WO2007023976A1 - 耐損傷性等に優れる溶射皮膜被覆部材およびその製造方法 - Google Patents

耐損傷性等に優れる溶射皮膜被覆部材およびその製造方法 Download PDF

Info

Publication number
WO2007023976A1
WO2007023976A1 PCT/JP2006/316788 JP2006316788W WO2007023976A1 WO 2007023976 A1 WO2007023976 A1 WO 2007023976A1 JP 2006316788 W JP2006316788 W JP 2006316788W WO 2007023976 A1 WO2007023976 A1 WO 2007023976A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
electron beam
white
sprayed
thermal spray
Prior art date
Application number
PCT/JP2006/316788
Other languages
English (en)
French (fr)
Inventor
Yoshio Harada
Takema Teratani
Original Assignee
Tocalo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co., Ltd. filed Critical Tocalo Co., Ltd.
Priority to US11/990,760 priority Critical patent/US8231986B2/en
Priority to JP2007532212A priority patent/JP4555865B2/ja
Publication of WO2007023976A1 publication Critical patent/WO2007023976A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Definitions

  • the present invention relates to a thermal spray coating member having excellent damage resistance, thermal radiation characteristics, corrosion resistance, mechanical characteristics, etc., and a method for producing the same, and particularly to a substrate surface. It relates to a technique for forming a light-colored sprayed coating with a lower brightness than grayish white.
  • a thermal spray powder material such as metal, ceramic, or cermet is melted by a plasma flame or a combustion flame of a combustible gas, and the melted particles are accelerated and sprayed on the surface of the sprayed body (base material).
  • This is a surface treatment technique in which the molten particles are sequentially deposited to form a film with a constant thickness.
  • the thermal spray coating formed by such a process has a great difference in the mechanical properties and chemical properties of the coating depending on the strength of mutual bonding of the deposited particles constituting the coating and the presence or absence of unbound particles.
  • the conventional thermal spraying technology strengthens the mutual bonding force between the molten particles by completely melting the thermal spray powder material, eliminating unmelted particles, and applying a large force U speed to the flying molten particles.
  • the porosity has been reduced or the adhesion to the object to be processed has been strengthened. It is a goal.
  • the mutual bonding force of metal particles is improved by a reduced pressure plasma spraying method in which metal particles are plasma sprayed in an argon atmosphere of 50 to 200 hPa.
  • a method to reduce the oxide film formed on the particle surface which is one of the causes of pore generation.
  • thermal spray coatings have improved properties such as mechanical strength. Although it was possible to improve, it was not a technology to improve thermal radiation characteristics. In particular, there is no concept of improving the heat radiation characteristics and other characteristics by adjusting the color of the thermal spray coating.
  • the color of a general ceramic spray coating is, for example, chromium oxide (C r 2 0 3 ) powder as a spray powder material is a dark green color close to black, but when this is plasma sprayed, It becomes a black film.
  • the color of the ceramic sprayed coating is generally reproduced as the color of the sprayed coating formed by directly forming the color of the powder material for thermal spraying.
  • aluminum oxide indicated by A 1 2 0 3
  • a 1 2 0 3 has a white coating color as well as the powder material itself.
  • a 1 2 0 3 has a stronger chemical bonding force between the main components A 1 and 0 2 than many other oxide ceramics, and a gas plasma flame mainly containing Ar gas is used as a heat source. Even if a film is formed by the plasma spraying method (a large amount of electrons are contained in this plasma), the film turns white.
  • JISH 8 300 self-fluxing alloy spraying
  • This method is a remelting treatment method in which after the sprayed coating is formed, only the sprayed coating is heated beyond the melting point by using an oxygen-acetylene flame, a high-frequency induction heating method, or an electric furnace.
  • a technique for increasing the mutual coupling force of the spray particles there is a technique of irradiating an electron beam or the like.
  • Sho 6 1-1040 4 62 discloses a method of irradiating a metal film with an electron beam or a laser beam to re-melt the film and sealing the film.
  • Japanese Patent No. 3 1 6 6 2 4 discloses a method for improving the performance of a film by irradiating the surface of a carbide cermet film or metal film with an electron beam.
  • Japanese Laid-Open Patent Publication No. HEI-KOKAI discloses a method of making conductivity appear by irradiating ceramics for forming a conductive part with a short-wavelength light beam so that oxygen atoms are desorbed to exhibit a metallic state. .
  • an electron beam Xiehara is used as a heating evaporation source of a Zr 0 2 ceramic material, and a PVD process is performed.
  • a film forming method used for forming a top coat having a columnar structure is a method for forming a Zr 0 2 ceramic layer using an electron beam, and is not a technique for remelting a ceramic film once formed. Disclosure of the invention
  • the white A 1 2 0 3 sprayed coating has a weak mutual bonding force of A 1 2 0 3 particles. Therefore, it is easy for the particles to fall off locally due to external impact such as blast erosion. This part is the starting point for the destruction of the entire film, resulting in poor damage resistance of the film.
  • the white A 1 2 0 3 sprayed coating has a very high light reflectivity, and therefore cannot be said to be suitable as a covering member in a field where a good thermal emissivity is required.
  • the white sprayed coating is washed more frequently than necessary because chromatic colored particles adhere to the environment where the component is used and where high cleanliness is required, such as inside semiconductor processing equipment. Need to be repeated, leading to reduced work efficiency and increased product costs.
  • the white A 12O3 sprayed coating is a porous coating with a small contact area between the sprayed particles that make up the coating, a weak bond between the particles, and many voids (pores). As a result, even if the A 12O3 particles themselves have excellent corrosion resistance, environmental corrosion components (for example, moisture, acids, salts, halogen gases, etc.) can easily enter the pores of the film. Peeling of the film is likely to occur.
  • the white A 1 2 0 3 sprayed coating is porous and has a weak interparticle bonding force, and is often not sufficiently melted in the spraying heat source. Therefore, it is easy to be etched during plasma etching or plasma cleaning in an environment containing fluorine gas, ⁇ 2 gas, fluoride gas, etc., and its service life is short. In addition, the plasma-etched coating particles become fine particles that pollute the environment, leading to a decline in the quality of semiconductor processed products.
  • the white A 1 2 0 3 sprayed coating has a weak mutual bonding force between the particles that make up this coating, and when the coating is machined, the particles often fall off and precision processing cannot be performed.
  • the object of the present invention was developed in view of the above-mentioned problems of the prior art.
  • it has excellent damage resistance, thermal radiation characteristics such as mechanical resistance such as wear resistance, weather resistance, etc.
  • the purpose is to propose a coating member of a double oxide sprayed coating that is excellent in chemical characteristics and plasma etching resistance.
  • the present invention proposes a spraying transdermal HI Kawakutsugae materials and manufacturing method thereof of the prior art A 1 2 0 3 sprayed coating further improved to become the following summary and construction.
  • the surface of the substrate is lighter achromatic than grayish white (5Y 9/1) (for example, pale gray N-7) or chromatic (for example, sandy 2.5 Y 7.5Z2)
  • a Thermal spray coating material that is coated with a colored thermal spray coating consisting of A12O3 and has excellent damage resistance.
  • thermo spray coating member having excellent damage resistance, wherein an undercoat made of a metal, alloy, or cermet thermal spray coating is provided between the surface of the substrate and the colored thermal spray coating.
  • the colored thermal spray coating is an electron beam irradiation treatment or laser beam irradiation.
  • the brightness of white N—9.5 or so
  • the hue and saturation are changed to dark gray or darker than gray white (5Y 9/1)
  • Thermal sprayed HI skin covering material with chromatic color and excellent damage resistance N—9.5 or so
  • the above-mentioned colored thermal spray coating is a thermal spray coating member having excellent damage resistance and the like having a thickness of 50 to 2000 ⁇ m by depositing A 1 2 0 3 thermal spray particles.
  • the above-mentioned colored sprayed coating is a layer that is solidified after remelting by electron beam irradiation or laser beam irradiation within the range of less than 50 m from the surface. Wrinkle covering member.
  • the undercoat is composed of at least one metal or alloy selected from Ni and alloys thereof, Mo and alloys thereof, T i and alloys thereof, A 1 and alloys thereof, and Mg alloys, Thermal sprayed skin covering material with excellent damage resistance, which is a thermal sprayed coating made of cermet made of these metal ⁇ alloys and ceramics to a thickness of 50 to '500 / m.
  • This TsutomuAkira is basically properties as white
  • a 1 2 ⁇ 3 spray coating is comprises, for example, is excellent in resistance to plasma erosion in the gas atmosphere of a halogen or halogen compound, a precision machining accuracy It can be suitably used as a component for recent semiconductor processing equipment that requires a clean environment, and can improve the quality and productivity of semiconductor processed products. It can greatly contribute to improvement.
  • the present invention makes the color of the thermal spray coating a sand color (2.5 Y 7.5 / 2) or ash color (2.5 Y 6/1).
  • the colored A 1 2 0 3 sprayed coating of the present invention is promising as a protective coating for heaters that are required to have high characteristics of heat radiation and heat receiving efficiency.
  • the thermal spray coating member having the above-mentioned characteristics can be advantageously produced by employing an electron beam irradiation process or a laser beam irradiation process.
  • Fig. 1 (a) is a photograph of a white A 1 2 0 3 sprayed coating formed by air plasma spraying of a white A 1 2 0 3 powder material
  • Fig. 1 (b) shows the white A 1 2 2 0 3 the surface of the sprayed coating further by electron beam irradiation, a photograph of colored a 1 2 o 3 sprayed coating was changed to sand-colored.
  • FIG. 2 (a) is, A 1 2 ⁇ 3 surface of the sprayed coating after the electron beam irradiation
  • FIG. 2 (b) is an optical microscope photograph of the cross-sectional surface.
  • Fig. 3 (a) is before electron beam irradiation
  • Fig. 3 (b) is A 1 2 0 after electron beam irradiation.
  • FIG. 4 (a) is before the electron beam irradiation
  • FIG. 4 (b) is a T EM photographs and crystal structure images showing the A 1 2 0 3 sprayed coating section after the electron beam irradiation.
  • Fig. 5 (a) shows the X-ray diffraction pattern on the surface of the A 1 2 0 3 sprayed coating before electron beam irradiation, and (b) shows the surface after electron beam irradiation.
  • the coating of white (N—9.5) which is the specific color of the alumina (A 1 2 0 3 ) sprayed powder material and the sprayed coating obtained by spraying this material, is grayish white ( 5Y 9 ⁇ 1) Darker than (a lightness value: low brightness) A 1 2 0 3 sprayed coating of achromatic color (N-9) or chromatic color (V-9)
  • N-9.5 also called white or snow white
  • it is expressed as gray white (5Y 9/1) Dark colors (colors with a low brightness value), for example, pearl gray (N-7.
  • achromatic color with a dull color (N—4.0), or Munsell's lightness is the ivory lightness V — 8.5 (equivalent to N-8. 5) Less than or equal to, more preferably, V: 7.5
  • the thermal spray coating with such a color is referred to as a colored thermal spray coating in contrast to the intrinsic color thermal spray coating (white).
  • a 1 2 0 3 sprayed coating is a surface of the sprayed body (base material) that is roughened by blasting, and then an undercoat of metal, alloy, or cermet is first applied directly to the surface or to the surface of the base material.
  • a commercially available white A 12O3 spray powder material can be formed on the surface of the undercoat by a method such as plasma spraying. Initially, the thermal spray coating has the same white thermal spray coating as the thermal spray powder material.
  • the A 1 2 0 3 thermal spray coating formed by thermal spraying on the surface of the base material is an air plasma spray method, a low-pressure plasma spray method, a high-speed Blenim spray method, an explosion spray method, or water.
  • Thermal spraying methods such as water plasma spraying using a plasma source can be applied, but the appearance of the A 1 2 0 3 sprayed coating formed by these spraying methods is white.
  • the A 1 2 0 3 sprayed coating may be formed by first forming the undercoat on the surface of the substrate and then forming the coating thereon.
  • this undercoat The role of this undercoat is to improve the corrosion resistance by blocking the substrate surface from the corrosive environment and to improve the adhesion between the substrate and the A 1 2 ⁇ 3 — Y 2 O 3 double oxide layer. There is. Therefore, if the thickness of this undercoat is less than 50 / zm, not only the action mechanism of the undercoat (chemical protection action against the substrate) is weak, but also uniform film formation is difficult. On the other hand, when the thickness of the undercoat exceeds 500 ⁇ ⁇ , the coating effect is saturated, leading to an increase in production cost due to an increase in the laminating time.
  • the thickness of the A 1 2 0 3 sprayed coating that is always a top coat is preferably in the range of about 50 to 200 ⁇ m. If the film thickness is less than 50 ⁇ m, the film thickness is not uniform, and the function as an oxide ceramic film, such as erosion resistance and plasma erosion resistance, cannot be fully exhibited. is there. On the other hand, if the thickness exceeds 20 ⁇ ⁇ ⁇ ⁇ , the mutual bonding force of the particles that make up the film will become weaker, and the residual stress of the film will increase, resulting in an increase in the mechanical strength of the film itself. Therefore, the skin (i) is easily broken by the action of a slight external stress in a practical environment.
  • the thermal spraying powder material used in the present invention a powder in which the alumina is pulverized to have a particle size within a particle size range of 5 to 80 / zm is used.
  • the reason for this is that if the particle size of the powder material is smaller than 5 ⁇ m, the flowability of the powder decreases, the average supply to the spray gun cannot be achieved, and the thickness of the spray coating becomes uneven.
  • the particle size is more than 80 m, As a result of forming a film without completely melting inside, the resulting film becomes porous, the bonding force between particles and the adhesion to the base material become weak, and the strong film quality becomes rough. It is not preferable because the bonding strength with the wrinkle and the undercoat is reduced.
  • a 1 and its A 1 alloy corrosion resistant steel such as stainless steel, T i and its alloy, ceramic sintered body (for example, oxide, nitride, Boron, silicides, carbides, and mixtures thereof, as well as materials such as stone, glass, and plastic can be used.
  • ceramic sintered body for example, oxide, nitride, Boron, silicides, carbides, and mixtures thereof, as well as materials such as stone, glass, and plastic can be used.
  • the surface of the white A 12 o 3 sprayed coating is the same color as the A 1 2 Os spraying powder material, an electron beam or 'laser beams (hereinafter, referred to as electron beam or the like. )
  • This irradiation with an electron beam or the like aims at densification by fusing together the A 1 2 0 3 particles on the surface of the film and changing the color of the film surface from white to at least one ivory (2.5 Y 8.5 / 1 5), preferably a treatment for changing the color to the ash color (2.5Y 6/1), that is, the surface layer of the thermal spray coating is slightly smaller in N value from white (N-9.5).
  • N—9.0 or a chromatic color with a deeper color (gray-white: 5Y 9/1, ivory: 2.5 Y 8.5 / 1.5, etc.) Applies to
  • This phenomenon of melting and densification of the thermal spray coating gradually increases the number of times of irradiation with an electron beam, etc., lengthens the irradiation time, and increases the output, thereby gradually increasing the surface of the coating. Since it extends from the surface to the interior, the melt depth can be controlled by changing these conditions. Practically, if there is a melting or fruiting of about 50 ⁇ , a material suitable for the purpose of the present invention can be obtained.
  • an inert gas such as Ar gas
  • a YAG laser that uses a YAG crystal, or a co 2 gas laser if the medium is a gas. It is recommended that this laser beam irradiation treatment be performed under the following conditions. As above, the irradiation effect can be obtained up to a depth of 50 m from the surface of the sprayed coating. If it exists, it may be outside the following conditions.
  • Figure 1 shows a white A 12O3 sprayed coating obtained by atmospheric plasma spraying (a), and a colored sprayed coating after electron beam irradiation on the surface of the white sprayed coating. b).
  • FIG. 1 (a) formed on an aluminum substrate of width 50 X length 50 X thickness 1 Omm (A5052), the A 1 2 ⁇ 3 spray coating having a thickness of 250 mu m by atmospheric plasma spraying
  • Fig. 1 (b) the surface of the thermal spray coating in Fig. 1 (a) was irradiated with an electron beam under the conditions of an acceleration pressure of 28 kV and an irradiation atmosphere ⁇ 0.1 Pa. Is.
  • the color of the A 1 2 0 3 sprayed coating is N— 9. Changed from 25 to 9.5 (white) to 2.5 Y 8 2, almost sandy (2.5 5 7.5 / 5) or lye (2.5 ⁇ 6/1) It became a degree.
  • the cause of the color change on the surface of the A 1 2 0 3 sprayed coating that has been irradiated with an electron beam or the like has not been fully elucidated by the present inventors, but the following matters are either singly or I think that it is acting in a complex manner. .
  • a 1 2 0 3 as a thermal spray powder material a minute amount can be obtained by being heated and melted by a large amount of electrons under conditions where the oxygen partial pressure is low, as in an irradiation atmosphere such as an electron beam.
  • the inclusion of impurities contributes to coloring.
  • FIG. 3 to the electron beam irradiation before (a) and after irradiation a cross state of the thermal spray coating of (b) schematically shows, further in FIG. 4, A 1 2 ⁇ 3 spray coating sectional electron beam irradiation prior to the A comparison of TEM photographs and crystal structure images of (a) and (b) after irradiation is shown.
  • the particles that make up the film are deposited in a stone wall shape independently, while there are various large and small voids (pores). Surface roughness is large.
  • Fig. 3 (b) Fig.
  • the crystal form of the ⁇ 1 2 3 particles constituting the film was ⁇ -A 1 2 0 3 (cubic spinel) before the electron beam irradiation, It was found that the electron beam irradiation transformed to H-A 1 2 0 3 (trigonal steel ball shape). Furthermore, it was confirmed electron beam irradiation before. And crystal structure after electron beam irradiation of the A 1 2 0 3 sprayed coating Table ffi by X-ray diffraction ( Figure 5). As a result, it was confirmed that the crystal form of the A 12 O 3 particles in the skin was transformed from the y-type to the ⁇ -type by the electron beam irradiation, and the stability of the particles was improved. ,
  • Reference numeral 21 is a substrate shown in FIG. 3, the A 1 2 0 3 particles constituting the coating 22, the gap portion of coating 23, 24 cross grain boundary portions A 12O3 particles', 25 grain boundary transmural vent holes along the 26 fusion portion of the a 1 2 0 3 particles by electron beam irradiation, 27 is a fine heat shrinkage cracks generated in the fusion portion of the a 12O3 particles.
  • Colored A 1 2 ⁇ 3 spray coating of the present invention the physical 'chemical properties of one general conventionally formed by plasma spraying white A 1 2 ⁇ 3 spray coating (e.g., hard wear It has the following functions without impairing its excellent properties, corrosion resistance, and electrical insulation).
  • the A 1 2 0 3 sprayed coating irradiated with an electron beam or the like changes from white (N—9.5) immediately after spraying to ivory (2.5 Y 8.5 / 1. 5). .), Etc., and the light reflectivity is reduced, while the absorption efficiency of radiant heat is improved. Therefore, new development of materials using the color change can be expected.
  • the A 1 2 0 3 sprayed coating surface irradiated with an electron beam or the like is remarkably improved in plasma resistance due to the effects (a) to (d). Therefore, the colored A 1 2 0 3 sprayed coating irradiated with an electron beam according to the present invention is coated with the surface of a semiconductor manufacturing / inspection / processing apparatus member that requires a clean environment.
  • the erosion property is improved, and the generation phenomenon of particles that themselves become environmental pollution sources is reduced.
  • a remarkable effect is exhibited in maintaining the environmental cleanliness, and it greatly contributes to an improvement in productivity due to a decrease in the number of times the apparatus is cleaned.
  • the crystal form of A 1 2 ⁇ 3 particles constituting the coating Is transformed from ⁇ —A 1 2 0 3 (cubic spinel) to ⁇ —A 1 2 0 3 (trigonal steel ball), and the stability of the particles is improved at the crystal level.
  • Hitachi 323 UV-Vis spectrophotometer integrating sphere (for diffuse reflection measurement) belongs to the visible to near-infrared range. Spectral characteristics were measured for wavelengths in the ⁇ m range. In this measurement, since the sample was opaque, the transmittance (zero) was obtained from the following equation by measuring the reflectance ( ⁇ ) with the transmittance set to zero.
  • Table 1 shows the results of this test. 'Since the white sprayed coating reflects most of the test wavelength, the absorptivity (hi) is about 0.05 to 0.1, but it changed to sand color A 1 2 0 3 sprayed coating Then, the absorptance increased dramatically, showing 0, 4 to 0.6. Compared to the absorption rate of the Cr 2O3 black spray coating used as a comparative example, which is about 0.9 to 0.92, even the slight sand color has a significant effect on the spectral characteristics. I understood.
  • the thickness of the hot melt layer of the film by electron beam irradiation is 2-3 m.
  • the reflectance ( ⁇ ) was measured, and the absorptance (h) was obtained from the following formula.
  • a test piece of SS 400 steel (size: width 5 OmmX length 10 OmmX thickness 3.2 mm) was blasted and then treated with A 1 2 0 3 sprayed powder The material was directly sprayed with a film thickness of 150 ⁇ by atmospheric plasma spraying. After that, the surface of this ⁇ 1 2 ⁇ 3 sprayed coating was subjected to electron beam irradiation treatment.
  • the electrical output of the electron beam irradiation by changing the irradiation or the like times, by controlling the molten state of the Alpha 1 2 0 3 spray particles in the sprayed coating surface (fusion depth), the influence of electron beam irradiation, the surface Thermal spray coatings reaching 3 ⁇ m, 5 ⁇ ⁇ 1 0 20 m, and 30 ⁇ m 5 0 ⁇ were prepared.
  • the exposed parts of the substrate such as the side and back of the test piece after electron beam irradiation are coated with corrosion-resistant paint, and are subjected to the salt spray test specified in JISZ 2 3 7 1 for corrosion resistance of the thermal spray coating. investigated.
  • the electron beam irradiation apparatus used in this example has the following specifications. ⁇
  • Electron beam power 6 kW
  • Table 2 summarizes the results of the salt spray test.
  • the A 12O3 sprayed coating (No. 1) of the comparative example had many pores peculiar to ceramic spraying, and red rust was generated over the entire specimen after 24 hours. The subsequent tests were discontinued.
  • the specimens (No. 2 to No. 7) irradiated with the electron beam no red rust was observed even after 48 hours, and the specimen with the thin molten layer on the film surface (No. 2, No. 3) Only 96 hours later, small red rust was observed only at 2-3 power stations, and no red rust was observed on the other specimens. .
  • Example 2 SUS 304 steel (dimensions: width 5 OmmX length 6 OmmX thickness 3 2mm)
  • One side of the test piece was blasted and then directly applied to the surface by air plasma spraying method atmospheric plasma spraying 20 mass% C r alloy - white a 1 2 ⁇ 3 those particles was deposited to a thickness of the thermal spray to 15 O ⁇ m, and 80 mass% N i by That an undercoat and construction to a thickness of 1 5 0 ⁇ ⁇ , on its undercoat, by atmospheric plasma spraying method as convex Pukoto, A 1 2 0 3 the thermally sprayed film 1 5 0 mu m specimens was formed to a thickness Prepared.
  • a comparative A 1 2O 3 sprayed coating that was not irradiated with an electron beam was also prepared, and a thermal shock test was conducted under the same conditions to investigate the presence or absence of cracking or peeling of the top-coating double oxide sprayed coating.
  • the thermal shock test was carried out for 15 minutes in an electric furnace adjusted to 50 ° C. and then poured into tap water at 20 ° C. This operation was defined as one cycle, and each cycle was performed for five cycles while observing the appearance of the top coat. The number of test specimens was 3 per condition. If one of them was cracked, “1/3 crack occurred” was displayed.
  • both undercoat (80Ni-200 ⁇ ) and topcoat (A1 2 0 3 ) are formed to a thickness of 150 tn by atmospheric plasma spraying.
  • top coat A1 2 0 3
  • the fluorine gas resistance characteristics of a colored A 12O3 sprayed coating showing the color irradiated with an electron beam were investigated.
  • SUS 304 steel As a base material, SUS 304 steel (dimensions: width 3 Omm x length 50 mm x thickness 3.2 mm) is directly sprayed with white A 1 2 0 3 thermal spray powder material on the surface of the test piece, and is 150 m thick.
  • a white A 1 2 0 3 sprayed coating was obtained. After that, this sprayed coating was melted at a depth of 5 / xm from the surface of the coating by electron beam irradiation treatment, and was densified to give a colored sprayed coating exhibiting a sand color.
  • the test piece having the color sprayed coating that has been treated in this manner is placed in a vessel in which HF gas is introduced to a partial pressure of 100 hPa in a photoclave excluding air, and then the autoclave.
  • the sample was heated to 300 ° C and subjected to a continuous corrosion test for 100 hours.
  • a base material SUS 304
  • a white A 1 2 0 3 sprayed coating not irradiated with an electron beam were tested under the same conditions.
  • Table 4 shows the results. No. 1 thermal spray coating (comparative example) The SUS 3 04 steel base was severely corroded by HF gas, and II red rust was generated on the entire surface of the test piece. In addition, the white A 1 2 0 3 sprayed coating (No. 2) that was not irradiated with the electron beam was completely peeled off from the SU S 304 steel substrate, although the coating itself was healthy. Red rust was observed.
  • the A 1 2 0 3 sprayed coating that has changed to an ivory color by irradiation with an electron beam is not subject to the fine cracks that occur when it is solidified from the melt due to the molten state of the coating surface during electron beam irradiation. Although it exists, the number of through-holes reaching the substrate is very small, so there is no peeling of the film, and it is considered that it exhibited high anti-corrosion performance.
  • Film thickness is 150 xm by atmospheric plasma spraying method
  • the plasma erosion resistance of the film was investigated.
  • As the electron beam irradiation test piece using a reactive plasma etching apparatus constituting the C F4 gas 6 0 1 m / min, 0 2 to 2 m 1 / min flow atmosphere is used same as the actual ⁇ 3 A continuous treatment was performed with a plasma output of 80 W and an irradiation time of 500 minutes. Incidentally, was tested as a test piece of Comparative Example, the A 1 2 ⁇ 3 spray coating and S i 0 2 sprayed coating formed by atmospheric plasma spraying in the same conditions.
  • Table 5 shows the results of this test.
  • the amount of the plasma aerosol in the A 1 2 0 3 sprayed coating of the comparative example is 1.2 to 1.4 ⁇ , while it is irradiated with an electron beam.
  • the amount of erosion decreased to 25 to 40%, and it was revealed that the erosion resistance was improved by densifying the surface of the sprayed coating.
  • the S i 0 2 film of another comparative example is susceptible to chemical action by C F4 gas, and the maximum amount of erosion in the test film reaches 20 to 25 im. It was confirmed that it cannot be used under the environment.
  • the thickness of the sprayed coating is 150 ⁇ 1.
  • Test method Reciprocating wear test method specified in J I S H8503 plating wear test method was adopted. Test conditions: Load 3.5N, Reciprocating speed 40 times Z min. 10 min (400 times) and 20 min (800 times), wear area 30X 12 mm, abrasion test paper C C 320
  • the evaluation was performed by measuring the weight of the specimen before and after the test, and quantifying the amount of wear from the difference and comparing it.
  • the test results are shown in Table 6.
  • the sand color is an example Of ⁇ ⁇ 2 0 3 sprayed coating (N o. 2, 3) is weight loss due to wear and fir 4 0 .5 about 0% of the wear amount of the comparative example, to be compatible with the present invention Was found to exhibit excellent wear resistance.
  • This result is considered to include the improvement of the smoothness of the surface of the surface film by electron beam irradiation and the strength of the mutual bonding force of the A 1 2O3 particles constituting the film.
  • the wear resistance test of the film is performed by the reciprocating interlocking wear test method specified in the wear resistance test method of JIS H8503 plating.
  • the technology of this effort can be widely used in the industrial field where a sprayed coating of A 1 2 0 3 is applied.
  • the technology of the present invention has a high radiant heat absorption effect, and can be used as a protective film for a heater or a film for a heat receiving plate.
  • the technology of the present invention is excellent in planarity due to fusion bonding between the constituent particles of the thermal spray coating formed on the surface of the base material, so surface precision finishing by mechanical processing is possible, and it is effective as a component material for precision machinery. Is used.
  • it is also suitably used as a member for semiconductor processing / manufacturing / inspection device members that perform plasma etching reaction in a gas atmosphere of halogen or a halogen compound, or for member protection technology for liquid crystal manufacturing devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Laminated Bodies (AREA)

Abstract

白色のAl2O3溶射皮膜の有する課題、即ち、皮膜が多孔質で粒子間結合力が弱く、耐損傷性、耐食性、耐熱性あるいは耐摩耗性などに乏しいうえ、光の反射率が高いという欠点を解消することを目的とし、基材の表面が、灰白色よりも低明度の無彩色もしくは有彩色のAl2O3からなる色つき溶射皮膜にて被覆されている耐損傷性等に優れる溶射皮膜被覆部材とその製造方法を提案する。

Description

耐損傷性等に優れる溶射皮 JII皮覆部材およびその製造方法
技術分野
本発明は、 耐損傷性に優れる他、 熱放射特性や、 耐食性、 機械的特' I"生などの諸 特性に優れる溶射皮膜被覆部材およびその製造方法に関するものであり、 とくに、 基材表面に灰白色よりも低明度の明色付き溶射皮膜を形成する技術に関するもので ある。 書
背景技術
溶射法は、 金属やセラミック、 サーメットなどの溶射粉末材料をプラズマ炎や 可燃性ガスの燃焼炎によつて溶融し、 その溶融した粒子を加速させて、 被溶射体 (基材) の表面に吹き付けることによって、 該溶融粒子を順次に堆積させて、 一 定の厚みにして皮膜化させる表面処理技術である。 このようなプロセスによって 形成された溶射皮膜は、 該皮膜を構成する前記堆積粒子の相互結合力の強弱や未 結合粒子の有無によって、 皮膜の機械的性質 化学的性質に大きな差が生ずる。 このため、 従来の溶射技術は、 溶射粉末材料の完全溶融による溶融粒子どうしの 相互結合力を強化して、 未溶融粒子をなくすこと、 飛行する溶融粒子に対して大 きな力 U速力を付カ卩して、 被溶射体の表面に強い衝突エネルギーを発生させること によって粒子間結合力を向上させることにより、 気孔率を下げること、 あるいは 被処理体 との密着力を強化することなどを開発目標としている。
例えば、 特開平 1— 1 3 9 7 4 9号公報では、 5 0〜2 0 0 h P aのアルゴン 雰囲気中で金属粒子をプラズマ溶射する減圧ブラズマ溶射法によって、 金属粒子 の相互結合力を向上させたり、 気孔発生原因の一つである粒子表面に生成する酸 化膜を低減させる方法を提案している。
このような技術開発によって、 近年、 溶射皮膜は、 その機械的強度等の特性を 向上させることができたが、 熱放射特性まで向上させる技術ではなかった。 とく に、 溶射皮膜の表色を調整して、 熱放射特性、 その他の特性を向上させるという 考え方はない。 この点に関し、 一般的なセラミック溶射皮膜の色は、 例えば、 溶 射粉末材料としての酸化クロム (C r 203) 粉末は、 黒色に近い濃緑色であるが、 これをプラズマ溶射した場合、 黒色の皮膜になる。
このように、 セラミック溶射皮膜の色は、 一般に、 溶射用粉末材料自体の生成 り色がそのまま成膜された溶射皮膜の色として再現されるのが普通である。 例え ば、 酸化アルミニウム (A 1 203で示す) は、 粉末材料自体はもとより、 この粉 末材料を溶射して形成される溶射皮膜の色もまた白色になる。 とくに、 A 1 203 は、 他の多くの酸化物セラミックに比較して主成分の A 1と 02との化学的結合力 が強く、 A rガスを主成分とするガスプラズマ炎を熱源とするプラズマ溶射法 (このプラズマ中には、 多量の電子が含まれている) によって成膜しても白色に なる。
ところで、 多孔質な金属質溶射皮膜を構成する粒子の相互結合力を改善するに は、 J I S H 8 3 0 3 (自溶合金溶射) に規定されているような方法がある。 この方法は、 溶射皮膜形成後、 これを酸素一アセチレン炎や高周波誘導加熱法、 電気炉などによつて、 溶射皮膜のみを融点以 に加熱する再溶融処理法である。 その他、 溶射粒子の相互結合力を増大させる方法としては、 電子ビーム等を照 射する技術がある。 たとえば、 特開昭 6 1 - 1 0 4 0 6 2号公報には、 金属皮膜 に電子ビームやレーザビームを照射してこの皮膜を再 融して封孔する方法が、 そして、 特開平 9一 3 1 6 6 2 4号公報には、 炭化物サーメット皮膜や金属皮膜 の表面に対して電子ビームを照射して、 皮膜の性能を向上させる方法が、 さらに、 特開平 9一 0 4 8 6 8 4号公報には、 導電部を形成するためのセラミックスに短 波長光ビームを照射することによって、 酸素原子が脱離して金属状態を呈するこ とにより、 導電性を現出させる方法が開示されている。
し力 し、 これらの先行技術は、 金属皮膜や炭化物サーメット皮膜を対象とし、 これら皮膜の気孔の消滅や密着性の向上を目的としたものであり、 また、 セラミ ックス皮膜を短波長光ビーム照射する方法も、'皮膜に導電性を付与することを開 示しているものの、 皮膜の色を意図的に変化させることについて開示するもので はない。
こうした電子ビーム照射についての従来技術の考え方は、 特開平 9一 3 1 6 6 2 4号公報の [ 0 0 1 1 ] 段落に説明されているように、 溶射材料を電子ビーム 処理するには、 電気伝導性皮膜が必要であるという考え方が前提になっていたか らと思われる。
さらに、 特開 2 0 0 2— 8 9 6 0 7号公報には、 ガスタービン用の熱遮蔽皮膜 の形成に際して、 電子ビーム謝原を Z r 02系セラミックス材料の加熱蒸発源とし、 P V Dプロセスによって、 柱状組織を有するトップコートの形成に利用する成膜 方法が開示されている。 ただし、'この方法は、 電子ビーム謝原を用いた Z r 02系 セラミック層の形成方法であり、 一旦形成されたセラミック皮膜を再溶融する技 術ではない。 発明の開示
従来の A 1 203溶射皮膜は、 一般に、 溶射粉末材料の固有の色である白色系で あり、 発明者らの経験では、 この溶射皮膜は、 近年の先端工業の分野での求め件 に、 十分に応えられていないのが実情である。 即ち、
( 1 ) 白色の A 1 203溶射皮膜は、 A 1 203粒子の相互結合力が弱く、 そのため、 ブラストエロージョンのような外部からの衝撃を受け ¾と粒子が局部的に脱落し やすく、 この部分が皮膜全体の破壊の起点となって、 皮膜の耐損傷性が悪レヽ。
( 2 ) 白色の A 1 203溶射皮膜は、 光の反射率が極めて高く、 そのために 好な 熱放射率が求められる分野の被覆部材として相応しいものとは言えない。
( 3 ) 白色の溶射皮膜は、 部材の使用環境が、 半導体加工装置内部のような高度 な清浄性が必要とされるところでは、 有彩色のパーティクルが付着するため、 必 要以上の頻度で洗浄を繰返す必要が生じ、 作業効率の低下と製品コストの上昇を 招く。 (4) 白色の A 12O3溶射皮膜は、 皮膜を構成する溶射粒子の接触面積が小さく、 粒子相互の結合力が弱く、 空隙 (気孔) の多い多孔質の皮膜となる。 そのため、 この皮膜は、 A 12O3粒子自体は耐食性が優れているとしても、 皮膜の気孔中に 環境の腐食成分 (例えば、 水分、 酸、 塩類、 ハロゲンガスなど) が侵入しやす 基材の腐食や皮膜の剥離が起りやすい。
(5) 白色の A 1203溶射皮膜は、 多孔質で粒子間結合力が弱いうえ、 溶射熱源 中で十分な溶融現象を経ていないことが多い。 そのため、 弗素ガス、 〇2ガス、 弗 化物ガスなどが含まれる環境下におけるプラズマエッチングやプラズマクリ一二 ング処理時において、 エッチングされやすく、 耐用期間が短い。 しかも、 プラズ マエッチングされた皮膜の粒子は、 微細なパーティクルとなって環境を汚染し、 半導体加工製品の品質の低下を招く。
(6) 白色の A 1203溶射皮膜は、 この皮膜を構成する粒子の相互結合力が弱い ため、 皮膜を機械加工する際、 しばしば粒子が脱落し、 精密加工ができない。
本発明の目的は、 従来技術が抱えている上述した課題に鑑み開発したものであ つて、 とくに、 耐損傷性に優れる他、 熱放射特性ゃ耐摩耗性等の機械的、 耐贪性 等の化学的特性および耐プラズマエッチング特性等に優れる複酸化物の溶射皮膜 被覆部材を提案することにある。
本発明では、 従来技術の A 1203溶射皮膜さらに改善してなる下記要旨構成の 溶射皮 HI皮覆材料およびその製造方法を提案する。
(1) 基材の表面が、 灰白色 (5Y 9/1) よりも 明度の無彩色 (例えばパ ールグレイ N— 7など) もしくは有彩色 (例えば、 砂色 2. 5 Y 7. 5Z2な ど) の A 12O3力 らなる色付き溶射被膜にて被覆されている耐損傷性等に優れる 溶射皮赚覆部材。
(2) 基材の表面と前記色つき溶射皮膜との間に、 金属 .合金、 もしくはサーメ ットの溶射皮膜からなるアンダーコートが設けられている耐損傷性等に優れる溶 射皮膜被覆部材。
(3) 前記色つき溶射皮膜は、 電子ビーム照射処理あるいはレーザービーム照 射処理によって、 溶射粉末材料の固有色である白色 (N— 9. 5程度) がもつ明 度を下げるかまたは色相、 彩度を変えて灰白色 (5Y 9/1) よりも濃い無彩 色もしくは有彩色にした耐損傷性等に優れる溶射皮 HI皮覆部材。
(4) 前記色つき溶射皮膜は、 A 1203溶射粒子の堆積によって、 50〜200 0 μ m厚さにしたものである耐損傷性等に優れる溶射皮^!皮覆部材。
(5) 前記色つき溶射皮膜は、 表面から 50 m未満までの範囲の部分が、 電子 ビーム照射あるいはレーザービーム照射によって、 再溶融後、 凝固した層である 耐損傷性等に優れる溶射皮)!辭皮覆部材。
(6) 上記アンダーコートは、 N iおよびその合金、 Moおよびその合金、 T i およびその合金、 A 1およびその合金、 Mg合金のうちから選ばれるいずれか 1 種以上の金属もしくは合金、 まだはこれらの金属■合金とセラミックスからなる サーメットを 50〜'500 / mの厚さに形成した溶射皮膜である耐損傷性等に優 れる溶射皮^!皮覆部材。
(7) 基材の表面に直接、 またはその基材表面に形成したアンダーコートの表面 に、 白色の固有色を有する A 123溶射粉末材料を溶射し、 次いで、 その溶射に よって得られた白色の A 1203溶射皮膜の表面を、 電子ビーム照射あるいはレー ザ一ビーム照射することによって、 該溶射皮 の表面の色を灰白色 (5Y 9/ 1 ) よりも低明度の無彩色もしくは有彩色に変化させる耐損傷性等に優れる溶射 皮) 1»覆部材の製造方法。
(8) 前記電子ビーム照射処理あるいはレーザービー Λ照射処理によって、 白色 の A 12O3溶射皮膜の表面から 50 m未満の部分を、 灰白色 ( 5 Y 9/1) よりも低明度の無彩色もしくは有彩色に変化させる耐損傷性等に優れる溶射皮膜 被覆部材の製造方法。
本努明は、 基本的には、 白色の A 123溶射皮膜が具えている諸特性、 例えば、 ハロゲンまたはハロゲン化合物のガス雰囲気中における耐プラズマエロージョン 性に優れるため、 精密な加工精度と清浄な環境が要求される最近の半導体加工装 置用部材として好適に用いることができ、 半導体加工製品の品質および生産性の 向上に大きく貢献できるものである。 それに加えて、 本発明は、 溶射皮膜の表色 を砂色 (2. 5 Y 7. 5/2) や灰汁色 (2. 5 Y 6/1) のような色合い にしたことで、 耐損傷性や熱放射特性に優れると共に、 とくに電子ビーム照射あ るいはレーザービーム照射の処理を施したものでは皮膜表面が平滑で、 皮膜を構 成している A 1203溶射粒子が相互に融合し、 緻密な皮膜を形成していることか ら、 摺動特性や耐食性、 耐摩耗性等が一段と向上して、 工業分野用製品として長 期間に亘る使用が可能となる。 .
さらに、 本発明の色つき A 1203溶射皮膜は、 熱放射および受熱効率の高い特 性が要求される加熱ヒータ類の保護皮膜として有望である。
また、 本発明は上記諸特性を有する溶射皮膜被覆部材を、 電子ビーム照射処理 あるいはレーザービーム照射処理の採用によつて有利に製造することができる。 図面の簡単な説明
図 1 (a) は、 白色の A 1203粉末材料を大気プラズマ溶射法して形成された 白色の A 1203溶射皮膜の写真、 図 1 (b) は、 前記白色の A 1203溶射皮膜の 表面をさらに、 電子ビーム照射することによって、 砂色に変化させた色つき A 12 o3溶射皮膜の写真である。 ' '
図 2 (a) は、 電子ビーム照射後の A 123溶射皮膜の表面、 図 2 (b) は断 面の光学顕写真である。
図 3 (a) は、 電子ビーム照射前、 図 3 (b) は、 電子ビーム照射後の A 120
3溶射皮膜断面を模式的に示したものである。
図 4 (a) は、 電子ビーム照射前、 図 4 (b) は、 電子ビーム照射後の A 120 3溶射皮膜断面を示す T EM写真および結晶構造像である。
図 5 (a) は電子ビーム照射前、 (b) は電子ビーム照射後の A 1203溶射皮膜 表面の X線回折パターンである。 発明を実施するための最良の形態 本発明.において、 アルミナ (A 1203) 溶射粉末材料およびこの材料を溶射し たときに得られる溶射皮膜の固有の色である白色 (N—9. 5) の皮膜を、 灰白 色 (5Y 9ノ 1) よりも色の濃い (明度値の小さい:低明度) 無彩色 (く N— 9) もしくは有彩色 (く V— 9) の A 1203溶射皮膜にすることが、 特徴の 1つ である。 つまり、 前記溶射粉末材料の色 (固有色) は、 マンセル表記で N— 9. 5 (白色またはスノーホワイトともいう) 程度であるが、 本発明では、 それを、 灰白色 (5Y 9/1) より濃い色 (明度値の小さい色)、 例えば、 パールグレイ (N-7. 0)、 鈍色 (N— 4. 0) 程度の無彩色、 あるいは、 マンセル表記の明 度が、 アイボリーの明度である V— 8. 5 (N-8. 5に相当) 程度以下、 より 好ましくは、 V: 7. 5以下の数値で表わさせる有彩色、 例えば、 砂色 (2. 5
Y 7. 5/2), スカイグレイ (7. 5 B 7. 5/0. 5)、 灰汁色 (2. 5
Y 6Z1)、 鉛色'(2. 5PB 5/1) などの色をもつ溶射皮莫にするもので め 。
これらの表色は、 後述する溶射皮膜を電子ビーム照射あるいはレーザービーム 照射を制御することによって、 実現するこどができる。 以下、 本発明において、 このような色を付カ卩した溶射皮膜を、 固有色溶射皮膜 (白色) と対比して色つき 溶射皮膜と言う。
以下、 本発明に係るアイボリーなどの色つき A 1203溶射皮膜の製造方法を述 ベると共に、 その色つき溶射皮膜の特徴について説明する。
(1) A 1203溶射皮膜の形成による部材の製造方法 、
A 1203溶射皮膜は、 被溶射体 (基材) の表面をブラスト処理によって粗面化 した後、 その表面に直接、 または該基材の表面にまず金属 ·合金、 サーメットの アンダーコートを施工し、 そのアンダーコートの表面に市販の白色の A 12O3溶 射粉末材料をプラズマ溶射法などの方法によつて形成することができる。 この溶 射皮膜の «は当初、 溶射粉末材料と同じ白色の溶射皮膜になる。
本発明において、 基材表面に溶射して形成する前記 A 1203溶射皮膜は、 大気 プラズマ溶射法、 減圧プラズマ溶射法、 高速ブレニム溶射法、 爆発溶射法、 水を ブラズマ源とする水ブラズマ溶射法などの溶射法が適用できるが、 これらの溶射 法によって形成される A 1 203溶射皮膜の外観はいずれも白色である。
本発明において、 この A 1 203溶射皮膜の形成に当っては、 基材表面にまず、 前記アンダーコートを形成し、 その上に皮膜形成したものでもよい。 この場合、 そのアンダーコート材料としては、 N iおよびその合金、 M oおよびその合金、 T iおよびその合金、 T iおよびその合金、 A 1およびその合金、 M g合金など 力 ら選ばれる 1種以上の金属 '合金、 またはこれらとセラミックスとの混合物か らなるサーメットを用いて、 厚さ 5 0〜5 0 0 μ ιη程度に施工することが好まし い。
このアンダーコートの役割は、 基材表面を腐食性環境から遮断して耐食性を向 上させるとともに、 基材と A 1 2 Ο 3— Y 2 O 3複酸化物層との密着性の向上を図る ことにある。 従つで、 このアンダーコートの厚さが 5 0 /z mより薄いと、 アンダ 一コートとしての作用機構 (基材に対する化学的保護作用) が弱いだけでなく、 均一な成膜が困難であり、 一方、 アンダーコートの厚さが 5 0 0 μ ΐηを超えると 被覆効果が飽和し、 積層作業時間の増加による生産コストの上昇を招く。
また、 常にトップコートとなるこの A 1 203溶射皮膜の厚さは、 5 0〜2 0 0 0 μ m程度の範囲が好適である。 膜厚が 5 0 μ m未満では、 膜厚の均等性に欠け る他、 酸化物セラミック皮膜としての機能、 例えば、 耐エロージョン性、 耐プラ ズマエロージョン性などに対する耐久性を十分に発揮できないからである。 一方. その厚さが 2 0 Ο Ο μ πιより大きくなると、 皮膜を構)^する粒子の相互結合力が さらに弱くなるとともに、 皮膜の残留応力が大きくなつて、 皮膜自体の機械的強 度が低下するので、 実用環境において僅かな外部応力の作用によっても皮) i が破 壊され易くなる。
本発明で用いる溶射粉末材料は、 前記アルミナを粉砕し、 粒径 5 ~ 8 0 /z mの 粒度範囲内の粉末としたものを用いる。 その理由は、 この粉末材料の粒径が 5 μ mより小さいと、 粉末に流動性が低下し、 溶射ガンへの平均した供給ができず、 溶射皮膜の厚さが不均等となる。 一方、 粒径が 8 0 m超の場合では、 溶射熱源 中において完全に溶融しないまま成膜される結果、 得られる皮膜が多孔質化する と共に、 粒子相互の結合力および基材との密着力が弱くなり、 力つ膜質が粗くな るとともに、 基材ぉよびァンダーコートとの接合力が低下するので好ましくない。 また、 溶射皮膜を形成するための基材としては、 A 1およびその A 1合金、 ス テンレス鋼のような耐食鋼、 T iおよびその合金、 セラミック焼結体 (例えば、 酸化物、 窒化物、 硼化物、 珪化物、 炭化物およびこれらの混合物) をはじめ、 石 英、 ガラス、 プラスチックなどの素材も使用することができる。 また、 これらの 素材上に、 各種のめっき層を形成したり、 蒸着層を施したものも使用できる。
(2) A 12O3溶射皮膜の着色化のための電子ビームあるいはレーザービームに よる照射処理
本発明は、 上述したように、 A 12Os溶射粉末材料と同じ色である白色の A 12 o3溶射皮膜の表面に対し、 電子ビームあるいは'レーザービーム (以下、 電子ビー ム等と言う。) により照射処理を行う。 この電子ビーム等の照射は、 該皮膜表面の A 1203粒子を相互に融合させて緻密化を図ると共に、 皮膜表面の色を白色から 少なくともアイボリ一色 (2. 5 Y 8. 5/1. 5)、 好ましくは灰汁色 (2. 5Y 6/1) 程度に変化させるための処理であり、 即ち、 該溶射皮膜の表層部 は、 白色 (N— 9. 5) からやや N値の小さレ'、無彩色 (N— 9. 0) .または有彩 色の表色がさらに濃いもの (灰白色: 5Y 9/1、 アイボリー: 2. 5 Y 8. 5/1. 5など) にするのに適用される。
また、 この電子ビーム等の照射処理では、 アイボリ一色などに変色した A 120 3溶射粒子の表層部がビームの照射によつて局部的に溶融状態になるため、 皮膜表 面力全体にわたって平滑化する傾向がある。 しかも、 溶射皮膜の形成時に、 溶射 熱源の不測によつて十分な加熱が行われず、 未溶融状態で堆積した A 1203粒子 が存在することによって起こる局部的な粒子の脱落、 気孔率の上昇、 耐食性ゃ耐 摩耗性などの低下原因を完全に消失させることができる。
このような溶射皮膜の溶融、 緻密化現象は、 電子ビーム等の照射回数を増加し たり、 照射時間を長くしたり、 その出力を上げることによって、 次第に該皮膜表 面から内部にも及んでいくので、 溶融深さは、 これらの条件を変えることによつ て制御可能である。 なお、 実用的には 50 μπι程度の溶融、?果さがあれば、 本発明 の目的に適合するものが得られる。
なお、 電子ビーム照射条件としては、 空気を排出した照射室に、 不活 1生ガス (A rガス等) を導入し、 例えば、 次のような条件で処理することが推奨される 力 照射の効果が、 溶射皮膜の表面から 50 μπιの深さまで得られるものであれ ば、 下記の条件を外れるものであってもよい。
照射雰囲気: 10〜0. 0005P a
照射出力 : 0. 1〜8 kW
照射速度 : l〜30m/s
また、 レーザービーム照射とじては、 YAG結晶を利用した YAGレーザ、 ま た媒質がガスの場合には co2ガスレーザ等を使用することが可能である。 このレ 一ザ一ビーム照射処理としては、 次のような条件で処理することが推奨されるが. 上記と同様に照射の効果が、 溶射皮膜の表面から 50 ; mの深さまで得られるも のであれば、 下記の条件を外れるものであってもよい。
レーザ出力 : 0. 1〜10 kW
レーザービーム面積: 0. 01〜 2500 mm2
照射速度 : 5〜; L 000 mm, s
図 1は、 大気プラズマ溶射して得られた白色の A 12O3溶射皮膜の « ( a ) と、 その白色の溶射皮膜の表面に対して、 電子ビーム 照射した後の色つき溶射 皮膜の^図 (b) を示したものである。
なお、 図 1 (a) は、 幅 50 X長さ 50 X厚さ 1 Ommのアルミニウム製基板 (A5052) 上に、 大気プラズマ溶射により膜厚が 250 μ mの A 123溶射 皮膜を形成した後、 平面研削仕上げをしたものであり、 図 1 (b) は、 図 1 (a) の溶射皮膜表面に電子ビームを加速圧力 28 kV、 照射雰囲気 <0. 1 P aの条件で照射したものである。
この図示例では、 電子ビームの照射によって、 A 1203溶射皮膜の表色が N— 9. 25〜9. 5 (白色) から、 2. 5 Y 8 2に変ィ匕し、 ほぼ砂色 (2. 5 Υ 7. 5/2) もしくは灰汁色 (2. 5 Υ 6/1) 程度を示すものとなった。 なお、 電子ビーム等を照射した A 1203溶射皮膜表面の色変化の原因は、 .現在 のところ発明者らは十分に解明はしていないが、 次に示すような事項が単独また は複合的に作用しているものと考えている。 .
( I ) 溶射粉末材料としての A 1203.中に、 電子ビーム等の照射雰囲気のように、 酸素分圧が低レ、条件で、 多量の電子による加熱溶融作用を受けることによって、 微量の不純物の含有が着色化に寄与する。
(II) 電子ビーム等の溶射室中に配設されている金属製部材の一部が、 電子ビー ム等の照射を受けて、 極く微量ながら微細な有色の粉じんとなって溶射皮膜の溶 融面に混入する。 '
(III) 電子ビーム等の照射雰囲気中の低酸素分圧でかつ還元性の強い電子の多量 照射によって、 A 12〇3中の 1部の酸素が局部的に消失して A 1203·χのような形 に変化する。 ただし、 電子ビーム等の照射による白色の Α 123溶射皮膜の着色 化は、 前掲の照射条件では 100 %の確率で得られるものである。
(3) 電子ビーム等の照射を施した A 1203溶射皮膜の外観および皮膜断面の概
¾ ' .
発明者らの研究によると、 電子ビーム等の照射処理を施した A 12〇3溶射皮膜 の外観は、 灰白色やアイボリー、 あるいは砂色、 灰汁色などの色に変化するとと もに、 その表面および断面を光学顕微鏡 (SEM—BE I像) を用いて観察する と (図 2 (a)、 (b))、 小さな割れが網目状に発生していることが判明した。 こ の網目状の割れは、 電子ビーム等の照射によって溶融した A 1203粒子が相互に 融合して大きな平滑面を形成した後、 冷却する過程において、 体積が収縮するた めに発生したものと考えられる。 また、 図 2 (b) の断面図からわかるように、 電子ビーム照射後の A 12O3皮膜の表面に発生した熱収縮に起因する割れは、 表 面に限られ、 皮膜の内部まで貫通しているものはなく、 皮膜の耐食性に影響を与 える割れではない。 なお、 照射部を予熱したり、 照射後徐冷することによって、 割れのない照射面をつくることができる。
一方、 電子ビーム照射影響部 (照射によって皮膜の形態が変化した部分) のそ の下層部では、 A 1203溶射皮膜特有の気孔の多い皮膜構造が残存するので、 熱 衝撃に対しては、 これらの皮)!對冓造が有利に作用するものと考えられる。
また、 図 3'に電子ビーム照射前 (a) と照射後 (b) の溶射皮膜の断面状態を 模式的に示し、 さらに、 図 4に、 A 123溶射皮膜断面について電子ビーム照射 前 (a) と照射後 (b) の T EM写真および 晶構造像を比較して示す。 図 3 (a) および図 4 (a) に示す非照射部では、 皮膜を構成している粒子がそれぞ れ独立して石垣状に堆積する一方、 大小さまざまな空隙 (気孔) の存在し、 表面 の粗さが大きい。 これに対して照射部 (図 3 (b)、 図 4 (b)) では、 A1203 一 γ2ο3複酸化物粒子の溶射皮膜上にミク口組織の異なる新たな層が生成してい る。 この層は、 前記溶射粒子が相互に融合し、 空隙の少ない緻密な層になったも のである。
また、 図 4の結晶構造像より、 皮膜を構成する Α 123粒子の結晶型が、 電子 ビーム照射前は γ— A 123 (立方晶系スピネル) であったのに対し、 電子ビー ムの照射によりひ- A 1203 (三方晶系鋼玉型) に変態していることがわかった。 さらに、 X線回折により A 1203溶射皮膜表 ffiへの電子ビーム照射前.と電子ビー ム照射後の結晶構造を確認した (図 5)。 その結果、 電子ビームの照射により、 皮 膜中の A 12O3粒子の結晶型が、 y型から α型に変態し、 粒子の安定性が向上す ることが確認できた。 、
なお、 図 3に示す符号 21は基材、 22は皮膜を構成している A 1203粒子、 23は皮膜の空隙部、 24は A 12O3粒子の相互粒界部'、 25は粒界に沿った貫 通気孔部、 26は電子ビーム照射による A 1203粒子の融合部、 27は A 12O3 粒子の融合部に発生した微細な熱収縮割れである。
(4) 電子ビーム等を照射した A 1203溶射皮膜の特徴
本発明の色つき A 123溶射皮膜は、 プラズマ溶射などによって形成された一 般的な従来の白色の A 123溶射皮膜の物理'化学的特性 (例えば、 硬く耐摩耗 性に優れるほカゝ、 耐食性、 電気絶縁性を有する) を損うことなく、 次のような機 能も具備するものである。
(a) 電子ビーム等が照射された色付き A 1203溶射皮膜の表面は、 一旦は完全 に溶融し、 皮膜を構成する 5〜 80 μ m程度の A 12O3粒子が相互に融合して一 体化するので、 溶射皮膜表面近傍 (表面から.50 tm深さまで) の機械的強度が 向上し、 破壌され難くなる。
(b) 電子ビーム等の照射によって、 色付き A 1203溶射皮膜の表面は、 照射処 理前の表面粗さの最大粗さ (Ry) I 16〜32 μιηであったのに対し、 照射 処理後は、 溶融現象によって最大粗さ (Ry) 1 6〜18 /m程度と著しく平 滑化するため、 溶射皮膜特有の未溶融粒子ゃ凸起状に付着している粒子が消滅し、 そのために摺動特性が向上する。 'しかも、 溶射皮膜表面の機械加工精度が向上し て、 精度の高い溶射被覆部材を作ることができる。
(c) 電子ビーム等の照射された A 123溶射皮膜表面では、 溶融現象によって 溶射皮膜に存在している気孔、 特に皮膜の表面から基材に通じている貫通気孔が 消失するので、 皮膜のみならず基材の耐食性が飛躍的に向上する。
(d) 上述したように、 電子ビーム等の照射された A 1203溶射皮膜は、 溶射直 後の白色 (N—9. 5) からアイボリ (2. 5 Y 8. 5/1. 5.) などの色 に変化し、 光の反射率が低下する一方、 輻射熱の吸収効率が向上するので、 色調 の変化を利用した部材への新しい展開が期待できる。
(e) 電子ビーム等の照射された A 1203溶射皮膜表面は、 上記 (a) 〜 (d) の作用効果によって、 耐プラズマ ロージヨン性が著しく向上する。 従って、 本 発明に係る電子ビーム照射された色つき A 1203溶射皮膜は、 これを清浄な環境 が要求されている半導体製造■検査■加工装置用部材の表面に被覆すると、 耐プ ラズマ侵食性が向上し、 自らが環境汚染源となるパーティクルの発生現象が低下 する。 その結果、 本発明によれば環境の清浄化保持に著しい効果を発揮するとと もに、 装置の洗浄回数の減少に伴う生産性の向上にも大きく寄与する。
(f) 電子ビーム等の照射処理によって、 皮膜を構成する A 123粒子の結晶型 は、 γ— A 1203 (立方晶系スピネル) から α— A 1203 (三方晶系鋼玉型) に変 態し、 結晶レベルで粒子の安定性が向上する。
( 5 ) 着色化した A 1203溶射皮膜の熱分光特性
本発明の方法で、 砂色 (2. 5 Y 7. 5/2) に変化した色付き A 1203溶 射皮膜は、 熱分光特性が大きく変化する。 このことは、 発明者らが行った次のよ うな実験から明らかとなったことであ.る。 即ち、 SUS 304鋼 (寸法:幅 3 OmmX長さ 5 OmmX厚さ 3. 2 mm) の試 片の表面をプラスト処理した後、 この表面に直接、 大気プラズマ溶射法によって、 白色の A 1203粉末材料を用い て、 120Mm厚の溶射皮膜を形成した。 その後、 この 射皮膜の表面を電子ビ ーム照射して砂色に変化させた。
このようして準備した A 1203溶射皮膜を試料として、 日立 323型紫外可視 分光光度計積分球 (拡散反射測定用) を用いて、 可視域から近赤外域に属する 0. 34-4 μ mの範囲の波長について分光特性を測定した。 この測定では、 試料が 不透明であるため、 透過率を零とし、 反射率 (γ) を実測することによって、 次 式から吸収率 (ο を求めた。
吸収率 (ひ) =1-7
表 1は、 この試験結果を示したものである。' 白色の溶射皮膜は、 供.試波長の大 部分を反射するため、 吸収率 (ひ) は 0. 05〜0. 1程度であるが、 砂色に変 化した A 1203溶射皮膜では、 吸収率が飛躍的に上昇して 0、 4〜0. 6を示し た。 比較例として用いた C r 2O3の黒色溶射皮膜の吸収率が 0. 9〜 0. 92程 度であるのに比較し、 僅かな着色に属する砂色でも、 分光特性に大きな影響を与 えることがわかった。
Figure imgf000017_0001
Figure imgf000017_0002
(備考)
- (1)溶射皮膜材料の純度は、 A1203、 . Cr203とも 98.0mass%以上の市販品である。
(2)電子ビーム照射による皮膜の熱溶融層の厚さは、 2〜3 mである。
(3)分光特性は、 日立 323型紫外可視分光光度計積分球を用い、 波長 0.34〜4 imの条件で、
反射率 (γ) を実測し、 下記の式から吸収率 (ひ)を求めた。
吸収率 (ひ) = 1 -γ
実施例 - (実施例 1)
この実施例は、 S S 400鋼の試験片 (寸法:幅 5 OmmX長さ 1 0 OmmX 厚さ 3. 2 mm) の片面を、 ブラスト処理した後、 その処理面に、 A 1203溶射 粉末材料を直接、 大気プラズマ溶射法によって、 膜厚 1 5 0 μιηの溶射皮膜とし た。 その後、 この Α 12θ3溶射皮膜の表面を電子ビーム照射処理した。 このとき、 電子ビーム照射の電気出力、 照射回数などを変化させて、 溶射皮膜表面における Α 1203溶射粒子の溶融状態 (溶融深さ) を制御して、 電子ビーム照射の影響が、 表面力 らそれぞれ 3 μ m、 5 μ χ ^ 1 0 20 m、 30 μ m 5 0 πιに 達する溶射皮膜を準備した。
電子ビーム照射後の試験片の側面および裏面などの基材露出部には、 耐食性を 有する塗料を塗布し'、 J I S Z 2 3 7 1に規定されている塩水噴霧試験に供し て、 溶射皮膜の耐食性を調査した。
また、 比較例の A 1203溶射皮膜として、 電子ビーム照射しない大気プラズマ 溶射皮膜を;^噴 験に供試した。 '
なお、 この実施例で用いた電子ビーム照射装置は、 次に示す仕様のものを用い た。 ·
電子ビーム出力: 6 kW
加速電圧 3 0— 6 0 k V
ビーム電流 5~1 0 OmA
ビーム径 400〜; L 0ひ Ο πι
照射雰囲気圧 6. 7— 0. 27 P a
照射距離 3 00— 50 Omm
表 2は、 塩水噴霧試験結果を要約したものである。 この結果から明らかなよう に、 比較例の A 12O3溶射皮膜 (No. 1 ) には、 セラミック溶射特有の気孔が 多数存在していたため、 24時間後には試験片全面にわたって、 赤さびが発生し たので、 以降の試験は中止した。 これに対して、 電子ビーム照射した試験片 (No. 2〜No. 7) では、 48 時間後でも赤さびの発生は認められず、 電子ビーム照射による皮膜表面の溶融層 厚が薄い試験片 (No. 2、 No. 3) のみ 96時間後になってはじめて、 2〜 3力所において小さな赤さびの発生が認められた程度であり、 他の試験片につい ては、 赤さびの発生は見られなかった。 .
以上の結果から、 電子ビーム照射レた A 1203溶射皮膜の表面では、 この皮膜 が電子ビームによって溶融し、 相互に融合して皮膜に存在している気孔、 特に基 材に達する貫通気孔の一部が完全に消滅したことによって、 塩水が皮膜内部を通 つて基材表面に達するのを防いでいることがわかった。 '
なお、 電子ビーム照射面においても、 微細な割れが存在しているが、 これらの 割れは、 電子ビームによって、 溶融した A 123溶射粒子が冷却収縮する際、 ご く表面部分のみに発生するだけであり、 基材にまで達するような大きな割れでな く、 皮膜の耐食性には影響を与えないことがわかった。
【表 2】
^ ¾S OS ¾ 。
Figure imgf000020_0001
Figure imgf000020_0002
(実施例 2) この実施例では、 SUS 304鋼 (寸法:幅 5 OmmX長さ 6 OmmX厚さ 3 2mm) 試験片の片面を、 ブラスト処理し、 その後、 その表面に対し直接、 大気 プラズマ溶射法によって白色 A 123粒子を溶射して 15 O^mの厚さに成膜し たもの、 および 80 mass% N i - 20 mass% C r合金の大気プラズマ溶射によ るアンダーコートを 1 5 0 μ πιの厚さに施工し、 そのアンダーコート上に、 トツ プコートとして大気プラズマ溶射法によって、 A 1 203溶射皮膜を 1 5 0 μ m厚 に形成した試験片を準備した。 その後、 これらの A 1 203溶射皮膜の表面を.電子 ビーム照射することによつて緻密化処理を行つた。 なお、 比較例の A 1 2O 3溶射 皮膜として電子ビーム照射しないものも準備し、 同じ条件で熱衝撃試験を行い、 トップコ一トの複酸化物溶射皮膜の割れや剥離の有無を調査した。
前記熱衝撃試験は 5 0 0 °Cに調整した電気炉中に 1 5.分間静置した後、 2 0 °C の水道水中に投入した。 この操作を 1サイクルとし、 その都度トップコートの外 観状況を観察しつつ 5サイクル実施した。 試験片枚数は 1条件当り 3枚とし、 そ のうち 1枚に亀裂が努生した場合は 「1 / 3割れ発生」 ありと表示した。
'表 3は、 以上の結果を要約したものである。 この結果から明らかなように、 基 材上にアンダーコ一十を施工した A 1 203溶射皮膜では、 電子ビーム照射の有無 に限らず良好な耐熱衝撃性を発揮し、 トップコ一トに割れなどの異状は認められ なかった。
これに対して、 基材に直接 A 1 2O3溶射皮膜をトップコ一トとして形成した皮 膜 (N o . 1、 2 ) では、 電子ビーム照射のない皮膜では 3枚中 2枚 (2 Z 3と 表示) に割れ;^発生し、 耐熱衝撃性に乏.しいことがわかった。
これらの結果から A 1 203溶射皮膜の電子ビーム照射による緻密化は表面近傍 にとどまり、 皮膜の内部は気孔の多い状態に維持されていることがわかった。 な お、 これらの皮膜の耐熱衝撃性の向上に、 少なくともアンダーコートの施工が有 効であることがわかった。
Figure imgf000022_0001
(備考)
(1)アンダーコート (80Ni— 200·)、 トップコート (A1203) とも大気プラズマ溶射法により、 それぞれ 150 tn厚に形成
(2)熱衝撃試験結果欄の分数の表示は次の通りである。
1/3→3枚の試験片中 1枚にトップコート (A1203) に割れもしくは剥離が発生
(実施例 3)
この実施例では、 電子ビーム照射した 色を示す色つき A 12O3溶射皮膜の耐 弗素ガス特性を調査した。 基材として SUS 304鋼 (寸法:幅 3 OmmX長さ 50mmX厚さ 3. 2mm) の試験片面上に直接、 白色の A 1203溶射粉末材料 を、 大気プラズマ溶射して、 150 m厚の.白色の A 1203溶射皮膜を得た。 そ の後、 この溶射皮膜を電子ビーム照射処理によって、 皮膜表面から 5 /xm深さの 範囲を溶融し、 緻密化させ砂色を呈する色つき溶射皮膜とした。
このような処理をした色つき溶射皮膜を有する試験片を、 空気を除いたォート クレーブ中に、 HFガスを 100 hP aの分圧になるように導入した容器中に静 置し、 その後、 オートクレーブを 300 °Cに加熱、 100時間の連続腐食試験を 行った。 なお、 比較例として基材 (SUS 304) および電子ビーム照射をして いない白色 A 1203溶射皮膜を同条件で試験した。
表 4は、 この結果を示したものである。 No. 1溶射皮膜 (比較例) SUS 3 04鋼基材が、 HFガスによって激しく腐食されて、 試験片の全面にわたって II 細な赤さびが発生した。 また、 電子ビーム照射をしない白色の A 1203溶射皮膜 (No. 2) は、 皮膜自体は健全であつたが、 ' SU S 304鋼基材から完全に剥 離し、 基材表面には赤さびの発生が認められた。
この結果から、 電子ビーム照射処理しない A 1203溶射皮膜では、 皮膜の気孔 部から HFガスが内部へ侵入して、 基材を腐食させることによって、 皮膜と基材 との接合力を消失させたものと考えられる。
これに対して、 電子ビーム照射してアイボリ一に変色したた A 1203溶射皮膜 は、 電子ビーム照射時の皮膜表面の溶融状態から、 令却凝固する際に発生する微 細な割れは存在するものの、 基材に達する貫通気孔が非常に少ないため、 皮膜の 剥離はなく、 高い耐防食性能を発揮したものと考えられる。 g〇s¾ As§鲫 fs,屮≠厂7 ^dΛΓ-
Figure imgf000024_0001
(備考)
(1)膜厚は大気プラズマ溶射法による 150 xm
(2)電子ビーム照射による皮膜の溶融層は 5 μ ra厚
】 54 膜の耐プラズマエロージョン性を調査した。 電子ビーム照射試験片としては、 実 施例 3と同じものを用い C F4ガスを 6 0 1 m/m i n、 02を 2 m 1 /m i n流 れる雰囲気を構成する反応性プラズマエッチング装置を用いて、 プラズマ出力 8 0W、 照射時間 5 0 0分の連続処理を行った。 なお、 比較例の試験片として、 大 気プラズマ溶射によって形成した A 1 23溶射皮膜および S i 02溶射皮膜を同じ 条件で試験した。
表 5は、 この試験結果を示したものであり、 比較例の A 1 203溶射皮膜のブラ ズマエロ一ジョン量は 1 . 2〜1 . 4 μ ιηであるのに対し、 電子ビーム照射した 色つき A 1 2O 3溶射皮膜では、 エロージョン量は 2 5〜 4 0 %に減少し、 溶射皮 膜表面の緻密化による耐エロージョン性の向上が明らかとなった。 なお、 もう一 つの比較例の S i 02皮膜は C F4ガスによる化学的作用を受け易いこともあって、 供試皮膜中最大の侵食量: 2 0〜 2 5 i mに達し、 この種の環境下では使用でき ないことが確認された。
【表 5】
Figure imgf000026_0001
(備考)
(1)八1203溶射皮膜の厚さは150 《1でぁる。
(2)溶射皮膜の表面はすべて鏡面研摩した後、 供試した。
(3)評価は、 試験片表面の 3力所についてエロージョン深さを測定し、
その計測値の範囲を示した。
(実施例 5)
この実施例では、 実施例 2の試験片を用いて、 砂色 ( 2. 5 Y 7. 5 /2) を呈する色つき A 12O3溶射皮膜の耐摩耗性と、 電子ビーム照射処理しない溶射 皮膜と比較した。 供試した試験装置およひ ¾験条件は、 下記の通りである。
試験方法: J I S H8503 めっきの耐摩耗試験方法に規定されている往復 運動摩耗試験方法を採用した。 試験条件:荷重 3. 5N、 往復速度 40回 Z分を 10分 (400回) と 20分 ( 800回) 実施、 摩耗面積 30X 12 mm、 摩耗試験紙 C C 320
評価は、 試験前後における試験片の重量測定を行い、 その差から摩耗量を定量し て比較した。
なお、 この試験では、 比較例として、 A 1203の大気プラズマ溶射皮膜に電子 ビーム処理をしない例を示した (No. 1)。
上記試験結果を表 6に示した。 この結果から明らかなよう、 発明例である砂色 の Α ί203溶射皮膜 (N o . 2、 3 ) は、 摩耗に伴う重量減少量が比較例の摩耗 量の 4 0〜 .5 0 %程度にとどまつており、 本発明に適合するものは優れた耐摩耗 性を発揮することが判明した。 なお、 この結果には、 電子ビーム照射による表膜 表面の平滑性の向上と皮膜を構成する A 1 2O3粒子の相互結合力の強さなどが含 まれているものと考えられる。
Figure imgf000028_0001
(備考)
(1)試験片は 1条件当り 3枚供試 電子ビーム照射の有無欄の数字は溶融層厚を示す。
(2)皮膜のアンダーコート (80Ni - 20 ) 100 ju m、 トップコートの A1203溶射皮膜の厚さは 180 ra
(3)皮膜の気孔率は皮膜断面を画像解析装置により測定
(4)皮膜の耐摩耗性試験は JIS H8503めっきの耐摩耗試験方法に規定する往復連動摩耗試験方法によつて実施
産業上の利用可能性
本努明の技術は、 A 1 203の溶射皮膜が施工されている工業分野で広く利用で きる。 また、 本発明の技術は、 輻射熱吸収効果が高く、 ヒーターの保護皮膜ゃ受 熱板用皮膜として用いることができる。 また、 本発明の技術は、 基材表面に形成 した溶射皮膜の構成粒子どうしの溶融結合による平面性状に優れるので、 機械加 ェによる表面精度仕上げが可能であり.、精密機械用部品材料として効果的に用い られる。 さらに、 ハロゲンやハロゲン化合物のガス雰囲気中でプラズマェッチン グ反応を行う半導体加工 ·製造 ·検査装置用部材ゃ液晶製造装置用部材保護技術 などの部材としても好適に用いられる。

Claims

請求の範囲
1 . 基材の表面が、 灰白色よりも低明度の無彩色もしくは有彩色の A 1 203か らなる色つき溶射皮膜にて被覆されていることを特徴とする耐損傷性等に優れる 溶射皮纖覆部材。
2 . 基材の表面と前記色つき溶射皮膜との間に、 金属■合金もしくはサーメッ トの溶射皮膜からなるアンダーコートが設けられていることを特徴とする請求の 範囲第 1項に記載の耐損傷性等に優れる溶射皮膜被覆部材。
3 . 前記色つき溶射皮膜は、 電子ビーム照射処理あるいはレーザービーム照射 処理によって、 溶射粉末材料の固有色である白色がもつ明度を下げるかまたは色 相、 彩度を変えて灰白色よりも濃い無彩色もしくは有彩色にしたことを特徴とす る請求の範囲第 1項または第 2項に記載の耐損傷性等に優れる溶射皮膜被覆部材( 4: 前記色つき溶射皮膜は、 A 1 203溶射粒子の堆積によって、 5 0〜 2 0 0 0 m厚さにしたものであることを特徴とする請求の範囲第 1項〜第 3項のいず れか 1項に記載の耐損傷性等に優れる溶射皮 fl»覆部材。
5 . 前記色つき溶射皮膜は、 表面から 5 0 / 'm未満までの範囲の部分が、 電子 ビーム照射あるいはレーザービーム照射によ て、 再溶融後、 凝固した層である ことを特徴とする請求の範囲第 1項〜第 4項のいずれか 1項に記載の耐損傷性等 に優れる溶射皮 皮覆部材。
6 . 上記アンダーコートは、 N iおよびその合金、 M oおよびその合金、 T i およびその合金、 A 1およびその合金、 M g合金のうちから選ばれるいずれか 1 種以上の金属もしくは合金、 またはこれらの金属■合金とセラミックスからなる サーメットを 5 0〜5 0 0 μ πιの厚さに形成した溶射皮膜であることを特徴とす る請求の範囲第 2項に記載の麵傷性等に優れる溶射皮 H鎌覆部材。
7 . 基材の表面に直接、 またはその基材表面に形成したアンダーコートの表面 に、 白色の固有色を有する A 1 203溶射粉末材料を溶射し、 次いで、 その溶射に よって得られた白色の A 1 203溶射皮膜の表面を、 電子ビーム照射あるいはレー ザ一ビーム照射することによって、 該溶射皮膜の表面の色を灰白色よりも低明度 の無彩色も.しくは有彩色に変化させることを特徴とする耐損傷性等に優れる溶射 皮 U辯皮覆部材の製造方法。 . 8 . 前記電子ビーム照射処理あるいはレーザービーム照射処理によって、 白色 の A 1 2Og溶射皮膜の表面から 5 0 m未満.の部分を、 灰白色よりも低明度の無 彩色もしくは有彩色に変化させることを特徴とする請求の範囲第 7項に記載の耐 損傷性等に優れる溶射皮膨皮覆部材の製造方法。
PCT/JP2006/316788 2005-08-22 2006-08-21 耐損傷性等に優れる溶射皮膜被覆部材およびその製造方法 WO2007023976A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/990,760 US8231986B2 (en) 2005-08-22 2006-08-21 Spray coating member having excellent injury resistance and so on and method for producing the same
JP2007532212A JP4555865B2 (ja) 2005-08-22 2006-08-21 耐損傷性等に優れる溶射皮膜被覆部材およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005239523 2005-08-22
JP2005-239523 2005-08-22

Publications (1)

Publication Number Publication Date
WO2007023976A1 true WO2007023976A1 (ja) 2007-03-01

Family

ID=37771712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316788 WO2007023976A1 (ja) 2005-08-22 2006-08-21 耐損傷性等に優れる溶射皮膜被覆部材およびその製造方法

Country Status (5)

Country Link
US (1) US8231986B2 (ja)
JP (1) JP4555865B2 (ja)
KR (1) KR101021459B1 (ja)
TW (1) TW200714747A (ja)
WO (1) WO2007023976A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494723B2 (en) 2005-07-29 2009-02-24 Tocalo Co., Ltd. Y2O3 spray-coated member and production method thereof
JP2009185318A (ja) * 2008-02-05 2009-08-20 Tocalo Co Ltd 優れた外観を有する溶射皮膜被覆部材およびその製造方法
US7767268B2 (en) 2005-09-08 2010-08-03 Tocalo Co., Ltd. Spray-coated member having an excellent resistance to plasma erosion and method of producing the same
JP2012057243A (ja) * 2010-09-13 2012-03-22 Tocalo Co Ltd 耐プラズマエロージョン性に優れるサーメット皮膜の形成方法とサーメット皮膜被覆部材
US8231986B2 (en) 2005-08-22 2012-07-31 Tocalo Co., Ltd. Spray coating member having excellent injury resistance and so on and method for producing the same
JP2013010986A (ja) * 2011-06-29 2013-01-17 Tocalo Co Ltd 耐食性や耐プラズマエロージョン性に優れるサーメット溶射用粉末材料およびその製造方法
JP2013010984A (ja) * 2011-06-29 2013-01-17 Tocalo Co Ltd 耐食性や耐プラズマエロージョン性に優れるサーメット溶射皮膜被覆部材およびその製造方法
JP2013147679A (ja) * 2012-01-17 2013-08-01 Tocalo Co Ltd フッ化物溶射皮膜被覆部材およびその製造方法
JP2015157994A (ja) * 2014-02-25 2015-09-03 日本ゼオン株式会社 グラビア塗工装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666575B2 (ja) * 2004-11-08 2011-04-06 東京エレクトロン株式会社 セラミック溶射部材の製造方法、該方法を実行するためのプログラム、記憶媒体、及びセラミック溶射部材
KR20080028498A (ko) * 2005-08-22 2008-03-31 도카로 가부시키가이샤 열방사 특성 등이 우수한 용사 피막 피복 부재 및 그 제조방법
US7648782B2 (en) * 2006-03-20 2010-01-19 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
US7850864B2 (en) 2006-03-20 2010-12-14 Tokyo Electron Limited Plasma treating apparatus and plasma treating method
US8622021B2 (en) * 2007-10-31 2014-01-07 Lam Research Corporation High lifetime consumable silicon nitride-silicon dioxide plasma processing components
JP5415853B2 (ja) * 2009-07-10 2014-02-12 東京エレクトロン株式会社 表面処理方法
US20120196139A1 (en) * 2010-07-14 2012-08-02 Christopher Petorak Thermal spray composite coatings for semiconductor applications
WO2013114942A1 (ja) * 2012-02-03 2013-08-08 トーカロ株式会社 白色フッ化物溶射皮膜の黒色化方法および表面に黒色層を有するフッ化物溶射皮膜被覆部材
KR101904243B1 (ko) 2012-06-22 2018-11-27 애플 인크. 백색으로 보이는 양극산화 필름 및 이를 형성하기 위한 방법
US9493876B2 (en) 2012-09-14 2016-11-15 Apple Inc. Changing colors of materials
DE102013104186A1 (de) * 2013-04-25 2014-10-30 Coatec Gmbh Lagerring, elektrisch isolierende Beschichtung und Verfahren zum Aufbringen einer elektrisch isolierenden Beschichtung
US9181629B2 (en) 2013-10-30 2015-11-10 Apple Inc. Methods for producing white appearing metal oxide films by positioning reflective particles prior to or during anodizing processes
US9839974B2 (en) 2013-11-13 2017-12-12 Apple Inc. Forming white metal oxide films by oxide structure modification or subsurface cracking
CN111957542A (zh) * 2020-08-11 2020-11-20 江苏万源新材料股份有限公司 一种具有保湿功能的涂层铝箔及其制备工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130658A (ja) * 1984-07-19 1986-02-12 Showa Denko Kk 溶射基板の表面処理方法
JPS61104062A (ja) * 1984-10-23 1986-05-22 Tsukishima Kikai Co Ltd 金属またはセラミツク溶射被膜の封孔処理方法
JP2004269951A (ja) * 2003-03-07 2004-09-30 Tocalo Co Ltd 耐ハロゲンガス皮膜被覆部材およびその製造方法

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2032248A (en) * 1935-03-04 1936-02-25 John G Bins Dog bed or the like
US3663793A (en) * 1971-03-30 1972-05-16 Westinghouse Electric Corp Method of decorating a glazed article utilizing a beam of corpuscular energy
JPS5075370A (ja) 1973-11-05 1975-06-20
US4000247A (en) 1974-05-27 1976-12-28 Nippon Telegraph And Telephone Public Corporation Dielectric active medium for lasers
US3990860A (en) * 1975-11-20 1976-11-09 Nasa High temperature oxidation resistant cermet compositions
JPS5833190B2 (ja) * 1977-10-15 1983-07-18 トヨタ自動車株式会社 酸素イオン導伝性固体電解質用安定化ジルコニア
JPS5941952B2 (ja) * 1978-04-18 1984-10-11 株式会社デンソー 酸素濃度センサ−用ジルコニア焼結体
CA1187771A (en) * 1981-06-10 1985-05-28 Timothy J.M. Treharne Corrosion inhibition in sintered stainless steel
JPS58192661A (ja) 1982-05-06 1983-11-10 Kyushu Tokushu Kinzoku Kogyo Kk 連続鋳造用鋳型製造法
JPS58202535A (ja) 1982-05-21 1983-11-25 Hitachi Ltd 被膜形成装置
JPH0715141B2 (ja) 1982-11-26 1995-02-22 株式会社東芝 耐熱部品
JPS6160658A (ja) 1984-08-31 1986-03-28 Nippon Kayaku Co Ltd ピラゾ−ル誘導体およびそれを有効成分とする除草剤
US5093148A (en) * 1984-10-19 1992-03-03 Martin Marietta Corporation Arc-melting process for forming metallic-second phase composites
JPS61113755A (ja) 1984-11-09 1986-05-31 Yoshikawa Kogyo Kk 高耐蝕・耐熱性セラミツク溶射被膜形成金属材の製造方法
JPS62253758A (ja) 1986-04-24 1987-11-05 Mishima Kosan Co Ltd レ−ザ−照射によるサ−メツト層形成方法及び連続鋳造用鋳型
JPS6439728A (en) 1987-08-05 1989-02-10 Mitsubishi Electric Corp Manufacture of semiconductor by plasma reaction
US4997809A (en) * 1987-11-18 1991-03-05 International Business Machines Corporation Fabrication of patterned lines of high Tc superconductors
JPH0778273B2 (ja) 1987-11-27 1995-08-23 トーカロ株式会社 翼部材の表面処理方法
US4853353A (en) * 1988-01-25 1989-08-01 Allied-Signal Inc. Method for preventing low-temperature degradation of tetragonal zirconia containing materials
US5032248A (en) * 1988-06-10 1991-07-16 Hitachi, Ltd. Gas sensor for measuring air-fuel ratio and method of manufacturing the gas sensor
US5206059A (en) * 1988-09-20 1993-04-27 Plasma-Technik Ag Method of forming metal-matrix composites and composite materials
US5057335A (en) * 1988-10-12 1991-10-15 Dipsol Chemical Co., Ltd. Method for forming a ceramic coating by laser beam irradiation
US5024992A (en) * 1988-10-28 1991-06-18 The Regents Of The University Of California Preparation of highly oxidized RBa2 Cu4 O8 superconductors
US5004712A (en) * 1988-11-25 1991-04-02 Raytheon Company Method of producing optically transparent yttrium oxide
JPH03115535A (ja) 1989-09-28 1991-05-16 Nippon Mining Co Ltd 希土類金属の酸素低減方法
JP2942899B2 (ja) 1990-02-23 1999-08-30 日本真空技術株式会社 プラズマcvd装置用電極装置
US5128316A (en) * 1990-06-04 1992-07-07 Eastman Kodak Company Articles containing a cubic perovskite crystal structure
JPH04202660A (ja) 1990-11-29 1992-07-23 Mitsubishi Electric Corp スパッタリング装置
US5397650A (en) * 1991-08-08 1995-03-14 Tocalo Co., Ltd. Composite spray coating having improved resistance to hot-dip galvanization
JPH04276059A (ja) 1991-02-28 1992-10-01 Sekiyu Sangyo Kasseika Center 溶射皮膜の改質方法
JPH05117064A (ja) 1991-04-09 1993-05-14 Tokyo Electric Power Co Inc:The ガスタービン用翼およびその製造方法
JPH05238859A (ja) 1992-02-28 1993-09-17 Tokyo Electric Power Co Inc:The セラミックコーティング部材
CA2092235C (en) * 1992-03-30 2000-04-11 Yoshio Harada Spray-coated roll for continuous galvanization
US5472793A (en) * 1992-07-29 1995-12-05 Tocalo Co., Ltd. Composite spray coating having improved resistance to hot-dip galvanization
JPH0657396A (ja) 1992-08-07 1994-03-01 Mazda Motor Corp 断熱溶射層の形成方法
JPH06136505A (ja) 1992-10-26 1994-05-17 Sumitomo Metal Ind Ltd 溶射被覆構造
JPH06142822A (ja) 1992-11-09 1994-05-24 Kawasaki Steel Corp 高融点活性金属鋳造用鋳型の製造方法
US5366585A (en) * 1993-01-28 1994-11-22 Applied Materials, Inc. Method and apparatus for protection of conductive surfaces in a plasma processing reactor
US5432151A (en) * 1993-07-12 1995-07-11 Regents Of The University Of California Process for ion-assisted laser deposition of biaxially textured layer on substrate
US5427823A (en) * 1993-08-31 1995-06-27 American Research Corporation Of Virginia Laser densification of glass ceramic coatings on carbon-carbon composite materials
US5562840A (en) * 1995-01-23 1996-10-08 Xerox Corporation Substrate reclaim method
JP2971369B2 (ja) * 1995-08-31 1999-11-02 トーカロ株式会社 静電チャック部材およびその製造方法
EP0806488B1 (en) * 1996-05-08 2002-10-16 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum-chromium alloy, method for its production and its applications
EP0821395A3 (en) * 1996-07-19 1998-03-25 Tokyo Electron Limited Plasma processing apparatus
GB9616225D0 (en) 1996-08-01 1996-09-11 Surface Tech Sys Ltd Method of surface treatment of semiconductor substrates
US6120640A (en) * 1996-12-19 2000-09-19 Applied Materials, Inc. Boron carbide parts and coatings in a plasma reactor
JP3076768B2 (ja) 1997-01-17 2000-08-14 トーカロ株式会社 薄膜形成装置用部材の製造方法
JP2991991B2 (ja) * 1997-03-24 1999-12-20 トーカロ株式会社 耐高温環境用溶射被覆部材およびその製造方法
JP2991990B2 (ja) * 1997-03-24 1999-12-20 トーカロ株式会社 耐高温環境用溶射被覆部材およびその製造方法
DE19719133C2 (de) * 1997-05-07 1999-09-02 Heraeus Quarzglas Glocke aus Quarzglas und Verfahren für ihre Herstellung
JP3449459B2 (ja) * 1997-06-02 2003-09-22 株式会社ジャパンエナジー 薄膜形成装置用部材の製造方法および該装置用部材
KR100248081B1 (ko) 1997-09-03 2000-04-01 정선종 입방정 구조의 와이비에이투씨유쓰리오엑스 박막 제조 방법
JP3204637B2 (ja) * 1998-01-29 2001-09-04 トーカロ株式会社 自溶合金溶射被覆部材の製造方法
JP3483494B2 (ja) * 1998-03-31 2004-01-06 キヤノン株式会社 真空処理装置および真空処理方法、並びに該方法によって作成される電子写真感光体
US6010966A (en) * 1998-08-07 2000-01-04 Applied Materials, Inc. Hydrocarbon gases for anisotropic etching of metal-containing layers
JP4213790B2 (ja) * 1998-08-26 2009-01-21 コバレントマテリアル株式会社 耐プラズマ部材およびそれを用いたプラズマ処理装置
EP1138065A1 (de) * 1998-11-06 2001-10-04 Infineon Technologies AG Verfahren zum herstellen einer strukturierten metalloxidhaltigen schicht
US6383964B1 (en) * 1998-11-27 2002-05-07 Kyocera Corporation Ceramic member resistant to halogen-plasma corrosion
JP3919409B2 (ja) 1998-11-30 2007-05-23 川崎マイクロエレクトロニクス株式会社 プラズマ処理装置および半導体製造装置のフォーカスリング
US6447853B1 (en) * 1998-11-30 2002-09-10 Kawasaki Microelectronics, Inc. Method and apparatus for processing semiconductor substrates
JP3164559B2 (ja) 1998-12-28 2001-05-08 太平洋セメント株式会社 処理容器用部材
JP2001031484A (ja) 1999-07-22 2001-02-06 Nihon Ceratec Co Ltd 耐食性複合部材
US6265250B1 (en) * 1999-09-23 2001-07-24 Advanced Micro Devices, Inc. Method for forming SOI film by laser annealing
JP3510993B2 (ja) * 1999-12-10 2004-03-29 トーカロ株式会社 プラズマ処理容器内部材およびその製造方法
JP4272786B2 (ja) * 2000-01-21 2009-06-03 トーカロ株式会社 静電チャック部材およびその製造方法
JP4166416B2 (ja) 2000-05-26 2008-10-15 関西電力株式会社 熱遮蔽セラミック皮膜の形成方法と該皮膜を有する耐熱部品
JP2001342553A (ja) 2000-06-02 2001-12-14 Osaka Gas Co Ltd 合金保護皮膜形成方法
EP1167565B1 (en) * 2000-06-29 2007-03-07 Shin-Etsu Chemical Co., Ltd. Method for thermal spray coating and rare earth oxide powder used therefor
US6509070B1 (en) * 2000-09-22 2003-01-21 The United States Of America As Represented By The Secretary Of The Air Force Laser ablation, low temperature-fabricated yttria-stabilized zirconia oriented films
GB2369206B (en) * 2000-11-18 2004-11-03 Ibm Method for rebuilding meta-data in a data storage system and a data storage system
US6634781B2 (en) * 2001-01-10 2003-10-21 Saint Gobain Industrial Ceramics, Inc. Wear resistant extruder screw
US6731066B2 (en) 2001-02-23 2004-05-04 Osram Sylvania Inc. Ceramic arc tube assembly
EP1239055B1 (en) * 2001-03-08 2017-03-01 Shin-Etsu Chemical Co., Ltd. Thermal spray spherical particles, and sprayed components
JP3974338B2 (ja) * 2001-03-15 2007-09-12 株式会社東芝 赤外線検出素子及び赤外線検出装置
US6805968B2 (en) * 2001-04-26 2004-10-19 Tocalo Co., Ltd. Members for semiconductor manufacturing apparatus and method for producing the same
US6777045B2 (en) 2001-06-27 2004-08-17 Applied Materials Inc. Chamber components having textured surfaces and method of manufacture
JP4277973B2 (ja) * 2001-07-19 2009-06-10 日本碍子株式会社 イットリア−アルミナ複合酸化物膜の製造方法、イットリア−アルミナ複合酸化物膜および耐蝕性部材
JP2003264169A (ja) 2002-03-11 2003-09-19 Tokyo Electron Ltd プラズマ処理装置
US6451647B1 (en) * 2002-03-18 2002-09-17 Advanced Micro Devices, Inc. Integrated plasma etch of gate and gate dielectric and low power plasma post gate etch removal of high-K residual
US6918534B2 (en) * 2002-04-12 2005-07-19 Lockheed Martin Corporation Collection box with sealed and statically charged mail chute
JP3649210B2 (ja) 2002-06-07 2005-05-18 株式会社日本セラテック 耐食性部材
US6852433B2 (en) * 2002-07-19 2005-02-08 Shin-Etsu Chemical Co., Ltd. Rare-earth oxide thermal spray coated articles and powders for thermal spraying
JP4434667B2 (ja) 2002-09-06 2010-03-17 関西電力株式会社 熱遮蔽セラミックコーティング部品の製造方法
JP2004146364A (ja) * 2002-09-30 2004-05-20 Ngk Insulators Ltd 発光素子及びそれを具えるフィールドエミッションディスプレイ
JP4503270B2 (ja) 2002-11-28 2010-07-14 東京エレクトロン株式会社 プラズマ処理容器内部材
KR100772740B1 (ko) * 2002-11-28 2007-11-01 동경 엘렉트론 주식회사 플라즈마 처리 용기 내부재
CN100418187C (zh) * 2003-02-07 2008-09-10 东京毅力科创株式会社 等离子体处理装置、环形部件和等离子体处理方法
WO2004095532A2 (en) 2003-03-31 2004-11-04 Tokyo Electron Limited A barrier layer for a processing element and a method of forming the same
JP2003321760A (ja) 2003-05-19 2003-11-14 Tocalo Co Ltd プラズマ処理容器内部材およびその製造方法
JP2004003022A (ja) 2003-05-19 2004-01-08 Tocalo Co Ltd プラズマ処理容器内部材
US7571570B2 (en) * 2003-11-12 2009-08-11 Cooper Technologies Company Recessed plaster collar assembly
US7220497B2 (en) * 2003-12-18 2007-05-22 Lam Research Corporation Yttria-coated ceramic components of semiconductor material processing apparatuses and methods of manufacturing the components
DE112004002586T5 (de) * 2004-01-05 2006-11-16 Dai Nippon Printing Co., Ltd. Lichtstreuungsfilm, Oberflächenlichtquelleneinheit und Flüssigkristallanzeige
JP4051351B2 (ja) 2004-03-12 2008-02-20 トーカロ株式会社 熱放射性および耐損傷性に優れるy2o3溶射皮膜被覆部材およびその製造方法
JP4666576B2 (ja) * 2004-11-08 2011-04-06 東京エレクトロン株式会社 セラミック溶射部材の洗浄方法、該方法を実行するためのプログラム、記憶媒体、及びセラミック溶射部材
JP4666575B2 (ja) * 2004-11-08 2011-04-06 東京エレクトロン株式会社 セラミック溶射部材の製造方法、該方法を実行するためのプログラム、記憶媒体、及びセラミック溶射部材
US7364807B2 (en) 2004-12-06 2008-04-29 General Electric Company Thermal barrier coating/environmental barrier coating system for a ceramic-matrix composite (CMC) article to improve high temperature capability
EP2071049A1 (en) * 2005-07-29 2009-06-17 Tocalo Co. Ltd. Y2O3 Spray-coated member and production method thereof
KR20080028498A (ko) * 2005-08-22 2008-03-31 도카로 가부시키가이샤 열방사 특성 등이 우수한 용사 피막 피복 부재 및 그 제조방법
JP4555865B2 (ja) 2005-08-22 2010-10-06 トーカロ株式会社 耐損傷性等に優れる溶射皮膜被覆部材およびその製造方法
JP4571561B2 (ja) * 2005-09-08 2010-10-27 トーカロ株式会社 耐プラズマエロージョン性に優れる溶射皮膜被覆部材およびその製造方法
JP4643478B2 (ja) * 2006-03-20 2011-03-02 トーカロ株式会社 半導体加工装置用セラミック被覆部材の製造方法
US7850864B2 (en) * 2006-03-20 2010-12-14 Tokyo Electron Limited Plasma treating apparatus and plasma treating method
US7648782B2 (en) * 2006-03-20 2010-01-19 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130658A (ja) * 1984-07-19 1986-02-12 Showa Denko Kk 溶射基板の表面処理方法
JPS61104062A (ja) * 1984-10-23 1986-05-22 Tsukishima Kikai Co Ltd 金属またはセラミツク溶射被膜の封孔処理方法
JP2004269951A (ja) * 2003-03-07 2004-09-30 Tocalo Co Ltd 耐ハロゲンガス皮膜被覆部材およびその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494723B2 (en) 2005-07-29 2009-02-24 Tocalo Co., Ltd. Y2O3 spray-coated member and production method thereof
US8231986B2 (en) 2005-08-22 2012-07-31 Tocalo Co., Ltd. Spray coating member having excellent injury resistance and so on and method for producing the same
US7767268B2 (en) 2005-09-08 2010-08-03 Tocalo Co., Ltd. Spray-coated member having an excellent resistance to plasma erosion and method of producing the same
US8053058B2 (en) 2005-09-08 2011-11-08 Tocalo Co., Ltd. Spray-coated member having an excellent resistance to plasma erosion and method of producing the same
JP2009185318A (ja) * 2008-02-05 2009-08-20 Tocalo Co Ltd 優れた外観を有する溶射皮膜被覆部材およびその製造方法
JP2012057243A (ja) * 2010-09-13 2012-03-22 Tocalo Co Ltd 耐プラズマエロージョン性に優れるサーメット皮膜の形成方法とサーメット皮膜被覆部材
JP2013010986A (ja) * 2011-06-29 2013-01-17 Tocalo Co Ltd 耐食性や耐プラズマエロージョン性に優れるサーメット溶射用粉末材料およびその製造方法
JP2013010984A (ja) * 2011-06-29 2013-01-17 Tocalo Co Ltd 耐食性や耐プラズマエロージョン性に優れるサーメット溶射皮膜被覆部材およびその製造方法
JP2013147679A (ja) * 2012-01-17 2013-08-01 Tocalo Co Ltd フッ化物溶射皮膜被覆部材およびその製造方法
JP2015157994A (ja) * 2014-02-25 2015-09-03 日本ゼオン株式会社 グラビア塗工装置

Also Published As

Publication number Publication date
JPWO2007023976A1 (ja) 2009-03-05
TWI346148B (ja) 2011-08-01
KR20080031966A (ko) 2008-04-11
US8231986B2 (en) 2012-07-31
KR101021459B1 (ko) 2011-03-15
JP4555865B2 (ja) 2010-10-06
TW200714747A (en) 2007-04-16
US20090120358A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
WO2007023976A1 (ja) 耐損傷性等に優れる溶射皮膜被覆部材およびその製造方法
JP4555864B2 (ja) 熱放射特性等に優れる溶射皮膜被覆部材およびその製造方法
JP4398436B2 (ja) 熱放射特性等に優れるセラミック溶射皮膜被覆部材およびその製造方法
EP1780298A1 (en) Y2o3 thermal sprayed film coated member and process for producing the same
CN107532272B (zh) 基材的表面粗化方法、基材的表面处理方法、喷涂覆膜被覆部件及其制造方法
JP6082345B2 (ja) 半導体用途のための溶射コーティング
JP4603018B2 (ja) 熱放射性および耐損傷性に優れる酸化イットリウム溶射皮膜被覆部材およびその製造方法
Das et al. Effect of cooling rate on residual stress and mechanical properties of laser remelted ceramic coating
Kim et al. Fabrication and characteristics of a HfC/TiC multilayer coating by a vacuum plasma spray process to protect C/C composites against oxidation
JP2006118053A (ja) 半導体製造装置用部材
Luo et al. Cold spray (CS) deposition of a durable silver coating with high infrared reflectivity for radiation energy saving in the polysilicon CVD reactor
Scendo et al. influence of heat treatment on corrosion of mild steel coated with WC-Co-Al2O3 cermet composite produced by electrospark deposition
Chwa et al. Thermal diffusivity and erosion resistance of ZrO2–8 wt.% Y2O3 coatings prepared by a laser hybrid spraying technique
KR100801910B1 (ko) Y2o3 용사 피막 피복 부재 및 그 제조 방법
Ahmed et al. Development of Air Plasma Thermal Spray Coating for Thermal Barrier Coating and Oxidation Resistance Applications on Ni-Base Super Alloys
Yunus et al. Post-processing of ceramic oxide and metallic coated surfaces using microwave glazing
Gadow et al. Product development with thermally sprayed functional coatings on glass and glass ceramics substrates
Ibrahim et al. Laser Surface Annealing of Plasma Sprayed Coatings
Mrdak et al. Characterization of vacuum plasma spray VPS-W coating deposited on stainless steel substrates
Prashar et al. Microstructural characterization of plasma sprayed chromium oxide coating on SS-310 steel
Brar et al. HIGH TEMPERATURE CORROSION AND ROLE OF PLASMA SPRAY COATINGS-A REVIEW
Evdokimenko et al. Properties of intermetallic Ni–Al coatings deposited by high-velocity air–fuel spraying
RU2377341C2 (ru) Способ получения многослойного покрытия на изделии из алюминиевого сплава
RU2213808C1 (ru) Способ нанесения защитного покрытия на поверхность металла, контактирующую с пищевыми продуктами
KR20070087219A (ko) 산화이트륨 용사 피막 피복 부재 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007532212

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11990760

Country of ref document: US

Ref document number: 1020087004121

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06783070

Country of ref document: EP

Kind code of ref document: A1