JP2019125682A - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
JP2019125682A
JP2019125682A JP2018004954A JP2018004954A JP2019125682A JP 2019125682 A JP2019125682 A JP 2019125682A JP 2018004954 A JP2018004954 A JP 2018004954A JP 2018004954 A JP2018004954 A JP 2018004954A JP 2019125682 A JP2019125682 A JP 2019125682A
Authority
JP
Japan
Prior art keywords
light emitting
refractive index
light
layer
hollow body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018004954A
Other languages
English (en)
Inventor
英樹 浅野
Hideki Asano
英樹 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2018004954A priority Critical patent/JP2019125682A/ja
Priority to US16/249,463 priority patent/US10910521B2/en
Publication of JP2019125682A publication Critical patent/JP2019125682A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】半導体発光素子が発する紫外線の取り出し効率や耐久性を向上する新たな技術を提供する。【解決手段】半導体発光素子10は、紫外線を発する発光部12と、発光部が発する紫外線が取り出される取り出し面12aを覆う被覆部と、を有する。被覆部は、取り出し面12aを構成する無機材料の屈折率よりも低い屈折率を有する樹脂マトリックス14bと、樹脂マトリックス14bに分散されることで被覆部全体の屈折率を下げる中空体14cと、を含有する。中空体14cは、発光部12が発する紫外線のピーク波長よりも平均粒径が小さい。【選択図】図1

Description

本発明は、半導体発光素子に関する。
従来、LEDチップと、LEDチップを被覆し、蛍光体粒子及び封止樹脂を含み、LEDチップからの特定波長の光を、他の特定波長の光に変換する波長変換層と、波長変換層と接し、無機粒子及びバインダを含む無機粒子含有層とを有し、無機粒子の屈折率が、バインダの屈折率より低い、LED装置が考案されている(特許文献1参照)。このLED装置は、LEDチップが発する青色光と、青色光の一部が波長変換層の蛍光体で励起された黄色光と、を混色することで擬似的な白色光を実現している。
近年、青色よりも波長の短い紫外線を発する半導体発光素子の開発が進められている。このような紫外線用の半導体発光素子は、窒化物系の半導体層で構成されたn型層、活性層、p型層などの各層が基板上に所定の順に積層されている。このような半導体発光素子は、活性層が発する紫外線を基板や各半導体層を介して外部へ取り出さなければならないが、通常の窒化物系の半導体層の屈折率が空気より非常に大きいこと、また、半導体層を構成する窒化物系の一部の材料(例えば窒化ガリウム)において紫外線の吸収が大きいことにより、そのままでは光取り出し効率の向上が難しい。
そこで、屈折率が空気よりも高い樹脂で半導体発光素子の発光面を封止することで、発光面を挟んだ屈折率差による内面反射を低減することが行われている。
国際公開第13/105514号
上述のように、半導体発光素子の発光面を樹脂で覆うことで発光面での内面反射を低減することが可能である。また、発光素子の発光面や樹脂から紫外線が出射する出射面での内面反射を減らして光取り出し効率を更に向上するためには、発光素子の発光面の屈折率と空気の屈折率を考慮した適切な屈折率を有する樹脂を選ぶことが望ましい。
しかしながら、紫外線に対して耐久性の高い樹脂の種類は限られるため、常に好ましい屈折率を有する樹脂を選ぶことができるとは限らない。
本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、半導体発光素子が発する紫外線の取り出し効率や耐久性を向上する新たな技術を提供することにある。
上記課題を解決するために、本発明のある態様の半導体発光素子は、紫外線を発する発光部と、発光部が発する紫外線が取り出される取り出し面を覆う被覆部と、を有する。被覆部は、取り出し面を構成する無機材料の屈折率よりも低い屈折率を有する樹脂マトリックスと、該樹脂マトリックスに分散されることで被覆部全体の屈折率を下げる中空体と、を含有する。中空体は、発光部が発する紫外線のピーク波長よりも平均粒径が小さい。
一般的に、紫外線を発する発光部を構成する無機材料は、空気と比較して大きな屈折率を有するものが多い。そのため、光取り出し面が空気に露出している状態では、発光部内で内面反射する紫外線が多くなり、光取り出し効率は低くなる。そこで、この態様によると、樹脂マトリックスを有する被覆部で取り出し面を覆うことで、取り出し面と被覆部との界面での屈折率差が少なくなり、光取り出し効率が向上する。一方、被覆部の屈折率が空気に対して高すぎると、被覆部から外部(空気)へ出射する出射面での内面反射が多くなる。したがって、被覆部の屈折率は、無機材料の屈折率よりも低く、空気の屈折率よりも高い、ある程度の範囲の値が好ましいことになる。そこで、樹脂マトリックス単独で被覆部を構成した場合には実現できないような屈折率を、中空体を樹脂マトリックスに分散させることで実現できる。
中空体は、平均粒径が10〜100nmであってもよい。これにより、中空体の平均粒径が紫外線のピーク波長に対して十分小さいため、紫外線が中空体で散乱されることが防止される。
発光部は、ピーク波長が250〜350nmの紫外線を発してもよい。
樹脂マトリックスは、シリコーン系樹脂であってもよい。これにより、紫外線に対する耐久性と発光部の封止性能を両立できる。
被覆部は、中空体を40〜90wt%含有してもよい。これにより、被覆部の屈折率を適切に下げることができる。また、中空部分を増加することで、被覆部の線膨張係数を下げることができるため、取り出し面を構成する無機材料の線膨張係数に近づけることができる。その結果、取り出し面と被覆部との界面で生じる引っ張り応力や圧縮応力が緩和され、界面での被覆部の剥離やクラックの発生が低減される。
取り出し面は、サファイア基板または窒化アルミニウム基板で構成されていてもよい。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、半導体発光素子が発する紫外線の取り出し効率や耐久性を向上できる。
本実施の形態に係る半導体発光素子の概略構成の断面図である。 光取り出し面における反射率および封止樹脂の出射面における反射率と、封止樹脂の屈折率との関係を示した図である。 本実施の形態に係る半導体発光素子の構成を概略的に示す断面図である。 実施例および比較例に係る半導体発光素子の出力変化を示す図である。 中空シリカの含有率と、発光素子の寿命及び封止樹脂の屈折率との関係を示す図である。
以下、本発明の実施の形態について図面を参照して説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。
前述のように、屈折率が空気よりも高い樹脂で半導体発光素子の発光面を封止することで、発光面を挟んだ屈折率差による内面反射を低減することが可能である。しかしながら、樹脂はガラスやセラミックスと比較して耐光性は劣る。特に紫外線を発する半導体発光素子の場合、紫外線に対して耐久性のある樹脂は限られている。当然、適切な屈折率の樹脂があるとは限らない。
そこで、本発明者は、樹脂マトリックスとしては耐光性を優先しつつ、屈折率や線膨張係数を充填材で調整することに想到した。なお、樹脂マトリックスや充填材の構成は、必ずしも一義的に決まるものではなく、発光部の構成(発光波長や取り出し面の材質等)によって適切な範囲は変わり得る。
図1は、本実施の形態に係る半導体発光素子の概略構成の断面図である。半導体発光素子10は、紫外線を発する発光部12と、発光部を搭載する素子搭載基板13と、発光部12の内部で生じた紫外線を取り出す取り出し面12aおよび側面12bを被覆して封止する封止樹脂14と、を有する。発光部12の取り出し面12aは、一辺の大きさが0.5〜3mm程度の四角形であり、例えば、サファイアや窒化アルミニウムといった透明なセラミックス基板で構成されているが、これらの基板は屈折率が非常に高い(1.8〜2.4)。そのため、基板の屈折率と空気の屈折率との間の屈折率を有する封止樹脂で取り出し面12aを被覆することで、光取り出し効率の向上が図られている。
図2は、光取り出し面における反射率および封止樹脂の出射面における反射率と、封止樹脂の屈折率との関係を示した図である。なお、図2に示す結果は光取り出し面がサファイア基板(屈折率n1=1.82)の場合である。
取り出し面12aを構成するセラミック基板と樹脂とは屈折率が近い(樹脂の屈折率n2が高い)ほど取り出し面12aにおける反射率R12は低下し、光取り出し効率は向上する。一方、樹脂の屈折率n2が高いほど出射面14a(図1参照)における反射率R23が高くなり、出射面14aにおける光取り出し効率が低下する。
したがって、樹脂の屈折率n2は、反射率R12と反射率R23の総和が小さい範囲が好ましく、おおよそ1.3〜1.4程度である。なお、光取り出し面が窒化アルミニウム基板(屈折率n1=2.1)の場合、サファイア基板の場合と比較して結果は相違するが、図2に示す傾向は同じである。
図2に示す結果から、封止樹脂14の屈折率は1.35程度が好ましいことがわかるが、一般的なシリコーン系樹脂は屈折率が1.4以上のものがほとんどである。したがって、シリコーン系樹脂では、最適な屈折率を有する被覆部を実現できない。
そこで、図1に示すように、本実施の形態に係る半導体発光素子10は、ピーク波長が250〜350nmの紫外線を発する発光部12と、発光部12が発する紫外線が取り出される取り出し面12aを覆う被覆部としての封止樹脂14と、を有し、封止樹脂14は、取り出し面12aを構成する無機材料の屈折率よりも低い屈折率を有する樹脂マトリックス14bと、樹脂マトリックス14bに分散されることで被覆部全体の屈折率を下げる中空体14cと、を含有する。樹脂マトリックス14bは、シリコーン系樹脂である。これにより、紫外線に対する耐久性と発光部12の封止性能を両立できる。
中空体14cは、発光部12が発する紫外線のピーク波長よりも平均粒径が小さい。具体的には、中空体14cの平均粒径は、10nm以上400nm以下である。好ましくは、深紫外線のピーク波長の範囲である365nm以下、より好ましくは310nm以下である。更に、中空体14cの平均粒径が200nm以下、好ましくは100nm以下であれば、中空体の平均粒径が紫外線のピーク波長に対して十分小さいため、紫外線が中空体で散乱されることが防止される。
中空体14cの材質としては種々あるが、中空シリカや中空ガラス等が挙げられる。中空体は、中空部分の屈折率が実質的に1である。そのため、充填された層の屈折率を下げる機能がある。このような観点で言えば、気泡も屈折率を下げるものとして機能し得る。本実施の形態に係る封止樹脂14は、中空体を30wt%以上含有している。これにより、被覆部の屈折率を適切に下げることができる。
このように、本実施の形態に係る半導体発光素子10は、樹脂マトリックス14bを有する封止樹脂14で取り出し面12aを覆うことで、取り出し面12aと封止樹脂14との界面での屈折率差が少なくなり、光取り出し効率が向上する。一方、封止樹脂14の屈折率が空気に対して高すぎると、封止樹脂14から外部(空気)へ出射する出射面14aでの内面反射が多くなる。したがって、前述のように、封止樹脂14の屈折率は、無機材料の屈折率よりも低く空気の屈折率よりも高い、ある程度の範囲の値が好ましいことになる。そこで、樹脂マトリックス14b単独で封止樹脂14を構成した場合には実現できないような屈折率を、中空体14cを樹脂マトリックス14bに分散させることで実現できる。これにより、半導体発光素子10の光取り出し効率を向上できる。
次に、封止樹脂14の耐久性の向上について説明する。紫外線に対して耐久性が高い樹脂であるシリコーン系樹脂は、セラミックス基板と比較して線膨張係数が1〜2桁程度大きい。そのため、発光部12を覆うように封止樹脂14をポッティングし、加熱して硬化した後、使用環境まで温度を下げると、封止樹脂14は内部に応力が残留した状態となる。
つまり、サファイア基板とシリコーン樹脂との界面には、熱硬化後に使用環境まで温度を下げる過程で、過大な残留応力が生じることになる。また、この応力は、封止樹脂14の厚みに比例するので、図1に示すように発光部12を半球状に封止する場合、残留応力は非常に大きなものとなる。そのため、形状に起因して応力が集中しやすい発光部12の角部にクラックが生じやすい。また、発光部12の取り出し面12aの、特に紫外線出力強度の高い中央部において、取り出し面12aと封止樹脂14との間で剥離を生じることがある。
このような現象は、取り出し面の材料の線膨張係数に対して被覆部の線膨張係数が大きく異なるときに顕著であるが、仮に取り出し面の材料の線膨張係数に対して被覆部の線膨張係数が少しでも異なっていても(例えば、取り出し面の材料の線膨張係数の2倍以上)生じ得る。
このように、発光部の取り出し面を発光部の材料よりも屈折率の低い材料で被覆することで、光取り出し効率を向上できる一方、このような低屈折率材料の内部の残留応力が耐久性に影響を及ぼすことがわかる。
そこで、本発明者は、これらの知見に基づいて、低屈折率材料の内部の残留応力を低減することで半導体発光素子の耐久性や信頼性を向上できることに想到した。具体的には、封止樹脂14に中空体14cを40〜90wt%含有させることで、封止樹脂14の線膨張係数を下げることができるため、取り出し面を構成する無機材料の線膨張係数に近づけることができる。その結果、取り出し面と被覆部との界面で生じる引っ張り応力や圧縮応力が緩和され、界面での被覆部の剥離やクラックの発生が低減される。
図3は、本実施の形態に係る半導体発光素子の構成を概略的に示す断面図である。なお、図3では、発光部12以外の構成は図示を省略している。
半導体発光素子10は、紫外線を発する発光部12を有する。発光部12は、ベース構造体20と、発光構造体30とを備える。ベース構造体20は、基板22、第1ベース層24、第2ベース層26を含む。発光構造体30は、n型クラッド層32、活性層34、電子ブロック層36、p型クラッド層38、p側電極40、n側電極42を含む。
発光部12は、中心波長が約365nm以下となる「深紫外線」を発するように構成されている。このような波長の深紫外線を出力するため、活性層34は、バンドギャップが約3.4eV以上となる窒化アルミニウムガリウム(AlGaN)系半導体材料で構成される。本実施の形態では、特に中心波長が約310nm以下の深紫外線を発する場合について示す。
本明細書において、「AlGaN系半導体材料」とは、主に窒化アルミニウム(AlN)と窒化ガリウム(GaN)を含む半導体材料のことをいい、窒化インジウム(InN)などの他の材料を含有する半導体材料を含むものとする。したがって、本明細書にいう「AlGaN系半導体材料」は、例えば、In1−x−yAlGaN(0≦x+y≦1、0≦x≦1、0≦y≦1)の組成で表すことができ、AlN、GaN、AlGaN、窒化インジウムアルミニウム(InAlN)、窒化インジウムガリウム(InGaN)、窒化インジウムアルミニウムガリウム(InAlGaN)を含むものとする。
また「AlGaN系半導体材料」のうち、AlNを実質的に含まない材料を区別するために「GaN系半導体材料」ということがある。「GaN系半導体材料」には、主にGaNやInGaNが含まれ、これらに微量のAlNを含有する材料も含まれる。同様に、「AlGaN系半導体材料」のうち、GaNを実質的に含まない材料を区別するために「AlN系半導体材料」ということがある。「AlN系半導体材料」には、主にAlNやInAlNが含まれ、これらに微量のGaNが含有される材料も含まれる。
基板22は、サファイア(Al)基板である。基板22は、変形例において窒化アルミニウム(AlN)基板であってもよい。基板22は、第1主面22aと、第1主面22aの反対側の第2主面22bとを有する。第1主面22aは、結晶成長面となる一主面であり、例えば、サファイア基板の(0001)面である。第2主面22bは、紫外線を取り出す取り出し面12aとなる一主面である。
基板22の厚さtは、1μm以上であり、例えば、5μm、10μm、100μm、300μm、500μm程度の厚さを有する。基板22の第1主面22a上には、第1ベース層24および第2ベース層26が積層される。第1ベース層24は、AlN系半導体材料で形成される層であり、例えば、高温成長させたAlN(HT−AlN)層である。第2ベース層26は、AlGaN系半導体材料で形成される層であり、例えば、アンドープのAlGaN(u−AlGaN)層である。
基板22、第1ベース層24および第2ベース層26は、n型クラッド層32から上の層を形成するための下地層(テンプレート)として機能する。また、これらの層は、活性層34が発する深紫外線を外部に取り出すための光取出層として機能し、活性層34が発する深紫外線が透過する。第1ベース層24および第2ベース層26は、活性層34が発する深紫外線の透過率が高まるように、活性層34よりもAlN比率の高いAlGaN系またはAlN系材料で構成されることが好ましく、活性層34より低屈折率の材料で構成されることが好ましい。
また、第1ベース層24および第2ベース層26は、基板22より高屈折率の材料で構成されることが好ましい。例えば、基板22がサファイア基板(屈折率n=1.8程度)であり、活性層34がAlGaN系半導体材料(屈折率n=2.4〜2.6程度)である場合、第1ベース層24や第2ベース層26は、AlN層(屈折率n=2.1程度)や、AlN組成比が相対的に高いAlGaN系半導体材料(屈折率n=2.2〜2.3程度)で構成されることが好ましい。
n型クラッド層32は、第2ベース層26の上に設けられるn型半導体層である。n型クラッド層32は、n型のAlGaN系半導体材料で形成され、例えば、n型の不純物としてシリコン(Si)がドープされるAlGaN層である。n型クラッド層32は、活性層34が発する深紫外線を透過するように組成比が選択され、例えば、AlNのモル分率が40%以上、好ましくは、50%以上となるように形成される。n型クラッド層32は、活性層34が発する深紫外線の波長よりも大きいバンドギャップを有し、例えば、バンドギャップが4.3eV以上となるように形成される。n型クラッド層32は、1μm〜3μm程度の厚さを有し、例えば、2μm程度の厚さを有する。
活性層34は、n型クラッド層32の一部領域上に形成される。活性層34は、AlGaN系半導体材料で形成され、n型クラッド層32と電子ブロック層36に挟まれてダブルヘテロ接合構造を構成する。活性層34は、単層若しくは多層の量子井戸構造を構成してもよい。このような量子井戸構造は、例えば、アンドープのAlGaN系半導体材料で形成されるバリア層と、アンドープのAlGaN系半導体材料で形成される井戸層とを積層させることにより形成される。活性層34は、波長355nm以下の深紫外線を出力するためにバンドギャップが3.4eV以上となるように構成され、例えば、波長310nm以下の深紫外線を出力できるようにAlN組成比が選択される。
電子ブロック層36は、活性層34の上に形成される。電子ブロック層36は、p型のAlGaN系半導体材料で形成される層であり、例えば、アンドープのAlGaN層である。電子ブロック層36は、例えば、AlNのモル分率が40%以上、好ましくは、50%以上となるように形成される。電子ブロック層36は、AlNのモル分率が80%以上となるように形成されてもよく、実質的にGaNを含まないAlN系半導体材料で形成されてもよい。電子ブロック層36は、p型の不純物としてマグネシウム(Mg)がドープされるAlGaN系半導体材料またはAlN系半導体材料で形成されてもよい。電子ブロック層36は、1nm〜10nm程度の厚さを有し、例えば、2nm〜5nm程度の厚さを有する。
p型クラッド層38は、電子ブロック層36の上に形成される。p型クラッド層38は、p型のAlGaN系半導体材料で形成される層であり、例えば、MgドープのAlGaN層である。p型クラッド層38は、電子ブロック層36よりもAlNのモル分率が低くなるように組成比が選択される。p型クラッド層38は、10nm〜1000nm程度の厚さを有し、例えば、400nm〜600nm程度の厚さを有する。
p側電極40は、p型クラッド層38の上に設けられる。p側電極40は、p型クラッド層38との間でオーミック接触が実現できる材料で形成され、例えば、ニッケル(Ni)/金(Au)の積層構造により形成される。
n側電極42は、n型クラッド層32の上に設けられる。n側電極42は、Ti/Al系電極であり、例えば、チタン(Ti)/Al/Ti/AuまたはTi/Al/Ni/Auの積層構造により形成される。
上述のような半導体発光素子において、封止樹脂14に中空体を含有させたもの(実施例)と、中空体を含有させていないもの(比較例)とで耐久試験を行った。
実施例の封止樹脂14は、シリコーン系樹脂30wt%、平均粒径が20nmの中空シリカ70wt%を混合したものであり、発光部を封止した後、180℃で硬化させた。用いた中空シリカは形状がほぼ球状である。また、中空シリカの粒度分布は粒径が16nm〜24nmの粒子が90%以上占めている。封止樹脂14の厚みは、最厚部で約0.5mmである。また、発光部12が発する深紫外線のピーク波長は約280nmである。
図4は、実施例および比較例に係る半導体発光素子の出力変化を示す図である。図4に示すように、比較例に係る半導体発光素子は、初期出力が65mW程度であるが、封止樹脂14に中空体14cが含まれていない。そのため、通電が500時間を超えたあたりから出力が低下し、通電が900時間で発光しなくなった。発光停止の主原因は樹脂の劣化によるものである。具体的には、通電試験中に封止樹脂が割れる、封止樹脂と発光部との界面で剥離が生じる、といった現象が確認されている。
一方、実施例に係る半導体発光素子は、封止樹脂14に中空体14cを含有させたことで、初期出力が70mWを超えており、通電が1000時間になってもほとんど出力の低下は見られなかった。
次に、中空シリカの含有率と寿命との関係について説明する。図5は、中空シリカの含有率と、発光素子の寿命及び封止樹脂の屈折率との関係を示す図である。図5に示すように、中空シリカの含有率が高くなるにつれて素子の寿命が改善されていくのが分かる。その理由は、中空シリカの含有率が増えることによって熱硬化後の封止樹脂に内在する引っ張り応力が低減し、封止樹脂全体の耐久性が向上したためである。
また、図5に示す結果より、中空シリカの含有率が40wt%を超えたあたりから発光素子の寿命が延び始めており、50wt%以上で寿命の延びが明らかとなり、更には60wt%以上、少なくとも90wt%程度までの範囲で寿命の延びが顕著になっている。
一方、半導体発光素子10の光取り出し効率を高めるために有効な封止樹脂14の屈折率は、前述のように1.3〜1.4の範囲にあるとより好ましい。そのため、中空シリカの含有率は、光取り出し効率の観点では、屈折率が1.4を下回る50wt%以上が好ましく、より好ましくは60wt%以上であればよい。また、中空シリカの含有率が60wt%以上であれば、前述のように発光素子の寿命も大きく延ばすことができる。
このように、本実施の形態に係る半導体発光素子は、封止樹脂14に中空体14cを含有させることで、発光部の取り出し面と封止樹脂との界面および封止樹脂と空気との界面の全体としての反射損失を低減し、光取り出し効率を向上した。加えて、封止樹脂14に中空体14cを含有させることで、封止樹脂14全体の線膨張係数が下がり、封止樹脂14の内部の残留応力が小さくなる。その結果、残留応力に起因する樹脂部分のクラックや剥離が抑制され、半導体発光素子の出力低下の観点での耐久性が向上する。
以上、本発明を上述の実施の形態を参照して説明したが、本発明は上述の実施の形態に限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。
10 半導体発光素子、 12 発光部、 12a 取り出し面、 14 封止樹脂、 14a 出射面、 14b 樹脂マトリックス、 14c 中空体、 22 基板。

Claims (6)

  1. 紫外線を発する発光部と、
    前記発光部が発する紫外線が取り出される取り出し面を覆う被覆部と、を有し
    前記被覆部は、前記取り出し面を構成する無機材料の屈折率よりも低い屈折率を有する樹脂マトリックスと、該樹脂マトリックスに分散されることで被覆部全体の屈折率を下げる中空体と、を含有し、
    前記中空体は、前記発光部が発する紫外線のピーク波長よりも平均粒径が小さいことを特徴とする半導体発光素子。
  2. 前記中空体は、平均粒径が10〜100nmであることを特徴とする請求項1に記載の半導体発光素子。
  3. 前記発光部は、ピーク波長が250〜350nmの紫外線を発することを特徴とする請求項1または2に記載の半導体発光素子。
  4. 前記樹脂マトリックスは、シリコーン系樹脂であることを特徴とする請求項1乃至3のいずれか1項に記載の半導体発光素子。
  5. 前記被覆部は、前記中空体を40〜90wt%含有することを特徴とする請求項1乃至4のいずれか1項に記載の半導体発光素子。
  6. 前記取り出し面は、サファイア基板または窒化アルミニウム基板で構成されていることを特徴とする請求項1乃至5のいずれか1項に記載の半導体発光素子。
JP2018004954A 2018-01-16 2018-01-16 半導体発光素子 Pending JP2019125682A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018004954A JP2019125682A (ja) 2018-01-16 2018-01-16 半導体発光素子
US16/249,463 US10910521B2 (en) 2018-01-16 2019-01-16 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018004954A JP2019125682A (ja) 2018-01-16 2018-01-16 半導体発光素子

Publications (1)

Publication Number Publication Date
JP2019125682A true JP2019125682A (ja) 2019-07-25

Family

ID=67213088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018004954A Pending JP2019125682A (ja) 2018-01-16 2018-01-16 半導体発光素子

Country Status (2)

Country Link
US (1) US10910521B2 (ja)
JP (1) JP2019125682A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006024A1 (ja) 2019-07-05 2021-01-14 日本製鉄株式会社 樹脂フィルムラミネート金属板、および、その製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018039A1 (ja) * 2005-08-05 2007-02-15 Matsushita Electric Industrial Co., Ltd. 半導体発光装置
WO2007080803A1 (ja) * 2006-01-16 2007-07-19 Matsushita Electric Industrial Co., Ltd. 半導体発光装置
CN101364626A (zh) * 2007-08-07 2009-02-11 亿光电子工业股份有限公司 发光二极管装置
JP2011249703A (ja) * 2010-05-31 2011-12-08 Kyocera Corp 面発光型照射デバイス、面発光型照射モジュール、および印刷装置
JP2012121941A (ja) * 2010-12-06 2012-06-28 Jgc Catalysts & Chemicals Ltd 封止材用塗料およびその用途
US20130105853A1 (en) * 2011-10-26 2013-05-02 Forschungsverbund Berlin E.V. Light emitting diode
JP2015230983A (ja) * 2014-06-05 2015-12-21 旭硝子株式会社 紫外線発光装置用透光性部材、紫外線発光装置およびその製造方法
JP2016506069A (ja) * 2012-11-28 2016-02-25 エルジー・ケム・リミテッド 発光ダイオード
JP2017120837A (ja) * 2015-12-28 2017-07-06 パナソニックIpマネジメント株式会社 紫外線発光装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091289A (ja) * 2009-10-26 2011-05-06 Sony Corp 半導体素子の製造方法および半導体素子
WO2013105514A1 (ja) 2012-01-13 2013-07-18 コニカミノルタアドバンストレイヤー株式会社 Led装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018039A1 (ja) * 2005-08-05 2007-02-15 Matsushita Electric Industrial Co., Ltd. 半導体発光装置
WO2007080803A1 (ja) * 2006-01-16 2007-07-19 Matsushita Electric Industrial Co., Ltd. 半導体発光装置
CN101364626A (zh) * 2007-08-07 2009-02-11 亿光电子工业股份有限公司 发光二极管装置
JP2011249703A (ja) * 2010-05-31 2011-12-08 Kyocera Corp 面発光型照射デバイス、面発光型照射モジュール、および印刷装置
JP2012121941A (ja) * 2010-12-06 2012-06-28 Jgc Catalysts & Chemicals Ltd 封止材用塗料およびその用途
US20130105853A1 (en) * 2011-10-26 2013-05-02 Forschungsverbund Berlin E.V. Light emitting diode
JP2016506069A (ja) * 2012-11-28 2016-02-25 エルジー・ケム・リミテッド 発光ダイオード
JP2015230983A (ja) * 2014-06-05 2015-12-21 旭硝子株式会社 紫外線発光装置用透光性部材、紫外線発光装置およびその製造方法
JP2017120837A (ja) * 2015-12-28 2017-07-06 パナソニックIpマネジメント株式会社 紫外線発光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006024A1 (ja) 2019-07-05 2021-01-14 日本製鉄株式会社 樹脂フィルムラミネート金属板、および、その製造方法

Also Published As

Publication number Publication date
US10910521B2 (en) 2021-02-02
US20190221716A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP4984824B2 (ja) 発光装置
KR101202110B1 (ko) 발광 장치
JP4796577B2 (ja) 反射性ボンディングパッドを有する発光デバイスおよび反射性ボンディングパッドを有する発光デバイスを作製する方法
JP5000612B2 (ja) 窒化ガリウム系発光ダイオード素子
JP5047264B2 (ja) 発光装置
JP2009076896A (ja) 半導体発光素子
JP2006100787A (ja) 発光装置および発光素子
TWI565095B (zh) 發光模組
JP2009224538A (ja) 半導体発光装置
JP2014053609A (ja) 発光素子及びその製造方法
US9812608B2 (en) Deep ultraviolet light-emitting diode chip and package structure containing the same
JP2008098486A (ja) 発光素子
KR101439153B1 (ko) 곡선 기판을 갖는 led 칩과 이를 이용한 led 패키지
CN107068827A (zh) 高效发光二极管
JP2010056423A (ja) 半導体発光素子用電極及び半導体発光素子
JP2010087038A (ja) 発光素子および照明装置
JP2006332365A (ja) Iii族窒化物系化合物半導体発光素子およびそれを用いた発光装置
JP6456414B2 (ja) 半導体発光素子
US10910521B2 (en) Semiconductor light emitting device
JP5983068B2 (ja) 半導体発光素子及び発光装置
TW201733155A (zh) 深紫外光發光二極體晶片
US11316073B2 (en) Semiconductor light emitting device and method of manufacturing semiconductor light emitting device
KR101333332B1 (ko) 발광 다이오드 및 그 제조 방법
KR100690322B1 (ko) 거칠어진 표면을 구비하는 고굴절률 물질층을 채택한 발광다이오드
JP5380588B2 (ja) 発光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211221