WO2013105514A1 - Led装置 - Google Patents

Led装置 Download PDF

Info

Publication number
WO2013105514A1
WO2013105514A1 PCT/JP2013/000105 JP2013000105W WO2013105514A1 WO 2013105514 A1 WO2013105514 A1 WO 2013105514A1 JP 2013000105 W JP2013000105 W JP 2013000105W WO 2013105514 A1 WO2013105514 A1 WO 2013105514A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic particle
containing layer
led device
wavelength conversion
refractive index
Prior art date
Application number
PCT/JP2013/000105
Other languages
English (en)
French (fr)
Inventor
後藤 賢治
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2013105514A1 publication Critical patent/WO2013105514A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Definitions

  • the present invention relates to an LED device in which a wavelength conversion layer containing phosphor particles is installed on an LED chip.
  • white LED devices in which a phosphor such as a YAG phosphor is disposed in the vicinity of a GaN-based blue LED (Light Emitting Diode) chip have become widespread.
  • the blue light emitted from the blue LED chip and the yellow light (fluorescence) emitted from the phosphor upon receiving the blue light are mixed to obtain white light.
  • an LED device in which a plurality of types of phosphors are arranged in the vicinity of a blue LED chip has been developed.
  • light emitted from a blue LED chip and fluorescence (for example, red light or green light) emitted from a phosphor upon receiving blue light are mixed to obtain white light.
  • White LED devices have various uses, and are applied to various lighting devices (fluorescent lamps, incandescent lamps, etc.), for example.
  • a plurality of white LED devices are usually combined.
  • how to improve the light extraction efficiency of each white LED device is important in terms of cost reduction and long life.
  • an LED chip and its mounting part are generally sealed with a wavelength conversion layer in which phosphor particles are dispersed in a transparent resin (see, for example, Patent Document 1).
  • a wavelength conversion layer in which phosphor particles are dispersed in a transparent resin
  • Patent Document 1 the difference in refractive index between the wavelength conversion layer and the air adjacent thereto is large. Therefore, there is a problem that light emitted from the wavelength conversion layer to the atmosphere side is easily reflected at these interfaces, and light cannot be sufficiently extracted from the LED device.
  • Patent Document 2 a low refractive index resin layer having a refractive index lower than that of the wavelength conversion layer is disposed on the atmosphere side of the wavelength conversion layer.
  • a large amount of light is intentionally reflected at the interface between the wavelength conversion layer and the low refractive index resin layer to confine the light in the wavelength conversion layer. Then, the excitation efficiency of the phosphor particles is increased, and the light extraction efficiency is increased.
  • Patent Document 2 has a problem that the adhesion between the layers is low and, for example, when a load due to temperature occurs, peeling occurs at the interface between the layers. It is inferred that peeling occurs due to differences in the linear expansion coefficient of each layer.
  • an object of the present invention is to provide an LED device in which each member does not peel even when a temperature change occurs, and further has excellent light extraction properties.
  • the present invention has been made on the basis of the above.
  • An LED chip a wavelength conversion layer that covers the LED chip, includes phosphor particles and a sealing resin, and converts light of a specific wavelength from the LED chip into light of another specific wavelength;
  • An LED device having an inorganic particle-containing layer containing inorganic particles and a binder in contact with the wavelength conversion layer, wherein the refractive index of the inorganic particles is lower than the refractive index of the binder.
  • the binder is a transparent ceramic.
  • the LED device of the present invention includes an inorganic particle-containing layer containing inorganic particles having a relatively low refractive index on the wavelength conversion layer. Therefore, a refractive index falls in order of a wavelength conversion layer, an inorganic particle content layer, and air. As a result, reflection occurring at the interface between the layers is suppressed, and the light extraction efficiency of the LED device is increased.
  • the inorganic particles form irregularities on the surface of the inorganic particle-containing layer. This unevenness diffuses light at the interface between the inorganic particle-containing layer and the atmosphere; reflection at the interface between the inorganic particle-containing layer and the atmosphere is suppressed. Furthermore, an anchor effect arises in the interface of an inorganic particle content layer and a wavelength conversion layer with an inorganic particle. Therefore, the adhesion between the inorganic particle-containing layer and the wavelength conversion layer is greatly increased.
  • FIG. 1 is a cross-sectional view showing an example of the LED device 100.
  • the LED device 100 of the present invention includes an LED chip 1, a wavelength conversion layer 2 that covers the LED chip 1, and an inorganic particle-containing layer 3 that is formed on the wavelength conversion layer 2.
  • the LED device 100 of the present invention may further include another member such as a lens on the inorganic particle-containing layer 3, but the inorganic particle-containing layer 3 is the outermost layer of the LED device 100. More preferred.
  • the inorganic particle-containing layer 3 is the outermost layer of the LED device 100, the refractive index difference between the outermost layer of the LED device 100 and the atmosphere can be reduced. As a result, reflection of light emitted from the LED device 100 to the atmosphere is suppressed.
  • the inorganic particle-containing layer 3 is the outermost layer of the LED device 100 will be described as an example.
  • the refractive index of each layer is adjusted so that the refractive index decreases in the order of the LED chip 1, the wavelength conversion layer 2, the inorganic particle-containing layer 3, and the atmosphere.
  • the refractive index of the inorganic particle-containing layer 3 is adjusted to be low by including inorganic particles having a refractive index lower than that of the binder of the inorganic particle-containing layer 3 in the inorganic particle-containing layer 3.
  • the refractive index of the inorganic particle-containing layer 3 is preferably 1.10 to 1.40, more preferably 1.15 to 1.40. If the refractive index of the inorganic particle-containing layer 3 is too high, the difference in refractive index between the inorganic particle-containing layer 3 and the atmosphere increases. As a result, light emitted from the inorganic particle-containing layer 3 side to the atmosphere side is easily reflected at these interfaces, and the light extraction efficiency from the LED device 100 is reduced. On the other hand, if the refractive index of the inorganic particle-containing layer 3 is excessively low, the difference in refractive index between the wavelength conversion layer 2 and the inorganic particle-containing layer 3 becomes large.
  • the refractive index of the inorganic particle-containing layer 3 is adjusted by the kind and amount of the inorganic particles.
  • the refractive index of the inorganic particle-containing layer 3 is measured according to JIS K 7105, for example, using an Abbe refractometer.
  • the refractive index of the wavelength conversion layer 2 is higher than that of the inorganic particle-containing layer 3 and lower than that of the LED chip 1.
  • the refractive index of the wavelength conversion layer 2 is preferably 1.41 to 1.70, more preferably 1.41 to 1.60, and still more preferably 1.41 to 1.55.
  • the refractive index of the wavelength conversion layer 2 is too high, the difference in refractive index between the wavelength conversion layer 2 and the inorganic particle-containing layer 3 becomes large. Therefore, the light emitted from the wavelength conversion layer 2 side to the inorganic particle-containing layer 3 side is easily reflected at these interfaces, and the light extraction efficiency from the LED device 100 is reduced.
  • the refractive index of the wavelength conversion layer 2 is adjusted by the refractive index of a material (such as a sealing resin) included in the wavelength conversion layer 2.
  • the refractive index of the wavelength conversion layer 2 is also measured in accordance with JIS K 7105 by, for example, an Abbe refractometer.
  • the LED chip 1 is disposed on a package (LED substrate) 4 and is connected to a metal portion (metal wiring) 5 disposed on the package 4 via a protruding electrode 6 and the like. .
  • the LED chip 1 is, for example, a blue LED.
  • a blue LED includes an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), a p-GaN compound semiconductor layer (cladding layer) laminated on the LED substrate 4, and a transparent LED. It can be a laminate with an electrode layer.
  • the LED chip 1 may have a light emitting surface of, for example, 200 to 300 ⁇ m ⁇ 200 to 300 ⁇ m. The height of the LED chip 1 is usually about 50 to 200 ⁇ m.
  • Package 4 is, for example, liquid crystal polymer or ceramic, but the material is not particularly limited as long as it has insulation and heat resistance. Also, the shape is not particularly limited, and for example, as shown in FIG. 1, it may be a shape having a recess or a flat plate.
  • the metal part 5 can be a wiring made of a metal such as silver.
  • the metal part 5 may function as a reflecting plate that reflects light emitted from the LED chip 1.
  • the metal part 5 may be connected to the LED chip 1 via the protruding electrode 6 or the like, or may be connected to the LED chip 1 via a wiring or the like.
  • a mode in which the metal part 5 and the LED chip 1 are connected via the protruding electrode 6 is called a flip chip type, and a mode in which the metal part 5 and the LED chip 1 are connected via a wire is called a wire bonding type. .
  • LED device 100 shown in FIG. 1 only one LED chip 1 is arranged in the package 4; however, a plurality of LED chips 1 may be arranged in the package 4.
  • the wavelength conversion layer contains a sealing resin and phosphor particles.
  • the wavelength conversion layer functions to convert light having a specific wavelength emitted from the LED chip into light having another specific wavelength.
  • the sealing resin constituting the wavelength conversion layer seals the above-described LED chip or holds the phosphor-containing layer in the wavelength conversion layer.
  • the type of the sealing resin is not particularly limited, and may be, for example, an epoxy resin or a silicone resin that is transparent to visible light. Among these, a silicone resin is preferable from the viewpoint that there is little deterioration due to light having a short wavelength.
  • silicone resin contained in the wavelength conversion layer examples include a methyl silicone resin in which a methyl group is bonded to a silicon atom constituting a main chain (polysiloxane chain); a phenyl silicone resin in which a phenyl group or the like is bonded; a methyl group and a phenyl group It may be a methylphenyl silicone resin to which groups are bonded.
  • the silicone resin may be a modified silicone resin obtained by modifying a part of a methyl group or a phenyl group bonded to a silicon atom. Examples of the modification include alkyl modification, aralkyl modification, fluoroalkyl modification, polyether modification, amino modification, acrylic modification, and epoxy modification.
  • the phosphor particles may be anything that emits fluorescence by receiving and exciting the wavelength (excitation wavelength) of light emitted from the LED element (LED chip). For example, when the LED chip emits blue light, a white LED device is obtained when phosphor particles that emit yellow fluorescence are included in the wavelength conversion layer. Examples of phosphor particles that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors. The YAG phosphor emits yellow (wavelength 550 nm to 650 nm) fluorescence using blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element as excitation light.
  • the phosphor particles are, for example, 1) After mixing and pressing an appropriate amount of fluoride such as ammonium fluoride as a flux to a mixed raw material having a predetermined composition, 2) filling the crucible into a crucible. It is obtained by firing in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours.
  • a mixed raw material having a predetermined composition is obtained by sufficiently mixing a stoichiometric ratio of oxides of Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures. .
  • a solution in which a rare earth element of Y, Gd, Ce, and Sm is dissolved in an acid in a stoichiometric ratio is coprecipitated with oxalic acid and calcined, and then a coprecipitated oxide and aluminum oxide or gallium oxide. It is obtained by mixing.
  • the kind of the phosphor particles is not limited to the YAG phosphor, and may be other phosphor particles such as a non-garnet phosphor not containing Ce.
  • the average primary particle size of the phosphor particles is preferably 1 ⁇ m or more and 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the larger the particle size of the phosphor particles the higher the light emission efficiency (wavelength conversion efficiency).
  • the particle size of the phosphor particles is too large, the adhesion between the phosphor particles and the sealing resin is lowered, and the strength of the wavelength conversion layer is lowered.
  • the average primary particle diameter of the phosphor particles is measured by, for example, a Coulter counter method.
  • the amount of the phosphor particles contained in the wavelength conversion layer is preferably 3 to 15% by mass, more preferably 5 to 11% by mass with respect to the mass of the entire wavelength conversion layer.
  • the concentration of the phosphor particles in the wavelength conversion layer can be measured by removing the sealing resin in the wavelength conversion layer by various methods.
  • the thickness of the wavelength conversion layer is preferably 10 to 1000 ⁇ m, more preferably 200 to 900 ⁇ m, and still more preferably 400 to 800 ⁇ m. If the wavelength conversion layer is too thick, the concentration of the phosphor particles in the wavelength conversion layer is relatively low, and the phosphor particles may not be uniformly dispersed. On the other hand, when the thickness of the wavelength conversion layer is too thin, the concentration of the phosphor particles becomes relatively high. Therefore, the amount of the sealing resin is relatively reduced, and the film strength of the wavelength conversion layer may be lowered.
  • the thickness of the wavelength conversion layer means the maximum thickness of the wavelength conversion layer disposed on the light emitting surface of the LED chip. The thickness of the layer can be measured using a laser holo gauge.
  • the wavelength conversion layer is prepared by, for example, 1) preparing a composition for a wavelength conversion layer containing a sealing resin or a precursor thereof and phosphor particles, and 2) applying and curing the composition so as to cover the LED chip. Can be obtained.
  • the composition for wavelength conversion layer contains a sealing resin or a precursor thereof and phosphor particles.
  • the composition for wavelength conversion layer may contain a solvent, various additives, etc. as needed.
  • the solvent is not particularly limited as long as it can dissolve the sealing resin or the precursor thereof, for example, hydrocarbons such as toluene and xylene; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether and tetrahydrofuran; Examples thereof include esters such as propylene glycol monomethyl ether acetate and ethyl acetate.
  • the mixing of the wavelength conversion layer composition is performed, for example, with a stirring mill, a blade kneading stirring device, a thin-film swirling disperser, or the like.
  • a stirring mill for example, a blade kneading stirring device, a thin-film swirling disperser, or the like.
  • the method for applying the wavelength conversion layer composition is not particularly limited, and for example, the wavelength conversion layer composition can be applied by a general application apparatus such as a dispenser. Moreover, the hardening method and hardening conditions of the composition for wavelength conversion layers are suitably selected by the kind of sealing resin.
  • An example of the curing method is heat curing.
  • the inorganic particle-containing layer contains inorganic particles and a binder.
  • inorganic particles When inorganic particles are contained in the inorganic particle-containing layer, an anchor effect is generated at the interface between the inorganic particle-containing layer and the wavelength conversion layer, and the adhesion thereof is increased.
  • the refractive index of the inorganic particles contained in the inorganic particle-containing layer is lower than the refractive index of the binder. Therefore, the refractive index of the inorganic particle-containing layer is lower than the refractive index of the binder.
  • the refractive index of the inorganic particles being lower than the refractive index of the binder means that the refractive index of the inorganic particles is 0.02 or more lower than the refractive index of the binder.
  • the refractive index of the inorganic particles is more preferably 0.05 or more and more preferably 0.1 or more lower than the refractive index of the binder.
  • the refractive index of inorganic particles is measured by the Becke line method.
  • the refractive index of the binder is a value obtained by preparing a film consisting only of the binder and measuring it with an Abbe refractometer in accordance with JIS K 7105.
  • inorganic particles As described above, when inorganic particles are contained in the inorganic particle-containing layer, the refractive index of the inorganic particle-containing layer is lowered. When inorganic particles are contained in the inorganic particle-containing layer, irregularities are formed on the surface of the inorganic particle-containing layer, and light is diffused at the interface between the inorganic particle-containing layer and the atmosphere due to the irregularities. As a result, reflection of light at the interface is suppressed, and light extraction efficiency from the LED device is increased.
  • the refractive index of the inorganic particles is preferably 1.40 or less, and more preferably 1.37 or less. If the refractive index of the inorganic particles is too high, the refractive index of the inorganic particle-containing layer will not be sufficiently lowered.
  • the kind of the inorganic particles is not particularly limited, but is preferably hollow silica, magnesium fluoride, and Na 3 AlF 6 from the viewpoint of refractive index.
  • the refractive index of hollow silica changes depending on the porosity.
  • the void ratio of the hollow silica is preferably 30 to 80%, more preferably 40 to 80%, and further preferably 50 to 70%. The larger the porosity, the lower the refractive index, but the particle strength decreases.
  • the porosity is obtained by observing 200 or more particle images with a TEM (transmission electron microscope) to obtain the average radius b of the outer shell of hollow silica and the radius a of the pores. Can be obtained.
  • Porosity X (4 ⁇ a 3/3) / (4 ⁇ b 3/3) ⁇ 100
  • the hollow silica preferably has an average particle size of 1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m.
  • the refractive index of the inorganic particle-containing layer is sufficiently low.
  • the average particle diameter of the hollow silica is measured, for example, by a Coulter counter method.
  • the average particle diameter of magnesium fluoride or Na 3 AlF 6 as inorganic particles is preferably 5 to 500 nm, more preferably 10 to 300 nm.
  • the refractive index of the inorganic particle-containing layer is sufficiently low.
  • the average particle diameter of magnesium fluoride or Na 3 AlF 6 is also measured by the Coulter counter method.
  • the content of the inorganic particles in the inorganic particle-containing layer is preferably 10 to 70% by mass, more preferably 30 to 60% by mass with respect to the total mass of the inorganic particle-containing layer. If the amount of the inorganic particles is too small, the refractive index of the inorganic particle-containing layer is not sufficiently lowered. On the other hand, when the amount of the inorganic particles is excessive, the amount of the binder is relatively decreased, and the strength of the inorganic particle-containing layer may be decreased.
  • Hollow silica is prepared by a known method.
  • Na 3 AlF 6 that is inorganic particles is prepared by mixing a solution in which sodium and aluminum raw materials are dispersed, suspended, or dissolved, and an HF aqueous solution.
  • the sodium and aluminum raw materials are not particularly limited as long as they are dispersed or dissolved in a solvent.
  • it may be an inorganic compound such as sodium or aluminum oxide, hydroxide or carbonate, or may be an organic compound such as alkoxide or carboxylic acid.
  • the solvent is not particularly limited, but an organic solvent is desirable, and alcohols having high compatibility with an HF aqueous solution are particularly preferable.
  • magnesium fluoride is prepared by mixing a solution in which a magnesium raw material is dispersed, suspended or dissolved, and an HF aqueous solution. By adjusting the concentration of the HF aqueous solution, the particle size of the magnesium fluoride particles can be adjusted.
  • the binder contained in the inorganic particle-containing layer fulfills the function of holding the aforementioned inorganic particles.
  • the refractive index of the binder is preferably equal to or lower than the refractive index of the sealing resin included in the wavelength conversion layer.
  • the refractive index of the binder is preferably 1.41 to 1.70, more preferably 1.41 to 1.60, and still more preferably 1.41 to 1.55. . If the refractive index of the binder is too high, the refractive index of the inorganic particle-containing layer may not be sufficiently low.
  • the refractive index of the binder is too low, the refractive index of the inorganic particle-containing layer becomes excessively low, and light may easily be reflected at the interface between the wavelength conversion layer and the inorganic particle-containing layer.
  • the binder contained in the inorganic particle-containing layer is not particularly limited as long as it is a resin transparent to visible light.
  • the binder may be, for example, an epoxy resin, but is preferably a silicone resin or a transparent ceramic, and more preferably a transparent ceramic, from the viewpoint of the refractive index.
  • the transparent ceramic is a binder, not only the refractive index of the binder is lowered, but also the heat resistance of the inorganic particle-containing layer is increased.
  • the silicone resin can be the same as the binder of the wavelength conversion layer described above.
  • the transparent ceramic is preferably polysiloxane or polysilazane, and more preferably polysiloxane from the viewpoint of stability or the like.
  • the polysiloxane is obtained by polymerizing alkoxysilane or an oligomer thereof (also referred to as low molecular weight polysiloxane).
  • the alkoxysilane is represented, for example, by the following general formula (I). Si (OR) n Y 4-n (I)
  • n represents the number of alkoxides (OR) and is an integer of 2 or more and 4 or less.
  • R each independently represents an alkyl group or a phenyl group, and preferably represents an alkyl group having 1 to 5 carbon atoms or a phenyl group.
  • Y represents a hydrogen atom or an alkyl group.
  • the alkyl group has 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, still more preferably 50 or less, and particularly preferably 6 or less, an aliphatic group, alicyclic group, aromatic group, alicyclic aromatic group. It is a family group. These may have atoms or atomic groups such as O, N, and S as a linking group. Among these, a methyl group is particularly preferable.
  • Y is a methyl group, the light resistance and heat resistance of the inorganic particle-containing layer are improved.
  • the monovalent organic group represented by Y may have a substituent.
  • substituents include, for example, halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group
  • An organic functional group such as a group, a nitro group, a sulfonic acid group, a carboxy group, a hydroxy group, an acyl group, an alkoxy group, an imino group, and a phenyl group.
  • the alkoxysilane represented by the general formula (I) can be, for example, the following tetrafunctional silane compound, trifunctional silane compound, bifunctional silane compound, or the like.
  • tetrafunctional silane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, triethoxymono Methoxysilane, trimethoxymonopropoxysilane, monomethoxytributoxysilane, monomethoxytripentyloxysilane, monomethoxytriphenyloxysilane, dimethoxydipropoxysilane, tripropoxymonomethoxysilane, trimethoxymonobutoxysilane, dimethoxydibutoxy
  • trifunctional silane compounds include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, di Propoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxysilane Monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysilane, monophenyl Monohydrosilane compounds such as ruoxydiethoxysi
  • bifunctional silane compound examples include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxypropoxy.
  • the thickness of the inorganic particle-containing layer is preferably 0.1 to 500 ⁇ m, more preferably 1 to 100 ⁇ m. If the inorganic particle-containing layer is excessively thin, it may be difficult to form the inorganic particle-containing layer without unevenness. On the other hand, when the thickness of the inorganic particle-containing layer is excessively large, the thickness of the entire LED device is increased, and the LED device is enlarged.
  • the inorganic particle-containing layer is obtained by 1) preparing a composition for an inorganic particle-containing layer containing the above-mentioned binder or its precursor and inorganic particles, and 2) applying and curing the composition on the wavelength conversion layer.
  • the composition for an inorganic particle-containing layer includes a binder or a precursor thereof and inorganic particles, and includes a solvent and various additives as necessary.
  • the mass average molecular weight of the low molecular weight polysiloxane is preferably 1000 to 3000, more preferably 1200 to 2700, and even more preferably 1500 to 2000. If the mass average molecular weight of the low molecular weight polysiloxane is less than 1000, the viscosity of the inorganic particle-containing layer composition may be too low. On the other hand, when the mass average molecular weight exceeds 3000, the viscosity becomes high, and thickness unevenness or the like may occur in the inorganic particle-containing layer.
  • the mass average molecular weight is a value (polystyrene conversion) measured by gel permeation chromatography.
  • the solvent is not particularly limited as long as it can disperse or dissolve the binder or its precursor.
  • it may be an aqueous solvent having excellent compatibility with water, or may be a non-aqueous solvent having low compatibility with water.
  • examples of the aqueous solvent having excellent compatibility with water include alcohols such as methanol, ethanol, propanol and butanol.
  • the solvent preferably contains water.
  • the silane alkoxide or the low molecular weight polysiloxane is sufficiently hydrolyzed to form a dense film.
  • the water content is preferably 10 to 120 parts by weight, more preferably 80 to 100 parts by weight, based on 100 parts by weight of the silane alkoxide or polysiloxane. If the water content is too small, the silane alkoxide or the low molecular weight polysiloxane may not be sufficiently hydrolyzed during the formation of the inorganic particle-containing layer. On the other hand, if the amount of water is excessive, hydrolysis or the like may occur during storage of the inorganic particle-containing layer composition, and gelation or the like may occur.
  • the solvent contains an organic solvent having a boiling point of 150 ° C. or higher, such as ethylene glycol or propylene glycol.
  • an organic solvent having a boiling point of 150 ° C. or higher is contained, there is an advantage that the storage stability of the inorganic particle-containing layer composition is improved and the inorganic particle-containing layer composition is stably applied from a coating apparatus.
  • the boiling point of the solvent is preferably 250 ° C. or lower. It is because the drying property of the composition for inorganic particle content layers can be improved.
  • the mixing of the inorganic particle-containing layer composition containing inorganic particles and a binder or a precursor thereof is performed, for example, with a stirring mill, a blade kneading stirring device, a thin film swirl type dispersing machine, or the like.
  • a stirring mill a blade kneading stirring device, a thin film swirl type dispersing machine, or the like.
  • the coating method of the inorganic particle-containing layer composition is not particularly limited, and examples thereof include blade coating, spin coating coating, dispenser coating, and spray coating.
  • spray coating is preferable because a thin coating film is easily formed and a thin inorganic particle-containing layer is formed.
  • the curing method and curing conditions of the inorganic particle-containing layer composition are appropriately selected depending on the type of binder.
  • the binder is the above-mentioned ceramic layer
  • the LED device of the present invention is preferably applied to various optical members in a configuration in which the inorganic particle-containing layer is in contact with the atmosphere, but other optical components (lenses and the like) are provided on the inorganic particle-containing layer. It may be provided as various optical members. Since the LED device of the present invention is excellent in heat resistance and excellent in light extraction properties, it is suitable for lighting applications used indoors or outdoors.
  • Example 1 -Preparation of phosphor particles
  • phosphor raw materials 7.41 g of Y 2 O 3 , 4.01 g of Gd 2 O 3 , 0.63 g of CeO 2 , and 7.77 g of Al 2 O 3 were sufficiently mixed.
  • An appropriate amount of ammonium fluoride was mixed as a flux to this and filled in an aluminum crucible.
  • the packing is fired at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours in a reducing atmosphere in which hydrogen-containing nitrogen gas is circulated to obtain a fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ).
  • the obtained fired product was pulverized, washed, separated, and dried to obtain yellow phosphor particles having an average particle diameter of about 10 ⁇ m.
  • the emission wavelength of excitation light with a wavelength of 465 nm was measured, it had a peak wavelength at a wavelength of approximately 570 nm.
  • wavelength conversion layer composition 90 parts by mass of phenyl silicone (Shin-Etsu Chemical Co., Ltd .: KER-6000) and 10 parts by mass of the phosphor particles were mixed and stirred to prepare a composition for wavelength conversion layer. . Stirring was performed with an ARV-310LED (manufactured by THINKY).
  • composition for inorganic particle-containing layer 90 parts by mass of methyl silicone (Shin-Etsu Chemical Co., Ltd .: KER-2600) and hollow silica having an average particle size of 16 ⁇ m (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SILICA MICRO BEAD BA-1) 10 parts by mass was mixed and stirred to prepare an inorganic particle-containing layer composition. Stirring was performed with an ARV-310LED (manufactured by THINKY).
  • LED chip mounting package was prepared in which one blue LED chip (cuboid: 200 ⁇ m ⁇ 300 ⁇ m ⁇ 100 ⁇ m) was flip-chip mounted at the center of a flat package.
  • the wavelength conversion layer composition was applied with a dispenser so as to cover the LED chip, and heated at 150 ° C. for 1 hour to form a wavelength conversion layer.
  • the thickness of the wavelength conversion layer after heating was 700 ⁇ m.
  • the inorganic particle-containing layer composition was spray-coated on this wavelength conversion layer and heated at 150 ° C. for 1 hour to form an inorganic particle-containing layer.
  • the thickness of the inorganic particle-containing layer after heating was 10 ⁇ m.
  • Example 2 50 parts by mass of methyl silicone (Shin-Etsu Chemical Co., Ltd .: KER-2600) and hollow silica having an average particle size of 16 ⁇ m (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SILICA MICRO BEAD BA-1)
  • An LED device was produced in the same manner as in Example 1 except that the mixture was prepared by mixing and stirring with parts by mass.
  • Example 3 ⁇ Example 3> -Adjustment of magnesium fluoride
  • PTFE polytetrafluoroethylene
  • composition for inorganic particle-containing layer 90 parts by mass of methyl silicone (Shin-Etsu Chemical Co., Ltd .: KER-2600) and 10 parts by mass of magnesium fluoride having an average particle diameter of 100 nm prepared by the above method were mixed and stirred. Thus, a composition for an inorganic particle-containing layer was prepared.
  • LED device was obtained similarly to Example 1 except having apply
  • Example 4 A composition for an inorganic particle-containing layer was prepared by mixing and stirring 50 parts by mass of methyl silicone (Shin-Etsu Chemical Co., Ltd .: KER-2600) and 50 parts by mass of magnesium fluoride as in Example 3. An LED device was obtained in the same manner as in Example 1 except that this inorganic particle-containing layer composition was applied onto the wavelength conversion layer and heat-cured.
  • Example 5 Preparation of Na 3 AlF 6 (cryolite)
  • PTFE polytetrafluoroethylene
  • a hydrofluoric acid solution was prepared by diluting 22.9 g of a 55 mass% hydrofluoric acid aqueous solution with 50 ml of methanol.
  • a hydrofluoric acid solution was intermittently added dropwise to the dispersion while stirring at room temperature.
  • the mixture was stirred at 60 ° C. for 3 hours. Further, the mixture was stirred for 2 hours while supplying nitrogen gas (200 ml / min). Thereafter, the solution was stirred with a homogenizer for 10 minutes to obtain a clear white milk solution in which cryolite was dispersed.
  • composition for inorganic particle-containing layer 90 parts by mass of methyl silicone (Shin-Etsu Chemical Co., Ltd .: KER-2600) and 10 mass of Na 3 AlF 6 (cryolite) having an average particle diameter of 100 nm prepared by the above method
  • the composition for inorganic particle content layer was prepared by mixing and stirring the part.
  • LED device was obtained similarly to Example 1 except having apply
  • Example 6 50 parts by mass of methyl silicone (Shin-Etsu Chemical Co., Ltd .: KER-2600) and 50 parts by mass of Na 3 AlF 6 (cryolite) similar to Example 5 were mixed and stirred for the inorganic particle-containing layer composition. Prepared. An LED device was obtained in the same manner as in Example 1 except that this inorganic particle-containing layer composition was applied onto the wavelength conversion layer and heat-cured.
  • Example 7 Preparation of polysiloxane solution
  • a container capable of sealing 12.7 g of methyltrimethoxysilane, 11.2 g of dimethyldimethoxysilane, 3.3 g of methanol, 8.1 g of water, and 4.8 g of 5% acetylacetone aluminum salt methanol solution as a catalyst And mixed.
  • the vessel was sealed and heated with a hot water bath at 50 ° C. for 8 hours while stirring with a stirrer. Then, it returned to room temperature and prepared the polysiloxane solution.
  • composition for inorganic particle-containing layer The above-mentioned polysiloxane solution and hollow silica (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SILICA MICRO BEAD BA-1) having an average particle diameter of 16 ⁇ m were mixed and stirred. At this time, the mass ratio between the polysiloxane and the hollow silica in the polysiloxane solution was adjusted to 50:50.
  • LED device was produced similarly to Example 1 except having apply
  • Example 8 A composition for an inorganic particle-containing layer was prepared by mixing and stirring the polysiloxane solution and the same magnesium fluoride as in Example 3. At this time, the mass ratio of polysiloxane and magnesium fluoride in the polysiloxane solution was adjusted to 50:50. An LED device was obtained in the same manner as in Example 1 except that this inorganic particle-containing layer composition was applied onto the wavelength conversion layer and heat-cured.
  • Example 9 A composition for an inorganic particle-containing layer was prepared by mixing and stirring the polysiloxane solution and Na 3 AlF 6 (cryolite) similar to Example 5. At this time, the mass ratio of polysiloxane and Na 3 AlF 6 (cryolite) in the polysiloxane solution was adjusted to 50:50. An LED device was obtained in the same manner as in Example 1 except that this inorganic particle-containing layer composition was applied onto the wavelength conversion layer and heat-cured.
  • Example 3 An LED device was produced in the same manner as in Example 1 except that the inorganic particle-containing layer composition was prepared by the following method. To the same polysiloxane solution as in Example 7, TiO 2 slurry made by TECNAN containing TiO 2 particles (average particle size 20 nm) was added. At this time, the mass ratio between the polysiloxane and the TiO 2 particles in the polysiloxane solution was adjusted to 50:50. This was mixed and stirred to prepare an inorganic particle-containing layer composition.
  • the composition for wavelength conversion layers of each Example and a comparative example was apply
  • the obtained wavelength conversion layer had a thickness of 700 ⁇ m.
  • the composition for inorganic particle content layers of each Example and a comparative example was apply
  • the thickness of the inorganic particle-containing layer was 10 ⁇ m.
  • the sample was subjected to a heat shock test using a heat shock tester (TSA-42EL: manufactured by Espec Corp.). In the test, the sample was stored at 100 ° C. for 30 minutes and then stored at ⁇ 40 ° C. for 30 minutes as one cycle, and this was performed for 100 cycles. A peel test of this sample was performed with a Nichiban tape. Evaluation was performed based on the area peeled from the sample.
  • TSA-42EL manufactured by Espec Corp.
  • Luminous efficiency evaluation The total luminous flux of the LED devices of each Example and Comparative Example was measured before the inorganic particle-containing layer was formed and after the inorganic particle-containing layer was formed (CS-2000: manufactured by Konica Minolta Sensing Co., Ltd.) ). The total luminous flux of the LED device after forming the inorganic particle-containing layer relative to the total luminous flux of the LED device before forming the inorganic particle-containing layer was defined as “light emission efficiency increase rate”.
  • the inorganic particle-containing layer contains inorganic particles having a refractive index lower than the refractive index of the binder (Examples 1 to 9), the rate of increase in luminous efficiency regardless of the type of binder.
  • the light extraction efficiency was increased. This is because by forming an inorganic particle-containing layer containing inorganic particles having a low refractive index, the refractive index gradually decreases in the order of the wavelength conversion layer, the inorganic particle-containing layer, and the atmosphere, and reflection at each interface is suppressed. It is guessed. In addition, it is surmised that the light extraction efficiency is improved even when the reflection between the inorganic particle-containing layer and the atmosphere is suppressed by the irregularities on the surface of the inorganic particle-containing layer formed by the inorganic particle-containing layer.
  • the LED device of the present invention has very good adhesion between the layers, and even if the temperature changes, peeling or the like hardly occurs. Furthermore, since the LED device of the present invention has excellent light extraction efficiency, it can be applied to both indoor and outdoor lighting devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

 本発明の目的は、温度による負荷が生じた場合にも部材の剥離等がなく、かつ光取り出し効率に優れたLED装置を提供することにある。 上記目的を達成するために、LEDチップと、前記LEDチップを被覆するように形成され、蛍光体粒子及び封止樹脂を含み、前記LEDチップからの特定波長の光を、他の特定波長の光に変換する波長変換層と、前記波長変換層と接するように形成され、無機粒子及びバインダを含む無機粒子含有層とを有し、前記無機粒子が、前記バインダより低い屈折率を有する、LED装置とする。

Description

LED装置
 本発明は、LEDチップ上に、蛍光体粒子を含有する波長変換層が設置されたLED装置に関する。
 近年、窒化ガリウム(GaN)系の青色LED(Light Emitting Diode:発光ダイオード)チップの近傍に、YAG蛍光体等の蛍光体を配置した白色LED装置が普及している。当該白色LED装置では、青色LEDチップが出射する青色光と、青色光を受けて蛍光体が発する黄色光(蛍光)とを混色し、白色光を得る。また、青色LEDチップの近傍に、複数種類の蛍光体を配置したLED装置も開発されている。当該装置では、例えば青色LEDチップが出射する光と、青色光を受けて蛍光体が発する蛍光(例えば赤色光や緑色光)とを混色し、白色光を得る。
 白色LED装置には様々な用途があり、例えば各種照明装置(蛍光灯や白熱電灯等)にも適用されている。照明装置では、通常、白色LED装置を複数個組み合わせている。このような照明装置では、個々の白色LED装置の光取り出し効率をいかに向上させるかが、コスト低減、及び長寿命化の観点で重要である。
 白色LED装置では、一般的に、LEDチップやその実装部が、透明樹脂に蛍光体粒子を分散させた波長変換層で封止される(例えば特許文献1参照)。しかし、当該構成では、波長変換層とこれに隣接する大気との屈折率差が大きい。したがって、波長変換層から大気側に出射する光が、これらの界面で反射しやすく、LED装置から、十分に光を取り出せないという問題があった。
 このような問題に対し、特許文献2では、波長変換層より大気側に、波長変換層より屈折率の低い低屈折率樹脂層を配置している。当該技術では、敢えて波長変換層と低屈折率樹脂層との界面で光を多量に反射させて、波長変換層内に光を閉じこめる。そして、蛍光体粒子の励起効率を高め、光の取り出し効率を高めている。
特開2002-314142号公報 特開2007-116131号公報
 しかしながら、特許文献2の技術では、各層同士の密着性が低く、例えば温度による負荷が生じると、各層の界面で剥離が生じるという問題があった。剥離は、各層の線膨張係数が異なること等によって生じると推察される。
 本発明は、上述の課題に鑑みてなされたものである。すなわち、本発明は、温度変化が生じても各部材が剥離することがなく、さらに光取り出し性に優れたLED装置を提供することを目的とする。
 波長変換層上に、バインダと、このバインダより屈折率が低い無機粒子とを含む無機粒子含有層を配置することで、光取り出し効率が高まり、さらに無機粒子含有層と波長変換層との密着性も優れることに基づいて、本発明はなされたものである。
 即ち、本発明によれば、以下に示すLED装置及びその製造方法が提供される。
 [1]LEDチップと、前記LEDチップを被覆し、蛍光体粒子及び封止樹脂を含み、前記LEDチップからの特定波長の光を、他の特定波長の光に変換する波長変換層と、前記波長変換層と接し、無機粒子及びバインダを含む無機粒子含有層とを有し、前記無機粒子の屈折率が、前記バインダの屈折率より低い、LED装置。
 [2]前記無機粒子含有層が、LED装置の最表面に位置する層である、[1]に記載のLED装置。
 [3]前記無機粒子の屈折率が1.40以下である、[1]または[2]に記載のLED装置。
 [4]前記無機粒子が、中空シリカ、フッ化マグネシウム、及びNaAlFのいずれかを含む、[1]~[3]のいずれかに記載のLED装置。
 [5]前記無機粒子がフッ化マグネシウムまたはNaAlFを含み、前記無機粒子の平均粒径が5~500nmである、[4]に記載のLED装置。
 [6]前記無機粒子が、中空シリカを含み、前記中空シリカの平均粒径が1~100μmである、[4]に記載のLED装置。
 [7]前記無機粒子含有層全量に対する、前記無機粒子の含有量は10~70質量%である、[1]~[6]のいずれかに記載のLED装置。
 [8]前記無機粒子含有層の厚みが0.1~500μmである、[1]~[7]のいずれかに記載のLED装置。
 [9]前記バインダが、透明セラミックである、[1]~[8]のいずれかに記載のLED装置。
 本発明のLED装置には、波長変換層上に比較的屈折率の低い無機粒子を含む無機粒子含有層が含まれる。そのため、波長変換層、無機粒子含有層、大気の順に、屈折率が低下する。その結果、各層どうしの界面で生じる反射が抑制され、LED装置の光取り出し効率が高まる。
 また無機粒子によって、無機粒子含有層表面に凹凸が形成される。この凹凸によって、無機粒子含有層と大気との界面で光が拡散され;無機粒子含有層と大気との界面での反射が抑制される。さらに、無機粒子によって無機粒子含有層と波長変換層との界面にアンカー効果が生じる。そのため、無機粒子含有層と波長変換層との密着性が、非常に高まる。
本発明のLED装置の一例を示す概略断面図である。
 以下、本発明を詳細に説明するが、本発明は以下の実施の形態に制限されるものではなく、その要旨の範囲内であれば種々に変更して実施することができる。
 図1は、LED装置100の一例を示す断面図である。本発明のLED装置100には、LEDチップ1と、LEDチップ1を被覆する波長変換層2と、波長変換層2上に形成される無機粒子含有層3とが含まれる。本発明のLED装置100には、無機粒子含有層3上にさらにレンズ等、別の部材が含まれてもよいが、無機粒子含有層3が、LED装置100の最表面の層であることがより好ましい。無機粒子含有層3がLED装置100の最表面の層であると、LED装置100の最表面の層と大気との屈折率差を小さくすることができる。その結果、LED装置100から大気へ出射する光の反射が抑制される。以下、無機粒子含有層3がLED装置100の最表面の層である場合を例に説明する。
 本発明では、LEDチップ1、波長変換層2、無機粒子含有層3、大気の順に屈折率が低下するように、各層の屈折率を調整する。具体的には、無機粒子含有層3に、無機粒子含有層3のバインダより屈折率の低い無機粒子を含めることで、無機粒子含有層3の屈折率を低く調整する。
 無機粒子含有層3の屈折率は、具体的には、1.10~1.40であることが好ましく、より好ましくは1.15~1.40である。無機粒子含有層3の屈折率が高過ぎると、無機粒子含有層3と大気との屈折率差が大きくなる。その結果、無機粒子含有層3側から大気側に出射する光が、これらの界面で反射しやすくなり、LED装置100からの光取り出し効率が低下する。一方、無機粒子含有層3の屈折率が過剰に低いと、波長変換層2と無機粒子含有層3との屈折率差が大きくなる。そのため、波長変換層2側から無機粒子含有層3側に向かう光が、これらの界面で反射しやすくなり、光取り出し効率が低下する。無機粒子含有層3の屈折率は、無機粒子の種類及び量等で調整される。
 無機粒子含有層3の屈折率は、例えばアッベ屈折率計により、JIS K 7105に準拠して測定される。
 また波長変換層2の屈折率は、無機粒子含有層3の屈折率より高く、かつLEDチップ1の屈折率より低い。波長変換層2の屈折率は、1.41~1.70であることが好ましく、より好ましくは1.41~1.60であり、さらに好ましくは1.41~1.55である。波長変換層2の屈折率が高すぎると、波長変換層2と無機粒子含有層3との屈折率差が大きくなる。そのため、波長変換層2側から無機粒子含有層3側へ出射する光が、これらの界面で反射しやすくなり、LED装置100からの光取り出し効率が低下する。一方、波長変換層2の屈折率が低すぎると、LEDチップ1と波長変換層2との屈折率差が大きくなり、LEDチップ1側から波長変換層2側へ出射する光が、これらの界面で反射しやすくなり、LED装置100からの光取り出し効率が低下する。波長変換層2の屈折率は、波長変換層2に含まれる材料(封止樹脂等)の屈折率等で調整される。波長変換層2の屈折率も、例えばアッベ屈折率計により、JIS K 7105に準拠して測定される。
(1)LEDチップについて
 LEDチップ1は、パッケージ(LED基板)4上に配設され、パッケージ4上に配設されたメタル部(メタル配線)5と、突起電極6等を介して接続される。
 LEDチップ1は、例えば青色LEDである。青色LEDは、例えばLED基板4に積層されたn-GaN系化合物半導体層(クラッド層)と、InGaN系化合物半導体層(発光層)と、p-GaN系化合物半導体層(クラッド層)と、透明電極層との積層体でありうる。LEDチップ1は、例えば200~300μm×200~300μmの発光面を有するものでありうる。またLEDチップ1の高さは、通常50~200μm程度である。
 パッケージ4は、例えば液晶ポリマーやセラミックであるが、絶縁性と耐熱性を有するものであれば、その材質は特に制限されない。またその形状も特に制限されず、例えば図1に示されるように、凹部を有する形状であってもよく、また平板状であってもよい。
 メタル部5は、銀等の金属からなる配線でありうる。メタル部5が、LEDチップ1からの出射光を反射する反射板として機能する場合もある。メタル部5は、図1に示されるように、突起電極6等を介して、LEDチップ1と接続されてもよく、また配線等を介して、LEDチップ1と接続されてもよい。突起電極6を介してメタル部5とLEDチップ1とが接続される態様を、フリップチップ型といい、ワイヤを介してメタル部5とLEDチップ1とが接続される態様を、ワイヤボンディング型という。
 図1に示されるLED装置100には、パッケージ4に、1つのLEDチップ1のみが配置されているが;パッケージ4に、複数のLEDチップ1が配置されていてもよい。
(2)波長変換層
 波長変換層には、封止樹脂と蛍光体粒子とが含まれる。波長変換層は、LEDチップから出射する特定の波長の光を、他の特定波長の光に変換する機能を果たす。
(封止樹脂)
 波長変換層を構成する封止樹脂は、前述のLEDチップを封止したり、波長変換層内で蛍光体含有層を保持したりする。封止樹脂の種類は特に制限されず、例えば可視光に対して透明なエポキシ樹脂やシリコーン樹脂等でありうる。これらの中でも、短波長の光による劣化等が少ないとの観点から、シリコーン樹脂が好ましい。
 波長変換層に含まれるシリコーン樹脂の例には、主鎖(ポリシロキサン鎖)を構成するケイ素原子に、メチル基が結合したメチルシリコーン樹脂;フェニル基等が結合したフェニルシリコーン樹脂;メチル基及びフェニル基が結合したメチルフェニルシリコーン樹脂等でありうる。またシリコーン樹脂は、ケイ素原子に結合するメチル基やフェニル基の一部を変性した変性シリコーン樹脂でありうる。上記変性の例には、アルキル変性、アラルキル変性、フルオロアルキル変性、ポリエーテル変性、アミノ変性、アクリル変性、及びエポキシ変性等が含まれる。
(蛍光体粒子)
 蛍光体粒子は、LED素子(LEDチップ)からの出射光の波長(励起波長)を受けて励起し、蛍光を発するものであればよい。例えば、LEDチップが青色光を出射する場合、黄色の蛍光を発する蛍光体粒子が波長変換層に含まれると、白色LED装置が得られる。黄色の蛍光を発する蛍光体粒子の例には、YAG(イットリウム・アルミニウム・ガーネット)蛍光体が含まれる。YAG蛍光体は、青色LED素子から出射される青色光(波長420nm~485nm)を励起光として、黄色(波長550nm~650nm)の蛍光を発する。
 蛍光体粒子は、例えば1)所定の組成を有する混合原料に、フラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し、成形体を得た後、2)この成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成して得られる。
 所定の組成を有する混合原料は、Y、Gd、Ce、Sm、Al、La、Gaの酸化物、または高温で容易に酸化物となる化合物を、化学量論比で十分に混合して得られる。または、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶液を、シュウ酸で共沈し、これを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して得られる。
 蛍光体粒子の種類は、YAG蛍光体に制限されるものではなく、例えばCeを含まない非ガーネット系蛍光体等、他の蛍光体粒子であってもよい。
 蛍光体粒子の平均一次粒径は1μm以上50μm以下であることが好ましく、30μm以下であることがより好ましい。蛍光体粒子の粒径が大きいほど発光効率(波長変換効率)は高くなる。一方、蛍光体粒子の粒径が大きすぎると、蛍光体粒子と封止樹脂との密着性が低くなり、波長変換層の強度が低下する。蛍光体粒子の平均一次粒径は、例えばコールターカウンター法によって測定される。
 波長変換層に含まれる蛍光体粒子の量は、波長変換層全体の質量に対して3~15質量%であることが好ましく、より好ましくは5~11質量%である。波長変換層中の蛍光体粒子の濃度は、波長変換層中の封止樹脂を各種方法により除去することで、測定できる。
(波長変換層の厚み)
 波長変換層の厚みは、10~1000μmであることが好ましく、より好ましくは200~900μmであり、さらに好ましくは400~800μmである。波長変換層の厚みが厚すぎると、波長変換層中の蛍光体粒子の濃度が相対的に低くなり、蛍光体粒子が均一に分散されない恐れがある。一方、波長変換層の厚みが薄すぎると、蛍光体粒子の濃度が相対的に高くなる。そのため、相対的に封止樹脂の量が少なくなり、波長変換層の膜強度が低くなる恐れがある。波長変換層の厚みとは、LEDチップの発光面上に配置された波長変換層の最大厚みを意味する。層の厚みは、レーザホロゲージを用いて測定することができる。
(波長変換層の形成方法)
 波長変換層は、例えば1)封止樹脂もしくはその前駆体と、蛍光体粒子とが含まれる波長変換層用組成物を調製し、2)これを、LEDチップを被覆するように塗布し、硬化させることで得られる。
 波長変換層用組成物には、封止樹脂もしくはその前駆体と、蛍光体粒子とが含まれる。波長変換層用組成物には、必要に応じて溶剤や各種添加剤等が含まれてもよい。溶剤は、上記封止樹脂またはその前駆体を溶解可能であれば、特に制限されず、例えばトルエン、キシレンなどの炭化水素類;アセトン、メチルエチルケトンなどのケトン類;ジエチルエーテル、テトラヒドロフランなどのエーテル類、プロピレングリコールモノメチルエーテルアセテート、エチルアセテートなどのエステル類などが挙げられる。
 上記波長変換層用組成物の混合は、例えば、撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機等で行われる。撹拌条件を調整することで、波長変換層用組成物における蛍光体粒子の沈降が抑制される。
 波長変換層用組成物の塗布方法は、特に制限されず、例えばディスペンサ等の一般的な塗布装置により波長変換層用組成物を塗布できる。また、波長変換層用組成物の硬化方法や硬化条件は、封止樹脂の種類により適宜選択される。硬化方法の一例として、加熱硬化が挙げられる。
(3)無機粒子含有層
 無機粒子含有層には、無機粒子とバインダとが含まれる。無機粒子含有層に無機粒子が含まれると、無機粒子含有層と波長変換層との界面にアンカー効果が生じ、これらの密着性が高まる。
 無機粒子含有層に含まれる無機粒子の屈折率はバインダの屈折率より低い。したがって、無機粒子含有層の屈折率は、バインダの屈折率より低くなる。ここで、無機粒子の屈折率が、バインダの屈折率より低いとは、無機粒子の屈折率がバインダの屈折率より0.02以上低いことをいう。無機粒子の屈折率はバインダの屈折率より、0.05以上低いことがより好ましく、0.1以上低いことがさらに好ましい。
 無機粒子の屈折率は、ベッケ線法により測定される。バインダの屈折率は、バインダのみからなるフィルムを作製し、これをアッベ屈折率計により、JIS K 7105に準拠して測定した値とする。
(無機粒子)
 前述のように、無機粒子含有層に無機粒子が含まれると、無機粒子含有層の屈折率が低下する。また無機粒子含有層に無機粒子が含まれると、無機粒子含有層表面に凹凸が形成され、この凹凸により無機粒子含有層と大気との界面で光が拡散する。その結果、当該界面での光の反射が抑制され、LED装置からの光取り出し効率が高まる。
 さらに、無機粒子含有層に無機粒子が含まれると、無機粒子含有層と波長変換層との界面にアンカー効果が生じ、無機粒子含有層と波長変換層との密着性が高まる。
 無機粒子の屈折率は、具体的には1.40以下であることが好ましく、1.37以下であることがより好ましい。無機粒子の屈折率が高すぎると、無機粒子含有層の屈折率が十分に低下しない。
 無機粒子の種類は特に制限されないが、屈折率の観点から中空シリカ、フッ化マグネシウム及びNaAlFであることが好ましい。
 中空シリカは、空隙率によって、屈折率が変化する。中空シリカの空隙率は30~80%であることが好ましく、40~80%であることがより好ましく、50~70%であることがさらに好ましい。空隙率が大きいほど屈折率は低くなるが、粒子の強度が低下する。
 上記空隙率は、TEM(透過型電子顕微鏡)による200個以上の粒子像の観察で、中空シリカの外殻の平均半径bと、空孔の半径aとを求め、これらを基に、下記式で求めることができる。
 空隙率X=(4πa/3)/(4πb/3)×100
 中空シリカは、その平均粒径が1~100μmであることが好ましく、1~50μmであることがより好ましい。屈折率が当該範囲である中空シリカが含まれると、無機粒子含有層の屈折率が十分に低くなる。中空シリカの平均粒径は、例えばコールターカウンター法によって測定される。
 無機粒子であるフッ化マグネシウムまたはNaAlFは、その平均粒径が5~500nmであることが好ましく、10~300nmであることがより好ましい。平均粒径が当該範囲であるフッ化マグネシウムまたはNaAlFが含まれると、無機粒子含有層の屈折率が十分に低くなる。フッ化マグネシウムまたはNaAlFの平均粒径も、コールターカウンター法によって測定される。
 無機粒子含有層における無機粒子の含有量は、無機粒子含有層全質量に対して10~70質量%であることが好ましく、より好ましくは30~60質量%である。無機粒子の量が少な過ぎると、無機粒子含有層の屈折率が十分に低下しない。一方、無機粒子の量が過剰であると、相対的にバインダ量が減少し、無機粒子含有層の強度が低下するおそれがある。
 中空シリカは、公知の方法で調製される。
 また、無機粒子であるNaAlFは、ナトリウム、及びアルミニウム原料を、分散・懸濁または溶解した溶液と、HF水溶液とを混合して調製される。前記ナトリウム及びアルミニウム原料は、溶剤に分散または溶解されるものであれば特に制限されない。例えば、ナトリウムまたはアルミニウムの酸化物、水酸化物、炭酸塩等の無機化合物であってもよく、アルコキシド、カルボン酸等の有機化合物であってもよい。上記溶剤も特に制限はないが、有機溶剤が望ましく、特にHF水溶液と相溶性の高いアルコール類が好ましい。HF水溶液の濃度や反応時間を調整することで、NaAlF粒子の形状や粒径を調整される。
 また、フッ化マグネシウムは、マグネシウム原料を分散・懸濁又は溶解した溶液と、HF水溶液とを混合して調製される。HF水溶液の濃度を調整することで、フッ化マグネシウム粒子の粒径等を調整される。
(バインダ)
 無機粒子含有層に含まれるバインダは、前述の無機粒子を保持する機能を果たす。当該バインダの屈折率は、前述の波長変換層に含まれる封止樹脂の屈折率と同等であるか、もしくはそれより低いことが好ましい。具体的には、バインダの屈折率が1.41~1.70であることが好ましく、1.41~1.60であることがより好ましく、1.41~1.55であることがさらに好ましい。バインダの屈折率が高すぎると、無機粒子含有層の屈折率が十分に低くならない可能性がある。一方、バインダの屈折率が低すぎると、無機粒子含有層の屈折率が過剰に低くなり、波長変換層と無機粒子含有層との界面で、光の反射が生じやすくなる可能性がある。
 無機粒子含有層に含まれるバインダは、可視光に対して透明な樹脂であれば、特に制限されない。バインダは、例えばエポキシ樹脂等でありうるが、上記屈折率の観点から、シリコーン樹脂もしくは透明セラミックであることが好ましく、透明セラミックであることがさらに好ましい。透明セラミックがバインダであると、バインダの屈折率が低くなるだけでなく、無機粒子含有層の耐熱性が高まる。
 シリコーン樹脂は、前述の波長変換層のバインダと同様でありうる。一方、透明セラミックは、ポリシロキサンやポリシラザンであることが好ましく、ポリシロキサンであることが安定性等の面からさらに好ましい。
 ポリシロキサンは、アルコキシシラン、もしくはそのオリゴマー(低分子量ポリシロキサンともいう)を重合して得られる。アルコキシシランは、例えば以下の一般式(I)で表される。
 Si(OR)4-n   (I)
 一般式(I)中、nはアルコキシド(OR)の数を表し、2以上4以下の整数である。また、Rは、それぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。
 上記一般式(I)式中、Yは、水素原子またはアルキル基を表す。アルキル基は、炭素数が1~1000、好ましくは500以下、より好ましくは100以下、さらに好ましくは50以下、特に好ましくは6以下の脂肪族基、脂環族基、芳香族基、脂環芳香族基である。これらは、連結基として、O、N、S等の原子または原子団を有してもよい。これらの中でも特にメチル基が好ましい。Yがメチル基である場合には、無機粒子含有層の耐光性及び耐熱性が良好になる。
 上記Yで表される1価の有機基は、置換基を有していてもよい。置換基の例には、例えば、F、Cl、Br、I等のハロゲン原子;ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、メルカプト基、エポキシ基、エポキシシクロヘキシル基、グリシドキシ基、アミノ基、シアノ基、ニトロ基、スルホン酸基、カルボキシ基、ヒドロキシ基、アシル基、アルコキシ基、イミノ基、フェニル基等の有機官能基等が含まれる。
 上記一般式(I)で表されるアルコキシシランは、例えば以下の4官能のシラン化合物、3官能のシラン化合物、2官能のシラン化合物等とすることができる。
 4官能のシラン化合物の例には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、テトラペンチルオキシシラン、テトラフェニルオキシシラン、トリメトキシモノエトキシシラン、ジメトキシジエトキシシラン、トリエトキシモノメトキシシラン、トリメトキシモノプロポキシシラン、モノメトキシトリブトキシシラン、モノメトキシトリペンチルオキシシラン、モノメトキシトリフェニルオキシシラン、ジメトキシジプロポキシシラン、トリプロポキシモノメトキシシラン、トリメトキシモノブトキシシラン、ジメトキシジブトキシシラン、トリエトキシモノプロポキシシラン、ジエトキシジプロポキシシラン、トリブトキシモノプロポキシシラン、ジメトキシモノエトキシモノブトキシシラン、ジエトキシモノメトキシモノブトキシシラン、ジエトキシモノプロポキシモノブトキシシラン、ジプロポキシモノメトキシモノエトキシシラン、ジプロポキシモノメトキシモノブトキシシラン、ジプロポキシモノエトキシモノブトキシシラン、ジブトキシモノメトキシモノエトキシシラン、ジブトキシモノエトキシモノプロポキシシラン、モノメトキシモノエトキシモノプロポキシモノブトキシシランなどのテトラアルコキシシラン等が含まれる。これらの中でもテトラメトキシシラン、テトラエトキシシランが好ましい。
 3官能のシラン化合物の例には、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリペンチルオキシシラン、トリフェニルオキシシラン、ジメトキシモノエトキシシラン、ジエトキシモノメトキシシラン、ジプロポキシモノメトキシシラン、ジプロポキシモノエトキシシラン、ジペンチルオキシルモノメトキシシラン、ジペンチルオキシモノエトキシシラン、ジペンチルオキシモノプロポキシシラン、ジフェニルオキシルモノメトキシシラン、ジフェニルオキシモノエトキシシラン、ジフェニルオキシモノプロポキシシラン、メトキシエトキシプロポキシシラン、モノプロポキシジメトキシシラン、モノプロポキシジエトキシシラン、モノブトキシジメトキシシラン、モノペンチルオキシジエトキシシラン、モノフェニルオキシジエトキシシラン等のモノヒドロシラン化合物;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリペンチルオキシシラン、メチルモノメトキシジエトキシシラン、メチルモノメトキシジプロポキシシラン、メチルモノメトキシジペンチルオキシシラン、メチルモノメトキシジフェニルオキシシラン、メチルメトキシエトキシプロポキシシラン、メチルモノメトキシモノエトキシモノブトキシシラン等のモノメチルシラン化合物;エチルトリメトキシシラン、エチルトリプロポキシシラン、エチルトリペンチルオキシシラン、エチルトリフェニルオキシシラン、エチルモノメトキシジエトキシシラン、エチルモノメトキシジプロポキシシラン、エチルモノメトキシジペンチルオキシシラン、エチルモノメトキシジフェニルオキシシラン、エチルモノメトキシモノエトキシモノブトキシシラン等のモノエチルシラン化合物;プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリペンチルオキシシラン、プロピルトリフェニルオキシシラン、プロピルモノメトキシジエトキシシラン、プロピルモノメトキシジプロポキシシラン、プロピルモノメトキシジペンチルオキシシラン、プロピルモノメトキシジフェニルオキシシラン、プロピルメトキシエトキシプロポキシシラン、プロピルモノメトキシモノエトキシモノブトキシシラン等のモノプロピルシラン化合物;ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリプロポキシシラン、ブチルトリペンチルオキシシラン、ブチルトリフェニルオキシシラン、ブチルモノメトキシジエトキシシラン、ブチルモノメトキシジプロポキシシラン、ブチルモノメトキシジペンチルオキシシラン、ブチルモノメトキシジフェニルオキシシラン、ブチルメトキシエトキシプロポキシシラン、ブチルモノメトキシモノエトキシモノブトキシシラン等のモノブチルシラン化合物が含まれる。これらの中でも、メチルトリメトキシシランおよびメチルトリエトキシシランがより好ましく、メチルトリメトキシシランがさらに好ましい。
 2官能のシラン化合物の具体例には、ジメトキシシラン、ジエトキシシラン、ジプロポキシシラン、ジペンチルオキシシラン、ジフェニルオキシシラン、メトキシエトキシシラン、メトキシプロポキシシラン、メトキシペンチルオキシシラン、メトキシフェニルオキシシラン、エトキシプロポキシシラン、エトキシペンチルオキシシラン、エトキシフェニルオキシシラン、メチルジメトキシシラン、メチルメトキシエトキシシラン、メチルジエトキシシラン、メチルメトキシプロポキシシラン、メチルメトキシペンチルオキシシラン、メチルメトキシフェニルオキシシラン、エチルジプロポキシシラン、エチルメトキシプロポキシシラン、エチルジペンチルオキシシラン、エチルジフェニルオキシシラン、プロピルジメトキシシラン、プロピルメトキシエトキシシラン、プロピルエトキシプロポキシシラン、プロピルジエトキシシラン、プロピルジペンチルオキシシラン、プロピルジフェニルオキシシラン、ブチルジメトキシシラン、ブチルメトキシエトキシシラン、ブチルジエトキシシラン、ブチルエトキシプロポキシシシラン、ブチルジプロポキシシラン、ブチルメチルジペンチルオキシシラン、ブチルメチルジフェニルオキシシラン、ジメチルジメトキシシラン、ジメチルメトキシエトキシシラン、ジメチルジエトキシシラン、ジメチルジペンチルオキシシラン、ジメチルジフェニルオキシシラン、ジメチルエトキシプロポキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルメトキシプロポキシシラン、ジエチルジエトキシシラン、ジエチルエトキシプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジペンチルオキシシラン、ジプロピルジフェニルオキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジブチルジプロポキシシラン、ジブチルメトキシペンチルオキシシラン、ジブチルメトキシフェニルオキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジペンチルオキシシラン、メチルエチルジフェニルオキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、メチルブチルジメトキシシラン、メチルブチルジエトキシシラン、メチルブチルジプロポキシシラン、メチルエチルエトキシプロポキシシラン、エチルプロピルジメトキシシラン、エチルプロピルメトキシエトキシシラン、ジプロピルジメトキシシラン、ジプロピルメトキシエトキシシラン、プロピルブチルジメトキシシラン、プロピルブチルジエトキシシラン、ジブチルメトキシエトキシシラン、ジブチルメトキシプロポキシシラン、ジブチルエトキシプロポキシシラン等が含まれる。中でもジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシランが好ましい。
(無機粒子含有層の厚み)
 無機粒子含有層の厚みは、0.1~500μmであることが好ましく、より好ましくは1~100μmである。無機粒子含有層の厚みが過剰に薄いと、ムラなく無機粒子含有層を形成することが困難となる場合がある。一方、無機粒子含有層の厚みが過剰に厚いと、LED装置全体の厚みが大きくなり、LED装置が大型化する。
 (無機粒子含有層の成膜方法)
 無機粒子含有層は、1)前述のバインダもしくはその前駆体と無機粒子とを含有する無機粒子含有層用組成物を調製し、2)これを波長変換層上に塗布し、硬化させて得る。
 無機粒子含有層用組成物には、バインダもしくはその前駆体と、無機粒子とが含まれ、必要に応じて溶剤や各種添加剤等が含まれる。
 バインダ前駆体が低分子量ポリシロキサンである場合、低分子量ポリシロキサンの質量平均分子量は1000~3000であることが好ましく、1200~2700であることが好ましく、1500~2000であることがさらに好ましい。低分子量ポリシロキサンの質量平均分子量が1000未満であると、無機粒子含有層用組成物の粘度が低過ぎる場合がある。一方、質量平均分子量が3000を超えると、上記粘度が高くなり、無機粒子含有層に厚みムラ等が生じる可能性がある。質量平均分子量は、ゲルパーミエーションクロマトグラフィーで測定される値(ポリスチレン換算)である。
 溶剤は、バインダもしくはその前駆体を分散もしくは溶解可能なものであれば特に制限されない。例えば水との相溶性に優れた水性溶剤であってもよく、また、水との相溶性が低い非水性溶剤であってもよい。水との相溶性に優れた水性溶剤の例には、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類が含まれる。
 バインダが、透明セラミック層である場合;すなわち、シランアルコキシドまたは低分子量ポリシロキサンを重合してバインダを得る場合、溶剤に水が含まれることが好ましい。溶媒に水が含まれると、十分にシランアルコキシドまたは低分子量ポリシロキサンが加水分解され、緻密な膜が形成される。水の含有量は、シランアルコキシドもしくはポリシロキサン100質量部に対して、10~120質量部であることが好ましく、より好ましくは80~100質量部である。水の含有量が少な過ぎると、無機粒子含有層の成膜時にシランアルコキシドや低分子量ポリシロキサンを十分に加水分解されないおそれがある。一方、水の量が過剰であると、無機粒子含有層用組成物の保存中に加水分解等が生じ、ゲル化等が生じる可能性がある。
 溶剤には、エチレングリコールや、プロピレングリコール等、沸点が150℃以上の有機溶剤が含まれることも好ましい。沸点が150℃以上の有機溶剤が含まれると、無機粒子含有層用組成物の保存安定性が向上したり、無機粒子含有層用組成物が塗布装置から安定して塗布されるという利点がある。一方、溶剤の沸点は250℃以下であることが好ましい。無機粒子含有層用組成物の乾燥性を高めることができるためである。
 無機粒子及びバインダもしくはその前駆体を含む無機粒子含有層用組成物の混合は、例えば、撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機等で行われる。撹拌条件を調整することで、無機粒子含有層用組成物における無機粒子の沈降が抑制される。
 無機粒子含有層用組成物の塗布方法は、特に制限されず、ブレード塗布、スピンコート塗布、ディスペンサー塗布、スプレー塗布などが例示される。特に、スプレー塗布は薄い塗布膜を成膜しやすく、薄い無機粒子含有層が形成されるため好ましい。
 また、無機粒子含有層用組成物の硬化方法や硬化条件は、バインダの種類により適宜選択される。例えばバインダが前述のセラミック層である場合には、塗膜を100℃以上、好ましくは150~300℃に加熱し、ポリシロキサンもしくはシランアルコキシドを乾燥・硬化させることが好ましい。加熱温度が100℃未満であると、シラン化合物の脱水縮合時に生じる水等が十分に除去されず、無機粒子含有層の耐光性等が低下する可能性がある。
(LED装置の用途)
 前述のように、本発明のLED装置は、無機粒子含有層が大気と接するような構成で各種光学部材に適用することが好ましいが、無機粒子含有層上に他の光学部品(レンズなど)を設けて各種光学部材としてもよい。本発明のLED装置は耐熱性に優れ、かつ光取り出し性にも優れることから、屋内、屋外のいずれで使用する照明用途等に好適である。
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。
<実施例1>
 ・蛍光体粒子の調製
 蛍光体原料として、Y7.41g、Gd4.01g、CeO0.63g、及びAl7.77gを十分に混合した。これにフラックスとしてフッ化アンモニウムを適量混合し、アルミ製の坩堝に充填した。当該充填物を、水素含有窒素ガスを流通させた還元雰囲気中において、1350~1450℃の温度範囲で2~5時間焼成して焼成品((Y0.72Gd0.24Al12:Ce0.04)を得た。
 得られた焼成品を粉砕、洗浄、分離、乾燥して、平均粒径が10μm程度の黄色蛍光体粒子を得た。波長465nmの励起光における発光波長を測定したところ、おおよそ波長570nmにピーク波長を有していた。
 ・波長変換層用組成物の調製
 フェニルシリコーン(信越化学工業株式会社:KER-6000)90質量部と、前記蛍光体粒子10質量部とを混合・攪拌し、波長変換層用組成物を調製した。撹拌は、ARV-310LED(THINKY製)で行った。
 ・無機粒子含有層用組成物の調製
 メチルシリコーン(信越化学工業株式会社:KER-2600)90質量部と、平均粒径16μmの中空シリカ(日揮触媒化成株式会社製:SILICA MICRO BEAD BA-1)10質量部とを混合・攪拌し、無機粒子含有層用組成物を調製した。撹拌は、ARV-310LED(THINKY製)で行った。
 ・LED装置の製造
 平板状のパッケージの中央に、1つの青色LEDチップ(直方体状;200μm×300μm×100μm)をフリップチップ実装したLEDチップ実装パッケージを準備した。上記LEDチップを被覆するように、前記波長変換層用組成物をディスペンサーで塗布し、150℃で1時間加熱して、波長変換層を形成した。加熱後の波長変換層の厚みは、700μmとした。
 この波長変換層上に、無機粒子含有層用組成物をスプレー塗布し、150℃で1時間加熱して、無機粒子含有層を形成した。加熱後の無機粒子含有層の厚みは、10μmとした。
<実施例2>
 無機粒子含有層用組成物を、メチルシリコーン(信越化学工業株式会社:KER-2600)50質量部と、平均粒径16μmの中空シリカ(日揮触媒化成株式会社製:SILICA MICRO BEAD BA-1)50質量部とを混合・攪拌して調製した以外は、実施例1と同様にLED装置を作製した。
<実施例3>
 ・フッ化マグネシウムの調整
 ポリテトラフルオロエチレン(PTFE)製の槽に、30%フッ化水素酸溶液22gを仕込み、攪拌しながら25℃に保持した。この溶液に、20%塩化マグネシウム溶液78gを60分間かけて添加し、これらを反応させた。反応終了後、該溶液をホモジナイザーで10分攪拌し、フッ化マグネシウム粒子を含む白乳透明溶液を得た。
 ・無機粒子含有層用組成物の調製
 メチルシリコーン(信越化学工業株式会社:KER-2600)90質量部と、上記方法で調製した平均粒径が100nmのフッ化マグネシウム10質量部とを混合・攪拌して無機粒子含有層用組成物を調製した。
 ・LED装置の製造
 上記無機粒子含有層用組成物を、波長変換層上に塗布し加熱硬化した以外は、実施例1と同様にLED装置を得た。
<実施例4>
 無機粒子含有層用組成物を、メチルシリコーン(信越化学工業株式会社:KER-2600)50質量部と、実施例3と同様のフッ化マグネシウム50質量部とを混合・攪拌して調製した。この無機粒子含有層用組成物を、波長変換層上に塗布し加熱硬化した以外は、実施例1と同様にLED装置を得た。
<実施例5>
 ・NaAlF(氷晶石)の調整
 ポリテトラフルオロエチレン(PTFE)製の槽に、試薬特級グレードのアルミニウムイソプロポキシド20.4g、水酸化ナトリウム12.0g、及びメタノール200mlを仕込み、室温で2時間攪拌してアルミニウムイソプロポキシド・水酸化ナトリウム/メタノール分散液を得た。55質量%のフッ酸水溶液22.9gを、メタノール50mlで希釈したフッ酸溶液を準備した。上記分散液に、フッ酸溶液を、室温で攪拌しながら断続的に滴下した。ナトリウム、アルミニウム、及びフッ素のモル比は、Na:Al:F=3:1:6.3とした。フッ酸溶液を滴下後、60℃で3時間攪拌した。さらに窒素ガス(200ml/分)通気しながら2時間攪拌した。その後該溶液をホモジナイザーで10分攪拌して、氷晶石が分散された白乳透明溶液を得た。
 ・無機粒子含有層用組成物の調製
 メチルシリコーン(信越化学工業株式会社:KER-2600)90質量部と、上記方法により調製した平均粒径が100nmのNaAlF(氷晶石)10質量部とを混合・攪拌して調製して無機粒子含有層用組成物を調製した。
 ・LED装置の製造
 上記無機粒子含有層用組成物を、波長変換層上に塗布し加熱硬化した以外は、実施例1と同様にLED装置を得た。
<実施例6>
 無機粒子含有層用組成物を、メチルシリコーン(信越化学工業株式会社:KER-2600)50質量部と、実施例5と同様のNaAlF(氷晶石)50質量部とを混合・攪拌して調製した。この無機粒子含有層用組成物を、波長変換層上に塗布し加熱硬化した以外は、実施例1と同様にLED装置を得た。
<実施例7>
 ・ポリシロキサン溶液の調製
 メチルトリメトキシシラン12.7g、ジメチルジメトキシシラン11.2g、メタノール3.3g、水8.1g、及び触媒として5%アセチルアセトンアルミニウム塩メタノール溶液4.8gを、密閉可能な容器に入れて混合した。容器を密栓してスターラーで撹拌しながら50℃の温水バスにて8時間加熱した。その後、室温に戻し、ポリシロキサン溶液を調製した。
 ・無機粒子含有層用組成物の調製
 前記ポリシロキサン溶液と、平均粒径16μmの中空シリカ(日揮触媒化成株式会社製:SILICA MICRO BEAD BA-1)とを混合・攪拌して調製した。この際、ポリシロキサン溶液中のポリシロキサンと中空シリカとの質量比が50:50となるように調整した。
 ・LED装置の製造
 前記無機粒子含有層用組成物を波長変換層上に塗布し加熱硬化した以外は、実施例1と同様にLED装置を作製した。
<実施例8>
 無機粒子含有層用組成物を、前記ポリシロキサン溶液と、実施例3と同様のフッ化マグネシウムとを混合・攪拌して調製した。この際、ポリシロキサン溶液中のポリシロキサンとフッ化マグネシウムとの質量比が50:50となるように調整した。この無機粒子含有層用組成物を、波長変換層上に塗布し加熱硬化した以外は、実施例1と同様にLED装置を得た。
<実施例9>
 無機粒子含有層用組成物を、前記ポリシロキサン溶液と、実施例5と同様のNaAlF(氷晶石)とを混合・攪拌して調製した。この際、ポリシロキサン溶液中のポリシロキサンとNaAlF(氷晶石)との質量比が50:50となるように調整した。この無機粒子含有層用組成物を、波長変換層上に塗布し加熱硬化した以外は、実施例1と同様にLED装置を得た。
<比較例1>
 無機粒子含有層を形成しなかった以外は、実施例1と同様にLED装置を作製した。
<比較例2>
 前記無機粒子含有層用組成物に、中空シリカを添加しなかった以外は、実施例1と同様にLED装置を作製した。
<比較例3>
 無機粒子含有層用組成物を、以下の方法により調製した以外は、実施例1と同様にLED装置を作製した。実施例7と同様のポリシロキサン溶液に、TiO粒子(平均粒径20nm)を含むTECNAN社製 TiOスラリーを添加した。この際、ポリシロキサン溶液中のポリシロキサンとTiO粒子との質量比が50:50となるように調整した。これを混合・攪拌して、無機粒子含有層用組成物を調製した。
<評価>
 各実施例および比較例のLED装置について、波長変換層と無機粒子含有層との密着性、及びLED装置の発光効率を評価した。これらの結果を表1に示す。
・密着性評価
 各実施例および比較例の波長変換層用組成物を、ガラス基板上にアプリケーターで塗布し、150℃で1時間加熱した。得られた波長変換層の厚みを700μmであった。波長変換層上に、各実施例および比較例の無機粒子含有層用組成物をアプリケーターで塗布し、150℃で1時間加熱した。無機粒子含有層の厚みを10μmとした。
 このサンプルを、ヒートショック試験器(TSA-42EL:エスペック社製)にて、ヒートショック試験を行った。試験は、サンプルを、100℃にて30分保存後、-40℃にて30分保存する工程を1サイクルとし、これを100サイクル行った。このサンプルの剥離試験を、ニチバン製テープにて実施した。サンプルから剥がれた面積に基づいて評価を行った。
 ・全く剥離無し      ・・・評価5
 ・剥離面積が1~10%  ・・・評価4
 ・剥離面積が11~20% ・・・評価3
 ・剥離面積が21~50% ・・・評価2
 ・剥離面積が51%以上  ・・・評価1
・発光効率評価
 各実施例および比較例のLED装置の全光束を、無機粒子含有層の成膜前及び無機粒子含有層の成膜後に、分光放射輝度計(CS-2000:コニカミノルタセンシング社製)で測定した。無機粒子含有層成膜前のLED装置の全光束に対する、無機粒子含有層成膜後のLED装置の全光束を「発光効率上昇率」とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、無機粒子含有層に、バインダの屈折率より低い屈折率を有する無機粒子が含まれる場合(実施例1~9)、バインダの種類にかかわらず、発光効率の上昇率が高く、光取り出し効率が高まった。これは、屈折率の低い無機粒子を含む無機粒子含有層を形成することで、波長変換層、無機粒子含有層、大気の順に徐々に屈折率が低下し、各界面での反射が抑制されたためと推察される。また、無機粒子含有層によって形成された無機粒子含有層表面の凹凸によって、無機粒子含有層と大気との反射が抑制されたことでも、光取り出し効率が良好になったと推察される。
 一方、バインダの屈折率より高い屈折率を有する無機粒子が含まれる場合(比較例3)、光取り出し効率が低下した。
 また、無機粒子が含まれると、無機粒子が含まれない場合(比較例2)と比較して、波長変換層及び無機粒子含有層間の密着性が良好となった。これは、無機粒子によって、無機粒子含有層と波長変換層との間にアンカー効果が生じたためといえる。
 本発明のLED装置は、各層の密着性が非常に優れ、たとえ温度変化が生じても、剥離等が生じ難い。またさらに、本発明のLED装置は、光取り出し効率も優れることから、屋内、屋外の照明装置にいずれも適用可能である。
 1 LEDチップ
 2 波長変換層
 3 無機粒子含有層
 4 パッケージ
 5 メタル部
 6 突起電極
 100 LED装置
 

Claims (9)

  1.  LEDチップと、
     前記LEDチップを被覆し、蛍光体粒子及び封止樹脂を含み、前記LEDチップからの特定波長の光を、他の特定波長の光に変換する波長変換層と、
     前記波長変換層と接し、無機粒子及びバインダを含む無機粒子含有層とを有し、
     前記無機粒子の屈折率が、前記バインダの屈折率より低い、LED装置。
  2.  前記無機粒子含有層が、LED装置の最表面に位置する層である、請求項1に記載のLED装置。
  3.  前記無機粒子の屈折率が1.40以下である、請求項1に記載のLED装置。
  4.  前記無機粒子が、中空シリカ、フッ化マグネシウム、及びNaAlFのいずれかを含む、請求項1に記載のLED装置。
  5.  前記無機粒子がフッ化マグネシウムまたはNaAlFを含み、前記無機粒子の平均粒径が5~500nmである、請求項4に記載のLED装置。
  6.  前記無機粒子が、中空シリカを含み、前記中空シリカの平均粒径が1~100μmである、請求項4に記載のLED装置。
  7.  前記無機粒子含有層全量に対する、前記無機粒子の含有量は10~70質量%である、請求項1に記載のLED装置。
  8.  前記無機粒子含有層の厚みが0.1~500μmである、請求項1に記載のLED装置。
  9.  前記バインダが、透明セラミックである、請求項1に記載のLED装置。
     
     
PCT/JP2013/000105 2012-01-13 2013-01-11 Led装置 WO2013105514A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-004905 2012-01-13
JP2012004905 2012-01-13

Publications (1)

Publication Number Publication Date
WO2013105514A1 true WO2013105514A1 (ja) 2013-07-18

Family

ID=48781463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000105 WO2013105514A1 (ja) 2012-01-13 2013-01-11 Led装置

Country Status (2)

Country Link
JP (1) JPWO2013105514A1 (ja)
WO (1) WO2013105514A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225514A (ja) * 2015-06-01 2016-12-28 日亜化学工業株式会社 発光装置の製造方法
US10910521B2 (en) 2018-01-16 2021-02-02 Nikkiso Co., Ltd. Semiconductor light emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116131A (ja) * 2005-09-21 2007-05-10 Sanyo Electric Co Ltd Led発光装置
JP2007234767A (ja) * 2006-02-28 2007-09-13 Nichia Chem Ind Ltd つや消し保護部材およびその保護部材を有する発光装置
JP2007273562A (ja) * 2006-03-30 2007-10-18 Toshiba Corp 半導体発光装置
JP2009054995A (ja) * 2007-08-24 2009-03-12 Cree Inc 異なるサイズの光散乱粒子を用いた発光デバイスのパッケージ
JP2009272634A (ja) * 2008-05-02 2009-11-19 Cree Inc 蛍光体により変換された白色発光ダイオード用の封止法
JP2010129883A (ja) * 2008-11-28 2010-06-10 Sharp Corp 発光装置
WO2011005733A1 (en) * 2009-07-10 2011-01-13 Cree, Inc. Lighting structures including diffuser particles comprising phosphor host materials
JP2011159970A (ja) * 2010-01-28 2011-08-18 Lg Innotek Co Ltd 発光素子パッケージ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116131A (ja) * 2005-09-21 2007-05-10 Sanyo Electric Co Ltd Led発光装置
JP2007234767A (ja) * 2006-02-28 2007-09-13 Nichia Chem Ind Ltd つや消し保護部材およびその保護部材を有する発光装置
JP2007273562A (ja) * 2006-03-30 2007-10-18 Toshiba Corp 半導体発光装置
JP2009054995A (ja) * 2007-08-24 2009-03-12 Cree Inc 異なるサイズの光散乱粒子を用いた発光デバイスのパッケージ
JP2009272634A (ja) * 2008-05-02 2009-11-19 Cree Inc 蛍光体により変換された白色発光ダイオード用の封止法
JP2010129883A (ja) * 2008-11-28 2010-06-10 Sharp Corp 発光装置
WO2011005733A1 (en) * 2009-07-10 2011-01-13 Cree, Inc. Lighting structures including diffuser particles comprising phosphor host materials
JP2011159970A (ja) * 2010-01-28 2011-08-18 Lg Innotek Co Ltd 発光素子パッケージ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225514A (ja) * 2015-06-01 2016-12-28 日亜化学工業株式会社 発光装置の製造方法
US10910521B2 (en) 2018-01-16 2021-02-02 Nikkiso Co., Ltd. Semiconductor light emitting device

Also Published As

Publication number Publication date
JPWO2013105514A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
US9708492B2 (en) LED device and coating liquid used for production of same
WO2013099193A1 (ja) Led装置用封止剤、led装置、及びled装置の製造方法
EP2940743A1 (en) Light emitting device
WO2014103326A1 (ja) 塗布液、及びその硬化物からなる反射層を備えるled装置
JP5910340B2 (ja) Led装置、及びその製造方法
JP2015153856A (ja) 発光装置及びその製造方法
US20190322837A1 (en) Optoelectronic component
WO2013121903A1 (ja) 波長変換素子及びその製造方法、発光装置及びその製造方法
JP5768816B2 (ja) 波長変換素子及びその製造方法、発光装置及びその製造方法
JP2014138081A (ja) 発光装置、波長変換・光拡散素子及びそれらの製造方法、光拡散セラミック層形成用組成物
WO2014091762A1 (ja) Led装置用封止剤、及びこれを用いたled装置
WO2013105514A1 (ja) Led装置
JP2016154179A (ja) 発光装置、及びその製造方法
JP5747994B2 (ja) 波長変換素子及びその製造方法、発光装置及びその製造方法
JP5729327B2 (ja) Led装置の製造方法
JP2014041955A (ja) Led装置、及びその製造方法
JP2014127495A (ja) Led装置、及びその製造方法
WO2015049865A1 (ja) 発光素子用封止剤及びled装置
WO2016024604A1 (ja) 無機微粒子含有ポリシルセスキオキサン組成物およびその製造方法、ならびに発光装置およびその製造方法
JP2016181535A (ja) 発光装置、および発光装置製造用の塗布液
WO2015025526A1 (ja) Led装置及びその製造方法
WO2014087629A1 (ja) ディスペンサー塗布用透光性セラミック材料、及びこれを用いたled装置の製造方法
JP2016001657A (ja) ハードコート剤、封止用組成物、積層体、及び発光装置
WO2013187067A1 (ja) Led装置、及びその製造方法
JP2014130902A (ja) 反射材料及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013553271

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13736028

Country of ref document: EP

Kind code of ref document: A1