JP4503270B2 - プラズマ処理容器内部材 - Google Patents

プラズマ処理容器内部材 Download PDF

Info

Publication number
JP4503270B2
JP4503270B2 JP2003398334A JP2003398334A JP4503270B2 JP 4503270 B2 JP4503270 B2 JP 4503270B2 JP 2003398334 A JP2003398334 A JP 2003398334A JP 2003398334 A JP2003398334 A JP 2003398334A JP 4503270 B2 JP4503270 B2 JP 4503270B2
Authority
JP
Japan
Prior art keywords
plasma processing
coating
processing container
base material
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003398334A
Other languages
English (en)
Other versions
JP2004190136A (ja
Inventor
康至 三橋
博之 中山
将之 長山
剛 守屋
宏史 長池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003398334A priority Critical patent/JP4503270B2/ja
Priority to CNB2004100312103A priority patent/CN100418187C/zh
Priority to KR1020040008149A priority patent/KR100540051B1/ko
Priority to TW093102927A priority patent/TW200501253A/zh
Priority to US10/773,245 priority patent/US20050103275A1/en
Publication of JP2004190136A publication Critical patent/JP2004190136A/ja
Priority to US12/340,256 priority patent/US8043971B2/en
Application granted granted Critical
Publication of JP4503270B2 publication Critical patent/JP4503270B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、プラズマ処理容器内部材に関し、特にハロゲン元素を含むプロセスガスのプラズマ雰囲気が形成されたプラズマ処理容器内で用いられる、たとえば、デポシールド、排気プレート、フォーカスリング、電極板、静電チャック、処理容器内壁材などのプラズマ処理容器内部材に関する。
半導体および液晶デバイスなどの製造プロセスでは、プラズマを用いたプラズマ処理が多用されているが、このようなプラズマ処理においては、処理容器内でCやNFのような弗化物、BClやSnClなどの塩化物、HBrの如き臭化物をはじめとするハロゲン元素を含むガスを使用するため、処理容器内部材が著しく腐食損耗するという問題がある。したがって、たとえば、デポシールド、排気プレート、フォーカスリング、電極板、静電チャック、処理容器内壁材などのプラズマ処理容器内部材には、耐プラズマ性が強く要求される。
これに対して、このようなプラズマ処理容器内部材として、Al、Al合金、Al酸化物、石英等からなる基材の表面に、AlやYなどの耐食性の高い溶射被膜を形成して、処理容器内部材の耐プラズマ性能を向上する技術が提案されている(例えば、特許文献1参照)。また、基材と溶射被膜との間には、さらに陽極酸化被膜が形成されることもある。そして、溶射被膜との密着性を向上させるため、基材または陽極酸化被膜の表面をブラスト処理等により意図的に粗し、アンカー効果を期待して、溶射被膜の剥がれを防止するようにしている。
上述のプラズマエッチング処理装置の場合、腐食性の高いハロゲン元素を含むプロセスガスを使用することに加え、処理容器内に付着した反応生成物を除去するため、純水、弗素系溶剤、あるいはアセトンなどの有機溶剤などの洗浄液によりクリーニングを定期的に実施するため、基材と溶射被膜との間、または基材と陽極酸化被膜との間に、プロセスガスやクリーニングのための洗浄液が侵入し、そのガスや洗浄液と反応して、基材表面に腐食生成物が発生し、その結果、溶射被膜が剥離するという問題があった。
すなわち、図21の(a)に示すように、プラズマ処理容器内部材100において、Al等の基材101上の溶射被膜(トップコート層)102の表面には、CFポリマーなどの反応生成物103が堆積するが、この反応生成物は、図21の(b)に示すように所定の洗浄液104に浸漬するなどして、定期または不定期に除去するようにしている。すると、図21の(c)に示すように、溶射被膜102の貫通気孔、溶射被膜102との境界部、あるいはプラズマやガス等により損傷した部位より、プロセスガス、洗浄液、あるいは反応生成物と反応した液が侵入し、基材101の表面に到達する。それによって、基材101の表面に腐食生成物が生成される、あるいはアンカー効果を得るために基材表面に形成されていた凹凸が平滑化され、アンカー効果が失われることにより、図21の(d)に示すように、溶射被膜102に基材101から剥離する部分105が生じるものと考えられる。
一方、上述のようなAlやYは、空気中の水分との反応性が高いため、プラズマ処理容器の内壁材等として用いられる場合には、処理容器である真空チャンバを大気開放したときや真空チャンバをウェットクリーニングするときに水分を大量に取り込む可能性を有している。そして、このように水分を大量に取り込むと、プロセス中に真空チャンバ内が高温になったり、プラズマ放電したりすることによって、真空チャンバ内壁から水分が脱離し、チャンバ内壁や堆積物と化学反応してパーティクルが生成されたり、真空引き時間が長くなったり、異常放電が発生したり、成膜特性が悪くなるなどの悪影響を及ぼすといった大きな欠点がある。
これに対して特許文献2には、真空引きの際に、プラズマを生成させて、そのプラズマをチャンバ内壁面に接触させて、その温度を上昇させ、付着した水分子を気化させて短時間で真空引きする方法が開示されている。また、特許文献3には、真空チャンバの蓋部材にヒータを設け、プラズマ処理時にヒータを制御して真空チャンバの内壁の温度を常に所定温度以上に保って、真空チャンバの内壁に吸着された水分や有機物の量を低減させるとともに、吸着された水分や有機物を速やかに蒸発させる技術が開示されている。さらに、特許文献4、5には、真空チャンバの内壁に着脱可能なシールドを設け、付着した汚染物に吸着される水分等の影響により真空到達時間が所定値を超えた場合にシールド部材の清掃交換を指示する技術が開示されている。
しかしながら、特許文献2〜5の技術は、いずれも水分が吸着されてからの対応であるため、その効果は限定的であり、根本的な解決には至っていないのが現状である。
特開平8−339895号公報(第3頁、第2図) 特開平8−181117号公報 特開平11−54484号公報 特開平11−54487号公報 特開2002−124503号公報
本発明は、このような従来技術が有する課題に鑑みて成されたものであり、その目的は、トップコート層として形成した溶射被膜の剥がれを抑制することができる、新規かつ改良されたプラズマ処理容器内部材を提供することにある。
また、他の目的は、プラズマ処理時における水分の離脱が生じ難いプラズマ処理容器内部材を提供することにある。
本発明の第1の観点では、基材と、その表面に形成された被膜とを有するプラズマ処理容器内部材であって、前記被膜は、セラミックスの溶射によって形成された主層と、B、Mg、Al、Si、Ca、Cr、Y、Zr、Ta、CeおよびNdからなる群から選択された元素を含むセラミックスからなるバリアコート層とを有し、前記バリアコート層は、そ前記基材との接合面側のみがゾルゲル法によって封孔処理された溶射被膜であることを特徴とする、プラズマ処理容器内部材を提供する。
前記第1の観点において、前記封孔処理は、周期律表第3a族に属する元素から選択されたものを用いて行うことが好ましい。
本発明の第2の観点では、基材と、その表面に形成された被膜とを有するプラズマ処理容器内部材であって、前記被膜は、セラミックスの溶射によって形成された主層と、B、Mg、Al、Si、Ca、Cr、Y、Zr、Ta、CeおよびNdからなる群から選択された元素を含むセラミックスからなるバリアコート層とを有し、前記バリアコート層は、そ前記基材との接合面側のみが樹脂によって封孔処理された溶射被膜であることを特徴とする、プラズマ処理容器内部材を提供する。
前記第2の観点において、前記樹脂としては、SI、PTFE、PI、PAI、PEI、PBI、およびPFAからなる群から選択されたものが好適である。
上記本発明の第1および第2の観点において、前記バリアコート層として、BC、MgO、Al、SiC、Si、SiO、CaF、Cr、Y、YF、ZrO、TaO、CeO、Ce、CeFおよびNdからなる群から選択された少なくとも1種のセラミックスを好適に用いることができる。
上記本発明の第1および第2の観点において、前記主層は、BC、MgO、Al、SiC、Si、SiO、CaF、Cr、Y、YF、ZrO、TaO、CeO、Ce、CeFおよびNdからなる群から選択された少なくとも1種のセラミックスを好適に用いることができる。
本発明によれば、基材と、溶射によって形成された被膜とを有する構造のプラズマ処理容器内部材において、バリアとして機能する種々の層を設けたので、基材表面が、プロセスガスまたは洗浄液に曝されないようにすることができ、溶射によって形成した被膜の剥がれを抑制することができる。
また、本発明によれば、周期律表第3a族に属する少なくとも1種の元素を含むセラミックスを水化処理することにより、または周期律表第3a族に属する少なくとも1種の元素を含む水酸化物を含む層または焼結体を構成することにより、水分を吸着しにくく、脱離しにくい構造とすることができるので、プラズマ処理時における水分の離脱が生じ難いプラズマ処理容器内部材を得ることができる。
以下、本発明の実施の形態について詳細に説明する。
図1は、本発明の対象となるプラズマ処理容器内部材を有するプラズマ処理装置であるプラズマエッチング処理装置の一例を示す縦断面図である。図中2は処理容器をなす真空チャンバであり、アルミニウムなどの導電性材料により気密構造をなすように形成されており、真空チャンバ2は保安接地されている。また、真空チャンバ2の内面には、円筒形状のデポシールド2aが配置され、内面がプラズマにより損傷されるのを防止する。そして、真空チャンバ2内には、上部電極を兼用するガスシャワーヘッド3と、下部電極を兼用する載置台4とが対向して設けられており、底面には、たとえばターボ分子ポンプやドライポンプなどからなる真空排気手段21と連通する真空排気路としての排気管22が接続される。また、真空チャンバ2の側壁部には、被処理体たとえば半導体ウエハWを搬入出するための開口部23が形成され、ゲートバルブGにより開閉自在とされている。この側壁部の外方には、開口部23を上下に挟む位置に、たとえば夫々リング状をなす永久磁石24,25が設けられている。
ガスシャワーヘッド3は、載置台4上の被処理体Wに対向する位置に多数の孔部31が形成され、上部のガス供給管32から送られる流量制御または圧力制御されたプロセスガスを、当該孔部31を介して被処理体Wの表面へ均一に供給するように構成されている。
ガスシャワーヘッド3の下方に約5mm〜150mmの間隔で離間して設けられる載置台4は、たとえば表面がアルマイト処理されたアルミニウムなどからなり、真空チャンバ2に対して絶縁部材41aにより絶縁された円柱状の本体部41と、この本体部41の上面に設けられた静電チャック42と、この静電チャック42の周囲を囲む環状のフォーカスリング43と、このフォーカスリング43と本体部41との間に設けられた環状の絶縁部材である絶縁リング43aとを備えた構成とされている。なお、フォーカスリング43は、プロセスに応じて絶縁性または導電性の材料が選択され、反応性イオンを閉じ込めるまたは拡散させるように作用する。
載置台4のたとえば本体部41には、コンデンサC1およびコイルL1を介して高周波電源40が接続され、たとえば13.56MHz〜100MHzの高周波電力が印加される。
また、載置台4の内部には、冷却ジャケット等の温度調整手段55aと、たとえばHeガスを被処理体Wの裏面に供給する熱伝達ガス供給手段55bと、がそれぞれ設けられ、これら温度調整手段55aと熱伝達ガス供給手段55bとを能動化することによって、載置台4上に保持された被処理体Wの処理面温度を所望の値に設定することができる。温度調整手段55aは、冷媒を冷却ジャケットを介して循環させるための導入管56および排出管57を有し、適当な温度に調整された冷媒が、導入管56によって冷却ジャケット内に供給され、熱交換後の冷媒が、排出管57によって外部に排出される。
載置台4と真空チャンバ2との間であり、載置台4表面よりも下側には、複数の排気孔が穿設されたリング状の排気プレート44が、載置台4を囲むように配置される。この排気プレート44により、排気流の流れが整えられるとともに、載置台4とガスシャワーヘッド3との間にプラズマが最適に閉じ込められる。さらに、載置台4の内部には、外部の図示しない搬送アームとの間で被処理体Wの受け渡しを行うための昇降部材である昇降ピン51が複数たとえば3本(2本のみ図示)突没自在に設けられ、この昇降ピン51は連結部材52を介して駆動機構53により昇降できるように構成されている。54は昇降ピン51の貫通孔と大気側との間の気密を保持するベローズである。
このようなプラズマエッチング処理装置においては、まず、ゲートバルブGおよび開口部23を介して被処理体Wを真空チャンバ2内に搬入し、静電チャック42上に載置し、ゲートバルブGを閉じた後、真空排気手段21により排気管22を介して真空チャンバ2内を所定の真空度に排気する。そして、真空チャンバ2内にプロセスガスを供給するとともに、直流電源47からチャック電極46に直流電圧を印加して、被処理体Wを静電チャック42によって静電吸着させ、この状態で高周波電源40から載置台4の本体部41に所定周波数の高周波電力を印加し、これにより、ガスシャワーヘッド3と載置台4との間に高周波電界を発生させ、プロセスガスをプラズマ化して、静電チャック42上の被処理体Wにエッチング処理を施す。
プロセスガスとしてはCやNFのような弗化物、BClやSnClなどの塩化物、HBrの如き臭化物をはじめとするハロゲン元素を含むガスを使用する。このため、真空チャンバ2内は極めて強い腐食環境となり、例えば、デポシールド2a、排気プレート44、フォーカスリング43、シャワーヘッド3、載置台4、静電チャック42、さらには真空チャンバ2の内壁材などの真空チャンバ2内の部材すなわちプラズマ処理容器内部材には、耐プラズマ性が強く要求される。
以下、本発明の対象である処理容器内部材について詳細に説明する。
(1)第1の実施形態
このような処理容器内部材として基材の上に溶射被膜を形成したものを用いた場合、従来、溶射被膜の剥がれが生じていたが、本発明者らの検討結果によれば、プラズマ処理容器内部材の溶射被膜の剥がれは、溶射被膜の貫通気孔(微細孔)、溶射被膜との境界部、あるいは、プラズマやガス等により損傷した部位などから、プロセスガスや洗浄液が侵入し基材に到達して、基材表面が腐食することにより発生することに想到した。
すなわち、フッ化物を含むプロセスガスを用いてプラズマ処理を施した処理容器内の部材を準備し、溶射被膜との境界面(基材表面)を分析すると、その部分においてF(フッ素)を確認することができ、このことから、このFが水分(OH)と反応してHF化することによって、基材表面が腐食変化(腐食生成物が発生)して、溶射被膜の剥離に至ったものと推測される。
したがって、溶射被膜との境界面すなわち基材表面が、プロセスガスまたは洗浄液に曝されないことが重要である。
このような知見に基づき、第1の実施形態では、図1におけるデポシールド2a、排気プレート44、フォーカスリング43、シャワーヘッド3、載置台4、静電チャック42、さらには真空チャンバ2の内壁材などの真空チャンバ2内の部材すなわちプラズマ処理容器内部材において、溶射被膜の表面から基材までのいずれかの位置に、プロセスガスまたは洗浄液に曝されても腐食され難く、ガスまたは洗浄液が基材表面に到達することを防止することができる、バリア機能を有する部分を形成するようにした。
このような耐腐食性に優れる材料によりバリア機能を有する部分を形成することによって、溶射被膜の貫通気孔(微細孔)を通って侵入するガスまたは洗浄液に対して、基材の表面を保護することが可能である。また、バリア機能を有する部分を基材と接するようにすれば、その材料として高い密着性を有するものを選択することによって、バリア機能を有する部分と基材の表面との境界面からのプロセスガスまたは洗浄液の侵入に対して基材表面を保護することが可能である。
以下、第1の実施形態における具体的な構成について詳述する。
まず、第1の例に係るプラズマ処理容器内部材は、図2に示すように、基本的に、基材71と、その表面に形成された被膜72とからなる。被膜72は、溶射によって形成された主層73と、基材71と主層との間のプロセスガスまたは洗浄液に曝されても腐食し難いバリア機能を有するバリアコート層74とを有している。
上記被膜72の施工対象となる基材71としては、ステンレス鋼(SUS)を含む各種の鋼、AlおよびAl合金、WおよびW合金、TiおよびTi合金、MoおよびMo合金、炭素ならびに酸化物系、非酸化物系セラミックス焼結体、および炭素質材料などが好適に用いられる。
バリアコート層74の材質としては、B、Mg、Al、Si、Ca、Cr、Y、Zr、Ta、CeおよびNdからなる群から選択された少なくとも1種の元素を含むセラミックスであることが好ましく、より具体的には、BC、MgO、Al、SiC、Si、SiO、CaF、Cr、Y、YF、ZrO、TaO、CeO、Ce、CeFおよびNdからなる群から選択された少なくとも1種のセラミックスが好適である。例えばトーカロ株式会社製の「CDC−ZAC」、「スーパーZAC」などを適用することができる。「CDC−ZAC」は、Crを主成分とする複合セラミックスであり、無気孔、高硬度、高密着力などの性質を有している。一方、「スーパーZAC」は、SiOとCrを主成分とする複合セラミックスであり、無気孔、高硬度、高密着力に加え、耐熱性と耐摩耗性に優れる。このバリアコート層74は溶射法により形成することが好ましい。溶射法は、燃焼ガス、電気等の熱源により溶融した原料を母材に吹き付け皮膜を形成する方法である。また、バリアコート層74は、PVD法やCVD法等の薄膜形成技術、浸漬法、あるいは塗布法などの方法で形成することもできる。PVD法とは、イオンプレーティング法により、各種セラミック膜を低温でコーティングする方法であり、一方、CVD法は、熱化学的蒸着法により、高温度で単層または多層コーティングする方法である。また、浸漬法は、各種材料を樹脂溶液に浸漬した後、熱処理を施す方法であり、塗布法は、各種材料に樹脂溶液を塗布後、所定温度で熱処理する方法である。バリアコート層74の厚さは50〜100μmであることが好ましい。
この場合に、バリアコート層74の少なくとも一部分、例えば基材71との接合面側または全体に、樹脂を用いた封孔処理を施すのがよい。その際の樹脂としては、SI、PTFE、PI、PAI、PEI、PBI、PFAの群から選択されたものが好ましい。すなわち、セラミックスからなるバリアコート層74を上述した溶射法等で形成する場合、貫通気孔(微細孔)を有する多孔質で構成されるが、その多孔質層の少なくとも一部分の微細孔を、樹脂で封孔することにより、溶射被膜である主層73の微細孔を通って侵入するガスまたは洗浄液を阻止する効果が高まり、基材71を有効に保護することができる。
なお、SIはシリコーン、PTFEはポリテトラフルオロエチレン、PIはポリイミド、PAIはポリアミドイミド、PEIはポリエーテルイミド、PBIはポリベンゾイミダゾール、PFAはパーフルオロアルコキシアルカンを意味する。
封孔処理は、ゾルゲル法で行うこともできる。ゾルゲル法による封孔処理は、セラミックスを有機溶剤に分散させたゾル(コロイド溶液)で封孔した後、加熱によるゲル化させることにより行う。これにより、セラミックスによる封孔が実現され、バリア効果を向上させることができる。この場合の封孔処理は、周期律表第3a族に属する元素から選択されたものを用いることが好ましい。その中でも、耐食性の高いYが好ましい。
また、バリアコート層74の他の材質としては、エンジニアリングプラスチックを好適に用いることができる。具体的には、PTFE、PI、PAI、PEI、PBI、PFA、PPS、POMの群から選択された樹脂であることが好ましく、たとえばデュポン株式会社製の「テフロン(登録商標)」(PTFE)などを適用することができる。これらの樹脂は、密着性に優れるうえ、耐薬品性に優れ、クリーニング時の洗浄液にも充分に耐え得る。
なお、PTFEはポリテトラフルオロエチレン、PIはポリイミド、PAIはポリアミドイミド、PEIはポリエーテルイミド、PBIはポリベンゾイミダゾール、PFAはパーフルオロアルコキシアルカン、PPSはポリフェニレンサルファイド、POMはポリアセタールを意味する。
さらに、基材71とバリアコート層74との間に図3に示すように陽極酸化被膜75を形成するようにしてもよい。この場合において、蓚酸、クロム酸、リン酸、硝酸、ギ酸、またはスルホン酸などの有機酸による陽極酸化被膜を形成することによって、硫酸による陽極酸化処理の場合と比べ耐腐食性に優れる酸化被膜を形成して、プロセスガスや洗浄液による腐食をより一層抑制することができ、好ましい。陽極酸化被膜75の膜厚は、10〜200μmであることが好ましい。
このように、基材71とバリアコート層74との間に陽極酸化被膜75を形成する場合、陽極酸化被膜75の微細孔を封孔することによって、耐食性を格段に向上させることができる。この場合に、Niなどの金属塩を含む熱水に材料を浸漬し、酸化被膜の微細孔において、金属塩水溶液が加水分解して、水酸化物が沈殿することによって封孔する、金属塩封孔などを適用することができる。
また、陽極酸化被膜75の微細孔を樹脂により封孔処理しても同様の効果を期待することができる。この場合の樹脂としては、上述したSI、PTFE、PI、PAI、PEI、PBI、PFAの群から選択されたものが好ましい。
また、基材71の表面に形成する陽極酸化被膜75として、多孔質セラミックス層を有する陽極酸化被膜(KEPLA−COAT:登録商標)を用いてもよい。
なお、この陽極酸化被膜(KEPLA−COAT)は、陽極として基材をアルカリ系有機電解液に浸漬し、酸素プラズマをこのアルカリ系有機電解液の中で放電することにより形成するものである。
溶射被膜である主層73は、B、Mg、Al、Si、Ca、Cr、Y、Zr、Ta、CeおよびNdからなる群から選択された少なくとも1種の元素を含むことが好ましく、具体的には、BC、MgO、Al、SiC、Si、SiO、CaF、Cr、Y、YF、ZrO、TaO、CeO、Ce、CeFおよびNdから選択された少なくとも1種のセラミックスが好適である。この場合において、主層73の膜厚は、10μm〜500μmであることが好ましい。
このような構造のプラズマ処理容器内部材を製造するに際しては、まず、基材71の表面に、Al、SiCまたは砂等の粒子を吹き付けるブラスト処理を施し、微視的に表面が凹凸形状となるようにして、その上に形成するバリアコート層74や陽極酸化被膜75との密着性を高めるのがよい。また、表面を凹凸にする手法として、上記のブラスト処理に限定されず、たとえば、所定の薬液に浸すことによって表面をエッチングするようにしてもよい。
次に、基材71に直接または陽極酸化被膜75を介して、上述のバリアコート層74を、溶射法等、上記適宜の方法で形成する。必要に応じて上述したような封孔処理を行う。封孔処理に際しては、上記の樹脂やセラミックスのゾルをバリアコート層74の表面に塗布するか、あるいは、バリアコート層74をともなった基材71を樹脂封孔剤またはセラミックスのゾル中に浸漬させる。セラミックスのゾルで封孔した場合には、その後加熱してゲル化させる。
バリアコート層74を形成した後、引き続き、その上に、BC、MgO、Al、SiC、Si、SiO、CaF、Cr、Y、YF、ZrO、TaO、CeO、Ce、CeFおよびNdからなる群から選択された少なくとも1種のセラミックスからなる溶射被膜である主層73を形成する。また、バリアコート層74は密着性に優れるものが選択されるが、主層73との密着性をより一層良くするため、バリアコート層74の表面にブラスト処理などを施すようにしてもよい。
以上のように、この例では、ハロゲン元素を含むプロセスガスまたは洗浄液に対して耐腐食性に優れる材料からなるバリアコート層74を、溶射被膜である主層73と基材71との間に形成し、基材71の表面が、プロセスガス(ハロゲン元素)または洗浄液に曝されないように構成したので、基材71の表面に腐食生成物が発生することによって、基材71上の溶射被膜72が剥がれるといった問題を解消することができる。
次に、第2の例について説明する。
第2の例では、図4の(a)、(b)、(c)に示すように、基材71の表面に、セラミックスの溶射により被膜76を形成し、被膜76の少なくとも一部分に封孔処理部76aを形成するようにしている。図4の(a)の例では、被膜76の基材71側に封孔処理部76aを形成しており、図4の(b)の例では、被膜76の表面側に封孔処理部76aを形成しており、図4(c)の例では、被膜76の全体を封孔処理部76aとしている。
被膜76は、B、Mg、Al、Si、Ca、Cr、Y、Zr、Ta、CeおよびNdからなる群から選択された少なくとも1種の元素を含むものであり、具体的には、BC、MgO、Al、SiC、Si、SiO、CaF、Cr、Y、YF、ZrO、TaO、CeO、Ce、CeFおよびNdからなる群から選択された少なくとも1種のセラミックスが好適である。この場合において、被膜76の膜厚は、50〜300μmであることが好ましい。なお、基材71としては、第1の例と全く同じものを使用することができる。
封孔処理部76aは、上述した第1の例のバリア層74に施したものと全く同様の樹脂封孔またはゾルゲル法による封孔により形成することができる。このように、封孔処理部76aを設けることにより、溶射被膜である被膜76の微細孔を通って侵入するガスまたは洗浄液を有効に阻止することができ、基材71を十分に保護することができる。この封孔処理部76aは、このように基材71へのガスまたは洗浄液の到達を阻止するためのものであるから、上記図4の(a)〜(c)のいずれでもその効果を発揮することができる。ただし、図4の(a)に示すように、被膜76の基材71側に封孔処理部76aを形成するのが望ましい。すなわち、溶射被膜に封孔処理を施した処理容器内部材を、高真空領域(例えば、13.3Pa)で高周波電力を印加してなるプラズマ雰囲気で用いると、封孔剤中の希釈有機溶媒(例えば、酢酸エチル)が蒸発したり、プラズマやプロセスガスなどによって封孔剤が腐食するなどして、溶射被膜中に再び気孔(微細孔)が形成されることがある。この気孔によって、処理容器内部材の表面状態(温度や生成物の付着状態など)が経時的に変化して、処理容器内のプロセスに悪影響を及ぼす可能性がある。したがって、図4の(a)のように、被膜76の表面側に封孔処理を施さないようにすれば、被膜76の表面改質を抑制してプロセスを安定的に実施することができる。なお、封孔処理部76aは、上記図4の(a)〜(c)に示した位置に限らず、例えば、被膜76の中間位置に形成してもよい。封孔処理部76aの厚さは、50〜100μmであることが好ましい。
この例においても、図5に示すように、基材71と被膜76との間に、上述した第1の例と全く同様の陽極酸化被膜75を形成するようにしてもよい。また、この場合にも、この陽極酸化被膜75を封孔処理することが好ましく、この封孔処理としては上述したのと同様の金属塩封孔などを適用することができる。
次に、第3の例について説明する。
第3の例では、図6の(a)、(b)に示すように、基材71の表面に、セラミックスの溶射により被膜77を形成し、被膜77を、第1のセラミックス層78と第2のセラミックス層79の2層構造とし、その少なくとも一方の少なくとも一部分に封孔処理部を形成するようにしている。図6の(a)の例では、表面側の第1のセラミックス層78に封孔処理部78aを形成しており、図6の(b)では、基材71側の第2のセラミックス層79に封孔処理部79aを形成している。
被膜77を構成する第1のセラミックス層78および第2のセラミックス層79は、いずれもB、Mg、Al、Si、Ca、Cr、Y、Zr、Ta、CeおよびNdからなる群から選択された少なくとも1種の元素を含むものであり、具体的には、BC、MgO、Al、SiC、Si、SiO、CaF、Cr、Y、YF、ZrO、TaO、CeO、Ce、CeFおよびNdからなる群から選択された少なくとも1種のセラミックスが好適である。この場合において、被膜77の膜厚は、50〜300μmであることが好ましい。なお、基材71としては、第1の例と全く同じものを使用することができる。
封孔処理部78a,79aは、上述した第1の例のバリアコート層74に施したものと全く同様の樹脂封孔またはゾルゲル法による封孔により形成することができる。このように、封孔処理部78a,79aを設けることにより、溶射被膜である第1および第2のセラミックス層78,79の微細孔を通って侵入するガスまたは洗浄液を有効に阻止することができ、基材71を十分に保護することができる。この封孔処理部78a,79aは、このように基材71へのガスまたは洗浄液の到達を阻止するためのものであるから、その機能を発揮できる限りこれら封孔処理部78a、79aの位置は限定されず、また層全体を封孔処理部としてもよい。また、第1および第2のセラミックス層78,79の両方に封孔処理部を形成してもよい。封孔処理部78a,79aの厚さは50〜100μmであることが好ましい。
このように、基材71上に形成する被膜77を2層構造にすることにより、要求される耐食性およびバリア性に応じて、これら2層の材料を適宜設定することができ、所望の位置に封孔処理を施すことにより、極めて自由度の高い適用が可能となる。例えば、表面側の第1のセラミックス層78としてYを用い、基材71側の第2のセラミックス層79としてYFまたはAlを用い、第2のセラミックス層79の少なくとも一部に封孔処理を施せば、耐食性およびバリア性を極めて高いものとすることができる。
この例においても、図7に示すように、基材71と被膜77との間に、上述した第1の例と全く同様の陽極酸化被膜75を形成するようにしてもよい。また、この場合にも、この陽極酸化被膜75を封孔処理することが好ましく、この封孔処理としては上述したのと同様の金属塩封孔などを適用することができる。
本実施形態の効果を確認するため、Al合金の基材上にYの溶射被膜を形成した試料1と、Al合金の基材上に樹脂(PTFE)のバリアコート層を介してYの溶射被膜を形成した試料2と、Al合金の基材上にYの溶射被膜を形成してその一部分を樹脂により封孔処理した試料3とをそれぞれ準備し、これら試料1〜3の表面にフッ酸(HF)溶液を滴下して、プラズマ環境下に置いたときの溶射被膜の表面状態を比較した。より具体的に説明すると、各試料表面に、38%濃度のフッ酸溶液を10μL滴下し、50℃で3時間加熱した後、試料をCF系ガスのプラズマ雰囲気に3分間放置した。その結果、溶射被膜の剥がれ対策が施されていない試料1は、表面全体にクラックが発生したのに対し、基材と溶射被膜との間にバリアコート層を形成した試料2と、溶射被膜の一部分を樹脂により封孔処理した試料3は、いずれもクラックが発生しておらず、フッ酸溶液の侵入を防いで、基材表面が保護されていることがわかった。
(2)第2の実施形態
プラズマ処理容器の壁材や他のプラズマ処理容器内部材にAlやYを用いる場合には、空気中の水分との反応性が高いため、処理容器である真空チャンバを大気開放したときや真空チャンバをウェットクリーニングするときに水分を大量に取り込み、種々の問題を生じるが、本発明者らの検討結果によれば、Y等の周期律表第3a族に属する元素を含むセラミックスに水化処理を施すことにより、またはこれら元素を含む水酸化物を形成することにより、このような不都合が解消されることを知見した。
このような知見に基づき、第2の実施形態では、図1におけるデポシールド2a、排気プレート44、フォーカスリング43、シャワーヘッド3、載置台4、静電チャック42、さらには真空チャンバ2の内壁材などの真空チャンバ2内の部材すなわちプラズマ処理容器内部材において、周期律表第3a族に属する元素を含むセラミックスに水化処理を施した部分を形成する、あるいは、少なくともその一部分をその元素を含む水酸化物にするようにした。
このようにすることにより、水分を吸着しにくく、脱離しにくい構造とすることができるので、プラズマ処理時における水分の離脱が生じ難いプラズマ処理容器内部材を得ることができる。
まず、第1の例では、図8に示すように基材81の上に、周期律表第3a族に属する元素を含むセラミックスからなる被膜82を形成し、例えば、少なくともその表面部分に水化処理部82aを形成する。
基材81としては、上記基材71と同様、ステンレス鋼(SUS)を含む各種の鋼、AlおよびAl合金、WおよびW合金、TiおよびTi合金、MoおよびMo合金、炭素ならびに酸化物系、非酸化物系セラミックス焼結体、および炭素質材料などが好適に用いられる。
被膜82は、周期律表第3a族に属する元素を含むセラミックスで構成されていればよいが、周期律表第3a族に属する元素を含む酸化物であることが好ましい。また、これらの中ではY、CeO、Ce、Ndが好適であり、その中でも、従来から多用され、高い耐食性を有することから、Yが特に好ましい。
この被膜82は、溶射法、PVD法やCVD法等の薄膜形成技術によって好適に形成することができる。また、その他、浸漬法、あるいは塗布法などの方法で形成することもできる。
水化処理部82aは、例えば、被膜82を水蒸気または高温の水と反応させることにより水化反応を生じさせることにより形成することができる。セラミックスとしてYを用いた場合には以下の(1)式のような反応が生じる。
+HO→Y・(HO)→2(YOOH)→Y(OH)…(1)
ただし、上記(1)式は価数を考慮していない。
この(1)式に示すように、水化処理により、最終的にYの水酸化物が形成される。他の周期律表第3a族に属する元素の場合も、ほぼ同様な反応によってこのような水酸化物を形成する。このような水酸化物としてはY(OH)、Ce(OH)、Nd(OH)が好ましい。
このことを確認するために、基材上にYの溶射被膜を形成した試料を準備し、80℃の高温水に150時間浸漬して水化処理を行った後、室温にて乾燥したものと、このような処理を行わなかったものについてX線回折測定を行った。その結果、図9の(a),(b)に示すように、水化処理を行った試料のみにY(OH)が認められ、水化処理により水酸化物が形成されることが確認された。
周期律表第3a族に属する元素の水酸化物は、極めて安定であり、化学的に吸着した水が脱離しにくく、かつ水を吸着し難いという特性を有しており、水化処理によりこのような水酸化物を形成することで、プロセス中における水分による不都合を回避することができる。
このような水化処理による効果を確認するために、基材の上にY溶射被膜を200μm程度形成し、沸騰水にて3時間処理した試料と処理しなかった試料とを準備し、この両者にIPAを吹き付けた。なお、IPAは水よりも吸着性が高く、したがって、IPA吹き付けは加速試験となる。この試験の結果、図10に示すように水化処理していないものはIPAが吸着したが、水化処理したものは全く吸着しなかった。このことから水化処理により吸水が極めて生じ難くなることが確認された。
次に、上と同様に基材の上にY溶射被膜を200μm程度形成し、沸騰水にて3時間処理した試料と処理しなかった試料とを準備し、これらの上に樹脂を塗布した後、切断して断面を確認した。その結果、図11の(a),(b)に示すように、表面状態は両者で差がないのにもかかわらず、「処理無し」の場合には被膜が全体的に透明であり全体に樹脂が浸透していたことが認められるのに対し、「処理有り」の場合には表層わずかな部分のみが透明であり、内部は白くなっており、樹脂がほとんど浸透していないことが確認された。すなわち、水化処理を行うことにより、疎水性となったことが判明した。また、図11の(c)に示すように水化処理後20μm程度除去するとその部分は透明になっており、水化処理を行った表層の20μm程度を除去することにより、疎水性が低下することが確認された。
なお、HOがY表面に及ぼす影響については、Langmuir,Vol.16, No.17,2000の6937−6947頁に記載された黒田らの「Specific Adsorption Behavior of Water on a Y2O3 Surface」という論文に詳しい。
以下、水化処理について具体的に説明する。
水化処理は、水蒸気が豊富な環境で熱処理を行うか、沸騰した水中で処理することにより行うことができる。これにより、例えばイットリア(Y)分子の周囲に数個の水分子を引きつけて結合し、安定した一つの分子集団にすることができる。このとき、水蒸気の分圧、熱処理温度、熱処理時間などがパラメーターとなる。例えば、相対湿度が90%以上の環境で100〜300℃程度の炉の中で、24時間程度、加熱処理を行うことにより安定した水酸化物を形成することができる。もし、相対湿度や熱処理温度が低い場合には、処理時間を長くすればよい。水化処理を効率的に行うためには、高温・高圧で処理することが好ましい。イットリア表面での水和反応は、基本的に室温程度でも長時間行えば十分に進行するので、上記条件以外でも、同じ最終状態を得ることができる。また、水化処理する際、純水を用いて水化処理するよりも、イオンを含む水(pH7より大きいアルカリ水)を用いて水化処理を施したほうが、疎水性がより優れたものとなる。
なお、水化処理に限らず、例えば原料段階で水酸化物にする等、最終的に水酸化物が形成されれば、他の方法を採用してもよい。被膜を溶射法で製造する場合には、原料が高温にさらされるため、原料段階で水酸化物にすると水酸化物が酸化物に変化することが懸念されるが、この場合でも、高湿度環境下で溶射することにより水酸化物膜を形成することができる。このように、水化処理部を形成する代わりに、他の方法によって直接水酸化物を形成してもよい。
このような水化処理部ないしは水酸化物層は、被膜82を、水分を吸着しにくく、脱離しにくい構造とするためには、被膜82の表面部分に形成する必要がある。この場合の水化処理部ないしは水酸化物膜の厚さは100μm以上が好ましく、使用する場所に応じて最適な厚みに設定するのが良い。
周期律表第3a族に属する元素を含むセラミックスを水化処理することにより緻密化も促進する。例えば、溶射により形成したY膜について、水化処理前に図12の(a)に示すようなポーラスな状態であったものが、水化処理することにより、図12の(b)に示すように緻密化される。このように緻密化されることにより、上記効果の他、第1の実施形態のようなバリア効果も得られる。
バリア効果のみを得る観点からは、水化処理により水酸化物とされた水化処理部82aは必ずしも表面にある必要はなく、被膜82の任意の位置に形成されていればよい。他の方法で水酸化物にされた水酸化物層を形成する場合には、上述したような樹脂やゾルゲル法での封孔処理をすることが好ましい。この例においては、図13に示すように、第1の実施形態と同様、基材81と被膜82との間に、第1の実施形態と全く同様の陽極酸化被膜83を形成するようにしてもよい。また、第1の実施形態と同様、この陽極酸化被膜83を封孔処理することが好ましく、この封孔処理としては上述したのと同様の金属塩封孔などを適用することができる。
次に、第2の例について説明する。
第2の例では、図14の(a)、(b)に示すように、基材81の表面に、被膜84を形成し、被膜84を、第1のセラミックス層85と第2のセラミックス層86の2層構造とし、その少なくとも一方の少なくとも一部分に水化処理部を形成するようにしている。図14の(a)の例では、表面側の第1のセラミックス層85に水化処理部85aを形成しており、図14の(b)では、基材81側の第2のセラミックス層86に水化処理部86aを形成している。
被膜84を構成する第1のセラミックス層85および第2のセラミックス層は、いずれも第1の例と同様、周期律表第3a族に属する元素を含むセラミックスで構成されており、周期律表第3a族に属する元素を含む酸化物であることが好ましく、これらの中ではY、CeO、Ce、Ndが好適であり、特に、Yが好ましい。なお、基材81としては、第1の例と全く同じものを用いることができる。
これら第1および第2のセラミックス層85,86は、第1の例における被膜82と同様、溶射法、PVD法やCVD法等の薄膜形成技術によって好適に形成することができる。また、その他、浸漬法、あるいは塗布法などの方法で形成することもできる。
水化処理部85a,86aは、第1の例における水化処理部82aと全く同様に形成することができる。図14の(a)に示すように、被膜84の表面に水化処理部がある場合には、水分を吸着しにくく、脱離しにくい構造とすることができ、図14の(b)に示すように、被膜84の内部に水化処理部がある場合には、バリア効果を有効に発揮させることができる。被膜84内部の水化処理部86aを形成するためには、基材81上に第2のセラミックス層86を製造した後、水化処理を行い、さらに第1のセラミックス層85を形成すればよい。水化処理部85a,86aの厚さは100μm以上とすることが好ましい。
このように、基材81上に形成する被膜84を2層構造にすることにより、要求される特性に応じて、これら2層の材料および水化処理の位置を適宜設定することができ、極めて自由度の高い適用が可能となる。
この例においても、図15に示すように、基材81と被膜84との間に、第1の例と全く同様の陽極酸化被膜83を形成するようにしてもよい。
次に、第3の例について説明する。
第3の例では、図16に示すように、基材81の表面に、被膜87を形成し、被膜87を、周期律表第3a族に属する少なくとも1種の元素を含むセラミックスからなる第1セラミックス層88と、セラミックスの溶射で形成された第2のセラミックス層89とを有し、第1セラミックス層88の表面部分に水化処理部88aが形成されている。
第1のセラミックス層88の周期律表第3a族に属する元素を含むセラミックスとしては、周期律表第3a族に属する元素を含む酸化物であることが好ましく、これらの中ではY、CeO、Ce、Ndが好適であり、特に、Yが好ましい。第1のセラミックス層88の膜厚は、100〜300μmであることが好ましい。第1のセラミックス層88は、第1の例における被膜82と同様、溶射法、PVD法やCVD法等の薄膜形成技術によって好適に形成することができる。また、その他、浸漬法、あるいは塗布法などの方法で形成することもできる。
第2のセラミックス層89としては、B、Mg、Al、Si、Ca、Cr、Y、Zr、Ta、CeおよびNdからなる群から選択された少なくとも1種の元素を含むものが好適であり、具体的には、BC、MgO、Al、SiC、Si、SiO、CaF、Cr、Y、YF、ZrO、TaO、CeO、Ce、CeFおよびNdからなる群から選択された少なくとも1種のセラミックスが好適である。第2のセラミックス層89の膜厚は、50〜300μmであることが好ましい。なお、基材81としては、第1の例と全く同じものを使用することができる。
水化処理部88aは、第1の例における水化処理部82aと全く同様に形成することができる。このように、被膜87の表面に水化処理部が形成されているので、水分を吸着しにくく、脱離しにくい構造とすることができる。なお、水化処理部88aを第1のセラミックス層88の内部に形成してバリア効果を発揮させることもできる。水化処理部88aの厚さは100μm以上であることが好ましい。
図17に示すように、第2のセラミック層89に封孔処理部89aを形成することが好ましい。封孔処理部89aは、上述した第1の実施形態において説明したものと全く同様の樹脂封孔またはゾルゲル法による封孔により形成することができる。このように、封孔処理部89aを設けることにより、溶射被膜である第2のセラミックス層89の微細孔を通って侵入するガスまたは洗浄液を有効に阻止することができ、基材81を十分に保護することができる。なお、封孔処理部89aは第2のセラミックス層89の任意の位置に形成することができる。
図16、図17に示すような構造にすることにより、耐食性に優れるとともに、第1のセラミックス層88の水化処理部88aによって、水分を吸着しにくく、脱離しにくい構造とすることができ、しかも第2のセラミックス層89のバリア効果により、基材81を有効に保護することができる。特に、図17の構造では、封孔処理部89aの存在により、バリア効果を一層高めることができる。
なお、図18に示すように、第1のセラミックス層88と第2のセラミックス層89とを逆にしてもよい。この場合には、基材81側の第1のセラミックス層88の水化処理部88aにてバリア効果が有効に発揮されて基材81の保護効果を高めることができる。
この例においても、図19に示すように、基材81と被膜87との間に、第1の例と全く同様の陽極酸化被膜83を形成するようにしてもよい。
次に、第3の実施形態について説明する。
この実施形態に係るプラズマ処理容器内部材は、図20に示すように、周期律表第3a族に属する元素を含むセラミックス焼結体90の表面に、水化処理部91が形成されている。水化処理部91は、第2の実施形態と全く同様に形成することができ、水化処理によって周期律表第3a族に属する元素を含む水酸化物が形成される。
このように水化処理部91が表面に形成されることにより、水分を吸着しにくく、脱離しにくい構造とすることができる。この場合の水化処理部91ないしは水酸化物膜の厚さは100μm以上が好ましい。
本実施形態においても、第2の実施形態と同様、周期律表第3a族に属する元素を含むセラミックス、周期律表第3a族に属する元素を含む酸化物であることが好ましい。これらの中ではY、CeO、Ce、Ndが好適であり、特に、Yが好ましい。
なお、本発明は上記実施の形態に限定されることなく、種々変形可能である。例えば、上記実施の形態では、図1に示す、永久磁石を用いたマグネトロンタイプの平行平板型のプラズマエッチング装置のプラズマ処理容器内部材であるデポシールド2a、排気プレート44、フォーカスリング43、シャワーヘッド3、載置台4、静電チャック42、さらには真空チャンバ2の内壁材に本発明を適用した場合を例に挙げて説明したが、本発明は、かかる構成の装置に限定されず、マグネトロンを用いない平行平板型のプラズマエッチング装置や、誘導結合型など他のプラズマエッチング処理装置、および、エッチング装置のみならず、アッシング処理や成膜処理などのエッチング以外の各種プラズマ処理を行う装置、さらには、半導体ウエハのみならずLCD用ガラス基板に処理を施すプラズマ処理装置に用いるプラズマ処理容器内部材全てに適用可能である。
本発明に係るプラズマ処理容器内部材は、特に基材上に形成する被膜を耐食性が高いセラミックスで構成し、バリアとして機能する部分を設けたので、腐食性の高い雰囲気によるプラズマによる処理に好適である。また、周期律表第3a族に属する元素を含むセラミックスに水化処理を施して水に対して安定な構造とするので、水分が問題となるプラズマ処理容器内部材として好適である。
本発明の実施の形態に係るプラズマ処理容器内部材が搭載されるプラズマエッチング装置を示す縦断面図。 本発明の第1の実施形態に係るプラズマ処理容器内部材の第1の例の層構成を示す断面図。 図2の構成に陽極酸化被膜を加えた例を示す断面図。 本発明の第1の実施形態に係るプラズマ処理容器内部材の第2の例の層構成を示す断面図。 図4の構成に陽極酸化被膜を加えた例を示す断面図。 本発明の第1の実施形態に係るプラズマ処理容器内部材の第3の例の層構成を示す断面図。 図6の構成に陽極酸化被膜を加えた例を示す断面図。 本発明の第2の実施形態に係るプラズマ処理容器内部材の第1の例の層構成を示す断面図。 Y2O3被膜に水化処理を行った場合と行わない場合とでX線解析パターンを比較して示す図。 Y2O3被膜に水化処理を行った場合と行わない場合とでIPAの吸着を比較して示す図。 Y2O3被膜に水化処理を行った場合と行わない場合とで樹脂の浸透を比較して示す図。 水化処理前と処理後の層状態を比較して示す走査型電子顕微鏡写真。 図8の構成に陽極酸化被膜を加えた例を示す断面図。 本発明の第2の実施形態に係るプラズマ処理容器内部材の第2の例の層構成を示す断面図。 図14の構成に陽極酸化被膜を加えた例を示す断面図。 本発明の第2の実施形態に係るプラズマ処理容器内部材の第3の例の層構成を示す断面図。 本発明の第2の実施形態に係るプラズマ処理容器内部材の第3の例の層構成を示す断面図。 本発明の第2の実施形態に係るプラズマ処理容器内部材の第3の例の層構成を示す断面図。 図16の構成に陽極酸化被膜を加えた例を示す断面図。 本発明の第3の実施形態に係るプラズマ処理容器内部材を示す模式図。 従来のプラズマ処理容器内部材において、溶射被膜(トップコート層)の剥がれる状態を模式的に示す図。
符号の説明
2;真空チャンバ
2a;デポシールド
3;ガスシャワーヘッド
4;載置台
42;静電チャック
43;フォーカスリング
44;排気プレート
71,81;基材
72,76,77,82,84,87;被膜
74;バリアコート層
75,83;陽極酸化被膜
76a,78a,79a;封孔処理部
82a,86a,88a,91;水化処理部

Claims (9)

  1. 基材と、その表面に形成された被膜とを有するプラズマ処理容器内部材であって、
    前記被膜は、セラミックスの溶射によって形成された主層と、B、Mg、Al、Si、Ca、Cr、Y、Zr、Ta、CeおよびNdからなる群から選択された元素を含むセラミックスからなるバリアコート層とを有し、
    前記バリアコート層は、そ前記基材との接合面側のみがゾルゲル法によって封孔処理された溶射被膜であることを特徴とする、プラズマ処理容器内部材。
  2. 前記封孔処理は、周期律表第3a族に属する元素から選択されたものを用いて行うことを特徴とする、請求項1に記載のプラズマ処理容器内部材。
  3. 基材と、その表面に形成された被膜とを有するプラズマ処理容器内部材であって、
    前記被膜は、セラミックスの溶射によって形成された主層と、B、Mg、Al、Si、Ca、Cr、Y、Zr、Ta、CeおよびNdからなる群から選択された元素を含むセラミックスからなるバリアコート層とを有し、
    前記バリアコート層は、そ前記基材との接合面側のみが樹脂によって封孔処理された溶射被膜であることを特徴とする、プラズマ処理容器内部材。
  4. 前記樹脂は、SI、PTFE、PI、PAI、PEI、PBI、およびPFAからなる群から選択されたものであることを特徴とする、請求項3に記載のプラズマ処理容器内部材。
  5. 前記バリアコート層は、BC、MgO、Al、SiC、Si、SiO、CaF、Cr、Y、YF、ZrO、TaO、CeO、Ce、CeFおよびNdからなる群から選択された少なくとも1種のセラミックスで構成されていることを特徴とする、請求項1から請求項4のいずれか1項に記載のプラズマ処理容器内部材。
  6. 前記主層は、BC、MgO、Al、SiC、Si、SiO、CaF、Cr、Y、YF、ZrO、TaO、CeO、Ce、CeFおよびNdからなる群から選択された少なくとも1種のセラミックスで構成されていることを特徴とする、請求項1から請求項5のいずれか1項に記載のプラズマ処理容器内部材。
  7. 前記基材と前記被膜との間に、陽極酸化被膜を有することを特徴とする、請求項1から請求項6のいずれか1項に記載のプラズマ処理容器内部材。
  8. 前記陽極酸化被膜は、金属塩水溶液により封孔処理されていることを特徴とする、請求項7に記載のプラズマ処理容器内部材。
  9. 前記陽極酸化被膜は、SI、PTFE、PI、PAI、PEI、PBI、およびPFAからなる群から選択された樹脂により封孔処理されていることを特徴とする、請求項7に記載のプラズマ処理容器内部材。
JP2003398334A 2002-11-28 2003-11-28 プラズマ処理容器内部材 Expired - Lifetime JP4503270B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003398334A JP4503270B2 (ja) 2002-11-28 2003-11-28 プラズマ処理容器内部材
CNB2004100312103A CN100418187C (zh) 2003-02-07 2004-02-06 等离子体处理装置、环形部件和等离子体处理方法
KR1020040008149A KR100540051B1 (ko) 2003-02-07 2004-02-07 플라즈마 처리 장치, 링부재 및 플라즈마 처리 방법
TW093102927A TW200501253A (en) 2003-02-07 2004-02-09 Plasma processing apparatus, ring component and plasma processing method
US10/773,245 US20050103275A1 (en) 2003-02-07 2004-02-09 Plasma processing apparatus, ring member and plasma processing method
US12/340,256 US8043971B2 (en) 2003-02-07 2008-12-19 Plasma processing apparatus, ring member and plasma processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002345855 2002-11-28
JP2003398334A JP4503270B2 (ja) 2002-11-28 2003-11-28 プラズマ処理容器内部材

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009124838A Division JP4987911B2 (ja) 2002-11-28 2009-05-25 プラズマ処理容器内部材

Publications (2)

Publication Number Publication Date
JP2004190136A JP2004190136A (ja) 2004-07-08
JP4503270B2 true JP4503270B2 (ja) 2010-07-14

Family

ID=32774861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398334A Expired - Lifetime JP4503270B2 (ja) 2002-11-28 2003-11-28 プラズマ処理容器内部材

Country Status (1)

Country Link
JP (1) JP4503270B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022098778A1 (en) * 2020-11-05 2022-05-12 Lam Research Corporation Spark plasma sintered component for plasma processing chamber

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666575B2 (ja) * 2004-11-08 2011-04-06 東京エレクトロン株式会社 セラミック溶射部材の製造方法、該方法を実行するためのプログラム、記憶媒体、及びセラミック溶射部材
JP4668636B2 (ja) * 2005-02-04 2011-04-13 株式会社日立製作所 ガスタービン燃焼器
JP4555865B2 (ja) 2005-08-22 2010-10-06 トーカロ株式会社 耐損傷性等に優れる溶射皮膜被覆部材およびその製造方法
JP4628900B2 (ja) 2005-08-24 2011-02-09 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP4571561B2 (ja) 2005-09-08 2010-10-27 トーカロ株式会社 耐プラズマエロージョン性に優れる溶射皮膜被覆部材およびその製造方法
US7648782B2 (en) 2006-03-20 2010-01-19 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
JP5160112B2 (ja) * 2007-03-19 2013-03-13 東京エレクトロン株式会社 処理装置内構造体、プラズマ処理装置内構造体及びプラズマ処理装置
JP5047741B2 (ja) * 2007-09-13 2012-10-10 コバレントマテリアル株式会社 耐プラズマ性セラミックス溶射膜
JP5069137B2 (ja) * 2008-01-21 2012-11-07 株式会社アルバック プラズマ処理装置、プラズマ処理装置の製造方法
JP2009176787A (ja) * 2008-01-22 2009-08-06 Hitachi High-Technologies Corp エッチング処理装置及びエッチング処理室用部材
US20100272982A1 (en) * 2008-11-04 2010-10-28 Graeme Dickinson Thermal spray coatings for semiconductor applications
JP2011231356A (ja) * 2010-04-26 2011-11-17 Nhk Spring Co Ltd 金属基材の絶縁被膜方法、絶縁被膜金属基材、および、これを用いた半導体製造装置
JP5642427B2 (ja) * 2010-05-24 2014-12-17 株式会社日立ハイテクノロジーズ プラズマ処理方法
US20120196139A1 (en) * 2010-07-14 2012-08-02 Christopher Petorak Thermal spray composite coatings for semiconductor applications
JP5597840B2 (ja) * 2012-01-18 2014-10-01 トーカロ株式会社 フッ化物膜被覆サーメット複合皮膜被覆部材およびその製造方法
JP2016042496A (ja) * 2012-12-19 2016-03-31 キヤノンアネルバ株式会社 放電空間を画成する部材およびその再生処理方法
CN103236403B (zh) * 2013-04-28 2015-11-11 京东方科技集团股份有限公司 防扩散层及制备方法、薄膜晶体管、阵列基板、显示装置
JP6094813B2 (ja) * 2013-09-02 2017-03-15 パナソニックIpマネジメント株式会社 プラズマ処理装置
CN106104775B (zh) 2014-01-31 2019-05-21 应用材料公司 腔室涂层
US9976211B2 (en) * 2014-04-25 2018-05-22 Applied Materials, Inc. Plasma erosion resistant thin film coating for high temperature application
JP6714978B2 (ja) 2014-07-10 2020-07-01 東京エレクトロン株式会社 プラズマ処理装置用の部品、プラズマ処理装置、及びプラズマ処理装置用の部品の製造方法
JP6396819B2 (ja) * 2015-02-03 2018-09-26 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
US20180073121A1 (en) * 2015-03-04 2018-03-15 Tocalo Co., Ltd. Fiber-reinforced resin structure and method for producing fiber-reinforced resin structure
JP6614842B2 (ja) * 2015-07-29 2019-12-04 日本碍子株式会社 セラミックス材料、その製法及び半導体製造装置用部材
CN114068273B (zh) * 2020-07-31 2024-04-05 中微半导体设备(上海)股份有限公司 一种零部件及其制备方法和等离子体反应装置
CN114078679B (zh) * 2020-08-14 2024-01-23 中微半导体设备(上海)股份有限公司 半导体零部件、复合涂层形成方法和等离子体反应装置
WO2022054837A1 (ja) * 2020-09-09 2022-03-17 三菱マテリアル株式会社 耐プラズマコーティング膜、該膜形成用ゾルゲル液、耐プラズマコーティング膜の形成方法及び耐プラズマコーティング膜付き基材
JP7234459B2 (ja) 2020-12-24 2023-03-07 トーカロ株式会社 静電チャック及び処理装置
CN113399232A (zh) * 2021-06-22 2021-09-17 河南科技大学 一种适配于电机绝缘轴承的复合陶瓷涂层及其制备方法
CN115803469A (zh) * 2021-06-28 2023-03-14 株式会社日立高新技术 内壁构件的再生方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611346U (ja) * 1992-07-20 1994-02-10 ヘキストジャパン株式会社 ドライエッチング装置用ポリベンゾイミダゾール製物品
JP2000164570A (ja) * 1998-11-26 2000-06-16 Sumitomo Metal Ind Ltd プラズマ処理装置
JP2001203258A (ja) * 2000-01-21 2001-07-27 Tocalo Co Ltd 静電チャック部材およびその製造方法
JP2001226773A (ja) * 1999-12-10 2001-08-21 Tokyo Electron Ltd 処理装置およびそれに用いられる耐食性部材
JP2002083861A (ja) * 2000-09-06 2002-03-22 Taiheiyo Cement Corp 真空処理装置用部材および静電チャック
JP2002088462A (ja) * 2000-09-14 2002-03-27 Nippon Steel Corp 封孔処理方法及び封孔処理された溶射皮膜とその皮膜を施したファンまたはブロワー
JP2002134481A (ja) * 2000-10-25 2002-05-10 Taiheiyo Cement Corp 真空処理装置用部材
WO2002048421A1 (fr) * 2000-12-12 2002-06-20 Tokyo Electron Limited Procede de regeneration de contenant pour le traitement de plasma, element a l'interieur de ce contenant, procede de preparation de l'element a l'interieur de ce contenant, et appareil de traitement de plasma
JP2002228803A (ja) * 2001-01-30 2002-08-14 Konica Corp 低反射積層体の製造方法及び低反射積層体
WO2002079538A1 (en) * 2001-03-30 2002-10-10 Lam Research Corporation Cerium oxide containing ceramic components and coatings in semiconductor processing equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396338A (ja) * 1989-06-14 1991-04-22 Mitsubishi Heavy Ind Ltd 耐食材料
JPH0570922A (ja) * 1991-08-09 1993-03-23 Koichi Moriya 複合材の無機化合物による封孔処理法
JP3308091B2 (ja) * 1994-02-03 2002-07-29 東京エレクトロン株式会社 表面処理方法およびプラズマ処理装置
JPH08158034A (ja) * 1994-12-01 1996-06-18 Nittetsu Hard Kk 溶射皮膜の強化方法
JPH0975832A (ja) * 1995-09-11 1997-03-25 Nittetsu Hard Kk 耐食耐摩耗性表面溶射層を有するボイラーチューブ
JPH09298190A (ja) * 1996-05-02 1997-11-18 Iwaki Coating Kogyo:Kk ドライエッチング装置用電極の製造方法
JP3488373B2 (ja) * 1997-11-28 2004-01-19 京セラ株式会社 耐食性部材
JPH10277707A (ja) * 1997-04-03 1998-10-20 Mishima Kosan Co Ltd 連続鋳造用鋳型に使用する鋳型片及びその製造方法
JP3371083B2 (ja) * 1998-01-21 2003-01-27 明和ゴム工業株式会社 コロナ放電処理用セラミックロール及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611346U (ja) * 1992-07-20 1994-02-10 ヘキストジャパン株式会社 ドライエッチング装置用ポリベンゾイミダゾール製物品
JP2000164570A (ja) * 1998-11-26 2000-06-16 Sumitomo Metal Ind Ltd プラズマ処理装置
JP2001226773A (ja) * 1999-12-10 2001-08-21 Tokyo Electron Ltd 処理装置およびそれに用いられる耐食性部材
JP2001203258A (ja) * 2000-01-21 2001-07-27 Tocalo Co Ltd 静電チャック部材およびその製造方法
JP2002083861A (ja) * 2000-09-06 2002-03-22 Taiheiyo Cement Corp 真空処理装置用部材および静電チャック
JP2002088462A (ja) * 2000-09-14 2002-03-27 Nippon Steel Corp 封孔処理方法及び封孔処理された溶射皮膜とその皮膜を施したファンまたはブロワー
JP2002134481A (ja) * 2000-10-25 2002-05-10 Taiheiyo Cement Corp 真空処理装置用部材
WO2002048421A1 (fr) * 2000-12-12 2002-06-20 Tokyo Electron Limited Procede de regeneration de contenant pour le traitement de plasma, element a l'interieur de ce contenant, procede de preparation de l'element a l'interieur de ce contenant, et appareil de traitement de plasma
JP2002228803A (ja) * 2001-01-30 2002-08-14 Konica Corp 低反射積層体の製造方法及び低反射積層体
WO2002079538A1 (en) * 2001-03-30 2002-10-10 Lam Research Corporation Cerium oxide containing ceramic components and coatings in semiconductor processing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022098778A1 (en) * 2020-11-05 2022-05-12 Lam Research Corporation Spark plasma sintered component for plasma processing chamber

Also Published As

Publication number Publication date
JP2004190136A (ja) 2004-07-08

Similar Documents

Publication Publication Date Title
JP4987911B2 (ja) プラズマ処理容器内部材
JP4503270B2 (ja) プラズマ処理容器内部材
KR100540051B1 (ko) 플라즈마 처리 장치, 링부재 및 플라즈마 처리 방법
JP4486372B2 (ja) プラズマ処理装置
CN107592941B (zh) 耐等离子体涂膜及其形成方法
KR101482505B1 (ko) 플라즈마 챔버 재료로서의 산화이트륨의 수명 연장
EP1156130B1 (en) Plasma processing container internal member and production method therefor
WO2014018835A1 (en) Innovative top-coat approach for advanced device on-wafer particle performance
TW200425318A (en) A barrier layer for a processing element and a method of forming the same
JP2009173965A (ja) 基板処理装置用の部品及び皮膜形成方法
US20230092570A1 (en) Method for conditioning semiconductor processing chamber components
CN104241069A (zh) 等离子体装置内具有氧化钇包覆层的部件及其制造方法
JP4728306B2 (ja) 静電チャック部材およびその製造方法
US10269544B2 (en) Gas ring for plasma system and method of manufacturing the same
TW202327742A (zh) 一種基於超臨界水與超音波耦合的清洗製程
JP2023533730A (ja) 水素およびnh3プラズマ用途のための保護セラミックコーティングを有するプロセスキット
JP2023140500A (ja) 被覆構造体および保持装置
JP2005350685A (ja) 基板処理装置の部品及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

R150 Certificate of patent or registration of utility model

Ref document number: 4503270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160430

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term