solvent is high.
  • the number of carbon atoms is preferably 30 or less, and from the viewpoint of precipitation after time, the number of carbon atoms is more preferably 20 or less, and further preferably 15 or less.
  • a functional group selected from a hydroxyl group, an ether group, and an ester group is preferably present at the ⁇ -position of the carboxyl group, and among these, an ether group, an ester,
  • the group is preferable from the viewpoint of adhesiveness to the substrate, and from the viewpoint of sensitivity, when it becomes a cured resin film, the site is a methylol group or the like so that the carboxylic acid compound remaining after prebaking does not volatilize the resin composition. It is particularly preferable that it becomes a crosslinking group such as an alkoxymethyl group.
  • the above carboxylic acid compounds may be used alone or in combination of two or more.
  • the blending amount in the case of blending the carboxylic acid compound is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the hydroxy polyamide resin (A), and more preferably 1 to 40 parts by weight from the viewpoint of adhesion. From the viewpoint, 5 to 20 parts by mass is more preferable. If the compounding amount of the carboxylic acid compound compound is 1 part by mass or more, the development residue in the exposed part is reduced, and the adhesion between the film formed using the photosensitive resin composition and the silicon substrate is good, If the said compounding quantity is 40 mass parts or less, the tensile elongation rate of the film
  • a compound containing a sulfonyl group is a compound having 1 to 20 carbon atoms having at least one sulfonyl group in the molecule.
  • sulfonic acid compound is a compound having 1 to 20 carbon atoms having at least one sulfonyl group in the molecule.
  • the sulfonic acid compounds may be used alone or in combination of two or more.
  • the blending amount is preferably 0.1 to 15 parts by weight with respect to 100 parts by weight of the hydroxy polyamide resin (A), and more preferably 0.5 to 10 parts by weight from the viewpoint of adhesion. From the viewpoint of sensitivity, 1 to 5 parts by mass is more preferable.
  • the blending amount of the sulfonic acid compound is 1 part by mass or more, the development residue in the exposed part is reduced, and the adhesion between the film formed using the photosensitive resin composition and the silicon substrate is good. If the blending amount is 15 parts by mass or less, the tensile elongation of the cured film is good.
  • preferred compounds having both good lithography performance and moderate alkali solubility with respect to 2.38% by mass TMAH include phenolic compounds and carboxylic acid compounds.
  • the residual film ratio upon curing after the relief pattern obtained by development is subjected to heat treatment (hereinafter, this process is referred to as “cure”) is improved.
  • a compound (D) that causes a crosslinking reaction by heat a compound that causes a crosslinking reaction with the hydroxypolyamide resin (A) by heat is used.
  • the temperature causing the crosslinking reaction is preferably 150 to 350 ° C. The cross-linking reaction occurs during heat treatment after pattern formation by development.
  • the compound (D) that causes a crosslinking reaction by heat include an epoxy compound, an oxetane compound, a melamine compound, an alkenyl compound, a compound having a structure represented by the following general formula (6), and the following general formula (7). And a compound having a structure represented by the following general formula (8), but are not limited thereto.
  • the alkenyl compound represents a compound containing an unsaturated double bond group such as a (meth) acrylate group, an allyl group, or a vinyl group.
  • the epoxy compound include, but are not limited to, bisphenol A type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, glycidylamine type epoxy resin, polysulfide type epoxy resin and the like.
  • the oxetane compound is a compound having a 4-membered cyclic ether structure, and is capable of a cationic ring-opening polymerization reaction or an addition reaction with carboxylic acid, thiol and phenol.
  • oxetane compound examples include 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, bis [1-ethyl (3-oxetanyl)] methyl ether, 4,4′-bis.
  • melamine compound examples include trimethylol melamine, hexamethylol melamine, trimethoxymethyl melamine, hexamethoxymethyl melamine and the like. From the viewpoint of storage stability, trimethoxymethyl melamine and hexamethoxymethyl melamine are preferable.
  • allyl compounds include allyl alcohol, allyl anisole, benzoic acid allyl ester, cinnamic acid allyl ester, N-allyloxyphthalimide, allyl phenol, allyl phenyl sulfone, allyl urea, diallyl phthalate, diallyl isophthalate, diallyl terephthalate , Diallyl maleate, diallyl isocyanurate, triallylamine, triallyl isocyanurate, triallyl cyanurate, triallylamine, triallyl 1,3,5-benzenetricarboxylate, triallyl trimelliate (TRIAM705 manufactured by Wako Pure Chemical Industries, Ltd.), pyromerit Examples include triallyl acid (TRIAM805 manufactured by Wako Pure Chemical Industries, Ltd.), triallyl oxydiphthalate, triallyl phosphate, triallyl phosphite, and triallyl citrate.
  • triallyl trimellitic acid (TRIAM705 manufactured by Wako Pure Chemical Industries, Ltd.) and triallyl pyromellitic acid (TRIAM805 manufactured by Wako Pure Chemical Industries, Ltd.) are preferable.
  • the (meth) acrylate compound refers to a compound selected from the group consisting of acrylic acid ester, methacrylic acid ester, acrylamide, and methacrylamide.
  • preferable ones include NK-ester series M-20G, M-40G, M-90G, M-230G, CB-1, SA, S, AMP-10G, AMP-20G, AMP manufactured by Shin-Nakamura Chemical Co., Ltd.
  • the (meth) acrylate compound preferably has 9 or more carbon atoms, and preferably 30 or less from the viewpoint of solubility in a solvent.
  • the (meth) acrylate compound preferably contains a polar group such as a hydroxyl group, a carbonyl group, an amino group, and a thiol group.
  • the polar group is a hydroxyl group.
  • the compound include NK-701, 1- (acryloyloxy) -3- (methacryloyloxy) -2-propanol, 1,3-bis (acryloyloxy) -2-propanol, and the like.
  • (meth) acrylate refers to both acrylate and methacrylate.
  • R 6 is a hydrogen atom or a monovalent group selected from the group consisting of a methyl group, an ethyl group, an n-propyl group, and an isopropyl group
  • R 7 is a hydrogen atom, a hydroxyl group, a carbon
  • at least one monovalent organic group selected from the group consisting of an alkyl group having 1 to 10 atoms, an alkoxy group, an ester group, and a urethane group
  • n 7 is an integer of 1 to 5
  • A methylol compound and an alkoxymethyl compound are mentioned as a compound having a structure represented by
  • Specific examples of the compound represented by the general formula (6) include the following general formula (27) from the viewpoint of sensitivity: And the following general formula (28): A compound selected from the group consisting of is more preferred.
  • R 8 and R 9 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms and R 10 CO— (where R 10 is a carbon atom having 1 to 10 carbon atoms) A hydrogen group.) And a group selected from the group consisting of: ⁇ , N-methylol compounds and N-alkoxymethyl compounds may be mentioned as compounds having a structure represented by
  • the compound represented by the general formula (7) is represented by the following general formula (29): A compound selected from the group consisting of is more preferred.
  • D 1 is a functional group selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkenyl group, and an organic group capable of crosslinking
  • M 1 represents —CH 2 —, —O—
  • Z 5 is a divalent organic group
  • n 9 is an integer of 0 to 4, if the D 1 there are a plurality, a plurality of D 1 is It can be the same or different.
  • a bisallyl nadiimide compound, a bisnorbornene imide compound, etc. are mentioned as a compound which has a structure represented by these.
  • the compound represented by the general formula (8) is represented by the following general formula (30): A compound selected from the group consisting of is more preferred.
  • the compound (D) that causes a crosslinking reaction by heat may be used alone or in combination of two or more.
  • the amount of the compound (D) that causes a crosslinking reaction by heat is preferably 1 to 50 parts by weight, more preferably 2 to 30 parts by weight, based on 100 parts by weight of the hydroxypolyamide resin (A). More preferred is 20 parts by mass.
  • the compounding amount of the compound is 1 part by mass or more, the cured shape at the time of curing is improved.
  • the photosensitive resin composition according to the present invention is preferably further blended with a compound (E) that generates an acid by heat from the viewpoint of exhibiting better adhesion to the substrate after curing.
  • the compound (E) that generates an acid by heat is a compound that accelerates the reaction of the compound (D) that causes a crosslinking reaction by the above heat, and the temperature at which the acid is generated is preferably 150 to 350 ° C.
  • Specific compounds include ethyl acetate, methyl acetate, t-butyl acetate, t-butyl acetoacetate, t-butyl acrylate, allyl chloroacetate, n-butyl chloroacetate, t-butyl chloroacetate, ethyl chloroacetate, Methyl chloroacetate, benzyl chloroacetate, isopropyl chloroacetate, 2-methoxyethyl chloroacetate, methyl dichloroacetate, methyl trichloroacetate, ethyl trichloroacetate, 2-ethoxyethyl trichloroacetate, t-butyl cyanoacetate, t-butyl methacrylate, Ethyl trifluoroacetate, methyl trifluoroacetate, phenyl trifluoroacetate, vinyl trifluoroacetate, isopropyl trifluoroacetate, ally
  • ethyl methanesulfonate preferred are ethyl methanesulfonate, methyl methanesulfonate, 2-methoxyethyl methanesulfonate, 2-isopropoxyethyl methanesulfonate, phenyl p-toluenesulfonate, p-toluenesulfone.
  • more preferable compounds include ethyl methanesulfonate, methyl methanesulfonate, 2-methoxyethyl methanesulfonate, ethyl p-toluenesulfonate, methyl p-toluenesulfonate, p- 2-methoxyethyl toluenesulfonate, ethyl trifluoromethanesulfonate, n-butyl trifluoromethanesulfonate, 1,4-butane sultone, 2,4-butane sultone, 2-sulfobenzoic anhydride, p-toluenesulfonic anhydride, etc.
  • the amount of the compound (E) that generates an acid by heat is preferably 0.1 to 30 parts by mass, and 0.5 to 10 parts by mass with respect to 100 parts by mass of the hydroxypolyamide resin (A). More preferred is 1 to 5 parts by mass. If the addition amount is 0.1 parts by mass or more, there is an effect of maintaining the pattern after thermosetting, while if the addition amount is 30 parts by mass or less, there is no adverse effect on the litho performance and the composition has good stability. It is.
  • Organic solvent (F) In the present invention, it is preferable that the above-described various components are dissolved in an organic solvent (F) to form a varnish and used as a solution of the photosensitive resin composition.
  • organic solvent (F) include N-methyl-2-pyrrolidone, ⁇ -butyrolactone (hereinafter also referred to as “GBL”), cyclopentanone, cyclohexanone, isophorone, N, N-dimethylacetamide (hereinafter referred to as “GBL”).
  • DMAc dimethylimidazolinone, tetramethylurea, dimethyl sulfoxide, diethylene glycol dimethyl ether (hereinafter also referred to as "DMDG”), diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether , Dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl-1,3-butylene Recall acetate, 1,3-butylene glycol-3-monomethyl ether, methyl pyruvate, ethyl pyruvate, may be used alone or as a mixture of methyl 3-methoxy propionate or the like.
  • DMDG diethylene glycol dimethyl ether
  • DMDG diethylene glycol diethyl ether
  • diethylene glycol dibutyl ether propy
  • non-amide solvents are preferred because they have little influence on the photoresist.
  • Specific preferred examples include ⁇ -butyrolactone, ethyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, tetrahydrofurfuryl alcohol and the like.
  • These organic solvents may be used alone or in combination of two or more.
  • the blending amount is preferably 100 to 2,000 parts by mass with respect to 100 parts by mass of the hydroxypolyamide resin (A). Is more preferably 100 to 1,000 parts by mass.
  • the photosensitive resin composition according to the present invention has, as necessary, an alcohol, a dye, a fragrance, a surfactant for improving the in-plane uniformity of the coating film, and an adhesive property with a silicon substrate or a copper substrate. It is also possible to add a polymerization inhibitor or the like in order to improve the adhesion aid for enhancing, the stability of the composition solution during storage or the stability of photosensitivity.
  • the alcohol preferably has 4 to 14 carbon atoms.
  • Tanol, 3-ethyl-2-methyl-3-pentanol, glycerol- ⁇ , ⁇ '-diallyl ether are particularly preferred.
  • These hydroxyl group-containing compounds may be used alone or in combination of two or more.
  • the blending amount in the case of blending the above alcohol is preferably 0.01 to 70 parts by weight, more preferably 0.1 to 50 parts by weight, with respect to 100 parts by weight of the hydroxy polyamide resin (A). Is more preferable, and 5 to 25 is particularly preferable.
  • the compounding amount of the hydroxyl group-containing compound is 0.01 parts by mass or more, the development residue in the exposed area decreases, and when it is 70 parts by mass or less, the tensile elongation of the film after curing is good.
  • the dye examples include methyl violet, crystal violet, and malachite green.
  • the blending amount when the dye is blended is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the hydroxypolyamide resin (A). When the addition amount is 10 parts by mass or less, the heat resistance of the film after thermosetting is good.
  • Examples of the perfume include terpene compounds, and monoterpene compounds and sesquiterpene compounds are preferable from the viewpoint of solubility in solvents.
  • the blending amount is preferably 0.1 to 70 parts by weight and more preferably 1 to 50 parts by weight with respect to 100 parts by weight of the hydroxypolyamide resin (A). If the addition amount is 70 parts by mass or less, the heat resistance of the film after thermosetting is good.
  • the surfactant examples include polyglycols such as polypropylene glycol and polyoxyethylene lauryl ether, and nonionic surfactants composed of derivatives thereof. Further, fluorine-based surfactants such as Fluorard (manufactured by Sumitomo 3M: trade name), Mega-Fac (manufactured by Dainippon Ink & Chemicals, Inc .: trade name), Lumiflon (trade name, manufactured by Asahi Glass Co., Ltd.), and the like.
  • Fluorard manufactured by Sumitomo 3M: trade name
  • Mega-Fac manufactured by Dainippon Ink & Chemicals, Inc .
  • Lumiflon trade name, manufactured by Asahi Glass Co., Ltd.
  • organosiloxane surfactants such as KP341 (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name), DBE (manufactured by Chisso Corporation: trade name), granol (manufactured by Kyoeisha Chemical Co., Ltd .: trade name), and the like can be mentioned.
  • the surfactant By adding the surfactant, it is possible to make it less likely to cause repellency of the coating film at the wafer edge during coating.
  • the blending amount is preferably 0 to 10 parts by weight, and more preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the hydroxy polyamide resin (A). If the addition amount is within 10 parts by mass, the heat resistance of the film after thermosetting is good.
  • Adhesion aids that improve adhesion to silicon and copper substrates include alkylimidazolines, polyhydroxystyrenes, polyvinyl methyl ethers, t-butyl novolacs, epoxy polymers, organosilicon compounds, triazoles, tetrazoles, oxazoles, thiazoles, imidazoles And the like.
  • An organosilicon compound is a compound containing a mono- or higher functional alkoxyl group and a silanol group, and serves as an adhesion aid for enhancing the adhesion to a silicon wafer.
  • the number of carbon atoms of the organosilicon compound is preferably 4 to 30, more preferably 4 to 18, from the viewpoint of solubility in a solvent.
  • the compound examples include 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name: KBM803, manufactured by Chisso Corporation: trade name: Silaace S810), 3-mercaptopropyltriethoxysilane (manufactured by Asmax Co., Ltd .: Trade name: SIM6475.0), 3-mercaptopropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name: LS1375, manufactured by Azumax Co., Ltd .: trade name: SIM6474.0), mercaptomethyltrimethoxysilane (manufactured by Azumax Corporation: product) Name SIM6473.5C), mercaptomethylmethyldimethoxysilane (manufactured by Azmax Corporation: trade name SIM6473.0), 3-mercaptopropyldiethoxymethoxysilane, 3-mercaptopropy
  • these compounds include phenylsilanetriol, trimethoxyphenylsilane, trimethoxy (p-tolyl) silane, dimethoxydiphenylsilane, diethoxydiphenylsilane, dimethoxydi-p-tolylsilane, triphenylsilanol and the like.
  • the organosilicon compounds may be used alone or in combination of two or more.
  • the blending amount is 1 to 40 parts by weight, preferably 2 to 30 parts by weight, and more preferably 4 to 20 parts by weight with respect to 100 parts by weight of the hydroxypolyamide resin (A). If the compounding amount of the compound is 1 part by mass or more, there is no development residue in the exposed part and good adhesion to the silicon substrate, while if it is 40 parts by mass or less, the tensile elongation of the film after curing is It is good and exhibits good adhesion and lithography performance.
  • heterocyclic structure compound examples include 2-mercaptobenzoxazole, 2-mercaptobenzthiazole, 1,3-dimethyl-5-pyrazolone, 3,5-dimethylpyrazole, 5,5-dimethylhydantoin, 3- Methyl-5-pyrazolone, 3-methyl-1-phenyl-5-pyrazolone, 2-methylimidazole, 1,10-phenanthroline, phenothiazine, phenoxazine, phenoxatin, mercaptobenzothiazole, mercaptobenzoxazole, methylthiobenzothiazole, dibenzothia
  • Examples include dil disulfide, methylthiobenzimidazole, benzimidazole, phenylmercaptothiazoline, mercaptophenyltetrazole, and mercaptomethyltetrazole.
  • benzotriazoles include the following general formula (34): ⁇ In the formula, Z 7 is a hydrogen atom or at least one group selected from the group consisting of a hydrocarbon group having 1 to 5 carbon atoms and a carboxyl group; Z 8 is a hydrogen atom or a hydroxyl group; It is at least one group selected from the group consisting of a hydrocarbon group having 1 to 5 carbon atoms and an aminoalkyl group. ⁇ .
  • heterocyclic ring-containing compounds 5-mercapto-1-phenyltetrazole, 1,2,3-benzotriazole, benzothiazole, benzoxazole, benzimidazole, and 2-mercaptobenzoxazole from the viewpoint of sensitivity on a copper substrate
  • a compound selected from the group consisting of: These heterocycle-containing compounds may be used alone or in combination of two or more.
  • the amount of the heterocyclic ring-containing compound to be blended is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the hydroxy polyamide resin (A).
  • the compounding amount of the heterocyclic ring-containing compound is 0.1 parts by mass or more, the adhesiveness of the film after thermosetting to the copper substrate is good, and when it is 30 parts by mass or less, the stability of the composition is good.
  • polymerization inhibitor examples include hydroquinone, N-nitrosodiphenylamine, p-tert-butylcatechol, phenothiazine, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, glycol etherdiaminetetraacetic acid, 2, 6-di-tert-butyl-p-methylphenol, 5-nitroso-8-hydroxyquinoline, 1-nitroso-2-naphthol, 2-nitroso-1-naphthol, 2-nitroso-5- (N-ethyl-N -Sulfopropylamino) phenol, N-nitroso-N-phenylhydroxyamine ammonium salt, N-nitroso-N-phenylhydroxylamine ammonium salt, N-nitroso-N- (1-naphthyl) hydroxylamine ammonium salt, bis ( 4-hide Carboxy
  • the blending amount in the case of blending the polymerization inhibitor is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 1 part by mass with respect to 100 parts by mass of the hydroxypolyamide resin (A). .
  • the addition amount is within 5 parts by mass, the heat resistance of the film after thermosetting is good.
  • Photosensitive resin composition comprising at least one alkali-soluble polymer selected from the group consisting of a polybenzoxazole precursor having a (thio) ester structure in the main chain, a polyimide precursor, and a phenol group-containing polyimide, and a naphthoquinonediazide compound A thing, (I) The following steps (a), (b), and (c): (A) The alkali-soluble polymer is dissolved in ⁇ -butyrolactone at a concentration of 35% by mass of resin solids to prepare an alkali-soluble polymer solution; (B) A film when the solution of the alkali-soluble polymer prepared in (a) above is applied on a 6-inch silicon wafer, pre-baked at 125 ° C.
  • alkali-soluble polymer selected from the group consisting of a polybenzoxazole precursor having a (thio) ester structure in the main chain, a polyimide precursor, and a phenol group-containing polyimide, and a
  • a film having a thickness of 10 ⁇ m ⁇ 0.2 ⁇ m is formed; and (c) a film thickness obtained by measuring the film after pre-baking with an arbitrary refractive index n f1 using a non-contact film thickness measuring instrument.
  • the refractive index (n r1 ) of the alkali-soluble polymer obtained by sequentially performing the steps is from 1.570 to 1.650, (Ii) The following (a ′), (b ′), and (c ′): (A ′) 100 parts by mass of the alkali-soluble polymer is dissolved in ⁇ -butyrolactone at a concentration of 35% by mass of the resin solid content, and further 15 parts by mass of the naphthoquinonediazide compound is dissolved to obtain a solution of the photosensitive resin composition.
  • (B ′) The photosensitive resin composition solution prepared in (a ′) above is applied onto a 6-inch silicon wafer, pre-baked at 125 ° C. for 180 seconds, and measured using a contact-type film thickness meter. A film having a thickness of 10 ⁇ m ⁇ 0.2 ⁇ m is formed; and (c ′) obtained by measuring the pre-baked film at an arbitrary refractive index n f2 using a non-contact film thickness measuring instrument
  • the refractive index (n r2 ) of the photosensitive resin composition obtained by sequentially performing the above and the refractive index (n r1 ) of the alkali-soluble polymer are as
  • a photosensitive resin composition having a high development residual film ratio and high sensitivity, and high elongation and high storage stability is obtained.
  • the mechanism is not clear, but the inventor presumes as follows.
  • an alkali-soluble polymer having a (thio) ester structure in the main chain the hydrophobicity of the (thio) ester group-containing structure is exhibited and an environment in which the alkali developer itself is difficult to penetrate into the composition.
  • An ester structure is more preferable.
  • the refractive index (n r ) of the alkali-soluble polymer is 1.570-1.650, indicating that the naphthoquinonediazide compound is easily intercalated as an intermolecular distance between the alkali-soluble polymers.
  • the more preferable range is 1.570-1.630 (the lower the value, the wider the intermolecular distance).
  • the refractive index of the photosensitive resin composition depends on the proportion of the naphthoquinonediazide compound in the photosensitive resin composition, but becomes saturated after a certain level.
  • the refractive index in the saturated state can be measured by setting the refractive index measurement condition of the photosensitive resin composition to 15 parts by mass of the naphthoquinone diazide compound with respect to 100 parts by mass of the alkali-soluble polymer.
  • the refractive index (n r2 ) of the photosensitive resin composition is higher than the refractive index (n r1 ) of the alkali-soluble polymer. I guess that it shows that.
  • ⁇ 1-refractive index of alkali-soluble polymer (n r1 ) / refractive index of photosensitive resin composition (n r2 ) ⁇ ⁇ 100 1.0 to 3.0 (%)
  • the mechanism works effectively, and a photosensitive resin composition having the above effects is obtained.
  • This range is more preferably 1.5% to 3.0%.
  • the refractive index of an alkali-soluble polymer or a photosensitive resin composition it is dissolved using ⁇ -butyrolactone, but if it is not dissolved in ⁇ -butyrolactone, an arbitrary solvent in which the alkali-soluble polymer is dissolved is used. And may be diluted.
  • the contact-type film thickness measuring apparatus include P-15 manufactured by KLA TENCOR, and examples of the non-contact type film thickness measuring apparatus include Lambda Ace manufactured by Dainippon Screen Mfg.
  • a cured relief pattern can be produced by the following method using the photosensitive resin composition according to the present invention. The following steps: (1) A step of forming a photosensitive resin layer obtained by applying a photosensitive resin composition or a solution of the photosensitive resin composition on a substrate, (2) exposure step; (3) developing step, (4) a step of heat-treating the obtained relief pattern; A method for producing a cured relief pattern.
  • Step of forming a photosensitive resin layer made of a photosensitive resin composition on a substrate The photosensitive resin composition or a solution thereof is applied to a substrate such as a silicon wafer, a ceramic substrate, or an aluminum substrate by spin coating using a spinner or a coater such as a die coater or a roll coater. This is dried by applying heat at 50 to 140 ° C., preferably 100 to 140 ° C., using an oven or a hot plate to remove the organic solvent (hereinafter also referred to as “soft baking” or “pre-baking”).
  • Step of exposing with actinic radiation through a mask or direct exposure with light, electron beam or ion beam Step of exposing with actinic radiation through a mask or direct exposure with light, electron beam or ion beam
  • the photosensitive resin layer is exposed by actinic radiation using a contact aligner or a stepper through a mask, or is exposed by direct irradiation with a light beam, an electron beam or an ion beam.
  • actinic rays g-line, h-line, i-line, and KrF laser can be used.
  • the step of developing by eluting or removing the exposed portion with a developer (third step)
  • the exposed portion is removed with a developer
  • the unexposed portion is dissolved and removed. Get a pattern.
  • a developing method methods such as spray, paddle, dip, and ultrasonic can be used. Distilled water, deionized water, or the like can be used as the rinse liquid.
  • the developer used for developing the film formed of the photosensitive resin composition dissolves and removes the hydroxypolyamide resin (A) and needs to be an alkaline aqueous solution in which an alkali compound is dissolved.
  • the alkali compound dissolved in the developer may be either an inorganic alkali compound or an organic alkali compound.
  • inorganic alkali compounds include lithium hydroxide, sodium hydroxide, potassium hydroxide, diammonium hydrogen phosphate, dipotassium hydrogen phosphate, disodium hydrogen phosphate, lithium silicate, sodium silicate, potassium silicate, Examples include lithium carbonate, sodium carbonate, potassium carbonate, lithium borate, sodium borate, potassium borate, and ammonia.
  • organic alkali compound examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, trimethylhydroxyethylammonium hydroxide, methylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, n-propylamine, di- Examples thereof include n-propylamine, isopropylamine, diisopropylamine, methyldiethylamine, dimethylethanolamine, ethanolamine, and triethanolamine.
  • a water-soluble organic solvent such as methanol, ethanol, propanol, or ethylene glycol
  • a surfactant such as methanol, ethanol, propanol, or ethylene glycol
  • a storage stabilizer such as a surfactant, a storage stabilizer, a resin dissolution inhibitor, or the like
  • Step of heating the obtained relief pattern (fourth step) Finally, the obtained relief pattern is cured to form a heat-resistant cured relief pattern made of a resin having a polybenzoxazole structure.
  • a heating device an oven furnace, a hot plate, a vertical furnace, a belt conveyor furnace, a pressure oven, or the like can be used.
  • a heating method heating by hot air, infrared rays, electromagnetic induction, or the like is recommended.
  • the temperature is preferably 200 to 450 ° C, more preferably 250 to 400 ° C.
  • the heating time is preferably 15 minutes to 8 hours, more preferably 1 hour to 4 hours.
  • the atmosphere is preferably an inert gas such as nitrogen or argon.
  • a semiconductor device manufactured using the photosensitive resin composition of the present invention is combined with a known method for manufacturing a semiconductor device, so that a surface protective film, an interlayer insulating film, a rewiring insulating film, a flip chip device protective film, As a protective film of a device having a bump structure, it can be produced as a film having a cured relief pattern made of a photosensitive resin composition.
  • Examples of semiconductor device applications include those having a cured film provided on top of a semiconductor element, wherein the cured film is a cured relief pattern comprising a cured film of the above-described photosensitive resin composition. .
  • the cured film examples include a passivation film on a semiconductor element, a protective film such as a buffer coat film formed by forming a cured film of the above-described photosensitive resin composition on the passivation film, and a circuit formed on the semiconductor element.
  • a protective film such as a buffer coat film formed by forming a cured film of the above-described photosensitive resin composition on the passivation film, and a circuit formed on the semiconductor element.
  • examples thereof include an insulating film such as an interlayer insulating film formed by forming a cured film of the positive photosensitive resin composition described above, an ⁇ -ray blocking film, a planarizing film, a protrusion (resin post), a partition wall, and the like.
  • the photosensitive resin composition of the present invention is also useful for applications such as interlayer insulation for multilayer circuits, cover coats for flexible copper-clad plates, solder resist films, liquid crystal alignment films for display devices, and light emitting elements. .
  • the display device includes a display element and a cured film provided on the upper part of the display element, and the cured film is made of the above-described photosensitive resin composition.
  • a hardening relief pattern is mentioned.
  • the partition for element cathodes, etc. can be mentioned.
  • the use method is based on forming the photosensitive resin composition layer patterned on the substrate on which the display element and the color filter are formed according to the semiconductor device application by the above method. High transparency is required for display device applications, especially for insulating films and flattening films. By introducing a post-exposure step before curing of the photosensitive resin composition layer, excellent transparency is achieved. A resin layer can be obtained, which is more preferable in practical use.
  • Reference Example 1 bis (carboxy) tricyclo [5,2,1,0 2,6] decane] Teflon was attached (registered trademark) of anchor-type agitator, (manufactured by Tokyo Kasei Kogyo Co., Ltd.) to a glass separable three-necked flask, tricyclo [5,2,1,0 2,6] decanedimethanol 71.
  • reaction solution After the reaction, the reaction solution is cooled to 12 ° C., an aqueous solution in which 75 g of sodium sulfite is dissolved in 300 mL of ion-exchanged water is added dropwise to the reaction solution, the excess sodium chlorite is deactivated, and then with 500 mL of ethyl acetate. Washed. Thereafter, 115 mL of 10% hydrochloric acid was added dropwise to adjust the pH of the reaction solution to 3 to 4, and the precipitate was collected by decantation. This precipitate was dissolved in 200 mL of tetrahydrofuran.
  • the aqueous layer was extracted twice with 500 mL of ethyl acetate and then washed with brine, and the precipitate was dissolved in a tetrahydrofuran solution. These tetrahydrofuran solutions were mixed and dried over anhydrous sodium sulfate. The solution concentrated in an evaporator, followed by drying, to obtain a bis (carboxy) tricyclo [5,2,1,0 2,6] white crystalline product with decane 58.4 g (71.1% yield).
  • Reference Example 2 Bis (chlorocarbonyl) tricyclo [5,2,1,0 2,6] decane] 62.5 g (278 mmol) of bis (carboxy) tricyclo [5,2,1,0 2,6 ] decane obtained in Reference Example 1, 97 mL (1.33 mol) of thionyl chloride, and 0.4 mL (5.0 mmol) of pyridine. The reaction vessel was charged and stirred at 25-50 ° C. for 18 hours for reaction.
  • This reaction solution was dropped as it was into 1 L of ion exchange water with stirring, and the precipitate was separated by filtration, and then 500 ml of THF was added thereto and dissolved with stirring. ) The remaining pyridine was removed through a glass column packed with 100 g. Subsequently, this solution was dropped into 3 L of ion exchange water under high-speed stirring to precipitate a product, which was filtered off and then vacuum-dried.
  • the product is imidized, it not characteristic absorption of amide groups in the vicinity of 1540 cm -1 and 1650 cm -1 appear characteristic absorption of an imide group 1394Cm -1 and 1774 cm -1 in the IR spectrum is present and, NMR The spectrum was confirmed by the absence of amide and carboxylic acid proton peaks.
  • 65.9 g (0.1 mol) of the product and 53.7 g (0.2 mol) of 1,2-naphthoquinonediazide-4-sulfonyl chloride were added to 560 g of acetone and dissolved by stirring at 20 ° C.
  • a solution prepared by diluting 21.2 g (0.21 mol) of triethylamine with 106.2 g of acetone was added dropwise thereto at a constant rate over 30 minutes. At this time, the temperature of the reaction solution was controlled in the range of 20 to 30 ° C. using an ice water bath or the like. After completion of the dropwise addition, the mixture was allowed to stir at 20 ° C. for another 30 minutes, and then 5.6 g of a 36 wt% hydrochloric acid aqueous solution was added at once. did.
  • the obtained filtrate was added dropwise to 5 L of a 0.5 wt% aqueous hydrochloric acid solution over 1 hour with stirring to precipitate the desired product, which was collected by suction filtration.
  • the obtained cake-like recovered material was dispersed again in 5 L of ion exchange water, stirred, washed, collected by filtration, and this water washing operation was repeated three times.
  • the finally obtained cake-like material was vacuum-dried at 40 ° C. for 24 hours to obtain a photosensitive diazoquinone compound (Q-1).
  • the reaction solution was immersed in a container containing dry ice (hereinafter also referred to as “ice bath”) and cooled to ⁇ 15 ° C. using a dropping funnel.
  • the reaction system was maintained at ⁇ 15 to 0 ° C. and took 1 hour, and was dropped into the reaction vessel. After completion of dropping, the ice bath was removed and the mixture was stirred at room temperature for 1 hour. Further, 6.33 g (0.08 mol) of pyridine was added.
  • reaction solution was returned to room temperature, 19.7 g (0.12 mol) of 5-norbornene-2,3-dicarboxylic acid anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 9.49 g (0.12 mol) of pyridine were added.
  • the reaction solution was immersed in a hot water bath at 0 ° C. for 24 hours.
  • Ethanol was added to the reaction solution to precipitate a polymer, and then recovered and dissolved in 697 g of GBL. Subsequently, ion exchange was performed with 62.1 g of a cation exchange resin (manufactured by Organo, Amberlyst A21) and 59.6 g of an anion exchange resin (manufactured by Organo, Amberlyst 15). This solution was dropped into 12 L of ion-exchanged water under high-speed stirring to disperse and precipitate the polymer, recovered, washed with water as appropriate, and dried under vacuum to obtain a hydroxypolyamide resin (P-1) powder.
  • a cation exchange resin manufactured by Organo, Amberlyst A21
  • anion exchange resin manufactured by Organo, Amberlyst 15
  • the weight average molecular weight (Mw) by GPC (high performance liquid chromatography) of the hydroxypolyamide resin synthesized in this way is a single sharp curve of 26,600 in terms of polystyrene, and is a single composition. It was confirmed.
  • the analysis conditions for GPC are described below. Column: Trade name Shodex 805M / 806M series manufactured by Showa Denko Co., Ltd. Separation: N-methylpyrrolidone 40 ° C Flow rate: 1.0 mL / min Detector: Trade name RI-930, manufactured by JASCO Corporation
  • FIG. 1 shows the 13 C-NMR result of the resulting hydroxypolyamide resin P-1. Carbon peaks derived from the biphenyl skeleton were observed in the vicinity of 138 ppm and 150 ppm, and further, a peak derived from the ester group was observed in the vicinity of 174 to 176 ppm.
  • BAP (Hereinafter also referred to as “BAP”) 36.2 g (0.14 mol), 14.8 g (0.19 mol) of pyridine, 217 g of GBL and 72.5 g of DMAc were mixed and stirred at room temperature to dissolve, and the reaction vessel Was dropped into a solution cooled to ⁇ 15 ° C. in an ice bath using a dropping funnel. The reaction system was maintained at ⁇ 15 to 0 ° C. and took 1 hour, and was dropped into the reaction vessel. After completion of the dropwise addition, the ice bath was removed, and the mixture was stirred for 1 hour while maintaining at 0 to 10 ° C., and 4.74 g (0.06 mol) of pyridine was further added.
  • reaction solution was returned to room temperature, 16.4 g (0.10 mol) of 5-norbornene-2,3-dicarboxylic acid anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 7.91 g (0.10 mol) of pyridine were added, and 50 The reaction solution was immersed in a hot water bath at 0 ° C. for 24 hours.
  • Ethanol was added to the reaction solution to precipitate a polymer, and then recovered and dissolved in 646 g of GBL. Subsequently, ion exchange was performed with 62.1 g of a cation exchange resin (manufactured by Organo, Amberlyst A21) and 59.6 g of an anion exchange resin (manufactured by Organo, Amberlyst 15). This solution was dropped into 12 L of ion-exchanged water under high-speed stirring, and the polymer was dispersed and precipitated, recovered, washed with water as appropriate, dehydrated and then vacuum-dried to obtain a hydroxypolyamide resin (P-2) powder.
  • a cation exchange resin manufactured by Organo, Amberlyst A21
  • anion exchange resin manufactured by Organo, Amberlyst 15
  • the weight average molecular weight (Mw) by GPC of the hydroxypolyamide resin synthesized in this way was a single sharp curve of 12,700 in terms of polystyrene, and it was confirmed that it was a single composition.
  • the analysis conditions for GPC are described below.
  • Detector Trade name RI-930, manufactured by JASCO Corporation
  • FIG. 2 shows the 13 C-NMR result of the obtained hydroxypolyamide resin P-2. Carbon peaks derived from the biphenyl skeleton were observed in the vicinity of 136 ppm and 146 ppm, and peaks derived from the ester group were observed in the vicinity of 174 to 176 ppm.
  • the time required for the dropping was 20 minutes, and the temperature of the reaction solution was 40 ° C. at the maximum.
  • the reaction solution stirred for 1 hour was separately mixed with 6FAP (58.6 g, 0.16 mol) and pyridine (16.9 g) in a 2 L separable flask equipped with a Teflon (registered trademark) vertical stirrer. .21 mol), 350 g of GBL and 117 g of DMAc are mixed and stirred at room temperature to dissolve, and the reaction vessel is immersed in a vessel in which dry ice is added to methanol (hereinafter also referred to as “ice bath”) and cooled to ⁇ 15 ° C.
  • ice bath dry ice is added to methanol
  • the reaction system was maintained at ⁇ 15 to 0 ° C. and took 1 hour, and was dropped into the reaction vessel. After completion of the dropwise addition, the ice bath was removed, the mixture was stirred at room temperature for 1 hour, and 6.33 g (0.08 mol) of pyridine was further added.
  • Ethanol was added to the reaction solution to precipitate a polymer, and then recovered and dissolved in 697 g of GBL. Subsequently, ion exchange was performed with 62.1 g of a cation exchange resin (manufactured by Organo, Amberlyst A21) and 59.6 g of an anion exchange resin (manufactured by Organo, Amberlyst 15). This solution was dropped into 12 L of ion-exchanged water under high-speed stirring to disperse and precipitate the polymer, recovered, washed with water, dehydrated, and vacuum dried to obtain a hydroxypolyamide resin (P-3) powder.
  • a cation exchange resin manufactured by Organo, Amberlyst A21
  • anion exchange resin manufactured by Organo, Amberlyst 15
  • the weight average molecular weight (Mw) by GPC (high performance liquid chromatography) of the hydroxypolyamide resin synthesized in this way is a single sharp curve of 27,000 in terms of polystyrene, and is a single composition. confirmed.
  • the analysis conditions for GPC are described below.
  • Detector Trade name RI-930, manufactured by JASCO Corporation
  • FIG. 3 shows the 13 C-NMR result of the resulting hydroxypolyamide resin P-3. Peaks derived from the methylene group at the ⁇ -position of the oxygen atom of the ester group were observed near 66 ppm and 69 ppm, and peaks derived from the ester group were observed near 174 to 176 ppm.
  • reaction solution stirred for 1 hour was separately mixed with 6FAP (58.6 g, 0.16 mol) and pyridine (16.9 g) in a 2 L separable flask equipped with a Teflon (registered trademark) vertical stirrer. .21 mol), 350 g of GBL and 117 g of DMAc were added, mixed and stirred at room temperature to dissolve, and the reaction vessel was immersed in an ice bath and cooled to ⁇ 15 ° C. using a dropping funnel. The reaction system was maintained at ⁇ 15 to 0 ° C.
  • Ethanol was added to the reaction solution to precipitate a polymer, and then recovered and dissolved in 697 g of GBL. Subsequently, ion exchange was performed with 62.1 g of a cation exchange resin (manufactured by Organo, Amberlyst A21) and 59.6 g of an anion exchange resin (manufactured by Organo, Amberlyst 15). This solution was dropped into 12 L of ion-exchanged water under high-speed stirring to disperse and precipitate the polymer, recovered, washed with water and dehydrated appropriately, and then vacuum-dried to obtain a hydroxypolyamide resin (P-4) powder.
  • a cation exchange resin manufactured by Organo, Amberlyst A21
  • anion exchange resin manufactured by Organo, Amberlyst 15
  • the weight average molecular weight (Mw) by GPC of the hydroxypolyamide resin synthesized in this way is a single sharp curve of 27,400 in terms of polystyrene, and was confirmed to be a single composition.
  • the analysis conditions for GPC are described below. Column: Trade name Shodex 805M / 806M series manufactured by Showa Denko Co., Ltd. Separation: N-methylpyrrolidone 40 ° C Flow rate: 1.0 mL / min Detector: Trade name RI-930, manufactured by JASCO Corporation
  • FIG. 4 shows the 13 C-NMR result of the resulting hydroxypolyamide resin P-4. A peak derived from an ester group is observed at 170 ppm and in the vicinity thereof, and a peak derived from a thioester group is further observed at around 200 ppm.
  • reaction solution was returned to room temperature, 21.9 g (0.13 mol) of 5-norbornene-2,3-dicarboxylic acid anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 10.5 g (0.13 mol) of pyridine were added, and 50 The reaction solution was immersed in a hot water bath at 0 ° C. for 24 hours.
  • Ethanol was added to the reaction solution to precipitate a polymer, and then recovered and dissolved in 626 g of GBL. Subsequently, ion exchange was performed with 62.1 g of a cation exchange resin (manufactured by Organo, Amberlyst A21) and 59.6 g of an anion exchange resin (manufactured by Organo, Amberlyst 15). This solution was dropped into 12 L of ion-exchanged water under high-speed stirring to disperse and precipitate the polymer, recovered, washed with water, dehydrated, and then vacuum-dried to obtain a hydroxypolyamide resin (P-5) powder.
  • a cation exchange resin manufactured by Organo, Amberlyst A21
  • anion exchange resin manufactured by Organo, Amberlyst 15
  • the weight average molecular weight (Mw) of the hydroxypolyamide resin synthesized in this way was a single sharp curve of 13,200 in terms of polystyrene, and it was confirmed that it was a single composition.
  • the analysis conditions for GPC are described below. Column: Trade name Shodex 805M / 806M series manufactured by Showa Denko Co., Ltd. Separation: N-methylpyrrolidone 40 ° C Flow rate: 1.0 mL / min Detector: Trade name RI-930, manufactured by JASCO Corporation
  • FIG. 5 shows the 13 C-NMR result of the resulting hydroxypolyamide resin P-5. A peak derived from the methylene group at the ⁇ -position of the oxygen atom of the ester group is observed around 65-70 ppm, and a peak derived from the ester group is observed around 165 ppm.
  • the weight average molecular weight (Mw) by GPC of the hydroxypolyamide resin thus synthesized was a single sharp curve of 14,000 in terms of polystyrene, and it was confirmed that a single composition was obtained.
  • the analysis conditions for GPC are described below. Column: Trade name Shodex 805M / 806M series manufactured by Showa Denko Co., Ltd. Separation: N-methylpyrrolidone 40 ° C Flow rate: 1.0 mL / min Detector: Trade name RI-930, manufactured by JASCO Corporation
  • Ethanol was added to the reaction solution to precipitate a polymer, which was collected and dissolved in 696 g of GBL. Subsequently, ion exchange was performed with 62.1 g of a cation exchange resin (manufactured by Organo, Amberlyst A21) and 59.6 g of an anion exchange resin (manufactured by Organo, Amberlyst 15). This solution was dropped into 12 L of ion-exchanged water under high-speed stirring, and the polymer was dispersed and precipitated, collected, and then appropriately washed with water and dehydrated, followed by vacuum drying to obtain a PBO precursor as a hydroxypolyamide resin (P-7). .
  • a cation exchange resin manufactured by Organo, Amberlyst A21
  • anion exchange resin manufactured by Organo, Amberlyst 15
  • the weight average molecular weight (Mw) by GPC of the hydroxy polyamide resin thus synthesized was a single sharp curve of 36,800 in terms of polystyrene, and it was confirmed that a single composition was obtained.
  • the analysis conditions for GPC are described below. Column: Trade name Shodex 805M / 806M series manufactured by Showa Denko Co., Ltd. Separation: N-methylpyrrolidone 40 ° C Flow rate: 1.0 ml / min Detector: Trade name RI-930, manufactured by JASCO Corporation
  • Ethanol was added to the reaction solution to precipitate a polymer, which was collected and dissolved in 671 g of GBL. Subsequently, ion exchange was performed with 62.1 g of a cation exchange resin (manufactured by Organo, Amberlyst A21) and 59.6 g of an anion exchange resin (manufactured by Organo, Amberlyst 15). This solution was dropped into 12 L of ion-exchanged water under high-speed stirring, and the polymer was dispersed and precipitated, collected, and appropriately washed with water and dehydrated, followed by vacuum drying to obtain a PBO precursor as hydroxypolyamide resin P-8.
  • a cation exchange resin manufactured by Organo, Amberlyst A21
  • anion exchange resin manufactured by Organo, Amberlyst 15
  • the weight average molecular weight (Mw) by GPC of the hydroxy polyamide resin thus synthesized was a single sharp curve of 36,800 in terms of polystyrene, and it was confirmed that a single composition was obtained.
  • the analysis conditions for GPC are described below. Column: Trade name Shodex 805M / 806M series manufactured by Showa Denko Co., Ltd. Separation: N-methylpyrrolidone 40 ° C Flow rate: 1.0 ml / min Detector: Trade name RI-930, manufactured by JASCO Corporation
  • ⁇ Evaluation of photosensitive resin composition> Patterning characteristics evaluation (sensitivity, residual film ratio) Preparation of prebaked film and measurement of film thickness
  • the positive photosensitive resin compositions of Examples 1 to 6 and Comparative Examples 1 to 4 were spun onto a 6-inch silicon wafer with a spin coater (clean track Mark 8 manufactured by Tokyo Electron Ltd.). This was applied and pre-baked on a hot plate at 125 ° C. for 180 seconds to obtain a film for evaluation.
  • the initial film thickness of each composition was adjusted to 7 ⁇ m as the cured resin film thickness when cured at 320 ° C. for 1 hour.
  • the film thickness was measured with a film thickness measuring device (Lambda Ace manufactured by Dainippon Screen Mfg. Co., Ltd.).
  • stepwise change the exposure amount using a stepper (Nikon Corporation NSR2005i8A) having an exposure wavelength of i-line (365 nm) through a test pattern with the reticle to 250mJ / cm 2 ⁇ 800mJ / cm 2 And exposed.
  • a stepper Nikon Corporation NSR2005i8A
  • development Using an alkali developer AZ300MIF developer manufactured by AZ Electronic Materials Co., Ltd., 2.38 mass% tetramethylammonium hydroxide aqueous solution
  • the film thickness after development is 85% of the initial film thickness at 23 ° C. ( The development time was adjusted so that the conventional development residual film ratio) or 97% was developed, followed by rinsing with pure water to form a positive relief pattern.
  • This cured film was cut to a width of 3 mm, immersed in a dilute hydrofluoric acid aqueous solution overnight to peel off the film piece, and dried, using a TMA apparatus (TMA-50, manufactured by Shimadzu Corporation) with a nitrogen flow rate of 50 ml /
  • TMA-50 manufactured by Shimadzu Corporation
  • the glass transition temperature (Tg) was measured under the conditions of min and the heating rate of 10 ° C./min.
  • TMA-50 manufactured by Shimadzu Corporation
  • This cured film was cut to a width of 3 mm, immersed in a dilute hydrofluoric acid solution overnight, the film piece was peeled off, and the dried piece was cut to a length of 50 mm, and then TENSILON (Orientec UTM- II-20) was used to measure the elastic modulus and elongation of the cured film at a test speed of 40 mm / min and an initial load of 0.5 fs. The results are shown in Table 2 below.
  • Viscosity change rate at room temperature for 4 weeks Samples obtained by allowing the positive photosensitive resin compositions of Examples 1 to 6 and Comparative Examples 1 to 4 to stand at room temperature for 3 days were used as prepared samples, and then at room temperature for 4 weeks. The left sample was used as a sample after 4 weeks, and the viscosity was measured at 23 ° C. using a temperature-controlled viscometer (TV-22 manufactured by Toki Sangyo Co., Ltd.). The viscosity change rate at room temperature for 4 weeks was determined by [(viscosity of sample after 4 weeks) ⁇ (viscosity of sample immediately after adjustment)] / (viscosity of sample immediately after adjustment) ⁇ 100. The results are shown in Table 2 below.
  • the positive photosensitive resin compositions obtained in Examples 1 to 6 are the same as the positive photosensitive resin compositions obtained in Comparative Examples 1 to 4.
  • the hydroxy polyamide resin (A) having a similar skeleton means that in the examples, if the acid chloride constituting the carboxylic acid unit for forming the amide structure in the comparative example is composed of an aromatic group.
  • the acid chloride is also composed of an aromatic group, which means that it is similar in this respect.
  • the skeletons of the hydroxypolyamide resins (A) in Examples 1 to 4 are similar to those in Comparative Examples 3 and 4, and the skeletons of the hydroxypolyamide resins (A) in Examples 5 and 6 are comparative. Similar to those of Example 1 and Comparative Example 2.
  • Examples 1 to 6, Examples 7 to 20 As the positive photosensitive resin compositions of Examples 1 to 6 and Examples 7 to 20, the hydroxypolyamide resins (A) (P— 1 to P-5) The naphthoquinonediazide compound (Q-2), which is the photoacid generator (B) obtained in Reference Example 4 in the amount shown in Table 3 below, with respect to 100 parts by mass, and the above reference 15 parts by mass of each of the organosilicon compounds S-1 and S-2 obtained in Example 5 and Reference Example 6 above, and the following compounds (C-1 to C-6) that promote solubility in alkaline aqueous solutions Examples 7 to 20 only] were dissolved in GBL to prepare an alkali-soluble polymer solution having a resin concentration of 35% by mass, and filtered through a 1 ⁇ m filter.
  • Q-2 which is the photoacid generator (B) obtained in Reference Example 4 in the amount shown in Table 3 below, with respect to 100 parts by mass, and the above reference 15 parts by mass of each of the organosilicon compounds S-1 and S-2
  • C-1 4-hexyl resorcinol (C-2) 2,2'-dihydroxydiphenylmethane (C-3) EP4000B (Asahi Organic Materials Corporation: trade name)
  • EP4080G (Asahi Organic Materials Industry: trade name)
  • C-5) m-toluic acid (C-6) m-tolylacetic acid (C-7) ⁇ -methoxyphenylacetic acid (C-8) benzenesulfonic acid
  • ⁇ Evaluation of photosensitive resin composition> Patterning characteristic evaluation (sensitivity, development time) Preparation of prebaked film and measurement of film thickness
  • the positive photosensitive resin compositions of Examples 1 to 6 and Examples 7 to 20 were spun onto a 6 inch silicon wafer with a spin coater (clean track Mark 8 manufactured by Tokyo Electron). This was applied and pre-baked on a hot plate at 125 ° C. for 180 seconds to obtain a film for evaluation.
  • the initial film thickness of each composition was adjusted to 7 ⁇ m as the cured resin film thickness when cured at 320 ° C. for 1 hour.
  • the film thickness was measured with a film thickness measuring device (Lambda Ace manufactured by Dainippon Screen Mfg. Co., Ltd.).
  • stepwise change the exposure amount using a stepper (Nikon Corporation NSR2005i8A) having an exposure wavelength of i-line (365 nm) through a test pattern with the reticle to 250mJ / cm 2 ⁇ 800mJ / cm 2 And exposed.
  • Development This was developed using an alkali developer (AZ300MIF developer manufactured by AZ Electronic Materials Co., Ltd., 2.38 mass% tetramethylammonium hydroxide aqueous solution) at 23 ° C. so that the film thickness after development was 97%. Development was carried out by adjusting the time, and rinsing was performed with pure water to form a positive relief pattern.
  • the positive photosensitive resin compositions obtained in Examples 7 to 20 were obtained in Examples 1 to 6 by adding the compound (C) that promotes solubility in an alkaline aqueous solution. Compared with the obtained positive photosensitive resin composition, all developed the development time short and achieved high sensitivity under the conditions of the same development residual film ratio.
  • Example 8 14, 17-19, and 21-34 As the positive photosensitive resin compositions of Examples 8, 14, 17 to 19, and 21 to 34, the hydroxypolyamide resins (A) (P-1 to P-5) 100 obtained in Reference Examples 7 to 11 were used.
  • ⁇ Evaluation of photosensitive resin composition> Patterning characteristic evaluation (sensitivity) Preparation of pre-baked film and measurement of film thickness
  • the positive photosensitive resin compositions of Examples 8, 14, 17 to 19, and 21 to 34 were 6 inches on a spin coater (clean track Mark 8 manufactured by Tokyo Electron Ltd.).
  • a silicon wafer was spin coated and pre-baked on a hot plate at 125 ° C. for 180 seconds to obtain an evaluation film (only Example 25 was pre-baked on a hot plate at 105 ° C. for 180 seconds to obtain an evaluation film).
  • the initial film thickness of each composition was adjusted to 7 ⁇ m as the cured resin film thickness when cured at 320 ° C. for 1 hour.
  • the film thickness was measured with a film thickness measuring device (Lambda Ace manufactured by Dainippon Screen Mfg. Co., Ltd.). - exposure to this coating film, stepwise change the exposure amount using a stepper (Nikon Corporation NSR2005i8A) having an exposure wavelength of i-line (365 nm) through a test pattern with the reticle to 250mJ / cm 2 ⁇ 800mJ / cm 2 And exposed. Development This was developed using an alkali developer (AZ300MIF developer manufactured by AZ Electronic Materials Co., Ltd., 2.38 mass% tetramethylammonium hydroxide aqueous solution) at 23 ° C. so that the film thickness after development was 97%. Development was carried out by adjusting the time, and rinsing was performed with pure water to form a positive relief pattern.
  • a film thickness measuring device Likon Corporation NSR2005i8A
  • the positive photosensitive resin compositions obtained in Examples 21 to 34 were compared with the positive photosensitive resin compositions obtained in Examples 8, 14, and 17 to 19.
  • the compound (D) component that causes a crosslinking reaction by heat By adding the compound (D) component that causes a crosslinking reaction by heat, the residual film rate during curing was improved, and the sensitivity was further improved.
  • ⁇ Evaluation of photosensitive resin composition> (1) Evaluation of patterning characteristics / Prebaked film preparation and film thickness measurement
  • the positive photosensitive resin compositions of Examples 22, 28, 31, and 33 to 42 were used with a spin coater (clean track Mark 8 manufactured by Tokyo Electron Ltd.).
  • the film for evaluation was obtained by spin-coating onto a 6-inch silicon wafer and pre-baking on a hot plate at 125 ° C. for 180 seconds.
  • the initial film thickness of each composition was adjusted to 7 ⁇ m as the cured resin film thickness when cured at 320 ° C. for 1 hour.
  • the film thickness was measured with a film thickness measuring device (Lambda Ace manufactured by Dainippon Screen Mfg. Co., Ltd.).
  • stepwise change the exposure amount using a stepper (Nikon Corporation NSR2005i8A) having an exposure wavelength of i-line (365 nm) through a test pattern with the reticle to 250mJ / cm 2 ⁇ 800mJ / cm 2 And exposed.
  • Development This was developed using an alkali developer (AZ300MIF developer manufactured by AZ Electronic Materials Co., Ltd., 2.38 mass% tetramethylammonium hydroxide aqueous solution) at 23 ° C. so that the film thickness after development was 97%. Development was carried out by adjusting the time, and rinsing was performed with pure water to form a positive relief pattern.
  • the positive photosensitive resin compositions obtained in Examples 35 to 42 were the same as the positive photosensitive resin compositions obtained in Examples 22, 28, 31, 33 and 34.
  • the adhesion after curing under the above conditions was further improved by adding the component (E) that generates an acid by heat.
  • the photosensitive resin composition of the present invention includes a surface protective film for semiconductor devices and light emitting devices, an interlayer insulating film, an insulating film for rewiring, a protective film for flip chip devices, a protective film for devices having a bump structure, and a multilayer circuit. It can be suitably used as an interlayer insulating film, a cover coat of a flexible copper-clad plate, a solder resist film, a liquid crystal alignment film and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Polyamides (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 現像残膜率が高くかつ高感度であり、さらに高い伸度及び高い保存安定性を有する感光性樹脂組成物を提供する。本発明に係る感光性樹脂組成物は、下記一般式(1): {式中、Z1、Z2及びZ3は、それぞれ独立に、2価の有機基であり、Z1、Z2及びZ3のうち少なくとも1つは、脂環式構造又は脂肪族構造を有し、そしてm1は、0又は1の整数である。}で表される構造及び下記一般式(2):{式中、Z1、Z2及びZ3は、それぞれ独立に、2価の有機基であり、Z1、Z2及びZ3のうち少なくとも1つは、脂環式構造又は脂肪族構造を有し、そしてm1は、0又は1の整数である。}で表される構造からなる群より選ばれる少なくとも一種の構造を有するヒドロキシポリアミド樹脂(A)、及び光酸発生剤(B)を含む。

Description

感光性樹脂組成物
 本発明は、半導体装置の表面保護膜、及び層間絶縁膜として使用される耐熱性樹脂の前駆体となる感光性樹脂組成物、該感光性樹脂組成物を用いた耐熱性を有する硬化レリーフパターンの製造方法、並びに該硬化レリーフパターンを有してなる半導体装置に関する。
 半導体装置の表面保護膜、及び層間絶縁膜には、優れた耐熱性、電気特性、及び機械特性などを併せ持つポリイミド樹脂が広く用いられている。このポリイミド樹脂は、今日、感光性ポリイミド前駆体組成物の形で提供されることが多い。
 ところで、この感光性ポリイミド前駆体組成物は、その現像工程においては、現像液としてN-メチル-2-ピロリドンなどの有機溶剤を用いる必要があり、近年の環境問題の高まりなどから、脱有機溶剤対策が求められてきている。これを受け、最近になって、フォトレジストと同様に、アルカリ性水溶液で現像可能な耐熱性感光性樹脂材料の提案が各種なされている。
 中でも、硬化後に耐熱性樹脂となるアルカリ性水溶液可溶性のヒドロキシポリアミド樹脂、例えばポリベンズオキサゾール(以下、「PBO」ともいう。)前駆体を、ナフトキノンジアジド化合物などの光酸発生剤と混合したPBO前駆体組成物を感光性樹脂組成物として用いる方法が、以下の特許文献1、2に開示されている。
 この感光性樹脂組成物の現像メカニズムは、未露光部のナフトキノンジアジド化合物及びPBO前駆体がアルカリ性水溶液への溶解速度が小さいのに対し、露光することにより該感光性ジアゾキノン化合物がインデンカルボン酸化合物に化学変化して露光部のアルカリ性水溶液への溶解速度が大きくなることを利用したものである。この露光部と未露光部の間の現像液に対する溶解速度の差を利用し、未露光部からなるレリーフパターンの作成が可能となる。
 上述のPBO前駆体組成物は、露光及びアルカリ性水溶液による現像でポジ型レリーフパターンの形成が可能である。さらに熱により、オキサゾール環が生成し、硬化後のPBO膜はポリイミド膜と同等の熱硬化膜特性を有するようになる。
 同様に、アルカリ現像が可能なポリアミド酸、及びポリアミド酸エステルとナフトキノンジアジド化合物からなる感光性樹脂組成物が、以下の特許文献3、4、5に開示されている。
 また、アルカリ現像が可能なフェノール性水酸基含有溶剤可溶性ポリイミド(以下、「可溶性PI」ともいう。)とナフトキノンジアジド化合物からなる感光性樹脂組成物が、以下の特許文献6に提案されている。
 更に、エステル結合を含有したPBO前駆体ポリマーとナフトキノンジアジド化合物からなる感光性樹脂組成物が、以下の特許文献7に提案されており、エステル結合を含有したPI前駆体ポリマーとナフトキノンジアジド化合物からなる感光性樹脂組成物が、特許文献8、9、10に提案されている。
特公平01-046862号公報 特開昭63-096162号公報 特開昭52-013315号公報 特開平02-181149号公報 特開2004-334089号公報 国際公開第07/029614号パンフレット 特開2007-171945号公報 特開2007-140319号公報 特開2007-314583号公報 特開2007-314614号公報
 前記特許文献1~10に記載される従来技術は、以下の問題点があるため改善の余地がある。
 従来のアルカリ性水溶液で現像可能な耐熱性感光性樹脂材料を用いた半導体素子の表面保護膜及び層間絶縁膜は、ポリマー骨格のi線(365nm)透過性に関して、感度が低いため、工業上の生産性を低下させてしまう。
 特許文献1~4、及び特許文献6に記載された発明においては、現像残膜率を80~85%程度と低くすることで、工業的な生産において実用可能な感度としているが、微細加工が進行している現在では、パターンとパターンの間隔が短くなってきており、現像残膜率を80~85%と低くした場合、開口した露光部に隣接する未露光部では、未露光部の溶解速度が小さいとはいえ現像時に膜の上部からだけでなく側面からも現像されるため、パターン形状が細くなり過ぎ、半導体装置の製造工程において、半導体パッケージの信頼性を低下させてしまう。
 特許文献5には、ポリイミド前駆体自体のアルカリ溶解性を非常に低くすることで、現像残膜率を高くする方法が提案されているが、その感度は低い。
 特許文献7には、エステル基を導入したポリアミド樹脂が提案されているが、樹脂中の2価の連結有機基の全てが芳香族構造を有するため、i線(365nm)透過性が低く、感度評価についても従来技術と同程度の値である。
 特許文献8、9、10にエステル基を導入したポリイミド前駆体樹脂が提案されている。
 特許文献8では、特許文献7と同様に、樹脂中の2価の連結有機基の全てが芳香族構造を有するため、i線(365nm)透過性が低く、感度が低い。
 特許文献9では、樹脂中の2価の連結有機基に脂環式構造を導入することで樹脂自体の透明性は高くなっており、更に特定の嵩高い構造とエステル基を用いることで、ポリイミド前駆体のアルカリ溶解性を制御しているが、感度評価におけるデータの開示はない。また、ポリイミド前駆体のカルボキシル基とジアゾナフトキノンとの相互作用は、ヒドロキシポリアミド樹脂のフェノール基とジアゾナフトキノンとの相互作用と比較した場合、pKaの違いから、アルカリ溶解抑止効果は低く、高透明性であれば高感度であるということには必ずしもならない。更に、ポリイミド前駆体はカルボキシル基が保護基で封止されていない場合、室温においてもイミド化が進行し易く、ワニスの保存安定性が悪くなるという問題もある。
 特許文献10では、特許文献7と同様に、樹脂中の2価の連結有機基の全てが芳香族構造を有するため、i線(365nm)透過性が低く、更に伸度が低い。伸度が低い場合、サーマルサイクル試験(TCT)などの昇温降温を繰り返す試験により、バッファー層に亀裂が生じる等の問題が生じ、信頼性を低下させてしまう。
 このように、従来技術の感光性樹脂組成物はいずれも、フォトレジストのように未露光部をほとんど溶解させずに(この現象を現像残膜率が高いと言い、本発明では現像残膜率95~100%を現像残膜率が高いと定義する)現像することは困難であり、組成を調整することで現像が可能となった場合であっても非常に高い露光量が必要となる(これは低感度であると言う)ため、感光性樹脂材料として、必要な熱機械特性や保存安定性を有し、現像残膜率が高く、かつ高感度な樹脂組成物は未だ提供されていない。
 かかる状況下、本発明が解決しようとする課題は、脂環式構造又は脂肪族構造とエステル結合の両方を含有するヒドロキシポリアミド樹脂を用いることで、現像残膜率が高くかつ高感度であり、さらに高い伸度及び高い保存安定性を有する感光性樹脂組成物、該組成物を用いた硬化レリーフパターンの製造方法、並びに該硬化レリーフパターンを有してなる半導体装置及び発光装置を提供することである。
 本発明者は、上記した従来技術の問題に鑑みて、鋭意検討し実験を重ねた結果、特定の構造を有するヒドロキシポリアミド樹脂とすることで、上記の課題を解決する重合体、及び感光性樹脂組成物が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
 [1]下記一般式(1):
Figure JPOXMLDOC01-appb-C000009
{式中、Z1、Z2及びZ3は、それぞれ独立に、2価の有機基であり、Z1、Z2及びZ3のうち少なくとも1つは、脂環式構造又は脂肪族構造を有し、そしてm1は、0又は1の整数である。}で表される構造及び下記一般式(2):
Figure JPOXMLDOC01-appb-C000010
{式中、Z1、Z2及びZ3は、それぞれ独立に、2価の有機基であり、Z1、Z2及びZ3のうち少なくとも1つは、脂環式構造又は脂肪族構造を有し、そしてm1は、0又は1の整数である。}で表される構造からなる群より選ばれる少なくとも一種の構造を有するヒドロキシポリアミド樹脂(A)、及び光酸発生剤(B)を含む感光性樹脂組成物。
 [2]前記ヒドロキシポリアミド樹脂(A)が、下記一般式(3):
Figure JPOXMLDOC01-appb-C000011
{式中、X1及び、Y1は少なくとも2個の炭素原子を有する2~4価の有機基であり、R1~R3は、それぞれ独立に、水素原子又は炭素原子数1~10の炭化水素基であり、m2は、1~1000の整数であり、n1は、1又は2の整数であり、n2~n4は、それぞれ独立に0~2の整数であり、そして式中のY1(OR1n2(COOR3n4で表される構造のうち少なくとも1つは、前記一般式(1)若しくは下記一般式(4):
Figure JPOXMLDOC01-appb-C000012
(式中、Y2は、少なくとも2個の炭素原子を有する2~4価の有機基であり、Z1は、2価の有機基であり、Y2及びZ1のうち少なくとも1つは、脂環式構造又は脂肪族構造を有し、R4、及びR5は、それぞれ独立に、水素原子又は炭素原子数1~10の炭化水素基であり、m3は、1~100の整数であり、そしてn5及びn6は、それぞれ独立に0~2の整数である。)又は前記一般式(2)若しくは下記一般式(5):
Figure JPOXMLDOC01-appb-C000013
(式中、Y2は、少なくとも2個の炭素原子を有する2~4価の有機基であり、Z1は、2価の有機基であり、Y2及びZ1のうち少なくとも1つは、脂環式構造又は脂肪族構造を有し、R4、及びR5は、それぞれ独立に、水素原子又は炭素原子数1~10の炭化水素基であり、m3は、1~100の整数であり、そしてn5及びn6は、それぞれ独立に0~2の整数である。)で表される構造である。}で表される構造を有する、前記[1]に記載の感光性樹脂組成物。
 [3]前記光酸発生剤(B)が、ナフトキノンジアジド化合物であり、該ナフトキノンジアジド化合物の含有量は、前記ヒドロキシポリアミド樹脂(A)100質量部に対して、1~50質量部であり、そして前記感光性樹脂組成物は、前記ヒドロキシポリアミド樹脂(A)100質量部に対して、アルカリ水溶液に対する溶解性を促進する化合物(C)1~100質量部をさらに含む、前記[1]又は[2]に記載の感光性樹脂組成物。
 [4]前記アルカリ水溶液に対する溶解性を促進する化合物(C)が、フェノール性水酸基、カルボキシル基、及びスルホニル基からなる群より選ばれる少なくとも1種の基を含有する化合物である、前記[1]~[3]のいずれかに記載の感光性樹脂組成物。
 [5]前記ヒドロキシポリアミド樹脂(A)100質量部に対して、熱により架橋反応を起こす化合物(D)1~50質量部をさらに含む、前記[1]~[4]のいずれかに記載の感光性樹脂組成物。
 [6]前記熱により架橋反応を起こす化合物(D)が、エポキシ化合物、オキセタン化合物、メラミン化合物、アルケニル化合物、下記一般式(6):
Figure JPOXMLDOC01-appb-C000014
{式中、R6は、水素原子、又はメチル基、エチル基、n-プロピル基、及びイソプロピル基からなる群より選ばれる1価の基であり、R7は、水素原子、ヒドロキシル基、炭素原子数1~10のアルキル基、アルコキシ基、エステル基、及びウレタン基からなる群より選ばれる少なくとも1つの1価の有機基であり、n7は、1~5の整数であり、n8は、0~4の整数であり、ここで、n7+n8=5であり、m4は、1~4の整数であり、Z4は、m4=1のとき、CH2OR6又はR7であり、m4=2~4のとき、単結合又は2~4価の有機基であり、ここで、CH2OR6、及びR7が複数存在する場合、R6及びR7は、互いに同一でも異なっていてもよい。}で表される構造を有する化合物、下記一般式(7):
Figure JPOXMLDOC01-appb-C000015
{式中、R8及びR9は、それぞれ独立に、水素原子、又は炭素原子数1~10の炭化水素基及びR10CO-(ここで、R10は、炭素原子数1~10の炭化水素基である。)からなる群から選ばれる基である。}で表される構造を有する化合物、及び下記一般式(8):
Figure JPOXMLDOC01-appb-C000016
{式中、D1は、炭素原子数1~6のアルキル基、アルケニル基、及び架橋し得る有機基からなる群より選ばれる官能基であり、M1は、-CH2-、-O-、及び-S-からなる群から選ばれる基であり、Z5は2価の有機基であり、n9は、0~4の整数であり、D1が複数ある場合、複数のD1は同じでも異なっていてもよい。}で表される構造を有する化合物からなる群より選ばれる少なくとも1種の化合物である、前記[1]~[5]のいずれかに記載の感光性樹脂組成物。
 [7]前記ヒドロキシポリアミド樹脂(A)100質量部に対して、熱により酸を発生する化合物(E)0.1~30質量部をさらに含む、前記[1]~[6]のいずれかに記載の感光性樹脂組成物。
 [8]以下の工程:
 (1)前記[1]~[7]のいずれかに記載の感光性樹脂組成物から成る感光性樹脂層を基板上に形成する工程、
 (2)露光する工程、
 (3)現像する工程、
 (4)得られたレリーフパターンを加熱処理する工程、
を含む、硬化レリーフパターンの製造方法。
 [9]前記[8]に記載の方法により製造された硬化レリーフパターン。
 [10]半導体素子と、該半導体素子の上部に設けられた硬化膜とを備え、該硬化膜は、前記[9]に記載の硬化レリーフパターンであることを特徴とする半導体装置。
 [11]表示体素子と、該表示体素子の上部に設けられた硬化膜とを備え、該硬化膜は、前記[9]に記載の硬化レリーフパターンであることを特徴とする表示体装置。
 [12]主鎖に(チオ)エステル構造を有するポリベンゾオキサゾール前駆体、ポリイミド前駆体、及びフェノール基含有ポリイミドからなる群より選ばれる少なくとも1種のアルカリ可溶性重合体とナフトキノンジアジド化合物とを含む感光性樹脂組成物であって、
 (i)下記工程(a)、(b)、及び(c):
  (a)前記アルカリ可溶性重合体を樹脂固形分35質量%の濃度でγ-ブチロラクトンに溶解させて、アルカリ可溶性重合体の溶液を作製する;
  (b)前記(a)で作製したアルカリ可溶性重合体の溶液を6インチシリコンウェハー上に塗布し、125℃180秒間のプリベークを行い、接触式膜厚測定器を使用して測定する時の膜厚が10μm±0.2μmである膜を形成し;及び
  (c)非接触式膜厚測定器を用いて、プリベーク後の膜を任意の屈折率nf1で測定して得られた膜厚をTf1とし、前記(b)における接触式膜厚測定器で測定して得られた膜厚をTr1とする時に求められる、真の屈折率nr1を以下の式:
  nr1=nf1×Tf1/Tr1
により求める;
を順に行って得られた前記アルカリ可溶性重合体の屈折率(nr1)は1.570~1.650の範囲にあり、
 (ii)下記(a’)、(b’)、及び(c’):
  (a’)前記アルカリ可溶性重合体100質量部を樹脂固形分35質量%の濃度でγ-ブチロラクトンに溶解させ、さらに前記ナフトキノンジアジド化合物15質量部を溶解させて、感光性樹脂組成物の溶液を作製する;
  (b’)前記(a’)で作製した感光性樹脂組成物の溶液を6インチシリコンウェハー上に塗布し、125℃180秒間のプリベークを行い、接触式膜厚測定器を使用して測定する時の膜厚が10μm±0.2μmである膜を形成し;及び
  (c’)非接触式膜厚測定器を用いて、プリベーク後の膜を任意の屈折率nf2で測定して得られた膜厚をTf2とし、前記(b’)における接触式膜厚測定器で測定して得られた膜厚をTr2とする時に求められる、真の屈折率nr2を以下の式:
  nr2=nf2×Tf2/Tr2
により求める;
を順に行って得られた前記感光性樹脂組成物の屈折率(nr2)と、前記アルカリ可溶性重合体の屈折率(nr1)とが、以下の条件:
  {1-アルカリ可溶性重合体の屈折率(nr1)/感光性樹脂組成物の屈折率(nr2)}×100=1.0~3.0(%)
を満たす前記感光性樹脂組成物。
 本発明によれば、現像残膜率が高くかつ高感度であり、また高い伸度及び高い保存安定性を有する感光性樹脂組成物、該ポジ型感光性樹脂組成物を用いた硬化レリーフパターンの製造方法、並びに該硬化レリーフパターンを有してなる半導体装置又は発光装置が提供される。
ヒドロキシポリアミド樹脂(A)P-1の13C-NMR図。 ヒドロキシポリアミド樹脂(A)P-2の13C-NMR図。 ヒドロキシポリアミド樹脂(A)P-3の13C-NMR図。 ヒドロキシポリアミド樹脂(A)P-4の13C-NMR図。 ヒドロキシポリアミド樹脂(A)P-5の13C-NMR図。
<感光性樹脂組成物>
 以下、本発明に係るヒドロキシポリアミド樹脂、及びそれを含む感光性樹脂組成物を構成する各成分について、詳細に説明する。
ヒドロキシポリアミド樹脂(A)
 本発明の感光性樹脂組成物に用いるヒドロキシポリアミド樹脂(A)は、下記一般式(1):
Figure JPOXMLDOC01-appb-C000017
{式中、Z1、Z2及びZ3は、それぞれ独立に、2価の有機基であり、Z1、Z2及びZ3のうち少なくとも1つは、脂環式構造又は脂肪族構造を有し、そしてm1は、0又は1の整数である。}で表される構造及び下記一般式(2):
Figure JPOXMLDOC01-appb-C000018
{式中、Z1、Z2及びZ3は、それぞれ独立に、2価の有機基であり、Z1、Z2及びZ3のうち少なくとも1つは、脂環式構造又は脂肪族構造を有し、そしてm1は、0又は1の整数である。}で表される構造からなる群より選ばれる少なくとも一種の構造を有する。
 本明細書中、上記一般式(1)で表される構造を「エステル基含有構造」といい、上記一般式(2)で表される構造を「チオエステル基含有構造」ともいい、これらをまとめて「(チオ)エステル基含有構造」ともいう。Z1、Z2及びZ3構造のうち少なくとも1つは、脂環式構造又は脂肪族構造である。
 ヒドロキシポリアミド樹脂(A)は、上記(チオ)エステル基含有構造に加え、多価カルボン酸及びその誘導体からなる群より選ばれる少なくとも1種のカルボン酸化合物と多価アミノ化合物とから合成される構造を有する。
 ここで、多価カルボン酸及びその誘導体としては、ジカルボン酸、トリカルボン酸、これらの酸クロリド化合物、酸無水物化合物等が挙げられる。また、多価アミノ化合物としては、少なくともアミノ基を2つ有する化合物、具体的には、ジアミノ安息香酸、ジアミノフェノール、ビス(アミノフェノール)等のジアミンが挙げられる。これら化合物は、置換されていてもよい。
 すなわち、ヒドロキシポリアミド樹脂(A)は、ジカルボン酸、トリカルボン酸及びその誘導体とビス(アミノフェノール)から誘導され、アミド結合のオルト位にフェノール基を有するPBO前駆体であるポリアミド、並びにジカルボン酸、トリカルボン酸及びその誘導体とジアミノフェノールから誘導され、フェノール基を有するポリアミドから選ばれる構造と;前記した(チオ)エステル基含有構造とを;有することが好ましい。
 まず、(チオ)エステル基含有構造について説明する。
 ヒドロキシポリアミド樹脂(A)は、その樹脂骨格中に脂環式又は脂肪族構造を有することで、i線(365nm)に対する高い透明性を実現し、これは感度の向上につながり、更に弾性率を低下させる(全芳香族構造の場合はポリマー骨格が剛直となり弾性率が高くなる)ことができるため、高伸度となる。また、(チオ)エステル基含有構造を有することで、相対的にアミド結合の割合が減少し、該アミド結合に由来する水素結合によるヒドロキシポリアミド樹脂(A)の凝集が抑制されるため、保存安定性が高くなる(溶剤へ溶解し易くなり、ゲル化が抑制される)。
 本発明に係るヒドロキシポリアミド樹脂(A)は、現像残膜率が高いという効果を奏する。この理由は定かではないが、本発明者は以下のように理由を推定している。脂環式構造又は脂肪族構造と(チオ)エステル基含有構造との両者を有することで、樹脂同士の相互作用がほどよく低下(芳香族構造の場合は芳香族同士でπ-πスタッキング効果があると考えられるため、その場合と比較して相対的に低下)するため、一般的なアルカリ現像に使用されるアルカリ現像液(2.38質量%水酸化テトラメチルアンモニウム水溶液)に対して、適度なアルカリ溶解性となる。一方、感光性樹脂組成物{ヒドロキシポリアミド(A)、及び光酸発生剤(B)}としたときには、(チオ)エステル基含有構造の疎水性が発揮されてアルカリ現像液自体が組成物へ浸透し難くなる結果、ヒドロキシポリアミド(A)と光酸発生剤(B)との溶解抑止力が保持されやすい環境となり、アルカリ現像液に対するアルカリ溶解性が非常に低下する。
 ヒドロキシポリアミド樹脂の樹脂骨格として、脂環式構造又は脂肪族構造ではなく、芳香族構造のみを有するポリヒドロキシアミドを用いた場合、樹脂自体のi線透過性が低いのは言うまでもなく、芳香族構造同士の相互作用もあり、アルカリ現像液に対するアルカリ溶解性が失われる。
 また、上記ヒドロキシポリアミド樹脂(A)は、下記一般式(3):
Figure JPOXMLDOC01-appb-C000019
{式中、X1及び、Y1は少なくとも2個の炭素原子を有する2~4価の有機基であり、R1~R3は、それぞれ独立に、水素原子又は炭素原子数1~10の炭化水素基であり、m2は、1~1000の整数であり、n1は、1又は2の整数であり、n2~n4は、それぞれ独立に0~2の整数であり、そして式中のY1(OR1n2(COOR3n4で表される構造のうち少なくとも1つは、前記一般式(1)若しくは下記一般式(4):
Figure JPOXMLDOC01-appb-C000020
(式中、Y2は、少なくとも2個の炭素原子を有する2~4価の有機基であり、Z1は、2価の有機基であり、Y2及びZ1のうち少なくとも1つは、脂環式構造又は脂肪族構造を有し、R4、及びR5は、それぞれ独立に、水素原子又は炭素原子数1~10の炭化水素基であり、m3は、1~100の整数であり、そしてn5及びn6は、それぞれ独立に0~2の整数である。)又は前記一般式(2)若しくは下記一般式(5):
Figure JPOXMLDOC01-appb-C000021
(式中、Y2は、少なくとも2個の炭素原子を有する2~4価の有機基であり、Z1は、2価の有機基であり、Y2及びZ1のうち少なくとも1つは、脂環式構造又は脂肪族構造を有し、R4、及びR5は、それぞれ独立に、水素原子又は炭素原子数1~10の炭化水素基であり、m3は、1~100の整数であり、そしてn5及びn6は、それぞれ独立に0~2の整数である。)で表される構造である。}で表される構造を有することが好ましい。
 (チオ)エステル基含有構造は、具体的には、(1)Z1の構造を有するヒドロキシル基含有化合物又はチオール化合物と(2)Z2及びZ3の構造を有する多価カルボン酸及びその誘導体からなる群より選ばれる少なくとも1種のカルボン酸化合物とを反応させて得ることができる。
 以下、(1)Z1構造を有するヒドロキシル基含有化合物又はチオール化合物について説明する。
 ヒドロキシル基含有化合物としては、フェノール化合物及びアルコール化合物を挙げることができる。
 フェノール化合物の具体例としては、ヒドロキノン、レゾルシノール、4,4’-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルメタン、4,4’-メチレンビス(2-メチルフェノール)、4,4’-メチレンビス(2,6-ジメチルフェノール)、2,2’-メチレンビス(6-tert-ブチル-4-エチルフェノール)、4,4’-エチリデンビスフェノール、4,4’-ジヒドロキシジフェニルプロパン、TM124(デグサジャパン:商品名)、2,2-ビス(4-ヒドロキシフェニル)ブタン、4,4’-(1,3-ジメチルブチリデン)ジフェノール、4,4’-(2-エチルヘキシリデン)ジフェノール、ヘキセストロール、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、4,4’-ブチリデンビス(6-tert-ブチル-m-クレゾール)、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,4’-(α-メチルベンジリデン)ビスフェノール、1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、4,4’-ジヒドロキシテトラフェニルメタン、4,4’-ジヒドロキシジフェニルヘキサフルオロプロパン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシジフェニルエーテル、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、4,4’-ジヒドロキシジフェニルスルホン、ビス(4-ヒドロキシフェニル)スルフィド、ジフェノール酸等が挙げられる。
 また、フェノール化合物として、官能基を含有するフェノール化合物を用いることもできる。その官能基の例としては、アミド基、イミド基、ウレア基、ウレタン基等が挙げられる。
 これらの官能基を含有するフェノール化合物を合成する方法としては、アミノ基を有するフェノール化合物を出発原料とし、そのアミノ基を反応させる方法が挙げられる。
 具体的には、アミド基を含有するフェノール化合物は、原料のフェノール化合物のアミノ基とカルボン酸又はその酸クロリドとを反応させることで得られる。同様に、イミド基を含有するフェノール化合物は、アミノ基とカルボン酸無水物とを反応させることで得られ、ウレア基を含有するフェノール化合物は、アミノ基とイソシアネート化合物とを反応させることで得られ、ウレタン基を含有するフェノール化合物は、アミノ基と二炭酸ジ-t-ブチル等の炭酸化合物とを反応させることで得られる。
 アルコール化合物の具体例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、1,2-ペンタンジオール、1,2-ヘキサンジオール、1,2-ヘプタンジオール、1,2-オクタンジオール、1,2-ノナンジオール、1,2-デカンジオール、1,2-ドデカンジオール、2,5-ヘキサンジオール、cis-2ブテン-1,4-ジオール、2,2-ジエチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,5-ヘキサジエン-3,4-ジオール、2,5-ジメチル-3-ヘキシン-2,5-ジオール、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、trans-p-メンタン-3,8-ジオール、2,4-ジメトキシベンジルアルコール、1,3-ビス(4-ヒドロキシブチル)テトラメチルジシロキサン、X-22-160AS(信越化学:商品名)、FM-4411(チッソ:商品名)、ブチロイン等が挙げられる。
 上記フェノール化合物と同様に、官能基を含有するアルコール化合物を用いることもできる。その官能基の例としては、アミド基、イミド基、ウレア基、ウレタン基等が挙げられる。
 これら官能基をアルコール化合物に導入する方法は、上記フェノール化合物に官能基を導入する方法と同様である。
 チオール化合物の具体例としては、1,4-ベンゼンジチオール、4,4’-ビフェニルジチオール、4,4’-チオビスベンゼンチオール、3,7-ジチア-1,9-ノナンジチオール、1,4-ブタンジチオール、1,5-ペンタンジチオール、1,6-ヘキサンジチオール、1,10-デカンジチオール、Karenz BD1(昭和電工:商品名)等が挙げられる。
 上記フェノール化合物と同様に、官能基を含有するチオール化合物を用いることもできる。その官能基の例としては、アミド基、イミド基、ウレア基、ウレタン基等が挙げられる。
 これら官能基をチオール化合物に導入する方法は、上記フェノール化合物に官能基を導入する方法と同様である。
 以下、前記Z2及びZ3の構造を有する多価カルボン酸及びその誘導体からなる群より選ばれる少なくとも1種のカルボン酸化合物について説明する。
 Z2及びZ3構造を有する多価カルボン酸としては、それぞれ下記から選ばれるZ2又はZ3構造を有するジカルボン酸が挙げられる:
Figure JPOXMLDOC01-appb-C000022
{式中、A1は、-CH2-、-O-、-S-、-SO2-、-CO-、-NHCO-、-C(CF32-、及び単結合からなる群より選ばれる2価の基を表し、L1は、水素原子、ハロゲン原子、炭化水素基、アミド基、ウレア基、イミド基、及びウレタン基からなる群より選ばれる少なくとも1種の基であり、そしてk=4であり、複数あるL1は同一でも異なっていてもよい。}、
Figure JPOXMLDOC01-appb-C000023
{式中、n10は、1~12の整数である。}、又は
Figure JPOXMLDOC01-appb-C000024
{式中、L2、L3及びL4は、各々独立に、水素原子又はメチル基であり、そしてL5は、水素原子、メチル基又は水酸基である。}。
 また、上記一般式(3)で表される構造中、Y1(COOH)2(OR1n2(COOR3n4構造を有する多価カルボン酸は、前記したZ2及びZ3構造を有する多価カルボン酸の群と同一であることができる。
 更に、上記一般式(4)及び上記一般式(5)で表される構造中、Y2(OR4n5(COOR5n6構造を有する多価カルボン酸は、前記したZ2及びZ3に該当する多価カルボン酸の群と同一であることができる。
 ヒドロキシポリアミド樹脂(A)のi線透過性の観点から、(チオ)エステル基含有構造を表す上記一般式(1)、上記一般式(2)、上記一般式(4)、又は上記一般式(5)で表される構造中のZ1は、芳香族であり、かつ、Z2及びZ3は、両者とも脂環式構造又は脂肪族構造であることが好ましく、溶剤への溶解性の観点から、Z1の炭素原子数は1~30であり、そしてZ2及びZ3の炭素原子数は1~15であることが好ましい。Z1、Z2及びZ3は、炭化水素基、エーテル基、アミド基、イミド基、ウレア基、ウレタン基、スルホニル基、含フッ素基からなる群より選ばれる少なくとも1種の基を含むことが好ましい。
 更なるi線透過性及びリソグラフィー性能向上の観点からは、ヒドロキシポリアミド樹脂(A)は、一般式(9)又は一般式(10)で表される構造を有することがより好ましい。具体的には、Z1は、下記一般式(9):
{式中、R10は炭素原子数1~18の炭化水素基であり、R11は、各々独立に、水素原子、炭素原子数1~17の炭化水素基、エーテル基、アミド基、イミド基、ウレア基、及びウレタン基からなる群より選ばれる少なくとも1種の基である。}で表される構造であり、かつ、Z2及びZ3は、下記一般式(10):
Figure JPOXMLDOC01-appb-C000026
{式中、A1は、-CH2-、-O-、-S-、-SO2-、-CO-、-NHCO-、-C(CF32-、及び単結合からなる群より選ばれる2価の基を表し、L1は、水素原子又は炭素原子数1~6の炭化水素基を表し、k=4であり、複数あるL1は同一でも異なっていてもよく、そして、L2~L4は、各々独立に、水素原子又はメチル基であり、L5は、水素原子、メチル基又は水酸基であり、n10は、1~12の整数である。}で表される構造であることが好ましい。
 一方、ヒドロキシポリアミド樹脂(A)の熱特性及び機械特性の観点、特に機械特性の観点からは、(チオ)エステル基含有構造を表す上記一般式(1)、上記一般式(2)、上記一般式(4)又は上記一般式(5)で表される構造中のZ1は、脂環式構造又は脂肪族構造であり、かつZ2及びZ3は、芳香族であることが好ましい。また、溶剤への溶解性の観点からは、Z1、Z2及びZ3の炭素原子数は1~15の有機基であることが好ましい。Z1、Z2及びZ3は、炭化水素基、エーテル基、アミド基、イミド基、ウレア基、ウレタン基、スルホニル基、及び含フッ素基からなる群より選ばれる少なくとも1種の基を含むことが好ましい。
 更なる機械特性の観点からは、ヒドロキシポリアミド樹脂(A)は、下記一般式(11)で表される構造を有することが好ましい。具体的には、Z1は、下記一般式(11):
Figure JPOXMLDOC01-appb-C000027
{式中、A1は、-CH2-、-O-、-S-、-SO2-、-CO-、-NHCO-、-C(CF32-、及び単結合からなる群より選ばれる2価の基を表し、L1は、水素原子又は炭素原子数1~6の炭化水素基を表し、k=4であり、複数あるL1は同一でも異なっていてもよく、そして、L2~L4は、各々独立に、水素原子又はメチル基であり、L5は、水素原子、メチル基又は水酸基であり、そしてn10は、1~8の整数である。}で表される構造であり、かつ、Z2又はZ3は、下記一般式(12):
Figure JPOXMLDOC01-appb-C000028
{式中、L1は、水素原子、ハロゲン原子、炭化水素基、アミド基、ウレア基、イミド基、及びウレタン基からなる群より選ばれる少なくとも1種の基であり、k=4であり、複数あるL1は同一でも異なっていてもよく、R12は、炭素原子数1~10の炭化水素基である。}で表される構造であることが好ましい。
 ヒドロキシポリアミド樹脂(A)の製造方法としては、上記のヒドロキシル基含有化合物又はチオール化合物と、多価カルボン酸とを、重縮合させ、次いで多価アミノ化合物を重縮合させる方法が挙げられる。
 ヒドロキシポリアミド樹脂(A)は、ピリジン、トリエチルアミン、塩化ベンジルトリエチルアミン等の塩基触媒存在下、過剰量のジカルボン酸とヒドロキシル基含有化合物又はチオール化合物とを、-25℃~40℃の範囲で反応させ、両末端がカルボン酸、又はその誘導体である(チオ)エステル基含有構造を合成し、次いで、得られた両末端がカルボン酸、又はその誘導体である(チオ)エステル基含有構造とビス(アミノフェノール)等の多価アミノ化合物とを、-25℃~10℃の範囲で重縮合させることで、合成することができる。ここで、「その誘導体」とはカルボン酸クロリドをいう。
 ジカルボン酸は、塩化チオニルを用いて、酸クロリドの状態で使用することもできる。酸クロリドの合成法としては、具体的には、N,N-ジメチルホルムアミド、ピリジン、塩化ベンジルトリエチルアミン等の触媒の存在下、ジカルボン酸と過剰量の塩化チオニルとを反応させ、過剰の塩化チオニルを加熱及び減圧により留去する方法が挙げられ、この反応液の残渣をヘキサン、トルエン等の溶媒で再結晶することにより得ることができ、また、精製せずに、樹脂の重合に用いることも可能である。また、ジカルボン酸とN-ヒドロキシベンゾトリアゾール(以下、「HOBT」ともいう。)を、ジシクロヘキシルカルボジイミドなどの脱水縮合剤を使用して、HOBT活性エステル体とした触媒を使用することもできる。
 (チオ)エステル基含有構造は、アルカリ現像液への溶解性及び得られる樹脂膜の機械物性が良好である点で、上記一般式(4)又は一般式(5)中のm3は、1~100の整数であることが好ましく、2~50の整数であることがより好ましく、3~30の整数であることがさらに好ましい。また、多価カルボン酸及びその誘導体からなる群より選ばれる少なくとも1種のカルボン酸化合物と多価アミノ化合物から合成される上記一般式(3)で表される構造に対する、上記一般式(1)、上記一般式(2)、上記一般式(4)又は上記一般式(5)で表される(チオ)エステル基含有構造の割合は、アルカリ現像液への溶解性及び得られる樹脂膜の機械物性が良好である点で、0.05~0.80であることが好ましい。
 本発明の感光性樹脂組成物は、ポジ型としてもネガ型としても用いることができる。
 前記した(チオ)エステル基含有構造の割合は、ポジ型組成物とする場合には、0.10~0.50であることがより好ましく、0.15~0.40であることがより好ましく、ネガ型組成物とする場合には、0.20~0.80であることが好ましく、0.30~0.60であることがより好ましい。また、耐熱性の観点からは、エステル基を含有するヒドロキシポリアミド樹脂(A)は、チオエステル基を含有するヒドロキシポリアミド樹脂(A)よりも優れている。
 次に、上記一般式(3)で表される構造中、(チオ)エステル基含有構造以外の構造である、ヒドロキシポリアミド構造について説明する。
 該ヒドロキシポリアミド構造は、原料であるX1(NH22(OH)n1(COOR2n3から成るアミノ化合物とY1(COOH)2(OR1n2(COOR3n4から成る多価カルボン酸との縮合反応により形成される。
 上記一般式(3)で表される多価カルボン酸、すなわち、Y1(COOH)2(OR1n2(COOR3n4は、上記一般式(4)及び上記一般式(5)で表される多価カルボン酸Y2(COOH)2(OR4n5(COOR5n6と同一であってもよく、一般式(4)又は一般式(5)中のY2は、一般式(3)におけるY1と、好ましい範囲も含めて、同義であり、好ましくは、後述する有機基からなる群より選ばれる少なくとも1つの有機基であり、一般式(3)中のn2で表される値と一般式(4)又は一般式(5)中n5で表される値は同一の範囲を示し、一般式(3)中のn4で表される値と一般式(4)又は一般式(5)中n6で表される値についても同様である。
 まず、「PBO前駆体」について説明する。
 本明細書中、(チオ)エステル構造ではない部分であって、上記一般式(3)で表される構造中のX1(NH22(OH)n1(COOR2n3、Y1(COOH)2(OR1n2(COOR3n4において、n1=2、n2=0、n3=0及びn4=0である場合の一般式(3)で表されるものを、「PBO前駆体」と定義する。
 該PBO前駆体は、X1(NH22(OH)2の構造を有するビス(アミノフェノール)及びY1(COOH)2の構造を有するジカルボン酸を重縮合させた構造を有するヒドロキシポリアミド樹脂である場合に相当する。該ビス(アミノフェノール)の2組のアミノ基とヒドロキシ基は、それぞれ互いに、オルト位にある。ジヒドロキシジアミド(ヒドロキシポリアミド樹脂)は、約250~400℃に加熱されることによって閉環して、耐熱性樹脂であるPBOに変化する。X1は、アルカリ現像液への溶解性及び得られる樹脂膜の耐熱性が良好である点で、2個以上30個以下の炭素原子を有する4価の有機基であることが好ましい。また、Y1は、アルカリ現像液への溶解性及び得られる樹脂膜の耐熱性が良好である点で、2個以上30個以下の炭素原子を有する2価の有機基であることが好ましい。m2は、アルカリ現像液への溶解性及び得られる樹脂膜の機械物性が良好である点で、1~1000の整数であり、2~200の整数であることがより好ましく、2~100の整数であることがさらに好ましく、3~60の整数であることが最も好ましい。
 X1(NH22(OH)2の構造を有する上記ビス(アミノフェノール)としては、例えば、3,3’-ジヒドロキシベンジジン、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジアミノ-3,3’-ジヒドロキシジフェニルスルホン、ビス-(3-アミノ-4-ヒドロキシフェニル)メタン、2,2-ビス-(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス-(3-アミノ-4-ヒドロキシ-5-メチルフェニル)プロパン、1,1-ビス-(3-アミノ-4-ヒドロキシフェニル)-1-フェニルエタン、3,3’-ジアミノ-4,4’-ジヒドロキシテトラフェニルメタン、2,2-ビス-(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス-(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス-(4-アミノ-3-ヒドロキシフェニル)メタン、2,2-ビス-(4-アミノ-3-ヒドロキシフェニル)プロパン、4,4’-ジアミノ-3,3’-ジヒドロキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジヒドロキシベンゾフェノン、4,4’-ジアミノ-3,3’-ジヒドロキシジフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルエーテル、1,4-ジアミノ-2,5-ジヒドロキシベンゼン、1,3-ジアミノ-2,4-ジヒドロキシベンゼン、及び1,3-ジアミノ-4,6-ジヒドロキシベンゼン、ビス(3-アミノ-4-ヒドロキシフェニル)スルフィド等が挙げられる。これらのビス(アミノフェノール)は、単独又は2種以上混合して使用できる。
 これらのX1(NH22(OH)2の構造を有するビス(アミノフェノール)の内、特に好ましいものは、X1が下記:
Figure JPOXMLDOC01-appb-C000029
から選ばれる芳香族基であるビス(アミノフェノール)である。上記ビス(アミノフェノール)は、ベンゼン環同士を結合している結合に対して、メタ位がアミノ基、パラ位がヒドロキシル基、又はメタ位がヒドロキシル基、パラ位がアミノ基のいずれでも構わないが、溶剤への溶解性の観点からは、メタ位がアミノ基、パラ位がヒドロキシル基の方が好ましい。
 Y1(COOH)2構造を有するジカルボン酸としては、Y1が、それぞれ下記から選ばれる芳香族基、脂肪族基、及び脂環式構造からなる群より選ばれるジカルボン酸が挙げられる:
Figure JPOXMLDOC01-appb-C000030
{式中、A1は、-CH2-、-O-、-S-、-SO2-、-CO-、-NHCO-、-C(CF32-、及び単結合からなる群より選ばれる2価の基を表し、L1は、水素原子、ハロゲン原子、炭化水素基、アミド基、ウレア基、イミド基、及びウレタン基からなる群より選ばれる少なくとも1種の基であり、そしてk=4であり、複数あるL1は同一でも異なっていてもよい。}、
Figure JPOXMLDOC01-appb-C000031
{式中、n10は、1~12の整数である。}、
Figure JPOXMLDOC01-appb-C000032
{式中、L2、L3及びL4は、各々独立に水素原子又はメチル基であり、そしてL5は、水素原子、メチル基又は水酸基である。}。
 上記のトリシクロデカン骨格を有するジカルボン酸として代表的な化合物としては、ビス(カルボキシ)トリシクロ[5,2,1,02,6]デカンが挙げられる。該化合物の製造例は、国際公開公報WO2009/081950の合成例に従って得ることができる。
 更に、上記のY1(COOH)2構造を有するジカルボン酸の一部又は全部として、5-アミノイソフタル酸の誘導体を用いることもできる。該誘導体を得るために5-アミノイソフタル酸に対して反応させる具体的な化合物としては、5-ノルボルネン-2,3-ジカルボン酸無水物、エキソ-3,6―エポキシ-1,2,3,6-テトラヒドロフタル酸無水物、3-エチニル-1,2-フタル酸無水物、4-エチニル-1,2-フタル酸無水物、シス-4-シクロヘキセン-1,2-ジカルボン酸無水物、1-シクロヘキセン-1,2-ジカルボン酸無水物、マレイン酸無水物、無水シトラコン酸、無水イタコン酸、無水エンドメチレンテトラヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸無水物、メチルテトラヒドロ無水フタル酸、アリルスクシン酸無水物、イソシアナートエチルメタクリレート、3-イソプロペニル-α,α-ジメチルベンジルイソシアネート、3-シクロヘキセン-1-カルボン酸クロライド、2-フランカルボン酸クロリド、クロトン酸クロリド、ケイ皮酸クロリド、メタクリル酸クロリド、アクリル酸クロリド、プロピオン酸クロリド、テトロール酸クロリド、チオフェン2-アセチルクロリド、p-スチレンスルフォニルクロリド、グリシジルメタクリレート、アリルグリシジルエーテル、クロロぎ酸メチルエステル、クロロぎ酸エチルエステル、クロロぎ酸n-プロピルエステル、クロロぎ酸イソプロピルエステル、クロロぎ酸イソブチルエステル、クロロぎ酸2-エトキシエステル、クロロぎ酸-sec-ブチルエステル、クロロぎ酸ベンジルエステル、クロロぎ酸2-エチルヘキシルエステル、クロロぎ酸アリルエステル、クロロぎ酸フェニルエステル、クロロぎ酸2,2,2-トリクロロエチルエステル、クロロぎ酸-2-ブトキシエチルエステル、クロロぎ酸-p-ニトロベンジルエステル、クロロぎ酸-p-メトキシベンジルエステル、クロロぎ酸イソボルニルベンジルエステル、クロロぎ酸-p-ビフェニルイソプロピルベンジルエステル、2-t-ブチルオキシカルボニル-オキシイミノ-2-フェニルアセトニトリル、S-t-ブチルオキシカルボニル-4,6-ジメチル-チオピリミジン、ジ-t-ブチル-ジカルボナート、N-エトキシカルボニルフタルイミド、エチルジチオカルボニルクロリド、ぎ酸クロリド、ベンゾイルクロリド、p-トルエンスルホン酸クロリド、メタンスルホン酸クロリド、アセチルクロリド、塩化トリチル、トリメチルクロロシラン、ヘキサメチルジシラザン、N,O-ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)トリフルオロアセトアミド、(N,N-ジメチルアミノ)トリメチルシラン、(ジメチルアミノ)トリメチルシラン、トリメチルシリルジフェニル尿素、ビス(トリメチルシリル)尿素、イソシアン酸フェニル、イソシアン酸n-ブチル、イソシアン酸n-オクタデシル、イソシアン酸o-トリル、1,2-フタル酸無水物、シス-1,2-シクロヘキサンジカルボン酸無水物、グルタル酸無水物が挙げられる。
 次に、「PBO前駆体を有する構造」について説明する。上記一般式(3)で表される樹脂は、原料のジアミンに由来する部分を有するが、原料のジアミンとしては、ジヒドロキシジアミン(X1(NH22(OH)2)以外に、必要に応じてX2(NH22の構造を有するジアミンを用いてもよい。ここで、X2は、上記一般式(3)におけるX1と、好ましい範囲も含めて、同義である。
 上記一般式(3)で表される構造中、上記のジヒドロキシジアミド単位の割合が高いほど現像液として使用するアルカリ性水溶液への溶解性が向上するので、[X1(NH22(OH)2]/[X1(NH22(OH)2+X2(NH22]の値は0.5以上であることが好ましく、0.7以上であることがより好ましく、0.8以上であることが最も好ましい。
 また、X2(NH22の構造の化合物としては、分子内に2組の互いにオルト位にあるアミド結合とフェノール性水酸基とを有するジアミン(以下、「分子内にPBO前駆体構造を有するジアミン」という。)を使用することもできる。例えば、上記のX1(NH22(OH)2の構造を有するビス(アミノフェノール)に2分子のニトロ安息香酸を反応させて還元することにより得られる下記一般式(13):
Figure JPOXMLDOC01-appb-C000033
{式中、X3は、少なくとも2個の炭素原子を有する4価の有機基を表す。}で表されるジアミンが挙げられる。
 X3は、上記一般式(3)におけるX1と、好ましい範囲も含めて、同義である。
 分子内にPBO前駆体構造を有するジアミンを得るための別法としては、Y3(COCl)2の構造を有するジカルボン酸ジクロリドに2分子のニトロアミノフェノールを反応させて還元し、下記一般式(14):
Figure JPOXMLDOC01-appb-C000034
{式中、Y3は、少なくとも2個の炭素原子を有する2価の有機基である。}で表されるジアミンを得る方法もある。ここで、Y3は、上記一般式(3)におけるY1と、好ましい範囲も含めて、同義である。
 X2(NH22の構造を有するジアミンとしては、芳香族ジアミン、シリコンジアミンなどが挙げられる。
 このうち芳香族ジアミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、2,4-トリレンジアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルケトン、4,4’-ジアミノジフェニルケトン、3,4’-ジアミノジフェニルケトン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4-メチル-2,4-ビス(4-アミノフェニル)-1-ペンテン、4-メチル-2,4-ビス(4-アミノフェニル)-2-ペンテン、1,4-ビス(α,α-ジメチル-4-アミノベンジル)ベンゼン、イミノ-ジ-p-フェニレンジアミン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、4-メチル-2,4-ビス(4-アミノフェニル)ペンタン、5(または6)-アミノ-1-(4-アミノフェニル)-1,3,3-トリメチルインダン、ビス(p-アミノフェニル)ホスフィンオキシド、4,4’-ジアミノアゾベンゼン、4,4’-ジアミノジフェニル尿素、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ベンゾフェノン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、4,4’-ビス[4-(α,α-ジメチル-4-アミノベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(α,α-ジメチル-4-アミノベンジル)フェノキシ]ジフェニルスルホン、4,4’-ジアミノビフェニル、4,4’-ジアミノベンゾフェノン、フェニルインダンジアミン、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、o-トルイジンスルホン、2,2-ビス(4-アミノフェノキシフェニル)プロパン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシフェニル)スルフィド、1,4-(4-アミノフェノキシフェニル)ベンゼン、1,3-(4-アミノフェノキシフェニル)ベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、4,4’-ジ-(3-アミノフェノキシ)ジフェニルスルホン、及び4,4’-ジアミノベンズアニリド等、並びにこれら芳香族ジアミンの芳香核の水素原子が、塩素原子、フッ素原子、臭素原子、メチル基、メトキシ基、シアノ基、及びフェニル基からなる群より選ばれる少なくとも1種の基又は原子によって置換された化合物が挙げられる。
 基材との接着性を高めるためにX2(NH22の構造を有するジアミンの一部又は全部として、シリコンジアミンを選択することもできる。シリコンジアミンの例としては、ビス(4-アミノフェニル)ジメチルシラン、ビス(4-アミノフェニル)テトラメチルシロキサン、ビス(4-アミノフェニル)テトラメチルジシロキサン、ビス(γ-アミノプロピル)テトラメチルジシロキサン、1,4-ビス(γ-アミノプロピルジメチルシリル)ベンゼン、ビス(4-アミノブチル)テトラメチルジシロキサン、ビス(γ-アミノプロピル)テトラフェニルジシロキサン等が挙げられる。
 Y1(COOH)2構造を有するジカルボン酸としては、上述したPBO前駆体で使用される芳香族基又は脂肪族基であるジカルボン酸が挙げられる。また、分子内に2組の互いにオルト位にあるアミド結合とフェノール性水酸基とを有するジカルボン酸を使用することもできる。例えば、上記のX1(NH22(OH)2の構造を有するビス(アミノフェノール)又はX1(NH22(OH)の構造を有するジアミノフェノールに2分子のトリメリット酸クロリドを反応させて、更に酸無水物とアルコールを反応させることにより得られる下記一般式(15):
Figure JPOXMLDOC01-appb-C000035
{式中、X5は、少なくとも2個の炭素原子を有する3価又は4価の有機基を表し、R13は、炭素原子数1~10の炭化水素基を表し、そして、n11は、1又は2の整数を表す。}で表される分子内に2組の互いにオルト位にあるアミド結合とフェノール性水酸基とを有する構造が挙げられる。X5は、上記一般式(3)におけるX1と、好ましい範囲も含めて、同義である。
 ヒドロキシポリアミド樹脂(A)は、リソグラフィー特性の観点から、下記一般式(16):
Figure JPOXMLDOC01-appb-C000036
{式中、X6は、少なくとも2個の炭素原子を有する4価の有機基を表し、Z1は、上記一般式(9)からなる群より選ばれる少なくとも1種の構造であり、L6、L7、及びL8は、それぞれ独立に、水素原子又はメチル基を表し、L9は、水素原子、メチル基又は水酸基を表し、そしてm2とm3は、各々独立に、1~1000の整数である。}で表される構造を含むことが好ましい。X6は、上記一般式(3)におけるX1と、好ましい範囲も含めて、同義である。
 上記一般式(16)で表される構造中のトリシクロデカン部位は、下記一般式(17):
Figure JPOXMLDOC01-appb-C000037
で表される構造群から選択される少なくとも1つであることが好ましい。
 該トリシクロデカン部位は、とりわけ、得られる樹脂膜の機械物性が良好である点で、下記一般式(18):
Figure JPOXMLDOC01-appb-C000038
であることがより好ましい。
 また、ヒドロキシポリアミド樹脂(A)は、熱機械特性の観点から、下記一般式(19):
Figure JPOXMLDOC01-appb-C000039
{式中、X6は、少なくとも2個の炭素原子を有する4価の有機基を表し、Y4は、下記一般式(20):
Figure JPOXMLDOC01-appb-C000040
(式中、L1は、水素原子、ハロゲン原子、炭化水素基、アミド基、ウレア基、イミド基、及びウレタン基からなる群より選ばれる少なくとも1種の基であり、そしてk=4であり、複数あるL1は同一でも異なっていてもよい。)で表される構造のうちの少なくとも1種であり、Z1は、上記一般式(9)からなる群より選ばれる少なくとも1種の構造であり、そしてm2とm3は、各々独立に、1~1000の整数である。複数あるY4は同一でも異なっていてもよい。}で表される構造を含むことが好ましい。ここで、X6は、上記一般式(3)におけるX1と同義である。
 ヒドロキシポリアミド樹脂であるジヒドロキシジアミドを合成するための、前述のジカルボン酸とビス(アミノフェノール)との重縮合の方法としては、ジカルボン酸と塩化チオニルとを使用してジ酸クロライドを得た後、これにビス(アミノフェノール)を作用させる方法、ジカルボン酸とビス(アミノフェノール)とをジシクロヘキシルカルボジイミドにより重縮合させる方法等が挙げられる。ジシクロヘキシルカルボジイミドを使用する方法においては同時にヒドロキシベンズトリアゾールを作用させることもできる。
 また、前述の一般式(3)で表される繰り返し単位を有するヒドロキシポリアミドは、その末端基を有機基(以下、「封止基」ともいう)で封止して使用することも好ましい。例えば、ヒドロキシポリアミド樹脂の重縮合において、ジカルボン酸成分をビスアミノフェノール成分とジアミン成分との和に比べて過剰のモル数で使用する場合には、封止基としてアミノ基又は水酸基を有する化合物を用いるのが好ましい。該化合物の例としては、アニリン、エチニルアニリン、ノルボルネンアミン、ブチルアミン、プロパルギルアミン、2-アミノベンジルアルコール、3-アミノベンジルアルコール、4-アミノベンジルアルコール、エタノール、プロパルギルアルコール、ベンジルアルコール、ヒドロキシエチルメタクリレート、ヒドロキシエチルアクリレート、2-アミノベンゾトリアゾール、ベンゾチアジアゾール、テトラゾール等の窒素含有環状化合物が挙げられる。
 逆にビスアミノフェノール成分とジアミン成分との和をジカルボン酸成分に比べて過剰のモル数として使用する場合には、封止基を有する化合物として、酸無水物、カルボン酸、酸クロリド、イソシアネート基等を有する化合物を用いるのが好ましい。該化合物の例としては、ベンゾイルクロリド、ノルボルネンジカルボン酸無水物、ノルボルネンカルボン酸、5-ベンズイミダゾールカルボン酸、エチニルフタル酸無水物、グルタル酸無水物、無水マレイン酸、無水フタル酸、シクロヘキサンジカルボン酸無水物、メチルシクロヘキサンジカルボン酸無水物、シクロへキセンジカルボン酸無水物、メタクリロイルオキシエチルメタクリレート、フェニルイソシアネート、メシルクロリド、トシル酸クロリド等が挙げられる。また、トリメリット酸クロリドを用いて、アミノ基、ヒドロキシル基を含有した化合物と反応させることで、オキセタン末端とすることもできる。
 好ましい末端基としては、ベンゾトリアゾール、テトラゾール、5-ベンズイミダゾールカルボン酸等の窒素含有環状化合物、メチロール基、アルコキシメチル基、オキセタン基及び下記一般式(21):
Figure JPOXMLDOC01-appb-C000041
{式中、L10は、-CH2-、-O-又は-S-を表し、そしてL11は、水素原子又は炭素原子数1~6の炭化水素基を表す。}で表される末端基からなる群より選択される少なくとも1つの末端基が挙げられる。メチロール基、アルコキシメチル基、オキセタン基としては、下記一般式(22):
Figure JPOXMLDOC01-appb-C000042
{式中、R14及びR15は、水素原子又は炭素原子数1~10の炭化水素基であり、R16は、水素原子、又は炭素原子数1~10の炭化水素基、アルコキシ基、エステル基、及びウレタン基からなる群より選ばれる少なくとも1つの1価の有機基であり、n12は、1~5の整数であり、n13は、0~4の整数であり、ここで、n12+n13=5であり、ここで、CH2OR15、及びR16が複数存在する場合、R15及びR16は、互いに同一でも異なっていてもよい。}で表される構造であることが好ましい。
 上記一般式(3)で表される構造を有するヒドロキシポリアミド樹脂のゲルパーミエーションクロマトグラフィー(以下「GPC」ともいう。)によるポリスチレン換算重量平均分子量は、3,000~70,000であることが好ましく、6,000~50,000であることがより好ましい。重量平均分子量は、硬化レリーフパターンの物性の観点から3,000以上が好ましく、一方、解像性の観点から、70,000以下が好ましい。GPCの展開溶媒としては、テトラヒドロフラン(以下「THF」ともいう。)、N-メチル-2-ピロリドン(以下「NMP」ともいう。)が推奨される。また分子量は、標準単分散ポリスチレンを用いて作成した検量線から求める。標準単分散ポリスチレンとしては昭和電工社製 有機溶媒系標準試料 STANDARD SM-105から選ぶことが推奨される。
光酸発生剤(B)
 光酸発生剤(B)とは、活性光線照射により酸を発生する化合物であり、このような化合物としては例えば、ハロゲン含有化合物、オニウム塩、ナフトキノンジアジド構造を有する化合物(以下、「ナフトキノンジアジド化合物」ともいう。)等が挙げられる。
 光酸発生剤(B)として、ナフトキノンジアジド化合物を用いることで、ポジ型の優れた感光性樹脂組成物とすることができる。一方、本発明のヒドロキシポリアミド樹脂は、光酸発生剤(B)と添加剤の適切な組み合わせにより、ネガ型にもすることもできる。
 上記ハロゲン含有化合物としては、ハロアルキル基含有炭化水素化合物等が挙げられ、トリクロロメチルトリアジン類が好ましい。
 トリクロロメチル-s-トリアジン類の具体例としては、トリス(2,4,6-トリクロロメチル)-s-トリアジン、2-フェニル-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-クロロフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(2-クロロフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(4-メトキシフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-メトキシフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(2-メトキシフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(4-メチルチオフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-メチルチオフェニル)ビス(4,6-トリクロロメチル-s-トリアジン、2-(2-メチルチオフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-メトキシナフチル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(2-メトキシナフチル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3,4,5-トリメトキシ-β-スチリル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(4-メチルチオ-β―スチリル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-メチルチオ-β―スチリル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(2-メチルチオ-β-スチリル)-ビス(4,6-トリクロロメチル)-s-トリアジン等が挙げられる。
 上記オニウム塩としては、ヨードニウム塩、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ジアゾニウム塩等が挙げられ、ジアリールヨードニウム塩、トリアリールスルホニウム塩、及びトリアルキルスルホニウム塩からなる群より選ばれるオニウム塩が好ましい。
 ジアリルヨードニウム類の具体例としては、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラフルオロホスフェート、ジフェニルヨードニウムテトラフルオロアルセネート、ジフェニルヨードニウムトリフルオロメタンスルホナート、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウム-p-トルエンスルホナート、4-メトキシフェニルフェニルヨードニウムテトラフルオロボレート、4-メトキシフェニルフェニルヨードニウムヘキサフルオロホスホネート、4-メトキシフェニルフェニルヨードニウムヘキサフルオロアルセネート、4-メトキシフェニルフェニルヨードニウムトリフルオロメタンスルホナート、4-メトキシフェニルフェニルヨードニウムトリフルオロアセテート、4-メトキシフェニルフェニルヨードニウム-p-トルエンスルホナート、ビス(4-ter-ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(4-ter-ブチルフェニル)ヨードニウムヘキサフルオロアルセネート、ビス(4-ter-ブチルフェニル)ヨードニウムトリフルオロメタンスルホナート、ビス(4-ter-ブチルフェニル)ヨードニウムトリフルオロアセテート、ビス(4-ter-ブチルフェニル)ヨードニウム-p-トルエンスルホナート等が挙げられる。
 トリアリールスルホニウム塩類の具体例としては、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロホスホネート、トリフェニルスルホニウムヘキサフルオロアルセネート、トリフェニルスルホニウムメタンスルホナート、トリフェニルスルホニウムトリフルオロアセテート、トリフェニルスルホニウム-p-トルエンスルホナート、4-メトキシフェニルジフェニルスルホニウムテトラフルオロボレート、4-メトキシフェニルジフェニルスルホニウムヘキサフルオロホスホネート、4-メトキシフェニルジフェニルスルホニウムヘキサフルオロアルセネート、4-メトキシフェニルジフェニルスルホニウムメタンスルホナート、4-メトキシフェニルジフェニルスルホニウムトリフルオロアセテート、4-メトキシフェニルジフェニルスルホニウム-p-トルエンスルホナート、4-フェニルチオフェニルジフェニルテトラフルオロボレート、4-フェニルチオフェニルジフェニルヘキサフルオロホスホネート、4-フェニルチオフェニルジフェニルヘキサフルオロアルセネート、4-フェニルチオフェニルジフェニルトリフルオロメタンスルホナート、4-フェニルチオフェニルジフェニルトリフルオロアセテート、4-フェニルチオフェニルジフェニルーp-トルエンスルホナート等が挙げられる。
 これらの化合物の内、トリクロロメチル-S-トリアジン類としては、2-(3-クロロフェニル)-ビス(4,6-トリクロロメチル)-S-トリアジン、2-(4-クロロフェニル)-ビス(4,6-トリクロロメチル)-S-トリアジン、2-(4-メチルチオフェニル)-ビス(4,6-トリクロロメチル)-S-トリアジン、2-(4-メトキシーβ―スチリル)-ビス(4,6-トリクロロメチル)-S-トリアジン、2-(4-メトキシナフチル)-ビス(4,6-トリクロロメチル)-S-トリアジン等を、ジアリールヨードニウム塩類としては、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウムトリフルオロメタンスルホナート、4-メトキシフェニルフェニルヨードニウムトリフルオロメタンスルホナート、4-メトキシフェニルフェニルヨードニウムトリフルオロアセテート等を、トリアリールスルホニウム塩類としては、トリフェニルスルホニウムメタンスルホナート、トリフェニルスルホニウムトリフルオロアセテート、4-メトキシフェニルジフェニルスルホニウムメタンスルホナート、4-メトキシフェニルジフェニルスルホニウムトリフルオロアセテート、4-フェニルチオフェニルジフェニルトリフルオロメタンスルホナート、4-フェニルチオフェニルジフェニルトリフルオロアセテート等を好適なものとして挙げることができる。
 この他にも、以下に示す化合物を用いることもできる。
(1)スルホン化合物
 スルホン化合物としては、例えば、β-ケトスルホン化合物、β-スルホニルスルホン化合物及びこれらの化合物のα-ジアゾ化合物を挙げることができ、具体例として、4-トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェナシルスルホニル)メタン等を挙げることができる。
(2)スルホン酸化合物
 スルホン酸化合物としては、例えば、アルキルスルホン酸エステル類、ハロアルキルスルホン酸エステル類、アリールスルホン酸エステル類、イミノスルホネート類等を挙げることができ、好ましい具体例として、ベンゾイントシレート、ピロガロールトリストリフルオロメタンスルホネート、o-ニトロベンジルトリフルオロメタンスルホネート、o-ニトロベンジルp-トルエンスルホネート等を挙げることができる。
(3)スルホンイミド化合物
 スルホンイミド化合物の具体例として、例えば、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメチルスルホニルオキシ)ナフチルイミド等を挙げることができる。
(4)オキシムエステル化合物
 2-[2-(4-メチルフェニルスルホニルオキシイミノ)]-2,3-ジヒドロチオフェン-3-イリデン]-2-(2-メチルフェニル)アセトニトリル(チバスペシャルティケミカルズ社商品名「イルガキュアPAG121」)、[2-(プロピルスルホニルオキシイミノ)-2,3-ジヒドロチオフェン-3-イリデン]-2-(2-メチルフェニル)アセトニトリル(チバスペシャルティケミカルズ社商品名「イルガキュアPAG103」)等を挙げることができる。
(5)ジアゾメタン化合物
 ジアゾメタン化合物の具体例としては、例えば、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン等を挙げることができる。
(6)ジアゾケトン化合物
 ジアゾケトン化合物としては、例えば、1,3-ジケトン-2-ジアゾ化合物、ジアゾベンゾキノン化合物、ジアゾナフトキノン化合物等を挙げることができ、具体例として、フェノール類の1,2-ナフトキノンジアジド-4-スルホン酸エステル化合物を挙げることができる。
 ポジ型感光性樹脂組成物とする場合は、溶剤溶解性及び保存安定性の観点から、上記(6)ジアゾケトン化合物が好ましく、その中でも感度の観点から、ナフトキノンジアジド構造を有する化合物(以下、「ナフトキノンジアジド化合物」ともいう。)が好ましい。
 また、ネガ型感光性樹脂組成物とする場合は、感度の観点から、特に上記(4)オキシムエステル化合物が好ましい。
 上記ナフトキノンジアジド化合物は、典型的には、1,2-ベンゾキノンジアジド構造又は1,2-ナフトキノンジアジド構造を有する化合物であり、米国特許第2,772,972号明細書、米国特許第2,797,213号明細書、米国特許第3,669,658号明細書等により公知の物質である。ナフトキノンジアジド化合物は、典型的には、以下の説明する特定構造を有するポリヒドロキシ化合物の1,2-ナフトキノンジアジド-4-スルホン酸エステル、及び該ポリヒドロキシ化合物の1,2-ナフトキノンジアジド-5-スルホン酸エステルからなる群より選ばれる少なくとも1種の化合物(以下、「NQD化合物」ともいう。)である。
 該NQD化合物は、常法に従って、ナフトキノンジアジドスルホン酸化合物をクロルスルホン酸又は塩化チオニルでスルホニルクロライドとし、得られたナフトキノンジアジドスルホニルクロライドと、ポリヒドロキシ化合物とを縮合反応させることにより得られる。例えば、ポリヒドロキシ化合物と1,2-ナフトキノンジアジド-5-スルホニルクロリド又は1,2-ナフトキノンジアジド-4-スルホニルクロリドの所定量とをジオキサン、アセトン、テトラヒドロフラン等の溶媒中において、トリエチルアミン等の塩基性触媒の存在下で反応させて、エステル化を行い、得られた生成物を水洗及び乾燥することにより、NQD化合物を得ることができる。
 該NQD化合物としては、以下に列挙するものが好ましく用いられる。
下記一般式(23)で表されるポリヒドロキシ化合物のNQD化物
Figure JPOXMLDOC01-appb-C000043
{式中、X7は、下記化学式:
Figure JPOXMLDOC01-appb-C000044
で表される有機基より選ばれる少なくとも1つの4価の基を表し、R17、R18、R19及びR20は、それぞれ独立に、1価の有機基を表し、lは、0又は1であり、m5、m6、m7及びm8は、0~3の整数を示し、n14、n15、n16及びn17は、0~2の整数である。}
 具体的な化合物としては、特開2001-092138号公報の[化23]~[化28]に記載される化合物が挙げられる。
 その中でも以下のポリヒドロキシ化合物のNQD化物が、感度が高く、ポジ型感光性樹脂組成物中での析出性が低いことから好ましい:
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
下記一般式(24)で表されるポリヒドロキシ化合物のNQD化物
Figure JPOXMLDOC01-appb-C000049
{式中、M2は、脂肪族の3級又は4級の炭素を含む2価の有機基を表し、そしてA3は、下記の化学式:
Figure JPOXMLDOC01-appb-C000050
で表される基より選ばれる少なくとも1つの2価の基を表す。}。
 具体的な化合物としては、特開2003-131368号公報の[化22]~[化28]に記載される化合物が挙げられる。
 その中でも、以下のポリヒドロキシ化合物のNQD化物が、感度が高く、ポジ型感光性樹脂組成物中での析出性が低いことから好ましい。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
{式中、L12は、-CH2-、-O-又は-S-を表し、そしてL13は、水素原子又は炭素原子数1~6の炭化水素基を表す。}。
下記一般式(25)で表されるポリヒドロキシ化合物のNQD化物
Figure JPOXMLDOC01-appb-C000053
{式中、R21、R22及びR23は、各々独立に、下記の一般式:
Figure JPOXMLDOC01-appb-C000054
(式中、R24は、それぞれ独立に、水素原子、又はアルキル基及びシクロアルキル基より選ばれる少なくとも1つの1価の有機基を表し、そしてm12は、0~2の整数である。)で表される1価の有機基を表し、そしてm9、m10及びm11は、それぞれ独立に、0~2の整数である。}。
 具体的な化合物としては、特開2004-109849号公報の[化17]~[化22]に記載されるポリヒドロキシ化合物のNQD化物が挙げられる。
 その中でも、以下のポリヒドロキシ化合物のNQD化物が、感度が高く、ポジ型感光性樹脂組成物中での析出性が低いことから好ましい。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
下記一般式(26)で表されるポリヒドロキシ化合物のNQD化物
Figure JPOXMLDOC01-appb-C000057
{式中、R25は、下記の一般式:
Figure JPOXMLDOC01-appb-C000058
(式中、R29は、それぞれ独立に、水素原子、又はアルキル基及びシクロアルキル基からなる群より選ばれる少なくとも1つの1価の有機基を表し、そしてm16は、0~2の整数である。)で表される1価の有機基を表し、R26、R27及びR28は、水素原子、又はアルキル基及びシクロアルキル基からなる群より選ばれる少なくとも1つの1価の有機基を表し、そして、m13、m14及びm15は、0~2の整数である。}。
 具体的な化合物としては、特開2005-008626号公報の[化15]、及び[化16]に記載されるポリヒドロキシ化合物のNQD化物が挙げられる。
 その中でも、以下のポリヒドロキシ化合物のNQD化物が、感度が高く、ポジ型感光性樹脂組成物中での析出性が低いことから好ましい。
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
 その他の構造としては、下記:
Figure JPOXMLDOC01-appb-C000061
が好ましい。
 NQD化合物におけるナフトキノンジアジドスルホニル基としては、5-ナフトキノンジアジドスルホニル基又は4-ナフトキノンジアジドスルホニル基のいずれも好ましい。
 4-ナフトキノンジアジドスルホニルエステル化合物は、水銀灯のi線領域に吸収を持っており、i線露光に適している。5-ナフトキノンジアジドスルホニルエステル化合物は、水銀灯のg線領域まで吸収が伸びており、g線露光に適している。本発明においては、露光に用いる波長によって4-ナフトキノンジアジドスルホニルエステル化合物又は5-ナフトキノンジアジドスルホニルエステル化合物のいずれかを選択することが好ましい。また、同一分子中に4-ナフトキノンジアジドスルホニル基及び5-ナフトキノンジアジドスルホニル基の両者を有するナフトキノンジアジドスルホニルエステル化合物を使用することもできるし、4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物とを混合して使用することもできる。
 本発明の感光性樹脂組成物において、光酸発生剤(B)の配合量は、ヒドロキシポリアミド樹脂(A)100質量部に対し、1~50質量部であることが好ましく、溶剤への溶解性の観点から、2~40質量部がより好ましく、感度の観点から5~25質量部がさらに好ましい。光酸発生剤(B)の配合量が1質量部以上であれば樹脂のパターニング性が良好であり、一方、50質量部以下であれば硬化後の膜の引張り伸び率が良好で、かつ露光部の現像残さ(スカム)が少ない。
アルカリ水溶液に対する溶解性を促進する化合物(C)
 本発明に係る感光性樹脂組成物には、露光部のアルカリに対する溶解性を向上させ、高感度化するという観点から、アルカリ水溶液に対する溶解性を促進する化合物(C)を更に配合することが好ましい。
 アルカリ水溶液に対する溶解性を促進する化合物(C)とは、アルカリ水溶液に可溶となる官能基、すなわちフェノール性水酸基、カルボキシル基、スルホニル基からなる群より選ばれる少なくとも1種の基を含有した化合物を示す。
 フェノール性水酸基を含有する化合物(以下、「フェノール化合物」ともいう。)としては、フェノール基を少なくとも1つ有する化合物と該化合物を重合させた重合体が挙げられる。
 フェノール基を少なくとも1つ有する化合物とは、炭素原子数6~40の化合物であり、具体的には、前記感光性ジアゾキノン化合物に使用している上記規定炭素原子数以内のバラスト剤、パラクミルフェノール、ビスフェノール類、レゾルシノール類、MtrisPC、MtetraPC等の直鎖状フェノール化合物(本州化学工業社製:商品名)、TrisP-HAP、TrisP-PHBA、TrisP-PA等の非直鎖状フェノール化合物(本州化学工業社製:商品名)、ジフェニルメタンのフェニル基の水素原子2~5個を水酸基に置換した化合物、2,2-ジフェニルプロパンのフェニル基の水素原子1~5個を水酸基に置換した化合物等が挙げられる。なお、バラスト剤とは、フェノール性水素原子の一部がナフトキノンジアジドスルホン酸エステル化されたフェノール化合物である前述の感光性ジアゾキノン化合物に原料として使用されているフェノール化合物をいう。
 フェノール性基を少なくとも1つ有する化合物の中では、アルカリ溶解促進という観点から、2つ以上のフェノール基を有するフェノール化合物が好ましく、残渣の発生を抑制させるという観点から、レゾルシノール類がより好ましい。レゾルシノール類としては、レゾルシノール、2-メチルレゾルシノール、4-メチルレゾルシノール、5-メチルレゾルシノール、2,5-ジメチルレゾルシノール、4-エチルレゾルシノール、4-ヘキシルレゾルシノール等が挙げられる。
 該化合物を重合させた重合体としては、フェノール樹脂及びその誘導体、ポリヒドロキシスチレン及びその誘導体等が挙げられる。
 フェノール樹脂及びその誘導体としては、具体的にはノボラック型樹脂が挙げられる。ノボラック型樹脂としては、レジストの技術分野で広く用いられているものを使用することができる。このノボラック型樹脂は、例えば、フェノール類と、アルデヒド類又はケトン類とを酸性触媒の存在下で反応させることにより得ることができる。
 フェノール類としては、前記した化合物以外に、例えば、フェノール、オルトクレゾール、メタクレゾール、パラクレゾール、2,3-ジメチルフェノール、2,5-ジメチルフェノール、3,4-ジメチルフェノール、3,5-ジメチルフェノール、2,4-ジメチルフェノール、2,6-ジメチルフェノール、2,3,5-トリメチルフェノール、2,3,6-トリメチルフェノール、2-t-ブチルフェノール、3-t-ブチルフェノール、4-t-ブチルフェノール、2-メチルレゾルシノール、4-メチルレゾルシノール、5-メチルレゾルシノール、4-t-ブチルカテコール、2-メトキシフェノール、3-メトキシフェノール、2-プロピルフェノール、3-プロピルフェノール、4-プロピルフェノール、2-イソプロピルフェノール、2-メトキシ-5-メチルフェノール、2-t-ブチル-5-メチルフェノール、チモール、イソチモール等が挙げられる。これらは、それぞれ単独で又は2種以上を組み合わせて使用することができる。
 アルデヒド類としては、例えば、ホルムアルデヒド、ホルマリン、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、フェニルアセトアルデヒド、α-フェニルプロピオンアルデヒド、β-フェニルプロピオンアルデヒド、o-ヒドロキシベンズアルデヒド、m-ヒドロキシベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-クロロベンズアルデヒド、m-クロロベンズアルデヒド、p-クロロベンズアルデヒド、o-メチルベンズアルデヒド、m-メチルベンズアルデヒド、p-メチルベンズアルデヒド、p-エチルベンズアルデヒド、p-n-ブチルベンズアルデヒド、テレフタルアルデヒドなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン、ジエチルケトン、ジフェニルケトンなどが挙げられる。これらはそれぞれ単独で又は2種以上を組み合わせて使用することができる。
 これらの中でも、メタクレゾールとパラクレゾールとを併用し、これらと、ホルムアルデヒド、ホルマリン又はパラホルムアルデヒドとを縮合反応させたノボラック型樹脂が、感度制御性の観点から特に好ましい。メタクレゾールとパラクレゾールとの仕込み重量比は、通常、20:80~80:20、好ましくは50:50~70:30である。
 分子量は、重量平均分子量で、通常、1,000~20,000、好ましくは1,000~15,000、より好ましくは1,000~10,000の範囲である。上記樹脂の重量平均分子量は、合成条件を調整することにより、所望の範囲に制御することができる。また、分子量分布が狭い方が、光感度が高くなるため、合成により得られた樹脂を適当な溶解度を持つ有機溶剤で固-液抽出したり、樹脂を良溶剤に溶解させて貧溶剤中に滴下したり、又は貧溶剤を滴下して固-液若しくは液-液抽出したりして分子量分布を制御してもよい。このフェノール樹脂の具体例としては、EP4000B(旭有機材工業:商品名)、EP4020G(旭有機材工業:商品名)、EP4050G(旭有機材工業:商品名)、EP4080G(旭有機材工業:商品名)等が挙げられる。
 ポリヒドロキシスチレン又はその誘導体の具体例としては、例えば、ポリ-o-ヒドロキシスチレン、ポリ-m-ヒドロキシスチレン、ポリ-p-ヒドロキシスチレン、ポリ-α-メチル-o-ヒドロキシスチレン、ポリ-α-メチル-m-ヒドロキシスチレン、ポリ-α-メチル-p-ヒドロキシスチレン又はこれらの部分アセチル化物、シリル化物等が挙げられる。これらのポリヒドロキシスチレン又はその誘導体の重量平均分子量3,000~100,000、特に好ましくは4,000~20,000の範囲である。
 フェノール化合物を配合する場合の配合量は、ヒドロキシポリアミド樹脂(A)100質量部に対し、1~100質量部が好ましく、キュア形状の観点から1~70質量部が好ましい。上記配合量が70質量部以内であれば、熱硬化後の膜の耐熱性が良好である。これらはそれぞれ単独で又は2種以上を組み合わせて使用することができる。
 カルボキシル基を含有する化合物(以下、「カルボン酸化合物」ともいう。)とは、その分子中にカルボキシル基を少なくとも1つ有し、炭素原子数が6~30の化合物であり、モノカルボン酸化合物、ジカルボン酸化合物、トリカルボン酸化合物等が挙げられる。
 また、密着性の観点から、カルボン酸化合物はモノカルボン酸化合物であることが好ましく、感度の観点からは、分岐構造、環構造又は不飽和二重結合を有する化合物であることが好ましい。具体的には、2-ノネン酸、イソノナン酸、2-デセン酸、10-ウンデセン酸、3-シクロヘキセン-1-カルボン酸化合物、4-(3-ブテニルオキシ)安息香酸、m-アニス酸、4-ビフェニル酢酸、2-フェニル酪酸、4-プロピル安息香酸、ジフェニル酢酸、m-トルイル酸、m-トリル酢酸、o-アニス酸、o-トルイル酸、o-トリル酢酸、p-アニス酸、p-トルイル酸、p-トリル酢酸、3-フェニル乳酸、4-ヒドロキシフェニル乳酸、4-ヒドロキシマンデル酸、3,4-ジヒドロキシマンデル酸、4-ヒドロキシ-3-メトキシマンデル酸、2-メトキシ-2-(1-ナフチル)プロピオン酸、マンデル酸、アトロラクチン酸、アセチルマンデル酸、α-メトキシフェニル酢酸等が挙げられる。
 カルボン酸化合物は、プリベーク時の膜中に残存することで、その効果が発現するため、プリベーク膜への残存の観点から、炭素原子数8以上のカルボン酸化合物が好ましく、溶剤への溶解性の観点から、炭素原子数30以下が好ましく、経時後の析出という観点から、炭素原子数20以下がより好ましく、15以下がさらに好ましい。更に、カルボン酸化合物を膜中に効率よく残存させる手段として、カルボキシル基のα位にヒドロキシル基、エーテル基、及びエステル基から選ばれる官能基があることが好ましく、その中でも特に、エーテル基、エステル基が基板との密着性の観点から好ましく、また、感度の観点からは、硬化樹脂膜となる際に、プリベーク後に残存したカルボン酸化合物が樹脂組成物を揮発しないよう、その部位がメチロール基やアルコキシメチル基等の架橋基となることが特に好ましい。
 上記カルボン酸化合物は、単独で使用しても2種以上混合して使用してもよい。
 上記カルボン酸化合物を配合する場合の配合量は、ヒドロキシポリアミド樹脂(A)100質量部に対し、1~100質量部が好ましく、密着性の観点から、1~40質量部がより好ましく、感度の観点から、5~20質量部がさらに好ましい。
 カルボン酸化合物化合物の配合量が1質量部以上であれば露光部の現像残渣が少なくなり、感光性樹脂組成物を用いて形成される膜とシリコン基板との密着性が良好であり、一方、上記配合量が40質量部以下であれば、硬化後の膜の引っ張り伸び率が良好である。
 スルホニル基を含有する化合物(以下、「スルホン酸化合物」ともいう。)とは、その分子中にスルホニル基を少なくとも1つ有する炭素原子数が1~20の化合物である。具体的には、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、p-キシレン-2-スルホン酸、メシチレンスルホン酸、2-ナフタレンスルホン酸、ピリジン-2-スルホン酸、ピリジン-3-スルホン酸、(±)-10-カンファースルホン酸等が挙げられる。
 上記スルホン酸化合物は、単独で使用しても2種以上混合して使用してもよい。
 上記スルホン酸化合物を配合する場合の配合量は、ヒドロキシポリアミド樹脂(A)100質量部に対し、0.1~15質量部が好ましく、密着性の観点から、0.5~10質量部がより好ましく、感度の観点から、1~5質量部がさらに好ましい。
 スルホン酸化合物の配合量が1質量部以上であれば露光部の現像残渣が少なくなり、感光性樹脂組成物を用いて形成される膜とシリコン基板との密着性が良好であり、一方、上記配合量が15質量部以下であれば、硬化後の膜の引っ張り伸び率が良好である。
 これらの官能基を有する化合物の中で、良好なリソグラフィー性能と2.38質量%TMAHに対して、適度なアルカリ溶解性を両立する好ましい化合物としては、フェノール化合物、カルボン酸化合物が挙げられる。
熱により架橋反応を起こす化合物(D)
 本発明に係る感光性樹脂組成物には、現像して得られたレリーフパターンを加熱処理(以下、この工程を「キュア」という。)を行った後の硬化時残膜率が向上するため、初期膜厚を薄くすることが可能となり、より良好なリソグラフィー性能を発現させるという観点から、熱により架橋反応を起こす化合物(D)を更に配合することが好ましい。
 熱により架橋反応を起こす化合物(D)とは、熱によりヒドロキシポリアミド樹脂(A)と架橋反応を起こす化合物が用いられる。ここで、架橋反応を起こす温度としては、150~350℃が好ましい。架橋反応は、現像によりパターン形成をした後の加熱処理の際に生じる。
 熱により架橋反応を起こす化合物(D)の具体例としては、エポキシ化合物、オキセタン化合物、メラミン化合物及びアルケニル化合物、並びに下記一般式(6)で表される構造を有する化合物、下記一般式(7)で表される構造を有する化合物、及び下記一般式(8)で表される構造を有する化合物が挙げられるが、これらに限定されない。
 ここでアルケニル化合物というのは、(メタ)アクリレート基、アリル基、ビニル基等の不飽和二重結合基を含有した化合物を表す。
 エポキシ化合物の具体例としては、ビスフェノールA型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ポリスルフィド型エポキシ樹脂等が挙げられるが、これらに限定されない。
 オキセタン化合物は4員環状エーテル構造を持つ化合物であり、カチオン開環重合反応、あるいはカルボン酸、チオール、フェノールとの付加反応が可能なものである。オキセタン化合物の具体例としては、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、ビス[1-エチル(3-オキセタニル)]メチルエーテル、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、4,4′-ビス(3-エチル-3-オキセタニルメトキシ)ビフェニル、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ジエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ビス(3-エチル-3-オキセタニルメチル)ジフェノエート、トリメチロールプロパントリス(3-エチル-3-オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル、ポリ[[3-[(3-エチル-3-オキセタニル)メトキシ]プロピル]シラセスキオキサン]誘導体、オキセタニルシリケート、フェノールノボラック型オキセタン、1,3-ビス[(3-エチルオキセタンー3-イル)メトキシ]ベンゼン、OXT121(東亞合成:商品名)、OXT221(東亞合成:商品名)等が挙げられるが、これらに限定されない。
 耐熱性の観点から、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、4,4′-ビス(3-エチル-3-オキセタニルメトキシ)ビフェニル、OXT121(東亞合成:商品名)が好ましい。
 メラミン化合物の具体例としては、トリメチロールメラミン、ヘキサメチロールメラミン、トリメトキシメチルメラミン、ヘキサメトキシメチルメラミン等が挙げられ、保存安定性の観点から、トリメトキシメチルメラミン、ヘキサメトキシメチルメラミンが好ましい。
 アリル化合物の具体例としては、アリルアルコール、アリルアニソール、安息香酸アリルエステル、桂皮酸アリルエステル、N-アリロキシフタルイミド、アリルフェノール、アリルフェニルスルフォン、アリルウレア、フタル酸ジアリル、イソフタル酸ジアリル、テレフタル酸ジアリル、マレイン酸ジアリル、イソシアヌル酸ジアリル、トリアリルアミン、イソシアヌル酸トリアリル、シアヌル酸トリアリル、トリアリルアミン、1,3,5-ベンゼントリカルボン酸トリアリル、トリメリット酸トリアリル(和光純薬工業社製 TRIAM705)、ピロメリット酸トリアリル(和光純薬工業社製 TRIAM805)、オキシジフタル酸トリアリル、トリアリルホスフェート、トリアリルホスファイト、クエン酸トリアリルが挙げられるが、これらに限定されない。感度の観点から、トリメリット酸トリアリル(和光純薬工業社製 TRIAM705)、ピロメリット酸トリアリル(和光純薬工業社製 TRIAM805)が好ましい。
 (メタ)アクリレート化合物とは、アクリル酸エステル、メタクリル酸エステル、アクリルアミド、及びメタクリルアミドからなる群から選択される化合物をいう。
 好ましいものの具体例としては、新中村化学工業社製NK-エステルシリーズ M-20G、M-40G、M-90G、M-230G、CB-1、SA、S、AMP-10G、AMP-20G、AMP-60G、AM-90G、A-SA、LA、1G、2G、3G、4G、9G、14G、23G、BG、HD、NPG、9PG、701、BPE-100、BPE-200、BPE-500、BPE―1300、A-200、A-400、A-600、A-HD、A-NPG、APG-200、APG-400、APG-700、A-BPE-4、701A、TMPT、A-TMPT、A-TMM-3、A-TMM-3L、A-TMMT及び1-(アクリロイルオキシ)-3-(メタクリロイルオキシ)-2-プロパノール、1,3-ビス(アクリロイルオキシ)-2-プロパノール等が挙げられるが、これらに限定されない。(メタ)アクリレート化合物とは、炭素原子数9以上であることが好ましく、溶剤への溶解性の観点から、30以下が好ましい。
 またアルカリ溶解性の観点から、(メタ)アクリレート化合物は、ヒドロキシル基、カルボニル基、アミノ基、チオール基等の極性基を含有することが好ましく、更に密着性の観点から、極性基はヒドロキシル基であることが好ましい。その具体的な化合物としては、NK-701、1-(アクリロイルオキシ)-3-(メタクリロイルオキシ)-2-プロパノール、1,3-ビス(アクリロイルオキシ)-2-プロパノール等が挙げられる。なお、本明細書中、(メタ)アクリレートとは、アクリレートとメタクリレートの両者を指す。
 下記一般式(6):
Figure JPOXMLDOC01-appb-C000062
{式中、R6は、水素原子、又はメチル基、エチル基、n-プロピル基、及びイソプロピル基からなる群より選ばれる1価の基であり、R7は、水素原子、ヒドロキシル基、炭素原子数1~10のアルキル基、アルコキシ基、エステル基、及びウレタン基からなる群より選ばれる少なくとも1つの1価の有機基であり、n7は、1~5の整数であり、n8は、0~4の整数であり、ここで、n7+n8=5であり、m4は、1~4の整数であり、Z4は、m4=1のとき、CH2OR6又はR7であり、m4=2~4のとき、単結合又は2~4価の有機基であり、ここで、CH2OR6、及びR7が複数存在する場合、R6及びR7は、互いに同一でも異なっていてもよい。}で表される構造を有する化合物としては、メチロール化合物やアルコキシメチル化合物が挙げられる。
 一般式(6)で表される化合物の具体例としては、感度の観点から、下記一般式(27):
Figure JPOXMLDOC01-appb-C000063
及び下記一般式(28):
Figure JPOXMLDOC01-appb-C000064
からなる群より選ばれる化合物がより好ましい。
 下記一般式(7):
Figure JPOXMLDOC01-appb-C000065
{式中、R8及びR9は、それぞれ独立に、水素原子、又は炭素原子数1~10の炭化水素基及びR10CO-(ここで、R10は、炭素原子数1~10の炭化水素基である。)からなる群から選ばれる基であり。}で表される構造を有する化合物としては、N-メチロール化合物やN-アルコキシメチル化合物が挙げられる。
 一般式(7)で表される化合物は、具体的には、感度の観点から、下記一般式(29):
Figure JPOXMLDOC01-appb-C000066
 からなる群より選ばれる化合物がより好ましい。
 下記一般式(8):
Figure JPOXMLDOC01-appb-C000067
{式中、D1は、炭素原子数1~6のアルキル基、アルケニル基、及び架橋し得る有機基からなる群より選ばれる官能基であり、M1は、-CH2-、-O-、及び-S-からなる群から選ばれる基であり、Z5は2価の有機基であり、n9は、0~4の整数であり、D1が複数ある場合、複数のD1は同じでも異なっていてもよい。}で表される構造を有する化合物としては、ビスアリルナジイミド化合物やビスノルボルネンイミド化合物などが挙げられる。
 一般式(8)で表される化合物は、具体的には、感度の観点から、下記一般式(30):
Figure JPOXMLDOC01-appb-C000068
 からなる群より選ばれる化合物がより好ましい。
 上記熱により架橋反応を起こす化合物(D)は単独で使用しても2つ以上混合して使用してもよい。
 上記熱により架橋反応を起こす化合物(D)を配合する場合の配合量は、ヒドロキシポリアミド樹脂(A)100質量部に対し、1~50質量部が好ましく、2~30質量部がより好ましく、4~20質量部がさらに好ましい。該化合物の配合量が1質量部以上だと硬化時によるキュア形状が良くなり、50質量部以下だと硬化後の膜の引っ張り伸び率と良好であり、良好な密着性とリソグラフィー性能を示す。
熱により酸を発生する化合物(E)
 本発明に係る感光性樹脂組成物には、キュアした後に基板とのより良好な密着性を発現させるという観点から、熱により酸を発生する化合物(E)を更に配合することが好ましい。
 熱により酸を発生する化合物(E)は、上記熱により架橋反応を起こす化合物(D)の反応を促進させる化合物であり、酸が発生する温度としては、150~350℃が好ましい。
 具体的な化合物としては、酢酸エチル,酢酸メチル,酢酸t-ブチル、アセト酢酸t-ブチル、アクリル酸t-ブチル、クロロ酢酸アリル、クロロ酢酸n-ブチル、クロロ酢酸t-ブチル、クロロ酢酸エチル、クロロ酢酸メチル、クロロ酢酸ベンジル、クロロ酢酸イソプロピル、クロロ酢酸2-メトキシエチル、ジクロロ酢酸メチル、トリクロロ酢酸メチル、トリクロロ酢酸エチル、トリクロロ酢酸2-エトキシエチル、シアノ酢酸t-ブチル、メタクリル酸t-ブチル、トリフルオロ酢酸エチル、トリフルオロ酢酸メチル、トリフルオロ酢酸フェニル、トリフルオロ酢酸ビニル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸アリル、安息香酸エチル、安息香酸メチル、安息香酸t-ブチル、2-クロロ安息香酸メチル、2-クロロ安息香酸エチル、4-クロロ安息香酸エチル、2,5-ジクロロ安息香酸エチル、2,4-ジクロロ安息香酸メチル、p-フルオロ安息香酸エチル、p-フルオロ安息香酸メチル、ペンタクロロフェニルカルボン酸t-ブチル、ペンタフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸エチル、クロトン酸t-ブチルなどのカルボン酸エステル類、フェノールフタレイン、チモールフタレインなどの環状カルボン酸エステル類、メタンスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸2-メトキシエチル、メタンスルホン酸2-イソプロポキシエチル、p-トルエンスルホン酸フェニル、p-トルエンスルホン酸エチル、p-トルエンスルホン酸メチル、p-トルエンスルホン酸2-フェニルエチル、p-トルエンスルホン酸n-プロピル、p-トルエンスルホン酸n-ブチル、p-トルエンスルホン酸t-ブチル、p-トルエンスルホン酸n-ヘキシル、p-トルエンスルホン酸n-ヘプチル、p-トルエンスルホン酸n-オクチル、p-トルエンスルホン酸2-メトキシエチル、p-トルエンスルホン酸プロパルギル、p-トルエンスルホン酸3-ブチニル、トリフルオロメタンスルホン酸エチル、トリフルオロメタンスルホン酸n-ブチル、パーフルオロブタンスルホン酸エチル、パーフルオロブタンスルホン酸メチル、パーフルオロオクタンスルホン酸エチル等のスルホン酸エステル類、1,4-ブタンスルトン、2,4-ブタンスルトン、1,3-プロパンスルトン、フェノールレッド、ブロモクレゾールグリーン、ブロモクレゾールパープルなどの環状スルホン酸エステル類、2-スルホ安息香酸無水物、p-トルエンスルホン酸無水物、フタル酸無水物などが挙げられる。
 これらの酸誘導体化合物のうち好ましいものとしては、メタンスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸2-メトキシエチル、メタンスルホン酸2-イソプロポキシエチル、p-トルエンスルホン酸フェニル、p-トルエンスルホン酸エチル、p-トルエンスルホン酸メチル、p-トルエンスルホン酸2-メトキシエチル、トリフルオロメタンスルホン酸エチル、トリフルオロメタンスルホン酸n-ブチル、パーフルオロブタンスルホン酸エチル、パーフルオロブタンスルホン酸メチル、パーフルオロオクタンスルホン酸エチル、1,4-ブタンスルトン、2,4-ブタンスルトンなどのスルホン酸エステル類、2-スルホ安息香酸無水物、p-トルエンスルホン酸無水物が挙げられる。
 更に基板との密着性の観点から、より好ましい化合物としては、メタンスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸2-メトキシエチル、p-トルエンスルホン酸エチル、p-トルエンスルホン酸メチル、p-トルエンスルホン酸2-メトキシエチル、トリフルオロメタンスルホン酸エチル、トリフルオロメタンスルホン酸n-ブチル、1,4-ブタンスルトン、2,4-ブタンスルトン、2-スルホ安息香酸無水物、p-トルエンスルホン酸無水物などが挙げられる。また、これらの化合物は単独で使用しても2つ以上混合して使用してもよい。
 上記熱により酸を発生する化合物(E)を配合する場合の配合量は、ヒドロキシポリアミド樹脂(A)100質量部に対し、0.1~30質量部が好ましく、0.5~10質量部がより好ましく、1~5質量部であることがさらに好ましい。添加量が0.1質量部以上だと熱硬化後のパターンを保持する効果があり、一方、添加量が30質量部以下であればリソ性能に悪影響がなく、かつ組成物の安定性が良好である。
有機溶媒(F)
 本発明においては、前記した各種成分を有機溶媒(F)に溶解してワニス状にし、感光性樹脂組成物の溶液として使用することが好ましい。このような有機溶媒(F)としては、N-メチル-2-ピロリドン、γ-ブチロラクトン(以下、「GBL」ともいう。)、シクロペンタノン、シクロヘキサノン、イソホロン、N,N-ジメチルアセトアミド(以下、「DMAc」ともいう。)、ジメチルイミダゾリノン、テトラメチルウレア、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル(以下、「DMDG」ともいう。)、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、メチル-1,3-ブチレングリコールアセテート、1,3-ブチレングリコール-3-モノメチルエーテル、ピルビン酸メチル、ピルビン酸エチル、メチル-3-メトキシプロピオネート等を単独または混合して使用できる。
 これらの溶媒のうち、非アミド系溶媒がフォトレジストなどへの影響が少ない点から好ましい。具体的なより好ましい例としてはγ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、テトラヒドロフルフリルアルコールなどを挙げることができる。これらの有機溶剤は単独で使用しても2つ以上混合して使用してもよい。
 有機溶媒(F)を配合する場合の配合量は、ヒドロキシポリアミド樹脂(A)100質量部に対し、好ましくは100~2,000質量部であり、有機溶媒の添加量を変化させることで、粘度をコントロールでき、より好ましくは100~1,000質量部である。有機溶媒の添加量を調整することにより、塗布装置、及び塗布厚みに適した粘度となり、硬化レリーフパターンの製造を容易にすることができる。
その他の添加剤(G)
 本発明に係る感光性樹脂組成物には、必要に応じて、アルコール、染料、香料、塗布膜の面内均一性を向上させるための界面活性剤、またシリコン基板や銅基板との接着性を高めるための接着助剤、保存時の組成物溶液の粘度や光感度の安定性を向上させるために重合禁止剤等を添加することも可能である。
 上記添加剤について更に具体的に述べると、アルコールは、炭素原子数が4~14であることが好ましく、具体的には、シクロプロピルカルビノール、2-シクロヘキセン-1-オール、シクロヘキサンメタノール、4-メチル-1-シクロヘキサンメタノール、3,4-ジメチルシクロヘキサノール、4-エチルシクロヘキサノール、4-t-ブチロシクロヘキサノール、シクロヘキサンエタノール、3-シクロヘキシル-1-プロパノール、1-シクロヘキシル-1-ペンタノール、3,3,5-トリメチルシクロヘキサノール、ノルボルナン-2-メタノール、シクロオクタノール、2,3,4-トリメチル-3-ペンタノール、2,4-ヘキサジエン-1-オール、cis-2-ヘキセン-1-オール、trans-2-ヘプテン-1-オール、cis-4-ヘプテン-1-オール、cis-3-オクテン-1-オール、4-エチル-1-オクチン-3-オール、2,7-オクタジエノール、3,6-ジメチル-1-ヘプチン-3-オール、3-エチル-2-メチル-3-ペンタノール、2-エチル-1-ヘキサノール、2,3-ジメチル-2-ヘキサノール、2,5-ジメチル-2-ヘキサノール、trans,cis-2,6-ノナジエン-1-オール、1-ノネン-3-オール、cis-2-ブテン-1,4-ジオール、2,2-ジエチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,5-ヘキサジエン-3,4-ジオール、2,5-ジメチル-3-ヘキシン-2,5-ジオール、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、1,2-シクロヘキサンジオール、trans-p-メンタン-3,8-ジオール、2,4-ジメトキシベンジルアルコール、ブチロイン等が挙げられる。
 これらの中でも、2,3,4-トリメチル-3-ペンタノール、2,4-ヘキサジエン-1-オール、cis-2-ヘキセン-1-オール、trans-2-ヘプテン-1-オール、cis-4-ヘプテン-1-オール、cis-3-オクテン-1-オール、trans,cis-2,6-ノナジエン-1-オール、cis-2-ブテン-1,4-ジオール、1,5-ヘキサジエン-3,4-ジオール等の不飽和結合や枝分かれ構造を有するヒドロキシル基含有化合物が好ましく、基板との密着性の観点から、ジオールよりモノアルコールが好ましく、その中でも2,3,4-トリメチル-3-ペンタノール、3-エチル-2-メチル-3-ペンタノール、グリセロール-α,α’-ジアリルエーテルが特に好ましい。
 これらのヒドロキシル基含有化合物は単独で使用しても2つ以上混合して使用してもよい。
 上記のアルコールを配合する場合の配合量は、ヒドロキシポリアミド樹脂(A)100質量部に対し、0.01~70質量部が好ましく、0.1~50質量部がより好ましく、1~40質量部がさらに好ましく、5~25が特に好ましい。ヒドロキシル基含有化合物の配合量が0.01質量部以上だと露光部の現像残渣が少なくなり、70質量部以下だと硬化後の膜の引っ張り伸び率が良好である。
 染料としては、例えば、メチルバイオレット、クリスタルバイオレット、マラカイトグリーン等が挙げられる。染料を配合する場合の配合量は、ヒドロキシポリアミド樹脂(A)100質量部に対し、0.1~10質量部が好ましい。添加量が10質量部以下であれば、熱硬化後の膜の耐熱性が良好である。
 香料としては、テルペン類化合物が挙げられ、溶剤への溶解性の観点からモノテルペン化合物、セスキテルペン化合物が好ましい。
 具体的には、リナロール、イソフィトール、ジヒドロリナロール、酢酸リナリール、リナロールオキシド、ゲラニルリナロール、ラバンジュロール、テトラヒドロラバンジュロール、酢酸ラバンジュロール、ネロール、酢酸ネロール、ゲラニオール、シトラール、酢酸ゲラニル、ゲラニルアセトン、ゲラニウム酸、シトラルジメチルアセタル、シトロネロール、シトロネラール、ヒドロキシシトロネラール、ジメチルオクタナール、シトロネリル酸、酢酸シトロネリル、タゲトン、アルテミシアケトン、プレゴール、イソプレゴール、メントール、酢酸メントール、イソメントール、ネオメントール、メンタノール、メンタントリオール、メンタンテトラオール、カルボメントール、メントキシ酢酸、ペリリルアルコール、ペリラアルデヒド、カルベオール、ピペリトール、テルペン-4-オール、テルピネオール、テルピネノール、ジヒドロテルピネオール、ソブレオール、チモール、ボルネオール、酢酸ボルニル、イソボルネオール、酢酸イソボルニル、シネオール、ピノール、ピノカルベオール、ミルテノール、ミルテナール、ベルベノール、ピノカンフェオール、カンファースルホン酸、ネロリドール、テルピネン、イオノン、ピネン、カンフェン、カンホレンアルデヒド、カンホロン酸、イソカンホロン酸、ショウノウ酸、アビチエン酸、グリシルレチン酸等が挙げられる。これらのテルペン化合物は単独で使用しても2つ以上混合して使用してもよい。
 香料を配合する場合の配合量は、ヒドロキシポリアミド樹脂(A)100質量部に対し、0.1~70質量部が好ましく、1~50質量部がより好ましい。添加量が70質量部以下であれば、熱硬化後の膜の耐熱性が良好である。
 界面活性剤としては、ポリプロピレングリコール、ポリオキシエチレンラウリルエーテル等のポリグリコール類、それらの誘導体からなる非イオン系界面活性剤があげられる。また、フロラード(住友3M社製:商品名)、メガファック(大日本インキ化学工業社製:商品名)、ルミフロン(旭硝子社製:商品名)等のフッ素系界面活性剤が挙げられる。さらに、KP341(信越化学工業社製:商品名)、DBE(チッソ社製:商品名)、グラノール(共栄社化学社製:商品名)等の有機シロキサン界面活性剤が挙げられる。該界面活性剤の添加により、塗布時のウエハーエッジでの塗膜のハジキをより発生し難くすることができる。
 界面活性剤を配合する場合の配合量は、ヒドロキシポリアミド樹脂(A)100質量部に対し、0~10質量部が好ましく、0.01~1質量部がより好ましい。添加量が10質量部以内であれば、熱硬化後の膜の耐熱性が良好である。
 シリコン基板や銅基板との密着性を向上させる接着助剤としては、アルキルイミダゾリン、ポリヒドロキシスチレン、ポリビニルメチルエーテル、t-ブチルノボラック、エポキシポリマー、有機ケイ素化合物、トリアゾール、テトラゾール、オキサゾール、チアゾール、イミダゾール等の複素環構造化合物が挙げられる。
 有機ケイ素化合物とは、1官能以上のアルコキシル基、及びシラノール基を含有した化合物であり、シリコンウエハーとの接着性を高めるための接着助剤となる。該有機ケイ素化合物の炭素原子数は、溶剤への溶解性の観点から、4~30であることが好ましく、4~18であることがより好ましい。
 具体的な化合物としては、3-メルカプトプロピルトリメトキシシラン(信越化学工業株式会社製:商品名 KBM803、チッソ株式会社製:商品名 サイラエースS810)、3-メルカプトプロピルトリエトキシシラン(アズマックス株式会社製:商品名 SIM6475.0)、3-メルカプトプロピルメチルジメトキシシラン(信越化学工業株式会社製:商品名 LS1375、アズマックス株式会社製:商品名 SIM6474.0)、メルカプトメチルトリメトキシシラン(アズマックス株式会社製:商品名 SIM6473.5C)、メルカプトメチルメチルジメトキシシラン(アズマックス株式会社製:商品名 SIM6473.0)、3-メルカプトプロピルジエトキシメトキシシラン、3-メルカプトプロピルエトキシジメトキシシラン、3-メルカプトプロピルトリプロポキシシラン、3-メルカプトプロピルジエトキシプロポキシシラン、3-メルカプトプロピルエトキシジプロポキシシラン、3-メルカプトプロピルジメトキシプロポキシシラン、3-メルカプトプロピルメトキシジプロポキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルジエトキシメトキシシラン、2-メルカプトエチルエトキシジメトキシシラン、2-メルカプトエチルトリプロポキシシラン、2-メルカプトエチルトリプロポキシシラン、2-メルカプトエチルエトキシジプロポキシシラン、2-メルカプトエチルジメトキシプロポキシシラン、2-メルカプトエチルメトキシジプロポキシシラン、4-メルカプトブチルトリメトキシシラン、4-メルカプトブチルトリエトキシシラン、4-メルカプトブチルトリプロポキシシラン、N-(3-トリエトキシシリルプロピル)ウレア(信越化学工業株式会社製:商品名 LS3610、アズマックス株式会社製:商品名 SIU9055.0)、N-(3-トリメトキシシリルプロピル)ウレア(アズマックス株式会社製:商品名 SIU9058.0)、N-(3-ジエトキシメトキシシリルプロピル)ウレア、N-(3-エトキシジメトキシシリルプロピル)ウレア、N-(3-トリプロポキシシリルプロピル)ウレア、N-(3-ジエトキシプロポキシシリルプロピル)ウレア、N-(3-エトキシジプロポキシシリルプロピル)ウレア、N-(3-ジメトキシプロポキシシリルプロピル)ウレア、N-(3-メトキシジプロポキシシリルプロピル)ウレア、N-(3-トリメトキシシリルエチル)ウレア、N-(3-エトキシジメトキシシリルエチル)ウレア、N-(3-トリプロポキシシリルエチル)ウレア、N-(3-トリプロポキシシリルエチル)ウレア、N-(3-エトキシジプロポキシシリルエチル)ウレア、N-(3-ジメトキシプロポキシシリルエチル)ウレア、N-(3-メトキシジプロポキシシリルエチル)ウレア、N-(3-トリメトキシシリルブチル)ウレア、N-(3-トリエトキシシリルブチル)ウレア、N-(3-トリプロポキシシリルブチル)ウレア、3-(m-アミノフェノキシ)プロピルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0598.0)、m-アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.0)、p-アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.1)アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.2)、2-(トリメトキシシリルエチル)ピリジン(アズマックス株式会社製:商品名 SIT8396.0)、2-(トリエトキシシリルエチル)ピリジン、2-(ジメトキシシリルメチルエチル)ピリジン、2-(ジエトキシシリルメチルエチル)ピリジン、(3-トリエトキシシリルプロピル)-t-ブチルカルバメート、(3-グリシドキシプロピル)トリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-i-ブトキシシラン、テトラ-t-ブトキシシラン、テトラキス(メトキシエトキシシラン)、テトラキス(メトキシ-n-プロポキシシラン)、テトラキス(エトキシエトキシシラン)、テトラキス(メトキシエトキシエトキシシラン)、ビス(トリメトキシシリル)エタン、ビス(トリメトキシシリル)ヘキサン、ビス(トリエトキシシリル)メタン、ビス(トリエトキシシリル)エタン、ビス(トリエトキシシリル)エチレン、ビス(トリエトキシシリル)オクタン、ビス(トリエトキシシリル)オクタジエン、ビス[3-(トリエトキシシリル)プロピル]ジスルフィド、ビス[3-(トリエトキシシリル)プロピル]テトラスルフィド、ジ-t-ブトキシジアセトキシシラン、ジ-i-ブトキシアルミノキシトリエトキシシラン、ビス(ペンタジオネート)チタン-O,O’-ビス(オキシエチル)-アミノプロピルトリエトキシシラン、フェニルシラントリオール、メチルフェニルシランジオール、エチルフェニルシランジオール、n-プロピルフェニルシランジオール、イソプロピルフェニルシランジオール、n-ブチルジフェニルシランジオール、イソブチルフェニルシランジオール、tert-ブチルフェニルシランジオール、ジフェニルシランジオール、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジメトキシジ-p-トリルシラン、エチルメチルフェニルシラノール、n-プロピルメチルフェニルシラノール、イソプロピルメチルフェニルシラノール、n-ブチルメチルフェニルシラノール、イソブチルメチルフェニルシラノール、tert-ブチルメチルフェニルシラノール、エチルn-プロピルフェニルシラノール、エチルイソプロピルフェニルシラノール、n-ブチルエチルフェニルシラノール、イソブチルエチルフェニルシラノール、tert-ブチルエチルフェニルシラノール、メチルジフェニルシラノール、エチルジフェニルシラノール、n-プロピルジフェニルシラノール、イソプロピルジフェニルシラノール、n-ブチルジフェニルシラノール、イソブチルジフェニルシラノール、tert-ブチルジフェニルシラノール、トリフェニルシラノール等が挙げられるが、これらに限定されない。これらは単独でも複数組み合わせて用いてもよい。
 有機ケイ素化合物としては、前記した有機ケイ素化合物の中でも、保存安定性の観点から、下記一般式(31):
Figure JPOXMLDOC01-appb-C000069
{式中、Z6は、炭素原子数1~14の置換されていてもよい芳香族環又は複素環構造をであり、R30は、炭素原子数1~20の炭化水素基であり、R31は、水素原子又は炭素原子数1~5の炭化水素基であり、n18は、1~3の整数であり、n19は、0~2の整数であり、n20は、1~3の整数であり、ここで、n22+n23+n24=4である。}、又は下記一般式(32):
Figure JPOXMLDOC01-appb-C000070
で表される有機ケイ素化合物であることが好ましい。
 上記一般式(31)で表される有機ケイ素化合物は、耐熱性の観点から、下記一般式(33):
Figure JPOXMLDOC01-appb-C000071
{式中、R32及びR33は、水素原子又は炭素原子数1~5の炭化水素基であり、そして、m17=5であり、n21及びn22は、1~3の整数であり、ここで、n21+n22=4である。}で表される化合物であることがより好ましい。
 これら化合物の具体例としては、フェニルシラントリオール、トリメトキシフェニルシラン、トリメトキシ(p-トリル)シラン、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジメトキシジ-p-トリルシラン、トリフェニルシラノール等が挙げられる。
 有機ケイ素化合物は、単独で使用しても2つ以上混合して使用してもよい。有機ケイ素化合物を配合する場合の配合量は、ヒドロキシポリアミド樹脂(A)100質量部に対し、1~40質量部であり、2~30質量部が好ましく、4~20質量部がより好ましい。該化合物の配合量が1質量部以上であれば露光部の現像残渣がなく、シリコン基板との密着性が良好であり、一方、40質量部以下であれば硬化後の膜の引っ張り伸び率と良好であり、良好な密着性とリソグラフィー性能を示す。
 複素環構造化合物の具体的な化合物としては、2-メルカプトベンゾオキサゾール、2-メルカプトベンズチアゾール、1,3-ジメチル-5-ピラゾロン、3,5-ジメチルピラゾール、5,5-ジメチルヒダントイン、3-メチル-5-ピラゾロン、3-メチル-1-フェニル-5-ピラゾロン、2-メチルイミダゾール、1,10-フェナントロリン、フェノチアジン、フェノキサジン、フェノキサチン、メルカプトベンゾチアゾール、メルカプトベンズオキサゾール、メチルチオベンゾチアゾール、ジベンゾチアジルジスルフィド、メチルチオベンズイミダゾール、ベンズイミダゾール、フェニルメルカプトチアゾリン、メルカプトフェニルテトラゾール、及びメルカプトメチルテトラゾール等が挙げられる。また、ベンゾトリアゾール類の例としては、下記一般式(34):
Figure JPOXMLDOC01-appb-C000072
{式中、Z7は、水素原子、又は炭素原子数1~5の炭化水素基、及びカルボキシル基からなる群から選ばれる少なくとも1つの基であり、Z8は、水素原子、又はヒドロキシル基、炭素原子数1~5の炭化水素基、及びアミノアルキル基からなる群から選ばれる少なくとも1つの基である。}が挙げられる。
 該複素環含有化合物の中でも、銅基板上における感度の観点から、5-メルカプト-1-フェニルテトラゾール、1,2,3-ベンゾトリアゾール、ベンゾチアゾール、ベンゾオキサゾール、ベンズイミダゾール、及び2-メルカプトベンゾオキサゾールからなる群から選ばれる化合物がより好ましい。
 これらの複素環含有化合物は単独で使用しても2つ以上混合して使用してもよい。
 複素環含有化合物を配合する場合の配合量は、ヒドロキシポリアミド樹脂(A)100質量部に対し、0.1~30質量部が好ましく、0.5~10質量部がより好ましい。複素環含有化合物の配合量が0.1質量部以上だと熱硬化後の膜の銅基板に対する接着性が良好になり、30質量部以下だと組成物の安定性が良好である。
 重合禁止剤としては、例えば、ヒドロキノン、N-ニトロソジフェニルアミン、p-tert-ブチルカテコール、フェノチアジン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-p-メチルフェノール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルフォプロピルアミノ)フェノール、N-ニトロソ-N-フェニルヒドロキシアミンアンモニウム塩、N-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム塩、N-ニトロソ-N-(1-ナフチル)ヒドロキシルアミンアンモニウム塩、ビス(4-ヒドロキシ-3,5-ジtert-ブチル)フェニルメタン等を用いることができる。
 重合禁止剤を配合する場合の配合量は、ヒドロキシポリアミド樹脂(A)100質量部に対し、0.01~5質量部であることが好ましく、0.05~1質量部であることがより好ましい。添加量が5質量部以内であれば、熱硬化後の膜の耐熱性が良好である。
 主鎖に(チオ)エステル構造を有するポリベンゾオキサゾール前駆体、ポリイミド前駆体、及びフェノール基含有ポリイミドからなる群より選ばれる少なくとも1種のアルカリ可溶性重合体とナフトキノンジアジド化合物とを含む感光性樹脂組成物であって、
 (i)下記工程(a)、(b)、及び(c):
 (a)前記アルカリ可溶性重合体を樹脂固形分35質量%の濃度でγ-ブチロラクトンに溶解させて、アルカリ可溶性重合体の溶液を作製する;
 (b)前記(a)で作製したアルカリ可溶性重合体の溶液を6インチシリコンウェハー上に塗布し、125℃180秒間のプリベークを行い、接触式膜厚測定器を使用して測定する時の膜厚が10μm±0.2μmである膜を形成し;及び
 (c)非接触式膜厚測定器を用いて、プリベーク後の膜を任意の屈折率nf1で測定して得られた膜厚をTf1とし、前記(b)における接触式膜厚測定器で測定して得られた膜厚をTr1とする時に求められる、真の屈折率nr1を以下の式:
  nr1=nf1×Tf1/Tr1
により求める;
を順に行って得られた前記アルカリ可溶性重合体の屈折率(nr1)は1.570~1.650の範囲にあり、
 (ii)下記(a’)、(b’)、及び(c’):
 (a’)前記アルカリ可溶性重合体100質量部を樹脂固形分35質量%の濃度でγ-ブチロラクトンに溶解させ、さらに前記ナフトキノンジアジド化合物15質量部を溶解させて、感光性樹脂組成物の溶液を作製する;
 (b’)前記(a’)で作製した感光性樹脂組成物の溶液を6インチシリコンウェハー上に塗布し、125℃180秒間のプリベークを行い、接触式膜厚測定器を使用して測定する時の膜厚が10μm±0.2μmである膜を形成し;及び
 (c’)非接触式膜厚測定器を用いて、プリベーク後の膜を任意の屈折率nf2で測定して得られた膜厚をTf2とし、前記(b’)における接触式膜厚測定器で測定して得られた膜厚をTr2とする時に求められる、真の屈折率nr2を以下の式:
  nr2=nf2×Tf2/Tr2
により求める;
を順に行って得られた前記感光性樹脂組成物の屈折率(nr2)と、前記アルカリ可溶性重合体の屈折率(nr1)とが、以下の条件:
  {1-アルカリ可溶性重合体の屈折率(nr1)/感光性樹脂組成物の屈折率(nr2)}×100=1.0~3.0(%)
を満たす前記感光性樹脂組成物も本発明の範囲内にある。
 前記屈折率に関する条件を満たすことによって、現像残膜率が高くかつ高感度であり、また高い伸度及び高い保存安定性を有する感光性樹脂組成物となる。
 その機構は定かではないが、発明者は以下のように推測している。主鎖に(チオ)エステル構造を有するアルカリ可溶性重合体を用いることで、(チオ)エステル基含有構造の疎水性が発揮されてアルカリ現像液自体が組成物へ浸透し難くなる環境となる。エステル構造であることがより好ましい。そして、アルカリ可溶性重合体の屈折率(nr)が1.570-1.650であることは、アルカリ可溶性重合体同士の分子間距離としてナフトキノンジアジド化合物が層間挿入されやすい距離であることを示していると推察しており、より好ましい範囲としては1.570-1.630である(数値が低いほど、分子間距離が広い)。
 感光性樹脂組成物の屈折率は、感光性樹脂組成物中のナフトキノンジアジド化合物の存在割合に左右されるが、ある程度以上で飽和状態となる。感光性樹脂組成物の屈折率の測定条件を、アルカリ可溶性重合体100質量部に対してナフトキノンジアジド化合物15質量部とすることで、飽和状態の屈折率を測定することができる。感光性樹脂組成物の屈折率(nr2)がアルカリ可溶性重合体の屈折率(nr1)より高いということは、アルカリ可溶性重合体の分子間の自由体積にナフトキノンジアジド化合物が適度に層間挿入されていることを示していると推察している。{1-アルカリ可溶性重合体の屈折率(nr1)/感光性樹脂組成物の屈折率(nr2)}×100=1.0~3.0(%)を満たすことにより、上記層間挿入のメカニズムが有効に作用し、上記効果を奏する感光性樹脂組成物となる。この範囲は、1.5%~3.0%がより好ましい。
 アルカリ可溶性重合体又は感光性樹脂組成物の屈折率を測定するに際しては、γ-ブチロラクトンを用いて溶解させるが、γ-ブチロラクトンに溶解しない場合は、アルカリ可溶性重合体が溶解する任意の溶媒を用いて、希釈してもよい。
 接触式膜厚測定装置としては、例えば、KLA TENCOR社製P-15が挙げられ、非接触式膜厚測定装置としては、大日本スクリーン製造社製ラムダエースが挙げられる。
<硬化レリーフパターン、及び半導体装置の製造方法>
 以下、本発明の硬化レリーフパターンの製造方法について説明する。
 本発明に係る感光性樹脂組成物を用いて、以下の方法により、硬化レリーフパターンを製造することができる。
 以下の工程:
 (1)前記した感光性樹脂組成物又感光性樹脂組成物の溶液を塗布して得られた感光性樹脂層を基板上に形成する工程、
 (2)露光する工程、
 (3)現像する工程、
 (4)得られたレリーフパターンを加熱処理する工程、
を含む、硬化レリーフパターンの製造方法。
(1)感光性樹脂組成物からなる感光性樹脂層を基板上に形成する工程(第一の工程)
 感光性樹脂組成物又はその溶液を、例えばシリコンウエハー、セラミック基板、アルミ基板等の基板に、スピナーを用いた回転塗布、又はダイコーター、ロールコーター等のコータ-により塗布する。これをオーブンやホットプレートを用いて50~140℃、好ましくは100~140℃の熱をかけて乾燥して有機溶媒を除去する(以下、「ソフトベーク」又は「プリベーク」ともいう。)。
(2)マスクを介して化学線で露光するか又は光線、電子線若しくはイオン線を直接照射して露光する工程(第二の工程)
 次いで、感光性樹脂層を、マスクを介して、コンタクトアライナーやステッパーを用いて化学線による露光を行うか又は光線、電子線若しくはイオン線を直接照射して露光する。活性光線としては、g線、h線、i線、KrFレーザーを用いることができる。
(3)ポジ型感光性組成物の場合は該露光部を現像液で溶出又は除去して現像する工程(第三の工程)
 次に、ポジ型感光性組成物の場合は該露光部を、ネガ型感光性組成物の場合は該未露光部を現像液で溶解除去し、引き続きリンス液によるリンスを行うことで所望のレリーフパターンを得る。現像方法としてはスプレー、パドル、ディップ、超音波等の方式が可能である。リンス液として蒸留水、脱イオン水等が使用できる。
 感光性樹脂組成物により形成された膜を現像するために用いられる現像液は、ヒドロキシポリアミド樹脂(A)を溶解除去するものであり、アルカリ化合物を溶解したアルカリ性水溶液であることが必要である。現像液中に溶解されるアルカリ化合物は、無機アルカリ化合物又は有機アルカリ化合物のいずれであってもよい。
 無機アルカリ化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、リン酸水素二アンモニウム、リン酸水素二カリウム、リン酸水素二ナトリウム、ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、ホウ酸リチウム、ホウ酸ナトリウム、ホウ酸カリウム、アンモニア等が挙げられる。
 また、有機アルカリ化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、トリメチルヒドロキシエチルアンモニウムヒドロキシド、メチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、n-プロピルアミン、ジ-n-プロピルアミン、イソプロピルアミン、ジイソプロピルアミン、メチルジエチルアミン、ジメチルエタノールアミン、エタノールアミン、及びトリエタノールアミン等が挙げられる。
 さらに、必要に応じて、上記アルカリ性水溶液に、メタノール、エタノール、プロパノール、エチレングリコール等の水溶性有機溶媒、界面活性剤、保存安定剤、樹脂の溶解抑止剤等を適量添加することができる。
(4)得られたレリーフパターンを加熱処理する工程(第四の工程)
 最後に、得られたレリーフパターンをキュアして、ポリベンズオキサゾール構造を有する樹脂からなる耐熱性硬化レリーフパターンを形成する。加熱装置としては、オーブン炉、ホットプレート、縦型炉、ベルトコンベアー炉、圧力オーブン等を使用することができ、加熱方法としては、熱風、赤外線、電磁誘導による加熱等が推奨される。温度は200~450℃が好ましく、250~400℃がより好ましい。加熱時間は15分~8時間が好ましく、1時間~4時間がより好ましい。雰囲気としては、窒素、アルゴン等不活性ガス中が好ましい。
 本発明の感光性樹脂組成物を用いて作製した半導体装置は、公知の半導体装置の製造方法と組み合わせることで、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、バンプ構造を有する装置の保護膜として、感光性樹脂組成物からなる硬化レリーフパターンを有するものとして、製造することができる。
 半導体装置用途の例としては、半導体素子の上部に設けられた硬化膜を備えるものであって、その硬化膜が上述の感光性樹脂組成物の硬化膜からなる硬化レリーフパターンであるものが挙げられる。該硬化膜としては、半導体素子上のパッシベーション膜、パッシベーション膜上に上述の感光性樹脂組成物の硬化膜を形成してなるバッファーコート膜等の保護膜、半導体素子上に形成された回路上に上述のポジ型感光性樹脂組成物の硬化膜を形成してなる層間絶縁膜等の絶縁膜、α線遮断膜、平坦化膜、突起(樹脂ポスト)、隔壁等を挙げることができる。
 また、本発明の感光性樹脂組成物は、多層回路の層間絶縁、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、表示体装置の液晶配向膜等の用途、発光素子の用途にも有用である。
 表示体装置用途の例としては、表示体素子と、該表示体素子の上部に設けられた硬化膜とを備えるものであって、その硬化膜が上述の感光性樹脂組成物の硬化膜からなる硬化レリーフパターンであるものが挙げられる。表示体素子上に上述の感光性樹脂組成物の硬化膜を形成してなる保護膜、TFT素子やカラーフィルター用等の絶縁膜または平坦化膜、MVA型液晶表示装置用等の突起、有機EL素子陰極用等の隔壁等を挙げることができる。その使用方法は、半導体装置用途に準じ、表示体素子やカラーフィルターを形成した基板上にパターン化された感光性樹脂組成物層を、上記の方法で形成することによるものである。表示体装置用途の、特に絶縁膜や平坦化膜用途では、高い透明性が要求されるが、この感光性樹脂組成物層の硬化前に、後露光工程を導入することにより、透明性に優れた樹脂層が得られることもでき、実用上更に好ましい。
 以下、本発明を参考例、実施例、及び比較例に基づいて説明する。
[参考例1:ビス(カルボキシ)トリシクロ[5,2,1,02,6]デカンの製造]
 テフロン(登録商標)製の碇型攪拌器を取り付けた、ガラス製のセパラブル3つ口フラスコに、トリシクロ[5,2,1,02,6]デカンジメタノール(東京化成工業社製)71.9g(0.366mol)をアセトニトリル1Lに溶解したもの、イオン交換水1.4Lにりん酸水素二ナトリウム256.7g(1.808mol)、りん酸二水素ナトリウム217.1g(1.809mol)を溶解したものを入れた。これに、2,2,6,6-テトラメチルピペリジン-1-オキシル(東京化成工業社製以下、「TEMPO」ともいう。)2.8g(0.0179モル)を添加し、攪拌して溶解させた。
 80%亜塩素酸ナトリウム143.2g(1.267mol)をイオン交換水850mLで希釈し、これを反応液に滴下した。次いで、5質量%ジ亜塩素酸ナトリウム水溶液3.7mLをイオン交換水7mLで希釈したものを、反応液に滴下した。この反応液を、恒温層により35~38℃に保ち、20時間攪拌して反応させた。
 反応後、反応液を12℃に冷却し、イオン交換水300mLに亜硫酸ナトリウム75gを溶解させた水溶液を反応液に滴下し、過剰の亜塩素酸ナトリウムを失活させた後、500mLの酢酸エチルで洗浄した。その後、10%塩酸115mLを滴下して反応液のpHを3~4に調整し、デカンテーションにより沈殿物を回収した。この沈殿物をテトラヒドロフラン200mLに溶解した。また、水層を500mLの酢酸エチルで2回抽出した後、食塩水で洗浄し、析出物を同じくテトラヒドロフランの溶液に溶解した。これらのテトラヒドロフラン溶液を混ぜて、無水硫酸ナトリウムで乾燥させた。この溶液をエバポレーターで濃縮、乾燥させることで、ビス(カルボキシ)トリシクロ[5,2,1,02,6]デカン58.4g(収率71.1%)の白い結晶物を得た。
[参考例2:ビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカンの製造]
 参考例1で得たビス(カルボキシ)トリシクロ[5,2,1,02,6]デカン62.5g(278mmol)、塩化チオニル97mL(1.33mol)、ピリジン0.4mL(5.0mmol)を反応容器に仕込み、25~50℃で18時間攪拌し、反応させた。反応終了後、トルエンを加え、減圧下で、過剰の塩化チオニルをトルエンと共沸させることで濃縮し、オイル状のビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカンを73.3g(収率100%)得た。
[参考例3:光酸発生剤(B)(Q-1)の合成]
 容量1Lのセパラブルフラスコに2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-ヘキサフルオロプロパン109.9g(0.3mol)、テトラヒドロフラン(THF)330g、ピリジン47.5g(0.6mol)を入れ、これに室温下で5-ノルボルネン-2,3-ジカルボン酸無水物98.5g(0.6mol)を粉体のまま加えた。そのまま室温で3日間撹拌反応を行った後にHPLCで反応を確認したところ、原料は全く検出されず、生成物が単一ピークとして純度99%で検出された。この反応液をそのまま1Lのイオン交換水中に撹拌下で滴下し、析出物を濾別し、その後これにTHF500mlを加え撹拌溶解し、この均一溶液を陽イオン交換樹脂:アンバーリスト15(オルガノ社製)100gが充填されたガラスカラムを通し残存するピリジンを除去した。次いで、この溶液を3Lのイオン交換水中に高速撹拌下で滴下することにより生成物を析出させ、これを濾別した後、真空乾燥した。
 生成物がイミド化していることは、IRスペクトルで1394cm-1及び1774cm-1のイミド基の特性吸収が現れ1540cm-1及び1650cm-1付近のアミド基の特性吸収が存在しないこと、かつ、NMRスペクトルでアミド及びカルボン酸のプロトンのピークが存在しないことにより確認した。
 次に、該生成物65.9g(0.1mol)、1,2-ナフトキノンジアジド-4-スルホニルクロライド53.7g(0.2mol)を、アセトン560gに加え、20℃で撹拌溶解した。これに、トリエチルアミン21.2g(0.21mol)をアセトン106.2gで希釈したものを、30分かけて一定速度で滴下した。この際、反応液は氷水浴などを用いて20~30℃の範囲で温度制御した。
 滴下終了後、更に30分間、20℃で撹拌放置した後、36重量%濃度の塩酸水溶液5.6gを一気に投入し、次いで、反応液を氷水浴で冷却し、析出した固形分を吸引濾別した。得られた濾液を、0.5重量%濃度の塩酸水溶液5Lに、撹拌下1時間かけて滴下し、目的物を析出させ、吸引濾別して回収した。得られたケーク状回収物を、再度イオン交換水5Lに分散させ、撹拌、洗浄、濾別回収し、この水洗操作を3回繰り返した。最後に得られたケーク状物を、40℃で24時間真空乾燥し、感光性ジアゾキノン化合物(Q-1)を得た。
[参考例4:光酸発生剤(B)(Q-2)の合成]
 容量1Lのセパラブルフラスコに、ポリヒドロキシ化合物として4,4’-(1-(2-(4-ヒドロキシフェニル)-2-プロピル)フェニル)エチリデン)ビスフェノール(本州化学工業社製、商品名:Tris-PA)化合物30g(0.0707mol)を入れ、これに、該化合物のOH基の83.3モル%に相当する量の1,2-ナフトキノンジアジド-4-スルホニルクロライド47.49g(0.177mol)をアセトン300gに撹拌溶解したものを添加した後、フラスコを恒温槽にて30℃に調整した。次にアセトン18gにトリエチルアミン17.9gを溶解したものを滴下ロートに仕込んだ後、これを30分かけてフラスコ中へ滴下した。滴下終了後更に30分間撹拌を続け、その後塩酸を滴下し、更に30分間撹拌を行い反応を終了させた。その後濾過し、トリエチルアミン塩酸塩を除去した。得られた濾液を、純水1640gと塩酸30gを混合撹拌した3Lビーカーに撹拌しながら滴下し、析出物を得た。この析出物を水洗、濾過した後、40℃減圧下で48時間乾燥し、光酸発生剤(Q-2)を得た。
[参考例5:有機ケイ素化合物(S-1)の調製]
 撹拌機、滴下ロート及び温度計を付した500mL3つ口フラスコに、二炭酸ジ-t-ブチル131.0g(0.6mol)、GBL780gを入れ、室温下で3-アミノプロピルトリエトキシシラン132.8g(0.6mol)をゆっくり室温下で滴下した。滴下するに従い、反応液は約40℃まで発熱した。また、反応の進行に伴い、炭酸ガスの発生が確認された。滴下終了後、室温で2時間攪拌した後、高速液体クロマトグラフィー(HPLC)で反応液を確認したところ、原料は全く検出されず、生成物生成物(S-1)が単一ピークとして純度98%で検出された。この様にして、有機ケイ素化合物S-1溶液を得た。得られた反応溶液はGBLに対して、S-1が20重量%となるよう調整した。S-1の構造を以下に示す:
Figure JPOXMLDOC01-appb-C000073
[参考例6:有機ケイ素化合物(S-2)の調製]
 撹拌機、滴下ロート及び温度計を付した500mL3つ口フラスコにγ-アミノプロピルトリエトキシシラン132.8g(0.6mol)、GBL780gを加えて攪拌し、フラスコを恒温槽にて30℃に調整した。フェニルイソシアネート71.4g(0.6mol)を滴下ロートに仕込んだ後、これを30分かけてフラスコ中へ滴下し、液温が50℃まで上昇した。有機ケイ素化合物S-2溶液を得た。得られた反応溶液はGBLに対して、S-2が20重量%となるよう調整した。S-2の構造を以下に示す:
Figure JPOXMLDOC01-appb-C000074
[参考例7:ヒドロキシポリアミド樹脂(A)(P-1)の合成]
 テフロン(登録商標)製の碇型攪拌器を取り付けた、容量500mLの三口フラスコに4,4-ビフェノール(東京化成工業社製)3.72g(0.02mol)、参考例2で製造したビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカンを49.5g(0.18mol)及びGBL22.3gを室温(20-25℃前後)で混合攪拌した溶液に、別途GBL94.9g中にピリジン3.16g(0.04mol)を混合させたものを、滴下ロートより滴下した。滴下に要した時間は20分、反応液温は最大で40℃であった。
 滴下後、1時間攪拌した反応溶液を、別途テフロン(登録商標)製の碇型攪拌器を取り付けた容量2Lのセパラブルフラスコ中で、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-ヘキサフルオロプロパン(以下、「6FAP」ともいう。)65.9g(0.18mol)、ピリジン19.0g(0.24mol)、GBL395g及びDMAc132gを室温で混合攪拌し溶解させ、その反応容器をメタノールにドライアイスを加えた容器(以下、「アイスバス」ともいう。)に浸して-15℃に冷却した反応溶液に、滴下ロートを用いて滴下した。反応系中は-15~0℃に保って1時間を要して反応容器に滴下した。滴下終了後、アイスバスを外し、室温状態で1時間攪拌した。さらにピリジン6.33g(0.08mol)を加えた。その後、反応液を室温に戻し、5-ノルボルネン-2,3-ジカルボン酸無水物(東京化成工業社製)19.7g(0.12mol)とピリジン9.49g(0.12mol)を加え、50℃の湯浴に浸して、反応液を24時間攪拌した。
 上記反応液にエタノールを加えていき、重合体を析出させた後、回収し、GBL697gに溶解させた。次いで、陽イオン交換樹脂(オルガノ社製、アンバーリストA21)62.1g、陰イオン交換樹脂(オルガノ社製、アンバーリスト15)59.6gでイオン交換した。この溶液をイオン交換水12Lに高速攪拌下で滴下し、重合体を分散析出させ、回収し、適宜水洗、脱水の後に真空乾燥を施し、ヒドロキシポリアミド樹脂(P-1)の紛体を得た。
 このようにして合成されたヒドロキシポリアミド樹脂のGPC(高速液体クロマトグラフィー)による重量平均分子量(Mw)は、ポリスチレン換算で26,600の単一のシャープな曲線であり、単一組成物であることを確認した。GPCの分析条件を以下に記す。
  カラム:昭和電工社製 商標名 Shodex 805M/806M直列
  容離液:N-メチルピロリドン 40℃
  流速 :1.0mL/分
  検出器:日本分光社製 商標名 RI-930
 図1に、得られたヒドロキシポリアミド樹脂P-1の13C-NMR結果を示す。138ppm及び150ppm付近にビフェニル骨格に由来するカーボンピークが観測され、更に174-176ppm付近にエステル基由来のピークが観測された。
[参考例8:ヒドロキシポリアミド樹脂(A)(P-2)の合成]
 テフロン(登録商標)製の碇型攪拌器を取り付けた、容量500mLの三口フラスコに2,2-ビフェノール(東京化成工業社製)11.2g(0.06mol)、参考例2で製造したビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカンを49.3g(0.18mol)及びGBL66.9gを室温(20~25℃前後)で混合攪拌した溶液に、別途GBL142.3g中にピリジン9.49g(0.12mol)を混合させたものを、滴下ロートより滴下した。滴下に要した時間は25分、反応液温は最大で40℃であった。
 滴下後、1時間攪拌した反応溶液を、別途テフロン(登録商標)製の碇型攪拌器を取り付けた容量2Lのセパラブルフラスコ中で、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン(クラリアントジャパン社製)(以下、「BAP」ともいう。)36.2g(0.14mol)、ピリジン14.8g(0.19mol)、GBL217g及びDMAc72.5gを入れ室温で混合攪拌し溶解させ、その反応容器をアイスバスに浸して-15℃に冷却した溶液に、滴下ロートを用いて滴下した。反応系中は-15~0℃に保って1時間を要して反応容器に滴下した。滴下終了後、アイスバスを外し、0~10℃に保って1時間攪拌し、さらにピリジン4.74g(0.06mol)を添加した。その後、反応液を室温に戻し、5-ノルボルネン-2,3-ジカルボン酸無水物(東京化成工業社製)16.4g(0.10mol)とピリジン7.91g(0.10mol)を加え、50℃の湯浴に浸して、反応液を24時間攪拌した。
 上記反応液にエタノールを加えていき、重合体を析出させた後、回収し、GBL646gに溶解させた。次いで、陽イオン交換樹脂(オルガノ社製、アンバーリストA21)62.1g、陰イオン交換樹脂(オルガノ社製、アンバーリスト15)59.6gでイオン交換した。この溶液をイオン交換水12Lに高速攪拌下で滴下し、重合体を分散析出させ、回収し、適宜水洗、脱水の後に真空乾燥し、ヒドロキシポリアミド樹脂(P-2)の紛体を得た。
 このようにして合成されたヒドロキシポリアミド樹脂のGPCによる重量平均分子量(Mw)は、ポリスチレン換算で12,700の単一のシャープな曲線であり、単一組成物であることを確認した。GPCの分析条件を以下に記す。
  カラム:昭和電工社製 商標名 Shodex 805M/806M直列
  容離液:N-メチルピロリドン 40℃
  流速 :1.0mL/分
  検出器:日本分光社製 商標名 RI-930
 図2に、得られたヒドロキシポリアミド樹脂P-2の13C-NMR結果を示す。136ppm及び146ppm付近にビフェニル骨格に由来するカーボンピークが観測され、174-176ppm付近にエステル基由来のピークが観測された。
[参考例9:ヒドロキシポリアミド樹脂(A)(P-3)の合成]
 テフロン(登録商標)製の碇型攪拌器を取り付けた容量500mLの三口フラスコに1,4-シクロヘキサンジメタノール(東京化成工業社製)5.77g(0.04mol)、参考例2で製造したビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカン49.5g(0.18mol)及びGBL44.6gを入れ、室温(20-25℃前後)で混合攪拌した溶液に、別途GBL94.9g中にピリジン6.33g(0.08mol)を混合させたものを、滴下ロートより滴下した。滴下に要した時間は20分、反応液温は最大で40℃であった。
 滴下後、1時間攪拌した反応溶液を、別途テフロン(登録商標)製の碇型攪拌器を取り付けた容量2Lのセパラブルフラスコ中で、6FAP58.6g(0.16mol)、ピリジン16.9g(0.21mol)、GBL350g及びDMAc117gを入れ室温で混合攪拌し溶解させ、その反応容器を、メタノールにドライアイスを加えた容器(以下、「アイスバス」ともいう。)内に浸して-15℃に冷却した反応溶液に、滴下ロートを用いて滴下した。反応系中は-15~0℃に保って1時間を要して反応容器に滴下した。滴下終了後、アイスバスを外し、室温状態で1時間攪拌し、さらにピリジン6.33g(0.08mol)を添加した。
 上記反応液にエタノールを加えていき、重合体を析出させた後、回収し、GBL697gに溶解させた。次いで、陽イオン交換樹脂(オルガノ社製、アンバーリストA21)62.1g、陰イオン交換樹脂(オルガノ社製、アンバーリスト15)59.6gでイオン交換した。この溶液をイオン交換水12Lに高速攪拌下で滴下し、重合体を分散析出させ、回収し、適宜水洗、脱水の後に真空乾燥し、ヒドロキシポリアミド樹脂(P-3)の紛体を得た。
 このようにして合成されたヒドロキシポリアミド樹脂のGPC(高速液体クロマトグラフィー)による重量平均分子量(Mw)は、ポリスチレン換算で27,000の単一のシャープな曲線であり、単一組成物でることを確認した。GPCの分析条件を以下に記す。
  カラム:昭和電工社製 商標名 Shodex 805M/806M直列
  容離液:N-メチルピロリドン 40℃
  流速 :1.0mL/分
  検出器:日本分光社製 商標名 RI-930
 図3に、得られたヒドロキシポリアミド樹脂P-3の13C-NMRの結果を示す。66ppm及び69ppm付近にエステル基の酸素原子のα位にあるメチレン基に由来するピークが観察され、174-176ppm付近にエステル基由来のピークが観測された。
[参考例10:ヒドロキシポリアミド樹脂(A)(P-4)の合成]
 テフロン(登録商標)製の碇型攪拌器を取り付けた容量500mLの三口フラスコ内に以下の構造:
Figure JPOXMLDOC01-appb-C000075
を有するKarenz MT BD1(昭和電工:商品名)11.8g(0.04mol)、参考例2で製造したビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカンを47.6g(0.18mol)及びGBL35.4gを室温(20-25℃前後)を入れ、混合攪拌した溶液に、別途GBL94.9g中にピリジン6.33g(0.08mol)を混合させたものを、滴下ロートより滴下した。滴下に要した時間は20分、反応液温は最大で36℃であった。
 滴下後、1時間攪拌した反応溶液を、別途テフロン(登録商標)製の碇型攪拌器を取り付けた容量2Lのセパラブルフラスコ中で、6FAP58.6g(0.16mol)、ピリジン16.9g(0.21mol)、GBL350g及びDMAc117gを入れ室温で混合攪拌し溶解させ、その反応容器をアイスバスに浸して-15℃に冷却した反応溶液に、滴下ロートを用いて滴下した。反応系中は-15~0℃に保って1時間を要して反応容器に滴下した。滴下終了後、アイスバスを外し、0~10℃に保って1時間攪拌し、さらにピリジン5.27g(0.07mol)を加えた。その後、反応液を室温に戻し、5-ノルボルネン-2,3-ジカルボン酸無水物(東京化成工業社製)19.7g(0.12mol)とピリジン9.49g(0.12mol)を加え、50℃の湯浴に浸して、反応液を24時間攪拌した。
 上記反応液にエタノールを加えていき、重合体を析出させた後、回収し、GBL697gに溶解させた。次いで、陽イオン交換樹脂(オルガノ社製、アンバーリストA21)62.1g、陰イオン交換樹脂(オルガノ社製、アンバーリスト15)59.6gでイオン交換した。この溶液をイオン交換水12Lに高速攪拌下で滴下し、重合体を分散析出させ、回収し、適宜水洗、脱水の後に真空乾燥を施し、ヒドロキシポリアミド樹脂(P-4)の紛体を得た。
 このようにして合成されたヒドロキシポリアミド樹脂のGPCによる重量平均分子量(Mw)は、ポリスチレン換算で27,400の単一のシャープな曲線であり、単一組成物であることを確認した。GPCの分析条件を以下に記す。
  カラム:昭和電工社製 商標名 Shodex 805M/806M直列
  容離液:N-メチルピロリドン 40℃
  流速 :1.0mL/分
  検出器:日本分光社製 商標名 RI-930
 図4に、得られたヒドロキシポリアミド樹脂P-4の13C-NMR結果を示す。170ppm及び付近にエステル基由来のピークが観測され、更に200ppm付近にチオエステル基由来のピークが観測される。
[参考例11:ヒドロキシポリアミド樹脂(A)(P-5)の合成]
 テフロン(登録商標)製の碇型攪拌器を取り付けた容量300mLの三口フラスコ内に1,4-シクロヘキサンジメタノール(東京化成工業社製)5.77g(0.04mol)、イソフタル酸クロリド(東京化成工業社製)18.1g(0.09mol)及びGBL72.4gを入れ、室温(20-25℃前後)で混合攪拌した溶液に、別途GBL32.1g中にピリジン6.33g(0.08mol)を混合させたものを、滴下ロートより滴下した。滴下に要した時間は25分、反応液温は最大で48℃であった。
 滴下後、1時間攪拌した反応溶液を、別途GBL124.6g中に4,4’-ジフェニルエーテルジカルボン酸ジクロライド26.2g(0.09mol)を溶解させたものとともに、別途テフロン(登録商標)製の碇型攪拌器を取り付けた容量2Lのセパラブルフラスコ中で、6FAP58.6g(0.16mol)、ピリジン16.9g(0.21mol)、GBL350g及びDMAc117gを入れ室温で混合攪拌し溶解させ、その反応容器をアイスバスに浸して-15℃に冷却した反応溶液に、滴下ロートを用いて滴下した。反応系中は-15~0℃に保って1時間を要して反応容器に滴下した。滴下終了後、アイスバスを外し、0~10℃に保って1時間攪拌し、さらにピリジン5.27g(0.07mol)を添加した。その後、反応液を室温に戻し、5-ノルボルネン-2,3-ジカルボン酸無水物(東京化成工業社製)21.9g(0.13mol)とピリジン10.5g(0.13mol)を加え、50℃の湯浴に浸して、反応液を24時間攪拌した。
 上記反応液にエタノールを加えていき、重合体を析出させた後、回収し、GBL626gに溶解させた。次いで、陽イオン交換樹脂(オルガノ社製、アンバーリストA21)62.1g、陰イオン交換樹脂(オルガノ社製、アンバーリスト15)59.6gでイオン交換した。この溶液をイオン交換水12Lに高速攪拌下で滴下し、重合体を分散析出させ、回収し、適宜水洗、脱水の後に真空乾燥を施し、ヒドロキシポリアミド樹脂(P-5)の紛体を得た。
 このようにして合成されたヒドロキシポリアミド樹脂による重量平均分子量(Mw)は、ポリスチレン換算で13,200の単一のシャープな曲線であり、単一組成物であることを確認した。GPCの分析条件を以下に記す。
  カラム:昭和電工社製 商標名 Shodex 805M/806M直列
  容離液:N-メチルピロリドン 40℃
  流速 :1.0mL/分
  検出器:日本分光社製 商標名 RI-930
 図5に、得られたヒドロキシポリアミド樹脂P-5の13C-NMR結果を示す。65-70ppm付近にエステル基の酸素原子のα位にあるメチレン基に由来するピークが観察され、165ppm付近にエステル基由来のピークが観測される。
[参考例12:ヒドロキシポリアミド樹脂(A)(P-6)の合成]
 テフロン(登録商標)製の碇型攪拌器を取り付けた容量2Lのセパラブルフラスコ中に、6FAP73.2g(0.20mol)、ピリジン21.1g(0.27mol)、GBL439g、及びDMAc146gを入れ、室温(25℃)で混合攪拌し溶解させた。これに、別途GBL88g中に5-ノルボルネン-2,3-ジカルボン酸無水物(東京化成工業社製)6.6g(0.04mol)を溶解させたものを滴下ロートより滴下した。滴下に要した時間は25分、反応液温は最大で28℃であった。
 滴下終了後、湯浴により反応液を50℃に加温し18時間撹拌した後、反応液のIRスペクトルの測定を行い1385cm-1及び1772cm-1のイミド基の特性吸収が現れたことを確認した。
 次いで、これを水浴により8℃に冷却し、これに、別途GBL212g中に4,4’-ジフェニルエーテルジカルボン酸ジクロライド53.1g(0.18mol)を溶解させたものを滴下ロートより滴下した。滴下に要した時間は60分、反応液温は最大で12℃であった。
 上記反応液にエタノールを加えていき、重合体を析出させた後これを回収し、GBL671gに溶解させた。次いで、陽イオン交換樹脂(オルガノ社製、アンバーリストA21)62.1g、陰イオン交換樹脂(オルガノ社製、アンバーリスト15)59.6gでイオン交換した。この溶液を12Lの水に高速攪拌下で滴下し重合体を分散析出させ、これを回収し、適宜水洗及び脱水の後に真空乾燥し、ヒドロキシポリアミド樹脂(P-6)としてPBO前駆体を得た。このようにして合成されたヒドロキシポリアミド樹脂のGPCによる重量平均分子量(Mw)は、ポリスチレン換算で14,000の単一のシャープな曲線であり、単一組成物が得られたことを確認した。GPCの分析条件を以下に記す。
  カラム:昭和電工社製 商標名 Shodex 805M/806M直列
  容離液:N-メチルピロリドン 40℃
  流速 :1.0mL/分
  検出器:日本分光社製 商標名 RI-930
[参考例13:ヒドロキシポリアミド樹脂(A)(P-7)の合成]
 テフロン(登録商標)製の碇型攪拌器を取り付けた容量2Lのセパラブルフラスコ中に、6FAP73.3g(0.20mol)、ピリジン21.1g(0.27mol)、GBL440g、及びDMAc147g入れ、溶解させた。6FAPが溶解した後、反応容器を、メタノールにドライアイスを加えた容器に浸して冷却した。参考例2で製造したビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカン47.5g(0.18mol)をGBL142gに溶解させ、-10~-19℃に保って30分を要して反応容器に滴下した。滴下終了後、反応容器を氷浴に浸し、0~10℃に保って2時間攪拌し、さらにピリジン9.49g(0.12mol)を反応容器に添加した。
 上記反応液にエタノールを加えていき、重合体を析出させた後これを回収し、GBL696gに溶解させた。次いで、陽イオン交換樹脂(オルガノ社製、アンバーリストA21)62.1g、陰イオン交換樹脂(オルガノ社製、アンバーリスト15)59.6gでイオン交換した。この溶液をイオン交換水12Lに高速攪拌下で滴下し、重合体を分散析出させて回収し、適宜水洗及び脱水の後に真空乾燥し、ヒドロキシポリアミド樹脂(P-7)としてPBO前駆体を得た。このようにして合成されたヒドロキシポリアミド樹脂のGPCによる重量平均分子量(Mw)は、ポリスチレン換算で36,800の単一のシャープな曲線であり、単一組成物が得られたことを確認した。GPCの分析条件を以下に記す。
  カラム:昭和電工社製 商標名 Shodex 805M/806M直列
  容離液:N-メチルピロリドン 40℃
  流速 :1.0ml/分
  検出器:日本分光社製 商標名 RI-930
[参考例14:ヒドロキシポリアミド樹脂(A)(P-8)の合成]
 テフロン(登録商標)製の碇型攪拌器を取り付けた容量2Lのセパラブルフラスコ中に、BAP51.7g(0.20mol)、ピリジン21.1g(0.27mol)、GBL310g、及びDMAc103gを入れ、溶解させた。BAPが溶解した後、反応容器を、メタノールにドライアイスを加えた容器に浸して冷却した。参考例2で製造したビス(クロロカルボニル)トリシクロ[5,2,1,02,6]デカン47.5g(0.18mol)をGBL142gに溶解させ、-10~-19℃に保って30分を要して反応容器に滴下した。滴下終了後、反応容器を氷浴に浸し、0~10℃に保って2時間攪拌し、さらにピリジン9.49g(0.12mol)を反応容器に添加した。
 上記反応液にエタノールを加えて重合体を析出させた後これを回収し、GBL671gに溶解させた。次いで、陽イオン交換樹脂(オルガノ社製、アンバーリストA21)62.1g、陰イオン交換樹脂(オルガノ社製、アンバーリスト15)59.6gでイオン交換した。この溶液をイオン交換水12Lに高速攪拌下で滴下し、重合体を分散析出させて回収し、適宜水洗及び脱水の後に真空乾燥し、ヒドロキシポリアミド樹脂P-8としてPBO前駆体を得た。このようにして合成されたヒドロキシポリアミド樹脂のGPCによる重量平均分子量(Mw)は、ポリスチレン換算で36,800の単一のシャープな曲線であり、単一組成物が得られたことを確認した。GPCの分析条件を以下に記す。
  カラム:昭和電工社製 商標名 Shodex 805M/806M直列
  容離液:N-メチルピロリドン 40℃
  流速 :1.0ml/分
  検出器:日本分光社製 商標名 RI-930
<ポジ型感光性樹脂組成物の調製>
[実施例1~6、比較例1~4]
 実施例1~6、及び比較例1~4のポジ型感光性樹脂組成物として、上記参考例7~14で得られたヒドロキシポリアミド樹脂(A)(P-1~P-8)100質量部に対して、以下の表1に示す量の上記参考例3又は4で得られた光酸発生剤(B)であるナフトキノンジアジド化合物(Q-1又はQ-2)、更に上記参考例5及び6で得られた有機ケイ素化合物S-1及びS-2を各々15質量部、GBLに溶解させて、樹脂濃度が35質量%のアルカリ可溶性重合体溶液を作製し、その後1μmのフィルターで濾過して、調製した。
Figure JPOXMLDOC01-appb-T000076
<感光性樹脂組成物の評価>
(1)パターニング特性評価(感度、現像残膜率)
・プリベーク膜の作製、及び膜厚測定
 上記実施例1~6、及び比較例1~4のポジ感光性樹脂組成物をスピンコーター(東京エレクトロン社製 クリーントラックMark8)で6インチ・シリコンウエハーにスピン塗布し、ホットプレート上125℃で180秒間プリベークして評価用膜を得た。各組成物の初期膜厚は、320℃で1時間キュアした時の硬化後樹脂膜厚で、7μmとなるように調整した。膜厚は膜厚測定装置(大日本スクリーン製造社製ラムダエース)にて測定した。
・露光
 この塗膜に、テストパターン付きレチクルを通してi線(365nm)の露光波長を有するステッパー(ニコン社製NSR2005i8A)を用いて露光量を250mJ/cm2~800mJ/cm2へと段階的に変化させて露光した。
・現像
 これをアルカリ現像液(AZエレクトロニックマテリアルズ社製AZ300MIFデベロッパー、2.38質量%水酸化テトラメチルアンモニウム水溶液)を用い、23℃の条件下で現像後膜厚が初期膜厚の85%(従来の現像残膜率)又は97%となるように現像時間を調整して現像し、純水にてリンスを行い、ポジ型のレリーフパターンを形成した。
[感度(mJ/cm2)]
 上記条件で作製した塗膜において、露光部の3.5μm正方形レリーフパターンが完全に溶解除去しうる最小露光量を感度として評価した。結果を以下の表2に示す。
[現像残膜率(%)]
 (現像後の膜厚)/(初期の膜厚)×100により求めた。結果を以下の表2に示す。
(2)硬化膜のガラス転移温度(Tg)の測定
 上記実施例1~6、及び比較例1~4のポジ感光性樹脂組成物を6インチ・シリコンウエハー上に、スピンコーター(東京エレクトロン社製 クリーントラックMark8)により塗布し、125℃で180秒間乾燥した後、昇温式オーブン(光洋サーモシステム社製 VF200B)を用いて窒素雰囲気下、320℃で1時間加熱し、膜厚10.0μmの硬化膜を得た。
 この硬化膜を、3mm幅にカットし、希フッ酸水溶液に一晩浸してフィルム片を剥離し、乾燥させたものを、TMA装置(島津製作所製 TMA-50)を用いて、窒素流量50ml/min、昇温速度10℃/minの条件によりガラス転移温度(Tg)を測定した。結果を以下の表2に示す。
(3)硬化膜の弾性率及び伸度の測定
 上記実施例1~6、及び比較例1~4のポジ感光性樹脂組成物を、6インチ・シリコンウエハー上に、スピンコーター(東京エレクトロン社製 クリーントラックMark8)により塗布し、125℃で180秒間乾燥した後、昇温式オーブン(光洋サーモシステム社製 VF200B)を用いて窒素雰囲気下、320℃で1時間加熱し、膜厚10.0μmの耐熱性硬化膜を得た。
 この硬化膜を、3mm幅にカットし、希フッ酸水溶液に一晩浸してフィルム片を剥離し、乾燥させたものを、長さ50mmになるようにカットし、TENSILON(オリエンテック社製 UTM-II-20)を用いて、試験速度40mm/min、初期加重0.5fsで、硬化膜の弾性率及び伸度を測定した。結果を以下の表2に示す。
(4)室温4週間粘度変化率
 上記実施例1~6、及び比較例1~4のポジ感光性樹脂組成物を室温で3日間放置したサンプルを調製後のサンプルとし、その後更に室温で4週間放置したサンプルを4週間後のサンプルとし、温調機付粘度計(東機産業械社製TV-22を用いて、23℃における粘度測定を行った。
 室温4週間粘度変化率は、[(4週間後のサンプルの粘度)-(調整直後のサンプルの粘度)]/(調整直後のサンプルの粘度)×100により求めた。結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000077
 類似骨格を有するヒドロキシポリアミド樹脂(A)の相違に依存して、上記実施例1~6で得られたポジ感光性樹脂組成物は、比較例1~4で得られたポジ感光性樹脂組成物と比較して、いずれも高い現像残膜率にもかかわらず高感度を達成しており、更に4週間後の粘度変化率も低くなっており、保存安定性が向上していることが分かる。
 ここで、類似骨格を有するヒドロキシポリアミド樹脂(A)とは、比較例におけるアミド構造を形成するためのカルボン酸ユニットを構成する酸クロライドが芳香族基からなるものであるのであれば、実施例における酸クロライドも芳香族基からなるものであり、この点で類似しているとうことを意味する。この場合、実施例1~4のヒドロキシポリアミド樹脂(A)の骨格は、比較例3及び比較例4におけるもの類似し、実施例5及び実施例6のヒドロキシポリアミド樹脂(A)の骨格は、比較例1及び比較例2のものに類似する。
[実施例1~6、実施例7~20]
 実施例1~6、及び実施例7~20のポジ型感光性樹脂組成物として、ポジ型感光性樹脂組成物として、上記参考例7~11で得られたヒドロキシポリアミド樹脂(A)(P-1~P-5)100質量部に対して、以下の表3に示す量の上記参考例4で得られた光酸発生剤(B)であるナフトキノンジアジド化合物(Q-2)、更に上記参考例5及び上記参考例6にて得られた有機ケイ素化合物S-1及びS-2各々15質量部、及び下記のアルカリ水溶液に対する溶解性を促進する化合物(C-1~C-6){実施例7~20の場合に限る}をGBLに溶解させて、樹脂濃度が35質量%のアルカリ可溶性重合体溶液を作製し、1μmのフィルターで濾過して調製した。
(C-1)4-ヘキシルレゾルシノール
(C-2)2,2’-ジヒドロキシジフェニルメタン
(C-3)EP4000B(旭有機材工業:商品名)
(C-4)EP4080G(旭有機材工業:商品名)
(C-5)m-トルイル酸
(C-6)m-トリル酢酸
(C-7)α-メトキシフェニル酢酸
(C-8)ベンゼンスルホン酸
Figure JPOXMLDOC01-appb-T000078
<感光性樹脂組成物の評価>
(1)パターニング特性評価(感度、現像時間)
・プリベーク膜の作製、及び膜厚測定
 上記実施例1~6、及び実施例7~20のポジ感光性樹脂組成物をスピンコーター(東京エレクトロン社製 クリーントラックMark8)で6インチ・シリコンウエハーにスピン塗布し、ホットプレート上125℃で180秒間プリベークして評価用膜を得た。各組成物の初期膜厚は、320℃で1時間キュアした時の硬化後樹脂膜厚で、7μmとなるように調整した。膜厚は膜厚測定装置(大日本スクリーン製造社製ラムダエース)にて測定した。
・露光
 この塗膜に、テストパターン付きレチクルを通してi線(365nm)の露光波長を有するステッパー(ニコン社製NSR2005i8A)を用いて露光量を250mJ/cm2~800mJ/cm2へと段階的に変化させて露光した。
・現像
 これをアルカリ現像液(AZエレクトロニックマテリアルズ社製AZ300MIFデベロッパー、2.38質量%水酸化テトラメチルアンモニウム水溶液)を用い、23℃の条件下で現像後膜厚が97%となるように現像時間を調整して現像し、純水にてリンスを行い、ポジ型のレリーフパターンを形成した。
[感度(mJ/cm2)]
 上記条件で作製した塗膜において、露光部の3.5μm正方形レリーフパターンが完全に溶解除去しうる最小露光量を感度として評価した。結果を以下の表4に示す。
[現像時間(秒)]
 上記条件で作製した塗膜を、現像した場合の時間を現像時間(秒)とした。結果を以下の表4に示す。
Figure JPOXMLDOC01-appb-T000079
 同一のヒドロキシポリアミド樹脂(A)において、上記実施例7~20で得られたポジ感光性樹脂組成物は、アルカリ水溶液に対する溶解性を促進する化合物(C)の添加により、実施例1~6で得られたポジ感光性樹脂組成物と比較して、いずれも同一の現像残膜率の条件下において、現像時間が短くかつ高感度を達成した。
[実施例8、14、17~19、及び21~34]
 実施例8、14、17~19、及び21~34のポジ型感光性樹脂組成物として、上記参考例7~11で得られたヒドロキシポリアミド樹脂(A)(P-1~P-5)100質量部に対して、以下の表5に示す量の、上記参考例4で得られた光酸発生剤(B)であるナフトキノンジアジド化合物(Q-2)、更に上記参考例5及び上記参考例6にて得られた有機ケイ素化合物S-1及びS-2各々15質量部、アルカリ水溶液に対する溶解性が促進する化合物(C)(上記C-5)10質量部、及び下記の熱により架橋反応を起こす化合物(D-1~D-10){実施例21~34に限る}をGBLに溶解させて、樹脂濃度が35質量%のアルカリ可溶性重合体溶液を作製し、1μmのフィルターで濾過して調製した。
(D-1)BANI-X(丸善石油化学:商品名)
(D-2)以下の式:
Figure JPOXMLDOC01-appb-C000080
で表されるTMOM-BP(本州化学工業:商品名)
(D-3)4,4’-ビス(メトキシメチル)ビフェニル
(D-4)以下の式:
Figure JPOXMLDOC01-appb-C000081
で表されるTML-BPAF-MF(本州化学工業:商品名)
(D-5)1,3,4,6-テトラキス(メトキシメチル)グリコールウリル
(D-6)ヘキサメトキシメチルメラミン
(D-7)TRIAM705(和光純薬:商品名)
(D-8)トリメチロールプロパントリメタクリレート
(D-9)以下の式:
Figure JPOXMLDOC01-appb-C000082
で表されるOXT121(東亞合成:商品名)
(D-10)9,10-エポキシ-1,5-シクロドデカジエン
Figure JPOXMLDOC01-appb-T000083
<感光性樹脂組成物の評価>
(1)パターニング特性評価(感度)
・プリベーク膜の作製、及び膜厚測定
 上記実施例8、14、17~19、及び21~34のポジ感光性樹脂組成物をスピンコーター(東京エレクトロン社製 クリーントラックMark8)にて、6インチ・シリコンウエハーにスピン塗布し、ホットプレート上125℃で180秒間プリベークして評価用膜を得た(実施例25のみ、ホットプレート上105℃で180秒間プリベークして評価用膜を得た。)。各組成物の初期膜厚は、320℃で1時間キュアした時の硬化後樹脂膜厚で、7μmとなるように調整した。膜厚は膜厚測定装置(大日本スクリーン製造社製ラムダエース)にて測定した。
・露光
 この塗膜に、テストパターン付きレチクルを通してi線(365nm)の露光波長を有するステッパー(ニコン社製NSR2005i8A)を用いて露光量を250mJ/cm2~800mJ/cm2へと段階的に変化させて露光した。
・現像
 これをアルカリ現像液(AZエレクトロニックマテリアルズ社製AZ300MIFデベロッパー、2.38質量%水酸化テトラメチルアンモニウム水溶液)を用い、23℃の条件下で現像後膜厚が97%となるように現像時間を調整して現像し、純水にてリンスを行い、ポジ型のレリーフパターンを形成した。
[感度(mJ/cm2)]
 上記条件で作製した塗膜において、露光部の3.5μm正方形レリーフパターンが完全に溶解除去しうる最小露光量を感度として評価した。結果を以下の表6に示す。
(2)硬化時残膜率の測定
 上記(1)パターニング特性評価で得られたポジ型のレリーフパターンを形成したサンプルを昇温式オーブン(光洋サーモシステム社製 VF200B)を用いて窒素雰囲気下、320℃で1時間加熱した。
 硬化時残膜率(%)は、(キュア後の硬化の膜厚)/(現像後のレリーフパターンの膜厚)×100と定義した。結果を以下の表6に示す。
Figure JPOXMLDOC01-appb-T000084
 同一のヒドロキシポリアミド樹脂(A)において、上記実施例21~34で得られたポジ感光性樹脂組成物は、実施例8、14、及び17~19で得られたポジ感光性樹脂組成物と比較して、熱により架橋反応を起こす化合物(D)成分を添加することにより、硬化時残膜率が向上し、感度は更に向上した。
[実施例22、28、31及び33~42]
 実施例22、28、31、及び33~42のポジ型感光性樹脂組成物として、上記参考例7~11で得られたヒドロキシポリアミド樹脂(A)(P-1~P-5)100質量部に対して、以下の表7に示す量の、上記参考例4で得られた光酸発生剤(B)であるナフトキノンジアジド化合物(Q-2)、更に上記参考例5及び上記参考例6にて得られた有機ケイ素化合物S-1及びS-2各々15質量部、アルカリ水溶液に対する溶解性を促進する化合物(C)(上記C-5)を10質量部、熱により架橋反応を起こす化合物(D)(上記D-2)を20質量部、熱により酸を発生する化合物(E-1~E-4){実施例35~42に限る}をGBLに溶解させて、樹脂濃度が35質量%のアルカリ可溶性重合体溶液を作製し、1μmのフィルターで濾過して調製した。
(E-1)メタンスルホン酸2-メトキシエチル
(E-2)p-トルエンスルホン酸メチル
(E-3)p-トルエンスルホン酸2-メトキシエチル
(E-4)2,4-ブタンスルトン
Figure JPOXMLDOC01-appb-T000085
<感光性樹脂組成物の評価>
(1)パターニング特性評価
・プリベーク膜の作製、及び膜厚測定
 上記実施例22、28、31、及び33~42のポジ感光性樹脂組成物をスピンコーター(東京エレクトロン社製 クリーントラックMark8)にて、6インチ・シリコンウエハーにスピン塗布し、ホットプレート上125℃で180秒間プリベークして評価用膜を得た。各組成物の初期膜厚は、320℃で1時間キュアした時の硬化後樹脂膜厚で、7μmとなるように調整した。膜厚は膜厚測定装置(大日本スクリーン製造社製ラムダエース)にて測定した。
・露光
 この塗膜に、テストパターン付きレチクルを通してi線(365nm)の露光波長を有するステッパー(ニコン社製NSR2005i8A)を用いて露光量を250mJ/cm2~800mJ/cm2へと段階的に変化させて露光した。
・現像
 これをアルカリ現像液(AZエレクトロニックマテリアルズ社製AZ300MIFデベロッパー、2.38質量%水酸化テトラメチルアンモニウム水溶液)を用い、23℃の条件下で現像後膜厚が97%となるように現像時間を調整して現像し、純水にてリンスを行い、ポジ型のレリーフパターンを形成した。
(2)硬化時残膜率の測定
 上記(1)パターニング特性評価で得られたポジ型のレリーフパターンを形成したサンプルを昇温式オーブン(光洋サーモシステム社製 VF200B)を用いて窒素雰囲気下、320℃で1時間加熱した。
 硬化時残膜率(%)は、(キュア後の硬化の膜厚)/(現像後のレリーフパターンの膜厚)×100と定義した。結果を以下の表8に示す。
(3)キュア後の密着性評価
 上記(1)パターニング特性評価で得られたポジ型のレリーフパターンを形成したサンプルを昇温式オーブン(光洋サーモシステム社製 VF200B)を用いて窒素雰囲気下、250℃で1時間加熱して得られた硬化フィルムをプレッシャークッカー(131℃、2.0気圧)で100時間処理を行った後、碁盤目試験(JIS K5400)にて、1mm角の正方形100個ができるようにカッターナイフで傷をつけ、上からセロハン(登録商標)テープを貼り付けた後剥離し、セロハン(登録商標)テープに付着せず基板上に残った正方形の数を数えることにより、キュア後の密着性を評価した。以下の表8にテープ剥離試験後にシリコンウエハー上に残っている正方形の個数を示す。個数が多いほど、接着性が良い。
Figure JPOXMLDOC01-appb-T000086
 同一のヒドロキシポリアミド樹脂(A)において、上記実施例35~42で得られたポジ感光性樹脂組成物は、実施例22、28、31、33及び34で得られたポジ感光性樹脂組成物と比較して、熱により酸を発生する化合物(E)成分を添加することにより、上記条件におけるキュア後の密着性は更に向上した。
[実施例43~47、比較例5~7]
 上記参考例7~14で得られたヒドロキシポリアミド樹脂(A)(P-1~P-8)について、得られたそれぞれのヒドロキシポリアミド樹脂の紛体を樹脂固形分35質量%の濃度となるようにしγ-ブチロラクトンに溶解させ、以下の膜厚測定装置を用いて、アルカリ可溶性重合体の屈折率(nr1)及び前記アルカリ可溶性重合体100質量部に対して、ナフトキノンジアジド化合物(Q-2)を15質量部添加したときの感光性樹脂組成物の屈折率(nr2)を測定した。結果を表9と表10に示す。
  接触式膜厚測定装置:KLA TENCOR社製P-15
  非接触式膜厚測定装置:大日本スクリーン製造社製ラムダエース
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
 本発明の感光性樹脂組成物は、半導体装置及び発光装置の表面保護膜、層間絶縁膜、及び再配線用絶縁膜、フリップチップ装置用保護膜、バンプ構造を有する装置の保護膜、多層回路の層間絶縁膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、液晶配向膜等として好適に利用できる。

Claims (12)

  1.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    {式中、Z1、Z2及びZ3は、それぞれ独立に、2価の有機基であり、Z1、Z2及びZ3のうち少なくとも1つは、脂環式構造又は脂肪族構造を有し、そしてm1は、0又は1の整数である。}で表される構造及び下記一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    {式中、Z1、Z2及びZ3は、それぞれ独立に、2価の有機基であり、Z1、Z2及びZ3のうち少なくとも1つは、脂環式構造又は脂肪族構造を有し、そしてm1は、0又は1の整数である。}で表される構造からなる群より選ばれる少なくとも一種の構造を有するヒドロキシポリアミド樹脂(A)、及び光酸発生剤(B)を含む感光性樹脂組成物。
  2.  前記ヒドロキシポリアミド樹脂(A)が、下記一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    {式中、X1及び、Y1は少なくとも2個の炭素原子を有する2~4価の有機基であり、R1~R3は、それぞれ独立に、水素原子又は炭素原子数1~10の炭化水素基であり、m2は、1~1000の整数であり、n1は、1又は2の整数であり、n2~n4は、それぞれ独立に0~2の整数であり、そして式中のY1(OR1n2(COOR3n4で表される構造のうち少なくとも1つは、前記一般式(1)若しくは下記一般式(4):
    Figure JPOXMLDOC01-appb-C000004
    (式中、Y2は、少なくとも2個の炭素原子を有する2~4価の有機基であり、Z1は、2価の有機基であり、Y2及びZ1のうち少なくとも1つは、脂環式構造又は脂肪族構造を有し、R4、及びR5は、それぞれ独立に、水素原子又は炭素原子数1~10の炭化水素基であり、m3は、1~100の整数であり、そしてn5及びn6は、それぞれ独立に0~2の整数である。)又は前記一般式(2)若しくは下記一般式(5):
    Figure JPOXMLDOC01-appb-C000005
    (式中、Y2は、少なくとも2個の炭素原子を有する2~4価の有機基であり、Z1は、2価の有機基であり、Y2及びZ1のうち少なくとも1つは、脂環式構造又は脂肪族構造を有し、R4、及びR5は、それぞれ独立に、水素原子又は炭素原子数1~10の炭化水素基であり、m3は、1~100の整数であり、そしてn5及びn6は、それぞれ独立に0~2の整数である。)で表される構造である。}で表される構造を有する、請求項1に記載の感光性樹脂組成物。
  3.  前記光酸発生剤(B)が、ナフトキノンジアジド化合物であり、該ナフトキノンジアジド化合物の含有量は、前記ヒドロキシポリアミド樹脂(A)100質量部に対して、1~50質量部であり、そして前記感光性樹脂組成物は、前記ヒドロキシポリアミド樹脂(A)100質量部に対して、アルカリ水溶液に対する溶解性を促進する化合物(C)1~100質量部をさらに含む、請求項1に記載の感光性樹脂組成物。
  4.  前記アルカリ水溶液に対する溶解性を促進する化合物(C)が、フェノール性水酸基、カルボキシル基、及びスルホニル基からなる群より選ばれる少なくとも1種の基を含有する化合物である、請求項3に記載の感光性樹脂組成物。
  5.  前記ヒドロキシポリアミド樹脂(A)100質量部に対して、熱により架橋反応を起こす化合物(D)1~50質量部をさらに含む、請求項1に記載の感光性樹脂組成物。
  6.  前記熱により架橋反応を起こす化合物(D)が、エポキシ化合物、オキセタン化合物、メラミン化合物、アルケニル化合物、下記一般式(6):
    Figure JPOXMLDOC01-appb-C000006
    {式中、R6は、水素原子、又はメチル基、エチル基、n-プロピル基、及びイソプロピル基からなる群より選ばれる1価の基であり、R7は、水素原子、ヒドロキシル基、炭素原子数1~10のアルキル基、アルコキシ基、エステル基、及びウレタン基からなる群より選ばれる少なくとも1つの1価の有機基であり、n7は、1~5の整数であり、n8は、0~4の整数であり、ここで、n7+n8=5であり、m4は、1~4の整数であり、Z4は、m4=1のとき、CH2OR6又はR7であり、m4=2~4のとき、単結合又は2~4価の有機基であり、ここで、CH2OR6、及びR7が複数存在する場合、R6及びR7は、互いに同一でも異なっていてもよい。}で表される構造を有する化合物、下記一般式(7):
    Figure JPOXMLDOC01-appb-C000007
    {式中、R8及びR9は、それぞれ独立に、水素原子、又は炭素原子数1~10の炭化水素基及びR10CO-(ここで、R10は、炭素原子数1~10の炭化水素基である。)からなる群から選ばれる基である。}で表される構造を有する化合物、及び下記一般式(8):
    Figure JPOXMLDOC01-appb-C000008
    {式中、D1は、炭素原子数1~6のアルキル基、アルケニル基、及び架橋し得る有機基からなる群より選ばれる官能基であり、M1は、-CH2-、-O-、及び-S-からなる群から選ばれる基であり、Z5は2価の有機基であり、n9は、0~4の整数であり、D1が複数ある場合、複数のD1は同じでも異なっていてもよい。}で表される構造を有する化合物からなる群より選ばれる少なくとも1種の化合物である、請求項5に記載の感光性樹脂組成物。
  7.  前記ヒドロキシポリアミド樹脂(A)100質量部に対して、熱により酸を発生する化合物(E)0.1~30質量部をさらに含む、請求項1に記載の感光性樹脂組成物。
  8.  以下の工程:
     (1)請求項1~7のいずれか1項に記載の感光性樹脂組成物からなる感光性樹脂層を基板上に形成する工程、
     (2)露光する工程、
     (3)現像する工程、
     (4)得られたレリーフパターンを加熱処理する工程、
    を含む、硬化レリーフパターンの製造方法。
  9.  請求項8に記載の方法により製造された硬化レリーフパターン。
  10.  半導体素子と、該半導体素子の上部に設けられた硬化膜とを備え、該硬化膜は、請求項9に記載の硬化レリーフパターンであることを特徴とする半導体装置。
  11.  表示体素子と、該表示体素子の上部に設けられた硬化膜とを備え、該硬化膜は、請求項9に記載の硬化レリーフパターンであることを特徴とする表示体装置。
  12.  主鎖に(チオ)エステル構造を有するポリベンゾオキサゾール前駆体、ポリイミド前駆体、及びフェノール基含有ポリイミドからなる群より選ばれる少なくとも1種のアルカリ可溶性重合体とナフトキノンジアジド化合物とを含む感光性樹脂組成物であって、
     (i)下記工程(a)、(b)、及び(c):
     (a)前記アルカリ可溶性重合体を樹脂固形分35質量%の濃度でγ-ブチロラクトンに溶解させて、樹脂溶液を作製する;
     (b)前記(a)で作製した樹脂溶液を6インチシリコンウェハー上に塗布し、125℃180秒間のプリベークを行い、接触式膜厚測定器を使用して測定する時の膜厚が10μm±0.2μmである膜を形成し;及び
     (c)非接触式膜厚測定器を用いて、プリベーク後の膜を任意の屈折率nf1で測定して得られた膜厚をTf1とし、前記(b)における接触式膜厚測定器で測定して得られた膜厚をTr1とする時に求められる、真の屈折率nr1を以下の式:
      nr1=nf1×Tf1/Tr1
    により求める;
    を順に行って得られた前記アルカリ可溶性重合体の屈折率(nr1)は1.570~1.650の範囲にあり、
     (ii)下記(a’)、(b’)、及び(c’):
     (a’)前記アルカリ可溶性重合体100質量部を樹脂固形分35質量%の濃度でγ-ブチロラクトンに溶解させ、さらに前記ナフトキノンジアジド化合物15質量部を溶解させて、感光性樹脂組成物の溶液を作製する;
     (b’)前記(a’)で作製した感光性樹脂組成物の溶液を6インチシリコンウェハー上に塗布し、125℃180秒間のプリベークを行い、接触式膜厚測定器を使用して測定する時の膜厚が10μm±0.2μmである膜を形成し;及び
     (c’)非接触式膜厚測定器を用いて、プリベーク後の膜を任意の屈折率nf2で測定して得られた膜厚をTf2とし、前記(b’)における接触式膜厚測定器で測定して得られた膜厚をTr2とする時に求められる、真の屈折率nr2を以下の式:
      nr2=nf2×Tf2/Tr2
    により求める;
    を順に行って得られた前記感光性樹脂組成物の屈折率(nr2)と、前記アルカリ可溶性重合体の屈折率(nr1)とが、以下の条件:
      {1-アルカリ可溶性重合体の屈折率(nr1)/感光性樹脂組成物の屈折率(nr2)}×100=1.0~3.0(%)
    を満たす前記感光性樹脂組成物。
PCT/JP2011/052766 2010-04-28 2011-02-09 感光性樹脂組成物 WO2011135887A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117020165A KR101344125B1 (ko) 2010-04-28 2011-02-09 감광성 수지 조성물
JP2011526335A JP4878662B2 (ja) 2010-04-28 2011-02-09 感光性樹脂組成物
CN201180001254.XA CN102439520B (zh) 2010-04-28 2011-02-09 感光性树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-104180 2010-04-28
JP2010104180 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011135887A1 true WO2011135887A1 (ja) 2011-11-03

Family

ID=44861208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052766 WO2011135887A1 (ja) 2010-04-28 2011-02-09 感光性樹脂組成物

Country Status (5)

Country Link
JP (2) JP4878662B2 (ja)
KR (1) KR101344125B1 (ja)
CN (1) CN102439520B (ja)
TW (1) TWI425052B (ja)
WO (1) WO2011135887A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046062A1 (ja) * 2012-09-18 2014-03-27 旭化成イーマテリアルズ株式会社 感光性樹脂組成物
JP2014059463A (ja) * 2012-09-18 2014-04-03 Asahi Kasei E-Materials Corp 感光性樹脂組成物
JP2016218475A (ja) * 2016-09-01 2016-12-22 旭化成株式会社 感光性樹脂組成物
WO2017134701A1 (ja) * 2016-02-05 2017-08-10 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物
WO2017134700A1 (ja) * 2016-02-05 2017-08-10 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物
KR101769190B1 (ko) 2011-12-09 2017-08-17 아사히 가세이 이-매터리얼즈 가부시키가이샤 감광성 수지 조성물, 경화 릴리프 패턴의 제조 방법, 반도체 장치 및 표시체 장치
JP2018055124A (ja) * 2017-12-07 2018-04-05 旭化成株式会社 感光性樹脂組成物
TWI697515B (zh) * 2018-07-20 2020-07-01 南韓商Lg化學股份有限公司 聚醯亞胺樹脂、負型光敏樹脂組成物以及電子元件

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6116954B2 (ja) * 2013-03-22 2017-04-19 旭化成株式会社 感光性樹脂組成物及び硬化レリーフパターンの製造方法
KR101705755B1 (ko) 2013-12-19 2017-02-10 제일모직 주식회사 포지티브형 감광성 수지 조성물, 감광성 수지막, 및 표시 소자
JP6805475B2 (ja) * 2014-09-09 2020-12-23 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
EP3267254A4 (en) 2015-03-04 2018-09-26 Toray Industries, Inc. Photosensitive resin composition, method for manufacturing cured resin film, and semiconductor device
KR102445235B1 (ko) * 2015-03-27 2022-09-20 도레이 카부시키가이샤 감광성 수지 조성물, 감광성 시트, 반도체 장치 및 반도체 장치의 제조 방법
EP3358411B1 (en) * 2015-09-28 2020-05-06 Toyobo Co., Ltd. Photosensitive resin composition for relief printing original plate and relief printing original plate obtained therefrom
WO2018056013A1 (ja) * 2016-09-20 2018-03-29 太陽ホールディングス株式会社 ポジ型感光性樹脂組成物、ドライフィルム、硬化物、プリント配線板および半導体素子
US11456266B2 (en) 2019-10-31 2022-09-27 Taiwan Semiconductor Manufacturing Co., Ltd. Bump structure and method of manufacturing bump structure
US11681220B2 (en) * 2020-03-05 2023-06-20 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern
CN111880371B (zh) * 2020-08-13 2022-05-03 常州华睿芯材科技有限公司 光刻胶及亚胺类材料的图案化方法
CN114702634B (zh) * 2022-03-16 2023-07-07 陕西科技大学 一种3d打印用改性酚醛树脂及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171945A (ja) * 2005-11-24 2007-07-05 Sumitomo Bakelite Co Ltd ポジ型感光性樹脂組成物、該ポジ型感光性樹脂組成物を用いた半導体装置及び表示素子
JP2007169585A (ja) * 2005-09-20 2007-07-05 Manac Inc 低線熱膨張係数を有するポリエステルイミドおよびその前駆体、ならびにこれらの製造方法
JP2008111929A (ja) * 2006-10-30 2008-05-15 Sumitomo Bakelite Co Ltd 感光性樹脂組成物、絶縁膜、保護膜および電子機器
JP2008216984A (ja) * 2007-02-09 2008-09-18 Sony Chemical & Information Device Corp 感光性ポリイミド樹脂組成物
JP2009109591A (ja) * 2007-10-26 2009-05-21 Asahi Kasei Corp 感光性ポリアミド樹脂組成物、感光性ドライフィルムおよびそれらを用いたカバーレイ
JP2009114266A (ja) * 2007-11-02 2009-05-28 Sumitomo Bakelite Co Ltd ポリベンゾオキサゾール前駆体共重合体、ポジ型感光性樹脂組成物、ポリベンゾオキサゾール共重合体、保護膜および半導体装置
WO2009081950A1 (ja) * 2007-12-26 2009-07-02 Asahi Kasei E-Materials Corporation 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物
WO2009136557A1 (ja) * 2008-05-09 2009-11-12 旭化成イーマテリアルズ株式会社 ポリイミド前駆体、感光性ポリイミド前駆体組成物、感光性ドライフィルム及びそれらを用いたフレキシブルプリント配線基板
WO2010001780A1 (ja) * 2008-07-03 2010-01-07 旭化成イーマテリアルズ株式会社 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431971B1 (en) * 1989-12-07 1995-07-19 Kabushiki Kaisha Toshiba Photosensitive composition and resin-encapsulated semiconductor device
DE602004024846D1 (de) * 2003-04-07 2010-02-11 Toray Industries Zusammensetzung von photoempfindlichem Harz des Positivtyps
JP4760026B2 (ja) * 2004-01-27 2011-08-31 住友ベークライト株式会社 ポジ型感光性樹脂組成物、該ポジ型感光性樹脂組成物を用いた半導体装置及び表示素子、並びに半導体装置及び表示素子の製造方法
JP2007304506A (ja) * 2006-05-15 2007-11-22 Fujifilm Corp 感光性樹脂組成物及びそれを用いた半導体装置の製造方法
JP2008297231A (ja) * 2007-05-30 2008-12-11 Nippon Kayaku Co Ltd ヒドロキシアミド基含有脂環式ポリイミド及びその前駆体、並びにそれらを用いたポジ型感光性樹脂組成物、並びにそれらの硬化物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169585A (ja) * 2005-09-20 2007-07-05 Manac Inc 低線熱膨張係数を有するポリエステルイミドおよびその前駆体、ならびにこれらの製造方法
JP2007171945A (ja) * 2005-11-24 2007-07-05 Sumitomo Bakelite Co Ltd ポジ型感光性樹脂組成物、該ポジ型感光性樹脂組成物を用いた半導体装置及び表示素子
JP2008111929A (ja) * 2006-10-30 2008-05-15 Sumitomo Bakelite Co Ltd 感光性樹脂組成物、絶縁膜、保護膜および電子機器
JP2008216984A (ja) * 2007-02-09 2008-09-18 Sony Chemical & Information Device Corp 感光性ポリイミド樹脂組成物
JP2009109591A (ja) * 2007-10-26 2009-05-21 Asahi Kasei Corp 感光性ポリアミド樹脂組成物、感光性ドライフィルムおよびそれらを用いたカバーレイ
JP2009114266A (ja) * 2007-11-02 2009-05-28 Sumitomo Bakelite Co Ltd ポリベンゾオキサゾール前駆体共重合体、ポジ型感光性樹脂組成物、ポリベンゾオキサゾール共重合体、保護膜および半導体装置
WO2009081950A1 (ja) * 2007-12-26 2009-07-02 Asahi Kasei E-Materials Corporation 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物
WO2009136557A1 (ja) * 2008-05-09 2009-11-12 旭化成イーマテリアルズ株式会社 ポリイミド前駆体、感光性ポリイミド前駆体組成物、感光性ドライフィルム及びそれらを用いたフレキシブルプリント配線基板
WO2010001780A1 (ja) * 2008-07-03 2010-01-07 旭化成イーマテリアルズ株式会社 耐熱性樹脂前駆体及びそれを用いた感光性樹脂組成物

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101769190B1 (ko) 2011-12-09 2017-08-17 아사히 가세이 이-매터리얼즈 가부시키가이샤 감광성 수지 조성물, 경화 릴리프 패턴의 제조 방법, 반도체 장치 및 표시체 장치
JP2014059463A (ja) * 2012-09-18 2014-04-03 Asahi Kasei E-Materials Corp 感光性樹脂組成物
JPWO2014046062A1 (ja) * 2012-09-18 2016-08-18 旭化成イーマテリアルズ株式会社 感光性樹脂組成物
WO2014046062A1 (ja) * 2012-09-18 2014-03-27 旭化成イーマテリアルズ株式会社 感光性樹脂組成物
JPWO2017134701A1 (ja) * 2016-02-05 2018-11-01 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物
WO2017134700A1 (ja) * 2016-02-05 2017-08-10 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物
WO2017134701A1 (ja) * 2016-02-05 2017-08-10 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物
JPWO2017134700A1 (ja) * 2016-02-05 2018-11-01 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物
TWI714717B (zh) * 2016-02-05 2021-01-01 日商艾曲迪微系統股份有限公司 正型感光性樹脂組成物、圖案硬化膜的製造方法、硬化膜、層間絕緣膜、面塗層、表面保護膜以及電子零件
US11592744B2 (en) 2016-02-05 2023-02-28 Hd Microsystems, Ltd. Positive-type photosensitive resin composition
US11592743B2 (en) 2016-02-05 2023-02-28 Hd Microsystems, Ltd. Positive-type photosensitive resin composition
JP2016218475A (ja) * 2016-09-01 2016-12-22 旭化成株式会社 感光性樹脂組成物
JP2018055124A (ja) * 2017-12-07 2018-04-05 旭化成株式会社 感光性樹脂組成物
TWI697515B (zh) * 2018-07-20 2020-07-01 南韓商Lg化學股份有限公司 聚醯亞胺樹脂、負型光敏樹脂組成物以及電子元件

Also Published As

Publication number Publication date
JPWO2011135887A1 (ja) 2013-07-18
KR101344125B1 (ko) 2013-12-20
TWI425052B (zh) 2014-02-01
JP4878662B2 (ja) 2012-02-15
TW201144383A (en) 2011-12-16
KR20120022712A (ko) 2012-03-12
CN102439520B (zh) 2014-08-27
JP2012027490A (ja) 2012-02-09
CN102439520A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
JP4878662B2 (ja) 感光性樹脂組成物
JP5632676B2 (ja) アルカリ可溶性重合体、それを含む感光性樹脂組成物、及びその用途
JP6587661B2 (ja) 感光性樹脂組成物
JP5421585B2 (ja) 感光性樹脂組成物
JP5241280B2 (ja) ポジ型感光性樹脂組成物
JP5620686B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP5762706B2 (ja) 感光性樹脂組成物及び硬化レリーフパターンの製造方法
JP6073626B2 (ja) 感光性樹脂組成物
JP5562585B2 (ja) 感光性樹脂組成物
JP2014071373A (ja) 感光性樹脂組成物
JP5079089B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP5715440B2 (ja) アルカリ可溶性重合体、それを含む感光性樹脂組成物、及びその用途
JP2014059463A (ja) 感光性樹脂組成物
JP6649433B2 (ja) 感光性樹脂組成物
JP6523419B2 (ja) 感光性樹脂組成物
JP2011242676A (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP6259033B2 (ja) 感光性樹脂組成物
JP2011100097A (ja) 感光性樹脂組成物、硬化レリーフパターン及び半導体装置
JP2020064325A (ja) 感光性樹脂組成物
JP2008298810A (ja) ポジ型感光性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001254.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011526335

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117020165

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774672

Country of ref document: EP

Kind code of ref document: A1