WO2021006024A1 - 樹脂フィルムラミネート金属板、および、その製造方法 - Google Patents

樹脂フィルムラミネート金属板、および、その製造方法 Download PDF

Info

Publication number
WO2021006024A1
WO2021006024A1 PCT/JP2020/024507 JP2020024507W WO2021006024A1 WO 2021006024 A1 WO2021006024 A1 WO 2021006024A1 JP 2020024507 W JP2020024507 W JP 2020024507W WO 2021006024 A1 WO2021006024 A1 WO 2021006024A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
resin film
laminated
film
laminated metal
Prior art date
Application number
PCT/JP2020/024507
Other languages
English (en)
French (fr)
Inventor
伸生 門脇
和史 岩切
知弘 水谷
大輔 安福
朋也 原
加藤 敏
雄太 田島
悠輝 長井
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to EP20836981.9A priority Critical patent/EP3995288A4/en
Priority to KR1020217035561A priority patent/KR102616087B1/ko
Priority to CN202080036429.XA priority patent/CN113853303A/zh
Priority to US17/606,909 priority patent/US20220203654A1/en
Priority to JP2021530576A priority patent/JP7184196B2/ja
Publication of WO2021006024A1 publication Critical patent/WO2021006024A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/14Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being a lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/03After-treatments in the joint area
    • B29C66/034Thermal after-treatments
    • B29C66/0342Cooling, e.g. transporting through welding and cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2471/00Floor coverings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/12Ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/08Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • B32B37/203One or more of the layers being plastic

Definitions

  • the present invention relates to a material for a laminated panel used as a weight reduction measure for a building material, a ship, a vehicle floor and a wall material, and particularly a resin film laminate used for a laminated panel having a foamed resin core layer between two metal plates.
  • a material for a laminated panel used as a weight reduction measure for a building material, a ship, a vehicle floor and a wall material
  • a resin film laminate used for a laminated panel having a foamed resin core layer between two metal plates.
  • metal plates Regarding metal plates.
  • the present application claims priority based on Japanese Patent Application No. 2019-125682 filed in Japan on July 5, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 2 includes an example of a method for manufacturing a sandwich panel in which a sheet-shaped prepreg is cured on both sides of a sheet-shaped core layer having a honeycomb structure. It is shown.
  • Patent Document 3 the resin sheet (b) in which a metal plate is embedded on both sides of the resin sheet (a) and the surface of the resin sheet (b) opposite to the surface in contact with the resin sheet (a)
  • An example of a resin sheet laminated steel sheet in which a steel plate located on a surface is laminated at least sequentially is shown, and the metal plate embedded in the resin sheet (b) is 30% by volume based on the total volume of the metal plates. It is described that the pores having the above volume ratio are formed.
  • Japanese Patent No. 4326001 Japanese Patent Application Laid-Open No. 2018-187939 Japanese Patent No. 5553542
  • a non-foamable resin layer is bonded between the metal plate and the foamed resin with an adhesive in order to prevent the foamed resin layer and the metal plate from peeling off.
  • the manufacturing cost is high because there are many bonding steps of the adhesive and a separate foaming step is required.
  • Patent Document 2 discloses a method for manufacturing a sandwich panel in which a sheet-shaped core layer having a honeycomb structure and a sheet-shaped prepreg are heated and pressed while being pressed from the upper surface and the lower surface of the core layer. Since the honeycomb material and the prepreg of the skin material of the core layer are expensive and the heating time is long, both the material cost and the manufacturing cost are high.
  • the laminated panel shown in Patent Document 3 has a resin sheet (b) in which a metal plate is embedded on both sides of the resin sheet (a) and a surface of the resin sheet (b) in contact with the resin sheet (a). It is a resin sheet laminated steel sheet in which steel sheets located on the opposite surface of the resin sheet are laminated at least sequentially, but the metal plate embedded in the resin sheet (b) is preliminarily 30% by volume based on the total volume of the metal plates. Since the step of processing the pores having the above volume ratio is required, the cost of the resin sheet (b) occupying the laminated panel is high, and it is difficult to reduce the cost of the laminated panel.
  • the resin sheet (a) as the core layer is flexible, has a preferable thickness of 0.2 to 1.5 mm, and has a total panel thickness of about 3 mm or less. Therefore, it is not suitable for applications such as laminated panels for building materials, ships, and vehicles, which have a high load capacity and require a core layer thickness of at least about 5 mm.
  • the present invention has been made in view of the above-mentioned problems, and is a resin film laminated metal capable of producing a laminated panel having high adhesive strength to the core layer of the laminated panel, low cost, and excellent impact resistance.
  • the purpose is to provide a board.
  • the skin material of the laminated panel having the foamed rigid urethane resin as the core layer it is formed on both sides of a steel plate of 0.08 mm or more or an aluminum plate of 0.15 mm or more.
  • a resin film laminated metal plate obtained by heat-sealing a thermoplastic resin film is used. It is assumed that the surface tension of the film on the surface in contact with the foamed hard urethane resin is 50 mN / m or less. Further, the wax present on the surface of the resin film laminated metal plate is set to more than 0 mg / m 2 and 5.00 mg / m 2 or less.
  • the surface opposite to the surface fused with the metal plate of the thermoplastic resin film is set as the first surface
  • the tension is 50 mN / m or less
  • the wax present on the surface is more than 0 mg / m 2 and 5.00 mg / m 2 or less.
  • the present invention does not require an extra manufacturing process such as heat-bonding a prepreg sheet to a honeycomb core layer or the like, so that it is possible to provide a laminated panel at a low cost and to have excellent adhesive strength between the core layer and the skin material. Moreover, since the variation in the bubble size of the core layer can be reduced, a laminated panel having high impact resistance can be manufactured at low cost.
  • the present invention has been made based on the above findings, and the gist thereof is as follows. That is, (1)
  • the resin film laminated metal plate according to one aspect of the present invention includes a metal plate and a thermoplastic resin film fused to both sides of the metal plate, and the metal plate has a thickness of 0.08 mm or more.
  • the surface opposite to the surface of the thermoplastic resin film to be fused with the metal plate is defined as the first surface of the steel plate or an aluminum plate having a thickness of 0.15 mm or more.
  • the surface tension of the first surface is 50 mN / m or less
  • the surface tension of the surface fused with the metal plate is 36 mN / m or more
  • the surface tension of the first surface is 36 mN / m or more.
  • the amount of wax adhered is more than 0 mg / m 2 and 5.00 mg / m 2 or less.
  • the method for producing a resin film-laminated metal plate according to one aspect of the present invention is the method for producing a resin film-laminated metal plate according to (1) or (2), and after film laminating, wax is applied to 0.
  • a resin film laminated metal plate is passed through the plate roll using a plate roll having a surface tension of 36 mN / m or more on the surface of the plate roll.
  • an oil-free steel plate is not film-laminated at a speed of 50 m / min or more for 1000 m or more before passing through the resin film-laminated metal plate.
  • a resin film-laminated metal plate may be manufactured and passed through the plate.
  • the resin film laminated metal plate according to the embodiment of the present invention is a resin film laminated metal plate used as a skin material of a laminated panel having a foamed hard urethane resin as a core layer, and is a metal plate used for the resin film laminated metal plate.
  • the film which is a steel plate of 0.08 mm or more or an aluminum plate of 0.15 mm or more and which is fused to both sides of the metal plate is a thermoplastic resin film, and is a film whose surface is in contact with the foamed hard urethane resin.
  • the resin film laminated metal plate having a surface tension of 50 mN / m or less, and the wax present on the surface of the resin film laminated metal plate in contact with the foamed hard urethane resin is more than 0 mg / m 2 and 5.00 mg / m 2.
  • the resin film laminated metal plate for a laminated panel characterized by the following. That is, the resin film laminated metal plate according to the embodiment of the present invention includes a metal plate and a thermoplastic resin film fused to both sides of the metal plate, and the metal plate has a thickness of 0.08 mm or more.
  • the first surface opposite to the metal plate of the thermoplastic resin film and the surface to be fused at least one of the thermoplastic resins is used.
  • the surface tension of the surface of the first surface is 50 mN / m or less
  • the surface tension of the surface fused with the metal plate is 36 mN / m or more
  • the amount of wax adhered to the surface exceeds 0 mg / m 2. , 5.00 mg / m 2 or less.
  • the laminated panel 300 includes a core layer 3 and a resin film laminated metal plate 100.
  • each configuration will be described.
  • the laminated panel 300 includes a core layer 3 and a resin film laminated metal plate 100. With such a configuration, the laminated panel 300 is lightweight and has high strength.
  • the core layer 3 includes a resin 31 and bubbles 32.
  • the core layer 3 is preferably made of a foamed polyurethane resin.
  • a rigid polyurethane foam resin is particularly preferable.
  • the rigid polyurethane foam resin is a foaming raw material containing a polyisocyanate having two or more isocyanate groups and a polyol having two or more hydroxyl groups, thereby simultaneously performing a foaming reaction and a resinification reaction.
  • the resin film laminated metal plate 100 includes a metal plate 1 and a thermoplastic resin film 2.
  • a metal plate 1 includes a metal plate 1 and a thermoplastic resin film 2.
  • the metal plate 1 of the resin film laminated metal plate 100 includes a cold-rolled steel plate, a galvanized steel plate, a tin-free steel plate, a tin-plated steel plate, a steel plate such as a nickel-plated steel plate, an aluminum plate, and these metals. Examples include a surface treatment material for a plate.
  • the metal plate 1 is preferably a cold-rolled steel sheet, a galvanized steel sheet, a tin-free steel sheet, and a tin-plated steel sheet.
  • the chromium hydrated oxide layer is formed on the upper layer of the metal chromium layer in the tin-free steel plate, hydrogen bonds are formed in the molecular chain of polyester resin, modified polypropylene resin, polyamide resin, ionomer resin, polyurethane resin and the like.
  • the metal plate 1 is preferable because it has a very high adhesion strength with a resin having a possible polar group.
  • Cold-rolled steel sheets and galvanized steel sheets are subjected to various chemical conversion treatments such as phosphate treatment and chromate treatment for the purpose of improving adhesion, and the same adhesive strength as tin-free steel sheets can be obtained. Therefore, when a cold-rolled steel sheet or a galvanized steel sheet is used as the metal plate 1, it is preferable to use a chemical conversion-treated steel sheet.
  • the tin-plated steel sheet that has not been chemically converted has tin oxide present on the plated surface, and the tin oxide layer is easily peeled off as it is, so sufficient adhesive strength cannot be obtained. Therefore, it is preferable to remove tin oxide on the plating surface by pickling treatment or alkaline electrolysis treatment, and then perform chemical conversion treatment such as chromic acid treatment to prevent the surface from being oxidized.
  • the thickness of the metal plate 1 of the resin film laminated metal plate 100 is preferably 0.08 mm or more and 0.8 mm or less. If the thickness of the steel plate is less than 0.08 mm, the buckling strength of the laminated panel 300 is insufficient, and the inner metal plate 1 may buckle or the metal plate 1 on the opposite side may crack when a load is locally applied. It is not preferable because it exists. Further, the upper limit of the thickness of the steel sheet is not particularly limited, but it is not preferable to increase the thickness of the steel sheet more than necessary in consideration of weight reduction. Economically, it is preferably 0.8 mm or less.
  • the thickness of the metal plate 1 of the resin film laminated metal plate 100 is an aluminum plate, the specific gravity is smaller and the weight reduction effect is higher than that of the steel plate, but the strength is low. Therefore, when an aluminum plate is used, if the thickness of the metal plate 1 is too thin, the stepping strength of the laminated panel 300 will be low, so the thickness is preferably 0.15 mm or more.
  • the upper limit of the thickness of the metal plate 1 is not particularly limited. Considering weight reduction, it is not preferable to increase the thickness of the metal plate 1 more than necessary. When an aluminum plate is economically used, the thickness of the metal plate 1 is preferably 2.5 mm or less.
  • the surface roughness of the metal plate 1 of the resin film laminated metal plate 100 is not particularly limited, but when the surface roughness of the metal plate 1 is less than 0.05 ⁇ m in the arithmetic average roughness Ra specified in JISB0601: 2013, When the thermoplastic film 2 is pressure-bonded and laminated on the metal plate 1, if air bubbles enter between the metal plate 1 and the thermoplastic film 2, it is difficult for the air bubbles to escape, which is not preferable. On the other hand, when the surface roughness of the metal plate 1 exceeds 0.8 ⁇ m in average roughness Ra, the fluidity of the urethane resin used for the core layer 3 decreases when the laminated panel 300 is manufactured, and the unevenness of the metal plate surface becomes uneven.
  • the surface roughness of the metal plate 1 is preferably in the range of 0.05 ⁇ m or more and 0.8 ⁇ m or less in terms of average roughness Ra, because air bubbles tend to stay along the surface. More preferably, it is 0.1 ⁇ m or more and 0.6 ⁇ m or less.
  • thermoplastic resin film Regarding the thermoplastic resin film 2 to be fused to the metal plate 1, the surface tension of the thermoplastic resin film 2 to be fused with the metal plate 1 of the resin film laminated metal plate 100 is 36 mN / m or more. As a result, excellent adhesiveness to both the metal plate 1 and the core layer 3 can be obtained.
  • the surface tension of the surface (first surface 1A) of the thermoplastic resin film 2 on the side in contact with the foamed hard urethane resin (core layer) 3 exceeds 50 mN / m, it is used for the core layer 3 when manufacturing the laminated panel 300.
  • the fluidity of the urethane resin is reduced, and foamed bubbles may grow locally.
  • the surface tension of the surface (first surface 1A) is 50 mN / m or less. That is, the surface tension of the first surface of at least one of the resin film laminated metal plates of the thermoplastic resin film is 50 mN / m or less.
  • thermoplastic resin film 2 a resin using a resin having a polar group capable of hydrogen bonding in a molecular chain such as a polyester resin, a polyamide resin, an ionomer resin, or a modified polypropylene resin is a metal. It is preferable because it has excellent adhesion between the plate 1 and the resin of the core layer 3.
  • the thermoplastic resin film 2 include a homo PET (polyethylene terephthalate resin) film, a PET-IA (polyethylene terephthalate / isophthalate copolymer resin) film, and a PET-PBT (polyethylene terephthalate / polybutylene terephthalate copolymer resin) film.
  • unmodified polypropylene-based resin and polyethylene-based resin are not preferable because they have a surface tension of about 30 to 32 mN / m and low adhesion to a metal plate.
  • the corona-treated polypropylene film has a higher surface tension than the unmodified polypropylene film, but is not preferable because the surface tension is less than 36 mN / m and the adhesiveness to the metal plate 1 is not as high as that of the modified polypropylene resin.
  • the thermoplastic film 2 may be a stretched film or a non-stretched film, but the stretched film has better fluidity of the urethane resin when producing the laminated panel 300 than the non-stretched film. , More preferred.
  • thermoplastic film 2 an inorganic filler such as titanium white, silica, or carbon black or a coloring pigment may be added to the thermoplastic film 2.
  • an adhesive primer may be applied to the surface of the thermoplastic resin film 2 in order to improve the adhesiveness of the metal plate 1 and / or the laminated panel 300 to the core layer 3.
  • the thickness of the thermoplastic resin film 2 fused to the metal plate 1 is preferably 8 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the film is less than 8 ⁇ m, wrinkles are likely to occur during the production of the resin film laminated metal plate 100, and in particular, the wrinkles of the thermoplastic resin film 2 on the outer surface side of the laminated panel 300 are likely to have a poor appearance.
  • the thickness of the thermoplastic resin film 2 on the outer surface side of the laminated panel 300 is preferably 8 ⁇ m or more.
  • the thickness of the thermoplastic resin film 2 on the side in contact with the core layer 3 exceeds 50 ⁇ m, the fluidity of the urethane resin decreases and air bubbles are reduced when the resin is softened by the curing heat of the urethane resin when manufacturing the laminated panel. It becomes easy to get involved. Therefore, the thickness of the thermoplastic resin film 2 on the side surface (first surface 1A) in contact with the urethane core layer is preferably 50 ⁇ m or less.
  • a solid wax such as glamor wax or carnauba wax is usually applied to the surface of the resin film laminated metal plate in order to ensure lubricity during molding.
  • the wax applied to this surface has a low surface tension. Therefore, when the laminated panel 300 is manufactured with wax of more than 5.00 mg / m 2 on the surface of the resin film laminated metal plate, the peel strength between the resin film laminated metal plate and the core layer 3 becomes low, which is not preferable. .. Therefore, at least the amount of wax adhered to the surface of the thermoplastic resin film 2 on the core layer 3 side (first surface 1A) side is 5.00 mg / m 2 or less.
  • the resin film laminate is performed in the urethane resin injection step.
  • the slipperiness of the surface of the metal plate 100 deteriorates.
  • the amount of wax adhered to the surface on the core layer 3 side (first surface 1A) is more than 0 mg / m 2 .
  • a more preferable amount of wax adhered is 0.05 mg / m 2 or more. Therefore, in the resin film laminated metal plate 100 according to the embodiment of the present invention, the amount of wax adhered to the surface of at least one of the thermoplastic resin films 2 on the core layer 3 side (first surface 1A) is more than 0 mg / m 2 . Apply so that the range is 5.00 mg / m 2 or less.
  • the peel strength (adhesive strength) between the thermoplastic resin film 2 and the metal plate 1 is preferably higher than the peel strength (adhesive strength) between the core layer 3 and the thermoplastic resin film 2.
  • the thermoplastic resin film 2 can firmly cover the metal plate 1, and the metal plate 1 can be prevented from rusting.
  • the resin film laminated metal plate 100 is set on the upper surface side and the lower surface side of the injection mold, and 30 seconds from the injection port on the lateral side of the mold while mixing the foamable raw material containing the thermoplastic isocyanate and the polyol.
  • a T-type peeling test piece having a width of 25 mm was cut out from a laminated panel in which a foamed polyurethane resin was formed between the resin film laminated metal plates while being filled within and held at a pressure of 20 kN / m 2 for about 30 seconds.
  • the adhesive strength between the thermoplastic resin film 2 and the metal plate 1 is the adhesive strength between the foamed polyurethane resin and the thermoplastic resin film 2.
  • thermoplastic resin film A sample obtained by immersing a thermoplastic resin film (thermoplastic unstretched PET-IA film: thickness 20 ⁇ m) in a hexane solution in which the amount of glamor wax dissolved (0.1 g / L to 5 g / L) was changed and air-drying the sample. A sample that had not been soaked in wax was prepared. In addition, an epoxy resin-based primer diluted with an organic solvent was applied to the surface of the thermoplastic resin film and dried to prepare a film having a high surface tension.
  • thermoplastic resin film laminating method is a metal plate feeding device, a metal heating hot press for heating the metal plate, a film feeding device on the front and back surfaces, and a heat-resistant rubber laminating roll (made of metal).
  • the surface temperature of the rubber roll was controlled by a heating backup roll), and a dedicated resin film laminating device equipped with a water tank for cooling was used.
  • a thermoplastic film thermoplastic unstretched PET-IA film: thickness 20 ⁇ m
  • a thermoplastic unstretched PET-IA film thickness 20 ⁇ m
  • a metal plate titanium-free steel (TFS), thickness: 0.185 mm) heated to 265 ° C.
  • the film peeling strength at which the film does not peel off when the film is stretched by 5 mm by the stretching process is used as a reference). Passed above.
  • FIG. 1 is a diagram showing the relationship between the surface tension of the thermoplastic resin film of the resin film laminated metal plate and the film adhesiveness of the resin film child metal plate.
  • the adhesiveness of the thermoplastic resin film of the resin film laminated metal plate was good.
  • the surface tension of the film is less than 36 mN / m, the adhesive strength between the metal plate and the film is lower than the adhesive strength of the laminated panel with the urethane resin, which may cause peeling at the interface between the metal plate and the film, which is preferable. It turned out not.
  • a resin film-laminated metal plate prepared using a thermoplastic resin film to which no wax is attached is immersed in a hexane solution in which the amount of glamor wax dissolved (0.1 g / L to 5 g / L) is changed, and air-dried. A sample was prepared. In addition, a sample that had not been immersed was also prepared, and resin film-laminated metal plates having different wax adhesion amounts were prepared.
  • the resin film laminated metal plate whose surface tension has been adjusted above is cut into a size of 200 mm ⁇ 250 mm, set on the upper surface side and the lower surface side of the injection mold, and gold is mixed with an effervescent raw material containing polyisocyanate and polyol. Filling within 30 seconds from the lateral inlet of the mold. Then, after holding at a pressure of 20 kN / m 2 for about 30 seconds, open the upper and lower molds and remove the laminated panel (core layer: foamed hard urethane resin (specific gravity 0.6), thickness of the laminated panel: 5 mm). Obtained a laminated panel.
  • the structure of the laminated panel is a resin film laminated metal plate / core layer / resin film laminated metal plate.
  • FIG. 2 investigates the relationship between the surface tension of the film surface on the side in contact with the foamed hard urethane resin (core layer) of the laminated panel of the resin film laminated metal plate which is the skin material and the maximum bubble diameter of the core layer of the laminated panel. It is the result of As can be seen from FIG. 2, when the surface tension of the thermoplastic film on the side in contact with the core layer of the laminated panel of the resin film laminated metal plate exceeds 50 mN / m, the maximum bubble diameter of the bubbles in the core layer of the laminated panel becomes large. I found out.
  • the thickness of the core layer of the laminated panel is 5 mm or less and the volume filling rate is about 60% or less, if a large number of bubbles having a maximum cell diameter of more than 500 ⁇ m are present in the core layer, a load is applied to the laminated panel and the laminated panel bends. At that time, the core layer is likely to buckle and the laminated panel itself is likely to buckle, which is not preferable. As a result of various studies, it was clarified that when the thickness of the core layer is 4 mm and the maximum bubble diameter of the bubbles in the urethane core layer is 500 ⁇ m or less, the above-mentioned impact resistance is good.
  • the surface tension of the thermoplastic resin film on the surface of the resin film laminated metal plate of the skin material in contact with the foamed hard urethane resin (core layer) is improved. It is preferable because the size of the bubbles can be made small and uniform.
  • the manufactured laminated panel is cut with a high-speed precision cutting machine to collect a test piece having a width of 25 mm x 150 mm, and the resin film-laminated metal plates on both sides of the test piece are peeled off by about 30 mm and gripped for sandwiching between the chucks of the tensile tester. A part was prepared. By sandwiching the gripping part of the resin film laminated metal plate on both sides of the test piece between the chucks of the tensile tester and peeling 100 mm (movement between chucks 200 mm) at a tensile speed of 200 mm / min, the resin film laminated metal plate and the core layer can be separated.
  • the peel strength with the foamed hard urethane resin was measured. When the peel strength was 10 N / 25 mm or more, it was good, when it was 5 N / 25 mm or more and less than 10 N / 25 mm, it was acceptable, and when it was less than 5 N / 25 mm, it was not possible. Passed more than acceptable.
  • FIG. 3 is a diagram showing the relationship between the amount of wax adhering to the surface of the resin film laminated metal plate and the determination result of the maximum bubble diameter of the core layer of the laminated panel when the laminated panel is formed. As shown in FIG. 3, when no wax is present on the surface of the resin film laminated metal plate, the maximum bubble diameter of the core layer of the laminated panel tends to exceed 500 ⁇ m, which is not preferable.
  • the fluidity of the urethane resin near the interface decreases in the foamed resin injection process when manufacturing the laminated panel, vortices are generated near the interface, and air bubbles stay. It becomes easier to meet. Therefore, it is preferable that a small amount of wax is present.
  • FIG. 4 is a diagram showing the relationship between the amount of wax adhering to the surface of the resin film-laminated metal plate and the adhesiveness (peeling strength) of the film-laminated metal plate and the core layer when the laminated panel is formed.
  • peel strength when the amount of wax adhering to the surface of the resin film laminated metal plate exceeds 5.00 mg / m 2 , the peel strength when the laminated panel is formed is required for the laminated panel.
  • Resin film laminated metal plate and core layer It is not preferable because it is lower than the peel strength of 5N / 25mm.
  • the method for manufacturing the resin film laminated metal plate 100 includes a preparation step, a heating step, a laminating step, and a cooling step.
  • thermoplastic resin film is heat-sealed to the metal plate, and then a solid wax heated and melted on the thermoplastic resin film surface of the resin film laminated metal plate is rolled by a roll coater. It is applied at 54 (FIG. 9). Therefore, it is inevitable that a small amount of wax is transferred and deposited on the plate roll 55 (FIG. 9) after the wax application step, and it is difficult to control the amount of wax adhered to the thermoplastic resin film to a small amount.
  • the present inventors have devised a method of reducing the amount of wax adhering to the surface of the resin film-laminated metal plate arranged on both sides of the laminated panel to more than 0 mg / m 2 and 5.00 mg / m 2 or less.
  • a non-coated steel sheet is passed, and the wax accumulated on the surface of the sheet-through roll is removed by adhering it to the non-oiled steel sheet side, and then a small amount of wax is applied.
  • the non-coated steel sheet means a steel sheet to which no oil such as rust preventive oil is applied.
  • the present inventors have diligently studied the plate passing conditions for reducing the amount of wax adhering to the surface of the thermoplastic resin film during the production of the resin film laminated metal plate to more than 0 mg / m 2 and 5.00 mg / m 2 or less.
  • the resin film laminated metal plate continuous manufacturing facility after passing the oil-free steel plate at a speed of 50 m / min or more for 1000 m or more without film laminating before manufacturing the resin film laminated metal plate (preparation step S0). ), By applying 0.1 mg / m 2 to 2.0 mg / m 2 of wax to the resin film laminated metal plate, the amount of wax adhered to the film surface during the production of the resin film laminated metal plate is 0 mg / m 2.
  • It can be reduced to 5.00 mg / m 2 or less.
  • wax on the surface of the sheet metal roll 55 is removed, and the surface of the sheet metal roll 55 is passed.
  • a resin film laminate metal plate is coated with wax of 0.1 mg / m 2 to 2.0 mg / m 2 and passed through the plate to finally laminate the resin film.
  • the amount of wax adhering to the metal plate can be reduced to more than 0 mg / m 2 and 5.00 mg / m 2 or less.
  • the passing speed of the oil-free steel sheet is less than 50 m / min, it is difficult for the shearing force to work between the metal plate and the passing roll, and it becomes difficult to remove the wax when the metal plate passes the wax adhering to the roll. Not preferable. Further, when the continuous plate length of the oil-free steel sheet is less than 1000 m, the wax accumulated on the plate roll may not be sufficiently removed, which is not preferable.
  • a jacket roll that heats a heat medium such as a plurality of steams through the inside of the roll, or a heating roll with a built-in heater.
  • a method of passing a metal plate through the plate and heating it is a method of passing a metal plate through the plate and heating it.
  • a rubber roll is preferable because an appropriate nip length can be secured in the film laminating portion.
  • rubber having high heat resistance such as fluororubber and silicon rubber is particularly preferable.
  • cooling process After the film is heat-sealed to the metal plate by the above method, cooling is performed by the cooling layer 53. It is preferable to cool the resin film laminated metal plate to a temperature lower than the crystallization temperature of the thermoplastic resin film 2 (cooling step S3).
  • the wax applied by the roll coater 54 in FIG. 9 may be diluted with a solvent to reduce the wax concentration.
  • the method for producing the laminated panel according to the present embodiment is not particularly limited, and the laminated panel can be produced by a known production method.
  • the resin film laminated metal plate manufactured by the above manufacturing method is set on the upper surface side and the lower surface side of the injection mold, and the foaming raw material containing polyisocyanate and polyol is mixed and laterally side of the mold.
  • a laminated panel can be manufactured by filling the film within 30 seconds from the injection port and holding the film at a pressure of 20 kN / m 2 for about 30 seconds, and then opening the upper and lower dies.
  • FIG. 5 is a diagram showing the relationship between the surface tension measurement result of the surface of the sheet roll after passing the steel sheet for a predetermined length and the amount of wax adhered to the surface of the steel sheet at that time.
  • the wax adhesion amount in FIG. 5 is measured by the method performed in the above-mentioned wax adhesion amount investigation, and the surface tension on the surface of the plate roll is determined by the repulsion property when the surface tension measuring reagent is applied to the surface of the plate roll. did. From FIG. 5, it was found that the amount of wax adhering to the surface of the metal plate after passing through the resin film laminated metal plate manufacturing equipment has a good correlation with the surface tension of the surface of the passing plate roll.
  • FIG. 6 shows the relationship between the through-plate length when an uncoated oil-free steel sheet is passed through at 50 m / min in a resin film-laminated metal plate manufacturing facility and the result of wax removal determination on the surface of the through-plate roll after the steel sheet is passed. It is a figure. From FIG. 6, it can be seen that the through-plate length of the steel sheet required to remove the wax on the surface of the through-plate roll in the resin film laminated metal plate production line is 1000 m or more, and the through-plate length of the steel plate is less than 1000 m. It was found that the wax adhering to the plate roll could not be sufficiently removed.
  • FIG. 7 is a diagram showing the determination results of the sheet passing speed of the steel sheet when the steel sheet is passed through 1000 m in the resin film laminated metal plate manufacturing facility and the degree of wax removal on the surface of the sheet passing roll after the steel sheet is passed. From FIG. 7, in order to remove the wax adhering and accumulating on the sheet metal roll when the metal plate is passed 1000 m in order to remove the wax on the surface of the sheet metal plate in the resin film laminated metal plate production line, the steel plate is passed through. It was found that a plate speed of 50 m / min or more is required, and if the plate passing speed of the steel plate is less than 50 m, the wax adhering to the plate passing roll cannot be sufficiently removed.
  • the surface tension of the surface tension of the sheet roll surface of the resin film laminated metal plate manufacturing facility is 36 mN / m or more, and the steel sheet threading condition is that the steel sheet threading speed is 50 m / min or more and the steel sheet threading length. It was found that 1000 m or more is required.
  • the resin film laminated metal plate for a laminated panel of the present invention and the manufacturing method thereof will be specifically described with reference to Examples.
  • the conditions in the examples are one condition adopted for confirming the feasibility and effect of the present invention, and the present invention is not limited to the following examples.
  • the present invention may adopt various conditions, all of which are included in the technical features of the present invention.
  • the metal plate used for the resin film-laminated metal plate for the laminated panel as shown in FIG. 8 is shown in Table 1
  • the thermoplastic resin film of the resin film-laminated metal plate is shown in Table 2
  • the resin film-laminated metal Composition of board and laminated panel (core layer thickness, resin layer density), and characteristic evaluation result of laminated panel (resin film laminate film peel strength of metal plate, bubble size distribution in core layer, resin film laminate of laminated panel The peeling strength of the metal plate and the impact resistance of the laminated panel) are shown in Tables 3A to 3F and Tables 4A to 4F.
  • Tables 5A to 5C and Tables 6A to 6C show the composition of the resin film laminated metal plate, the conditions for passing the steel plate before manufacturing the resin film laminated metal plate, the composition of the core layer of the laminated panel, and the resin film laminating of the laminated panel. The result of determining the peeling strength of the metal plate is shown.
  • the resin film laminated metal plate is continuously manufactured using the continuous manufacturing equipment as shown in FIG.
  • M1 is a metal chromium-plated steel sheet having a Cr oxidation / hydroxide chemical conversion treatment film having a thickness of 0.08 mm.
  • M2 is a metal chromium-plated steel sheet having a Cr oxidation / hydroxide chemical conversion treatment film having a thickness of 0.80 mm.
  • M3 is a Sn—Fe alloy plated steel sheet having a Zr oxidation / hydroxide chemical conversion treatment film having a thickness of 0.08 mm.
  • M4 is a Sn—Fe alloy plated steel sheet having a Zr oxidation / hydroxide chemical conversion treatment film having a thickness of 0.80 mm.
  • M5 is an A5052 type aluminum plate having a Zr oxidation / hydroxide chemical conversion treatment film having a thickness of 0.15 mm.
  • M6 is an A5052 type aluminum plate having a Zr oxidation / hydroxide chemical conversion treatment film having a thickness of 2.50 mm.
  • M7 is a metal chromium-plated steel sheet having a Cr oxidation / hydroxide chemical conversion treatment film having a thickness of 0.07 mm.
  • M8 is an A5052 type aluminum plate having a Zr oxidation / hydroxide chemical conversion treatment film having a thickness of 0.14 mm.
  • a resin film laminated metal plate was prepared using the films E1 to E12 shown in Table 2.
  • the surface tension and surface roughness shown below are the surface roughness of the surface opposite to the surface to be fused with the metal plate.
  • E1 is a thermoplastic stretched homo PET (polyethylene terephthalate resin) film having a surface tension of 48 mN / m, a surface roughness Ra of 0.2 ⁇ m, and a thickness of 8 ⁇ m.
  • E2 is a thermoplastic stretched homo PET (polyethylene terephthalate resin) film having a surface tension of 48 mN / m, a surface roughness Ra of 0.2 ⁇ m, and a thickness of 50 ⁇ m.
  • E3 is a thermoplastic stretched PET-IA (polyethylene terephthalate / isophthalate 8 mol% copolymer resin) film having a surface tension of 50 mN / m, a surface roughness Ra of 0.2 ⁇ m, and a thickness of 8 ⁇ m.
  • E4 is a thermoplastic stretched PET-IA (polyethylene terephthalate / isophthalate 8 mol% copolymer resin) film having a surface tension of 50 mN / m, a surface roughness Ra of 0.2 ⁇ m, and a thickness of 50 ⁇ m.
  • E5 is a thermoplastic stretched PET-IA (polyethylene terephthalate / isophthalate 8 mol% copolymer resin) film having a surface tension of 50 mN / m, a surface roughness Ra of 0.2 ⁇ m, and a thickness of 6 ⁇ m.
  • E6 is a thermoplastic stretched PET-IA (polyethylene terephthalate / isophthalate 8 mol% copolymer resin) film having a surface tension of 50 mN / m, a surface roughness Ra of 0.2 ⁇ m, and a thickness of 52 ⁇ m.
  • E7 is a thermoplastic unstretched PET-IA (polyethylene terephthalate / isophthalate 8 mol% copolymer resin) film having a surface tension of 52 mN / m, a surface roughness Ra of 0.3 ⁇ m, and a thickness of 20 ⁇ m.
  • E8 is a thermoplastic stretched PET-PBT (polyethylene terephthalate / polybutylene terephthalate 50% by mass copolymer resin) film having a surface tension of 50 mN / m, a surface roughness Ra of 0.2 ⁇ m, and a thickness of 25 ⁇ m.
  • E9 is a thermoplastic non-stretchable modified PP (phthalic anhydride-modified polypropylene resin) film having a surface tension of 36 mN / m, a surface roughness Ra of 0.2 ⁇ m, and a thickness of 25 ⁇ m.
  • E10 is a thermoplastic unstretched corona-treated PP (polypropylene resin) film having a surface tension of 34 mN / m, a surface roughness Ra of 0.3 ⁇ m, and a thickness of 25 ⁇ m.
  • E11 is a thermosetting flexible polyurethane film having a surface tension of 44 mN / m, a surface roughness Ra of 0.3 ⁇ m, and a thickness of 25 ⁇ m.
  • E12 has a surface tension of 48 mN / m [polyethylene terephthalate] on the surface to be fused with the metal plate, 36 mN / m (maleic anhydride-modified polyethylene) on the surface opposite to the surface to be fused with the metal plate, and surface roughness.
  • a thermoplastic unstretched PET (polyethylene terephthalate) / modified PE (polyethylene) coextruded film having a Ra of 0.1 ⁇ m and a thickness of 50 ⁇ m.
  • the resin film laminated metal plate was produced under the configurations and laminating conditions shown in Tables 3A to 3F and Tables 5A to 5C.
  • the resin film laminated metal plate produced above is cut into a size of 200 mm ⁇ 250 mm, set on the upper surface side and the lower surface side of the injection mold, and the side of the mold is mixed with a foamable raw material containing polyisocyanate and a polyol. After filling within 30 seconds from the side injection port and holding at a pressure of 20 kN / m 2 for about 30 seconds, the upper and lower dies are opened to form a laminated panel (core layer: foamed hard urethane resin (specific gravity 0.). 6), thickness of laminated panel: 4 mm) was obtained.
  • thermoplastic resin film of resin film laminated metal plate The peeling strength of the metal plate of the resin film laminated metal plate and the thermoplastic resin film (the film is chestnut strength) was measured by the following method. A 180 ° peeling test piece of a film having a film peeling width of 15 mm was prepared, the film was pulled at a tensile speed of 20 mm / min at room temperature, and the 180 ° peeling strength of the film was measured. The obtained peel strength was determined based on the following criteria. Passed above. The results obtained are shown in Tables 4A-4F and 6A-6C. Good: 10N / 15mm ⁇ (film peeling strength) Possible: 5N / 15mm ⁇ (Film peeling strength) ⁇ 10N / 15mm Impossible: (Film peel strength) ⁇ 5N / 15mm
  • Resin film laminated metal plate peeling strength of laminated panel The laminated panel produced above is cut with a high-speed precision cutting machine to collect a test piece having a width of 25 mm ⁇ 150 mm, and the resin film laminated metal plate on both sides of the test piece is obtained. A grip portion was prepared by peeling off by about 30 mm and sandwiching it between the chucks of the tensile tester. The gripping part of the resin film laminated metal plate on both sides of the test piece is sandwiched between the chucks of the tensile tester and peeled 100 mm at a tensile speed of 200 mm / min (movement between chucks 200 mm), and the foamed hard of the resin film laminated metal plate and the core layer.
  • the peel strength with urethane resin was measured.
  • the peel strength when peeled by 100 mm was determined based on the following criteria. The pass was acceptable.
  • the results obtained are shown in Tables 4A-4F and 6A-6C.
  • Tables 3A to 3F, 4A to 4F, 5A to 5C and 6A to 6C show the composition of the resin film laminated metal plate as the skin material of the laminated panel (combination of the metal plate shown in Table 1 and the film shown in Table 2). The manufacturing conditions, the composition of the laminated panel core layer, and the characteristics determination result of the manufactured laminated panel are shown.
  • Tables 3A to 3F, 4A to 4F, 5A to 5C and 6A to 6C show the composition of the resin film laminated metal plate and the resin film laminated metal plate for the skin material of the laminated panel in the resin laminated metal plate continuous manufacturing facility for containers.
  • Resin film laminated metal plate resin film laminated metal plate to prevent deterioration of peeling strength due to wax transfer from the production line during manufacturing Oil-free steel sheet blank before manufacturing, urethane core of laminated panel
  • the composition of the layer and the result of determining the peeling strength of the resin film metal plate of the laminated panel are shown.
  • the resin film laminated metal plate had a wax adhesion amount of 0 mg / m 2 without wax immersion treatment, and the maximum bubble diameter of the bubbles in the urethane core layer of the laminated panel exceeded 500 ⁇ m, and the layers were laminated. The impact resistance of the panel was inferior.
  • the resin film laminated metal plate for laminated panels of the present invention and the manufacturing method thereof have high adhesive strength with the core layer of the laminated panel and can be manufactured by the resin film laminated metal plate manufacturing equipment for containers, so that they are laminated at low cost. It is possible to manufacture panels, and it is extremely useful as a skin plate for laminated lightweight panels for building materials, ships, vehicle floors and wall materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

この樹脂フィルムラミネート金属板は、金属板と、前記金属板の両面に融着される熱可塑性樹脂フィルムと、を備え、前記金属板が、厚み0.08mm以上の鋼板、または、厚み0.15mm以上のアルミニウム板であり、前記熱可塑性樹脂フィルムの前記金属板と融着する面の反対の面を第1面としたとき、少なくとも一方の前記熱可塑性樹脂フィルムにおいて前記第1面の表面張力が50mN/m以下、前記金属板と融着する面の表面張力が36mN/m以上であり、かつ、前記第1面のワックス付着量が0mg/m超、5.00mg/m以下である。

Description

樹脂フィルムラミネート金属板、および、その製造方法
 本発明は、建材、船舶、車両の床および壁材の軽量化対策として用いられる積層パネル用の材料に関し、特に2枚の金属板間に発泡樹脂のコア層を有する積層パネルに用いる樹脂フィルムラミネート金属板に関する。
 本願は、2019年7月5日に、日本に出願された特願2019-125682号に基づき優先権を主張し、その内容をここに援用する。
 建材、船舶、車両の床および壁材の軽量化対策として2枚の金属板間にコア層として発泡樹脂層や、アルミハニカム・ペーパーハニカム層を接着積層した積層型の軽量パネルが提案、実用化されている。
 コア層に発泡樹脂を用いた積層パネルとしては、特許文献1に記載された金属板と発泡樹脂の間に金属板側から順に接着剤層と非発泡性樹脂層とが設けられた積層パネルの例が挙げられ、コア層にハニカムを用いた積層パネルとしては、特許文献2に、ハニカム構造を有するシート状のコア層の両面にシート状のプリプレグを硬化させたサンドイッチパネルの製造方法の例が示されている。
 また、特許文献3には、樹脂シート(a)の両面に、金属板を包埋した樹脂シート(b)と、当該樹脂シート(b)の前記樹脂シート(a)と接する面と反対側の面に位置する鋼板と、を少なくとも順次積層してなる樹脂シート積層鋼板の例が示されており、樹脂シート(b)に包埋される金属板は金属板の全体積に対して30体積%以上の体積率を有する細孔部が形成されていることが記載されている。
日本国特許第4326001号公報 日本国特開2018-187939号公報 日本国特許第5553542号公報
 ところで、特許文献1に示されるような積層パネルでは、発泡樹脂層と金属板が剥離するのを抑制するために、金属板と発泡樹脂との間に非発泡性樹脂層を接着剤で貼り合せて積層しており、接着剤の貼り合せ工程が多く、かつ、発泡工程が別に必要なため、製造コストが高い。
 また、特許文献2には、ハニカム構造を有するシート状のコア層とシート状のプリプレグをコア層の上面と下面から押し当てながら加熱加圧するサンドイッチパネルの製造方法が示されているが、サンドイッチパネルのコア層のハニカム材および表皮材のプリプレグが高価であり、加熱時間も長いことから材料コスト、製造コストとも高い。
 また、特許文献3に示される積層パネルは、樹脂シート(a)の両面に、金属板を包埋した樹脂シート(b)と、当該樹脂シート(b)の前記樹脂シート(a)と接する面と反対側の面に位置する鋼板とを少なくとも順次積層してなる樹脂シート積層鋼板であるが、樹脂シート(b)に包埋される金属板に予め金属板の全体積に対して30体積%以上の体積率を有する細孔加工する工程が必要であることから、積層パネルに占める樹脂シート(b)のコストが高いので、積層パネルの廉価化を達成することは困難である。
 また、当該特許の樹脂シート積層鋼板は、自動車用外板や家電の筐体、家具、OA機器部品への適用を目的としているため、曲げ加工や深絞り加工ができる必要がある。このため、コア層である樹脂シート(a)は可撓性があり、好ましい厚みが0.2~1.5mmと比較的薄く、パネルトータル厚みも3mm以下程度である。したがって、建材、船舶、車両用の積層パネルのように耐荷重が高く少なくともコア層厚みが5mm程度以上必要な用途には不向きである。
 本発明は、上述した課題を鑑みてなされた発明であり、積層パネルのコア層との接着強度が高く、かつ、廉価で耐衝撃性に優れる積層パネルを製造することが可能な樹脂フィルムラミネート金属板を提供することを目的とする。
 前述の問題点および課題を解決すべく、本発明では、発泡硬質ウレタン樹脂をコア層とする積層パネルの表皮材として、0.08mm以上の鋼板、または、0.15mm以上のアルミニウム板の両面に熱可塑性樹脂フィルムを熱融着した樹脂フィルムラミネート金属板を用いる。発泡硬質ウレタン樹脂と接する面のフィルムの表面張力が50mN/m以下であるものとする。更には、当該樹脂フィルムラミネート金属板の表面に存在するワックスを0mg/m超、5.00mg/m以下とする。すなわち、熱可塑性樹脂フィルムの金属板と融着する面の反対の面を第1面としたとき、少なくとも一方の熱可塑性樹脂フィルムにおいて第1面の表面(発泡硬質ウレタン樹脂と接する面)の表面張力が50mN/m以下であり、かつ、前記表面に存在するワックスが0mg/m超、5.00mg/m以下とする。このような構成により、積層パネルのコア層との接着強度が高く、耐衝撃性に優れる積層パネルを廉価に提供することを可能とした。本発明は、ハニカムコア層などにプリプレグシートを加熱圧着するような余分な製造工程がないので廉価に積層パネルを提供することが可能であり、かつ、コア層と表皮材との接着強度に優れ、かつ、コア層の気泡サイズバラつきが小さくできるので、耐衝撃性が高い積層パネルを安価に製造することができる。
 本発明は上記の知見に基づいてなされ、その要旨は以下の通りである。
すなわち、
(1)本発明の一態様に係る樹脂フィルムラミネート金属板は、金属板と、前記金属板の両面に融着される熱可塑性樹脂フィルムと、を備え、前記金属板が、厚み0.08mm以上の鋼板、または、厚み0.15mm以上のアルミニウム板であり、前記熱可塑性樹脂フィルムの前記金属板と融着する面の反対の面を第1面としたとき、
 少なくとも一方の前記熱可塑性樹脂フィルムにおいて前記第1面の表面張力が50mN/m以下であり、前記金属板と融着する面の表面張力が36mN/m以上であり、かつ、前記第1面のワックス付着量が0mg/m超、5.00mg/m以下である。
(2)上記(1)に記載の樹脂フィルムラミネート金属板は、前記樹脂フィルムラミネート金属板をインジェクション金型の上面側と下面側とにセットし、ポリイソシアネートとポリオールとを含有する発泡性原料を混合しながら金型の横側方の注入口から30秒以内に充填し20kN/mの圧力で約30秒間保持して前記樹脂フィルムラミネート金属板間に発泡ポリウレタン樹脂を形成したときに、
 前記熱可塑性樹脂フィルムと前記金属板との接着強度が、前記発泡ポリウレタン樹脂と前記熱可塑性樹脂フィルムとの接着強度よりも高くてもよい。
(3)本発明の一態様に係る樹脂フィルムラミネート金属板の製造方法は、(1)または(2)に記載の樹脂フィルムラミネート金属板の製造方法であって、フィルムラミネート後、ワックスを0.1mg/m以上2.0mg/m以下の範囲で塗布した後、通板ロール表面の表面張力が36mN/m以上である通板ロールを用い、樹脂フィルムラミネート金属板を通板する。
(4)上記(3)に記載の樹脂フィルムラミネート金属板の製造方法は、樹脂フィルムラミネート金属板を通板する前に無塗油鋼板を50m/分以上の速度で1000m以上、フィルムラミネートせずに通板した後、樹脂フィルムラミネート金属板を製造通板してもよい。
 本発明の上記態様によれば、積層パネルのコア層との接着強度が高く、かつ、廉価で耐衝撃性に優れる積層パネルを製造することが可能な樹脂フィルムラミネート金属板を提供することができる。
熱可塑性樹脂フィルムの金属板と融着させる面の表面張力と樹脂フィルムラミネート金属板のフィルム接着性との関係を示した図である。 熱可塑性樹脂フィルムの発泡硬質ウレタン樹脂と接する面の表面張力と積層パネルのコア層中の気泡の最大気泡径の判定結果との関係を示した図である。 樹脂フィルムラミネート金属板表面のワックス付着量と積層パネルのコア層中の気泡の最大気泡径の判定結果との関係を示した図である。 樹脂フィルムラミネート金属板表面のワックス付着量と樹脂フィルムラミネート金属板およびコア層の接着性との関係を示した図である。 所定長さ通板した金属板の表面に転写したワックス付着量と通板ロール表面の表面張力との関係を示した図である。 金属板通板長さと通板ロール表面のワックス除去程度判定結果との関係を示した図である。 金属板通板速度と通板ロール表面のワックス除去程度判定結果との関係を示した図である。 本発明の一態様に係る樹脂フィルムラミネート金属板を使用した積層パネルの断面模式図である。 樹脂フィルムラミネート金属板の連続製造設備の概念図である。
 本発明の実施形態に係る樹脂フィルムラミネート金属板は、発泡硬質ウレタン樹脂をコア層とする積層パネルの表皮材に用いられる樹脂フィルムラミネート金属板であり、当該樹脂フィルムラミネート金属板に用いられる金属板が、0.08mm以上の鋼板、または、0.15mm以上のアルミニウム板であり、かつ、金属板の両面に融着させるフィルムが熱可塑性樹脂フィルムであり、発泡硬質ウレタン樹脂と接する面のフィルムの表面張力が50mN/m以下である樹脂フィルムラミネート金属板であり、かつ、当該樹脂フィルムラミネート金属板の発泡硬質ウレタン樹脂と接する面に存在するワックスが0mg/m超、5.00mg/m以下であることを特徴とする積層パネル用の樹脂フィルムラミネート金属板である。すなわち、本発明の実施形態に係る樹脂フィルムラミネート金属板は、金属板と、前記金属板の両面に融着される熱可塑性樹脂フィルムと、を備え、前記金属板が、厚み0.08mm以上の鋼板、または、厚み0.15mm以上のアルミニウム板であり、前記熱可塑性樹脂フィルムの前記金属板と前記融着される面の反対の面を第1面としたとき、少なくとも一方の前記熱可塑性樹脂フィルムにおいて前記第1面の表面の表面張力が50mN/m以下であり、前記金属板と融着する面の表面張力が36mN/m以上であり、前記表面のワックス付着量が0mg/m超、5.00mg/m以下である。
 本発明の実施形態に係る樹脂フィルムラミネート金属板を用いることにより、積層パネルのコア層との接着強度が高く、かつ、耐食性に優れ、かつ、廉価に積層パネルを製造することが可能となる。
 以下、本発明の実施形態に係る樹脂フィルムラミネート金属板の構成及び樹脂フィルムラミネート金属板100を備えた積層パネル300の構成についても図8を用いて説明する。図8に示すように、積層パネル300は、コア層3、樹脂フィルムラミネート金属板100とを備える。以下、各構成について説明する。
<積層パネル>
 積層パネル300は、コア層3と樹脂フィルムラミネート金属板100とを備える。このような構成により、積層パネル300は、軽量かつ高強度となる。
(コア層)
 コア層3は、樹脂31と、気泡32とを備える。コア層3は、発泡ポリウレタン樹脂からなることが好ましい。発泡ポリウレタン樹脂は、硬質発泡ポリウレタン樹脂が特に好ましい。ここで、硬質発泡ポリウレタン樹脂とは、イソシアネート基を2個以上有するポリイソシアネートと水酸基を2個以上有するポリオールとを含有する発泡性原料を加熱することで、泡化反応と樹脂化反応を同時に行わせて得られる、独立気泡構造を主とした樹脂発泡体をいう。硬質発泡ポリウレタン樹脂とすることで、積層パネル300の強度を向上することができる。
(樹脂フィルムラミネート金属板)
 樹脂フィルムラミネート金属板100は、金属板1と、熱可塑性樹脂フィルム2と、を備える。以下、各構成について説明する。
〔金属板〕
 樹脂フィルムラミネート金属板100には、強度、剛性、加工性、接着性、コストに優れることから、金属板1を用いることが好ましい。
 本発明の実施形態に係る樹脂フィルムラミネート金属板100の金属板1としては、冷延鋼板、亜鉛めっき鋼板、ティンフリー鋼板、錫めっき鋼板、ニッケルめっき鋼板などの鋼板、アルミニウム板、および、これら金属板の表面処理材が挙げられる。樹脂との密着性、耐食性、強度、材料コストの観点から、金属板1としては、冷延鋼板、亜鉛めっき鋼板、ティンフリー鋼板、および錫めっき鋼板が好ましい。特に、ティンフリー鋼板は、金属クロム層の上層にクロム水和酸化層が形成されていることから、ポリエステル系樹脂、変性ポリプロピレン樹脂、ポリアミド樹脂、アイオノマー樹脂、ポリウレタン樹脂等、分子鎖中に水素結合可能な極性基を有する樹脂との密着強度が非常に高いので金属板1として好ましい。
 冷延鋼板、亜鉛めっき鋼板は、密着性向上を目的として、りん酸塩処理やクロメート処理等の各種化成処理を施すことにより、ティンフリー鋼板と同等の接着強度が得られる。このため、冷延鋼板、亜鉛めっき鋼板を金属板1として用いる場合は化成処理したものを用いるのが好ましい。
 化成処理していない錫めっき鋼板は、めっき表面に酸化錫が存在しており、そのままの状態では酸化錫層が剥離しやすいため十分な接着強度が得られない。したがって、酸洗処理やアルカリ電解処理でめっき表面の酸化錫を除去した後、クロム酸処理等の化成処理を行って、表面が酸化しないようにするのが好ましい。
 樹脂フィルムラミネート金属板100の金属板1の厚みは、鋼板の場合、0.08mm以上、0.8mm以下が好ましい。鋼板の厚みが0.08mm未満の場合、積層パネル300の座屈強度が足りず、局所的に荷重が加わった際に内側の金属板1が座屈あるいは反対側の金属板1が割れる恐れがあるので好ましくない。また、鋼板の厚みの上限は特に限定されないが、軽量化を考慮するならば、必要以上に板厚を厚くするのは好ましくない。経済的には0.8mm以下であるのが好ましい。
 樹脂フィルムラミネート金属板100の金属板1がアルミニウム板の場合は、鋼板に比べて比重が小さく軽量化効果は高いが、強度が低い。このため、アルミニウム板を用いた場合、金属板1の厚みが薄すぎると積層パネル300の踏み抜き強度が低くなるので、厚みは0.15mm以上とすることが好ましい。アルミニウム板を用いる場合の金属板1の厚みの上限は、特に限定されない。軽量化を考慮するならば必要以上に金属板1の厚みを厚くするのは好ましくない。経済的にはアルミニウム板を用いる場合、金属板1の厚みは、2.5mm以下であるのが好ましい。
 樹脂フィルムラミネート金属板100の金属板1の表面粗さは、特に限定されないが、金属板1の表面粗さが、JISB0601:2013に規定される算術平均粗さRaで0.05μm未満の場合、金属板1に熱可塑性フィルム2を圧着積層する際に金属板1と熱可塑性フィルム2との間に気泡が入り込むと気泡が抜け難くなるので、好ましくない。一方、金属板1の表面粗さが平均粗さRaで0.8μmを超える場合、積層パネル300を作製する際、コア層3に用いられるウレタン樹脂の流動性が低下して金属板表面の凹凸に沿って気泡が滞留しやすくなるため、金属板1の表面粗さは、平均粗さRaで、0.05μm以上、0.8μm以下の範囲が好ましい。より好ましくは、0.1μm以上、0.6μm以下である。
〔熱可塑性樹脂フィルム〕
 金属板1に融着される熱可塑性樹脂フィルム2については、樹脂フィルムラミネート金属板100の金属板1と融着させる側の熱可塑性樹脂フィルム2の表面張力が36mN/m以上とする。これにより、金属板1およびコア層3の両方に対して優れた接着性が得られる。
 発泡硬質ウレタン樹脂(コア層)3と接する側の熱可塑性樹脂フィルム2の表面(第1面1A)の表面張力が50mN/mを超えると、積層パネル300を作製する際のコア層3に用いられるウレタン樹脂の流動性が低下して発泡した気泡が局所的に成長することがある。この場合、積層パネル300の曲げ強度が低下する恐れがあるので、積層パネル300の表皮材となる樹脂フィルムラミネート金属板100に用いる熱可塑性樹脂フィルム2の発泡硬質ウレタン樹脂(コア層)3と接する面(第1面1A)の表面張力は、50mN/m以下である。すなわち、樹脂フィルムラミネート金属板の少なくとも一方の熱可塑性樹脂フィルムの第1面の表面張力は、50mN/m以下である。
 熱可塑性樹脂フィルム2に用いられる樹脂熱可塑性樹脂フィルムとしては、ポリエステル系樹脂、ポリアミド樹脂、アイオノマー樹脂、変性ポリプロピレン樹脂等の分子鎖中に水素結合可能な極性基を有する樹脂を用いたものが金属板1とコア層3の樹脂との接着性に優れるので好ましい。熱可塑性樹脂フィルム2としては、特に、ホモPET(ポリエチレンテレフタレート樹脂)フィルム、PET-IA(ポリエチレンテレフタレート・イソフタレート共重合樹脂)フィルム、PET-PBT(ポリエチレンテレフタレート・ポリブチレンテレフタレート共重合樹脂)フィルムが好ましい。
 なお、未変性のポリプロピレン系樹脂やポリエチレン系樹脂は表面張力が30~32mN/m程度であり金属板との密着性が低いので好ましくない。コロナ処理をしたポリプロピレン系フィルムは未変性のものより表面張力は高いが、表面張力が36mN/m未満であり金属板1との接着性は変性ポリプロピレン樹脂ほど高くないので好ましくない。
 熱可塑性フィルム2は、延伸フィルムであっても無延伸フィルムであっても構わないが、延伸フィルムの方が、無延伸フィルムより、積層パネル300を作製する際のウレタン樹脂の流動性が良いので、より好ましい。
 また、熱可塑性フィルム2中に、チタンホワイト、シリカ、カーボンブラックなどの無機充填材や着色用顔料を添加してあってもよい。その他、金属板1および/または積層パネル300のコア層3との接着性を向上させるために熱可塑性樹脂フィルム2の表面に接着プライマーが塗工してあっても構わない。
 金属板1に融着される熱可塑性樹脂フィルム2の厚みは、8μm以上、50μm以下が好ましい。フィルムの厚みが8μ未満の場合、樹脂フィルムラミネート金属板100の製造時にシワが入りやすくなり、特に積層パネル300の外面側となる側の熱可塑性樹脂フィルム2のシワは外観不良となりやすい。このような理由から、積層パネル300の外面側となる側の熱可塑性樹脂フィルム2の厚みは8μm以上であることが好ましい。
 他方、コア層3と接する側の熱可塑性樹脂フィルム2の厚みが50μmを超えると、積層パネルを製造する際、ウレタン樹脂の硬化発熱で樹脂が軟化した際、ウレタン樹脂の流動性が低下し気泡を巻き込みやすくなる。したがってウレタンコア層と接する側の面(第1面1A)の熱可塑性樹脂フィルム2の厚みは50μm以下とするのが好ましい。
 樹脂フィルムラミネート金属板の表面には通常成形時の潤滑性を確保するために、グラマーワックス、カルナバワックスなどの固形ワックスを塗布されている。この表面に塗布されたワックスは表面張力が低い。したがって、樹脂フィルムラミネート金属板の表面に5.00mg/m超のワックスがある状態では積層パネル300を作製した場合に樹脂フィルムラミネート金属板とコア層3との剥離強度が低くなり、好ましくない。そのため、少なくとも熱可塑性樹脂フィルム2のコア層3側(第1面1A)側の表面のワックス付着量は、5.00mg/m以下である。また、樹脂フィルムラミネート金属板上のワックスを完全に除去し、0mg/mとした場合、硬質発泡ウレタン樹脂をコア層3とする積層パネル300を作製する際、ウレタン樹脂注入工程で樹脂フィルムラミネート金属板100の表面の滑り性が悪くなる。ウレタン樹脂と樹脂フィルムラミネート金属板100との界面付近のウレタン樹脂の流動性が悪化すると、ウレタン樹脂が滞留しやすい部分で気泡が会合して巨大化する。そのため、パネルの強度、剛性がバラつきやすくなるので好ましくない。よって、コア層3側(第1面1A)側の表面のワックス付着量は0mg/m超である。より好ましいワックス付着量は0.05mg/m以上である。
 このため、本発明の実施形態に係る樹脂フィルムラミネート金属板100では、少なくとも一方の熱可塑性樹脂フィルム2のコア層3側(第1面1A)の表面のワックス付着量が0mg/m超、5.00mg/m以下の範囲になるよう塗布する。
 熱可塑性樹脂フィルム2と金属板1との剥離強度(接着強度)は、コア層3と熱可塑性樹脂フィルム2との剥離強度(接着強度)よりも高いことが好ましい。このような構成とすることで、熱可塑性樹脂フィルム2が強固に金属板1を覆うことができ、金属板1が錆びることを防止することができる。
 例えば、樹脂フィルムラミネート金属板100をインジェクション金型の上面側と下面側とにセットし、ポリイソシアネートとポリオールとを含有する発泡性原料を混合しながら金型の横側方の注入口から30秒以内に充填し20kN/mの圧力で約30秒間保持して前記樹脂フィルムラミネート金属板間に発泡ポリウレタン樹脂を形成した積層パネルから幅25mmのT型剥離試験片を切り出し、樹脂フィルムラミネート金属板を引張速度50mm/分で剥離させた際にフィルムが金属板から剥離しない場合を、熱可塑性樹脂フィルム2と金属板1との接着強度が、発泡ポリウレタン樹脂と熱可塑性樹脂フィルム2との接着強度よりも高いと判定する。
〔フィルム表面張力とフィルム剥離強度との関係〕
 次に、熱可塑性樹脂フィルムの金属板と融着させる面の表面張力と、樹脂フィルムラミネート金属板のフィルム剥離強度と、の関係を調べた試験結果について説明する。以下、試験方法について具体的に示す。
〔熱可塑性樹脂フィルムの表面張力の調整〕
 グラマーワックスの溶解量(0.1g/L~5g/L)を変えたヘキサン溶液中に熱可塑性樹脂フィルム(熱可塑性無延伸PET-IAフィルム:厚み20μm)を浸漬し、自然乾燥させた試料とワックス浸漬処理していない試料、を用意した。その他前記熱可塑性樹脂フィルムの表面に有機溶剤で希釈したエポキシ樹脂系プライマー塗布を塗布乾燥させて表面張力の高いフィルムを作製した。
〔樹脂フィルムラミネート金属板作製〕
 樹脂フィルムラミネート金属板の熱可塑性樹脂フィルムのラミネート方法は、金属板給装装置、金属板加熱用の金属製加熱用ホットプレスと、表裏面のフィルム給装装置、耐熱ゴム製ラミネートロール(金属製加熱バックアップロールによりゴムロール表面温度を制御)、および、冷却用水槽を備えた専用の樹脂フィルムラミネート装置によって行った。具体的には、265℃に加熱した金属板(ティンフリースチール(TFS)、厚み:0.185mm)にワックス付着量を変えて作成した熱可塑性フィルム(熱可塑性無延伸PET-IAフィルム:厚み20μm)を線圧100N/cmで熱融着させた直後に水冷してフィルムラミネート金属板を作製した。
〔フィルム表面張力測定〕
 樹脂フィルムラミネート金属板に用いる熱可塑性樹脂フィルムの金属板および融着させる面の表面張力の測定は、JIS K6768:1999の「プラスチック-フィルム及びシート-ぬれ張力試験方法」によって行い、ぬれ張力試験用混合液(富士フィルム 和光純薬株式会社製)のハジキ程度から判定した。
〔フィルム剥離強度測定〕
 樹脂フィルムラミネート金属板の金属板とフィルムとの接着性の評価は、通常のフィルムラミネート金属板のフィルム剥離強度測定法に準じて行った。すなわち、フィルム剥離幅15mmのフィルムの180°剥離試験片を作製し室温下で引張速度20mm/分でフィルムを引張り、フィルムの180°剥離強度を測定した。180°剥離強度が10N/15mm以上の場合を良とし、5N/15mm以上、10N/15mm未満を可とし、剥離強度が5N/15mm未満の場合を、不可とした(樹脂フィルムラミネート金属板をエリクセン張出加工で5mm張出した時にフィルムが剥離しないフィルム剥離強度を基準とした)。可以上を合格とした。
 図1は、樹脂フィルムラミネート金属板の熱可塑性樹脂フィルムの表面張力と樹脂フィルム子金属板のフィルム接着性との関係を示した図である。
 図1に示すように、熱可塑性樹脂フィルムの表面張力が36mN/m以上であれば、樹脂フィルムラミネート金属板の熱可塑性樹脂フィルムの接着性が良好であった。フィルムの表面張力が36mN/m未満の場合、積層パネルのウレタン樹脂との接着強度よりも金属板とフィルムの接着強度の方が低くなり、金属板とフィルムの界面で剥離する恐れがあるので好ましくないことが分かった。
(フィルム表面張力と気泡サイズとの関係)
 熱可塑性樹脂フィルムの第1面の表面張力と、積層パネルのウレタンコア層中の気泡の最大気泡径と、の関係を調べた試験結果について説明する。以下、試験方法について具体的に示す。
〔樹脂フィルムラミネート金属板の表面張力の調整〕
 グラマーワックスの溶解量(0.1g/L~5g/L)を変えたヘキサン溶液中に、ワックスが付着していない熱可塑性樹脂フィルムを用いて作製した樹脂フィルムラミネート金属板を浸漬し、自然乾燥させた試料を作製した。また、浸漬処理していない試料も用意し、ワックス付着量の異なる樹脂フィルムラミネート金属板を用意した。
〔積層パネル作製〕
 上記で表面張力を調整した樹脂フィルムラミネート金属板を200mm×250mmに切断し、インジェクション金型の上面側と下面側とにセットし、ポリイソシアネートとポリオールとを含有する発泡性原料を混合しながら金型の横側方の注入口から30秒以内に充填した。その後、20kN/mの圧力で約30秒間保持した後、上下金型を開放し、積層パネル(コア層:発泡硬質ウレタン樹脂(比重0.6)、積層パネルの厚み:5mm)を取外すことにより積層パネルを得た。積層パネルの構成は、樹脂フィルムラミネート金属板/コア層/樹脂フィルムラミネート金属板である。
〔フィルム表面張力測定〕
 樹脂フィルムラミネート金属板の発泡硬質ウレタン樹脂(コア層)と接する面の表面張力の測定は、JIS K6768:1999の「プラスチック-フィルム及びシート-ぬれ張力試験方法」によって行い、ぬれ張力試験用混合液(富士フィルム 和光純薬株式会社製)のハジキ程度から判定した。積層パネルで使用したものと同一のワックス塗布量の樹脂フィルムラミネート金属板について測定を行った。
〔コア層中の気泡サイズ測定〕
 作製した積層パネルの中央位置から、高速精密切断機(平和テクニカ株式会社 ファインカット SP-320Z型)で縦15mm、横10mmの試験片を切断採取し、ウレタン樹脂注入方向の断面の埋込研磨試料を作製した。作製した断面研磨試料のコア層をデジタル式光学顕微鏡を用いて倍率50倍で積層パネルの上部、中間部、下部の3箇所について観察を行った。デジタル式光学顕微鏡の長さ測定機能を用いて各層の気泡直径を測定し、その中で最大の気泡径を求めた。最大気泡径が200μm以下の場合を優、最大気泡径が300μm以下の場合を良、300μm超500μm以下を可とし、500μm超の場合を不可とした。可以上を合格とした。
 図2は、表皮材である樹脂フィルムラミネート金属板の積層パネルの発泡硬質ウレタン樹脂(コア層)と接する側のフィルム面の表面張力と積層パネルのコア層の最大気泡径と、の関係を調査した結果である。
 図2からわかるように樹脂フィルムラミネート金属板の積層パネルのコア層と接する側の熱可塑性フィルムの表面張力が50mN/mを超えると積層パネルのコア層中の気泡の最大気泡径が大きくなることが分かった。
 積層パネルのコア層の厚みが5mm以下で体積充填率が60%以下程度の場合、コア層中に最大気泡径が500μmを超える気泡が多数存在していると積層パネルに荷重が加わって撓んだ際に、コア層が座屈して積層パネル自体が座屈する可能性が高くなるので、好ましくない。種々検討した結果、コア層の厚みが4mmの場合、ウレタンコア層中の気泡の最大気泡径が500μm以下であれば、前述の耐衝撃性が良好であることが明らかになった。
 樹脂フィルムラミネート金属板の積層パネルの発泡硬質ウレタン樹脂(コア層)と接する側の熱可塑性樹脂フィルムの表面の表面張力が高くなると、ウレタン樹脂との密着性は高くなる。しかし、熱可塑性樹脂フィルムの表面張力が高くなると、積層パネルを作製する際、ウレタン樹脂の流動性が低下して気泡を巻き込みやすくなると同時に流動性が低下した部分でウレタンが滞留して気泡が成長しやすくなる。これによって、500μm超の気泡径の気泡が発生しやすくなる。そのため、表皮材の樹脂フィルムラミネート金属板の発泡硬質ウレタン樹脂(コア層)と接する面の熱可塑性樹脂フィルムの表面張力を50mN/m以下とすることで、ウレタン樹脂注入時の流動性が改善され気泡のサイズを小さく均一にできるので好ましい。
(ワックス付着量と気泡サイズおよび接着力との関係)
 熱可塑性樹脂フィルムの第1面のワックス付着量と、積層パネルのコア層中の気泡の最大気泡径と、の関係を調べた試験結果について説明する。以下、試験方法について具体的に示す。
〔ワックス付着量調査用樹脂フィルムラミネート金属板および積層パネル作製〕
 樹脂フィルムラミネート金属板の積層パネルの樹脂フィルムラミネート金属板の接着強度を評価するために、樹脂フィルムを延伸ホモPETフィルムに変更し、フィルムラミネート時の金属板(ティンフリースティール)の加熱温度を285℃にした以外上述の製造条件で作製したワックス未浸漬の樹脂フィルムラミネート金属板に、グラマーワックスの溶解量の異なるヘキサン溶液(1~50g/L)をバーコーターを使用して塗布した。これにより、ワックス付着量の異なる樹脂フィルムラミネート金属板を作製した。得られた樹脂フィルムラミネート金属板を用い、上述の条件で積層パネルを作製した。
〔ワックス付着量調査〕
 ワックス付着量の測定は、20cm×25cmのサンプル板(上述で作製したワックス付着量調査用樹脂フィルムラミネート金属板)の表面のワックスにヘプタンを約30mlかけて溶かした。ワックスを溶解させたヘプタンを予め精密天秤で重量を測定しておいたアルミニウム箔で作製した容器(約3g)で受け、アルミニウム箔容器をヒーターで加熱してヘプタンを蒸発させた。再度、精密天秤でアルミニウム箔容器の重量を測定し、ワックス溶解したヘプタン溶液を入れる前のアルミニウム箔容器の重量とヘプタンを蒸発させてワックスだけ残留したアルミニウム箔容器の重量との差を求めることにより、ワックス重量を求め、単位面積あたりのワックス付着量を算出した。
〔コア層中の気泡サイズ測定〕
 作製した積層パネルの中央位置から、高速精密切断機(平和テクニカ株式会社 ファインカット SP-320Z型)で縦15mm、横10mmの試験片を切断採取し、ウレタン樹脂注入方向の断面の埋込研磨試料を作製した。作製した断面研磨試料のコア層をデジタル式光学顕微鏡を用いて倍率50倍で積層パネルの上部、中間部、下部の3箇所について各視野中の気泡を観察した。デジタル式光学顕微鏡の長さ測定機能を用いて各層の気泡直径を測定し、最大気泡径を求めた。最大気泡径が200μm以下の場合を優とし、200μm超300μm以下の場合を良とし、300μ超500μm以下を可とし、500μm超を不可とした。可以上を合格とした。
〔積層パネルの樹脂フィルムラミネート金属板剥離強度測定〕
 作製した積層パネルを高速精密切断機で切断して25mm幅×150mmの試験片を採取し、試験片端の両面の樹脂フィルムラミネート金属板を約30mm剥離して引張試験機のチャックに挟むための掴み部を作製した。
 試験片両面の樹脂フィルムラミネート金属板の掴み部を引張試験機のチャックに挟んで200mm/分の引張速度で100mm剥離(チャック間移動量200mm)することで、樹脂フィルムラミネート金属板とコア層の発泡硬質ウレタン樹脂との剥離強度を測定した。剥離強度が10N/25mm以上の場合を良とし、5N/25mm以上、10N/25mm未満の場合を可とし、5N/25mm未満を不可とした。合格を可以上とした。
 図3は樹脂フィルムラミネート金属板の表面に付着したワックス付着量と、積層パネルにした時の積層パネルのコア層の最大気泡径の判定結果との関係を示した図である。
 図3に示されるように樹脂フィルムラミネート金属板表面にワックスが全く存在しない状態の場合、積層パネルのコア層の最大気泡径が500μm超となりやすいため、好ましくないことが分かった。
 樹脂フィルムラミネート金属板の表面に全くワックスが存在しないと、積層パネルを製造時の発泡樹脂注入工程で界面付近のウレタン樹脂の流動性が低下して界面付近に渦が発生し、気泡が滞留して会合しやすくなる。そのため、ワックスが微量存在することが好ましい。
 図4は、樹脂フィルムラミネート金属板の表面に付着したワックス量と、積層パネルにした時のフィルムラミネート金属板およびコア層の接着性(剥離強度)との関係を示した図である。
 図4からわかるように樹脂フィルムラミネート金属板の表面に付着したワックス量が5.00mg/mを超えると積層パネルにした時の剥離強度が積層パネルに求められる樹脂フィルムラミネート金属板とコア層との剥離強度である5N/25mmより低くなるので好ましくない。
 樹脂フィルムラミネート金属板表面のワックス付着量が0mg/m超、5.00mg/m以下の場合、積層パネルを作製した際の表皮の樹脂フィルムラミネート金属板と積層パネルのコア層の剥離強度が5N/25mm以上で合格レベルとなることが明らかとなった。
<樹脂フィルムラミネート金属板の製造方法>
 次に、樹脂フィルムラミネート金属板100の製造方法について説明する。樹脂フィルムラミネート金属板100の製造方法は、準備工程、加熱工程、ラミネート工程、冷却工程とを備える。
〔準備工程〕
 従来技術では通常、樹脂フィルムラミネート金属板の製造工程で熱可塑性樹脂フィルムを金属板に熱融着させた後、樹脂フィルムラミネート金属板の熱可塑性樹脂フィルム面に加熱溶融させた固形ワックスをロールコーター54(図9)で塗布している。そのため、ワックス塗布工程の後にある通板ロール55(図9)に微量のワックスが転写堆積するのが避けられず、熱可塑性樹脂フィルムのワックス付着量を微量に制御するのは困難であった。
 そこで、鋭意検討した結果、本発明者らは、積層パネルの両側に配する樹脂フィルムラミネート金属板の表面に付着するワックスを0mg/m超、5.00mg/m以下にする方法として、本願の樹脂フィルムラミネート金属板を通板する前に、無塗油鋼板を通板し、通板ロール表面に堆積したワックスを無塗油鋼板側に付着させて除去してからワックスを微量塗布する方法を考案し、樹脂フィルムラミネート金属板の表面のワックス付着量が0mg/m超、5.00mg/m以下である樹脂フィルムラミネート金属板を製造することを可能とした。ここで、無塗油鋼板とは、防錆油などの油を塗布していない鋼板をいう。
 本発明者らが、樹脂フィルムラミネート金属板製造時の熱可塑性樹脂フィルムの表面へのワックス付着量を0mg/m超、5.00mg/m以下とするための通板条件を鋭意検討した結果、樹脂フィルムラミネート金属板連続製造設備において、樹脂フィルムラミネート金属板を製造する前に無塗油鋼板を50m/分以上の速度で1000m以上、フィルムラミネートせずに通板した後(準備工程S0)、樹脂フィルムラミネート金属板に0.1mg/m~2.0mg/mのワックスを塗工することによって、樹脂フィルムラミネート金属板製造時のフィルム面へのワックス付着量を0mg/m超、5.00mg/m以下まで低減できる。具体的には、無塗油鋼板を50m/分以上の速度で1000m以上、フィルムラミネートせずに通板することで、通板ロール55の表面のワックスを除去し、通板ロール55の表面の表面張力を36mN/m以上とした後、樹脂フィルムラミネート金属板に0.1mg/m~2.0mg/mのワックスを塗布して通板することすることによって、最終的に樹脂フィルムラミネート金属板上のワックス付着量を0mg/m超、5.00mg/m以下まで低減できる。
 無塗油鋼板の通板速度が50m/分未満の場合、金属板と通板ロールの間に剪断力が働き難くロールに付着したワックスを金属板が通板する際にワックスを取り難くなるので好ましくない。また、無塗油鋼板の連続通板長さが1000m未満の場合、通板ロールに堆積したワックスを十分に除去することができない場合があるので好ましくない。
〔加熱工程〕
 上述の準備工程で通板ロール55からワックスを除去し、通板ロール55の表面張力を36mN/m以上とした後、図9に示すような樹脂フィルムラミネート金属板の連続製造設備、例えば、図示しない加熱ロールで加熱された公知の金属板1の上に熱可塑性樹脂フィルム2をフィルムラミネートロール52によって圧着して熱可塑性樹脂フィルム2を熱融着させ、ついで冷却槽53で樹脂フィルムラミネート金属板を所定の温度まで冷却することによって、幅、長さ方向均一な樹脂フィルム層構造を形成することができ、かつ、金属板1と熱可塑性樹脂フィルム2との間に巻き込まれる気泡を少なくできる。
 加熱工程S1における樹脂フィルムラミネート金属板の連続製造設備の金属板1を加熱する方法としては、複数のスチーム等の熱媒体をロール内部に通して加熱するジャケットロール、あるいは、ヒーターを内蔵した加熱ロールに金属板を通板させて加熱させる方法などがあげられる。
〔ラミネート工程〕
 ラミネート工程S2におけるフィルムラミネートロール52としては、フィルムラミネート部で適度なニップ長を確保できるのでゴムロールが好ましい。ゴムロールの材質としては、フッ素ゴム、シリコンゴムなど耐熱性の高いゴムが特に好ましい。
〔冷却工程〕
 上記方法で金属板にフィルムを熱融着させた後は、冷却層53で冷却を行う。樹脂フィルムラミネート金属板を熱可塑性樹脂フィルム2の結晶化温度より低い温度まで冷却することが好ましい(冷却工程S3)。なお、本実施形態に係る製造方法において、図9のロールコーター54で塗布するワックスは溶剤で希釈してワックス濃度を下げて塗布しても良い。
<積層パネルの製造方法>
 本実施形態に係る積層パネルの製造方法は特に限定されず、公知の製造方法で製造することができる。例えば、上記の製造方法で製造した樹脂フィルムラミネート金属板をインジェクション金型の上面側と下面側とにセットし、ポリイソシアネートとポリオールとを含有する発泡性原料を混合しながら金型の横側方の注入口から30秒以内に充填し20kN/mの圧力で約30秒間保持した後、上下金型を開放することで積層パネルを製造することができる。
〔通板ロールへのワックス付着量検討〕
 次に、樹脂フィルムラミネート金属板表面へのワックス転写源となる連続製造設備の通板ロール55の表面上に付着堆積したワックスの除去条件の検討試験について説明する。
 図5は、鋼板を所定長さ通板した後の通板ロール表面の表面張力測定結果とその際に鋼板の表面に転写したワックス付着量との関係を示した図である。図5のワックス付着量は、上述のワックス付着量調査で行った方法で測定し、通板ロール表面の表面張力の測定は表面張力測定試薬を通板ロール表面に塗布した際のハジキ性で判定した。
 図5から、樹脂フィルムラミネート金属板製造設備通板後の金属板表面のワックス付着量は、通板ロール表面の表面張力と良い相関があることがわかった。
 通板ロール表面の表面張力を測定することで樹脂フィルムラミネート金属板通板後の表面のワックス付着量を推測することが可能になったことから、以下、通板ロール表面のワックスの除去程度の判定は、通板ロール表面に表面張力36mN/mの表面張力測定試薬を塗ってハジキがでないかどうかで判定した。
〔通板距離とワックス除去率との関係〕
 次に、樹脂フィルムラミネート金属板製造設備の通板ロール表面の表面張力が36mN/m以上となる鋼板通板条件について検討した。まず、通板距離とワックス除去率との関係について調べた。具体的には、通板長さを変えて、鋼板(冷延鋼板、厚み:0.225mm)を50m/分で通板した後、表面張力36mN/mの表面張力試験液を通板ロールに塗布し、ワックス除去程度を判定した。表面張力試験液の液はじきがない場合を良とし、瞬間的な液はじきはないが、2秒以内に液が引いてくる場合を可とし、液をすぐにはじいて水滴状になる場合を不可とした。
 図6は、樹脂フィルムラミネート金属板製造設備で無塗油鋼板を50m/分で通板した際の通板長さと鋼板通板後の通板ロール表面のワックス除去判定の結果との関係を示した図である。
 図6から、樹脂フィルムラミネート金属板製造ラインで通板ロール表面のワックスを除去するために必要な鋼板の通板長さは1000m以上必要であり、鋼板の通板長さが1000m未満だと通板ロール上に付着したワックスが十分に除去できないことがわかった。
〔通板速度とワックス除去率との関係〕
 次に、通板速度とワックス除去率との関係について調べた。具体的には、通板速度を変えて、無塗油鋼板(冷延鋼板、厚み:0.225mm)を1000m通板した後、表面張力36mN/mの表面張力試験液を通板ロールに塗布することで、ワックス除去程度を判定した。表面張力試験液の液はじきがない場合を良とし、瞬間的な液はじきはないが、2秒以内に液が引いてくる場合を可とし、液をすぐにはじいて水滴状になる場合を不可とした。
 図7は、樹脂フィルムラミネート金属板製造設備で鋼板を1000m通板した際の鋼板の通板速度と鋼板通板後の通板ロール表面のワックス除去程度の判定結果を示した図である。
 図7から、樹脂フィルムラミネート金属板製造ラインで通板ロール表面のワックスを除去するために金属板を1000m通板した際に通板ロール上に付着堆積したワックスを除去するためには、鋼板通板速度が50m/分以上必要であり、鋼板の通板速度が50m未満だと通板ロール上に付着したワックスが十分に除去できないことがわかった。
 これは、通板速度が遅いと鋼板通過時に通板ロール表面にかかる剪断力が小さくなり、通板ロール表面に堆積したワックスが鋼板に接触した際の削りとる力が低下するためと考えられる。鋼板の通板速度が50m未満の場合、鋼板の通板長さを長くすれば、通板ロール表面上に付着堆積したワックスを除去できると考えられるが、鋼板の必要長さが長くなり、かつ、通板ロール表面のワックスを除去するのに時間がかかるため、実用的でなく好ましくない。
 図6および図7から、樹脂フィルムラミネート金属板製造設備の通板ロール表面の表面張力が36mN/m以上となる鋼板通板条件は、鋼板通板速度50m/分以上で鋼板の通板長さが1000m以上必要であることがわかった。
 本発明の積層パネル用樹脂フィルムラミネート金属板、および、その製造方法について、実施例を挙げて具体的に説明する。
 ただし、実施例における条件は、本発明の実施可能性および効果を確認するために採用した一条件であり、本発明は下記実施例に限定されるものではない。本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、趣旨に適合し得る範囲で適当に変更を加えて実施することも可能である。よって、本発明は、種々の条件を採用し得、それらは何れも本発明の技術的特徴に含まれる。
 実施例、比較例を通じ、図8に示すような積層パネル用の樹脂フィルムラミネート金属板に用いる金属板を表1に、樹脂フィルムラミネート金属板の熱可塑性樹脂フィルムを表2に、樹脂フィルムラミネート金属板、積層パネルの構成内容(コア層厚、樹脂層密度)、および、積層パネルの特性評価結果(樹脂フィルムラミネート金属板のフィルム剥離強度、コア層中の気泡サイズ分布、積層パネルの樹脂フィルムラミネート金属板の剥離強度、積層パネルの耐衝撃性)を表3A~3Fおよび表4A~表4Fに示した。表5A~5Cおよび表6A~表6Cには樹脂フィルムラミネート金属板の構成、樹脂フィルムラミネート金属板製造前の鋼板空通板条件、積層パネルのコア層の構成、および、積層パネルの樹脂フィルムラミネート金属板剥離強度判定結果を示した。なお、樹脂フィルムラミネート金属板は図9に示すような連続製造設備を用いて連続的に製造している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 具体的には以下の通りである。
樹脂フィルムラミネート金属板の構成材料について、以下に示す。
〔金属板〕
 表1に示すM1~M8の金属板を用いた。
M1は、厚み0.08mmのCr酸化・水酸化物化成処理皮膜を有する金属クロムめっき鋼板である。
M2は、厚み0.80mmのCr酸化・水酸化物化成処理皮膜を有する金属クロムめっき鋼板である。
M3は、厚み0.08mmのZr酸化・水酸化物化成処理皮膜を有するSn-Fe合金めっき鋼板である。
M4は、厚み0.80mmのZr酸化・水酸化物化成処理皮膜を有するSn-Fe合金めっき鋼板である。
M5は、厚み0.15mmのZr酸化・水酸化物化成処理皮膜を有するA5052系のアルミニウム板である。
M6は、厚み2.50mmのZr酸化・水酸化物化成処理皮膜を有するA5052系のアルミニウム板である。
M7は、厚み0.07mmのCr酸化・水酸化物化成処理皮膜を有する金属クロムめっき鋼板である。
M8は、厚み0.14mmのZr酸化・水酸化物化成処理皮膜を有するA5052系のアルミニウム板である。
〔熱可塑性樹脂フィルム〕
 表2に示すE1~E12のフィルムを用いて、樹脂フィルムラミネート金属板を作製した。以下に示した表面張力、表面粗度は金属板と融着させる面と反対面の表面粗度である。
E1は、表面張力48mN/m、表面粗度Ra0.2μm、厚み8μmの熱可塑性延伸ホモPET(ポリエチレンテレフタレート樹脂)フィルムである。
E2は、表面張力48mN/m、表面粗度Ra0.2μm、厚み50μmの熱可塑性延伸ホモPET(ポリエチレンテレフタレート樹脂)フィルムである。
E3は、表面張力50mN/m、表面粗度Ra0.2μm、厚み8μmの熱可塑性延伸PET-IA(ポリエチレンテレフタレート・イソフタレート8モル%共重合樹脂)フィルムである。
E4は、表面張力50mN/m、表面粗度Ra0.2μm、厚み50μmの熱可塑性延伸PET-IA(ポリエチレンテレフタレート・イソフタレート8モル%共重合樹脂)フィルムである。
E5は、表面張力50mN/m、表面粗度Ra0.2μm、厚み6μmの熱可塑性延伸PET-IA(ポリエチレンテレフタレート・イソフタレート8モル%共重合樹脂)フィルムである。
E6は、表面張力50mN/m、表面粗度Ra0.2μm、厚み52μmの熱可塑性延伸PET-IA(ポリエチレンテレフタレート・イソフタレート8モル%共重合樹脂)フィルムである。
E7は、表面張力52mN/m、表面粗度Ra0.3μm、厚み20μmの熱可塑性無延伸PET-IA(ポリエチレンテレフタレート・イソフタレート8モル%共重合樹脂)フィルムである。
E8は、表面張力50mN/m、表面粗度Ra0.2μm、厚み25μmの熱可塑性延伸PET-PBT(ポリエチレンテレフタレート・ポリブチレンテレフタレート50質量%共重合樹脂)フィルムである。
E9は、表面張力36mN/m、表面粗度Ra0.2μm、厚み25μmの熱可塑性無延伸変性PP(無水フタル酸変性ポリプロピレン系樹脂)フィルムである。
E10は、表面張力34mN/m、表面粗度Ra0.3μm、厚み25μmの熱可塑性無延伸コロナ処理PP(ポリプロピレン樹脂)フィルムである。
E11は、表面張力44mN/m、表面粗度Ra0.3μm、厚み25μmの熱硬化性軟質ポリウレタンフィルムである。
E12は、金属板と融着させる面の表面張力が48mN/m〔ポリエチレンテレフタレート〕、金属板と融着させる面と反対面の表面張力が36mN/m(無水マレイン酸変性ポリエチレン)、表面粗度Raが0.1μm、厚み50μmの熱可塑性無延伸PET(ポリエチレンテレフタレート)・変性PE(ポリエチレン)共押出フィルムである。
〔樹脂フィルムラミネート金属板〕
 樹脂フィルムラミネート金属板は、表3A~3Fおよび表5A~5Cに記載の構成およびラミネート条件で作製した。
〔積層パネル〕
 上記で製造した樹脂フィルムラミネート金属板を200mm×250mmに切断し、インジェクション金型の上面側と下面側とにセットし、ポリイソシアネートとポリオールとを含有する発泡性原料を混合しながら金型の横側方の注入口から30秒以内に充填して20kN/mの圧力で約30秒間保持した後、上下金型を開放することで、積層パネル(コア層:発泡硬質ウレタン樹脂(比重0.6)、積層パネルの厚み:4mm)を得た。
〔積層パネルの特性判定結果〕
 上述した種々特性と積層パネルの性能に係る特性の関係から、積層パネル特性の良否を以下の方法によって判定した。
(1)樹脂フィルムラミネート金属板の熱可塑性樹脂フィルム剥離強度判定
 樹脂フィルムラミネート金属板の金属板と熱可塑性樹脂フィルムとの剥離強度(フィルムは栗強度)の測定は、以下の方法で行った。フィルム剥離幅15mmのフィルムの180°剥離試験片を作製し、室温下で引張速度20mm/分でフィルムを引張り、フィルムの180°剥離強度を測定した。得られた剥離強度を下記の基準に基づいて判定した。可以上を合格とした。得られた結果を表4A~4Fおよび表6A~6Cに示す。
良: 10N/15mm ≦ (フィルム剥離強度)
可: 5N/15mm ≦ (フィルム剥離強度) < 10N/15mm
不可: (フィルム剥離強度) < 5N/15mm
(2)コア層中の気泡サイズ測定
 作製した積層パネルの中央位置から、高速精密切断機(平和テクニカ株式会社 ファインカット SP-320Z型)で縦15mm、横10mmの試験片を切断採取し、ウレタン樹脂注入方向の断面の埋込研磨試料を作製した。作製した断面研磨試料のコア層をデジタル式光学顕微鏡を用いて倍率50倍で積層パネルの上部、中間部、下部の3箇所について各視野中の気泡を観察してデジタル式光学顕微鏡の長さ測定機能を用いて各層の気泡直径を測定した。得られた最大気泡直径(最大気泡径)を下記の基準に基づき判定した。可以上を合格とした。得られた結果を表4A~4Fおよび表6A~6Cに示す。
優:コア層断面視野中の最大気泡直径が200μm以下の場合
良:コア層断面視野中の最大気泡直径が200μm超~300μm以下の場合
可:コア層断面視野中の最大気泡直径が300μm超~500μm以下の場合
不可:コア層断面視野中の最大気泡直径が500μm超の場合
(3)積層パネルの樹脂フィルムラミネート金属板剥離強度
 上記で作製した積層パネルを高速精密切断機で切断して25mm幅×150mmの試験片を採取し、試験片端の両面の樹脂フィルムラミネート金属板を約30mm剥離して引張試験機のチャックに挟むための掴み部を作製した。
 試験片両面の樹脂フィルムラミネート金属板の掴み部を引張試験機のチャックに挟んで200mm/分の引張速度で100mm剥離(チャック間移動量200mm)し、樹脂フィルムラミネート金属板とコア層の発泡硬質ウレタン樹脂との剥離強度(ラミネート金属板剥離強度)を測定した。100mm剥離した時の剥離強度を下記の基準に基づき判定した。合格は可以上とした。得られた結果を表4A~4Fおよび表6A~6Cに示す。
良: 10N/25mm ≦(ラミネート金属板剥離強度)
可: 5N/25mm ≦(ラミネート金属板剥離強度)< 10N/25mm
不可: (ラミネート金属板剥離強度)< 5N/25mm
(4)積層パネルの耐衝撃性判定
 作製した積層パネルを高速精密切断機で25mm幅×150mmに切断し耐衝撃性試験片とした。
 耐衝撃性試験は、デュポン衝撃試験機に支持点間距離100mm、支持部先端が半径2.5mmのロール状支持部を有するダイスを設置し、衝撃圧子として半径5mmの半円柱状の上のポンチを取り付け、重さ1kgの錘を衝撃圧子上部の衝撃受け面から60mmの高さから落下させ、下記の判定基準を基に良否を判定した。合格は、可以上とした。得られた結果を表4A~4Fおよび表6A~6Cに示す。
良:凹み無し、座屈無し、表皮材剥離無し
可:若干の凹み有り、座屈無し、衝撃圧子の当った部分で局所的な表皮材剥離あり
不可:座屈有り、または、表皮材剥離有り
 表3A~3F、4A~4F、5A~5Cおよび6A~6Cに積層パネルの表皮材としての樹脂フィルムラミネート金属板の構成(表1に示した金属板と表2に示したフィルムの組合せ)とその作製条件、積層パネルコア層の構成、および、作製した積層パネルの特性判定結果を示した。
 表3A~3F、4A~4F、5A~5Cおよび6A~6Cに、樹脂フィルムラミネート金属板の構成と、積層パネルの表皮材用の樹脂フィルムラミネート金属板を容器用樹脂ラミネート金属板連続製造設備で製造する際の製造ラインからのワックス転写による積層パネルにおける樹脂フィルムラミネート金属板の剥離強度低下を防止するための樹脂フィルムラミネート金属板製造前の無塗油鋼板空通板条件、積層パネルのウレタンコア層の構成、および、積層パネルの樹脂フィルム金属板剥離強度判定結果を示した。
 表3A~3F、4A~4F、5A~5Cおよび6A~6Cから明らかなように本発明の樹脂フィルムラミネート金属板を積層パネルの表皮材として用いた場合は、優れた積層パネル特性を発現することがわかる。
 表3A~3Dおよび4A~4Dの実験No.9、19、29、39、49、59は、フィルムの表面張力が本願発明の下限に近い36mN/mの熱可塑性無延伸変性PPフィルムを用いた場合の例であり、そのうちの実験No.9、29、49は積層パネルの表皮材に用いる樹脂フィルムラミネート金属板の金属板の厚みが本願発明の下限(鋼板厚み:0.08mm、アルミニウム板厚み:0.15mm)であり、積層パネルの座屈は発生しなかったものの、衝撃圧子が当たった部分で局所的に金属板が剥がれ表皮材が凹でいた。一方、表3B~3Dおよび4B~4Dの実験No.19、39、59は、積層パネルの表皮材に用いる樹脂フィルムラミネート金属板の金属板の厚みが厚いため、衝撃圧子が当たった部分での局所的な金属板の剥がれ、表皮材の凹みは見られなかった。
 表3Eおよび表4Eの実験No.65,69は、樹脂フィルムラミネート金属板は、ワックス浸漬処理なしのワックス付着量0mg/mの場合であり、積層パネルのウレタンコア層中の気泡の最大気泡径が500μmを超えており、積層パネルの耐衝撃性が劣っていた。
 また、表5A~5Cおよび表6A~表6Cから明らかなように容器用樹脂ラミネート金属板の連続製造設備で積層パネルの表皮材用の樹脂ラミネート金属板を製造する場合に、樹脂フィルムラミネート金属板製造前に無塗油鋼板をフィルムラミネートせずに空通板することにより、樹脂フィルムラミネート金属板連続製造設備からのワックスの転写が殆どなくなり、フィルムラミネート金属板製造時に極微量のワックスを安定して塗布することが可能となり、積層パネルとしたときの樹脂フィルムラミネート金属板の剥離強度低下を抑制できることがわかった。
 本発明の積層パネル用樹脂フィルムラミネート金属板、および、その製造方法は、積層パネルのコア層との接着強度が高く、かつ、容器用樹脂フィルムラミネート金属板製造設備で製造できるので、廉価に積層パネルを製造することが可能であり、建材、船舶、車両の床および壁材用の積層軽量パネル用の表皮板として、極めて有用である。

Claims (4)

  1.  金属板と、
     前記金属板の両面に融着される熱可塑性樹脂フィルムと、
     を備え、
     前記金属板が、厚み0.08mm以上の鋼板、または、厚み0.15mm以上のアルミニウム板であり、前記熱可塑性樹脂フィルムの前記金属板と融着する面の反対の面を第1面としたとき、
     少なくとも一方の前記熱可塑性樹脂フィルムにおいて前記第1面の表面張力が50mN/m以下であり、前記金属板と融着する面の表面張力が36mN/m以上であり、かつ、前記第1面のワックス付着量が0mg/m超、5.00mg/m以下である、樹脂フィルムラミネート金属板。
  2.  前記樹脂フィルムラミネート金属板をインジェクション金型の上面側と下面側とにセットし、ポリイソシアネートとポリオールとを含有する発泡性原料を混合しながら金型の横側方の注入口から30秒以内に充填し20kN/mの圧力で約30秒間保持して前記樹脂フィルムラミネート金属板間に発泡ポリウレタン樹脂を形成したときに、
     前記熱可塑性樹脂フィルムと前記金属板との接着強度が、前記発泡ポリウレタン樹脂と前記熱可塑性樹脂フィルムとの接着強度よりも高い、請求項1に記載の樹脂フィルムラミネート金属板。
  3.  請求項1または2に記載の樹脂フィルムラミネート金属板の製造方法であって、
     フィルムラミネート後、ワックスを0.1mg/m以上、2.0mg/m以下の範囲で塗布した後、通板ロール表面の表面張力が36mN/m以上である通板ロールを用い、樹脂フィルムラミネート金属板を通板する、樹脂フィルムラミネート金属板の製造方法。
  4.  樹脂フィルムラミネート金属板を通板する前に無塗油鋼板を50m/分以上の速度で1000m以上、フィルムラミネートせずに通板した後、樹脂フィルムラミネート金属板を製造通板する、請求項3に記載の樹脂フィルムラミネート金属板の製造方法。
PCT/JP2020/024507 2019-07-05 2020-06-23 樹脂フィルムラミネート金属板、および、その製造方法 WO2021006024A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20836981.9A EP3995288A4 (en) 2019-07-05 2020-06-23 RESIN FILM LAMINATE AND METHOD OF PRODUCTION
KR1020217035561A KR102616087B1 (ko) 2019-07-05 2020-06-23 수지 필름 라미네이트 금속판 및 그 제조 방법
CN202080036429.XA CN113853303A (zh) 2019-07-05 2020-06-23 树脂膜层压金属板及其制造方法
US17/606,909 US20220203654A1 (en) 2019-07-05 2020-06-23 Resin film-laminated metal sheet and method for manufacturing same
JP2021530576A JP7184196B2 (ja) 2019-07-05 2020-06-23 樹脂フィルムラミネート金属板、および、その製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-125682 2019-07-05
JP2019125682 2019-07-05

Publications (1)

Publication Number Publication Date
WO2021006024A1 true WO2021006024A1 (ja) 2021-01-14

Family

ID=74114757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024507 WO2021006024A1 (ja) 2019-07-05 2020-06-23 樹脂フィルムラミネート金属板、および、その製造方法

Country Status (6)

Country Link
US (1) US20220203654A1 (ja)
EP (1) EP3995288A4 (ja)
JP (1) JP7184196B2 (ja)
KR (1) KR102616087B1 (ja)
CN (1) CN113853303A (ja)
WO (1) WO2021006024A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062103A1 (en) * 2022-09-23 2024-03-28 Basf Se Process for producing a composite component comprising at least one metal layer and one polymer layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11518645B2 (en) * 2021-03-15 2022-12-06 Sonoco Development, Inc. Lightweight paper tube structure capable of high loading

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245963A (ja) * 1992-03-06 1993-09-24 Mitsubishi Kasei Corp 難燃性複合材およびその製造法
JP2000351174A (ja) * 1994-10-28 2000-12-19 Toyo Kohan Co Ltd 潤滑剤を塗布したラミネート板及びその製造法、製造設備
JP2001252980A (ja) * 2000-03-10 2001-09-18 Sumitomo Heavy Ind Ltd フィルムラミネート装置およびフィルムラミネート方法
JP2002193256A (ja) * 2000-12-26 2002-07-10 Daiwa Can Co Ltd 両面フィルムラミネート缶蓋及びその製造方法
JP2006150606A (ja) * 2004-11-25 2006-06-15 Toyobo Co Ltd 金属板ラミネート用ポリエステルフィルム、フィルムラミネート金属板及び金属容器
JP2007076240A (ja) * 2005-09-15 2007-03-29 Nippon Steel Corp ラミネート金属板及びラミネート方法
JP2009078543A (ja) * 2007-09-07 2009-04-16 Toyobo Co Ltd 絞りしごき缶被覆用フイルム
JP4326001B2 (ja) 2004-08-19 2009-09-02 株式会社神戸製鋼所 発泡性樹脂積層金属板
JP2010023440A (ja) * 2008-07-24 2010-02-04 Toyobo Co Ltd ポリエステルフィルムラミネート金属板
JP2011025935A (ja) * 2009-07-22 2011-02-10 Toyo Seikan Kaisha Ltd アルミニウム製絞りしごき缶及びその製造方法
JP5553542B2 (ja) 2009-06-25 2014-07-16 新日鐵住金株式会社 樹脂シート積層鋼板
WO2017155113A1 (ja) * 2016-03-10 2017-09-14 新日鐵住金株式会社 レトルト密着性に優れるフィルムラミネート金属板およびその製造方法
JP2018187939A (ja) 2016-07-22 2018-11-29 住友ベークライト株式会社 サンドイッチパネルの製造方法
JP2019125682A (ja) 2018-01-16 2019-07-25 日機装株式会社 半導体発光素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5183932B2 (ja) * 2007-02-09 2013-04-17 テイ・エス テック株式会社 車両内装材用積層シート,車両用内装材,車両内装材用積層シートの製造方法及びその装置
WO2011123474A1 (en) * 2010-03-29 2011-10-06 L.C.O.A. Composites, Inc. Ballistic structural insulated panel

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245963A (ja) * 1992-03-06 1993-09-24 Mitsubishi Kasei Corp 難燃性複合材およびその製造法
JP2000351174A (ja) * 1994-10-28 2000-12-19 Toyo Kohan Co Ltd 潤滑剤を塗布したラミネート板及びその製造法、製造設備
JP2001252980A (ja) * 2000-03-10 2001-09-18 Sumitomo Heavy Ind Ltd フィルムラミネート装置およびフィルムラミネート方法
JP2002193256A (ja) * 2000-12-26 2002-07-10 Daiwa Can Co Ltd 両面フィルムラミネート缶蓋及びその製造方法
JP4326001B2 (ja) 2004-08-19 2009-09-02 株式会社神戸製鋼所 発泡性樹脂積層金属板
JP2006150606A (ja) * 2004-11-25 2006-06-15 Toyobo Co Ltd 金属板ラミネート用ポリエステルフィルム、フィルムラミネート金属板及び金属容器
JP2007076240A (ja) * 2005-09-15 2007-03-29 Nippon Steel Corp ラミネート金属板及びラミネート方法
JP2009078543A (ja) * 2007-09-07 2009-04-16 Toyobo Co Ltd 絞りしごき缶被覆用フイルム
JP2010023440A (ja) * 2008-07-24 2010-02-04 Toyobo Co Ltd ポリエステルフィルムラミネート金属板
JP5553542B2 (ja) 2009-06-25 2014-07-16 新日鐵住金株式会社 樹脂シート積層鋼板
JP2011025935A (ja) * 2009-07-22 2011-02-10 Toyo Seikan Kaisha Ltd アルミニウム製絞りしごき缶及びその製造方法
WO2017155113A1 (ja) * 2016-03-10 2017-09-14 新日鐵住金株式会社 レトルト密着性に優れるフィルムラミネート金属板およびその製造方法
JP2018187939A (ja) 2016-07-22 2018-11-29 住友ベークライト株式会社 サンドイッチパネルの製造方法
JP2019125682A (ja) 2018-01-16 2019-07-25 日機装株式会社 半導体発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3995288A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062103A1 (en) * 2022-09-23 2024-03-28 Basf Se Process for producing a composite component comprising at least one metal layer and one polymer layer

Also Published As

Publication number Publication date
CN113853303A (zh) 2021-12-28
JPWO2021006024A1 (ja) 2021-01-14
EP3995288A1 (en) 2022-05-11
US20220203654A1 (en) 2022-06-30
KR102616087B1 (ko) 2023-12-21
EP3995288A4 (en) 2023-07-19
JP7184196B2 (ja) 2022-12-06
KR20210144873A (ko) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2021006024A1 (ja) 樹脂フィルムラミネート金属板、および、その製造方法
US20060210817A1 (en) Resin film laminated metal sheet for can and method for fabricating the same
JP4626532B2 (ja) 表面処理鋼板およびその製造方法、ならびに樹脂被覆鋼板、缶および缶蓋
JP2008184630A (ja) 表面処理金属板およびその製造方法、ならびに樹脂被覆金属板、金属缶および缶蓋
JP2003288866A (ja) 二次電池容器用積層材及び二次電池容器
US20090133830A1 (en) Laminated metal sheet and method of production of same
JP4285924B2 (ja) Snめっき鋼板に樹脂皮膜を被覆してなる樹脂被覆Snめっき鋼板から成る缶体及びその製造方法
JPH0571035B2 (ja)
JP5200707B2 (ja) 容器用ポリエステル樹脂被覆金属板
JP5300119B2 (ja) シームレス缶用表面処理鋼板、樹脂被覆鋼板及びシームレス缶
JP5347343B2 (ja) 容器用ポリエステル樹脂被覆金属板
WO2019112051A1 (ja) ヒートシール蓋及び缶
CN108698376B (zh) 蒸煮密合性优异的膜层压金属板及其制造方法
WO2023195467A1 (ja) 樹脂金属複合パネル
WO2017102143A1 (en) Process for laminating a polymeric film to a metal strip substrate and a metal strip substrate produced thereby
JP5765391B2 (ja) 樹脂被覆鋼板製イージーオープン缶蓋及びその製造方法
WO2000058087A1 (fr) Tole de metal enduite de resine de polyester, et boite de conserve utilisant cette tole
JP4872315B2 (ja) 表面処理鋼板およびその製造方法、ならびに樹脂被覆鋼板、缶および缶蓋
JP5407279B2 (ja) 樹脂被覆鋼板製イージーオープン缶蓋及びその製造方法
JP5669344B2 (ja) 樹脂被覆鋼板製イージーオープン缶蓋及びその製造方法
TWI608933B (zh) 被覆有樹脂之鍍Sn鋼板、其製造方法及製造設備
JP5023468B2 (ja) 缶又は缶蓋用表面処理金属板およびその製造方法、ならびに缶又は缶蓋用樹脂被覆金属板、金属缶および缶蓋
JP2001088241A (ja) 容器用フィルムラミネート金属板
CA3162200C (en) Method for manufacturing laminated tinplate, a laminated tinplate produced thereby and use thereof
JP2014177678A (ja) 表面処理鋼板の製造方法および表面処理鋼板、ならびに樹脂被覆鋼板、缶および缶蓋

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530576

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217035561

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020836981

Country of ref document: EP

Effective date: 20220207