WO2007018039A1 - 半導体発光装置 - Google Patents

半導体発光装置 Download PDF

Info

Publication number
WO2007018039A1
WO2007018039A1 PCT/JP2006/314844 JP2006314844W WO2007018039A1 WO 2007018039 A1 WO2007018039 A1 WO 2007018039A1 JP 2006314844 W JP2006314844 W JP 2006314844W WO 2007018039 A1 WO2007018039 A1 WO 2007018039A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing portion
emitting device
light emitting
semiconductor light
sealing
Prior art date
Application number
PCT/JP2006/314844
Other languages
English (en)
French (fr)
Inventor
Susumu Koike
Masaaki Suzuki
Tadaaki Ikeda
Hideo Nagai
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007529479A priority Critical patent/JPWO2007018039A1/ja
Priority to EP06781755A priority patent/EP1919000A1/en
Priority to US11/995,924 priority patent/US7910940B2/en
Publication of WO2007018039A1 publication Critical patent/WO2007018039A1/ja
Priority to US13/025,758 priority patent/US20110133237A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Definitions

  • the present invention relates to a semiconductor light emitting device in which a semiconductor chip such as an LED (Light Emitting Diode) chip is packaged.
  • a semiconductor chip such as an LED (Light Emitting Diode) chip is packaged.
  • the blue LED chip There are mainly two methods for obtaining white light using an LED chip that emits light from the blue region to the ultraviolet region (for example, see Non-Patent Document 1).
  • the blue LED chip There is a method of obtaining white light by using blue light that also emits force and yellow light obtained by exciting a fluorescent material such as cerium-doped yttrium aluminum garnet (YAG: Ce) with blue light.
  • a fluorescent material such as cerium-doped yttrium aluminum garnet (YAG: Ce) with blue light.
  • YAG cerium-doped yttrium aluminum garnet
  • Y O S: Eu abbreviation P22—RE3 force for red
  • ZnS Cu, A1 (abbreviation P22—GN4) or (Ba, Mg) Al 2 O: Eu, Mn (abbreviation LP—G3)
  • the white LED device is realized by packaging an LED chip that emits light from a blue region to an ultraviolet region and the above-described fluorescent material with a sealing resin material.
  • a sealing resin material is formed into a bullet shape (see, for example, Non-Patent Document 2).
  • the white LED device 100 includes a first lead frame 101.
  • the LED chip 102 that emits light in the blue to ultraviolet region is fixed to the bottom surface of the die pad portion provided in a cup shape at one end of A by a chip fixing paste material 103 such as an Ag paste material or an insulating paste material. ! RU
  • a first electrode 104A and a second electrode 104B are formed on the upper surface of the LED chip 102.
  • the first electrode 104A is electrically connected to the first lead frame 101A via the first wire 105A
  • the second electrode 104B is electrically connected to the first lead frame 101A via the second wire 105B. Electrically connected to the second lead frame 101B paired with
  • the LED chip 102 is sealed with a resin material 105 molded in a cannonball shape.
  • a resin material transparent to visible light such as epoxy resin or silicone resin is generally used.
  • the fluorescent material 106 described above is kneaded in the resin material 105 (for example, see Patent Document 1).
  • Non-Patent Document 1 Kazutomo Tomoe, et al., “Mitsubishi Cable Industrial Time Report” No. 99, July 2002, p. 35, 41
  • Non-Patent Document 2 Masaru Sugimoto, et al., “Matsushita Electric Engineering Technical Report” No. 53, No. 1, pp. 4-9
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2004-71908
  • Patent Document 2 JP-A-2005-93724
  • the conventional white LED device 100 has the following problems when epoxy resin or silicone resin is used as the sealing resin material 105.
  • the light emission brightness from 100 decreases or the color tone changes. For this reason, the resin material 105 for sealing is required to have light resistance and heat resistance.
  • the chip fixing paste material 103 is made of resin
  • the emitted light from the LED chip 102 changes the color of the chip fixing paste material 103 to reduce the light emission luminance or the strength.
  • the paste fixing material 103 which is made of a resin consisting only of the resin material 105 and the fluorescent material 106 constituting the semiconductor light-emitting device, deteriorates due to the ultraviolet light incident from the outside. There is a problem.
  • the silicone resin has a lower light refractive index than the epoxy resin, the emitted light from the LED chip 102 is easy to be totally reflected, and the light extraction efficiency from the LED chip 102 is improved. (For example, see Patent Document 2) 0
  • the refractive index of epoxy resin is LED chip (especially
  • the light extraction efficiency is not sufficient because it is very small compared to the refractive index of GaN-based semiconductors.
  • the light emission wavelength is longer than blue, and even if the LED chip is long, the light extraction efficiency is sufficiently high. No.
  • an object of the present invention is to improve the light resistance, heat resistance, and light extraction efficiency of a sealing material for sealing a semiconductor chip on which a light emitting element is formed.
  • the present invention includes particles made of an inorganic material having an effective particle size of one quarter or less of the emission wavelength in a base material constituting a sealing portion of a semiconductor light emitting device.
  • the configuration
  • a first semiconductor light emitting device includes a semiconductor chip that emits light having a wavelength from a blue region to an ultraviolet region, and at least a partial region on a passage path through which the light passes.
  • the sealing portion is formed of a base material and an inorganic material dispersed in the base material and having an effective particle diameter of one quarter or less of the wavelength of light inside the base material. It is characterized by containing a sealing material such as a composite material containing particles and a fluorescent material.
  • the particles dispersed in the base material of the sealing portion are made of an inorganic material, the particles of the sealing portion are compared with the case where the particles made of the inorganic material are not included. Light resistance and heat resistance are improved.
  • the effective particle size of the particles dispersed in the base material is less than a quarter of the wavelength of the light emitted by the semiconductor chip force, the transparency of the sealing portion is not impaired. That is, the light extraction efficiency is not impaired.
  • the particle size is the wave of light.
  • the composite material in which the inorganic particles are dispersed can be regarded as a uniform medium having no variation in refractive index. Further, if the particle size is 1/4 or less of the wavelength of light, the light scattering in the composite material is only Rayleigh scattering, so that the translucency is less likely to deteriorate.
  • the sealing portion is preferably formed so as to cover the periphery of the semiconductor chip.
  • the sealing portion is preferably formed in contact with the semiconductor chip.
  • the particle size is not included in the base material of the sealing portion. Since the difference in thermal expansion coefficient is small, peeling and cracking of the sealing portion occur.
  • the sealing portion includes a first sealing portion made of a sealing material, and a second sealing formed outside the first sealing portion and including a fluorescent material. It is preferable that it is comprised by the part.
  • the semiconductor chip is arranged by disposing the first sealing portion made of the sealing material, which is a composite material, in a portion that is relatively close to the semiconductor chip and therefore has a relatively high light density. High and light extraction efficiency can be realized and high! ⁇ Light resistance and heat resistance can be obtained. Furthermore, the second sealing portion that is more transparent than the composite material and contains the fluorescent material is disposed in the portion where the semiconductor chip force is relatively far and thus the light density is relatively low, thereby providing the second sealing portion. It is possible to improve the light transmittance in the sealing portion. As a result, the light extraction efficiency from the semiconductor light emitting device can be improved.
  • the first sealing portion may further include a reflecting member that is provided at least below and on the side of the semiconductor chip in the first sealing portion and reflects light. preferable.
  • the spectrum contained in the composite material constituting the first sealing portion on the semiconductor chip side attenuates the spectrum in the blue region and the ultraviolet region, as will be described later.
  • the spectrum on the short wavelength side such as the red region increases. This phenomenon is described in the present specification.
  • the sealing material is preferably a base layer in which the semiconductor chip is fixed with a transparent paste material and is held by the reflecting member.
  • the paste material for fixing the semiconductor chip is transparent. Therefore, the average color rendering index (Ra) is obtained due to the filter effect of the particles contained in the underlayer. And the color temperature can be lowered.
  • the sealing portion is formed of a first sealing portion made of a sealing material, and outside the first sealing portion, and the second sealing portion
  • the particles are preferably made of a material that absorbs ultraviolet light.
  • the sealing portion includes a first sealing portion including a fluorescent material, and a second sealing member formed outside the first sealing portion and made of the sealing material. It is preferable that it is comprised by the sealing part.
  • the spectrum in the blue region and the ultraviolet region is attenuated by the particles contained in the composite material constituting the second sealing part formed outside the first sealing part.
  • the average color rendering index (Ra) can be improved and the color temperature can be lowered.
  • a second semiconductor light emitting device includes a semiconductor chip that emits light, and a sealing portion that is formed in at least a partial region on a passage path through which the light passes. Includes a base material and a sealing material which also has a composite material force including particles made of an inorganic material having an effective particle diameter of one-fourth or less of the wavelength of light inside the base material dispersed in the base material, And a first sealing portion that covers the semiconductor chip and a second sealing portion formed outside the first sealing portion, with respect to the wavelength of light in the first sealing portion.
  • the first refractive index is larger than the second refractive index with respect to the wavelength of light in the second sealing portion.
  • the sealing portion is dispersed in the base material and has an effective wavelength of one quarter or less of the wavelength of light inside the base material. Since it contains particles made of an inorganic material having a particle size, the light resistance and heat resistance of the sealing portion are improved, and the transparency of the sealing portion is not impaired.
  • the first refractive index with respect to the wavelength of light in the first sealing portion is larger than the second refractive index with respect to the wavelength of light in the second sealing portion, the refractive index of the entire sealing portion is High in the inner area on the semiconductor chip side and lower in the outer area. Therefore, since the total reflection of the emitted light from the semiconductor chip is reduced due to the low refractive index in the outer region, the light extraction efficiency is improved.
  • the particles contained in the first sealing portion and the particles contained in the second sealing portion have different compositions.
  • the first sealing portion is more than the second sealing portion. It is possible to reliably increase the refractive index of the stopper.
  • the ratio of the particles in the first sealing portion to the composite material is preferably higher than the ratio of the particles in the second sealing portion to the composite material.
  • the refractive index of the first sealing portion can be surely made larger than that of the second sealing portion.
  • a third semiconductor light emitting device includes a semiconductor chip that emits light and a sealing portion that is formed in at least a partial region on a passage path through which the light passes. Includes a base material and a sealing material that also has a composite material force including particles made of an inorganic material that is dispersed in the base material and has an effective particle size of 1 ⁇ 4 or less of the wavelength of light inside the base material,
  • the refractive index with respect to the wavelength of light is set so that the inner region force near the semiconductor chip decreases toward the outer region.
  • the sealing portion is dispersed in the base material and has an effective wavelength of one quarter or less of the wavelength of light inside the base material. Since it contains particles made of an inorganic material having a particle size, the light resistance and heat resistance of the sealing portion are improved, and the sealing portion The transparency of is not impaired.
  • the refractive index with respect to the wavelength of light is set so that the inner region force close to the semiconductor chip also decreases toward the outer region, the refractive index of the entire sealing portion is high in the inner region on the semiconductor chip side and Lower in the outer area. Therefore, since the total reflection of the emitted light of the semiconductor chip force is reduced by the low refractive index in the outer region, the light extraction efficiency is improved.
  • the proportion of the particles in the composite material in the sealing portion is preferably higher in the inner region near the semiconductor chip than in the outer region.
  • the particles contained in the sealing portion may have different compositions of particles contained inside the sealing portion and particles contained outside the sealing portion. I like it.
  • the refraction of the inner region is larger than the outer region in the sealing part. The rate can be reliably increased.
  • a fourth semiconductor light emitting device includes a semiconductor chip that emits light and a sealing portion that is formed in at least a partial region on a passage path through which the light passes. And a sealing material having a composite material force including particles made of an inorganic material dispersed in the base material and having an effective particle size equal to or less than a quarter of the wavelength of light inside the base material, and a semiconductor chip And a second sealing portion formed outside the first sealing portion, and the second sealing portion is in the ultraviolet region as particles. It is characterized by containing particles made of a material that absorbs light.
  • the second sealing portion includes particles made of a material that absorbs ultraviolet light as particles, the semiconductor chip force emits light in the ultraviolet wavelength. When components are contained, unnecessary ultraviolet light emission can be suppressed. Further, ultraviolet light incident from the outside is also absorbed by the particles added to the second sealing portion, so that deterioration of the sealing material and the like can be prevented. [0049] In the fourth semiconductor light emitting device, it is preferable that the second sealing portion is formed so as to cover the upper side, the lower side and the side of the semiconductor chip.
  • a fifth semiconductor light emitting device includes a semiconductor chip that emits light having a wavelength from a blue region to an ultraviolet region, and a sealing portion that is formed in at least a partial region on a passage path through which the light passes. And a holding material for holding the semiconductor chip and a transparent paste material for fixing the semiconductor chip and the holding material.
  • the paste material is dispersed in the base material and the base material, and is formed inside the base material. This is a composite material force including particles made of an inorganic material having an effective particle size of one-fourth or less of the wavelength of light of the light, and the particles are made of a material that absorbs light in the ultraviolet region.
  • the transparent paste material that fixes the semiconductor chip and the holding material also has a composite material force including particles made of an inorganic material, and the particles are light in the ultraviolet region. Therefore, it is possible to suppress deterioration of the paste material due to ultraviolet light and decrease in light emission luminance due to discoloration.
  • the paste material since the paste material is transparent, light emitted from the semiconductor chip force can be output to the outside through the paste material, so that the light extraction efficiency is improved.
  • the paste material which also has a composite material strength, improves the heat dissipation to the heat holding material that also generates the semiconductor chip force.
  • the sealing portion preferably includes a fluorescent material.
  • the fluorescent material when the emitted light from the semiconductor chip is blue or ultraviolet light, the fluorescent material can be excited to obtain white light.
  • the particles are preferably made of an inorganic compound.
  • the base material is preferably made of a resin material.
  • the resin material is preferably an inorganic polymer material. If it does in this way, it will become easy to improve light resistance and heat resistance.
  • the resin material is preferably an organic polymer material. Like this Then, it becomes easy to improve moldability.
  • the base material is preferably made of a material that is transparent to visible light.
  • the composite material is preferably transparent to visible light.
  • the refractive index of the particles with respect to the wavelength of light is larger than the refractive index of the base material with respect to the wavelength of light and is equal to or less than the refractive index of the semiconductor chip. Preferably there is.
  • the refractive index of the sealing portion is higher than that in the case where particles are not added, so that the light extraction efficiency is further improved.
  • the proportion of the particles in the composite material is preferably 5% by volume or more and 60% by volume or less.
  • the proportion of the particles in the composite material is more preferably 10 volume% or more and 50 volume% or less, more preferably 20 volume% or less and 40 volume% or less.
  • the sealing section preferably has a hemispherical outer shape.
  • the sealing section has a quadrangular outer shape in cross section.
  • a sealing material having a composite material strength can be applied by a printing method or the like, and the formation becomes easy.
  • the top surface is a flat surface, I'm going to be.
  • the first sealing portion and the second sealing portion are:
  • the outer shape is preferably hemispherical.
  • the first sealing portion has a quadrangular outer shape in cross section.
  • the second sealing part preferably has a hemispherical outer shape.
  • the first sealing portion and the second sealing portion are:
  • the outer shape of the cross section is preferably a square shape.
  • the first sealing portion has a hemispherical outer shape
  • the outer shape of the cross section of the sealing part 2 is a square shape.
  • the first to third semiconductor light emitting devices further include a reflecting member that is provided in a region of the sealing portion on the side of the semiconductor chip and reflects light.
  • the sealing portion has a reverse taper shape whose cross-sectional shape is narrow downward and wide upward!
  • a semiconductor light emitting device such as a white LED having a long lifetime and high brightness can be realized.
  • FIG. 1 is a schematic cross-sectional view showing a semiconductor light emitting device according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view of a sealing portion in the semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 3 is a graph illustrating the effective particle diameter of fine particles added to the sealing portion in the semiconductor light emitting device according to the first embodiment of the present invention.
  • ⁇ 4] A graph showing the relationship between the refractive index of the sealing portion (composite material) and the addition amount (volume ratio) of fine particles in the semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a semiconductor light emitting device according to a second embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a semiconductor light emitting device according to a third embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a semiconductor light emitting device according to a fourth embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing a semiconductor light emitting device according to a fifth embodiment of the present invention.
  • (a) shows an LED chip in the semiconductor light emitting device according to the fifth embodiment of the present invention.
  • 6 is a graph showing the relationship between the refractive index of the sealing portion and the rate of change of the total luminous flux of emitted light for each of the constituent substrate materials by simulation.
  • (b) is a graph obtained by simulating the relationship between the refractive index of the sealing portion and the total luminous flux for each material of the substrate constituting the LED chip in the semiconductor light emitting device according to the fifth embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view showing a semiconductor light emitting device according to a sixth embodiment of the present invention.
  • FIG. 11 A schematic cross-sectional view showing a semiconductor light-emitting device according to a first modification of the sixth embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view showing a semiconductor light emitting device according to a second modification of the sixth embodiment of the present invention.
  • FIG. 13 A schematic cross-sectional view showing a semiconductor light emitting device according to a third modification of the sixth embodiment of the present invention.
  • FIG. 14 is a schematic cross-sectional view showing a semiconductor light emitting device according to a fourth modification of the sixth embodiment of the present invention.
  • FIG. 15 (a) and (b) show the refractive indices of the first sealing portion and the second sealing portion in the semiconductor light emitting device according to the fourth modification of the sixth embodiment of the present invention. It is the graph which calculated
  • FIG. 16 is a schematic cross-sectional view showing a semiconductor light emitting device according to a fifth modification of the sixth embodiment of the present invention.
  • FIG. 17 is a schematic cross-sectional view showing a semiconductor light emitting device according to a sixth modification of the sixth embodiment of the present invention.
  • FIG. 19 is a schematic cross-sectional view showing a semiconductor light emitting device according to a seventh embodiment of the present invention.
  • FIG. 20 is a schematic cross-sectional view showing a semiconductor light emitting device according to a first modification of the seventh embodiment of the present invention.
  • FIG. 21 is a schematic cross-sectional view showing a semiconductor light emitting device according to a second modification of the seventh embodiment of the present invention.
  • FIG. 22 is a schematic cross-sectional view showing a semiconductor light emitting device according to a third modification of the seventh embodiment of the present invention.
  • FIG. 23 is a schematic cross-sectional view showing a semiconductor light emitting device according to a fourth modification of the seventh embodiment of the present invention.
  • FIG. 24 is a schematic cross-sectional view showing a semiconductor light emitting device according to a fifth modification of the seventh embodiment of the present invention.
  • FIG. 25 is a schematic cross-sectional view showing a semiconductor light emitting device according to a sixth modification of the seventh embodiment of the present invention.
  • FIG. 26 is a schematic cross-sectional view showing a semiconductor light emitting device according to a seventh modification of the seventh embodiment of the present invention.
  • FIG. 27 is a schematic cross-sectional view showing a semiconductor light emitting device according to an eighth embodiment of the present invention.
  • FIG. 29 is a schematic cross-sectional view showing a semiconductor light emitting device according to a second modification of the eighth embodiment of the present invention.
  • FIG. 30 is a schematic cross-sectional view showing a semiconductor light emitting device according to a ninth embodiment of the present invention.
  • FIG. 31 is a schematic cross-sectional view showing a semiconductor light emitting device according to a first modification of the ninth embodiment of the present invention.
  • FIG. 32 is a schematic cross-sectional view showing a semiconductor light emitting device according to a second modification of the ninth embodiment of the present invention.
  • FIG. 33 is a schematic cross-sectional view showing a semiconductor light emitting device according to a tenth embodiment of the present invention.
  • FIG. 35 is a graph showing an emission spectrum in the semiconductor light emitting device according to the tenth embodiment of the present invention.
  • FIG. 36 A schematic cross-sectional view showing a semiconductor light emitting device according to a fourth modification of the tenth embodiment of the present invention.
  • FIG. 37 A schematic cross-sectional view showing a semiconductor light emitting device according to a fifth modification of the tenth embodiment of the present invention.
  • FIG. 42 is a graph showing an emission spectrum in the semiconductor light emitting device according to the twelfth embodiment of the present invention.
  • the emission spectrum of the semiconductor light emitting device according to the thirteenth embodiment of the present invention is It is a graph to show.
  • FIG. 44 is a graph showing an emission spectrum of a semiconductor light emitting device according to a modification of the thirteenth embodiment of the present invention.
  • FIG. 45 is a schematic cross-sectional view showing a conventional semiconductor light emitting device.
  • Semiconductor light emitting device A Semiconductor light emitting device B Semiconductor light emitting device C Semiconductor light emitting device D Semiconductor light emitting device E Semiconductor light emitting device F Semiconductor light emitting device A First bump B Second bump Semiconductor light emitting device A Semiconductor light emitting device B Semiconductor light emitting device C Semiconductor Light emitting device D Semiconductor light emitting device E Semiconductor light emitting device F Semiconductor light emitting device G Semiconductor light emitting device 50H Semiconductor light emitting device
  • FIG. 1 shows a schematic cross-sectional configuration of a white LED device which is a semiconductor light emitting device according to the first embodiment of the present invention.
  • the LED chip 12 is made of an Ag paste material on the bottom surface of the die pad portion provided in a cup shape at the upper end portion of the first lead frame 11A. Alternatively, it is fixed and held by a chip fixing paste material 13 such as an insulating paste material.
  • an LED chip made of, for example, a GaN-based compound semiconductor and emitting light having a wavelength from a blue region to an ultraviolet region is used.
  • a first electrode 14A and a second electrode 14B are formed on the upper surface of the LED chip 12.
  • the first electrode 14A is electrically connected to the first lead frame 11A via the first wire 15A
  • the second electrode 14B is connected to the first lead 15A via the second wire 15B. It is electrically connected to the second lead frame 11B paired with the frame 11A.
  • the LED chip 12 is sealed with a sealing portion 16 molded into a bullet shape so as to include the die pad portion of the first lead frame 11A and the upper end portion of the second lead frame 11B.
  • the sealing portion 16 includes a base material 16a, a sealing material 16d having a composite material force including fine particles 16b made of an inorganic material uniformly dispersed inside the base material 16a, and a fluorescent material 16c. Has been.
  • the light having a wavelength from the blue region to the ultraviolet region radiated from the LED chip 12 (hereinafter referred to as radiated light) excites the fluorescent material 16 c located on the radiation path of the sealing portion 16.
  • White light can be obtained from the white LED device 10 by mixing the excitation light and the emitted light or by mixing the excitation lights of a plurality of colors.
  • FIG. 2 shows an enlarged part of the sealing portion 16.
  • the fine particles 16b made of an inorganic material include primary fine particles 16bl and composite fine particles 16b2 formed by condensing the primary fine particles 16bl. Accordingly, the fine particles 16b being uniformly dispersed in the base material 16a means that the primary fine particles 16bl and the composite fine particles 16b2 are substantially uniformly dispersed regardless of the position.
  • the base material 16a for example, epoxy resin or acrylic that is transparent to visible light is used.
  • a resin material made of an organic polymer material such as a resin or a cycloolefin resin, or a resin material made of an inorganic polymer material such as a silicone resin can be used.
  • the effective particle diameter of the fine particles 16b is set to be equal to or less than a quarter of the wavelength of the emitted light from the LED chip 12, that is, the wavelength in the base material 16a.
  • the refractive index of the epoxy resin is about 1.5.
  • the wavelength of the emitted light in the base material 16a is 267 nm. Therefore, if the effective particle diameter of the fine particles 16b is set to 67 nm or less, it can be set to a quarter or less of the wavelength in the base material 16a.
  • the effective particle size of the fine particles 16b is not limited to one quarter or less of the wavelength in the base material 16a, and the effect of the present invention can be obtained if it is set to 1 nm or more and lOOnm or less.
  • the effective particle diameter of the fine particles 16b may be set to 1 nm or more and 50 nm or less in order to have more sufficient transparency in the emitted light having a wavelength from the blue region to the ultraviolet region.
  • the particle size of the fine particles is less than 1 nm, a material that exhibits a quantum effect may cause fluorescence, which may affect the characteristics.
  • the particle diameter and effective particle diameter of the fine particles 16b added to the base material 16a can be confirmed with an electron microscope or the like.
  • the particle diameter of the primary fine particles 16bl is more preferably 1 nm or more and lOOnm or less, and the substantial effective particle diameter is preferably 1 nm or more and 50 nm or less.
  • the value of the effective particle size of the primary fine particle 16bl is determined by the particle size measurement by the gas adsorption method in the powder, or the particle size measurement observed by an electron microscope in addition to the particle size distribution measurement in the solution. Can be obtained.
  • the average particle diameter of the primary fine particles of 16bl is 1 nm or more and 1Onm or less and most of them are uniformly dispersed without agglomeration, Rayleigh scattering is further reduced. It is preferable because it has sufficient transparency. This state can be confirmed by observing the composite material with a transmission electron microscope.
  • the effective particle diameter will be described with reference to FIG.
  • the horizontal axis represents the particle size of the fine particle 16b
  • the left vertical axis represents the frequency of the fine particle 16b with respect to the vertical particle size
  • the right vertical axis represents the cumulative frequency of the particle size.
  • the effective particle size is the total particle 16b Of these, in the particle size frequency distribution, the particle size at which the cumulative frequency is 50% is the central particle size (median diameter: d50), and the particle size in the range A where the cumulative frequency is 50% around the central particle size. Point to range B.
  • At least one inorganic material selected from the group consisting of inorganic oxides, metal nitrides, metal carbides, carbon compounds and sulfates may be used.
  • Inorganic oxides include titanium oxide (refractive index: 2.2 to 2.5), tantalum oxide (refractive index 2.0 to 2.3), and niobium oxide (refractive index 2.1 to 2.3). ), Acid tungsten (refractive index 2.2), zirconium oxide (refractive index 2.1), acid zinc (refractive index 1. 9 to 2.0), indium oxide (refractive index 2.0) , Tin oxide (refractive index 2.0), acid hafnium (refractive index 2.0), yttrium oxide (refractive index 1.9), acid silicon (refractive index 1.4 to 1.5) or acid ⁇ Aluminum (refractive index 1. 7 to 1.8) can be used. These composite inorganic oxides can also be used.
  • Examples of the metal nitride include silicon nitride (refractive index: 1.9 to 2.0).
  • metal carbides include silicon carbide (refractive index 2.6).
  • Examples of the carbon compound include inorganic materials having translucency such as diamond (refractive index 3.0) or diamond 'like' carbon (refractive index 3.0) although it is a simple substance of carbon.
  • examples of the sulfide include copper sulfide and tin sulfide.
  • the refractive index given to each inorganic material name indicates the refractive index of the emitted light from the LED chip 12, that is, the emitted light having a wavelength from the blue light source to the ultraviolet region.
  • the fine particles 16b include at least one acid selected from the group consisting of titanium oxide, tantalum oxide, zirconium oxide and zinc oxide as an inorganic compound for increasing the refractive index of the sealing material 16d.
  • Inorganic particles containing as a main component can be used. These inorganic particles have the advantage of being readily available due to the large number of commercially available products.
  • Photocatalytic action such as silicon oxide (SiO 2) or aluminum oxide (alumina: AI 2 O 3) is inactive on the amorphous or fine particle surface
  • the proportion of the fine particles 16b in the sealing material 16d made of the composite material is preferably 5% by volume or more and 60% by volume or less. If the proportion of the fine particles 16b is too high, the transparency of the sealing material 16d is lowered. Conversely, if the proportion of the fine particles 16b is too low, the effect of adding calories to the fine particles 16b is reduced.
  • FIG. 6 shows the result of calculating the change in the refractive index n of the composite material with respect to the proportion of the fine particles 16b in the sealing material 16d made of the composite material.
  • the calculation was performed using the following formula (1) (Maxwell-Garnett theory).
  • the refractive index of a composite material means an effective refractive index when the composite material is regarded as a medium having one refractive index.
  • n 2 n 2 X ⁇ n 2 + 2n 2 + 2P (n 2 — n 2 ) ⁇
  • n is the refractive index of the composite material
  • n is the refractive index of the fine particles 16b
  • nc 1 2 is the refractive index of the base material 16a
  • P is the proportion (volume ratio) of the fine particles 16b in the composite material It is.
  • Figure 4 shows that to make the composite material have a refractive index of 1.8 or more, the base material 16a has a refractive index of 1.4, 1.5, and 1.6, and occupies the composite material. It can be seen that the proportion of the fine particles 16b may be 46%, 37% and 28% by volume, respectively.
  • the refractive index value of a general optical resin is in the range of 1.4 to 1.7, setting the refractive index value to be more than 1.8 but not less than 1.8 is an optical resin. It is extremely difficult to realize by itself.
  • the proportion of the fine particles 16b in the composite material is preferably 5% by volume or more and 60% by volume or less. Moreover, 10 volume% or more and 50 volume% or less are more preferable. Further, when a general-purpose optical resin having a refractive index in the range of 1.4 to 1.55 is used as the base material 16a, it is more preferably about 20% by volume or less and 40% by volume or less.
  • the material of the fluorescent material 16c when the LED chip 12 outputs blue radiated light, a fluorescent material such as YAG: Ce that can obtain yellow light may be used. In addition, release from the purple region to the ultraviolet region. When outputting incident light, a plurality of types of fluorescent materials are used as the fluorescent material 16c. Specifically, YOS: Eu for red and ZnS: Cu, A1 or (Ba, Mg) Al 2 O for green:
  • the fine particles 16b made of an inorganic material are added so as to be uniformly dispersed in the sealing material 16d constituting the sealing portion 16. Compared to the case where 16b is not added, the light resistance and heat resistance of the sealing portion 16 are improved. In addition, since the effective particle size of the dispersed fine particles 16b is set to be equal to or less than a quarter of the wavelength of the radiated light emitted from the LED chip 12 (semiconductor chip), the transparency of the sealing portion 16 is impaired. Therefore, the light extraction efficiency is not impaired.
  • the refractive index with respect to the emitted light in the sealing portion 16 is higher than that in the case where the fine particles 16b are not added, the light extraction efficiency is further improved.
  • the chip fixing paste material 13 is made transparent, the chip fixing paste material 13 does not absorb the emitted light from the LED chip 12, so that the light extraction efficiency is improved.
  • the chip fixing paste material 13 having transparency is, for example, a transparent paste material mainly composed of epoxy resin or silicone resin, a low melting point glass material, or a compound having a siloxane bond, which is reacted with a catalyst. Fine particles that absorb ultraviolet light in a low-temperature-cured glass material obtained by drying a product obtained by drying the product of the second step, the step of hydrolyzing and dehydrating and condensing the reactant in the first step It can be obtained by adding to a composite material.
  • the chip fixing by adding the fine particles 16b to the chip fixing paste material 13, the chip fixing The heat dissipation property of the paste material 13 is improved, and since the fine particles 16b absorb ultraviolet light, the light resistance (UV resistance) of the chip fixing paste material 13 is also improved.
  • FIG. 5 shows a schematic cross-sectional configuration of a white LED device which is a semiconductor light emitting device according to the second embodiment of the present invention. Note that the same components as those shown in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
  • the sealing portion 26 directly covers the LED chip 12 held on the die pad portion of the first lead frame 11A. From the first sealing portion 26A, and the second sealing portion 26B that covers each upper end of the first lead frame 11A and the second lead frame 11B including the first sealing portion 26A in a bullet shape. Composed
  • the first sealing portion 26A is configured by a sealing material 16d made of a composite material including the fine particles 16b according to the first embodiment, and the second sealing portion 26B is mixed with the fluorescent material 16c. It is composed of a rubbed resin material 25. As the material of the resin material 25, the same material as that of the base material 16a according to the first embodiment may be used.
  • the first sealing portion 2 made of the sealing material 16d having a composite material strength is provided in a portion where the light density is relatively high near the LED chip 12.
  • a second sealing portion 26B made of a resin material 25 having a higher transparency than the sealing material 16d is provided in a portion where the light density is relatively low at a position away from the LED chip 12.
  • the fine particles 16b added to the first sealing portion 26A can absorb zinc light, zinc oxide, or acid.
  • cerium is used, deterioration of the base material 16a constituting the first sealing portion 26A due to ultraviolet light is suppressed. Can be controlled.
  • epoxy resin that is excellent in transparency but easily yellowed by ultraviolet light can be used as the base material 16a.
  • FIG. 6 shows a schematic cross-sectional configuration of a white LED device which is a semiconductor light emitting device according to the third embodiment of the present invention.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the LED chip 12 has at least a first wiring formed selectively on the substrate 31 and on the front surface and the back surface of the substrate 31. 3 Mounted on a printed wiring board having 2A and second wiring 32B.
  • the LED chip 12 is fixed on the first wiring 32A by a chip fixing paste material 13, and the first electrode 14A and the second electrode formed on the upper surface of the LED chip 12 are fixed.
  • the first electrode 14A is electrically connected to the first wiring 32A via the first wire 15A
  • the second electrode 14B is electrically connected to the second wire 15B via the second wire 15B. It is electrically connected to wiring 32B.
  • the sealing portion 16 includes a base material 16a, a sealing material 16d having a composite material force including fine particles 16b made of an inorganic material uniformly dispersed inside the base material 16a, and a fluorescent material 16c.
  • a base material 16a a sealing material 16d having a composite material force including fine particles 16b made of an inorganic material uniformly dispersed inside the base material 16a
  • a fluorescent material 16c has been.
  • the same material as that constituting the sealing part 16 of the first embodiment may be used.
  • the LED chip 12 electrically connected to the first wiring 32A and the second wiring 32B, respectively, is sealed around the printed wiring board by a sealing portion 16.
  • the first wiring 32A and the second wiring 32B are formed by forming a wiring having a copper (Cu) thin film force on the substrate 31 by, for example, a plating method, and nickel ( Ni) and gold (Au) can be formed sequentially.
  • Cu copper
  • Au gold
  • the semiconductor light emitting device 30 according to the third embodiment includes the composite material including the base material 16a and the fine particles 16b and the fluorescent material 16c after the LED chip 12 is mounted on the printed wiring board. This is realized by transfer molding a material obtained by mixing the above. Thereby, in the semiconductor light emitting device 30 according to the third embodiment, as in the semiconductor light emitting device 10 according to the first embodiment, the light resistance and heat resistance in the sealing portion 16 are improved, and When the light extraction efficiency is improved, the effect can be obtained.
  • a semiconductor light emitting device according to the fourth embodiment of the present invention will be described below with reference to the drawings.
  • FIG. 7 shows a schematic cross-sectional configuration of a white LED device which is a semiconductor light emitting device according to the fourth embodiment of the present invention.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the LED chip 12 has at least a first wiring formed selectively on the substrate 31 and on the front surface and the back surface of the substrate 31. 32. Mounted on a printed wiring board having 2A and second wiring 32B by a so-called flip-chip mounting (face-down) method in which the upper surface of LED chip 12 is opposed to the main surface of substrate 31.
  • the first electrode 14A and the second electrode 14B formed on the LED chip 12 and facing the substrate 31 the first electrode 14A intervenes with the first bump 41A.
  • the second wiring 14A is electrically connected to the first wiring 32A
  • the second electrode 14B is electrically connected to the second wiring 32B via the second bump 41B.
  • the LED chip 12 electrically connected to the first wiring 32A and the second wiring 32B, respectively, is sealed around the printed wiring board by a sealing portion 16.
  • the sealing portion 16 includes a base material 16a, a sealing material 16d having a composite material force including fine particles 16b made of an inorganic material uniformly dispersed in the base material 16a, and a fluorescent material 16c.
  • a base material 16a a sealing material 16d having a composite material force including fine particles 16b made of an inorganic material uniformly dispersed in the base material 16a
  • a fluorescent material 16c has been.
  • the same material as that constituting the sealing part 16 of the first embodiment may be used.
  • the constituent material of the first bump 41A and the second bump 41B for example, gold (Au) can be used!
  • the composite including the base material 16a and the fine particles 16b is formed. This is realized by transfer molding a material obtained by mixing the fluorescent material and the fluorescent material 16c.
  • the light resistance in the sealing portion 16 is the same as in the semiconductor light emitting devices 10 and 30 according to the first embodiment and the third embodiment.
  • the heat resistance can be improved and the light extraction efficiency can be improved.
  • the semiconductor light emitting device 40 according to the fourth embodiment uses bumps instead of wires for electrical connection between the LED chip 12 and the printed wiring board, the semiconductor according to the third embodiment Compared with the light emitting device 30, it can be made thinner.
  • FIG. 8 shows a schematic cross-sectional configuration of a white LED device which is a semiconductor light emitting device according to the fifth embodiment of the present invention.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the LED chip 12 is fixed on the bottom surface of the recess 51a in the case material 51 having the recess 51a.
  • the case material 51 is made of, for example, a heat-resistant resin material such as a liquid crystal polymer, and at least a first lead 52A and a second lead 52B are inserted. In view of reflection with respect to visible light, it is preferable to use a white heat-resistant grease material.
  • the first lead 52A and the second lead 52B are exposed from the bottom surface of the recess 51a of the case material 51, and the LED chip 12 is used for fixing the chip on the exposed region of the first lead 52A. It is fixed by a paste material 13.
  • the first electrode 14A is electrically connected to the first lead 52A through the first wire 15A.
  • the second electrode 14B is electrically connected to the second lead 52B with the second wire 15B interposed therebetween.
  • the LED fixed on the bottom surface of the recess 51a of the case material 51 The chip 12 is sealed by filling the recess 51 a of the case material 51 with the sealing portion 16.
  • the sealing portion 16 includes a base material 16a, a sealing material 16d having a composite material force including fine particles 16b made of an inorganic material uniformly dispersed inside the base material 16a, and a fluorescent material 16c.
  • a base material 16a a sealing material 16d having a composite material force including fine particles 16b made of an inorganic material uniformly dispersed inside the base material 16a
  • a fluorescent material 16c has been.
  • the same material as that constituting the sealing part 16 of the first embodiment may be used.
  • the outer portion of the case material 51 has a so-called gull wing (GW) type terminal shape).
  • GW gull wing
  • the outer shape of each of the leads 52A and 52B is not limited to the GW type, and may be molded into a J shape.
  • the semiconductor light emitting device 50 according to the fifth embodiment is the same as the semiconductor light emitting devices 10, 30, and 40 according to the first embodiment, the third embodiment, and the fourth embodiment.
  • the light resistance and heat resistance of the sealing portion 16 can be improved, and the light extraction efficiency can be improved.
  • the LED chip 12 may be directly covered with the sealing material 16d including the fine particles 16b made of an inorganic material, and the sealing material 16d may be covered with the base material 16a including the fluorescent material 16c.
  • a predetermined space may be provided in at least a part between the composite material and the semiconductor chip.
  • FIG. 9 (a) shows the refractive index of the sealing portion 16 and the total luminous flux of the emitted light obtained by simulation for each material of the substrate constituting the LED chip 12 in the semiconductor light emitting device 50 according to the fifth embodiment.
  • FIG. 9 (b) shows the relationship between the refractive index of the sealing portion 16 and the total luminous flux obtained by the same simulation.
  • the substrate materials used in the simulation are as shown in [Table 1].
  • the refractive index for each substrate material shown in [Table 1] is a typical value for each substrate in the visible light region.
  • the refractive index of the sealing portion 16 is preferably 1.2 or more and 2.5 or less.
  • the substrate material is made of zinc oxide (ZnO), gallium nitride (GaN), or silicon carbide (SiC) having a refractive index greater than 2.0
  • the refractive index of the sealing portion 16 is 1 It is preferably 4 or more and 2.2 or less, more preferably 1. 6 or more and 2.0 or less.
  • FIG. 10 shows a schematic cross-sectional configuration of a white LED device which is a semiconductor light emitting device according to a sixth embodiment of the present invention.
  • the same components as those shown in FIGS. 1 and 6 are denoted by the same reference numerals, and the description thereof is omitted.
  • the LED chip 12 is selected as the substrate 31 and the front and back surfaces of the substrate 31, as in the third embodiment.
  • a so-called junction up (face-up) in which the back surface of the LED chip 12 is opposed to the main surface of the substrate 31 on a printed wiring board having at least a first wiring 32A and a second wiring 32B that are formed ) Implemented 1.
  • the sealing portion 26 includes a first sealing portion 26A that directly and semispherically covers the semiconductor light emitting device chip 12, and a second sealing portion 26A that directly and semispherically covers the first sealing portion 26A. Consists of sealing part 26B It is made.
  • the first sealing portion 26A includes a base material 16a and a sealing material 16d made of a composite material including the first fine particles 16b made of an inorganic material uniformly dispersed inside the base material 16a. And fluorescent material 16c.
  • the second sealing portion 26B includes a base material 16a and a sealing material 16d that also has a composite material force including the second fine particles 17b made of an inorganic material uniformly dispersed inside the base material 16a. And fluorescent material 16c.
  • the material constituting the first sealing portion 26A and the second sealing portion 26B may be the same material as the material constituting the sealing portion 16 of the first embodiment.
  • a material in which the refractive index of the first fine particles 16b is larger than the refractive index of the second fine particles 17b is selected.
  • the LED chip 12 also has a gallium nitride (GaN) semiconductor power, including a crystal growth substrate (epitaxial substrate), as shown in [Table 1], the refractive index of GaN is Even if the refractive index of the sealing portion is set to about 1.8, which is the highest extraction efficiency by adding fine particles, the refractive index of the sealing portion and the refractive index of air The difference is large.
  • GaN gallium nitride
  • the refractive index value of the first sealing portion 26A close to the LED chip 12 is set to be larger than the refractive index value of the second sealing portion 26B far from the LED chip 12. It is getting bigger.
  • an inorganic material having a refractive index smaller than the refractive index of the first fine particles 16b added to the first sealing portion 26A is used as the second fine particles 17b added to the second sealing portion 26B. Used.
  • the outer shapes of the first sealing portion 26A and the second sealing portion 26B are both hemispherical by, for example, a potting method, total reflection of emitted light is prevented. Further reduced.
  • the fluorescent material 16 is included in both the first sealing portion 26A and the second sealing portion 26B. Add the c! /, but the fluorescent material 16c !! You can add only one of them! ,.
  • FIG. 11 shows a white semiconductor light emitting device according to the first modification of the sixth embodiment of the present invention.
  • a schematic cross-sectional configuration of an LED device is shown.
  • the outer shape of the cross section of the first sealing portion 26A that directly covers the LED chip 12 is a quadrangular shape.
  • the first sealing portion 26A can use a printing method as a method of forming the sealing material 16d, so that productivity is improved.
  • FIG. 12 is a white view showing a semiconductor light emitting device according to a second modification of the sixth embodiment of the present invention.
  • a schematic cross-sectional configuration of an LED device is shown.
  • the semiconductor light emitting device 30C includes a first sealing portion 26A that directly covers the LED chip 12 and a second sealing portion that covers the first sealing portion. Both of the outer shapes of the cross-sections of the sealing portion 26B are rectangular.
  • the first sealing portion 26A can use a printing method as a method of forming the sealing material 16d, and the second sealing portion 26B can be formed by a transfer molding method. Productivity is improved. In addition, since the upper surface of the sealing portion 26 is flat, it can be easily handled as a device.
  • FIG. 13 shows a white semiconductor light-emitting device according to a third modification of the sixth embodiment of the present invention.
  • a schematic cross-sectional configuration of an LED device is shown.
  • the outer shape of the first sealing portion 26A that directly covers the LED chip 12 is hemispherical, and the first sealing portion
  • the outer shape of the cross section of the second sealing portion 26B covering the stopper portion 26A is a quadrangular shape.
  • FIG. 14 is a white view showing a semiconductor light emitting device according to a fourth modification of the sixth embodiment of the present invention. A schematic cross-sectional configuration of an LED device is shown.
  • the LED chip 12 is placed on the bottom surface of the recess 51a in the case material 51 having the recess 51a, as in the fifth embodiment. It is fixed by the face-up method.
  • the cross-sectional shapes of the first sealing portion 26A that directly covers the LED chip 12 and the second sealing portion 26B that covers the first sealing portion 26A are both quadrangular.
  • the printing method is used for forming the first sealing portion 26A and printing cannot be performed directly on the bottom surface of the recess 51a of the case material 51, for example, a force is exerted on the submount material.
  • the submount material may be mounted on the bottom surface of the case material 51.
  • FIGS. 15 (a) and 15 (b) show the first sealing part 26A and the second sealing part 26B in the semiconductor light emitting device 50A according to the fourth modification of the sixth embodiment.
  • the relationship between each refractive index and light extraction efficiency is shown by simulation.
  • FIG. 15A shows the case where GaN is used as the substrate material constituting the LED chip 12
  • FIG. 15B shows the case where sapphire is used as the substrate material.
  • the thickness of the first sealing portion 26A is 500 m
  • the thickness of the second sealing portion 26B is 200 ⁇ m!
  • FIG. 16 shows a schematic cross-sectional structure of a white LED device which is a semiconductor light emitting device according to a fifth modification of the sixth embodiment of the present invention.
  • the LED chip 12 is fixed on the bottom surface of the recess 51a in the case material 51 having the recess 51a.
  • the outer shape of the first sealing portion 26A that directly covers the LED chip 12 is hemispherical, and the outer shape of the cross section of the second sealing portion 26B that covers the first sealing portion 26A Is a square shape.
  • FIG. 17 shows a schematic cross-sectional structure of a white LED device which is a semiconductor light emitting device according to a sixth modification of the sixth embodiment of the present invention.
  • the fine particles 16d attached to the sealing material 16d of the second sealing portion 26B are transferred to the first sealing portion.
  • the composition is the same as that of the fine particles 16d added to the sealing material 16d of 26A, and the ratio of the fine particles 16b in the first sealing portion 26A to the sealing material 16d is determined as the fine particles in the second sealing portion 26B. It is higher than the ratio of 16b to the sealing material 16d. That is, the additive concentration of the fine particles 16b in the second sealing portion 26B is made smaller than the additive concentration of the fine particles 16b in the first sealing portion 26A.
  • a concentration gradient may be provided, or the concentration may be changed stepwise.
  • the refractive index power of the second sealing portion 26B is smaller than the refractive index of the first sealing portion 26A.
  • the inorganic particles having the same composition are used for the fine particles 16b to be added to the first sealing portion 26A and the fine particles 16b to be added to the second sealing portion 26B, and only the addition concentration is used.
  • the refractive index of the second sealing portion 26B is smaller than the refractive index of the first sealing portion 26A, it is added to the first sealing portion 26A.
  • the composition and concentration of the fine particles 16b and the fine particles 16b added to the second sealing portion 26B may be changed.
  • FIG. 17 shows the case where the outer shape of the first sealing portion 26A that directly covers the LED chip 12 is a hemispherical shape, but it has been described in the fourth modification of the sixth embodiment.
  • the outer shape of the cross section of the first sealing portion 26A may be a square shape.
  • the sealing material 16d of the second sealing portion 26B similarly to the present modification, it is added to the sealing material 16d of the second sealing portion 26B.
  • the fine particles 17d are replaced with the fine particles 16d to have the same composition as the fine particles 16d added to the sealing material 16d of the first sealing portion 26A, and to the sealing material 16d of the fine particles 16b in the first sealing portion 26A.
  • the proportion of the fine particles 16b in the second sealing portion 26B may be higher than the proportion of the sealing material 16d.
  • the semiconductor light emitting device 50D according to the seventh modification shown in FIG. 18 uses, for example, a phosphorous gallium (GaP) based semiconductor capable of emitting green light as the LED chip 12, and in this case, It is not necessary to add the fluorescent material 16c to the sealing portion 26.
  • GaP phosphorous gallium
  • First electrode 14B is formed to face the lower surface and the upper surface of the LED chip 12, respectively.
  • A is electrically connected to the first lead 52A via a conductive paste fixing paste material 13 such as an Ag paste material, and the second electrode 14B is connected to the second lead 15A via a wire 15B. Electrically connected to lead 52B.
  • the sealing portion 26 has the two-layer structure of the first sealing portion 26A and the second sealing portion 16B, but is not limited to the two-layer structure.
  • a laminated structure of three or more layers may be used.
  • FIG. 19 is a schematic diagram of a white LED device which is a semiconductor light emitting device according to a seventh embodiment of the present invention. A schematic cross-sectional configuration is shown.
  • the same components as those shown in FIGS. 1 and 7 are denoted by the same reference numerals, and the description thereof is omitted.
  • the LED chip 12 is selected as the substrate 31 and the front and back surfaces of the substrate 31, as in the fourth embodiment.
  • Flip chip mounting is performed on the printed wiring board having at least the first wiring 32A and the second wiring 32B that are formed in a manner that the upper surface of the LED chip 12 faces the main surface of the board 31. .
  • the sealing portion 26 includes a first sealing portion 26A that directly and semispherically covers the semiconductor light emitting device chip 12, and a second sealing portion 26A that directly and semispherically covers the first sealing portion 26A. And a sealing portion 26B.
  • the first sealing portion 26A includes a base material 16a and a sealing material 16d made of a composite material including first fine particles 16b made of an inorganic material uniformly dispersed inside the base material 16a. And fluorescent material 16c.
  • the second sealing portion 26B includes a base material 16a and a sealing material 16d that also has a composite material force including second fine particles 17b made of an inorganic material uniformly dispersed inside the base material 16a. And fluorescent material 16c.
  • the material constituting the first sealing portion 26A and the second sealing portion 26B may be the same material as the material constituting the sealing portion 16 of the first embodiment.
  • the refractive index of the first fine particles 16b is larger than the refractive index of the second fine particles 17b, and it is necessary to select a V ⁇ material.
  • the refractive index value of the first sealing portion 26A on the inner side near the LED chip 12 is larger on the outer side far from the LED chip 12. This is larger than the refractive index value of the second sealing portion 26B.
  • the outer shape of the first sealing portion 26A and the second sealing portion 26B Since both are made hemispherical by, for example, a potting method, total reflection of emitted light is further reduced.
  • both the first sealing portion 26A and the second sealing portion 26B have a force that adds the fluorescent material 16c. Only one of them may be added.
  • FIG. 20 shows a white semiconductor light emitting device according to a first modification of the seventh embodiment of the present invention.
  • a schematic cross-sectional configuration of an LED device is shown.
  • the outer shape of the cross section of the first sealing portion 26A that directly covers the LED chip 12 is a quadrangular shape.
  • the first sealing portion 26A can use a printing method as a method of forming the sealing material 16d, so that productivity is improved.
  • FIG. 21 shows a white semiconductor light emitting device according to a second modification of the seventh embodiment of the present invention.
  • a schematic cross-sectional configuration of an LED device is shown.
  • the semiconductor light emitting device 40C according to the second modified example includes a first sealing portion 26A that directly covers the LED chip 12, and a second sealing portion that covers the first sealing portion. Both of the outer shapes of the cross-sections of the sealing portion 26B are rectangular.
  • the first sealing portion 26A can use a printing method as a method of forming the sealing material 16d, and the second sealing portion 26B can be formed by a transfer molding method. Productivity is improved. In addition, since the upper surface of the sealing portion 26 is flat, it can be easily handled as a device.
  • FIG. 22 shows a white semiconductor light emitting device according to a third modification of the seventh embodiment of the present invention.
  • a schematic cross-sectional configuration of an LED device is shown.
  • the outer shape of the first sealing portion 26A that directly covers the LED chip 12 is hemispherical, and the first sealing portion
  • the outer shape of the cross section of the second sealing portion 26B covering the stopper portion 26A is a quadrangular shape.
  • FIG. 23 shows a white semiconductor light emitting device according to a fourth modification of the seventh embodiment of the present invention.
  • a schematic cross-sectional configuration of an LED device is shown.
  • the LED chip 12 is flip-chip mounted on the bottom surface of the recess 51a in the case material 51 having the recess 51a.
  • the cross-sectional shapes of the first sealing portion 26A that directly covers the LED chip 12 and the second sealing portion that covers the first sealing portion 26A are both quadrangular.
  • the inner wall surface of 51 functions as a reflecting surface.
  • the sealing portion 26 is formed with the first fine particles 16b and the first fine particles 16b.
  • the light extraction efficiency can be improved also by the case material 51 and the shape of the case material 51 that can be obtained only by providing a difference in refractive index due to the second fine particles 17b.
  • FIG. 24 is a white view showing a semiconductor light emitting device according to a fifth modification of the seventh embodiment of the present invention.
  • a schematic cross-sectional configuration of an LED device is shown.
  • the LED chip 12 has the submount material 53 interposed on the bottom surface of the recess 51a in the case material 51 having the recess 51a. Flip chip mounted.
  • the LED chip 12 is mounted on a flip chip on a submount material 53 having, for example, ceramic power, on which at least a first submount electrode 54A and a second submount electrode 54 are formed on the upper surface.
  • the first sealing portion 26A is formed so as to cover the LED chip 12 by a printing method.
  • the submount material 53 having the LED chip 12 sealed in the first sealing portion 26A is mounted on the bottom surface of the case material 51, and the first submount electrode 54A formed on the top surface of the submount material 53.
  • the pole 54A is electrically connected to the first lead 52A through the first wire 15A
  • the second submount electrode 54B is electrically connected to the second lead 52B through the second wire 15B. It is connected.
  • a Zener diode may be used for the submount material 53.
  • FIG. 24 shows a case where the outer shape of the cross section of the first sealing portion 26A is a square shape.
  • the outer shape of the first sealing portion 26A may be hemispherical.
  • FIG. 25 shows a white light emitting semiconductor light emitting device according to a sixth modification of the seventh embodiment of the present invention.
  • a schematic cross-sectional configuration of an LED device is shown.
  • the LED chip 12 is flip-chip mounted and fixed on the bottom surface of the recess 51a in the case material 51 having the recess 51a. .
  • the outer shape of the first sealing portion 26A that directly covers the LED chip 12 is hemispherical, and the outer shape of the cross section of the second sealing portion 26B that covers the first sealing portion 26A Is a square shape.
  • FIG. 26 shows a schematic cross-sectional configuration of a white LED device which is a semiconductor light emitting device according to a seventh modification of the seventh embodiment of the present invention.
  • the semiconductor light emitting device 60C according to the seventh modification includes the fine particles 16b attached to the sealing material 16d of the second sealing portion 26B as the first sealing portion.
  • the composition is the same as that of the fine particles 16b added to the sealing material 16d of 26A, and the ratio of the fine particles 16b in the first sealing portion 26A to the sealing material 16d is determined by the ratio of the fine particles in the second sealing portion 26B. It is higher than the ratio of 16b to the sealing material 16d. That is, the additive concentration of the fine particles 16b in the second sealing portion 26B is made smaller than the additive concentration of the fine particles 16b in the first sealing portion 26A.
  • a concentration gradient may be provided, or the concentration may be changed stepwise.
  • the refractive index power of the second sealing portion 26B is larger than the refractive index of the first sealing portion 26A. Get smaller.
  • an inorganic material having the same composition is used for the fine particles 16b added to the first sealing portion 26A and the fine particles 16b added to the second sealing portion 26B.
  • the fine particles added to the first sealing portion 26A The composition and concentration of the fine particles 16b added to 16b and the second sealing portion 26B may be changed.
  • FIG. 26 shows a case where the outer shape of the first sealing portion 26A that directly covers the LED chip 12 is a hemispherical shape, but it has been described in the fourth modification of the seventh embodiment.
  • the outer shape of the cross section of the first sealing portion 26A may be a square shape.
  • the sealing material 16d of the second sealing portion 26B is used.
  • the added fine particles 17b are replaced with the fine particles 16b to have the same composition as the fine particles 16b added to the sealing material 16d of the first sealing portion 26A, and the fine particles 16b are sealed in the first sealing portion 26A.
  • the proportion of the stopping material 16d may be higher than the proportion of the fine particles 16b in the second sealing portion 26B in the sealing material 16d.
  • the fluorescent material 16c is added to the first sealing portion 26A and the second sealing portion 26B, and the deviation is added. But either one or the other! /.
  • the sealing portion 26 has a two-layer structure of the first sealing portion 26A and the second sealing portion 16B, but is not limited to a two-layer structure.
  • a laminated structure of three or more layers may be used.
  • FIG. 27 shows a schematic cross-sectional configuration of a white LED device which is a semiconductor light emitting device according to an eighth embodiment of the present invention.
  • the same components as those shown in FIGS. 1 and 6 are denoted by the same reference numerals, and the description thereof is omitted.
  • the semiconductor light emitting device 30E is the same as that in the third embodiment.
  • the LED chip 12 is mounted on a printed wiring board having a substrate 31 and at least a first wiring 32A and a second wiring 32B selectively formed on the front surface and the back surface of the substrate 31.
  • a so-called junction up (face-up) mounting in which the back surface of the chip 12 is opposed to the main surface of the substrate 31 is 1.
  • the sealing portion 16 includes a base material 16a, a sealing material 16d having a composite material force including fine particles 16b made of an inorganic material uniformly dispersed in the base material 16a, and a fluorescent material 16c.
  • the material constituting the sealing part 16 may be the same material as the material constituting the sealing part 16 of the first embodiment.
  • the proportion of the fine particles 16b in the composite material is set so that the inner region near the LED chip 12 is higher than the outer region.
  • the refractive index of GaN is Even if the refractive index of the sealing portion is set to about 1.8, which is the highest extraction efficiency by adding fine particles, the refractive index of the sealing portion and the refractive index of air The difference is large.
  • the refractive index value of the inner region near the LED chip 12 in the sealing portion 16 is set larger than the refractive index value of the outer region. Specifically, by increasing the concentration of the fine particles 16b added to the sealing portion 16 in the inner region and decreasing the concentration of the fine particles 16b toward the outer side, the refractive index of the outer region of the sealing portion 16 can be increased. It is smaller than the area. At this time, the concentration of the fine particles 16b may be gradually lowered from the inside toward the outside, or may be lowered stepwise.
  • the refractive index of the outer region of the sealing part 16 in contact with air is smaller than the refractive index of the inner region in contact with the LED chip 12, so that the outer region of the sealing part 16
  • the difference between the refractive index and the refractive index of air is reduced.
  • total reflection of the emitted light at the interface of the sealing part 16 with the air can be reduced, so that the light resistance and heat resistance of the sealing part 16 are improved and the light extraction efficiency is further improved. can do.
  • the outer shape of the sealing portion 16 is made hemispherical by, for example, a potting method, the total reflection of the emitted light is further reduced.
  • the liquid component before curing is reduced.
  • potting may be performed by making the addition ratio of the fine particles 16b in the composite material for the outer region smaller than the addition ratio of the composite material for the inner region.
  • the second and subsequent fine particles 16b other fine particles made of an inorganic material having a refractive index smaller than that of the first fine particles 16b may be selected.
  • the configuration of the present embodiment can be formed by forming the sealing portion 16 that also has a composite material force by being cured.
  • the force including the fluorescent material 16c in the sealing portion 16 As described above, in the case of a green LED device using a GaP-based semiconductor for the LED chip 12, the sealing is performed.
  • the stop 16 need not include the fluorescent material 16c.
  • FIG. 28 shows a schematic cross-sectional structure of a white LED device which is a semiconductor light emitting device according to a first modification of the eighth embodiment of the present invention.
  • the outer shape of the cross section of the sealing portion 16 in which the concentration of added calories of the fine particles 16b is gradually decreased outward is a square shape.
  • the transfer molding method in which the additive calorie concentration of the fine particles 16b is smaller outside the sealing portion 16 than inside the sealing portion 16 is performed. Can be used.
  • FIG. 29 shows a schematic cross-sectional structure of a white LED device which is a semiconductor light emitting device according to a second modification of the eighth embodiment of the present invention.
  • the semiconductor light emitting device 50E according to the second modified example is similar to the fifth embodiment, in the case material 51 having the LED chip 12 force recess 5 la by the face-up method. It is fixed on the bottom surface of the recess 51a.
  • the cross-sectional shape of the sealing portion 16A of the LED chip 12 is a quadrangular shape.
  • the inner wall of the case material 51 is further metallized by vapor deposition of metal, for example, A1, etc.
  • the inner wall surface of the case material 51 functions as a reflecting surface.
  • the concentration of the fine particles 16b can be reduced.
  • sealing portion 16 according to this modification can be formed by a plurality of potting methods.
  • FIG. 30 shows a schematic cross-sectional structure of a white LED device which is a semiconductor light emitting device according to the ninth embodiment of the present invention.
  • the same components as those shown in FIGS. 1 and 7 are denoted by the same reference numerals, and the description thereof is omitted.
  • the LED chip 12 is selected as the substrate 31 and the front and back surfaces of the substrate 31, as in the fourth embodiment.
  • Flip chip mounting is performed on the printed wiring board having at least the first wiring 32A and the second wiring 32B formed by making the upper surface of the LED chip 12 face the main surface of the board 31. .
  • the sealing portion 16 includes a base material 16a, a sealing material 16d having a composite material force including fine particles 16b made of an inorganic material uniformly dispersed in the base material 16a, and a fluorescent material 16c.
  • the material constituting the sealing part 16 may be the same material as that constituting the sealing part 16 of the first embodiment. However, in the ninth embodiment, the proportion of the fine particles 16b in the composite material is set so that the inner region near the LED chip 12 is higher than the outer region.
  • the refractive index value of the inner region of the sealing portion 16 near the LED chip 12 is increased in the outer region. It becomes larger than the value of the refractive index.
  • the refractive index of the outer region of the sealing part 16 in contact with air is smaller than the refractive index of the inner region in contact with the LED chip 12, so that the refractive index of the outer region of the sealing part 16 And the refractive index of air becomes smaller.
  • the concentration of the fine particles 16b may be gradually decreased from the inside toward the outside, or may be gradually decreased.
  • the outer shape of the sealing portion 16 is made hemispherical by, for example, a potting method, the total reflection of the emitted light is further reduced.
  • potting may be performed by making the addition ratio of the fine particles 16b in the composite material for the outer region smaller than the addition ratio of the composite material for the inner region.
  • the second and subsequent fine particles 16b other fine particles made of an inorganic material having a refractive index smaller than that of the first fine particles 16b may be selected.
  • the configuration of the present embodiment can be formed by forming the sealing portion 16 that also has a composite material force by being cured.
  • the outer shape of the sealing portion 16 is hemispherical, for example, by a potting method, total reflection of emitted light is further reduced.
  • the force including the fluorescent material 16c in the sealing portion 16 As described above, in the case of a green LED device using a GaP-based semiconductor for the LED chip 12 or the like, the sealing portion It is not necessary for 16 to include fluorescent material 16c.
  • FIG. 31 shows a schematic cross-sectional configuration of a white LED device which is a semiconductor light emitting device according to a first modification of the ninth embodiment of the present invention.
  • the semiconductor light emitting device 40F according to the first modified example has a quadrangular outer shape of the cross section of the sealing portion 16 in which the concentration of added particles of the fine particles 16b is gradually decreased outward. .
  • the transfer molding method in which the added calorie concentration of the fine particles 16b is smaller outside the sealing portion 16 than inside the sealing portion 16 is performed. Can be used.
  • FIG. 32 shows a schematic cross-sectional structure of a white LED device which is a semiconductor light emitting device according to a second modification of the ninth embodiment of the present invention.
  • the LED chip 12 is flip-mounted on the bottom surface of the recess 51a in the case material 51 having the recess 51a.
  • the cross-sectional shape of the sealing portion 16A of the LED chip 12 is a quadrangular shape.
  • sealing portion 16 according to the present modification can be formed by a plurality of potting methods.
  • the LED chip 12 is mounted on the bottom surface of the recessed portion 51a in the case material 51 having the recessed portion 51a.
  • a configuration in which flip-chip mounting is performed with the material 53 interposed may be applied.
  • FIG. 33 shows a schematic cross-sectional structure of a white LED device which is a semiconductor light emitting device according to the tenth embodiment of the present invention.
  • the same components as those shown in FIGS. 6 and 10 are denoted by the same reference numerals, and the description thereof is omitted.
  • the LED chip 12 is selectively applied to the substrate 31 and the front and back surfaces of the substrate 31.
  • the so-called junction up (face up) mounting in which the back surface of the LED chip 12 faces the main surface of the substrate 31 is mounted.
  • the sealing portion 26 includes a first sealing portion 26A that directly and semispherically covers the semiconductor light emitting device chip 12, and a second sealing portion 26A that directly and semispherically covers the first sealing portion 26A. And a sealing portion 26B.
  • the first sealing portion 26A is made of a resin material mixed with the fluorescent material 16c, and the second sealing portion 26B is uniformly dispersed inside the base material 16a and the base material 16a.
  • the sealing material 16d is made of a composite material containing the particles 16b.
  • FIG. 34 shows a case where zirconium oxide (ZrO) having a diameter of 3 nm to 10 nm is used as the fine particles 16b to be added to the second sealing portion 26B, and the ratio of the fine particles 16b to the base material 16a is 30 volumes. %
  • the semiconductor light emitting device 30G According to the semiconductor light emitting device 30G according to the tenth embodiment, the same effect as that of the first embodiment can be obtained, and the above-described filter effect can be used to cause a red region scan as shown in FIG.
  • the petrol component increases relatively. That is, for the radiated light from the LED chip 12 and the synthesized light excited by the fluorescent material 16c, the spectral component in the blue region to the ultraviolet region is attenuated by the scattering of the fine particles 16b, and the spectral component in the red region is relative. Increase.
  • the semiconductor light emitting device used for the measurement has a configuration in which the LED chip 12 is mounted on the case material 51 shown in FIG.
  • the emitted light of the LED chip 12 is blue light having a peak wavelength of 460 nm
  • the excitation light of the fluorescent material 16c is yellow light having a peak wavelength of 575 nm.
  • the fluorescent material 16c is prepared by mixing an orange fluorescent material having a peak wavelength of 590 nm and a green fluorescent material having a peak wavelength of 535 nm.
  • the average color rendering index Ra increases and the color temperature decreases.
  • a high average color rendering index Ra indicates that the color reproducibility of an object illuminated under a certain light source is excellent, and a low color temperature indicates that the light source is warm. Show.
  • the comparative example shows the case where the second sealing portion 26B is not provided
  • the present invention 1 is the case where the thickness of the second sealing portion 26B including the fine particles 16b is 0.2 mm.
  • the present invention 2 shows the case where the thickness of the second sealing portion 26B is 1 mm!
  • a fluorescent material capable of obtaining green light or yellow light is added to both the first sealing portion 26A and the second sealing portion 26B. Also good. Even in this case, the fine particle 16b added to the second sealing portion 26B attenuates the spectral component in the ultraviolet region of the synthesized light, and the spectral component in the red region relatively increases.
  • a first fluorescent material capable of obtaining green light or yellow light is added to the first sealing portion 26A, and the fine particles 16b and red light are added to the second sealing portion 26B.
  • the obtained second fluorescent material may be added.
  • the spectral component in the red region is further increased. This further increases the average color rendering index and further decreases the color temperature.
  • a first fluorescent material capable of obtaining red light is added to the first sealing portion 26A.
  • the fine particles 16b and a second fluorescent material capable of obtaining green light or yellow light may be added to the second sealing portion 26B.
  • the first fluorescent material for red does not absorb the green light or yellow light that is the light emitted from the second fluorescent material, so the conversion efficiency of the emitted light from the LED chip 12 is improved.
  • the refractive index of the first sealing portion 26A is made lower than the refractive index of the LED chip, and the second sealing is performed. It is preferable that the refractive index of the stop portion 26B be lower than the refractive index of the first sealing portion 26A. This improves the light extraction efficiency.
  • the wavelength of the emitted light of the LED chip 12 is not in the blue region, the blue and purple regions of 410 nm or less to the ultraviolet region of 380 nm or less are used for the fluorescent materials for green and red or yellow.
  • the above fluorescent material is added to at least the first sealing portion 26A, white synthetic light can be obtained.
  • the outer shape of the semiconductor light emitting device 30G and the mounting method of the LED chip 12 are not limited to those in FIG. 33, and the second to sixth modifications, the first to fifth modifications of the sixth embodiment, or the seventh embodiment. It is good also as a structure similar to the 1st-6th modification of embodiment.
  • FIG. 36 shows a schematic cross-sectional configuration of a white LED device which is a semiconductor light emitting device according to a fourth modification of the tenth embodiment of the present invention.
  • the same components as those shown in FIGS. 8 and 14 are denoted by the same reference numerals, and the description thereof is omitted.
  • the LED chip 12 is placed on the bottom surface of the recess 51a in the case material 51 having the recess 51a, as in the fifth embodiment. It is fixed by the face-up method.
  • the first sealing portion 26A is made of a resin material mixed with the fluorescent material 16c, and the second sealing portion 26B is uniformly dispersed inside the base material 16a and the base material 16a.
  • the sealing material 16d is made of a composite material including fine particles 16b made of an inorganic material.
  • the first sealing portion 26A is formed so as to be in contact with and cover the LED chip 12, while the second sealing portion 26B is the upper end surface of the case 51. Is provided in parallel with the bottom surface of the case 51, so that a gap 51b is formed between the first sealing portion 26A and the first sealing portion 26A. It is made.
  • a first lens 70 that covers the first sealing portion 26A is formed in the gap portion 51b, and the second sealing portion 26B is provided on the second sealing portion 26B.
  • a covering second lens portion 71 is formed.
  • the first lens 70 and the second lens 71 are made of, for example, silicone resin, epoxy resin, olefin resin, acrylic resin, urea resin, imide resin, polycarbonate resin, or glass. be able to. Note that the second lens 71 is not necessarily provided.
  • a potting method can be used as a method of forming the lenses 70 and 71 according to this modification. Further, the second sealing portion 26B can be formed by forming it in a force-feeding plate shape and fixing it to the upper end surface of the case 51.
  • FIG. 37 shows a schematic cross-sectional configuration of a white LED device which is a semiconductor light emitting device according to a fifth modification of the tenth embodiment of the present invention.
  • the same components as those shown in FIGS. 8 and 14 are denoted by the same reference numerals, and the description thereof is omitted.
  • the LED chip 12 is attached to the case material 51 having the recess 51a. It is fixed on the bottom surface of the recess 51a by the face-up method.
  • the first sealing portion 26A is made of a resin material mixed with the fluorescent material 16c, and the second sealing portion 26B is uniformly dispersed inside the base material 16a and the base material 16a.
  • the sealing material 16d is made of a composite material including fine particles 16b made of an inorganic material.
  • the first sealing portion 26A is formed so as to be in contact with and cover the LED chip 12, while the second sealing portion 26B is formed by the recess 51a of the case 51. 5 lb is formed in the upper part of the recess 5 la.
  • a lens 70 is formed on the upper end surface of the case 51 so as to cover the gap 51b.
  • the lens 70 is not necessarily provided.
  • the lens 70 according to the present modification can be formed by preliminarily molding using a force mold and the like and fixing it to the upper end surface of the case 51.
  • FIG. 38 shows a schematic cross-sectional structure of a white LED device which is a semiconductor light emitting device according to a sixth modification of the tenth embodiment of the present invention.
  • the same components as those shown in FIGS. 8 and 37 are denoted by the same reference numerals, and the description thereof is omitted.
  • the semiconductor light emitting device 80 is made of a heat-resistant grease material such as a liquid crystal polymer, and has at least the first lead 52A and the second lead.
  • the lead 52B is fixed to the upper end portion, and has a reflecting portion 81a having a concave shape, that is, a hemispherical shape or a parabolic shape, and a reflector 81 also serving as a case.
  • the LED chip 12 is fixed to the lower surface of the first lead 52A by the face-up method. That is, the LED chip 12 is mounted so that the upper surface thereof faces the bottom of the reflecting portion 81a.
  • a phosphor layer 27 made of a resin material mixed with a phosphor 16c is formed on the reflecting surface of the reflector 81a, and a gap 8 is formed between the phosphor layer 27 and the LED chip 12. lb is formed.
  • a sealing portion 16 is formed on the upper end surface of the reflector 81 so as to cover the gap 81b including the leads 52A and 52B.
  • the sealing portion 16 includes the base material 16a and the base material 16a.
  • a lens 70 is formed on the sealing portion 16.
  • the lens 70 is not necessarily provided.
  • the gap 81b of the reflector 81 may be filled with a sealing grease material, or may be the same thread and composite material as the sealing portion 16 or a composite having a different refractive index. Fill with material.
  • FIG. 39 shows a schematic cross-sectional structure of a white LED device which is a semiconductor light emitting device according to an eleventh embodiment of the present invention.
  • the same components as those shown in FIGS. 8 and 14 are denoted by the same reference numerals, and the description thereof is omitted.
  • the LED chip 12 has the recess 5la in the case material 51 having the recess 5la, as in the fifth embodiment. It is fixed on the bottom by the face-up method.
  • the sealing portion 26 directly covers the LED chip 12 and has a first sealing portion 26A filled in the lower portion of the concave portion 51a of the case material 51, and a layer shape above the first sealing portion 26A. And a second sealing portion 26B formed on the substrate.
  • the first sealing portion 26A is composed of a base material 16a and a sealing material 16d that also has a composite material force including fine particles 16b made of an inorganic material uniformly dispersed inside the base material 16a.
  • the second sealing portion 26B is made of a resin material mixed with the fluorescent material 16c.
  • the same effect as in the first embodiment can be obtained, and when the synthesized light in the blue region to the ultraviolet region is attenuated, the filter effect As a result, the spectral component in the red region is relatively increased. As a result, the average color rendering index Increases and the color temperature decreases.
  • the first sealing portion 26A and the second sealing portion 26B Both may be supplemented with a fluorescent material capable of obtaining green light or yellow light. Even in this case, the fine particle 16b added to the first sealing portion 26A attenuates the spectral component in the ultraviolet region of the synthesized light, and the spectral component in the red region relatively increases. .
  • fine particles 16b and a first fluorescent material capable of obtaining green light or yellow light are added to the first sealing portion 26A, and red light is added to the second sealing portion 26B.
  • the spectral component in the red region is further increased. This further increases the average color rendering index and further decreases the color temperature.
  • fine particles 16b and a first fluorescent material capable of obtaining red light are added to the first sealing portion 26A, and green light or yellow light is added to the second sealing portion 26B.
  • the first fluorescent material for red does not absorb the green light or yellow light that is the emitted light of the second fluorescent material, so the conversion efficiency of the emitted light from the LED chip 12 is improved.
  • the refractive index of the first sealing portion 26A is made lower than the refractive index of the LED chip 12, and the second It is preferable that the refractive index of the sealing portion 26B is lower than the refractive index of the first sealing portion 26A. This improves the light extraction efficiency.
  • the outer shape of the semiconductor light emitting device 50H and the mounting method of the LED chip 12 are not limited to those in FIG. 39, and the first to fifth of the second embodiment, the sixth embodiment, and the sixth embodiment.
  • a configuration similar to that of the modified example, the seventh embodiment, or the first to sixth modified examples of the seventh embodiment may be employed.
  • FIG. 40 shows a schematic cross-sectional structure of a white LED device which is a semiconductor light emitting device according to a fourth modification of the eleventh embodiment of the present invention.
  • the same components as those shown in FIGS. 8 and 14 are denoted by the same reference numerals, and the description thereof is omitted.
  • the sealing portion 26 in the semiconductor light emitting device 501 according to the fourth modified example, as the sealing portion 26, the first sealing portion 26A as an underlayer formed below the LED chip 12 is used. And a second sealing portion 26B formed on the first sealing portion 26A so as to cover the LED chip 12 and filling the recess 51a of the case material 51.
  • the first sealing portion 26A is formed on the bottom surface of the case material 51, and the LED chip 12 is a chip transparent to visible light on the first sealing portion 26. It is fixed on the fixing paste material 13 by the face-up method.
  • a white heat-resistant grease material is used, or metallization is performed on the bottom surface and the inner wall surface of the recess 51a of the case material 51 by vapor deposition of metal, for example, aluminum (A1).
  • the inner wall surface of the case material 51 is made to function as a reflecting surface.
  • the first sealing portion 26A is composed of a base material 16a and a sealing material 16d that also has a composite material force including fine particles 16b made of an inorganic material uniformly dispersed inside the base material 16a.
  • the second sealing portion 26B is made of a resin material mixed with the fluorescent material 16c.
  • the first sealing portion 26A which is the base layer of the LED chip 12
  • the fine particles 16b the heat dissipation of the LED chip 12 is improved.
  • fine particles may be added to the second sealing portion 26B, and the second sealing portion 26B may be used as a composite material. In this case, it is preferable to select fine particles whose refractive index of the second sealing portion 26B is smaller than that of the first sealing portion 26A.
  • FIG. 41 shows a white semiconductor light emitting device according to a fifth modification of the eleventh embodiment of the present invention.
  • 1 shows a schematic cross-sectional configuration of an LED device.
  • the same components as those shown in FIG. 38 are denoted by the same reference numerals, and the description thereof is omitted.
  • the semiconductor light emitting device 80A is made of a heat resistant grease material such as a liquid crystal polymer, and has at least the first lead 52A and the second lead 52A.
  • the lead 52B is fixed to the upper end portion, and has a reflecting portion 81a having a concave shape, that is, a hemispherical shape or a parabolic shape, and a reflector 81 also serving as a case.
  • the reflector 81 is metallized with a force using a white heat-resistant resin material, or the reflection portion 81a with a metal such as aluminum.
  • the LED chip 12 is fixed to the lower surface of the first lead 52A by the face-up method. That is, the LED chip 12 is mounted so that the upper surface thereof faces the bottom of the reflecting portion 81a.
  • a phosphor layer 27 made of a resin material mixed with a phosphor 16c is formed on the reflecting surface of the reflector 81a, and a sealing portion is formed between the phosphor layer 27 and the LED chip 12.
  • the sealing portion 16 filled with 16 is composed of a base material 16a and a sealing material 16d that also has a composite material force including fine particles 16b made of an inorganic material uniformly dispersed inside the base material 16a. ing.
  • a lens 70 is formed on the upper end face of the reflector 81 so as to cover the gap 81b including the leads 52A and 52B.
  • the lens 70 is not necessarily provided.
  • the sealing part 16 has a two-layer structure of at least a first sealing part and a second sealing part as in the sixth embodiment, and is positioned outside the first sealing part.
  • the refractive index of the second sealing portion may be lower than the refractive index of the first sealing portion!
  • FIG. 42 shows a schematic cross-sectional configuration of a white LED device which is a semiconductor light emitting device according to the twelfth embodiment of the present invention.
  • the same components as those shown in FIGS. 8 and 14 are denoted by the same reference numerals, and the description thereof is omitted.
  • the LED chip 12 has the recess 5 la in the case material 51 having the recess 5 la. Fixed to the bottom of the face by the face-up method! RU
  • the sealing portion 26 directly covers the LED chip 12 and is filled with a lower portion of the recess 51a of the case material 51, and a third sealing portion 26A is provided on the first sealing portion 26A.
  • the second sealing portion 26B is formed in a layered manner with the sealing portion 26C interposed therebetween.
  • the first sealing portion 26A and the second sealing portion 26B are a composite material including a base material 16a and first fine particles 16b made of an inorganic material uniformly dispersed in the base material 16a. It is composed of a sealing material 16d and a fluorescent material 16c.
  • the third sealing portion 26C is composed of a base material 16a and an inorganic material such as zinc oxide, titanium oxide, or titanium cerium that is uniformly dispersed in the base material 16a and can absorb ultraviolet light.
  • the sealing material 16d is made of a composite material including the second fine particles 17b.
  • the same effect as in the first embodiment can be obtained, and the first sealing portion 26A and the second sealing portion 26B can be Since the third sealing portion 26C as an ultraviolet light absorbing layer that absorbs ultraviolet light is provided between them, the light component in the ultraviolet region included in the emitted light from the LED chip 12 is converted to the third sealing portion 26C. Is absorbed by. As a result, it is possible to use an epoxy resin that is excellent in water resistance and heat resistance while being easily yellowed by ultraviolet light, as the base material 16a constituting the second sealing portion 26B.
  • the refractive index of the second sealing portion 26B is lower than the refractive index of the third sealing portion 26C, and the refractive index of the third sealing portion 26C is the first.
  • a configuration in which the refractive index is lower than the refractive index of the sealing portion 26A is preferable.
  • the first sealing portion 26A and the second sealing portion 26B do not necessarily include the second fine particles 17b.
  • the fluorescent material 16c is not necessarily included in the first sealing portion 26A and the third sealing portion 26B. It may be included in either one of the sealing portions 26C.
  • the first sealing portion 26A needs to include the fluorescent material 16c.
  • the outer shape of the semiconductor light emitting device 50J and the mounting method of the LED chip 12 are not limited to FIG. 43, and the first to fifth of the second embodiment, the sixth embodiment, and the sixth embodiment. A configuration similar to that of the modified example, the seventh embodiment, or the first to sixth modified examples of the seventh embodiment may be employed.
  • FIG. 43 shows a schematic cross-sectional configuration of a white LED device which is a semiconductor light emitting device according to a thirteenth embodiment of the present invention.
  • the same components as those shown in FIG. 8 are denoted by the same reference numerals, and the description thereof is omitted.
  • the semiconductor light emitting device 50K according to the twelfth embodiment is similar to the fifth embodiment in that the LED chip 12 has the recess 5 la in the case material 51 having the recess 5 la. It is fixed on the bottom by the face-up method.
  • the sealing portion 26 directly covers the LED chip 12 and is filled with the concave portion 51a of the case material 51, and the first sealing portion on the upper surface of the case material 51. And a second sealing portion 26B formed so as to cover 26A.
  • the first sealing portion 26A includes a base material 16a and a sealing material 16d made of a composite material including the first fine particles 16b made of an inorganic material uniformly dispersed inside the base material 16a. And fluorescent material 16c.
  • the second sealing portion 26B is composed of a base material 16a and an inorganic material such as zinc oxide, titanium oxide, or titanium cerium that is uniformly dispersed in the base material 16a and can absorb ultraviolet light.
  • the sealing material 16d is made of a composite material including the second fine particles 17b. As described above, by using the composite material as the sealing material 16d, in addition to the effect of absorption of the fine particles 16b, the composite material easily scatters light having the wavelength of ultraviolet light. Extremely high.
  • the semiconductor light emitting device 50K According to the semiconductor light emitting device 50K according to the thirteenth embodiment, the same effect as that of the first embodiment can be obtained, and the ultraviolet light that absorbs the ultraviolet light on the first sealing portion 26A can be obtained. Since the second sealing portion 26B as the absorption layer is provided, the light component in the ultraviolet region contained in the emitted light from the LED chip 12 is absorbed by the second sealing portion 26B. As a result, the semiconductor light emitting device 50 The K force can also prevent unnecessary ultraviolet light from being output.
  • the sealing material 16d and the fluorescent material 16d by the ultraviolet light incident on the external force are used. It is possible to prevent the deterioration of the material 16c.
  • the wavelength range of the emitted light of the LED chip 12 is not limited to the blue region force and the ultraviolet region, and therefore the semiconductor light emitting device 50K is not limited to the white LED device.
  • the first sealing portion 26A does not necessarily include the first fine particles 16b.
  • the outer shape of the semiconductor light emitting device 50K and the mounting method of the LED chip 12 are not limited to those shown in Fig. 43, and the same configuration as in the first to fourth embodiments may be adopted.
  • FIG. 44 shows a schematic cross-sectional configuration of a white LED device which is a semiconductor light emitting device according to a modification of the thirteenth embodiment of the present invention.
  • the semiconductor light emitting device 50L includes the second sealing portion 26B including the second fine particles 17 capable of absorbing ultraviolet light only on the upper surface of the case material 51. It is formed so as to cover the entire periphery of the case material 51 up to its side and bottom surfaces.
  • the method of forming the second sealing portion 26B that covers the periphery of the case material 51 is, for example, a liquid sealing in which the second fine particles 17 are dispersed after the first sealing portion 26A is formed.
  • the dipping method can be used soaking in the material 16d.
  • the base material 16a of the stop portion 26A and the base material 16a of the second sealing portion 26B are made of the same material. This is preferable because the adhesion between the sealing portions can be improved and the sealing portion can be hardly peeled off. Since the effect of bonding between the base materials is relatively large in the adhesion between the sealing portions, the ratio of the base material is low when using a composite material as the sealing portion. The material of the material should be the same The adhesion can be improved.
  • a white LED device has been mainly described as a semiconductor light emitting device.
  • the present invention is not limited to a white LED device, and a sealing material to which fine particles are added. This is effective for semiconductor light-emitting devices that seal LED chips.
  • the attenuation of the amount of transmitted light is reduced regardless of whether the sealing portion has a single-layer structure or a multilayer structure. Is preferred.
  • the structure of the sealing part is to be controlled when color rendering is controlled as in the tenth embodiment, which is determined by the application, or when the LED chip contains ultraviolet light and it is desired to remove the ultraviolet light. Attenuating light of the corresponding wavelength by the composite material.
  • the degree of Rayleigh scattering caused by the composite material varies depending on the size of the fine particles, the mixed concentration of the fine particles, or the thickness of the sealing portion, and also varies depending on the wavelength of transmitted light. In particular, it has a feature that the degree of scattering increases as the wavelength becomes shorter. Therefore, the amount of transmitted light may be affected by the emission wavelength of the LED chip used or the composition of the sealing part made of the composite material.
  • the composite material used for the sealing portion has a scattering degree of less than 0.3 at the emission wavelength of the semiconductor light emitting device, the transmission attenuation amount of the emitted light is reduced, and thus the light extraction efficiency is improved. To do. At this time, the Rayleigh scattering component in the transmittance of the sealing portion is less than about 25%.
  • the degree of scattering when the degree of scattering is 0.2 or less, the amount of light transmission attenuation decreases, and the light extraction efficiency is improved.
  • the Rayleigh scattering component of the transmittance at this time is about 20% or less.
  • the Rayleigh scattering component of the transmittance when the scattering degree is 0.1 or less, the Rayleigh scattering component of the transmittance is about 10% or less, and when the scattering degree is 0.05 or less, the Rayleigh scattering component of the transmittance is 5% or less. It is almost transparent to the extent that light transmission attenuation is not a problem.
  • the degree of scattering is a value represented by the product at of the Rayleigh scattering extinction coefficient ex of the composite material portion and its thickness.
  • In is the natural logarithm.
  • the Rayleigh scattering extinction coefficient a is the scattering degree. Dividing by the thickness can be obtained from here.
  • the Rayleigh scattering extinction coefficient ⁇ is a material parameter determined by the material composition depending on the particle diameter, refractive index, or mixing amount of the fine particles. Knowing the value of this Rayleigh scattering extinction coefficient oc, the thickness of the sealing portion, etc. The optical design of these devices can be performed easily.
  • Halophosphate phosphor (Sr, Ba) (PO) CI: Eu 2+ , Sr (PO) CI: Eu 2+
  • Aluminate phosphor (Ba, Sr, Ca) Al O: Eu 2+
  • Oxonitridosilicate (Ba, Sr, Ca) Si O N: Eu
  • Oxonitridoaluminosilicate (Ba, Sr, Ca) Si AION: Ce 3+ , (Ba, Sr, Ca)
  • Nitridosilicate phosphor (Ba, Sr, Ca) Si N: Ce 3
  • Garnet phosphor Ca Sc Si O: Ce 3+ , BaY SiAl O: Ce 3+ , Y (Al, Ga)
  • Silicate (silicate) phosphor (Sr, Ba) SiO: Eu 2+
  • Sulfide phosphor (Sr, Ca) S: Eu 2+ , La OS: Eu 3+ , Sm 3+
  • Silicate (silicate) phosphor Ba MgSi O: Eu 2+ , Mn 2+
  • Nitride or oxynitride phosphor (Ca, Sr) SiN: Eu 2+ , (Ca, Sr) AlSiN: Eu 2+ ,
  • a wavelength conversion material such as a metal complex, an organic dye, or a pigment can be used.
  • fine particles added to a light-transmitting material have improved thixotropy (thixotropy), light scattering effect, adjustment of the refractive index of the sealing material, and thermal conductivity.
  • the effect of improvement can be expected.
  • the fine particles for example, BaSO, ZnS, V 2 O 3, or a mixture thereof can be used as the metal compound other than those described in the first embodiment.
  • the center particle diameter of the particles is from several 1 Onm to several 1 OOnm.
  • the substrate 31 or the base on which the LED chip 12 is mounted is made of A1N, Al as ceramics.
  • the base material 16a of the sealing material 16d includes as the resin: epoxy resin, silicone resin, acrylic resin, urea resin, imide resin, polycarbonate resin, polysulfide resin, liquid crystal Polymer resin or acrylic-tolyl-butadiene-styrene (ABS) resin or mixtures containing at least two of these can be used.
  • resin epoxy resin, silicone resin, acrylic resin, urea resin, imide resin, polycarbonate resin, polysulfide resin, liquid crystal Polymer resin or acrylic-tolyl-butadiene-styrene (ABS) resin or mixtures containing at least two of these can be used.
  • quartz or heat-resistant hard glass can be used as the cap glass.
  • low melting point glass can be used!
  • Nitrogen, argon, or dry air can be used as a sealing gas for sealing the LED chip.
  • the present invention provides a semiconductor light-emitting device comprising a long-life and high-brightness LED or the like, and a semiconductor light-emitting device in which a semiconductor chip on which a light-emitting element is formed is packaged by resin sealing Useful.

Abstract

 半導体発光装置10は、青色域から紫外域までの波長を有する光を放出する半導体チップ12と、光が通過する通過径路上の少なくとも一部の領域に形成された封止部16とを有している。封止部16は、樹脂よりなる母材16a及び該母材16a中に分散され母材16aの内部での光の波長の4分の1以下の実効粒径を有する無機材料よりなる微粒子16bを含むコンポジット材料からなる封止材16dと、蛍光材16cとを含んでいる。

Description

半導体発光装置
技術分野
[0001] 本発明は、 LED (Light Emitting Diode)チップ等の半導体チップをパッケージ 化した半導体発光装置に関する。
背景技術
[0002] 近年、白色 LED装置が実用化され、蛍光灯に替わる照明部品として注目^^めて いる。
[0003] 窒化ガリウム(GaN)系の化合物半導体を用いた青色域力も紫外域で発光する LE Dチップが開発されたことが、白色 LED装置の実用化に拍車をかけている。
[0004] 青色域から紫外域で発光する LEDチップを用いて白色光を得る方法には、主に 2 つの方法がある (例えば、非特許文献 1を参照。 ) o第 1に、青色 LEDチップ力も放射 される青色光と、セリウム添加イットリウムアルミニウムガーネット (YAG: Ce)等の蛍光 材を青色光により励起して得られる黄色光とにより白色光を得る方法がある。第 2に、 紫色域カゝら紫外域で発光する LEDチップカゝら放射される光によって複数種類の蛍 光材を励起して、赤色、緑色及び青色のいわゆる三原色の光により白色光を得る方 法がある。蛍光材には、赤色用として Y O S :Eu (略称 P22— RE3)力 緑色用とし
2 2
て ZnS : Cu, A1 (略称 P22— GN4)又は(Ba, Mg)Al O : Eu, Mn (略称 LP— G3
10 17
)力 青色用として(Sr, Ca, Ba, Mg) (PO ) C : Eu (略称 LP— Bl)又は(Ba, M
10 4 6 12
g)Al O : Eu (略称 LP— B4)がそれぞれ用いられる。
10 17
[0005] 白色 LED装置は、青色域から紫外域で発光する LEDチップと上述した蛍光材とを 封止用榭脂材によりパッケージィ匕することにより実現される。ノ^ケージの形態として は、代表的なものとしては、封止用榭脂材を砲弾型に形成する構成がある (例えば、 非特許文献 2を参照。)。
[0006] 以下、砲弾型のパッケージ形状を持つ従来の白色 LED装置について図 45を参照 しながら説明する。
[0007] 図 45に示すように、従来例に係る白色 LED装置 100は、第 1のリードフレーム 101 Aの一方の端部にカップ状に設けられたダイパッド部の底面上に、青色域から紫外 域で発光する LEDチップ 102が Agペースト材又は絶縁ペースト材等のチップ固着 用ペースト材 103により固着されて!、る。
[0008] LEDチップ 102の上面には、第 1の電極 104A及び第 2の電極 104Bが形成されて いる。第 1の電極 104Aは第 1のワイヤ 105Aを介在させて第 1のリードフレーム 101A と電気的に接続され、第 2の電極 104Bは第 2のワイヤ 105Bを介在させて、第 1のリ ードフレーム 101Aと対をなす第 2のリードフレーム 101Bと電気的に接続されている
[0009] LEDチップ 102は、砲弾状に成型された榭脂材 105によって封止されている。榭 脂材 105には、一般にエポキシ榭脂又はシリコーン榭脂等の可視光に対して透明な 榭脂材料が用いられる。また、榭脂材 105中には、上述の蛍光材 106が混練されて いる(例えば、特許文献 1を参照。;)。
非特許文献 1:只友 一行、他著「三菱電線工業時報」第 99号、 2002年 7月、第 35 41頁
非特許文献 2 :杉本 勝、他著「松下電工技報」第 53号、 No. 1、第 4 9頁 特許文献 1 :特開 2004— 71908号公報
特許文献 2:特開 2005 - 93724号公報
発明の開示
発明が解決しょうとする課題
[0010] しかしながら、前記従来の白色 LED装置 100は、封止用の榭脂材 105としてェポ キシ榭脂又はシリコーン榭脂を用いた場合には以下のような問題が生じる。
[0011] エポキシ榭脂を用いた場合には黄変の問題がある。すなわち、 LEDチップ 102か ら放射される青色域力 紫外域の光によってエポキシ榭脂が黄変し、白色 LED装置
100からの発光輝度が低下したり、色調が変化したりする。このため、封止用の榭脂 材 105には耐光性及び耐熱性が要求される。
[0012] また、チップ固着用ペースト材 103が榭脂からなる場合には、 LEDチップ 102から の放射光により、チップ固着用ペースト材 103が変色して発光輝度が低下したり、強 度が劣化したりしてしまうという問題もある。 [0013] さら〖こは、外部から入射される紫外域の光によっても、半導体発光装置を構成する 榭脂材 105及び蛍光材 106だけでなぐ樹脂からなるチップ固着用ペースト材 103 が劣化してしまうと 、う問題がある。
[0014] また、シリコーン榭脂はエポキシ榭脂と比較して光の屈折率が低 、ため、 LEDチッ プ 102からの放射光が全反射しやすくなつて、 LEDチップ 102からの光取り出し効率 が低くなるという問題がある (例えば、特許文献 2を参照。 )0
[0015] なお、エポキシ榭脂を用いる場合でも、エポキシ榭脂の屈折率は LEDチップ (特に
GaN系半導体)の屈折率と比較すると非常に小さいため、光取り出し効率は十分と はいえない。
[0016] また、発光波長が青色域力 紫外域で発光する LEDチップに限らず、青色よりも発 光波長が長 、LEDチップにぉ 、ても、その光取り出し効率が十分に高 、とは 、えな い。
[0017] 本発明は、前記従来の問題に鑑み、発光素子が形成された半導体チップを封止す る封止材料の耐光性、耐熱性及び光取り出し効率の向上を図ることを目的とする。 課題を解決するための手段
[0018] 前記の目的を達成するため、本発明は、半導体発光装置の封止部を構成する母 材に発光波長の 4分の 1以下の実効粒径を有する無機材料よりなる粒子を含ませる 構成とする。
[0019] 具体的に、本発明に係る第 1の半導体発光装置は、青色域から紫外域までの波長 を有する光を放出する半導体チップと、光が通過する通過径路上の少なくとも一部の 領域に形成された封止部とを備え、封止部は、母材及び該母材中に分散され母材 の内部での光の波長の 4分の 1以下の実効粒径を有する無機材料よりなる粒子を含 むコンポジット材料カゝらなる封止材と、蛍光材とを含むことを特徴とする。
[0020] 第 1の半導体発光装置によると、封止部の母材中に分散された粒子は無機材料よ りなるため、該無機材料よりなる粒子を含めな ヽ場合と比べて封止部の耐光性及び 耐熱性が向上する。その上、母材中に分散された粒子の実効粒径が半導体チップ 力 放射される光の波長の 4分の 1以下であるため、封止部の透明性が損なわれな い。すなわち、光取り出し効率が損なわれることがない。なお、粒子の大きさが光の波 長よりも充分に小さいときは、無機粒子が分散されたコンポジット材料を、屈折率のば らつきがない均一な媒体とみなすことができる。また、粒子の粒径が光の波長の 4分 の 1以下であれば、コンポジット材料中の光の散乱はレイリー散乱のみとなるので透 光性が劣化することが少なくなる。
[0021] 第 1の半導体発光装置において、封止部は半導体チップの周囲を覆うように形成さ れていることが好ましい。
[0022] このようにすると、封止部の機械的強度が増すと共に、耐熱性が向上し封止部の剥 離及びクラックが生じにくくなる。
[0023] 第 1の半導体発光装置において、封止部は半導体チップと接して形成されているこ とが好ましい。
[0024] このように、封止部と半導体チップとが接している場合においても、封止部の母材に 粒子を含めな 、構成と比べて、封止部と半導体チップとの互 、の熱膨張係数の差が 小さくなるため、封止部の剥離及びクラックが生じに《なる。
[0025] 第 1の半導体発光装置において、封止部は封止材よりなる第 1の封止部と、該第 1 の封止部の外側に形成され、蛍光材を含む第 2の封止部とにより構成されていること が好ましい。
[0026] このように、半導体チップに比較的に近ぐ従って光密度が比較的に高い部分にコ ンポジット材料である封止材よりなる第 1の封止部を配置することにより、半導体チッ プからの高!、光取り出し効率を実現できると共に高!ヽ耐光性及び耐熱性を得ること ができる。さらに、半導体チップ力 比較的に遠ぐ従って光密度が比較的に低い部 分に、コンポジット材料よりも透明性が高く且つ蛍光材を含む第 2の封止部を配置す ることにより、第 2の封止部における光の透過性を向上できる。その結果、半導体発 光装置からの光取り出し効率を向上させることができる。
[0027] 第 1の封止部がコンポジット材料力もなる場合に、第 1の封止部における半導体チッ プの少なくとも下方及び側方に設けられ、光を反射する反射部材をさらに備えている ことが好ましい。
[0028] このようにすると、半導体チップ側の第 1の封止部を構成するコンポジット材料に含 まれる粒子により、後述するように、青色域力 紫外域のスペクトルが減衰し、相対的 に赤色域等の短波長側のスペクトルが増大する。この現象を本願明細書にぉ 、ては
、フィルタ効果と呼ぶ。これにより、平均演色評価指数 (Ra)が高くなり、また、色温度 を下げることが可能となる。
[0029] さらにこの場合に、封止材は、透明性を有するペースト材により半導体チップを固 着し且つ反射部材に保持された下地層であることが好ましい。
[0030] このように、下地層にコンポジット材料を用いても、半導体チップを固着するペース ト材が透明であることから、下地層に含まれる粒子によるフィルタ効果によって、平均 演色評価指数 (Ra)が高くなり、また、色温度を下げることが可能となる。
[0031] また、第 1の半導体発光装置において、封止部は、封止材よりなる第 1の封止部と、 該第 1の封止部の外側に形成され、第 2の封止部とにより構成されており、粒子は紫 外域の光を吸収する材料よりなることが好まし 、。
[0032] このようにすると、第 1の封止部を構成するコンポジット材料に含まれる紫外域の光 を吸収する粒子により、榭脂等力 なる封止材の紫外光による劣化を抑制することが できる。
[0033] また、第 1の半導体発光装置において、封止部は、蛍光材を含む第 1の封止部と、 該第 1の封止部の外側に形成され封止材よりなる第 2の封止部とにより構成されてい ることが好ましい。
[0034] このようにすると、第 1の封止部の外側に形成された第 2の封止部を構成するコンポ ジット材料に含まれる粒子により、青色域力 紫外域のスペクトルが減衰し、相対的に 赤色域等の短波長側のスペクトルが増大するフィルタ効果を得ることができる。これ により、平均演色評価指数 (Ra)を向上し、また、色温度を下げることが可能となる。
[0035] 本発明に係る第 2の半導体発光装置は、光を放出する半導体チップと、光が通過 する通過径路上の少なくとも一部の領域に形成された封止部とを備え、封止部は、 母材及び該母材中に分散され母材の内部での光の波長の 4分の 1以下の実効粒径 を有する無機材料よりなる粒子を含むコンポジット材料力もなる封止材を含み、且つ 、半導体チップを覆う第 1の封止部と該第 1の封止部の外側に形成された第 2の封止 部とにより構成されており、第 1の封止部における光の波長に対する第 1の屈折率は 、第 2の封止部における光の波長に対する第 2の屈折率よりも大きいことを特徴とする [0036] 第 2の半導体発光装置によると、封止部は、第 1の半導体発光装置と同様に、母材 中に分散され母材の内部での光の波長の 4分の 1以下の実効粒径を有する無機材 料よりなる粒子を含むため、封止部の耐光性及び耐熱性が向上すると共に、封止部 の透明性が損なわれることがない。その上、第 1の封止部における光の波長に対する 第 1の屈折率は、第 2の封止部における光の波長に対する第 2の屈折率よりも大きい ため、封止部全体の屈折率は半導体チップ側の内側領域で高く且つその外側領域 で低くなる。従って、外側領域の低い屈折率により、半導体チップからの出射光の全 反射が低減されるため、光の取り出し効率が向上する。
[0037] 第 2の半導体発光装置において、第 1の封止部に含まれる粒子と、第 2の封止部に 含まれる粒子とは、組成が異なることが好ましい。
[0038] このように、例えば第 2の封止部に含まれる粒子よりも屈折率が大きい組成の粒子 を第 1の封止部に含めれば、第 2の封止部よりも第 1の封止部の屈折率を確実に大き くすることがでさる。
[0039] また、第 2の半導体発光装置において、第 1の封止部における粒子のコンポジット 材料に占める割合は、第 2の封止部における粒子のコンポジット材料に占める割合よ りも高いことが好ましい。
[0040] このようにすると、第 2の封止部よりも第 1の封止部の屈折率を確実に大きくすること ができる。
[0041] 本発明に係る第 3の半導体発光装置は、光を放出する半導体チップと、光が通過 する通過径路上の少なくとも一部の領域に形成された封止部とを備え、封止部は、 母材及び該母材中に分散され母材の内部での光の波長の 4分の 1以下の実効粒径 を有する無機材料よりなる粒子を含むコンポジット材料力もなる封止材を含み、且つ 、光の波長に対する屈折率が半導体チップに近い内側領域力 外側領域に向けて 小さくなるように設定されて 、ることを特徴とする。
[0042] 第 3の半導体発光装置によると、封止部は、第 1の半導体発光装置と同様に、母材 中に分散され母材の内部での光の波長の 4分の 1以下の実効粒径を有する無機材 料よりなる粒子を含むため、封止部の耐光性及び耐熱性が向上すると共に、封止部 の透明性が損なわれることがない。その上、光の波長に対する屈折率が半導体チッ プに近い内側領域力も外側領域に向けて小さくなるように設定されているため、封止 部全体の屈折率は半導体チップ側の内側領域で高く且つその外側領域で低くなる。 従って、外側領域の低い屈折率により、半導体チップ力 の出射光の全反射が低減 されるため、光の取り出し効率が向上する。
[0043] 第 3の半導体発光装置において、封止部における粒子のコンポジット材料に占める 割合は、半導体チップに近い内側領域がその外側領域と比べて高 、ことが好まし ヽ
[0044] このようにすると、封止部における外側領域よりも内側領域の屈折率を確実に大きく することができる。
[0045] また、第 3の半導体発光装置において、封止部に含まれる粒子は、封止部の内側 に含まれる粒子の組成と封止部の外側に含まれる粒子の組成とが異なることが好ま しい。
[0046] このように、例えば封止部の外側領域に含まれる粒子よりも屈折率が大きい組成の 粒子を封止部の内側領域に含めれば、封止部における外側領域よりも内側領域の 屈折率を確実に大きくすることができる。
[0047] 第 4の半導体発光装置は、光を放出する半導体チップと、光が通過する通過径路 上の少なくとも一部の領域に形成された封止部とを備え、封止部は、母材及び該母 材中に分散され母材の内部での光の波長の 4分の 1以下の実効粒径を有する無機 材料よりなる粒子を含むコンポジット材料力 なる封止材を含み、且つ、半導体チッ プを覆う第 1の封止部と、該第 1の封止部の外側に形成された第 2の封止部とにより 構成されており、第 2の封止部は、粒子として紫外域の光を吸収する材料よりなる粒 子を含むことを特徴とする。
[0048] 第 4の半導体発光装置によると、第 2の封止部は、粒子として紫外域の光を吸収す る材料よりなる粒子を含むため、半導体チップ力 放出される光に紫外域の波長成 分を含む場合に、不要な紫外光の放出を抑制することができる。また、外部から入射 される紫外光に対しても、第 2の封止部に添加された粒子に吸収されるため、封止材 等の劣化を防止することができる。 [0049] 第 4の半導体発光装置において、第 2の封止部は、半導体チップの上方、下方及 び側方を覆うように形成されて ヽることが好ま Uヽ。
[0050] 第 5の半導体発光装置は、青色域から紫外域までの波長を有する光を放出する半 導体チップと、光が通過する通過径路上の少なくとも一部の領域に形成された封止 部と、半導体チップを保持する保持材と、半導体チップと保持材とを固着する透明性 を有するペースト材とを備え、ペースト材は、母材及び該母材中に分散され母材の内 部での光の波長の 4分の 1以下の実効粒径を有する無機材料よりなる粒子を含むコ ンポジット材料力 なり、粒子は紫外域の光を吸収する材料よりなることを特徴とする
[0051] 第 5の半導体発光装置によると、半導体チップと保持材とを固着する透明性を有す るペースト材は、無機材料よりなる粒子を含むコンポジット材料力もなり、該粒子は紫 外域の光を吸収する材料よりなるため、ペースト材の紫外光による劣化と変色による 発光輝度の低下とを抑制できる。また、ペースト材が透明であるため、半導体チップ 力 の放出される光をペースト材を通して外部に出力することができるので、光の取り 出し効率が向上する。また、コンポジット材料力もなるペースト材により、半導体チップ 力も生じる熱の保持材への放熱性が向上する。
[0052] 第 2又は第 3の半導体発光装置において、封止部は蛍光材を含むことが好ましい。
[0053] このようにすると、半導体チップからの出射光が青色域又は紫外域の光である場合 に、蛍光材を励起して白色光を得ることができる。
[0054] 第 1〜第 3の半導体発光装置において、粒子は無機化合物よりなることが好ましい
[0055] このようにすると、耐光性、耐熱性又は機械強度の向上のための材料選択の幅を 広げることができる。
[0056] 第 1〜第 3の半導体発光装置において、母材は榭脂材料よりなることが好ましい。
[0057] このようにすると、封止部の成型性が向上する。
[0058] この場合に、榭脂材料は無機高分子材料であることが好ま ヽ。このようにすると、 耐光性及び耐熱性を向上させやすくなる。
[0059] また、この場合に、榭脂材料は有機高分子材料であることが好ま ヽ。このようにす ると、成型性を向上させやすくなる。
[0060] 第 1〜第 3の半導体発光装置において、母材は可視光に対して透明な材料よりなる ことが好ましい。
[0061] このようにすると、封止部の透明性がさらに向上するため、光取り出し効率がより向 上する。
[0062] 第 1〜第 3の半導体発光装置において、コンポジット材料は可視光に対して透明で あることが好ましい。
[0063] このようにすると、封止部の透明性がさらに向上するため、光取り出し効率がより向 上する。
[0064] 第 1〜第 3の半導体発光装置において、光の波長に対する粒子の屈折率は光の波 長に対する母材の屈折率よりも大きぐ且つ半導体チップの屈折率と同等力 れ以 下であることが好ましい。
[0065] このようにすると、封止部の屈折率が粒子を添加しない場合と比べて高くなるため、 光取り出し効率がさらに向上する。
[0066] 第 1〜第 3の半導体発光装置において、粒子のコンポジット材料に占める割合は 5 体積%以上且つ 60体積%以下であることが好ましい。
[0067] このようにすると、コンポジット材料の透明性を十分に確保しつつ、その耐光性及び 耐熱性が向上させることができる。なお、粒子のコンポジット材料に占める割合は 10 体積%以上且つ 50体積%以下がより好ましぐ 20体積%以下且つ 40体積%以下と することがさらに好ましい。
[0068] 第 1又は第 3の半導体発光装置において、封止部は外形が半球状であることが好 ましい。
[0069] このようにすると、半導体チップからの出射光の全反射の抑制効果を高めることが できる。
[0070] また、第 1又は第 3の半導体発光装置において、封止部は断面の外形が四角形状 であることが好ましい。
[0071] このようにすると、コンポジット材料力 なる封止材を印刷法等により塗布することが でき、形成が容易となる。また、上面が平面で構成されるため、デバイスとして扱いや すくなる。
[0072] 第 1の半導体発光装置が第 1の封止部及び第 2の封止部を有する場合又は第 3の 半導体発光装置において、第 1の封止部及び第 2の封止部は、外形が半球状である ことが好ましい。
[0073] 第 1の半導体発光装置が第 1の封止部及び第 2の封止部を有する場合又は第 3の 半導体発光装置において、第 1の封止部は断面の外形が四角形状であり、第 2の封 止部は外形が半球状であることが好ま 、。
[0074] 第 1の半導体発光装置が第 1の封止部及び第 2の封止部を有する場合又は第 3の 半導体発光装置において、第 1の封止部及び第 2の封止部は、断面の外形が四角 形状であることが好ましい。
[0075] 第 1の半導体発光装置が第 1の封止部及び第 2の封止部を有する場合又は第 3の 半導体発光装置において、第 1の封止部は外形が半球状であり、第 2の封止部は断 面の外形が四角形状であることが好ま 、。
[0076] 第 1〜第 3の半導体発光装置は、封止部における半導体チップの側方の領域に設 けられ、光を反射する反射部材をさらに備えて 、ることが好ま 、。
[0077] このようにすると、光取り出し効率がさらに向上する。
[0078] この場合に、封止部はその断面形状が下方に狭く上方に広い逆テーパ状を有して 、ることが好まし!/、。
発明の効果
[0079] 本発明の半導体発光装置によると、長寿命で且つ高輝度な白色 LED等の半導体 発光装置を実現できる。
図面の簡単な説明
[0080] [図 1]本発明の第 1の実施形態に係る半導体発光装置を示す模式的な断面図である
[図 2]本発明の第 1の実施形態に係る半導体発光装置における封止部を拡大した断 面図である。
[図 3]本発明の第 1の実施形態に係る半導体発光装置における封止部に添加する微 粒子の実効粒径を説明するグラフである。 圆 4]本発明の第 1の実施形態に係る半導体発光装置における封止部 (コンポジット 材料)の屈折率と微粒子の添加量 (体積比)との関係を示すグラフである。
[図 5]本発明の第 2の実施形態に係る半導体発光装置を示す模式的な断面図である
[図 6]本発明の第 3の実施形態に係る半導体発光装置を示す模式的な断面図である
[図 7]本発明の第 4の実施形態に係る半導体発光装置を示す模式的な断面図である
[図 8]本発明の第 5の実施形態に係る半導体発光装置を示す模式的な断面図である 圆 9] (a)は本発明の第 5の実施形態に係る半導体発光装置における LEDチップを 構成する基板の材料ごとに封止部の屈折率と出射光の全光束の変化率との関係を シミュレーションにより求めたグラフである。 (b)は本発明の第 5の実施形態に係る半 導体発光装置における LEDチップを構成する基板の材料ごとに封止部の屈折率と 全光束との関係をシミュレーションにより求めたグラフである。
[図 10]本発明の第 6の実施形態に係る半導体発光装置を示す模式的な断面図であ る。
圆 11]本発明の第 6の実施形態の第 1変形例に係る半導体発光装置を示す模式的 な断面図である。
圆 12]本発明の第 6の実施形態の第 2変形例に係る半導体発光装置を示す模式的 な断面図である。
圆 13]本発明の第 6の実施形態の第 3変形例に係る半導体発光装置を示す模式的 な断面図である。
圆 14]本発明の第 6の実施形態の第 4変形例に係る半導体発光装置を示す模式的 な断面図である。
[図 15] (a)及び (b)は本発明の第 6の実施形態の第 4変形例に係る半導体発光装置 において、第 1の封止部及び第 2の封止部の各屈折率と光取り出し効率との関係を シミュレーションにより求めたグラフである。 圆 16]本発明の第 6の実施形態の第 5変形例に係る半導体発光装置を示す模式的 な断面図である。
圆 17]本発明の第 6の実施形態の第 6変形例に係る半導体発光装置を示す模式的 な断面図である。
圆 18]本発明の第 6の実施形態の第 7変形例に係る半導体発光装置を示す模式的 な断面図である。
[図 19]本発明の第 7の実施形態に係る半導体発光装置を示す模式的な断面図であ る。
圆 20]本発明の第 7の実施形態の第 1変形例に係る半導体発光装置を示す模式的 な断面図である。
圆 21]本発明の第 7の実施形態の第 2変形例に係る半導体発光装置を示す模式的 な断面図である。
圆 22]本発明の第 7の実施形態の第 3変形例に係る半導体発光装置を示す模式的 な断面図である。
圆 23]本発明の第 7の実施形態の第 4変形例に係る半導体発光装置を示す模式的 な断面図である。
圆 24]本発明の第 7の実施形態の第 5変形例に係る半導体発光装置を示す模式的 な断面図である。
圆 25]本発明の第 7の実施形態の第 6変形例に係る半導体発光装置を示す模式的 な断面図である。
圆 26]本発明の第 7の実施形態の第 7変形例に係る半導体発光装置を示す模式的 な断面図である。
[図 27]本発明の第 8の実施形態に係る半導体発光装置を示す模式的な断面図であ る。
圆 28]本発明の第 8の実施形態の第 1変形例に係る半導体発光装置を示す模式的 な断面図である。
圆 29]本発明の第 8の実施形態の第 2変形例に係る半導体発光装置を示す模式的 な断面図である。 [図 30]本発明の第 9の実施形態に係る半導体発光装置を示す模式的な断面図であ る。
圆 31]本発明の第 9の実施形態の第 1変形例に係る半導体発光装置を示す模式的 な断面図である。
圆 32]本発明の第 9の実施形態の第 2変形例に係る半導体発光装置を示す模式的 な断面図である。
[図 33]本発明の第 10の実施形態に係る半導体発光装置を示す模式的な断面図で ある。
圆 34]本発明の第 10の実施形態に係る半導体発光装置において、添加される微粒 子の母材に対する割合を 30体積%とした封止材の光の波長と透過率との関係を示 すグラフである。
圆 35]本発明の第 10の実施形態に係る半導体発光装置における発光スペクトルを 示すグラフである。
圆 36]本発明の第 10の実施形態の第 4変形例に係る半導体発光装置を示す模式 的な断面図である。
圆 37]本発明の第 10の実施形態の第 5変形例に係る半導体発光装置を示す模式 的な断面図である。
圆 38]本発明の第 10の実施形態の第 6変形例に係る半導体発光装置を示す模式 的な断面図である。
圆 39]本発明の第 11の実施形態に係る半導体発光装置における発光スペクトルを 示すグラフである。
圆 40]本発明の第 11の実施形態の第 4変形例に係る半導体発光装置における発光 スペクトルを示すグラフである。
圆 41]本発明の第 11の実施形態の第 5変形例に係る半導体発光装置における発光 スペクトルを示すグラフである。
圆 42]本発明の第 12の実施形態に係る半導体発光装置における発光スペクトルを 示すグラフである。
圆 43]本発明の第 13の実施形態に係る半導体発光装置における発光スペクトルを 示すグラフである。
[図 44]本発明の第 13の実施形態の一変形例に係る半導体発光装置における発光 スペクトルを示すグラフである。
[図 45]従来の半導体発光装置を示す模式的な断面図である。
符号の説明
10 半導体発光装置
11A 第 1のリードフレ -ム
11B 第 2のリードフレー -ム
12 LEDチップ
13 チップ固着用ぺ -スト材
14A 第 1の電極
14B 第 2の電極
15A 第 1のワイヤ
15B 第 2のワイヤ
16 封止部
16a 母材
16b 微粒子 (第 1の微粒子)
16bl 1次微粒子
16b2 複合微粒子
16c 蛍光材
16d 封止材
17b 第 2の微粒子
20 半導体発光装置
25 榭脂材
26 封止部
27 蛍光体層
26A 第 1の封止部
26B 第 2の封止部 半導体発光装置A 半導体発光装置B 半導体発光装置C 半導体発光装置D 半導体発光装置E 半導体発光装置F 半導体発光装置G 半導体発光装置 基板
A 第 1の配線B 第 2の配線
半導体発光装置A 半導体発光装置B 半導体発光装置C 半導体発光装置D 半導体発光装置E 半導体発光装置F 半導体発光装置A 第 1のバンプB 第 2のバンプ 半導体発光装置A 半導体発光装置B 半導体発光装置C 半導体発光装置D 半導体発光装置E 半導体発光装置F 半導体発光装置G 半導体発光装置 50H 半導体発光装置
501 半導体発光装置
50J 半導体発光装置
50K 半導体発光装置
50L 半導体発光装置
51 ケース材
51a 凹部
51b 空隙部
52A 第 1のリード
52B 第 2のリード
53 サブマウント材
54A 第 1のサブマウント電極
54B 第 1のサブマウント電極
55 ペースト材
60A 半導体発光装置
60B 半導体発光装置
60C 半導体発光装置
60D 半導体発光装置
60E 半導体発光装置
70 (第 1の)レンズ
71 第 2のレンズ
80 半導体発光装置
80A 半導体発光装置
81 反射器
81a 反射部
81b 空隙部
発明を実施するための最良の形態
(第 1の実施形態) 本発明の第 1の実施形態に係る半導体発光装置について図面を参照しながら説 明する。
[0083] 図 1は本発明の第 1の実施形態に係る半導体発光装置である白色 LED装置の模 式的な断面構成を示している。図 1に示すように、第 1の実施形態に係る白色 LED装 置 10は、第 1のリードフレーム 11Aの上端部にカップ状に設けられたダイパッド部の 底面上に LEDチップ 12が Agペースト材又は絶縁ペースト材等のチップ固着用ぺー スト材 13によって固着されて保持されている。
[0084] LEDチップ 12には、例えば GaN系の化合物半導体よりなり、青色域から紫外域の 波長を有する光を放出する LEDチップを用いる。
[0085] LEDチップ 12の上面には、第 1の電極 14A及び第 2の電極 14Bが形成されている 。第 1の電極 14Aは第 1のワイヤ 15Aを介在させて第 1のリードフレーム 11Aと電気 的に接続されると共に、第 2の電極 14Bは第 2のワイヤ 15Bを介在させて、第 1のリー ドフレーム 11Aと対をなす第 2のリードフレーム 11Bと電気的に接続されて 、る。
[0086] LEDチップ 12は、第 1のリードフレーム 11Aのダイパッド部及び第 2のリードフレー ム 11Bの上端部を含むように砲弾状に成型された封止部 16により封止されている。
[0087] 封止部 16は、母材 16a及び該母材 16aの内部に均一に分散された無機材料よりな る微粒子 16bを含むコンポジット材料力もなる封止材 16dと、蛍光材 16cとにより構成 されている。
[0088] LEDチップ 12から放射された青色域から紫外域の波長を有する光 (以下、放射光 と呼ぶ。)は、封止部 16の放射経路上に位置する蛍光材 16cを励起する。この励起 光と放射光とが混色されることにより、又は複数色の励起光同士が混色されることに より、白色 LED装置 10から白色光が得られる。
[0089] 図 2に封止部 16の一部を拡大して示す。図 2に示すように、無機材料よりなる微粒 子 16bは、 1次微粒子 16blと該 1次微粒子 16blが凝縮してなる複合微粒子 16b2と を含む。従って、微粒子 16bが母材 16a中に均一に分散されているとは、 1次微粒子 16bl及び複合微粒子 16b2が位置によらず、実質的に均一に分散していることを意 味する。
[0090] 母材 16aには、例えば、可視光に対して透明な材料であるエポキシ榭脂、アクリル 榭脂又はシクロォレフイン榭脂等の有機高分子材料よりなる榭脂材、又はシリコーン 榭脂等の無機高分子材料よりなる榭脂材を用いることができる。
[0091] ここで、微粒子 16bの実効粒径は、 LEDチップ 12からの放射光の波長、すなわち 母材 16a中における波長の 4分の 1以下に設定されている。
[0092] 例えば、 LEDチップ 12からの放射光の波長が空気中で 400nmであって、母材 16 aがエポキシ榭脂とすると、該エポキシ榭脂の屈折率は約 1. 5であることから、母材 1 6a中における放射光の波長は 267nmとなる。従って、微粒子 16bの実効粒径を 67 nm以下とすれば、母材 16a内での波長の 4分の 1以下に設定できる。
[0093] なお、微粒子 16bの実効粒径は、母材 16a中における波長の 4分の 1以下に限られ ず、 lnm以上且つ lOOnm以下に設定すれば、本発明の効果を得ることができる。好 ましくは、青色域から紫外域の波長を有する放射光において、より十分な透明性を有 するためには、微粒子 16bの実効粒径を lnm以上且つ 50nm以下とすればよい。
[0094] この際に、微粒子の粒径が lnm未満になると、量子的な効果が発現する材質では 蛍光を生じる場合などがあり、特性に影響を及ぼす場合がある。なお、母材 16aに添 カロされた微粒子 16bの粒径及び実効粒径は、電子顕微鏡等により確認することがで きる。
[0095] ところで、 1次微粒子 16blの粒径は、 lnm以上且つ lOOnm以下が好ましぐ実質 的な実効粒径を lnm以上且つ 50nm以下とすればより好ましい。なお、 1次微粒子 1 6blの実効粒径の値は、溶液中での粒度分布計による粒径測定の他に、粉末での ガス吸着法による粒径測定、又は電子顕微鏡により観察した粒径測定により得ること ができる。
[0096] さらに好ましくは、 1次微粒子が 16blの平均粒径が lnm以上且つ lOnm以下であ り、そのほとんどが凝集することなく均質に分散している状態であれば、レイリー散乱 をより低減して十分な透明性を有するため好ましい。この状態は、コンポジット材料を 透過型電子顕微鏡によって観察することによって、その均質な分散を確認できる。
[0097] ここで、実効粒径について図 3を用いて説明する。図 3において、横軸は微粒子 16 bの粒径を表わし、左側の縦軸は縦軸の粒径に対する微粒子 16bの頻度を表わし、 右側の縦軸は粒径の累積頻度を表わしている。実効粒径とは、微粒子 16bの全体の うち、その粒度頻度分布にお 、て累積頻度が 50%となる粒径を中心粒径 (メジアン 径: d50)とし、その中心粒径を中心として累積頻度が 50%の範囲 Aにある粒径範囲 Bをさす。 1次微粒子 16blの実効粒径についても同様である。実効粒径の値を精度 良く求めるには、例えば、 200個以上の微粒子 16b又は 1次微粒子 16blを対象とす ればよい。
[0098] 微粒子 16bには、例えば無機酸化物、金属窒化物、金属炭化物、炭素化合物及び 硫ィ匕物の群カゝら選ばれる少なくとも 1種類の無機材料を用いればょ ヽ。
[0099] 無機酸化物には、酸化チタン(屈折率: 2. 2〜2. 5)、酸化タンタル(屈折率 2. 0〜 2. 3)、酸化ニオブ (屈折率 2. 1〜2. 3)、酸ィ匕タングステン (屈折率 2. 2)、酸化ジル コニゥム (屈折率 2. 1)、酸ィ匕亜鉛 (屈折率 1. 9〜2. 0)、酸化インジウム (屈折率 2. 0)、酸化スズ (屈折率 2. 0)、酸ィ匕ハフニウム (屈折率 2. 0)、酸化イットリウム (屈折率 1. 9)、酸ィ匕シリコン (屈折率 1. 4〜1. 5)又は酸ィ匕アルミニウム (屈折率 1. 7〜1. 8) 等を用いることができる。また、これらの複合無機酸ィ匕物を用いることもできる。金属 窒化物には、窒化シリコン (屈折率 1. 9〜2. 0)等が挙げられる。金属炭化物には、 炭化シリコン (屈折率 2. 6)等が挙げられる。炭素化合物には、炭素単体ではあるが 、ダイヤモンド (屈折率 3. 0)又はダイヤモンド'ライク'カーボン (屈折率 3. 0)等の透 光性を有する無機材料が挙げられる。また、硫ィ匕物には、硫化銅又は硫化スズ等が 挙げられる。なお、各無機材料名に付した屈折率は、 LEDチップ 12からの放射光す なわち青色光城から紫外域までの波長を持つ放射光に対する屈折率を示している。
[0100] さらに、微粒子 16bには、封止材 16dを高屈折率ィ匕するための無機化合物として、 上述した酸化チタン、酸化タンタル、酸化ジルコニウム及び酸化亜鉛からなる群より 選ばれる少なくとも 1つの酸ィ匕物を主成分とする無機粒子を用いることができる。これ らの無機粒子は、市販品の種類が多ぐ入手しやすいという利点がある。
[0101] 但し、注意すべきこととして、酸化チタンのように紫外線によって光触媒作用を発現 しゃすい無機化合物については、強い光触媒作用を有するアナターゼ結晶構造で はなぐルチル結晶構造を持つ化合物を用いる力、非晶質又は微粒子の表面に酸 化シリコン (SiO )又は酸ィ匕アルミニウム (アルミナ: AI O )等の光触媒作用が不活
2 2 3
性な無機化合物により微粒子の表面が修飾された材料を用いる必要がある。 [0102] コンポジット材料よりなる封止材 16dに占める微粒子 16bの割合は、 5体積%以上 且つ 60体積%以下が好ましい。微粒子 16bの割合が高くなり過ぎると、封止材 16d の透明性が低下し、逆に、微粒子 16bの割合が低くなり過ぎると、微粒子 16bを添カロ する効果が小さくなる。
[0103] 図 4に、例えば、母材 16aの材料として、屈折率がそれぞれ 1. 4、 1. 5及び 1. 6の 材料を用い、微粒子 16bの材料として酸ィ匕チタン (TiO ) (屈折率 2. 4)を用いた場
2
合において、コンポジット材料よりなる封止材 16dに占める微粒子 16bの割合に対す る該コンポジット材料の屈折率 nの変化を計算した結果を示す。計算は以下の式(1 ) (Maxwell—Garnettの理論)を用いて行なった。なお、コンポジット材料の屈折率 とは、コンポジット材料を 1つの屈折率を有する媒体とみなしたときの実効的な屈折率 をいう。
[0104] n 2=n 2 X {n 2+ 2n 2+ 2P (n 2— n 2) }
c 2 1 2 1 1 2
/{n 2+ 2n 2-P (n 2-n 2) } (1)
1 2 1 1 2
ここで、 nはコンポジット材料の屈折率であり、 nは微粒子 16bの屈折率であり、 n c 1 2 は母材 16aの屈折率であり、 Pはコンポジット材料に占める微粒子 16bの割合 (体積 比)である。
[0105] 図 4力ら、コンポジット材料の屈折率を 1. 8以上とするには、母材 16aの屈折率が 1 . 4、 1. 5及び 1. 6の場合には、コンポジット材料に占める微粒子 16bの割合をそれ ぞれ、 46体積%、 37体積%及び 28体積%とすればよいことが分かる。ここで、一般 的な光学樹脂の屈折率の値は 1. 4から 1. 7の範囲であるため、屈折率の値を 1. 7を 超えて 1. 8以上とすることは、光学榭脂のみでは実現が極めて難しい。従って、母材 16aに用いる材質と微粒子 16bの材質とによって有効範囲は異なるものの、微粒子 1 6bのコンポジット材料に占める割合は 5体積%以上且つ 60体積%以下とすることが 好ましい。また、 10体積%以上且つ 50体積%以下がより好ましい。さらに、屈折率 1 . 4から 1. 55の範囲の汎用的な光学榭脂を母材 16aとして用いた場合には、おおよ そ 20体積%以下且つ 40体積%以下とすることがさらに好ましい。
[0106] 蛍光材 16cの材料には、 LEDチップ 12が青色の放射光を出力する場合には、黄 色光を得られる YAG : Ce等の蛍光材を用いればよい。また、紫色域から紫外域の放 射光を出力する場合には、蛍光材 16cとして複数種類の蛍光材を用いる。具体的に は、赤色用として Y O S :Euを、緑色用として ZnS : Cu, A1又は(Ba, Mg)Al O :
2 2 10 17
Eu, Mnを、青色用として(Sr, Ca, Ba, Mg) (PO ) C : Eu又は(Ba, Mg)Al O
10 4 6 12 10
: Euをそれぞれ用いることができる。
17
[0107] 第 1の実施形態に係る半導体発光装置によると、封止部 16を構成する封止材 16d 中に無機材料よりなる微粒子 16bを均一に分散するように添加して ヽるため、微粒子 16bを添加しない場合と比べて、封止部 16における耐光性及び耐熱性が向上する。 また、分散された微粒子 16bの実効粒径が LEDチップ 12 (半導体チップ)から放射さ れる放射光の波長の 4分の 1以下に設定されているため、封止部 16の透明性が損な われず、従って、光取り出し効率が損なわれことがない。
[0108] さらに、微粒子 16bを添カ卩しない場合と比べて、封止部 16と LEDチップ 12との間 の熱膨張係数の差が小さくなるため、封止部 16が LEDチップ 12から剥離したり、封 止部 16 (封止材 16d)にクラックが生じたりしに《なる。
[0109] また、封止部 16における放射光に対する屈折率が微粒子 16bを添加しない場合と 比べて高くなるため、光取り出し効率がさらに向上する。
[0110] なお、封止部 16に添加する微粒子 16bに、紫外域の光を吸収可能な酸化亜鉛 (Z ηθ)、酸ィ匕チタン (TiO )又は酸ィ匕セリウム(CeO )を用いると、封止材 16dの母材
2 2
16aがエポキシ榭脂等の有機高分子材料力もなる場合に、紫外光による変色を抑制 することができる。
[0111] さらに、チップ固着用ペースト材 13に透明性を持たせると、該チップ固着用ペース ト材 13には LEDチップ 12からの放射光が吸収されな 、ため、光取り出し効率が向上 する。なお、透明性を有するチップ固着用ペースト材 13は、例えばエポキシ榭脂又 はシリコーン榭脂を主成分とする透明なペースト材、低融点ガラス材又はシロキサン 結合を有する化合物を触媒で反応させる第 1工程と、該第 1工程における反応物を 加水分解及び脱水縮合反応させる第 2工程と、該第 2工程の生成物を乾燥させること により得られる低温硬化ガラス材に、紫外光を吸収する微粒子 16bを添加してコンポ ジッ卜材とすると得ることができる。
[0112] また、チップ固着用ペースト材 13に微粒子 16bを添加することにより、該チップ固着 用ペースト材 13の放熱性が向上すると共に、微粒子 16bが紫外光を吸収するため、 チップ固着用ペースト材 13の耐光性 (耐 UV性)も向上する。
[0113] (第 2の実施形態)
以下、本発明の第 2の実施形態に係る半導体発光装置について図面を参照しなが ら説明する。
[0114] 図 5は本発明の第 2の実施形態に係る半導体発光装置である白色 LED装置の模 式的な断面構成を示している。なお、図 1に示した構成要素と同一の構成要素には 同一の符号を付すことにより説明を省略する。
[0115] 図 5に示すように、第 2の実施形態に係る半導体発光装置 20は、封止部 26が、第 1 のリードフレーム 11Aのダイパッド部上に保持された LEDチップ 12を直接に覆う第 1 の封止部 26Aと、該第 1の封止部 26Aを含む第 1のリードフレーム 11A及び第 2のリ ードフレーム 11Bの各上端部を砲弾状に覆う第 2の封止部 26Bとから構成されて 、る
[0116] 第 1の封止部 26Aは、第 1の実施形態に係る微粒子 16bを含むコンポジット材料か らなる封止材 16dにより構成され、第 2の封止部 26Bは、蛍光材 16cが混鍊された榭 脂材 25により構成されている。榭脂材 25の材料には、第 1の実施形態に係る母材 1 6aと同一の材料を用いればよい。
[0117] 第 2の実施形態に係る半導体発光装置 20によると、 LEDチップ 12の近くで光密度 が比較的に高い部分に、コンポジット材料力もなる封止材 16dよりなる第 1の封止部 2 6Aを設けることにより、第 1の実施形態と同様に、 LEDチップ 12からの高い光取り出 し効率を実現できると共に、高 、耐光性及び耐熱性が得られる。
[0118] また、 LEDチップ 12から離れた位置で光密度が比較的に低い部分に、封止材 16 dよりも透明性が高い榭脂材 25よりなる第 2の封止部 26Bを第 1の封止部 26Aを覆う ように設けることにより、第 2の封止部 26Bにおける光の透過性を向上することができ る。その結果、半導体発光装置 20からの光取り出し効率を向上させることができる。
[0119] なお、 LEDチップ 12の放射光力 青色域の波長よりも長い場合に、第 1の封止部 2 6Aに添加する微粒子 16bに、紫外光を吸収可能な酸化亜鉛、酸化チタン又は酸ィ匕 セリウムを用いると、第 1の封止部 26Aを構成する母材 16aの紫外光による劣化を抑 制することができる。その結果、母材 16aには、透明性に優れるものの、紫外光により 黄変し易い例えばエポキシ榭脂を用いることができるようになる。
[0120] (第 3の実施形態)
以下、本発明の第 3の実施形態に係る半導体発光装置について図面を参照しなが ら説明する。
[0121] 図 6は本発明の第 3の実施形態に係る半導体発光装置である白色 LED装置の模 式的な断面構成を示している。ここでも、図 1に示した構成要素と同一の構成要素に は同一の符号を付すことにより説明を省略する。
[0122] 図 6に示すように、第 3の実施形態に係る半導体発光装置 30は、 LEDチップ 12が 、基板 31と該基板 31の表面及び裏面に選択的に形成された少なくとも第 1の配線 3 2A及び第 2の配線 32Bとを有するプリント配線基板上に実装されている。
[0123] 具体的には、 LEDチップ 12は、第 1の配線 32A上にチップ固着用ペースト材 13に より固着されており、 LEDチップ 12の上面に形成された第 1の電極 14A及び第 2の 電極 14Bのうち、第 1の電極 14Aは第 1のワイヤ 15Aを介在させて第 1の配線 32Aと 電気的に接続され、第 2の電極 14Bは第 2のワイヤ 15Bを介在させて第 2の配線 32B と電気的に接続されている。
[0124] 封止部 16は、母材 16a及び該母材 16aの内部に均一に分散された無機材料よりな る微粒子 16bを含むコンポジット材料力もなる封止材 16dと、蛍光材 16cとにより構成 されている。封止部 16を構成する材料には、第 1の実施形態の封止部 16を構成する 材料と同様の材料を用いればょ 、。
[0125] 第 1の配線 32A及び第 2の配線 32Bとそれぞれ電気的に接続された LEDチップ 1 2は、プリント配線基板上において、封止部 16によりその周囲を封止されている。
[0126] なお、第 1の配線 32A及び第 2の配線 32Bは、例えばめつき法により銅 (Cu)薄膜 力もなる配線を基板 31上に形成し、形成した配線の上にめっき法によりニッケル (Ni )と金 (Au)とを順次成膜することにより形成できる。
[0127] このように、第 3の実施形態に係る半導体発光装置 30は、プリント配線基板上に LE Dチップ 12を実装した後に、母材 16aと微粒子 16bとを含むコンポジット材料と蛍光 材 16cとを混合してなる材料をトランスファーモールドすることにより実現される。 [0128] これにより、第 3の実施形態に係る半導体発光装置 30においても、第 1の実施形態 に係る半導体発光装置 10と同様に、封止部 16における耐光性及び耐熱性が向上 すると共に、光取り出し効率が向上すると 、う効果を得ることができる。
[0129] (第 4の実施形態)
以下、本発明の第 4の実施形態に係る半導体発光装置について図面を参照しなが ら説明する。
[0130] 図 7は本発明の第 4の実施形態に係る半導体発光装置である白色 LED装置の模 式的な断面構成を示している。ここでも、図 1に示した構成要素と同一の構成要素に は同一の符号を付すことにより説明を省略する。
[0131] 図 7に示すように、第 4の実施形態に係る半導体発光装置 40は、 LEDチップ 12が 、基板 31と該基板 31の表面及び裏面に選択的に形成された少なくとも第 1の配線 3 2A及び第 2の配線 32Bとを有するプリント配線基板上に、 LEDチップ 12の上面を基 板 31の主面と対向させる、いわゆるフリップチップ実装 (フェイスダウン)法により実装 されている。
[0132] 具体的には、 LEDチップ 12に形成され、基板 31とそれぞれ対向する第 1の電極 1 4A及び第 2の電極 14Bのうち、第 1の電極 14Aは第 1のバンプ 41 Aを介在させて第 1の配線 32Aと電気的に接続され、第 2の電極 14Bは第 2のバンプ 41Bを介在させ て第 2の配線 32Bと電気的に接続されている。
[0133] 第 1の配線 32A及び第 2の配線 32Bとそれぞれ電気的に接続された LEDチップ 1 2は、プリント配線基板上において、封止部 16によりその周囲を封止されている。
[0134] 封止部 16は、母材 16a及び該母材 16aの内部に均一に分散された無機材料よりな る微粒子 16bを含むコンポジット材料力もなる封止材 16dと、蛍光材 16cとにより構成 されている。封止部 16を構成する材料には、第 1の実施形態の封止部 16を構成する 材料と同様の材料を用いればょ 、。
[0135] なお、第 1のバンプ 41A及び第 2のバンプ 41Bの構成材料には、例えば金 (Au)を 用!/、ることができる。
[0136] このように、第 4の実施形態に係る半導体発光装置 40は、プリント配線基板上に LE Dチップ 12をフリップチップ実装した後に、母材 16aと微粒子 16bとを含むコンポジッ ト材料と蛍光材 16cとを混合してなる材料をトランスファーモールドすることにより実現 される。
[0137] 従って、第 4の実施形態に係る半導体発光装置 40においても、第 1の実施形態及 び第 3の実施形態に係る半導体発光装置 10、 30と同様に、封止部 16における耐光 性及び耐熱性が向上すると共に、光取り出し効率が向上するという効果を得ることが できる。
[0138] また、第 4の実施形態に係る半導体発光装置 40は、 LEDチップ 12とプリント配線 基板との電気的な接続にワイヤではなくバンプを用いているため、第 3の実施形態に 係る半導体発光装置 30と比較して、薄型化を実現できる。
[0139] (第 5の実施形態)
以下、本発明の第 5の実施形態に係る半導体発光装置について図面を参照しなが ら説明する。
[0140] 図 8は本発明の第 5の実施形態に係る半導体発光装置である白色 LED装置の模 式的な断面構成を示している。ここでも、図 1に示した構成要素と同一の構成要素に は同一の符号を付すことにより説明を省略する。
[0141] 図 8に示すように、第 5の実施形態に係る半導体発光装置 50は、 LEDチップ 12が 、凹部 51aを有するケース材 51における凹部 51aの底面上に固着されている。ケー ス材 51は、例えば液晶ポリマ等の耐熱性榭脂材よりなり、少なくとも第 1のリード 52A 及び第 2のリード 52Bがインサート形成されている。なお、可視光に対する反射を考 えると、白色の耐熱性榭脂材を用いることが好ましい。
[0142] 第 1のリード 52A及び第 2のリード 52Bは、ケース材 51の凹部の 51aの底面から露 出しており、 LEDチップ 12は、第 1のリード 52Aの露出した領域上にチップ固着用ぺ 一スト材 13により固着されている。
[0143] LEDチップ 12の上面に形成された第 1の電極 14A及び第 2の電極 14Bのうち、第 1の電極 14Aは第 1のワイヤ 15Aを介在させて第 1のリード 52Aと電気的に接続され 、第 2の電極 14Bは第 2のワイヤ 15Bを介在させて第 2のリード 52Bと電気的に接続さ れている。
[0144] 第 5の実施形態においては、ケース材 51の凹部 51aの底面上に固着された LED チップ 12を、封止部 16によってケース材 51の凹部 51aを充填することにより封止して いる。
[0145] 封止部 16は、母材 16a及び該母材 16aの内部に均一に分散された無機材料よりな る微粒子 16bを含むコンポジット材料力もなる封止材 16dと、蛍光材 16cとにより構成 されている。封止部 16を構成する材料には、第 1の実施形態の封止部 16を構成する 材料と同様の材料を用いればょ 、。
[0146] なお、ここでは、第 1のリード 52A及び第 2のリード 52Bのうち、ケース材 51の外部 部分は、いわゆるガルウィング (Gull Wing : GW)型の端子形状)としている。但し、各 リード 52A、 52Bの外側の形状は GW型に限られず、 J字形状となるように成型しても よい。
[0147] このように、第 5の実施形態に係る半導体発光装置 50においても、第 1の実施形態 、第 3の実施形態及び第 4の実施形態に係る半導体発光装置 10、 30、 40と同様に、 封止部 16における耐光性及び耐熱性が向上すると共に、光取り出し効率が向上す るという効果を得ることができる。
[0148] なお、第 3、第 4及び第 5の各実施形態に係る封止部 16に代えて、第 2の実施形態 に係る第 1の封止部 26A及び第 2の封止部 26Bのように、 LEDチップ 12を無機材料 よりなる微粒子 16bを含む封止材 16dにより直接に覆い、この封止材 16dを蛍光材 1 6cを含む母材 16aにより覆う構成としてもよ ヽ。
[0149] また、第 1〜第 5の各実施形態において、コンポジット材料と半導体チップとの間の 少なくとも一部に所定の空間を設けてもよい。
[0150] 図 9 (a)は第 5の実施形態に係る半導体発光装置 50における LEDチップ 12を構成 する基板の材料ごとにシミュレーションにより求めた、封止部 16の屈折率と出射光の 全光束の変化率との関係を示し、図 9 (b)は同様のシミュレーションにより求めた、封 止部 16の屈折率と全光束との関係を示している。ここで、シミュレーションに用いた基 板材料は [表 1]の通りである。また、 [表 1]に示す各基板材料ごとの屈折率は、可視 光領域での各基材の代表的な値である。
[0151] [表 1] 基板材料 屈折率
GaN 2.5
ZnSe 2.5
SiC 2.6
サファイア 1 .7
GaP 3.3
InGaAIP 3.45
GaAs 3.66
ZnO 2.1 5
[0152] 図 9 (a)及び図 9 (b)から分力るように、封止部 16の屈折率は 1. 2以上且つ 2. 5以 下が好ましい。また、基板材料に屈折率が 2. 0よりも大きい酸ィ匕亜鉛 (ZnO)、窒化 ガリウム (GaN)又は炭化ケィ素(SiC)等を用いる場合には、封止部 16の屈折率は 1 . 4以上且つ 2. 2以下が好ましぐさらには、 1. 6以上且つ 2. 0以下が好ましい。
[0153] (第 6の実施形態)
以下、本発明の第 6の実施形態に係る半導体発光装置について図面を参照しなが ら説明する。
[0154] 図 10は本発明の第 6の実施形態に係る半導体発光装置である白色 LED装置の模 式的な断面構成を示している。ここでも、図 1及び図 6に示した構成要素と同一の構 成要素には同一の符号を付すことにより説明を省略する。
[0155] 図 10に示すように、第 6の実施形態に係る半導体発光装置 30Aは、第 3の実施形 態と同様に、 LEDチップ 12が、基板 31と該基板 31の表面及び裏面に選択的に形 成された少なくとも第 1の配線 32A及び第 2の配線 32Bとを有するプリント配線基板 上に、 LEDチップ 12の裏面を基板 31の主面と対向させる、いわゆるジャンクションァ ップ (フェイスアップ)実装されて 1、る。
[0156] 封止部 26は、半導体発光装置チップ 12を直接に且つ半球状に覆う第 1の封止部 26Aと、該第 1の封止部 26Aを直接に且つ半球状に覆う第 2の封止部 26Bとから構 成されている。
[0157] 第 1の封止部 26Aは、母材 16a及び該母材 16aの内部に均一に分散された無機材 料よりなる第 1の微粒子 16bを含むコンポジット材料からなる封止材 16dと、蛍光材 1 6cとにより構成されている。
[0158] 第 2の封止部 26Bは、母材 16a及び該母材 16aの内部に均一に分散された無機材 料よりなる第 2の微粒子 17bを含むコンポジット材料力もなる封止材 16dと、蛍光材 1 6cとにより構成されている。ここで、第 1の封止部 26A及び第 2の封止部 26Bを構成 する材料には、第 1の実施形態の封止部 16を構成する材料と同様の材料を用 ヽれ ばよい。但し、第 6の実施形態においては、第 1の微粒子 16bの屈折率は、第 2の微 粒子 17bの屈折率よりも大きい材料が選択される。
[0159] ところで、 LEDチップ 12が、結晶成長用の基板 (ェピタキシャル基板)を含め、窒化 ガリウム (GaN)系半導体力もなる場合は、 [表 1]に示したように、 GaNの屈折率は約 2. 5であり、微粒子を添加することにより、封止部の屈折率を最も取り出し効率が高 い 1. 8程度に設定したとしても、該封止部の屈折率と空気の屈折率との差は大きい。
[0160] そこで、第 6実施形態においては、 LEDチップ 12に近い第 1の封止部 26Aの屈折 率の値を、 LEDチップ 12から遠い第 2の封止部 26Bの屈折率の値よりも大きくしてい る。具体的には、第 2の封止部 26Bに添加する第 2の微粒子 17bとして、第 1の封止 部 26Aに添加する第 1の微粒子 16bの屈折率よりも小さい屈折率を持つ無機材料を 用いている。
[0161] この構成により、空気と接する第 2の封止部 26Bの屈折率力 LEDチップ 12と接す る第 1の封止部 26Aの屈折率よりも小さくなるため、第 2の封止部 26Bの屈折率と空 気の屈折率との差が小さくなる。このため、第 2の封止部 26Bの空気との界面におけ る出射光の全反射を低減することができるので、封止部 26における耐光性及び耐熱 性が向上すると共に、光取り出し効率をより一層向上することができる。
[0162] また、第 6の実施形態においては、第 1の封止部 26A及び第 2の封止部 26Bの外 形状を共に、例えばポッティング法により半球状としているため、出射光の全反射が さらに低減される。
[0163] なお、ここでは、第 1の封止部 26A及び第 2の封止部 26Bのいずれにも、蛍光材 16 cを添カ卩して!/、るが、蛍光材 16cは!、ずれか一方にのみ添カ卩してもよ!、。
[0164] (第 6の実施形態の第 1変形例)
図 11は本発明の第 6の実施形態の第 1変形例に係る半導体発光装置である白色
LED装置の模式的な断面構成を示して 、る。
[0165] 図 11に示すように、第 1変形例に係る半導体発光装置 30Bは、 LEDチップ 12を直 接に覆う第 1の封止部 26Aの断面の外形状を四角形状としている。
[0166] これにより、第 1の封止部 26Aは封止材 16dの形成法として、印刷法を用いることが できるため、生産性が向上する。
[0167] (第 6の実施形態の第 2変形例)
図 12は本発明の第 6の実施形態の第 2変形例に係る半導体発光装置である白色
LED装置の模式的な断面構成を示して 、る。
[0168] 図 12に示すように、第 2変形例に係る半導体発光装置 30Cは、 LEDチップ 12を直 接に覆う第 1の封止部 26Aと、該第 1の封止部を覆う第 2の封止部 26Bの断面の外 形状を共に四角形状としている。
[0169] これにより、第 1の封止部 26Aは封止材 16dの形成法として、印刷法を用いることが でき、また、第 2の封止部 26Bはトランスファーモールド法により形成できるため、生 産性が向上する。その上、封止部 26の上面が平坦となるため、デバイスとしての扱い が容易となる。
[0170] (第 6の実施形態の第 3変形例)
図 13は本発明の第 6の実施形態の第 3変形例に係る半導体発光装置である白色
LED装置の模式的な断面構成を示して 、る。
[0171] 図 13に示すように、第 3変形例に係る半導体発光装置 30Dは、 LEDチップ 12を直 接に覆う第 1の封止部 26Aの外形状を半球状とし、該第 1の封止部 26Aを覆う第 2の 封止部 26Bの断面の外形状を四角形状としている。
[0172] これにより、半球状の外形を持つ第 1の封止部 26Aにより全反射が低減されると共 に、平坦な上面を持つ第 2の封止部 26Bにより、デバイスとしての扱いが容易となる。
[0173] (第 6の実施形態の第 4変形例)
図 14は本発明の第 6の実施形態の第 4変形例に係る半導体発光装置である白色 LED装置の模式的な断面構成を示して 、る。
[0174] 図 14に示すように、第 4変形例に係る半導体発光装置 50Aは、第 5の実施形態と 同様に、 LEDチップ 12が、凹部 51aを有するケース材 51における凹部 51aの底面 上にフェイスアップ法により固着されて 、る。
[0175] ここでは、 LEDチップ 12を直接に覆う第 1の封止部 26A及び該第 1の封止部 26A を覆う第 2の封止部 26Bの断面形状は、共に四角形状である。
[0176] 本変形例においては、ケース材 51に白色の耐熱性榭脂材を用いると、さらにはケ ース材 51の内壁面上に金属、例えばアルミニウム (A1)の蒸着等によるメタライジング を行なうことによって、該ケース材 51の内壁面は反射面として機能する。その上、ケ ース材 51の内壁面を下方から上方に向けて拡がる逆テーパ状として 、るため、封止 部 26を第 1の微粒子 16b及び第 2の微粒子 17bによる屈折率差を設ける構成だけで なぐケース材 51及びその形状によっても、光の取り出し効率が向上する。
[0177] なお、第 1の封止部 26Aの形成に印刷法を用いる場合で、ケース材 51の凹部 51a の底面上に直接に印刷できない場合には、例えば、サブマウント材の上にあら力じめ LEDチップ 12を実装しておき、第 1の封止部 26Aを印刷法により形成した後、該サ ブマウント材をケース材 51の底面上に実装すればよい。
[0178] 図 15 (a)及び図 15 (b)は第 6の実施形態の第 4変形例に係る半導体発光装置 50 Aにおいて、第 1の封止部 26A及び第 2の封止部 26Bの各屈折率と光取り出し効率 との関係をシミュレーションにより求めた結果を示す。ここで、図 15 (a)は LEDチップ 12を構成する基板材料に GaNを用いた場合であり、図 15 (b)は基板材料にサフアイ ァを用いた場合である。ここで、第 1の封止部 26Aの厚さは 500 mとし、第 2の封止 咅 26Bの厚さは 200 μ mとして!/、る。
[0179] 図 15 (a)及び図 15 (b)から分力るように、 LEDチップ 12の基板に GaNを用いた場 合は、第 1の封止部 26Aの屈折率が大きい程、光取り出し効率は高くなり、 LEDチッ プ 12の基板にサファイアを用いた場合は、第 1の封止部 26Aの屈折率の変化の影 響は小さい。
[0180] また、基板が GaNであってもサファイアであっても、第 2の封止部 26Bの屈折率が 小さい程、光取り出し効率は高くなるが、第 1の封止部 26Aの屈折率の変化に対す る光取り出し効率の変化率は小さくなる。
[0181] (第 6の実施形態の第 5変形例)
図 16は本発明の第 6の実施形態の第 5変形例に係る半導体発光装置である白色 LED装置の模式的な断面構成を示して 、る。
[0182] 図 16に示すように、第 5変形例に係る半導体発光装置 50Bは、 LEDチップ 12が、 凹部 51aを有するケース材 51における凹部 51aの底面上に固着されている。
[0183] ここでは、 LEDチップ 12を直接に覆う第 1の封止部 26Aの外形状を半球状とし、該 第 1の封止部 26Aを覆う第 2の封止部 26Bの断面の外形状を四角形状としている。
[0184] これにより、外形が半球状の第 1の封止部 26Aにより反射が低減されると共に、ケ ース材 51により光取り出し効率が向上する。
[0185] (第 6の実施形態の第 6変形例)
図 17は本発明の第 6の実施形態の第 6変形例に係る半導体発光装置である白色 LED装置の模式的な断面構成を示して 、る。
[0186] 図 17に示すように、第 6変形例に係る半導体発光装置 50Cは、第 2の封止部 26B の封止材 16dに添カ卩される微粒子 16dを、第 1の封止部 26Aの封止材 16dに添カロさ れる微粒子 16dと同一の組成とすると共に、第 1の封止部 26Aにおける微粒子 16b の封止材 16dに占める割合を、第 2の封止部 26Bにおける微粒子 16bの封止材 16d に占める割合よりも高くしている。すなわち、第 2の封止部 26Bにおける微粒子 16b の添加濃度を、第 1の封止部 26Aにおける微粒子 16bの添加濃度よりも小さくしてい る。ここで、添加濃度に差を設けるには、濃度勾配を持たせてもよぐまた、段階的に 変化させてもよい。
[0187] このようにしても、第 2の封止部 26Bの屈折率力 第 1の封止部 26Aの屈折率よりも 小さくなる。
[0188] なお、本変形例においては、第 1の封止部 26Aに添加する微粒子 16bと第 2の封 止部 26Bに添加する微粒子 16bとに同一組成の無機材料を用いて、添加濃度のみ を変更したが、これに代えて、第 2の封止部 26Bの屈折率が第 1の封止部 26Aの屈 折率よりも小さくなる限りにおいて、第 1の封止部 26 Aに添加する微粒子 16bと第 2の 封止部 26Bに添加する微粒子 16bとの組成及び濃度を変えてもよい。 [0189] また、図 17には LEDチップ 12を直接に覆う第 1の封止部 26Aの外形状を半球状と した場合を示したが、第 6の実施形態の第 4変形例で説明した図 14と同様に第 1の 封止部 26Aの断面の外形状を四角形状としてもよい。
[0190] また、第 6の実施形態及び第 6の実施形態の第 1〜第 3変形例においても、本変形 例と同様に、第 2の封止部 26Bの封止材 16dに添加される微粒子 17dを微粒子 16d に置き換え、第 1の封止部 26Aの封止材 16dに添加される微粒子 16dと同一の組成 とすると共に、第 1の封止部 26Aにおける微粒子 16bの封止材 16dに占める割合を、 第 2の封止部 26Bにおける微粒子 16bの封止材 16dに占める割合よりも高くしてもよ い。
[0191] (第 6の実施形態の第 7変形例)
第 6の実施形態及び各変形例においては、第 1の封止部 26A及び第 2の封止部 2
6Bのいずれにも、蛍光材 16cを添カ卩している力 いずれか一方でもよい。
[0192] 図 18に示す第 7変形例に係る半導体発光装置 50Dは、 LEDチップ 12として、例え ば緑色光を発光可能なリンィ匕ガリウム (GaP)系半導体を用いており、この場合には、 封止部 26に蛍光材 16cを添加する必要はない。
[0193] LEDチップ 12に、 GaP系半導体を用いる場合には、第 1の電極 14Aと第 2の電極
14Bとは LEDチップ 12の下面と上面にそれぞれ対向して形成される。第 1の電極 14
Aは Agペースト材等の導電性を有するチップ固着用ペースト材 13を介在させて第 1 のリード 52Aと電気的に接続されると共に、第 2の電極 14Bはワイヤ 15Bを介在させ て第 2のリード 52Bと電気的に接続される。
[0194] なお、第 6の実施形態及びその変形例においては、封止部 26を第 1の封止部 26A 及び第 2の封止部 16Bの 2層構造としたが、 2層構造に限られず、 3層以上の積層構 造としてもよい。但し、 3層以上の積層構造とする場合には、 LEDチップ 12から離れ るにつれて、各封止部の屈折率を低減させる必要がある。
[0195] (第 7の実施形態)
以下、本発明の第 7の実施形態に係る半導体発光装置について図面を参照しなが ら説明する。
[0196] 図 19は本発明の第 7の実施形態に係る半導体発光装置である白色 LED装置の模 式的な断面構成を示している。ここでも、図 1及び図 7に示した構成要素と同一の構 成要素には同一の符号を付すことにより説明を省略する。
[0197] 図 19に示すように、第 7の実施形態に係る半導体発光装置 40Aは、第 4の実施形 態と同様に、 LEDチップ 12が、基板 31と該基板 31の表面及び裏面に選択的に形 成された少なくとも第 1の配線 32A及び第 2の配線 32Bとを有するプリント配線基板 上に、 LEDチップ 12の上面を基板 31の主面と対向させることにより、フリップチップ 実装されている。
[0198] 封止部 26は、半導体発光装置チップ 12を直接に且つ半球状に覆う第 1の封止部 26Aと、該第 1の封止部 26Aを直接に且つ半球状に覆う第 2の封止部 26Bとから構 成されている。
[0199] 第 1の封止部 26Aは、母材 16a及び該母材 16aの内部に均一に分散された無機材 料よりなる第 1の微粒子 16bを含むコンポジット材料からなる封止材 16dと、蛍光材 1 6cとにより構成されている。
[0200] 第 2の封止部 26Bは、母材 16a及び該母材 16aの内部に均一に分散された無機材 料よりなる第 2の微粒子 17bを含むコンポジット材料力もなる封止材 16dと、蛍光材 1 6cとにより構成されている。ここで、第 1の封止部 26A及び第 2の封止部 26Bを構成 する材料には、第 1の実施形態の封止部 16を構成する材料と同様の材料を用 ヽれ ばよい。但し、第 1の微粒子 16bの屈折率は、第 2の微粒子 17bの屈折率よりも大き Vヽ材料を選択する必要がある。
[0201] これにより、第 7実施形態においても、第 6の実施形態と同様に、 LEDチップ 12に 近い内側の第 1の封止部 26Aの屈折率の値力 LEDチップ 12から遠い外側の第 2 の封止部 26Bの屈折率の値よりも大きくなる。
[0202] すなわち、この構成により、空気と接する第 2の封止部 26Bの屈折率力 LEDチッ プと接する第 1の封止部 26Aの屈折率よりも小さくなるため、第 2の封止部 26Bの屈 折率と空気の屈折率との差が小さくなる。このため、第 2の封止部 26Bの空気との界 面における出射光の全反射を低減することができるので、封止部 16における耐光性 及び耐熱性が向上すると共に、光取り出し効率をより一層向上することができる。
[0203] また、本実施形態においては、第 1の封止部 26A及び第 2の封止部 26Bの外形状 を共に、例えばポッティング法により半球状にしているため、出射光の全反射がさら に低減される。
[0204] なお、第 7の実施形態においては、第 1の封止部 26A及び第 2の封止部 26Bのい ずれにも、蛍光材 16cを添カ卩している力 蛍光材 16cはいずれか一方にのみ添カロし てもよい。
[0205] (第 7の実施形態の第 1変形例)
図 20は本発明の第 7の実施形態の第 1変形例に係る半導体発光装置である白色
LED装置の模式的な断面構成を示して 、る。
[0206] 図 20に示すように、第 1変形例に係る半導体発光装置 40Bは、 LEDチップ 12を直 接に覆う第 1の封止部 26Aの断面の外形状を四角形状としている。
[0207] これにより、第 1の封止部 26Aは封止材 16dの形成法として、印刷法を用いることが できるため、生産性が向上する。
[0208] (第 7の実施形態の第 2変形例)
図 21は本発明の第 7の実施形態の第 2変形例に係る半導体発光装置である白色
LED装置の模式的な断面構成を示して 、る。
[0209] 図 21に示すように、第 2変形例に係る半導体発光装置 40Cは、 LEDチップ 12を直 接に覆う第 1の封止部 26Aと、該第 1の封止部を覆う第 2の封止部 26Bの断面の外 形状を共に四角形状としている。
[0210] これにより、第 1の封止部 26Aは封止材 16dの形成法として、印刷法を用いることが でき、また、第 2の封止部 26Bはトランスファーモールド法により形成できるため、生 産性が向上する。その上、封止部 26の上面が平坦となるため、デバイスとしての扱い が容易となる。
[0211] (第 7の実施形態の第 3変形例)
図 22は本発明の第 7の実施形態の第 3変形例に係る半導体発光装置である白色
LED装置の模式的な断面構成を示して 、る。
[0212] 図 22に示すように、第 3変形例に係る半導体発光装置 40Dは、 LEDチップ 12を直 接に覆う第 1の封止部 26Aの外形状を半球状とし、該第 1の封止部 26Aを覆う第 2の 封止部 26Bの断面の外形状を四角形状としている。 [0213] これにより、半球状の外形を持つ第 1の封止部 26Aにより全反射が低減されると共 に、平坦な上面を持つ第 2の封止部 26Bにより、デバイスとしての扱いが容易となる。
[0214] (第 7の実施形態の第 4変形例)
図 23は本発明の第 7の実施形態の第 4変形例に係る半導体発光装置である白色
LED装置の模式的な断面構成を示して 、る。
[0215] 図 23に示すように、第 4変形例に係る半導体発光装置 60は、 LEDチップ 12が、凹 部 51aを有するケース材 51における凹部 51aの底面上にフリップチップ実装されて いる。
[0216] ここでは、 LEDチップ 12を直接に覆う第 1の封止部 26A及び該第 1の封止部 26A を覆う第 2の封止部の断面形状は、共に四角形状である。
[0217] 本変形例にお!、ては、ケース材 51に白色の耐熱性榭脂材を用いると、該ケース材
51の内壁面は反射面として機能する。その上、ケース材 51の内壁面を下方力 上 方に向けて拡がる逆テーパ状としているため、封止部 26を第 1の微粒子 16b及び第
2の微粒子 17bによる屈折率差を設ける構成だけでなぐケース材 51及びその形状 によっても、光の取り出し効率が向上する。
[0218] (第 7の実施形態の第 5変形例)
図 24は本発明の第 7の実施形態の第 5変形例に係る半導体発光装置である白色
LED装置の模式的な断面構成を示して 、る。
[0219] 図 24に示すように、第 5変形例に係る半導体発光装置 60Aは、 LEDチップ 12が、 凹部 51aを有するケース材 51における凹部 51aの底面上に、サブマウント材 53を介 在させてフリップチップ実装されて 、る。
[0220] LEDチップ 12は、上面に少なくとも第 1のサブマウント電極 54A及び第 2のサブマ ゥント電極 54が形成された、例えばセラミックス力もなるサブマウント材 53の上にフリ ップチップ実装されている。
[0221] 具体的には、第 1の封止部 26Aは、印刷法により LEDチップ 12を覆うように形成さ れている。第 1の封止部 26Aに封止された LEDチップ 12を有するサブマウント材 53 は、ケース材 51の底面上に実装され、サブマウント材 53の上面に形成された第 1の サブマウント電極 54A及び第 2のサブマウント電極 54Bのうち、第 1のサブマウント電 極 54Aは第 1のワイヤ 15Aを介在させて第 1のリード 52Aと電気的に接続され、第 2 のサブマウント電極 54Bは第 2のワイヤ 15Bを介在させて第 2のリード 52Bと電気的 に接続されている。
[0222] なお、サブマウント材 53に、ツエナーダイオードを用いてもよい。
[0223] また、図 24には第 1の封止部 26Aの断面の外形状を四角形状とした場合を示した
1S 第 1の封止部 26Aの外形状を半球状としてもよい。
[0224] (第 7の実施形態の第 6変形例)
図 25は本発明の第 7の実施形態の第 6変形例に係る半導体発光装置である白色
LED装置の模式的な断面構成を示して 、る。
[0225] 図 25に示すように、第 6変形例に係る半導体発光装置 60Bは、 LEDチップ 12が、 凹部 51aを有するケース材 51における凹部 51aの底面上にフリップチップ実装され て固着されている。
[0226] ここでは、 LEDチップ 12を直接に覆う第 1の封止部 26Aの外形状を半球状とし、該 第 1の封止部 26Aを覆う第 2の封止部 26Bの断面の外形状を四角形状としている。
[0227] これにより、外形が半球状の第 1の封止部 26Aにより全反射が低減されると共に、 ケース材 51により光取り出し効率が向上する。
[0228] (第 7の実施形態の第 7変形例)
図 26は本発明の第 7の実施形態の第 7変形例に係る半導体発光装置である白色 LED装置の模式的な断面構成を示して 、る。
[0229] 図 26に示すように、第 7変形例に係る半導体発光装置 60Cは、第 2の封止部 26B の封止材 16dに添カ卩される微粒子 16bを、第 1の封止部 26Aの封止材 16dに添カロさ れる微粒子 16bと同一の組成とすると共に、第 1の封止部 26Aにおける微粒子 16b の封止材 16dに占める割合を、第 2の封止部 26Bにおける微粒子 16bの封止材 16d に占める割合よりも高くしている。すなわち、第 2の封止部 26Bにおける微粒子 16b の添加濃度を、第 1の封止部 26Aにおける微粒子 16bの添加濃度よりも小さくしてい る。ここで、添加濃度に差を設けるには、濃度勾配を持たせてもよぐまた、段階的に 変化させてもよい。
[0230] このようにしても、第 2の封止部 26Bの屈折率力 第 1の封止部 26Aの屈折率よりも 小さくなる。
[0231] なお、本変形例においては、第 1の封止部 26Aに添加する微粒子 16bと第 2の封 止部 26Bに添加する微粒子 16bとに同一組成の無機材料を用いて、その添加濃度 のみを変更したが、これに代えて、第 2の封止部 26Bの屈折率が第 1の封止部 26A の屈折率よりも小さくなる限りにおいて、第 1の封止部 26Aに添加する微粒子 16bと 第 2の封止部 26Bに添加する微粒子 16bとの組成及び濃度を変えてもよい。
[0232] また、図 26には LEDチップ 12を直接に覆う第 1の封止部 26Aの外形状を半球状と した場合を示したが、第 7の実施形態の第 4変形例で説明した図 23と同様に第 1の 封止部 26Aの断面の外形状を四角形状としてもよい。
[0233] また、第 7の実施形態及び第 7の実施形態の第 1〜第 3、第 5変形例においても、本 変形例と同様に、第 2の封止部 26Bの封止材 16dに添加される微粒子 17bを微粒子 16bに置き換えて、第 1の封止部 26Aの封止材 16dに添加される微粒子 16bと同一 の組成とすると共に、第 1の封止部 26Aにおける微粒子 16bの封止材 16dに占める 割合を、第 2の封止部 26Bにおける微粒子 16bの封止材 16dに占める割合よりも高く してちよい。
[0234] 第 7の実施形態及び各変形例においては、第 1の封止部 26A及び第 2の封止部 2 6Bの!、ずれにも蛍光材 16cを添カ卩して!/、るが、 、ずれか一方でもよ!/、。
[0235] なお、第 7の実施形態及びその変形例においては、封止部 26を第 1の封止部 26A 及び第 2の封止部 16Bの 2層構造としたが、 2層構造に限られず、 3層以上の積層構 造としてもよい。但し、 3層以上の積層構造とする場合には、 LEDチップ 12から離れ るにつれて、各封止部の屈折率を低減させる必要がある。
[0236] (第 8の実施形態)
以下、本発明の第 8の実施形態に係る半導体発光装置について図面を参照しなが ら説明する。
[0237] 図 27は本発明の第 8の実施形態に係る半導体発光装置である白色 LED装置の模 式的な断面構成を示している。ここでも、図 1及び図 6に示した構成要素と同一の構 成要素には同一の符号を付すことにより説明を省略する。
[0238] 図 27に示すように、第 8の実施形態に係る半導体発光装置 30Eは、第 3の実施形 態と同様に、 LEDチップ 12が、基板 31と該基板 31の表面及び裏面に選択的に形 成された少なくとも第 1の配線 32A及び第 2の配線 32Bとを有するプリント配線基板 上に、 LEDチップ 12の裏面を基板 31の主面と対向させる、いわゆるジャンクションァ ップ (フェイスアップ)実装されて 1、る。
[0239] 封止部 16は、母材 16a及び該母材 16aの内部に均一に分散された無機材料よりな る微粒子 16bを含むコンポジット材料力もなる封止材 16dと、蛍光材 16cとにより構成 されている。封止部 16を構成する材料には、第 1の実施形態の封止部 16を構成する 材料と同様の材料を用いればよい。但し、第 8の実施形態においては、微粒子 16b のコンポジット材料に占める割合を、 LEDチップ 12に近い内側領域がその外側領域 と比べて高くなるようにして 、る。
[0240] ところで、 LEDチップ 12が、結晶成長用の基板 (ェピタキシャル基板)を含め、窒化 ガリウム (GaN)系半導体力もなる場合は、 [表 1]に示したように、 GaNの屈折率は約 2. 5であり、微粒子を添加することにより、封止部の屈折率を最も取り出し効率が高 い 1. 8程度に設定したとしても、該封止部の屈折率と空気の屈折率との差は大きい。
[0241] そこで、第 8実施形態においては、封止部 16における LEDチップ 12に近い内側領 域の屈折率の値を、その外側領域の屈折率の値よりも大きくしている。具体的には、 封止部 16に添加する微粒子 16bの濃度を内側領域で高くし、外側に向けて微粒子 16bの濃度を低くすることにより、封止部 16の外側領域の屈折率をその内側領域より も小さくしている。このとき、微粒子 16bの濃度は内側から外側に向けて徐々に低くし てもよく、また、段階的に低くしてもよい。
[0242] 従って、この構成により、空気と接する封止部 16の外側領域の屈折率が、 LEDチ ップ 12と接する内側領域の屈折率よりも小さくなるため、封止部 16の外側領域の屈 折率と空気の屈折率との差が小さくなる。このため、封止部 16の空気との界面におけ る出射光の全反射を低減することができるので、封止部 16における耐光性及び耐熱 性が向上すると共に、光取り出し効率をより一層向上することができる。
[0243] また、本実施形態にぉ 、ては、封止部 16の外形状を共に、例えばポッティング法 により半球状にしているため、出射光の全反射がさらに低減される。ここで、微粒子 1 6bの添加濃度を内側領域で高ぐ外側領域で低くするには、硬化前の液状のコンポ ジット材料を複数回に分けてポッティングする方法が挙げられる。すなわち、外側領 域用のコンポジット材料における微粒子 16bの添加割合を、内側領域用のコンポジッ ト材料の添加割合よりも小さくしてポッティングすればよい。このとき、 2回目以降の微 粒子 16bとして、 1回目の微粒子 16bの屈折率よりも小さい屈折率を持つ無機材料か らなる他の微粒子を選択してもよい。その後、硬化することによってコンポジット材料 力もなる封止部 16とすることにより、本実施形態の構成を形成できる。
[0244] なお、第 8の実施形態においては、封止部 16に蛍光材 16cを含めた力 前述した ように、 LEDチップ 12に GaP系半導体を用いた緑色 LED装置等の場合には、封止 部 16に蛍光材 16cを含める必要はない。
[0245] (第 8の実施形態の第 1変形例)
図 28は本発明の第 8の実施形態の第 1変形例に係る半導体発光装置である白色 LED装置の模式的な断面構成を示して 、る。
[0246] 図 28に示すように、第 1変形例に係る半導体発光装置 30Fは、微粒子 16bの添カロ 濃度を外側に向けて漸減した封止部 16の断面の外形状を四角形状として 、る。
[0247] 本変形例に係る封止部 16における封止材 16dの形成法として、微粒子 16bの添カロ 濃度を、封止部 16の外側でその内側よりも小さくした複数回のトランスファーモール ド法を用 、ることができる。
[0248] (第 8の実施形態の第 2変形例)
図 29は本発明の第 8の実施形態の第 2変形例に係る半導体発光装置である白色 LED装置の模式的な断面構成を示して 、る。
[0249] 図 29に示すように、第 2変形例に係る半導体発光装置 50Eは、第 5の実施形態と 同様に、フェイスアップ法により、 LEDチップ 12力 凹部 5 laを有するケース材 51に おける凹部 51aの底面上に固着されている。
[0250] ここでは、 LEDチップ 12を封止部 16Aの断面形状は四角形状である。
[0251] 本変形例においては、ケース材 51に白色の耐熱性榭脂材を用いると、さらにはケ ース材 51の内壁に金属、例えば A1の蒸着等によってメタライジングを行なうことにより 、該ケース材 51の内壁面は反射面として機能する。その上、ケース材 51の内壁面を 下方から上方に向けて拡がる逆テーパ状としているため、微粒子 16bの添加濃度を 外側に向けて低減することにより、封止部 16に漸減する屈折率差を設けるだけでなく 、ケース材 51及びその形状によっても、光の取り出し効率が向上する。
[0252] なお、本変形例に係る封止部 16は、複数回のポッティング法により形成することが できる。
[0253] (第 9の実施形態)
以下、本発明の第 9の実施形態に係る半導体発光装置について図面を参照しなが ら説明する。
[0254] 図 30は本発明の第 9の実施形態に係る半導体発光装置である白色 LED装置の模 式的な断面構成を示している。ここでも、図 1及び図 7に示した構成要素と同一の構 成要素には同一の符号を付すことにより説明を省略する。
[0255] 図 30に示すように、第 9の実施形態に係る半導体発光装置 40Eは、第 4の実施形 態と同様に、 LEDチップ 12が、基板 31と該基板 31の表面及び裏面に選択的に形 成された少なくとも第 1の配線 32A及び第 2の配線 32Bとを有するプリント配線基板 上に、 LEDチップ 12の上面を基板 31の主面と対向させることにより、フリップチップ 実装されている。
[0256] 封止部 16は、母材 16a及び該母材 16aの内部に均一に分散された無機材料よりな る微粒子 16bを含むコンポジット材料力もなる封止材 16dと、蛍光材 16cとにより構成 されている。封止部 16を構成する材料には、第 1の実施形態の封止部 16を構成する 材料と同様の材料を用いればよい。但し、第 9の実施形態においては、微粒子 16b のコンポジット材料に占める割合を、 LEDチップ 12に近い内側領域がその外側領域 と比べて高くなるようにして 、る。
[0257] これにより、第 9実施形態においても、第 6の実施形態及び第 8の実施形態と同様 に、 LEDチップ 12に近い封止部 16の内側領域の屈折率の値力 その外側領域の 屈折率の値よりも大きくなる。
[0258] すなわち、この構成により、空気と接する封止部 16の外側領域の屈折率が、 LED チップ 12と接する内側領域の屈折率よりも小さくなるため、封止部 16の外側領域の 屈折率と空気の屈折率との差が小さくなる。このため、封止部 16の空気との界面に おける出射光の全反射を低減することができるので、封止部 16における耐光性及び 耐熱性が向上すると共に、光取り出し効率をより一層向上することができる。ここで、 微粒子 16bの添加濃度は、内側から外側に向けて徐々に低くしてもよぐまた、段階 的に低くしてもよい。
[0259] また、本実施形態にぉ 、ては、封止部 16の外形状を共に、例えばポッティング法 により半球状にしているため、出射光の全反射がさらに低減される。ここで、微粒子 1 6bの添加濃度を内側領域で高ぐ外側領域で低くするには、硬化前の液状のコンポ ジット材料を複数回に分けてポッティングする方法が挙げられる。すなわち、外側領 域用のコンポジット材料における微粒子 16bの添加割合を、内側領域用のコンポジッ ト材料の添加割合よりも小さくしてポッティングすればよい。このとき、 2回目以降の微 粒子 16bとして、 1回目の微粒子 16bの屈折率よりも小さい屈折率を持つ無機材料か らなる他の微粒子を選択してもよい。その後、硬化することによってコンポジット材料 力もなる封止部 16とすることにより、本実施形態の構成を形成できる。
[0260] また、第 9の実施形態にぉ 、ては、封止部 16の外形状を、例えばポッティング法に より半球状としているため、出射光の全反射がさらに低減される。
[0261] なお、ここでは、封止部 16に蛍光材 16cを含めた力 前述したように、 LEDチップ 1 2に GaP系半導体を用 V、た緑色 LED装置等の場合には、封止部 16に蛍光材 16cを 含める必要はない。
[0262] (第 9の実施形態の第 1変形例)
図 31は本発明の第 9の実施形態の第 1変形例に係る半導体発光装置である白色 LED装置の模式的な断面構成を示して 、る。
[0263] 図 31に示すように、第 1変形例に係る半導体発光装置 40Fは、微粒子 16bの添カロ 濃度を外側に向けて漸減した封止部 16の断面の外形状を四角形状として 、る。
[0264] 本変形例に係る封止部 16における封止材 16dの形成法として、微粒子 16bの添カロ 濃度を、封止部 16の外側でその内側よりも小さくした複数回のトランスファーモール ド法を用 、ることができる。
[0265] (第 9の実施形態の第 2変形例)
図 32は本発明の第 9の実施形態の第 2変形例に係る半導体発光装置である白色 LED装置の模式的な断面構成を示して 、る。 [0266] 図 32に示すように、第 2変形例に係る半導体発光装置 60Eは、 LEDチップ 12が、 凹部 51aを有するケース材 51における凹部 51aの底面上にフリップ実装されている。
[0267] ここでは、 LEDチップ 12を封止部 16Aの断面形状は四角形状である。
[0268] 本変形例においては、ケース材 51に白色の耐熱性榭脂材を用いると、さらにはケ ース材 51の内壁に金属、例えば A1の蒸着等によってメタライジングを行なうことにより 、該ケース材 51の内壁面は反射面として機能する。その上、ケース材 51の内壁面を 下方から上方に向けて拡がる逆テーパ状としているため、封微粒子 16bの添加濃度 を外側に向けて低減することにより、封止部 16に漸減する屈折率差を設けるだけで なぐケース材 51及びその形状によっても、光の取り出し効率が向上する。
[0269] なお、本変形例に係る封止部 16は、複数回のポッティング法により形成することが できる。
[0270] また、本変形例において、第 7の実施形態の第 5変形例で説明したように、 LEDチ ップ 12が、凹部 51aを有するケース材 51における凹部 51aの底面上に、サブマウン ト材 53を介在させてフリップチップ実装される構成を適用してもよい。
[0271] (第 10の実施形態)
図 33は本発明の第 10の実施形態に係る半導体発光装置である白色 LED装置の 模式的な断面構成を示している。ここでも、図 6及び図 10に示した構成要素と同一の 構成要素には同一の符号を付すことにより説明を省略する。
[0272] 図 33に示すように、第 10の実施形態に係る半導体発光装置 30Gは、第 6の実施 形態と同様に、 LEDチップ 12が、基板 31と該基板 31の表面及び裏面に選択的に 形成された少なくとも第 1の配線 32A及び第 2の配線 32Bとを有するプリント配線基 板上に、 LEDチップ 12の裏面を基板 31の主面と対向させる、いわゆるジャンクション アップ (フェイスアップ)実装されて 、る。
[0273] 封止部 26は、半導体発光装置チップ 12を直接に且つ半球状に覆う第 1の封止部 26Aと、該第 1の封止部 26Aを直接に且つ半球状に覆う第 2の封止部 26Bとから構 成されている。
[0274] 第 1の封止部 26Aは、蛍光材 16cが混鍊された榭脂材により構成され、第 2の封止 部 26Bは、母材 16a及び該母材 16aの内部に均一に分散された無機材料よりなる微 粒子 16bを含むコンポジット材料からなる封止材 16dにより構成されている。
[0275] 図 34は、第 2の封止部 26Bに添カ卩する微粒子 16bとして、径が 3nm〜10nmの酸 化ジルコニウム (ZrO )を用い、該微粒子 16bの母材 16aに対する割合を 30体積%
2
とした場合の光の波長と透過率との関係を示している。図 34から、光の透過率が短 波長側で大きく減少することが分かる。ここでは、この現象をフィルタ効果と呼ぶ。
[0276] 第 10の実施形態に係る半導体発光装置 30Gによると、第 1の実施形態と同様の効 果を得られる上に、上記のフィルタ効果によって、図 35に示すように、赤色域のスぺ タトル成分が相対的に増加する。すなわち、 LEDチップ 12からの放射光と蛍光材 16 cにより励起された合成光に対して、微粒子 16bの散乱により、青色域から紫外域の スペクトル成分が減衰して、赤色域のスペクトル成分が相対的に増加する。但し、測 定に用いた半導体発光装置には、図 23に示したケース材 51に LEDチップ 12を実 装した構成を用いている。また、 LEDチップ 12の放射光はピーク波長が 460nmの 青色光であり、蛍光材 16cの励起光はピーク波長が 575nmの黄色光である。但し、 蛍光材 16cは、ピーク波長が 590nmの橙色用の蛍光材とピーク波長が 535nmの緑 色用の蛍光材とを調合して ヽる。
[0277] これにより、 [表 2]に示すように、平均演色評価数 Raが増大し、また色温度が低下 する。ここで、平均演色評価数 Raが高いということは、ある光源の下で照らされたもの の色再現性が優れるということを示し、色温度が低いということは、光源が暖色である ということを示す。
[0278] [表 2]
比較例 本発明 1 本発明 2 厚さ なし 0.2m m 1 mm
任 - f* 4400K 4400K 3900K
Ra 74 76 74
[0279] ここで、比較例は第 2の封止部 26Bを設けない構成の場合を示し、本発明 1は微粒 子 16bを含む第 2の封止部 26Bの厚さが 0. 2mmの場合を示し、本発明 2は第 2の封 止部 26Bの厚さが 1mmの場合を示して!/ヽる。
[0280] 表 2から分力るように、本発明 1の場合は比較例と比べて平均演色評価数が増大し 、また、本発明 2の場合は比較例と比べて色温度が 400Kだけ低下している。但し、 色温度は duv (色度座標上の黒体軌跡からの差)値が ±0. 002である。
[0281] なお、第 10の実施形態の第 1変形例として、第 1の封止部 26Aと第 2の封止部 26B とに、共に緑色光又は黄色光を得られる蛍光材を添加してもよい。このようにしても、 第 2の封止部 26Bに添加された微粒子 16bにより、合成光における青色域力も紫外 域のスペクトル成分が減衰して、赤色域のスペクトル成分が相対的に増大する。
[0282] また、第 2変形例として、第 1の封止部 26Aに緑色光又は黄色光を得られる第 1の 蛍光材を添加し、第 2の封止部 26Bに微粒子 16bと赤色光を得られる第 2の蛍光材と を添加してもよい。このようにすると、第 1の蛍光材からの緑色光又は黄色光が赤色 用の第 2の蛍光材によって吸収され励起されるため、赤色域のスペクトル成分がさら に増大する。これにより、平均演色評価数がさらに増大すると共に色温度もさらに低 下する。
[0283] また、第 3変形例として、第 1の封止部 26Aに赤色光を得られる第 1の蛍光材を添 加し、第 2の封止部 26Bに微粒子 16bと緑色光又は黄色光を得られる第 2の蛍光材 とを添加してもよい。このようにすると、赤色用の第 1の蛍光材は、第 2の蛍光材の発 光光である緑色光又は黄色光を吸収しないため、 LEDチップ 12からの放射光の変 換効率が向上する。
[0284] また、第 10の実施形態及び各変形例において、第 6の実施形態と同様に、第 1の 封止部 26Aの屈折率を LEDチップの屈折率よりも低くし、第 2の封止部 26Bの屈折 率を第 1の封止部 26Aの屈折率よりも低くすることが好ましい。このようにすると、光取 り出し効率が向上する。
[0285] なお、 LEDチップ 12の放射光の波長が青色域ではなぐ 410nm以下の青紫域か ら 380nm以下の紫外域の場合は、緑色用及び赤色用又は黄色用の各蛍光材に、 青色用の蛍光材を少なくとも第 1の封止部 26Aに添加すると、白色の合成光を得るこ とがでさる。
[0286] また、半導体発光装置 30Gの外形状及び LEDチップ 12の実装法は、図 33に限ら れず、第 2の実施形態、第 6の実施形態の第 1〜第 5変形例又は第 7の実施形態の 第 1〜第 6変形例と同様の構成としてもよい。
[0287] (第 10の実施形態の第 4変形例)
図 36は本発明の第 10の実施形態の第 4変形例に係る半導体発光装置である白色 LED装置の模式的な断面構成を示している。ここでも、図 8及び図 14に示した構成 要素と同一の構成要素には同一の符号を付すことにより説明を省略する。
[0288] 図 36に示すように、第 4変形例に係る半導体発光装置 50Fは、第 5の実施形態と 同様に、 LEDチップ 12が、凹部 51aを有するケース材 51における凹部 51aの底面 上にフェイスアップ法により固着されて 、る。
[0289] 第 1の封止部 26Aは、蛍光材 16cが混鍊された榭脂材により構成され、第 2の封止 部 26Bは、母材 16a及び該母材 16aの内部に均一に分散された無機材料よりなる微 粒子 16bを含むコンポジット材料からなる封止材 16dにより構成されている。
[0290] 第 4変形例の特徴として、第 1の封止部 26Aは LEDチップ 12と接してその周囲を 覆うように形成される一方、第 2の封止部 26Bは、ケース 51の上端面の上にケース 5 1の底面と平行に設けられることにより、第 1の封止部 26Aとの間に空隙部 51bが形 成されている。
[0291] さらに、空隙部 51bには、第 1の封止部 26Aを覆う第 1のレンズ 70が形成され、第 2 の封止部 26Bの上には、該第 2の封止部 26Bを覆う第 2のレンズ部 71が形成されて いる。ここで、第 1のレンズ 70及び第 2のレンズ 71は、例えばシリコーン榭脂、ェポキ シ榭脂、ォレフィン榭脂、アクリル榭脂、ユリア榭脂、イミド榭脂、ポリカーボネート榭 脂又はガラス等を用いることができる。なお、第 2のレンズ 71は必ずしも設ける必要は ない。
[0292] このように、本変形例によると、第 1の封止部 26Aと第 2の封止部 26Bとの間に空隙 部 51bが設けられる構成であっても、フィルタ効果により、平均演色評価数の増大及 び色温度の低下という第 10の実施形態による効果を得ることができる。
[0293] 本変形例に係る各レンズ 70、 71の形成方法は、ポッティング法を用いることができ る。また、第 2の封止部 26Bは、あら力じめ板状に形成しておき、それをケース 51の 上端面に固着することにより形成することができる。
[0294] (第 10の実施形態の第 5変形例)
図 37は本発明の第 10の実施形態の第 5変形例に係る半導体発光装置である白色 LED装置の模式的な断面構成を示している。ここでも、図 8及び図 14に示した構成 要素と同一の構成要素には同一の符号を付すことにより説明を省略する。
[0295] 図 37に示すように、第 10の実施形態の第 5変形例に係る半導体発光装置 50Gは 、第 5の実施形態と同様に、 LEDチップ 12が、凹部 51aを有するケース材 51におけ る凹部 51aの底面上にフェイスアップ法により固着されている。
[0296] 第 1の封止部 26Aは、蛍光材 16cが混鍊された榭脂材により構成され、第 2の封止 部 26Bは、母材 16a及び該母材 16aの内部に均一に分散された無機材料よりなる微 粒子 16bを含むコンポジット材料からなる封止材 16dにより構成されている。
[0297] 第 5変形例の特徴として、第 1の封止部 26Aは LEDチップ 12と接してその周囲を 覆うように形成される一方、第 2の封止部 26Bは、ケース 51の凹部 51aの上部を残す ように充填されて、凹部 5 laの上部に空隙部 5 lbが形成されている。
[0298] さらに、ケース 51の上端面の上に空隙部 51bを覆うように、レンズ 70が形成されて いる。 [0299] なお、第 1の封止部 26Aがレンズとしての機能を有する場合は、必ずしもレンズ 70 を設けなくてもよい。
[0300] このように、本変形例によると、第 2の封止部 26Bとレンズ 70との間に空隙部 51bが 設けられる構成であっても、フィルタ効果により、平均演色評価数の増大及び色温度 の低下という第 10の実施形態による効果を得ることができる。
[0301] なお、本変形例に係るレンズ 70は、あら力じめモールド型等を用いて成型しておき 、それをケース 51の上端面に固着することにより形成することができる。
[0302] (第 10の実施形態の第 6変形例)
図 38は本発明の第 10の実施形態の第 6変形例に係る半導体発光装置である白色 LED装置の模式的な断面構成を示している。ここでも、図 8及び図 37に示した構成 要素と同一の構成要素には同一の符号を付すことにより説明を省略する。
[0303] 図 38に示すように、第 10の実施形態の第 6変形例に係る半導体発光装置 80は、 例えば液晶ポリマ等の耐熱性榭脂材よりなり、少なくとも第 1のリード 52A及び第 2の リード 52Bが上端部に固着され、内部に凹状のすなわち半球面状又は放物面状の 反射部 81aを有し、ケースを兼ねる反射器 81を備えている。なお、反射器 81は、可 視光に対する反射を考えると、白色の耐熱性榭脂材を用いるか、または反射部 81a をアルミニウム等の金属によりメタライズすることが好ましい。
[0304] LEDチップ 12は、第 1のリード 52Aの下面上にフェイスアップ法により固着されて いる。すなわち、 LEDチップ 12の上面が反射部 81aの底部と対向するように実装さ れている。
[0305] 反射部 81aの反射面上には、蛍光材 16cが混鍊された榭脂材よりなる蛍光体層 27 が形成され、蛍光体層 27と LEDチップ 12との間には空隙部 8 lbが形成されている。 反射器 81の上端面の上には、各リード 52A、 52Bを含め空隙部 81bを覆うように、封 止部 16が形成されている、封止部 16は、母材 16a及び該母材 16aの内部に均一に 分散された無機材料よりなる微粒子 16bを含むコンポジット材料カゝらなる封止材 16d により構成されている。
[0306] 封止部 16の上には、レンズ 70が形成されている。但し、レンズ 70は必ずしも設ける 必要はない。 [0307] このように、 LEDチップ 12を反射器 81における反射部 8 laの焦点付近に配置する 構成であっても、本発明の効果を得ることができる。
[0308] なお、反射器 81の空隙部 81bには、封止用榭脂材を充填してもよぐさらには、封 止部 16と同一の糸且成のコンポジット材料又は屈折率が異なるコンポジット材料を充填 してちよい。
[0309] (第 11の実施形態)
図 39は本発明の第 11の実施形態に係る半導体発光装置である白色 LED装置の 模式的な断面構成を示している。ここでも、図 8及び図 14に示した構成要素と同一の 構成要素には同一の符号を付すことにより説明を省略する。
[0310] 図 39に示すように、第 11の実施形態に係る半導体発光装置 50Hは、第 5の実施 形態と同様に、 LEDチップ 12が、凹部 5 laを有するケース材 51における凹部 5 laの 底面上にフェイスアップ法により固着されて 、る。
[0311] ケース材 51には、白色の耐熱性榭脂材を用いる力、さらにはケース材 51の凹部 51 aの内壁面上及び底面上に金属、例えばアルミニウム (A1)の蒸着等によるメタライジ ングを行なって、該ケース材 51の内面を反射面として機能させている。
[0312] 封止部 26は、 LEDチップ 12を直接に覆うと共にケース材 51の凹部 51aの下部に 充填された第 1の封止部 26Aと、該第 1の封止部 26Aの上の層状に形成された第 2 の封止部 26Bとから構成されて 、る。
[0313] 第 1の封止部 26Aは、母材 16a及び該母材 16aの内部に均一に分散された無機材 料よりなる微粒子 16bを含むコンポジット材料力もなる封止材 16dにより構成され、第
2の封止部 26Bは、蛍光材 16cが混鍊された榭脂材により構成されている。
[0314] この構成により、第 2の封止部 26Bに添加された蛍光材 16cによって反射された LE
Dチップ 12からの放射光の一部及び蛍光材 16cからの発光光の一部力 ケース材 5
1における凹部 51aの内壁又は底面と第 1の封止部 26Aとの界面で反射されて、再 度第 1の封止部 26 Aを透過する。
[0315] 第 11の実施形態に係る半導体発光装置 50Hによると、第 1の実施形態と同様の効 果を得られる上に、上記の青色域から紫外域の合成光が減衰すると ヽぅフィルタ効果 によって赤色域のスペクトル成分が相対的に増加する。これにより、平均演色評価数 が増大し、また色温度が低下する。
[0316] なお、第 11の実施形態の第 1変形例として、 LEDチップ 12の放射光が青色光であ る場合に、第 1の封止部 26Aと第 2の封止部 26Bとに、共に緑色光又は黄色光を得 られる蛍光材を添カ卩してもよい。このようにしても、第 1の封止部 26Aに添加された微 粒子 16bにより、合成光における青色域力も紫外域のスペクトル成分が減衰して、赤 色域のスペクトル成分が相対的に増大する。
[0317] また、第 2変形例として、第 1の封止部 26Aに微粒子 16bと緑色光又は黄色光を得 られる第 1の蛍光材とを添加し、第 2の封止部 26Bに赤色光を得られる第 2の蛍光材 を添加してもよい。このようにすると、第 1の蛍光材からの緑色光又は黄色光が赤色 用の第 2の蛍光材によって吸収され励起されるため、赤色域のスペクトル成分がさら に増大する。これにより、平均演色評価数がさらに増大すると共に色温度もさらに低 下する。
[0318] また、第 3変形例として、第 1の封止部 26Aに微粒子 16bと赤色光を得られる第 1の 蛍光材とを添加し、第 2の封止部 26Bに緑色光又は黄色光を得られる第 2の蛍光材 を添加してもよい。このようにすると、赤色用の第 1の蛍光材は、第 2の蛍光材の発光 光である緑色光又は黄色光を吸収しないため、 LEDチップ 12からの放射光の変換 効率が向上する。
[0319] また、第 11の実施形態及び各変形例において、第 6の実施形態と同様に、第 1の 封止部 26Aの屈折率を LEDチップ 12の屈折率よりも低くし、第 2の封止部 26Bの屈 折率を第 1の封止部 26Aの屈折率よりも低くすることが好ましい。このようにすると、光 取り出し効率が向上する。
[0320] また、半導体発光装置 50Hの外形状及び LEDチップ 12の実装法は、図 39に限ら れず、第 2の実施形態、第 6の実施形態、第 6の実施形態の第 1〜第 5変形例、第 7 の実施形態又は第 7の実施形態の第 1〜第 6変形例と同様の構成としてもよい。
[0321] (第 11の実施形態の第 4変形例)
図 40は本発明の第 11の実施形態の第 4変形例に係る半導体発光装置である白色 LED装置の模式的な断面構成を示している。ここでも、図 8及び図 14に示した構成 要素と同一の構成要素には同一の符号を付すことにより説明を省略する。 [0322] 図 40に示すように、第 4変形例に係る半導体発光装置 501は、封止部 26として、 L EDチップ 12の下側に形成された下地層としての第 1の封止部 26Aと、該第 1の封止 部 26Aの上に LEDチップ 12を覆うように形成され、ケース材 51の凹部 51aを充填す る第 2の封止部 26Bとから構成されて 、る。
[0323] 具体的には、第 1の封止部 26Aは、ケース材 51の底面上に形成され、 LEDチップ 12は第 1の封止部 26の上に、可視光に対して透明なチップ固着用ペースト材 13の 上にフェイスアップ法により固着されている。ケース材 51には、白色の耐熱性榭脂材 を用いるか、さらにはケース材 51の凹部 51aの底面上及び内壁面上に金属、例えば アルミニウム (A1)の蒸着等によるメタライジングを行なって、該ケース材 51の内壁面 を反射面として機能させて 、る。
[0324] 第 1の封止部 26Aは、母材 16a及び該母材 16aの内部に均一に分散された無機材 料よりなる微粒子 16bを含むコンポジット材料力もなる封止材 16dにより構成され、第 2の封止部 26Bは、蛍光材 16cが混鍊された榭脂材により構成されている。
[0325] この構成により、第 2の封止部 26Bに添加された蛍光材 16cによって反射された LE Dチップ 12からの放射光の一部及び蛍光材 16cからの励起光の一部力 ケース材 5 1の凹部 51aと第 1の封止部 26Aとの界面で反射されて、再度第 1の封止部 26Aを 通過する。その結果、上記のフィルタ効果によって赤色域のスペクトル成分が相対的 に増加するため、平均演色評価数が増大し、また色温度が低下する。
[0326] その上、 LEDチップ 12の下地層である第 1の封止部 26Aには、微粒子 16bが添カロ されているため、 LEDチップ 12の放熱性が向上する。
[0327] また、チップ固着用ペースト材 13には、透明なペースト材を用い、且つ、ケース材 5 1の凹部 51aの底面上は金属によりメタライジングされているため、光の取り出し効率 が向上する。
[0328] なお、第 2の封止部 26Bに対しても微粒子を添カ卩し、該第 2の封止部 26Bをコンポ ジット材としてもよい。この場合には、第 2の封止部 26Bの屈折率が第 1の封止部 26 Aの屈折率よりも小さくなるような微粒子を選択することが好ましい。
[0329] (第 11の実施形態の第 5変形例)
図 41は本発明の第 11の実施形態の第 5変形例に係る半導体発光装置である白色 LED装置の模式的な断面構成を示している。ここでは、図 38に示した構成要素と同 一の構成要素には同一の符号を付すことにより説明を省略する。
[0330] 図 41に示すように、第 11の実施形態の第 5変形例に係る半導体発光装置 80Aは 、例えば液晶ポリマ等の耐熱性榭脂材よりなり、少なくとも第 1のリード 52A及び第 2 のリード 52Bが上端部に固着され、内部に凹状のすなわち半球面状又は放物面状 の反射部 81aを有し、ケースを兼ねる反射器 81を備えている。なお、反射器 81は、 白色の耐熱性榭脂材を用いる力、又は反射部 81aをアルミニウム等の金属によりメタ ライズすることが好まし ヽ。
[0331] LEDチップ 12は、第 1のリード 52Aの下面上にフェイスアップ法により固着されて いる。すなわち、 LEDチップ 12の上面が反射部 81aの底部と対向するように実装さ れている。
[0332] 反射部 81aの反射面上には、蛍光材 16cが混鍊された榭脂材よりなる蛍光体層 27 が形成され、蛍光体層 27と LEDチップ 12との間には封止部 16により充填されて 、る o封止部 16は、母材 16a及び該母材 16aの内部に均一に分散された無機材料よりな る微粒子 16bを含むコンポジット材料力もなる封止材 16dにより構成されている。
[0333] 反射器 81の上端面の上には、各リード 52A、 52Bを含め空隙部 81bを覆うようにレ ンズ 70が形成されている。なお、レンズ 70は必ずしも設ける必要はない。
[0334] この構成により、蛍光体層 27に添加された蛍光材 16cによって反射された LEDチ ップ 12からの放射光の一部及び蛍光材 16cからの発光光の一部力 反射器 81の反 射部 81aで反射されて、再度封止部 16を通過する。その結果、上記のフィルタ効果 によって赤色域のスペクトル成分が相対的に増加するため、平均演色評価数が増大 し、また色温度が低下する。
[0335] なお、封止部 16は、第 6の実施形態のように、少なくとも第 1の封止部及び第 2の封 止部の 2層構造とし、第 1の封止部の外側に位置する第 2の封止部の屈折率を第 1の 封止部の屈折率よりも低くする構成としてもよ!、。
[0336] (第 12の実施形態)
以下、本発明の第 12の実施形態に係る半導体発光装置について図面を参照しな がら説明する。 [0337] 図 42は本発明の第 12の実施形態に係る半導体発光装置である白色 LED装置の 模式的な断面構成を示している。ここでも、図 8及び図 14に示した構成要素と同一の 構成要素には同一の符号を付すことにより説明を省略する。
[0338] 図 42に示すように、第 12の実施形態に係る半導体発光装置 50Jは、第 5の実施形 態と同様に、 LEDチップ 12が、凹部 5 laを有するケース材 51における凹部 5 laの底 面上にフェイスアップ法により固着されて!、る。
[0339] 封止部 26は、 LEDチップ 12を直接に覆うと共にケース材 51の凹部 51aの下部に 充填された第 1の封止部 26Aと、第 1の封止部 26Aの上に第 3の封止部 26Cを介在 させて層状に形成された第 2の封止部 26Bとから構成されている。
[0340] 第 1の封止部 26A及び第 2の封止部 26Bは、母材 16a及び該母材 16aの内部に均 一に分散された無機材料よりなる第 1の微粒子 16bを含むコンポジット材料カゝらなる 封止材 16dと、蛍光材 16cとにより構成されている。
[0341] 第 3の封止部 26Cは、母材 16a及び該母材 16aの内部に均一に分散され、紫外光 を吸収可能な酸化亜鉛、酸ィ匕チタン又は酸ィ匕セリウム等の無機材料よりなる第 2の微 粒子 17bを含むコンポジット材料からなる封止材 16dにより構成されている。
[0342] 第 12の実施形態に係る半導体発光装置 50Jによると、第 1の実施形態と同様の効 果を得られる上に、第 1の封止部 26Aと第 2の封止部 26Bとの間に紫外光を吸収す る紫外光吸収層としての第 3の封止部 26Cを設けているため、 LEDチップ 12からの 放射光に含まれる紫外域の光成分が第 3の封止部 26Cにより吸収される。その結果 、第 2の封止部 26Bを構成する母材 16aに、耐水性及び耐熱性に優れる一方、紫外 光によって黄変し易いエポキシ榭脂を用いることが可能となる。
[0343] なお、封止部 26は、第 2の封止部 26Bの屈折率が第 3の封止部 26Cの屈折率より も低ぐ且つ第 3の封止部 26Cの屈折率が第 1の封止部 26Aの屈折率よりも低くする 構成が好ましい。
[0344] また、第 1の封止部 26A及び第 2の封止部 26Bは、第 2の微粒子 17bを必ずしも含 む必要はなぐ蛍光材 16cは、第 1の封止部 26A及び第 3の封止部 26Cのいずれか 一方に含まれていればよい。但し、 LEDチップ 12からの放射光が主として紫外光で ある場合には、第 1の封止部 26Aは蛍光材 16cを含む必要がある。 [0345] また、半導体発光装置 50Jの外形状及び LEDチップ 12の実装法は、図 43に限ら れず、第 2の実施形態、第 6の実施形態、第 6の実施形態の第 1〜第 5変形例、第 7 の実施形態又は第 7の実施形態の第 1〜第 6変形例と同様の構成としてもよい。
[0346] (第 13の実施形態)
以下、本発明の第 13の実施形態に係る半導体発光装置について図面を参照しな がら説明する。
[0347] 図 43は本発明の第 13の実施形態に係る半導体発光装置である白色 LED装置の 模式的な断面構成を示している。ここでは、図 8に示した構成要素と同一の構成要素 には同一の符号を付すことにより説明を省略する。
[0348] 図 43に示すように、第 12の実施形態に係る半導体発光装置 50Kは、第 5の実施 形態と同様に、 LEDチップ 12が、凹部 5 laを有するケース材 51における凹部 5 laの 底面上にフェイスアップ法により固着されて 、る。
[0349] 封止部 26は、 LEDチップ 12を直接に覆うと共にケース材 51の凹部 51aに充填さ れた第 1の封止部 26 Aと、ケース材 51の上面に第 1の封止部 26 Aを覆うように形成さ れた第 2の封止部 26Bとから構成されて 、る。
[0350] 第 1の封止部 26Aは、母材 16a及び該母材 16aの内部に均一に分散された無機材 料よりなる第 1の微粒子 16bを含むコンポジット材料からなる封止材 16dと、蛍光材 1 6cとにより構成されている。
[0351] 第 2の封止部 26Bは、母材 16a及び該母材 16aの内部に均一に分散され、紫外光 を吸収可能な酸化亜鉛、酸ィ匕チタン又は酸ィ匕セリウム等の無機材料よりなる第 2の微 粒子 17bを含むコンポジット材料からなる封止材 16dにより構成されている。このよう に、コンポジット材料を封止材 16dとして用いることにより、微粒子 16bの吸収による 効果に加え、コンポジット材料によって紫外光の波長の光が散乱しやすくなるため、 紫外光の透過を抑制する効果が極めて高くなる。
[0352] 第 13の実施形態に係る半導体発光装置 50Kによると、第 1の実施形態と同様の効 果を得られる上に、第 1の封止部 26Aの上に紫外光を吸収する紫外光吸収層として の第 2の封止部 26Bを設けているため、 LEDチップ 12からの放射光に含まれる紫外 域の光成分が第 2の封止部 26Bにより吸収される。その結果、該半導体発光装置 50 K力もは不要な紫外光が出力されることを防止することができる。
[0353] その上、紫外光を吸収する第 2の封止部 26Βは、第 1の封止部 26Αの外側に設け られているため、外部力 入射される紫外光による封止材 16d及び蛍光材 16cの劣 ィ匕をち防止することがでさる。
[0354] なお、 LEDチップ 12の放射光の波長域は青色域力も紫外域に限られず、従って、 半導体発光装置 50Kは白色 LED装置には限られない。
[0355] また、第 1の封止部 26Aは、必ずしも第 1の微粒子 16bを含む必要はない。
[0356] また、半導体発光装置 50Kの外形状及び LEDチップ 12の実装法は、図 43に限ら れず、第 1〜第 4の実施形態と同様の構成としてもよい。
[0357] (第 13の実施形態の一変形例)
図 44は本発明の第 13の実施形態の一変形例に係る半導体発光装置である白色 LED装置の模式的な断面構成を示して 、る。
[0358] 図 44に示すように、本変形例に係る半導体発光装置 50Lは、紫外光を吸収可能な 第 2の微粒子 17を含む第 2の封止部 26B力 ケース材 51の上面だけでなぐその側 面及び底面にまで、ケース材 51の周囲全体を覆うように形成されて!、る。
[0359] この構成により、第 13の実施形態と同様の効果を得られる上に、ケース材 51の放 熱'性をも向上させることができる。
[0360] ケース材 51の周囲を覆う第 2の封止部 26Bの形成方法は、第 1の封止部 26Aを形 成した後に、例えば、第 2の微粒子 17が分散された液状の封止材 16dに漬けるディ ップ法を用いることができる。
[0361] なお、第 6の実施形態、第 6の実施形態の第 1〜第 6変形例、第 7の実施形態、第 7 の実施形態の第 1〜第 7変形例、第 10の実施形態、第 11の実施形態、第 11の実施 形態の第 1〜第 4変形例、第 12の実施形態、第 13の実施形態及び第 13の実施形 態の一変形例においては、第 1の封止部 26Aの母材 16aと第 2の封止部 26Bの母材 16aとを同一の材料としている。このようにすると、封止部間の密着性を高め、封止部 の剥離等を生じにくい構成にできるため好ましい。封止部同士の密着性はそれぞれ の母材間の接合による効果が比較的に大きいため、封止部としてコンポジット材料を 用いる際には母材の比率が低いことから、各封止部の母材の材料を同一とすること により密着性を高めることができる。
[0362] また、前述したすべての実施形態及びその変形例は、半導体発光装置として、主 に白色 LED装置について説明したが、本発明は白色 LED装置に限られず、微粒子 が添加された封止材により LEDチップを封止する半導体発光装置に有効である。
[0363] なお、コンポジット材料を封止部として用いる際には、封止部が単層構造及び多層 構造のいずれの場合においても、発光する光の透過量の減衰が少なくなる構成とす ることが好ましい。但し、封止部の構成は、用途によって決定すればよぐ第 10の実 施形態のように演色性を制御する場合や、 LEDチップが紫外線を含み、その紫外線 を除去したい場合等においては、コンポジット材料によって該当する波長の光を減衰 すること〖こなる。
[0364] コンポジット材料によって生じるレイリー散乱の程度は、微粒子のサイズ、微粒子の 混合濃度又は封止部の厚さによって異なると共に、透過する光の波長によっても異 なる。特に、短波長の光になるほど散乱の程度が大きくなるという特徴を有する。従つ て、採用する LEDチップの発光波長又はコンポジット材料による封止部の構成によ つて、透過光量に影響が生じる場合もある。
[0365] 封止部に用いるコンポジット材料が、半導体発光素子の発光波長において散乱度 が 0. 3未満であるという条件で、発光した光の透過減衰量が少なくなり、従って、光 取り出し効率が向上する。このとき、封止部の透過率におけるレイリー散乱成分は約 25%未満になる。
[0366] さらに好ましくは、散乱度を 0. 2以下とすると、光の透過減衰量がより少なくなるた め、光取り出し効率が向上する。なお、このときの透過率のレイリー散乱成分は約 20 %以下となる。特に、散乱度が 0. 1以下のときは、透過率のレイリー散乱成分は約 1 0%以下であり、さらに散乱度が 0. 05以下であれば、透過率のレイリー散乱成分は 5 %以下程度となってほとんど透明であり、光の透過減衰量は問題とはならなくなる。
[0367] ここで、散乱度は、コンポジット材料部分のレイリー散乱消衰係数 exとその厚さとの 積 a tで表される値である。この散乱度の測定方法は、所定の厚さ tのコンポジット材 料部分の透過率 T (%)を測定し、その値力も散乱度 a t=— ln (TZlOO)で求めるこ とができる。ここで、 Inは自然対数である。また、レイリー散乱消衰係数 aは散乱度を 厚さで除すること〖こより求めることができる。レイリー散乱消衰係数 αは、微粒子の粒 径、屈折率又は混合量による材料組成によって決まる材料パラメータであり、このレイ リー散乱消衰係数 ocの値を知ることにより、封止部の厚さ等のデバイスの光学設計を 容易に行なうことができる。
ここで、第 1の実施形態において記載した、本発明に利用可能な蛍光体の他の例 を色ごとに列挙する。
i.青色蛍光体
(1)ハロ燐酸塩蛍光体: (Sr, Ba) (PO ) CI: Eu2+, Sr (PO ) CI: Eu2+
10 4 6 2 10 4 6 2
(2)珪酸塩 (シリケート)蛍光体 → Ba MgSi O: Eu2+
3 2 8
ii.青緑色蛍光体
(1)アルミン酸塩蛍光体: Sr Al O : Eu2+
4 14 25
(2)珪酸塩蛍光体: Sr Si O -2SrCl: Eu2+
2 3 8 2
iii.緑色蛍光体
(1)アルミン酸塩蛍光体:(Ba, Sr, Ca)Al O: Eu2+
2 4
(2)珪酸塩 (シリケート)蛍光体:(Ba, Sr) SiO: Eu2+
2 4
(3) α-サイアロン蛍光体: Sr Al Si N : Eu2+, Ca- a- SiA10N:Yb2+
1.5 3 9 16
(4) -サイアロン蛍光体: j8- Si Eu2+
(5)酸窒化物蛍光体
2 +
ォクソ二トリドシリケート: (Ba, Sr, Ca)Si O N: Eu
2 2 2
ォクソ二トリドアルミノシリケート:(Ba, Sr, Ca) Si AION: Ce3+, (Ba, Sr, Ca
2 4 7
)A12_ Si 04一 N: Eu2+(0<x<2)
(6)窒化物蛍光体
二トリドシリケート蛍光体:(Ba, Sr, Ca) Si N : Ce3
2 5 8
(7)硫化物蛍光体
チォガレート: SrGa S : Eu2+
2 4
(8)ガーネット蛍光体: Ca Sc Si O : Ce3+, BaY SiAl O : Ce3+, Y (Al, Ga)
3 2 3 12 2 4 12 3
O : Ce3+
12
(9)酸ィ匕物蛍光体: CaSc O: Ce3+ iv.黄色蛍光体
(1)珪酸塩(シリケート)蛍光体:(Sr, Ba) SiO: Eu2+, Sr SiO: Eu2+
2 4 3 5
(2)ガーネット蛍光体: (Y, Gd) Al O : Ce3+, Y Al O : Ce3+, Pr3+
3 5 12 3 5 12
(3)硫化物蛍光体
チォガレート: CaGa S: Eu2+
2 4
(4) α -サイアロン蛍光体: Ca- a - SiA10N :Eu2+, (0. 75 (Ca Eu ) 0 - 2. 25A
0. 9 0. 1
1Ν· 3. 25Si N :Eu2+、 Ca Al Si N : Eu2+等)
3 4 1. 5 3 9 16
V.橙色蛍光体
(1)珪酸塩 (シリケート)蛍光体:(Sr, Ca) SiO: Eu2+
2 4
(2)ガーネット蛍光体: Gd Al O : Ce3+
3 5 12
(3) α -サイアロン蛍光体: Ca- a -SiA10N :Eu2+
vi.赤色蛍光体
(1)硫化物蛍光体: (Sr, Ca) S :Eu2+, La O S :Eu3+, Sm3+
2 2
(2)珪酸塩(シリケート)蛍光体: Ba MgSi O: Eu2+, Mn2+
3 2 8
(3)窒化物又は酸窒化物蛍光体:(Ca、 Sr) SiN: Eu2+, (Ca、 Sr)AlSiN: Eu2+,
2 3
Sr Si Al O N : Eu2+ (0≤x≤ 1)
2 5-x x x 8-x
なお、蛍光体に代えて、金属錯体、有機染料又は顔料等の波長変換材料も使うこ とがでさる。
[0369] また、透光性材料 (蛍光体層、封止材)に添加する微粒子には、チクソ性 (チキソト ロピ)の向上、光散乱効果、封止材の屈折率の調整及び熱伝導性の向上等の効果 を期待できる。微粒子には、金属化合物として、第 1の実施形態に記載した以外に、 例えば、 BaSO、 ZnS若しくは V O 又はこれらの混合物を用いることができる。微
4 2 5、
粒子の中心粒径は数 1 Onm〜数 1 OOnmである。
[0370] また、 LEDチップ 12を実装する基板 31又は基台には、セラミックスとして、 A1N、 Al
O、 BN、 A1N、 MgO、 ZnO、 SiC若しくは C又はこれらのうちの少なくとも 2つを含
2 3
む混合物を用いることができる。また、金属として、 Al、 Cu、 Fe若しくは Au又はこれら のうちの少なくとも 2つを含む合金を用いることができる。さらには、ガラスエポキシを 用!/、ることができる。 [0371] ケース材 51又は反射器 81に設ける反射層には、金属として、 A1の他に、 Ag、 Au、 Ni、Rh若しくは Pd又はこれらのうちの少なくとも 2つを含む合金を用いることができる
[0372] 封止材 16dの母材 16aには、榭脂として:エポキシ榭脂、シリコーン榭脂、アクリル 榭脂、ユリア榭脂、イミド榭脂、ポリカーボネート榭脂、ポリフエ二ルサルファイド榭脂、 液晶ポリマ榭脂若しくはアクリル-トリル-ブタジエン-スチレン (ABS)榭脂又はこれら のうちの少なくとも 2つを含む混合物を用いることができる。また、キャップガラスとして 、石英又は耐熱硬質ガラスを用いることができる。封止ガラスとして、低融点ガラスを 用!/、ることができる。
[0373] LEDチップを封止する封止ガスには、窒素、アルゴン又は乾燥空気を用いることが できる。
産業上の利用可能性
[0374] 本発明は、長寿命で且つ高輝度な LED等からなる半導体発光装置を得られ、発 光素子が形成された半導体チップを榭脂封止によりパッケージィ匕した半導体発光装 置等に有用である。

Claims

請求の範囲
[1] 青色域から紫外域までの波長を有する光を放出する半導体チップと、
前記光が通過する通過径路上の少なくとも一部の領域に形成された封止部とを備 え、
前記封止部は、
母材及び該母材中に分散され前記母材の内部での前記光の波長の 4分の 1以下 の実効粒径を有する無機材料よりなる粒子を含むコンポジット材料カゝらなる封止材と 蛍光材とを含む半導体発光装置。
[2] 請求項 1において、
前記封止部は、前記半導体チップの周囲を覆うように形成されて!ヽる半導体発光 装置。
[3] 請求項 1において、
前記封止部は、前記半導体チップと接して形成されて!ヽる半導体発光装置。
[4] 請求項 1において、
前記封止部は、前記封止材よりなる第 1の封止部と、該第 1の封止部の外側に形成 され、前記蛍光材を含む第 2の封止部とにより構成されている半導体発光装置。
[5] 請求項 4において、
前記第 1の封止部における前記半導体チップの少なくとも下方及び側方に設けら れ、前記光を反射する反射部材をさらに備えている半導体発光装置。
[6] 請求項 5において、
前記封止材は、透明性を有するペースト材により前記半導体チップを固着し、且つ 前記反射部材に保持された下地層である半導体発光装置。
[7] 請求項 1において、
前記封止部は、前記封止材よりなる第 1の封止部と、該第 1の封止部の外側に形成 され、第 2の封止部とにより構成されており、
前記粒子は紫外域の光を吸収する材料よりなる半導体発光装置。
[8] 請求項 1において、 前記封止部は、前記蛍光材を含む第 1の封止部と、該第 1の封止部の外側に形成 され、前記封止材よりなる第 2の封止部とにより構成されている半導体発光装置。 請求項 4〜8の!、ずれか 1項にお!ヽて、
前記第 1の封止部及び第 2の封止部は、外形が半球状である半導体発光装置。 請求項 4〜8の!、ずれか 1項にお!ヽて、
前記第 1の封止部は断面の外形が四角形状であり、前記第 2の封止部は外形が半 球状である半導体発光装置。
請求項 4〜8の!、ずれか 1項にお!ヽて、
前記第 1の封止部及び第 2の封止部は、断面の外形が四角形状である半導体発光 装置。
請求項 4〜8の!、ずれか 1項にお!ヽて、
前記第 1の封止部は外形が半球状であり、前記第 2の封止部は断面の外形が四角 形状である半導体発光装置。
光を放出する半導体チップと、
前記光が通過する通過径路上の少なくとも一部の領域に形成された封止部とを備 え、
前記封止部は、母材及び該母材中に分散され前記母材の内部での前記光の波長 の 4分の 1以下の実効粒径を有する無機材料よりなる粒子を含むコンポジット材料か らなる封止材を含み、且つ、前記半導体チップを覆う第 1の封止部と、該第 1の封止 部の外側に形成された第 2の封止部とにより構成されており、
前記第 1の封止部における前記光の波長に対する第 1の屈折率は、前記第 2の封 止部における前記光の波長に対する第 2の屈折率よりも大きい半導体発光装置。 請求項 13において、
前記第 1の封止部に含まれる前記粒子と、前記第 2の封止部に含まれる前記粒子 とは、組成が異なる半導体発光装置。
請求項 13において、
前記第 1の封止部における前記粒子の前記コンポジット材料に占める割合は、前 記第 2の封止部における前記粒子の前記コンポジット材料に占める割合よりも高い半 導体発光装置。
[16] 請求項 13において、
前記第 1の封止部及び第 2の封止部は、外形が半球状である半導体発光装置。
[17] 請求項 13において、
前記第 1の封止部は断面の外形が四角形状であり、前記第 2の封止部は外形が半 球状である半導体発光装置。
[18] 請求項 13において、
前記第 1の封止部及び第 2の封止部は、断面の外形が四角形状である半導体発光 装置。
[19] 請求項 13において、
前記第 1の封止部は外形が半球状であり、前記第 2の封止部は断面の外形が四角 形状である半導体発光装置。
[20] 光を放出する半導体チップと、
前記光が通過する通過径路上の少なくとも一部の領域に形成された封止部とを備 え、
前記封止部は、母材及び該母材中に分散され前記母材の内部での前記光の波長 の 4分の 1以下の実効粒径を有する無機材料よりなる粒子を含むコンポジット材料か らなる封止材を含み、且つ、前記光の波長に対する屈折率が前記半導体チップに近 い内側領域力も外側領域に向けて小さくなるように設定されている半導体発光装置。
[21] 請求項 20において、
前記封止部における前記粒子の前記コンポジット材料に占める割合は、前記半導 体チップに近い内側領域がその外側領域と比べて高い半導体発光装置。
[22] 請求項 20において、
前記封止部に含まれる前記粒子は、前記封止部の内側に含まれる粒子の組成と 前記封止部の外側に含まれる粒子の組成とが異なる。
[23] 光を放出する半導体チップと、
前記光が通過する通過径路上の少なくとも一部の領域に形成された封止部とを備 え、 前記封止部は、母材及び該母材中に分散され前記母材の内部での前記光の波長 の 4分の 1以下の実効粒径を有する無機材料よりなる粒子を含むコンポジット材料か らなる封止材を含み、且つ、前記半導体チップを覆う第 1の封止部と、該第 1の封止 部の外側に形成された第 2の封止部とにより構成されており、
前記第 2の封止部は、前記粒子として紫外域の光を吸収する材料よりなる粒子を含 む半導体発光装置。
[24] 請求項 23において、
前記第 2の封止部は、前記半導体チップの上方、下方及び側方を覆うように形成さ れている半導体発光装置。
[25] 青色域から紫外域までの波長を有する光を放出する半導体チップと、
前記光が通過する通過径路上の少なくとも一部の領域に形成された封止部と、 前記半導体チップを保持する保持材と、
前記半導体チップと前記保持材とを固着する透明性を有するペースト材とを備え、 前記ペースト材は、
母材及び該母材中に分散され前記母材の内部での前記光の波長の 4分の 1以下 の実効粒径を有する無機材料よりなる粒子を含むコンポジット材料カゝらなり、 前記粒子は紫外域の光を吸収する材料よりなる半導体発光装置。
[26] 請求項 13〜25のいずれ力 1項において、
前記封止部は、蛍光材を含む半導体発光装置。
[27] 請求項 1〜8及び 13〜25のいずれ力 1項において、
前記粒子は、無機化合物よりなる半導体発光装置。
[28] 請求項 1〜8及び 13〜25のいずれか 1項において、
前記母材は、榭脂材料よりなる半導体発光装置。
[29] 請求項 28において、
前記樹脂材料は、無機高分子材料である半導体発光装置。
[30] 請求項 28において、
前記樹脂材料は、有機高分子材料である半導体発光装置。
[31] 請求項 1〜8及び 13〜25のいずれ力 1項において、 前記母材は、可視光に対して透明な材料よりなる半導体発光装置。
[32] 請求項 1〜8及び 13〜25のいずれか 1項において、
前記コンポジット材料は、可視光に対して透明である半導体発光装置。
[33] 請求項 1〜8及び 13〜25のいずれか 1項において、
前記光の波長に対する前記粒子の屈折率は、前記光の波長に対する前記母材の 屈折率よりも大きぐ且つ前記半導体チップの屈折率と同等かそれ以下である半導 体発光装置。
[34] 請求項 1〜8及び 13〜25のいずれ力 1項において、
前記粒子の前記コンポジット材料に占める割合は、 5体積%以上且つ 60体積%以 下である半導体発光装置。
[35] 請求項 1〜3又は 20〜25の!、ずれか 1項にお!ヽて、
前記封止部は、外形が半球状である半導体発光装置。
[36] 請求項 1〜3又は 20〜25の!ヽずれか 1項にお!ヽて、
前記封止部は、断面の外形が四角形状である半導体発光装置。
[37] 請求項 1〜4、 7、 8及び 13〜25のいずれ力 1項において、
前記封止部における前記半導体チップの側方の領域に設けられ、前記光を反射 する反射部材をさらに備えている半導体発光装置。
[38] 請求項 37において、
前記封止部は、その断面形状が下方に狭く上方に広!、逆テーパ状を有して!/、る半 導体発光装置。
PCT/JP2006/314844 2005-08-05 2006-07-27 半導体発光装置 WO2007018039A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007529479A JPWO2007018039A1 (ja) 2005-08-05 2006-07-27 半導体発光装置
EP06781755A EP1919000A1 (en) 2005-08-05 2006-07-27 Semiconductor light-emitting device
US11/995,924 US7910940B2 (en) 2005-08-05 2006-07-27 Semiconductor light-emitting device
US13/025,758 US20110133237A1 (en) 2005-08-05 2011-02-11 Semiconductor light-emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-228748 2005-08-05
JP2005228748 2005-08-05
JP2006-164958 2006-06-14
JP2006164958 2006-06-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/025,758 Continuation US20110133237A1 (en) 2005-08-05 2011-02-11 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
WO2007018039A1 true WO2007018039A1 (ja) 2007-02-15

Family

ID=37727228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314844 WO2007018039A1 (ja) 2005-08-05 2006-07-27 半導体発光装置

Country Status (6)

Country Link
US (2) US7910940B2 (ja)
EP (1) EP1919000A1 (ja)
JP (1) JPWO2007018039A1 (ja)
KR (1) KR20080049011A (ja)
TW (1) TW200721540A (ja)
WO (1) WO2007018039A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304611A (ja) * 2007-06-06 2008-12-18 Fujikura Ltd 光送受信装置
JP2009033081A (ja) * 2007-07-25 2009-02-12 Yiguang Electronic Ind Co Ltd 発光ダイオード装置
JP2009064842A (ja) * 2007-09-04 2009-03-26 Sumitomo Metal Electronics Devices Inc セラミックス焼結体およびそれを用いた基板およびそれを用いた発光素子搭載用パッケージおよびそれを用いた発光装置
JP2009266974A (ja) * 2008-04-23 2009-11-12 Mitsubishi Electric Corp 発光装置並びに発光器具
EP2227833A2 (en) * 2008-01-04 2010-09-15 Cree, Inc. Light emitting devices with high efficiency phospor structures
JP2010538449A (ja) * 2007-09-04 2010-12-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光出力装置
US20110049551A1 (en) * 2007-12-21 2011-03-03 Osram Opto Semiconductors Gmbh Illuminating Device
JP2011129661A (ja) * 2009-12-17 2011-06-30 Nichia Corp 発光装置
WO2011111293A1 (ja) * 2010-03-10 2011-09-15 パナソニック株式会社 Led封止樹脂体、led装置およびled装置の製造方法
JP2011187929A (ja) * 2010-02-09 2011-09-22 Sony Corp 発光装置およびその製造方法
US8227822B2 (en) 2008-12-25 2012-07-24 Au Optronics Corporation Light emitting diode apparatus
JP2012178540A (ja) * 2011-02-25 2012-09-13 Samsung Electronics Co Ltd 発光ダイオード
CN102856445A (zh) * 2011-06-30 2013-01-02 四川柏狮光电技术有限公司 Led灯珠的填隙方法
US8759861B2 (en) 2010-12-17 2014-06-24 Panasonic Corporation LED device with cerium oxide dispersion layer and method for manufacturing same
JP2015015418A (ja) * 2013-07-08 2015-01-22 シャープ株式会社 半導体発光装置
CN104347750A (zh) * 2013-08-07 2015-02-11 瑞萨电子株式会社 光学耦合器件及制造光学耦合器件的方法
JP2015099945A (ja) * 2015-02-27 2015-05-28 日亜化学工業株式会社 発光装置
JP2017059752A (ja) * 2015-09-18 2017-03-23 豊田合成株式会社 発光装置とその製造方法
JP2017168620A (ja) * 2016-03-16 2017-09-21 豊田合成株式会社 発光装置およびその製造方法
EP2113949B1 (en) * 2008-05-02 2018-04-18 Cree, Inc. Encapsulation for phosphor-converted white light emitting diode
JP2018523847A (ja) * 2015-07-15 2018-08-23 コエルクス・エッセ・エッレ・エッレCoeLux S.r.l. 色反射ユニット
WO2018212300A1 (ja) * 2017-05-19 2018-11-22 シチズン電子株式会社 発光装置
JP2019125682A (ja) * 2018-01-16 2019-07-25 日機装株式会社 半導体発光素子
CN110544738A (zh) * 2019-08-22 2019-12-06 佛山市柔浩电子有限公司 一种紫外线发光二极管结构
JP2020205355A (ja) * 2019-06-18 2020-12-24 スタンレー電気株式会社 発光装置
US11002427B2 (en) * 2019-03-28 2021-05-11 Nichia Corporation Light emitting device
JP7248379B2 (ja) 2017-07-24 2023-03-29 日亜化学工業株式会社 発光装置及びその製造方法

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1919000A1 (en) * 2005-08-05 2008-05-07 Matsushita Electric Industries Co., Ltd. Semiconductor light-emitting device
US7659549B2 (en) * 2006-10-23 2010-02-09 Chang Gung University Method for obtaining a better color rendering with a photoluminescence plate
JP5225015B2 (ja) * 2007-10-19 2013-07-03 富士フイルム株式会社 導光板
TW200950136A (en) * 2008-05-26 2009-12-01 wei-hong Luo LED packaging structure
ITMI20081135A1 (it) 2008-06-24 2009-12-25 Trapani Paolo Di Dispositivo di illuminazione
CN101661983B (zh) * 2008-08-26 2012-03-14 富准精密工业(深圳)有限公司 发光二极管及其制备方法
TW201015743A (en) * 2008-10-01 2010-04-16 Formosa Epitaxy Inc LED and manufacturing method thereof
DE102008057174A1 (de) * 2008-11-13 2010-05-20 Osram Opto Semiconductors Gmbh Oberflächenmontierbare Vorrichtung
GB0821122D0 (en) * 2008-11-19 2008-12-24 Nanoco Technologies Ltd Semiconductor nanoparticle - based light emitting devices and associated materials and methods
US8431423B2 (en) * 2009-07-16 2013-04-30 Koninklijke Philips Electronics N.V. Reflective substrate for LEDS
US9502612B2 (en) 2009-09-20 2016-11-22 Viagan Ltd. Light emitting diode package with enhanced heat conduction
GB0916700D0 (en) * 2009-09-23 2009-11-04 Nanoco Technologies Ltd Semiconductor nanoparticle-based materials
JP2011082339A (ja) * 2009-10-07 2011-04-21 Nitto Denko Corp 光半導体封止用キット
JP5744386B2 (ja) * 2009-10-07 2015-07-08 日東電工株式会社 光半導体封止材
US20120232830A1 (en) * 2009-11-16 2012-09-13 Cyril Delalandre Method for estimating light scattering
US8203161B2 (en) * 2009-11-23 2012-06-19 Koninklijke Philips Electronics N.V. Wavelength converted semiconductor light emitting device
KR101163850B1 (ko) * 2009-11-23 2012-07-09 엘지이노텍 주식회사 발광 소자 패키지
TWM405514U (en) * 2009-11-30 2011-06-11 Top Energy Saving System Corp Lighting module
KR101028313B1 (ko) * 2009-12-03 2011-04-11 엘지이노텍 주식회사 발광 장치 및 그 제조 방법
JP5047264B2 (ja) * 2009-12-22 2012-10-10 株式会社東芝 発光装置
KR20110080318A (ko) * 2010-01-05 2011-07-13 엘지이노텍 주식회사 발광 소자 패키지
CN102791801B (zh) * 2010-02-19 2014-08-27 东丽株式会社 含有荧光体的硅氧烷固化物、其制造方法、含有荧光体的硅氧烷组合物、其组合物前体、片状成型物、led封装、发光装置及led安装基板的制造方法
US20110291113A1 (en) * 2010-05-27 2011-12-01 Philips Lumileds Lighting Company, Llc Filter for a light emitting device
CN101872827B (zh) * 2010-06-21 2012-11-14 深圳雷曼光电科技股份有限公司 发光二极管封装结构及其方法
WO2012002580A1 (ja) * 2010-07-01 2012-01-05 シチズンホールディングス株式会社 Led光源装置及びその製造方法
DE102010026843A1 (de) * 2010-07-12 2012-01-12 Epcos Ag Modul-Package und Herstellungsverfahren
US8210698B2 (en) * 2010-07-28 2012-07-03 Bridgelux, Inc. Phosphor layer having enhanced thermal conduction and light sources utilizing the phosphor layer
US8664624B2 (en) 2010-09-30 2014-03-04 Performance Indicator Llc Illumination delivery system for generating sustained secondary emission
US8415642B2 (en) 2010-09-30 2013-04-09 Performance Indicator, Llc Photolytically and environmentally stable multilayer structure for high efficiency electromagnetic energy conversion and sustained secondary emission
US9024341B2 (en) * 2010-10-27 2015-05-05 Taiwan Semiconductor Manufacturing Company, Ltd. Refractive index tuning of wafer level package LEDs
DE102010061848B4 (de) * 2010-11-24 2022-11-03 Lumitech Patentverwertung Gmbh LED-Modul mit vorgefertigtem Element
US9117979B2 (en) 2010-12-13 2015-08-25 Toray Industries, Inc. Phosphor sheet, LED and light emitting device using the same and method for manufacturing LED
CN102097575A (zh) * 2010-12-30 2011-06-15 东莞市品元光电科技有限公司 一种白光二极管封装结构
WO2012103292A1 (en) * 2011-01-26 2012-08-02 Massachusetts Institute Of Technology Device and method for luminescence enhancement by resonant energy transfer from an absorptive thin film
US8742654B2 (en) 2011-02-25 2014-06-03 Cree, Inc. Solid state light emitting devices including nonhomogeneous luminophoric particle size layers
CN102683538B (zh) 2011-03-06 2016-06-08 维亚甘有限公司 发光二极管封装和制造方法
KR101798884B1 (ko) * 2011-05-18 2017-11-17 삼성전자주식회사 발광소자 어셈블리 및 이를 포함하는 전조등
KR101771175B1 (ko) * 2011-06-10 2017-09-06 삼성전자주식회사 광전자 소자 및 적층 구조
DE102011105010A1 (de) * 2011-06-20 2012-12-20 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Verfahren zu dessen Herstellung
CN102856465B (zh) * 2011-06-29 2015-03-11 赛恩倍吉科技顾问(深圳)有限公司 发光二极管封装结构
JP6309271B2 (ja) * 2011-08-11 2018-04-11 株式会社きもと 有機el用散乱フィルム及びこれを用いた有機el発光装置
TWI505515B (zh) * 2011-08-19 2015-10-21 Epistar Corp 發光裝置及其製造方法
KR101772588B1 (ko) * 2011-08-22 2017-09-13 한국전자통신연구원 클리어 컴파운드 에폭시로 몰딩한 mit 소자 및 그것을 포함하는 화재 감지 장치
CN103035811A (zh) * 2011-09-30 2013-04-10 展晶科技(深圳)有限公司 Led封装结构
DE102011085645B4 (de) 2011-11-03 2014-06-26 Osram Gmbh Leuchtdiodenmodul und Verfahren zum Betreiben eines Leuchtdiodenmoduls
JP2013118235A (ja) * 2011-12-02 2013-06-13 Hitachi Appliances Inc 照明装置
JP5845134B2 (ja) * 2012-04-27 2016-01-20 株式会社東芝 波長変換体および半導体発光装置
US9030108B2 (en) * 2012-05-07 2015-05-12 David Deak, SR. Gaussian surface lens quantum photon converter and methods of controlling LED colour and intensity
CN104272479A (zh) 2012-05-14 2015-01-07 皇家飞利浦有限公司 具有远程纳米结构磷光体的发光设备
TWI489658B (zh) 2012-05-25 2015-06-21 Toshiba Kk 半導體發光裝置及光源單元
KR101905893B1 (ko) * 2012-06-13 2018-10-08 에스케이하이닉스 주식회사 복수의 유전층을 포함하는 임베디드 패키지 및 제조 방법
US20150171372A1 (en) * 2012-07-04 2015-06-18 Sharp Kabushiki Kaisha Fluorescent material, fluorescent coating material, phosphor substrate, electronic apparatus, and led package
JP2014056896A (ja) * 2012-09-11 2014-03-27 Ns Materials Kk 半導体を利用した発光デバイス及びその製造方法
US9711689B2 (en) * 2012-11-05 2017-07-18 Sony Semiconductor Solutions Corporation Optical unit and electronic apparatus
TW201418414A (zh) * 2012-11-12 2014-05-16 Genesis Photonics Inc 波長轉換物質、波長轉換膠體以及發光裝置
DE102012220980A1 (de) * 2012-11-16 2014-05-22 Osram Gmbh Optoelektronisches halbleiterbauelement
KR101984897B1 (ko) * 2012-12-10 2019-06-03 삼성디스플레이 주식회사 발광 다이오드 패키지 및 그 제조 방법
JP6183195B2 (ja) * 2013-02-20 2017-08-23 豊田合成株式会社 発光装置
US9142732B2 (en) * 2013-03-04 2015-09-22 Osram Sylvania Inc. LED lamp with quantum dots layer
JP2014175354A (ja) * 2013-03-06 2014-09-22 Disco Abrasive Syst Ltd 発光ダイオード
DE102013102482A1 (de) * 2013-03-12 2014-10-02 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
US8890196B2 (en) * 2013-03-14 2014-11-18 Goldeneye, Inc. Lightweight self-cooling light sources
US9634199B2 (en) * 2013-03-15 2017-04-25 Jan-Marie SPANARD Methods of tuning light emitting devices and tuned light emitting devices
DE102013103416A1 (de) * 2013-04-05 2014-10-23 Osram Opto Semiconductors Gmbh Elektromagnetische Strahlung emittierende Baugruppe und Verfahren zum Herstellen einer elektromagnetische Strahlung emittierenden Baugruppe
US20140321109A1 (en) * 2013-04-27 2014-10-30 GEM Weltronics TWN Corporation Light emitting diode (led) light tube
TWI511344B (zh) * 2013-05-08 2015-12-01 Ind Tech Res Inst 光取出元件及發光裝置
JP2015012212A (ja) * 2013-07-01 2015-01-19 株式会社ディスコ 発光チップ
US20150070881A1 (en) * 2013-09-06 2015-03-12 GEM Weltronics TWN Corporation Led light tube of module type
DE102013222702A1 (de) * 2013-11-08 2015-05-13 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement, optoelektronische Anordnung, Verfahren zum Herstellen eines optischen Elements und Verfahren zum Herstellen eines optoelektronischen Bauelements
KR101580739B1 (ko) * 2014-06-05 2015-12-28 엘지전자 주식회사 발광 장치
TW201616689A (zh) 2014-06-25 2016-05-01 皇家飛利浦有限公司 經封裝之波長轉換發光裝置
JP2016143742A (ja) * 2015-01-30 2016-08-08 シャープ株式会社 波長変換部材、発光装置、および波長変換部材の製造方法
BR102016004795B1 (pt) * 2015-03-05 2021-09-08 Nichia Corporation Diodo emissor de luz
US20170338387A1 (en) * 2015-06-30 2017-11-23 Seoul Semiconductor Co., Ltd. Light emitting diode
US10663632B2 (en) 2015-07-15 2020-05-26 Coelux S.R.L. Reflective illumination systems for optically widened perception
KR102499548B1 (ko) * 2015-11-06 2023-03-03 엘지이노텍 주식회사 발광패키지 및 이를 포함하는 차량용 헤드램프
CN106784234B (zh) * 2015-11-24 2018-09-28 扬升照明股份有限公司 光学模组以及光源
TWI780041B (zh) * 2016-02-04 2022-10-11 晶元光電股份有限公司 一種發光元件及其製造方法
US20170331016A1 (en) 2016-05-13 2017-11-16 Maxim Tchoul A lighting device having an optical lens formed on composite encapsulant comprising nanoparticles covering a light-emitting diode (led)
TWI721005B (zh) * 2016-08-17 2021-03-11 晶元光電股份有限公司 發光裝置以及其製造方法
JP6803539B2 (ja) * 2016-08-23 2020-12-23 パナソニックIpマネジメント株式会社 発光装置、及び、照明装置
US11081628B2 (en) * 2016-09-01 2021-08-03 Lumileds Llc White-appearing semiconductor light-emitting devices having a temperature sensitive low-index particle layer
DE102017117536A1 (de) * 2017-08-02 2019-02-07 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
DE102018101326A1 (de) * 2018-01-22 2019-07-25 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil
JP2021150428A (ja) * 2020-03-18 2021-09-27 日機装株式会社 半導体発光装置
WO2021248121A1 (en) * 2020-06-05 2021-12-09 Molekule, Inc. Photocatalytic fluid filtration system and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177146A (ja) * 1997-12-09 1999-07-02 Rohm Co Ltd 半導体発光素子
JP2003519717A (ja) * 2000-01-14 2003-06-24 オスラム−シルヴェニア インコーポレイテッド Uvおよびvuv用の蛍光ナノ相バインダー系
WO2003093393A1 (de) * 2002-05-06 2003-11-13 Osram Opto Semiconductors Gmbh Wellenlängenkonvertierende reaktionsharzmasse und leuchtdiodenbauelement
JP2004031989A (ja) * 1996-06-26 2004-01-29 Siemens Ag 被覆素子、半導体発光素子及び半導体発光素子の製造方法
JP2004071908A (ja) 2002-08-07 2004-03-04 Matsushita Electric Works Ltd 発光装置
JP2005093724A (ja) 2003-09-17 2005-04-07 Tokuyama Corp 発光ダイオード封止用プライマー組成物
JP2005167091A (ja) * 2003-12-04 2005-06-23 Nitto Denko Corp 光半導体装置
JP2005197317A (ja) * 2003-12-26 2005-07-21 Toshiba Corp 固体照明素子

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640994B2 (ja) 1973-03-22 1981-09-25
JPS5969936A (ja) 1982-10-15 1984-04-20 Sharp Corp 半導体装置の製造方法
JPH0799345A (ja) 1993-09-28 1995-04-11 Nichia Chem Ind Ltd 発光ダイオード
JPH07297451A (ja) 1994-04-21 1995-11-10 Toshiba Corp 半導体装置
JPH09153645A (ja) 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子
DE19638667C2 (de) * 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
JPH10112557A (ja) 1996-10-08 1998-04-28 Nichia Chem Ind Ltd 発光装置及びそれを用いた表示装置
JP3065263B2 (ja) 1996-12-27 2000-07-17 日亜化学工業株式会社 発光装置及びそれを用いたled表示器
JP3492178B2 (ja) 1997-01-15 2004-02-03 株式会社東芝 半導体発光装置及びその製造方法
JP3282176B2 (ja) 1997-07-14 2002-05-13 日亜化学工業株式会社 発光ダイオードの形成方法
JP3617587B2 (ja) 1997-07-17 2005-02-09 日亜化学工業株式会社 発光ダイオード及びその形成方法
JP3546650B2 (ja) 1997-07-28 2004-07-28 日亜化学工業株式会社 発光ダイオードの形成方法
JPH1187778A (ja) 1997-09-02 1999-03-30 Toshiba Corp 半導体発光素子、半導体発光装置およびその製造方法
JP2900928B2 (ja) 1997-10-20 1999-06-02 日亜化学工業株式会社 発光ダイオード
GB9815271D0 (en) * 1998-07-14 1998-09-09 Cambridge Display Tech Ltd Particles and devices comprising particles
JP3584163B2 (ja) 1998-07-27 2004-11-04 サンケン電気株式会社 半導体発光装置の製造方法
JP3775081B2 (ja) 1998-11-27 2006-05-17 松下電器産業株式会社 半導体発光装置
ATE410791T1 (de) * 1999-04-06 2008-10-15 Cambridge Display Tech Ltd Verfahren zur dotierung von polymeren
JP2001177157A (ja) 1999-12-15 2001-06-29 Matsushita Electronics Industry Corp 半導体発光装置
JP2001298216A (ja) 2000-04-12 2001-10-26 Matsushita Electric Ind Co Ltd 表面実装型の半導体発光装置
TWI226357B (en) * 2002-05-06 2005-01-11 Osram Opto Semiconductors Gmbh Wavelength-converting reaction-resin, its production method, light-radiating optical component and light-radiating semiconductor-body
US6870311B2 (en) * 2002-06-07 2005-03-22 Lumileds Lighting U.S., Llc Light-emitting devices utilizing nanoparticles
TW557363B (en) * 2002-10-15 2003-10-11 Optimax Tech Corp Anti-glare film
US7245072B2 (en) * 2003-01-27 2007-07-17 3M Innovative Properties Company Phosphor based light sources having a polymeric long pass reflector
US7091661B2 (en) * 2003-01-27 2006-08-15 3M Innovative Properties Company Phosphor based light sources having a reflective polarizer
CN100511732C (zh) * 2003-06-18 2009-07-08 丰田合成株式会社 发光器件
JP4784966B2 (ja) * 2003-11-18 2011-10-05 シャープ株式会社 半導体レーザ装置および照明装置
US7318651B2 (en) * 2003-12-18 2008-01-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Flash module with quantum dot light conversion
US7102152B2 (en) * 2004-10-14 2006-09-05 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Device and method for emitting output light using quantum dots and non-quantum fluorescent material
EP1769050B1 (en) * 2004-07-06 2013-01-16 Lightscape Materials Inc. Efficient, green-emitting phosphors, and combinations with red-emitting phosphors
JP2006083219A (ja) * 2004-09-14 2006-03-30 Sharp Corp 蛍光体およびこれを用いた発光装置
KR100678285B1 (ko) * 2005-01-20 2007-02-02 삼성전자주식회사 발광 다이오드용 양자점 형광체 및 그의 제조방법
JP4778745B2 (ja) * 2005-07-27 2011-09-21 パナソニック株式会社 半導体発光装置及びその製造方法
US7495383B2 (en) * 2005-08-01 2009-02-24 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Phosphor based on a combination of quantum dot and conventional phosphors
EP1919000A1 (en) * 2005-08-05 2008-05-07 Matsushita Electric Industries Co., Ltd. Semiconductor light-emitting device
JP2007053170A (ja) * 2005-08-16 2007-03-01 Toshiba Corp 発光装置
KR101086650B1 (ko) * 2005-09-22 2011-11-24 미쓰비시 가가꾸 가부시키가이샤 반도체 발광 디바이스용 부재 및 그 제조 방법, 및 그것을이용한 반도체 발광 디바이스
JP2007157831A (ja) * 2005-12-01 2007-06-21 Sharp Corp 発光装置
CN101361202B (zh) * 2006-01-16 2010-12-08 松下电器产业株式会社 半导体发光装置
CN101118291B (zh) * 2006-08-04 2010-04-14 鸿富锦精密工业(深圳)有限公司 扩散片
CN101605867B (zh) * 2006-10-03 2013-05-08 渲染材料公司 金属硅酸盐卤化物磷光体以及使用它们的led照明器件
JP4315195B2 (ja) * 2006-12-21 2009-08-19 ソニー株式会社 硬化性樹脂材料−微粒子複合材料及びその製造方法、光学材料、並びに発光装置
US11114594B2 (en) * 2007-08-24 2021-09-07 Creeled, Inc. Light emitting device packages using light scattering particles of different size

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031989A (ja) * 1996-06-26 2004-01-29 Siemens Ag 被覆素子、半導体発光素子及び半導体発光素子の製造方法
JPH11177146A (ja) * 1997-12-09 1999-07-02 Rohm Co Ltd 半導体発光素子
JP2003519717A (ja) * 2000-01-14 2003-06-24 オスラム−シルヴェニア インコーポレイテッド Uvおよびvuv用の蛍光ナノ相バインダー系
WO2003093393A1 (de) * 2002-05-06 2003-11-13 Osram Opto Semiconductors Gmbh Wellenlängenkonvertierende reaktionsharzmasse und leuchtdiodenbauelement
JP2004071908A (ja) 2002-08-07 2004-03-04 Matsushita Electric Works Ltd 発光装置
JP2005093724A (ja) 2003-09-17 2005-04-07 Tokuyama Corp 発光ダイオード封止用プライマー組成物
JP2005167091A (ja) * 2003-12-04 2005-06-23 Nitto Denko Corp 光半導体装置
JP2005197317A (ja) * 2003-12-26 2005-07-21 Toshiba Corp 固体照明素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUYUKI TADATOMO ET AL., MITSUBISHI CABLE INDUSTRIES REVIEW, vol. 99, July 2002 (2002-07-01), pages 35 - 41
MASARU SUGIMOTO ET AL., MATSUSHITA ELECTRIC WORKS TECHNICAL REPORT, vol. 53, no. 1, pages 4 - 9

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304611A (ja) * 2007-06-06 2008-12-18 Fujikura Ltd 光送受信装置
JP2009033081A (ja) * 2007-07-25 2009-02-12 Yiguang Electronic Ind Co Ltd 発光ダイオード装置
JP2009064842A (ja) * 2007-09-04 2009-03-26 Sumitomo Metal Electronics Devices Inc セラミックス焼結体およびそれを用いた基板およびそれを用いた発光素子搭載用パッケージおよびそれを用いた発光装置
JP2010538449A (ja) * 2007-09-04 2010-12-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光出力装置
US20110049551A1 (en) * 2007-12-21 2011-03-03 Osram Opto Semiconductors Gmbh Illuminating Device
US8716729B2 (en) * 2007-12-21 2014-05-06 Osram Opto Semiconductors Gmbh Lighting device
EP2227833A2 (en) * 2008-01-04 2010-09-15 Cree, Inc. Light emitting devices with high efficiency phospor structures
JP2009266974A (ja) * 2008-04-23 2009-11-12 Mitsubishi Electric Corp 発光装置並びに発光器具
EP2113949B1 (en) * 2008-05-02 2018-04-18 Cree, Inc. Encapsulation for phosphor-converted white light emitting diode
TWI426206B (zh) * 2008-12-25 2014-02-11 Au Optronics Corp 發光二極體裝置
US8227822B2 (en) 2008-12-25 2012-07-24 Au Optronics Corporation Light emitting diode apparatus
US8552448B2 (en) 2009-12-17 2013-10-08 Nichia Corporation Light emitting device
US8647906B2 (en) 2009-12-17 2014-02-11 Nichia Corporation Method for manufacturing a light emitting device
JP2011129661A (ja) * 2009-12-17 2011-06-30 Nichia Corp 発光装置
JP2011187929A (ja) * 2010-02-09 2011-09-22 Sony Corp 発光装置およびその製造方法
JP4980492B2 (ja) * 2010-03-10 2012-07-18 パナソニック株式会社 Led装置の製造方法
WO2011111293A1 (ja) * 2010-03-10 2011-09-15 パナソニック株式会社 Led封止樹脂体、led装置およびled装置の製造方法
US8791485B2 (en) 2010-03-10 2014-07-29 Panasonic Corporation LED encapsulation resin body, LED device, and method for manufacturing LED device
US8759861B2 (en) 2010-12-17 2014-06-24 Panasonic Corporation LED device with cerium oxide dispersion layer and method for manufacturing same
JP2012178540A (ja) * 2011-02-25 2012-09-13 Samsung Electronics Co Ltd 発光ダイオード
CN102856445A (zh) * 2011-06-30 2013-01-02 四川柏狮光电技术有限公司 Led灯珠的填隙方法
JP2015015418A (ja) * 2013-07-08 2015-01-22 シャープ株式会社 半導体発光装置
JP2015035439A (ja) * 2013-08-07 2015-02-19 ルネサスエレクトロニクス株式会社 光結合装置及び光結合装置の製造方法
CN104347750A (zh) * 2013-08-07 2015-02-11 瑞萨电子株式会社 光学耦合器件及制造光学耦合器件的方法
JP2015099945A (ja) * 2015-02-27 2015-05-28 日亜化学工業株式会社 発光装置
JP2018523847A (ja) * 2015-07-15 2018-08-23 コエルクス・エッセ・エッレ・エッレCoeLux S.r.l. 色反射ユニット
JP2017059752A (ja) * 2015-09-18 2017-03-23 豊田合成株式会社 発光装置とその製造方法
JP2017168620A (ja) * 2016-03-16 2017-09-21 豊田合成株式会社 発光装置およびその製造方法
US11177423B2 (en) 2017-05-19 2021-11-16 Citizen Electronics Co., Ltd. Light emitting device
JP7161990B2 (ja) 2017-05-19 2022-10-27 シチズン電子株式会社 発光装置
WO2018212300A1 (ja) * 2017-05-19 2018-11-22 シチズン電子株式会社 発光装置
JPWO2018212300A1 (ja) * 2017-05-19 2020-03-19 シチズン電子株式会社 発光装置
JP7248379B2 (ja) 2017-07-24 2023-03-29 日亜化学工業株式会社 発光装置及びその製造方法
JP2019125682A (ja) * 2018-01-16 2019-07-25 日機装株式会社 半導体発光素子
US11002427B2 (en) * 2019-03-28 2021-05-11 Nichia Corporation Light emitting device
US11313536B2 (en) 2019-03-28 2022-04-26 Nichia Corporation Light emitting device
JP7277276B2 (ja) 2019-06-18 2023-05-18 スタンレー電気株式会社 発光装置
JP2020205355A (ja) * 2019-06-18 2020-12-24 スタンレー電気株式会社 発光装置
CN110544738A (zh) * 2019-08-22 2019-12-06 佛山市柔浩电子有限公司 一种紫外线发光二极管结构
CN110544738B (zh) * 2019-08-22 2021-06-29 佛山市柔浩电子有限公司 一种紫外线发光二极管结构

Also Published As

Publication number Publication date
TW200721540A (en) 2007-06-01
US20110133237A1 (en) 2011-06-09
JPWO2007018039A1 (ja) 2009-02-19
US7910940B2 (en) 2011-03-22
KR20080049011A (ko) 2008-06-03
US20090256166A1 (en) 2009-10-15
EP1919000A1 (en) 2008-05-07

Similar Documents

Publication Publication Date Title
WO2007018039A1 (ja) 半導体発光装置
JP4269709B2 (ja) 発光装置およびその製造方法
TWI481077B (zh) Semiconductor light emitting device and manufacturing method of semiconductor light emitting device
JP5521325B2 (ja) 発光装置及びその製造方法
JP5326837B2 (ja) 発光装置
US10879436B2 (en) Light emitting device
US7304326B2 (en) Light emitting device and sealing material
JPWO2006077740A1 (ja) 発光装置及びその製造方法
CN101208811A (zh) 半导体发光装置
WO2002089219A1 (fr) Appareil electroluminescent
WO2009156856A2 (en) Led with improved external light extraction efficiency
CN107408610B (zh) 发光器件
JP2017117858A (ja) 発光装置
JP2010062427A (ja) 発光装置
JP3533345B2 (ja) 半導体発光装置
US20230207752A1 (en) Light-emitting device and method of manufacturing the same
JP2005302920A (ja) 発光装置
JP2002050800A (ja) 発光装置及びその形成方法
JP5644967B2 (ja) 発光装置及びその製造方法
JP2011222642A (ja) 発光装置
JP2019165237A (ja) 発光装置
JP5678462B2 (ja) 発光装置
JP6680302B2 (ja) 発光装置
JP2011124515A (ja) 発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680023124.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529479

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11995924

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087003408

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006781755

Country of ref document: EP