WO2014103326A1 - 塗布液、及びその硬化物からなる反射層を備えるled装置 - Google Patents

塗布液、及びその硬化物からなる反射層を備えるled装置 Download PDF

Info

Publication number
WO2014103326A1
WO2014103326A1 PCT/JP2013/007664 JP2013007664W WO2014103326A1 WO 2014103326 A1 WO2014103326 A1 WO 2014103326A1 JP 2013007664 W JP2013007664 W JP 2013007664W WO 2014103326 A1 WO2014103326 A1 WO 2014103326A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane compound
coating solution
reflective layer
group
mass
Prior art date
Application number
PCT/JP2013/007664
Other languages
English (en)
French (fr)
Inventor
小嶋 健
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014554154A priority Critical patent/JPWO2014103326A1/ja
Priority to US14/650,785 priority patent/US20150307717A1/en
Priority to EP13867793.5A priority patent/EP2940748A4/en
Publication of WO2014103326A1 publication Critical patent/WO2014103326A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an LED device including a coating layer and a reflective layer made of a cured product thereof.
  • a phosphor such as a YAG phosphor has been placed in the vicinity of a gallium nitride (GaN) blue LED (Light Emitting Diode) chip, and has received blue light and blue light emitted from the blue LED chip.
  • GaN gallium nitride
  • An LED device that obtains white light by mixing yellow light emitted from a phosphor is widely used.
  • various phosphors are arranged in the vicinity of the blue LED chip, and blue light emitted from the blue LED chip and red light and green light emitted from the phosphor upon receiving blue light are mixed to obtain white light.
  • Equipment has also been developed.
  • White LED devices have a variety of uses, for example, there is a demand as an alternative to fluorescent lamps and incandescent lamps.
  • Such an illuminating device has a configuration in which a plurality of white LED devices are combined, and how to increase the light extraction efficiency of each white LED device is important in realizing cost reduction and long life. come.
  • a reflector having a high light reflectance is disposed around the LED element.
  • Such a reflector is generally formed of metal plating or the like.
  • a reflector made of metal plating cannot be formed on the entire surface of the substrate in order to prevent electrical conduction. Therefore, there is a problem that light is absorbed by the substrate in the region where the reflector is not formed.
  • Patent Document 1 a reflector in which metal plating is covered with a resin layer
  • Patent Document 2 a reflector in which metal plating is covered with a white resin layer
  • the reflector is made of resin, or when the reflector surface made of metal plating is coated with resin as in the technique of Patent Document 1, the resin deteriorates due to heat or light, and the light reflection of the reflective layer over time. There is a problem that the property is lowered or electricity is conducted. In particular, in applications where a large amount of light is required, such as in-vehicle headlights, the resin is likely to deteriorate.
  • an object of the present invention is to provide a reflective layer for an LED device that can reflect light efficiently with little deterioration over a long period of time, and a coating liquid for obtaining the reflective layer.
  • the present invention relates to the following inventions.
  • R4 the ratio of the tetrafunctional silane compound
  • the following formula 1 and formula 2 0 ⁇ R2 ⁇ 20 (Formula 1) 0 ⁇ R4 / R3 ⁇ 3 (Formula 2)
  • the coating solution according to 1 above wherein at least one selected from the group consisting of the bifunctional silane compound, the trifunctional silane compound, and the tetrafunctional silane compound is polymerized in advance.
  • the coating solution contains at least one selected from the group consisting of metal oxide fine particles having an average particle size of 5 nm to less than 100 nm, inorganic particles having an average particle size of 100 nm to 100 ⁇ m, and clay mineral particles.
  • the coating solution according to 1 or 2 further contained. 4).
  • the clay mineral particles are at least one selected from the group consisting of layered silicate minerals, imogolite, and allophane. 5.
  • An LED device comprising: a substrate; an LED element disposed on the substrate; a reflective layer disposed at least around the LED element on the substrate; and a wavelength conversion layer covering the LED element and the reflective layer.
  • the reflective layer includes a white pigment, a silane compound, and a solvent, and the ratio of the bifunctional silane compound in the total amount of the silane compound is R2 (mol%), and the ratio of the trifunctional silane compound is R3 (mol%).
  • a reflective layer for an LED device that can reflect light efficiently with little deterioration over a long period of time is provided, and as a result, light can be efficiently extracted over a long period of time. LED device is provided.
  • the ratio of the bifunctional silane compound in the total amount of (B) silane compound is R2 (mol%)
  • the ratio of the trifunctional silane compound is R3 (mol%)
  • the ratio of the tetrafunctional silane compound is R4 (mol%).
  • the following formula 1 and formula 2 0 ⁇ R2 ⁇ 20 (Formula 1) 0 ⁇ R4 / R3 ⁇ 3 (Formula 2) Both conditions are satisfied.
  • R2 is 20 or more, the adhesion between the layer obtained by curing the coating solution and the substrate is lowered. Moreover, the gas barrier property of the layer obtained by hardening
  • the value of R4 / R3 in Formula 2 exceeds 3, there is a risk of cracks occurring during film formation. Therefore, the value of R4 / R3 is preferably 3 or less, more preferably 0 ⁇ R4 / R3 ⁇ 2, and further preferably 0 ⁇ R4 / R3 ⁇ 1.
  • the ratio of the bifunctional silane compound, the trifunctional silane compound, and the tetrafunctional silane compound of the silane compound in the coating solution can be obtained from a solid Si-NMR spectrum of a sample obtained by drying and solidifying the coating solution at 150 ° C. .
  • NMR Nuclear Magnetic Resonance
  • the following schematic diagram (A) shows the Si—O net structure ignoring the tetrahedral structure.
  • the schematic diagram (B) shows a case where a part of the oxygen atom O is substituted with another member (here, —H) in the Si—O net structure.
  • the schematic diagram (A) derived from the tetrafunctional silane compound, the atoms (Q 4 ) bonded to four —OSi and the three —OSi bonded to each other as shown in the schematic (B). There are atoms (Q 3 ) and the like.
  • a silicon atom that is, silicon derived from a bifunctional silane compound in which two oxygen atoms are bonded and two other atoms (usually carbon) are bonded is generally referred to as a D site.
  • D site silicon atom
  • the peak derived from the D site is also observed as each peak of D 0 to D n (D n peak group), which is further than the peak group of Q n and T n. It is observed as a multimodal peak in the region on the high magnetic field side (usually the region with a chemical shift of ⁇ 3 to ⁇ 40 ppm).
  • FIG. 6 is an example of a solid Si-NMR spectrum of a polymer of a silane compound.
  • the horizontal axis indicates the chemical shift
  • the vertical axis indicates “relative strength” depending on the amount of the compound having each structure.
  • D11 indicates actual measurement data.
  • D12 indicates data modeled by a Gaussian function.
  • D13 shows a difference spectrum.
  • the peak P11 represents the D n peak group, the peak top of the D n peak group is present in the vicinity of chemical shift -20.0Ppm.
  • the peak P12 represents the T n peak group, the peak top of the T n peak group is present in the vicinity of chemical shift -60.0Ppm.
  • the peak P13 represents a Q n peak group, the peak top of the Q n peak group is present in the vicinity of a chemical shift -100.0 ⁇ -110 ppm. That is, FIG. 6 shows that the polymer contains silicon derived from a bifunctional silane compound, silicon derived from a trifunctional silane compound, and silicon derived from a tetrafunctional silane compound.
  • the area ratio of the respective peak groups of D n , T n , and Q n is equal to the molar ratio of silicon atoms placed in the environment corresponding to each peak group. Therefore, the ratio of the area of each peak group to the total area of the Q n peak group, the T n peak group, and the D n peak group is the silane compound (tetrafunctional group) with respect to the total molar amount of silicon atoms contained in the coating solution. Silane compound, trifunctional silane compound, and bifunctional silane compound).
  • the coating liquid of the present invention is not easily cracked when the coating film is cured. Moreover, the layer obtained by hardening
  • the application of the coating liquid of the present invention is not particularly limited as long as such characteristics can be utilized, but the coating liquid of the present invention is suitable for a coating liquid for forming a reflective layer of an LED device.
  • the coating solution is a reflection layer forming coating solution will be described as an example.
  • White pigment The white pigment contained in the coating solution is not particularly limited as long as it is highly reflective particles.
  • White pigments are calcium carbonate, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, aluminum oxide, zirconium oxide, zinc sulfide, aluminum hydroxide, boron nitride, It may be at least one selected from aluminum nitride, potassium titanate, barium titanate, aluminum titanate, strontium titanate, calcium titanate, magnesium titanate, hydroxyapatite, and the like. Among these, a mixture of one or a combination of two or more selected from the group consisting of titanium oxide, aluminum oxide, barium sulfate, zinc oxide, and boron nitride is preferable.
  • the resulting reflective layer has high thermal conductivity. As a result, heat generated from the light emitting chip can be quickly released from the substrate. Therefore, the temperature of the LED device can be kept low, and the device life can be extended.
  • the average primary particle diameter of the white pigment is preferably 100 nm or more and 20 ⁇ m or less, more preferably greater than 100 nm and 10 ⁇ m or less, and further preferably 200 nm to 2.5 ⁇ m.
  • the “average primary particle size” refers to the value of D50 measured with a laser diffraction particle size distribution meter. Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
  • the amount of the white pigment contained in the coating solution is preferably 60 to 95% by mass and more preferably 70 to 90% by mass with respect to the total mass of components other than the solvent contained in the coating solution. If the amount of the white pigment is less than 60% by mass, the resulting reflective layer may not have sufficient light reflectivity, and the light extraction efficiency may not increase. On the other hand, when the content of the white pigment exceeds 95% by mass, the amount of the binder is relatively reduced, and the strength of the reflective layer may be lowered, or the white pigment may be lost from the reflective layer.
  • the total amount of the silane compound contained in the coating solution is preferably 5 to 40% by mass and more preferably 10 to 30% by mass with respect to the total mass of components other than the solvent contained in the coating solution.
  • the total amount of the silane compound is less than 5% by mass, the white pigment is not sufficiently retained by the polymer of the silane compound in the resulting reflective layer. As a result, pigment powder is easily generated on the surface of the reflective layer.
  • the total amount of a silane compound exceeds 40 mass%, it will become easy to produce shrinkage
  • trifunctional silane compounds include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, di Propoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxysilane Monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysilane, monofluoro Monohydrosilane compounds such as nyloxydieth
  • R 2 represented by the general formula (III) of these trifunctional silane compounds is a methyl group
  • the hydrophobicity of the resulting reflective layer surface becomes low.
  • the composition for forming a wavelength conversion layer becomes easy to spread.
  • the adhesion between the reflective layer and the wavelength conversion layer is enhanced.
  • the trifunctional silane compound in which R 2 represented by the general formula (III) is a methyl group include methyltrimethoxysilane and methyltriethoxysilane, and methyltrimethoxysilane is particularly preferable.
  • each R 3 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
  • tetrafunctional silane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, and triethoxymonomethoxy.
  • Silane trimethoxymonopropoxysilane, monomethoxytributoxysilane, monomethoxytripentyloxysilane, monomethoxytriphenyloxysilane, dimethoxydipropoxysilane, tripropoxymonomethoxysilane, trimethoxymonobutoxysilane, dimethoxydibutoxysilane, Triethoxymonopropoxysilane, diethoxydipropoxysilane, tributoxymonopropoxysilane, dimethoxymonoethoxymonobutoxy Silane, diethoxymonomethoxymonobutoxysilane, diethoxymonopropoxymonobutoxysilane, dipropoxymonomethoxymonoethoxysilane, dipropoxymonomethoxymonobutoxysilane, dipropoxymonoethoxymonobutoxysilane, dipropoxymonoethoxymonobutoxysilane, dipropoxymonoethoxymonobutoxy
  • bifunctional silane compound examples include compounds represented by the following general formula (II).
  • R 5 each independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms or a phenyl group.
  • R 4 represents a hydrogen atom or an alkyl group.
  • bifunctional silane compound examples include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxypropoxy.
  • the oligomer of a silane compound is obtained by mixing a bifunctional silane compound, a trifunctional silane compound, and a tetrafunctional silane compound in a desired ratio and reacting them in the presence of an acid catalyst, water, and a solvent.
  • the molecular weight of the oligomer is adjusted by the reaction time, temperature, water concentration, and the like.
  • solvents for preparing oligomers include monohydric alcohols such as methanol, ethanol, propanol and n-butanol; alkyl carboxylic acid esters such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate; ethylene Polyhydric alcohols such as glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, hexanetriol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, pro Monoethers of polyhydric alcohols such as lenglycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol
  • the solvent contained in the coating solution is not particularly limited as long as it is compatible with the silane compound and can uniformly disperse the white pigment and the like, but at least one of a monohydric alcohol and a dihydric or higher polyhydric alcohol is used. It is preferably included. When monohydric alcohol is contained, the coating solution is likely to spread and spread easily. On the other hand, when the polyhydric alcohol is contained, the viscosity of the coating solution is likely to increase, and the white pigment is difficult to settle.
  • monohydric alcohols examples include methanol, ethanol, propanol, butanol and the like.
  • the content of the monohydric alcohol is preferably 10 to 50% by mass and more preferably 20 to 40% by mass with respect to the entire coating solution.
  • the polyhydric alcohol may be either a diol or a triol.
  • the polyhydric alcohol include ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-butanediol, 1,4-butanediol, and preferably ethylene glycol, propylene glycol, 1,3-butane. Diol, 1,4-butanediol and the like are included.
  • the content of the polyhydric alcohol is preferably 10 to 50% by mass and more preferably 20 to 40% by mass with respect to the entire coating solution.
  • the solvent may contain water.
  • water When water is contained in the coating solution, water enters between the layers of the clay mineral particles, the clay mineral particles swell, and the viscosity of the coating solution is more likely to increase.
  • the total amount of the solvent contained in the coating solution is preferably 20 to 80% by mass, more preferably 30 to 70% by mass with respect to the total amount of the coating solution. If the total amount of the solvent is excessively small, the viscosity of the coating solution increases and the coating stability decreases. On the other hand, when the total amount of the solvent is excessively large, the viscosity of the coating solution becomes low, and the white pigment may settle in the coating solution.
  • the coating liquid may contain clay mineral particles.
  • clay mineral particles include layered silicate minerals, imogolite, allophane and the like.
  • the layered silicate mineral is preferably a clay mineral having a mica structure, a kaolinite structure, or a smectite structure.
  • Layered silicate mineral particles tend to form a card house structure when the coating solution is left standing.
  • the viscosity of the coating solution is greatly increased.
  • the card house structure is apt to collapse when a certain pressure is applied, whereby the viscosity of the coating solution is lowered. That is, when the layered silicate mineral particles are contained in the coating solution, the viscosity of the coating solution increases in a stationary state, and the viscosity of the coating solution decreases when a certain pressure is applied.
  • layered silicate minerals include natural or synthetic hectrite, saponite, stevensite, hydelite, montmorillonite, nontrinite, bentonite, laponite and other smectite clay minerals, and Na-type tetralithic fluoric mica.
  • Non-swelling mica such as swellable mica genus clay minerals such as Li-type tetralithic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite, muscovite, phlogopite, fluorine phlogopite, sericite, potassium tetrasilicon mica Genus clay minerals, vermiculite and kaolinite, or mixtures thereof.
  • swellable mica genus clay minerals such as Li-type tetralithic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite, muscovite, phlogopite, fluorine phlogopite, sericite, potassium tetrasilicon mica Genus clay minerals, vermiculite and kaolinite, or mixtures thereof.
  • Examples of commercial products of clay mineral particles include Laponite XLG (synthetic hectorite analogue manufactured by LaPorte, UK), Laponite RD (Synthetic hectorite analogue produced by LaPorte, UK), Thermabis (Synthetic product, Henkel, Germany) Hectorite-like substance), smecton SA-1 (saponite-like substance manufactured by Kunimine Industry Co., Ltd.), Bengel (natural bentonite sold by Hojun Co., Ltd.), Kunivia F (natural montmorillonite sold by Kunimine Industry Co., Ltd.), bee gum ( Natural hectorite manufactured by Vanderbilt, USA, Daimonite (synthetic swellable mica manufactured by Topy Industries, Ltd.), Micromica (synthetic non-swellable mica, manufactured by Coop Chemical Co., Ltd.), Somasifu (Coop Chemical Co., Ltd.) ) Synthetic swelling mica), SWN (Synthetic s
  • the clay mineral particles are preferably at least one selected from the group consisting of layered silicate minerals, imogolite, and allophane. These particles have a very large surface area and can increase the viscosity of the coating solution in a small amount.
  • the content of clay mineral particles is preferably from 0.1 to 5% by mass, more preferably from 0.2 to 2% by mass, based on the total mass of the coating solution.
  • the content of clay mineral particles is small, the viscosity of the coating solution is difficult to increase, and the white pigment tends to settle.
  • the content of the clay mineral particles is excessive, the viscosity of the coating solution becomes too high, and the coating solution may not be discharged uniformly from the coating device.
  • the surface of the clay mineral particles may be modified (surface treatment) with an ammonium salt or the like in consideration of compatibility with the solvent in the coating solution.
  • the coating liquid may contain metal oxide fine particles having an average particle diameter of 5 nm or more and less than 100 nm.
  • metal oxide fine particles When metal oxide fine particles are contained in the coating solution, irregularities are generated on the surface of the resulting reflective layer, and an anchor effect is exhibited between the reflective layer and the wavelength conversion layer. As a result, the adhesion between the reflective layer and the wavelength conversion layer is very good.
  • metal oxide fine particles when metal oxide fine particles are contained in the coating solution, the stress generated in the film during polycondensation or drying of the polysiloxane is alleviated, and cracks are suppressed from occurring in the resulting reflective layer.
  • the type of metal oxide fine particles is not particularly limited, but is relatively easy to obtain from the group of aluminum oxide, zirconium oxide, zinc oxide, tin oxide, yttrium oxide, cerium oxide, titanium oxide, copper oxide, and bismuth oxide. One or more selected metal oxide fine particles are preferable.
  • the surface of the metal oxide fine particles may be treated with a silane coupling agent or a titanium coupling agent. By the surface treatment, the compatibility between the metal oxide fine particles and the polysiloxane or the solvent is increased.
  • the average particle diameter of the metal oxide fine particles is preferably 5 to 100 nm, more preferably 5 to 80 nm, still more preferably 5 to 50 nm in consideration of the respective effects described above. By setting the average particle diameter in such a range, fine irregularities can be formed on the surface of the reflective layer, and the anchor effect described above can be obtained.
  • the average particle diameter of the metal oxide fine particles can be measured, for example, by a Coulter counter method.
  • the metal oxide fine particles may be porous, and the specific surface area is preferably 200 m 2 / g or more. When the metal oxide fine particles are porous, impurities are adsorbed in the porous voids.
  • the amount of metal oxide fine particles contained in the coating solution is preferably 0.1 to 20% by mass, and preferably 5 to 10% by mass, based on the total mass of components other than the solvent contained in the coating solution. More preferred. If the amount of the metal oxide fine particles is too small, the above-described anchor effect is not sufficient. On the other hand, if the amount is too large, the amount of polysiloxane is relatively reduced, and the strength of the resulting reflective layer may be reduced.
  • the coating liquid may contain inorganic particles having an average particle size of 100 nm or more and 100 ⁇ m or less. A gap generated at the interface between the white pigment particles and the clay mineral particles is filled with inorganic particles, and the viscosity of the coating liquid is increased.
  • the inorganic particles include oxide particles such as silicon oxide, fluoride particles such as magnesium fluoride, or a mixture thereof.
  • the inorganic particles are preferably oxide particles, and particularly preferably silicon oxide.
  • the surface of the inorganic particles may be treated with a silane coupling agent or a titanium coupling agent. By the surface treatment, the compatibility between the inorganic particles and the polysiloxane or the solvent is increased.
  • the content of inorganic particles in the coating solution is preferably 0.1 to 10% by mass, more preferably 0.2 to 5% by mass with respect to the total mass of the coating solution. This is because if the inorganic particles exceed 10% by mass, cracks are likely to occur during the formation of the reflective layer, and if it is less than 0.1%, the thickening effect of the coating solution is reduced.
  • the average particle diameter of the inorganic particles is preferably 100 nm or more and 50 ⁇ m or less, and more preferably 1 ⁇ m or more and 30 ⁇ m or less from the viewpoint of filling a gap generated at the interface between the white pigment particles and the clay mineral particles.
  • the average particle diameter of the inorganic particles can be measured, for example, by a Coulter counter method.
  • the coating solution preferably further contains a silane coupling agent.
  • silane coupling agent When the silane coupling agent is contained in the coating solution, the adhesion between the resulting reflective layer and the substrate is increased, and the durability of the LED device is improved.
  • silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl Methyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3 -Acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethy
  • the amount of the silane coupling agent contained in the coating solution is preferably 0.5 to 10% by mass, and preferably 1 to 7% by mass, based on the total mass of components other than the solvent contained in the coating solution. More preferable. If the amount of the silane coupling agent is too small, the adhesion between the resulting reflective layer and the substrate is not sufficiently increased, and if it is too large, the heat resistance may be lowered.
  • the coating solution may contain a metal alkoxide or metal chelate containing a metal element other than Si element.
  • the metal alkoxide or metal chelate forms a metalloxane bond with the above-mentioned silane compound or a hydroxyl group present on the substrate surface during the formation of the reflective layer. Since the metalloxane bond is very strong, when the coating liquid contains a metal alkoxide or a metal chelate, the adhesion between the resulting reflective layer and the substrate is enhanced.
  • a part of the metal alkoxide or metal chelate forms a nano-sized cluster composed of a metalloxane bond in the cured film (reflective layer) of the coating solution. Due to the photocatalytic effect of this cluster, it is possible to oxidize a highly corrosive sulfide gas or the like existing in the vicinity of the LED device and change it to a sulfur dioxide gas or the like having a low corrosivity.
  • the metal element contained in the metal alkoxide or metal chelate is preferably a group 4 or group 13 metal element other than Si, and a compound represented by the following general formula (V) is preferable.
  • M m + X n Y mn (V) M represents a group 4 or group 13 metal element (excluding Si), and m represents the valence of M (3 or 4).
  • X represents a hydrolyzable group, and n represents the number of X groups (an integer of 2 or more and 4 or less). However, m ⁇ n. Y represents a monovalent organic group.
  • the group 4 or group 13 metal element represented by M is preferably aluminum, zirconium, or titanium, and particularly preferably zirconium.
  • a cured product of zirconium alkoxide or chelate does not have an absorption wavelength in a light emission wavelength region (particularly blue light (wavelength 420 to 485 nm)) of a general LED element. That is, the light from the LED element is hardly absorbed by the cured product.
  • the hydrolyzable group represented by X may be a group that is hydrolyzed with water to form a hydroxyl group.
  • the hydrolyzable group include a lower alkoxy group having 1 to 5 carbon atoms, an acetoxy group, a butanoxime group, a chloro group and the like.
  • all the groups represented by X may be the same group or different groups.
  • the hydrolyzable group represented by X is hydrolyzed and released during the formation of the reflective layer. Therefore, the compound produced after hydrolysis from the group represented by X is preferably neutral and light boiling. Therefore, the group represented by X is preferably a lower alkoxy group having 1 to 5 carbon atoms, more preferably a methoxy group or an ethoxy group.
  • the monovalent organic group represented by Y may be a monovalent organic group contained in a general silane coupling agent. Specifically, the aliphatic group, alicyclic group, aromatic group, fatty acid having 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, further preferably 40 or less, and particularly preferably 6 or less. It may be a ring aromatic group.
  • the organic group represented by Y may be an aliphatic group, an alicyclic group, an aromatic group, or a group in which an alicyclic aromatic group is bonded via a linking group.
  • the linking group may be an atom such as O, N, or S, or an atomic group containing these.
  • the organic group represented by Y may have a substituent.
  • substituents include halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, Organic groups such as nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group and phenyl group are included.
  • metal alkoxide or metal chelate represented by the general formula (V) include aluminum triisopropoxide, aluminum tri-n-butoxide, aluminum tri-t-butoxide, aluminum triethoxide and the like.
  • metal alkoxide or metal chelate of zirconium represented by the general formula (V) include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetra i-propoxide, zirconium tetra n- Examples include butoxide, zirconium tetra-i-butoxide, zirconium tetra-t-butoxide, zirconium dimethacrylate dibutoxide, dibutoxyzirconium bis (ethylacetoacetate) and the like.
  • metal alkoxide or metal chelate of the titanium element represented by the general formula (V) include titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra i-butoxide, titanium methacrylate triisopropoxide, titanium tetra Examples include methoxypropoxide, titanium tetra n-propoxide, titanium tetraethoxide, titanium lactate, titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), titanium acetylacetonate and the like.
  • metal alkoxides or metal chelates exemplified above are a part of commercially available organometallic alkoxides or metal chelates.
  • Metal alkoxides or metal chelates shown in the list of coupling agents and related products in Chapter 9 “Optimum Utilization Technology of Coupling Agents” published by the National Institute of Science and Technology are also applicable to the present invention.
  • the amount of metal alkoxide or metal chelate contained in the coating solution is preferably 1 to 10% by mass, more preferably 2 to 7 parts by mass, based on the total mass of components other than the solvent contained in the coating solution. preferable. If the content is too small, the effect of improving the adhesion cannot be obtained, and if the content is too large, the storage stability of the coating solution decreases.
  • the preparation method of the coating liquid may be a method of mixing raw materials such as a white pigment, a silane compound, a solvent, metal oxide fine particles, inorganic particles, clay mineral particles, and a silane coupling agent in a lump.
  • the raw materials may be mixed in advance and the mixed solution may be mixed later.
  • either one or both of inorganic particles and clay mineral particles may be dispersed in a solvent and then mixed with the remaining components.
  • the white pigment In order to enhance the dispersibility of the white pigment, it is preferable to disperse the white pigment at least once with the following apparatus.
  • the white pigment When the white pigment is dispersed with the following apparatus, aggregation of the white pigment is reduced, and a denser and highly reflective coating film is obtained.
  • Mixing / dispersing device is, for example, a magnetic stirrer, an ultrasonic dispersing device, a homogenizer, a stirring mill, a blade kneading stirring device, a thin-film swirling type dispersing device, a high-pressure impact dispersing device, a rotation and revolution mixer, etc. Can be done.
  • All known devices can be used as the stirring device used for stirring the mixed solution.
  • Ultra Turrax manufactured by IKA Japan
  • TK homomixer manufactured by Primix
  • TK pipeline homomixer manufactured by Primics
  • TK Philmix manufactured by Primix
  • Claremix manufactured by M Technique
  • Medialess stirrers such as Claire SS5 (manufactured by M Technique), Cavitron (manufactured by Eurotech), Fine Flow Mill (manufactured by Taiheiyo Kiko), Viscomill (manufactured by IMEX), Apex Mill (manufactured by Kotobuki Industries), Star mill (Ashizawa, manufactured by Finetech), DMPA / S Superflow (manufactured by Nihon Eirich), MP Mill (manufactured by Inoue Seisakusho), spike mill (manufactured by Inoue Seisakusho), Mighty mill (manufactured by In
  • the viscosity of the coating solution is preferably more than 5 mPa ⁇ s and 500 mPa ⁇ s or less. If the viscosity of the coating solution is lower than the lower limit, the white pigment will settle and the concentration will easily change inside the coating apparatus. As a result, the coating stability is deteriorated. On the other hand, when it becomes higher than the upper limit, the pressure loss of the dispenser gradually decreases and the discharge amount increases. As a result, the coating stability tends to deteriorate.
  • the coating method of the coating liquid is not particularly limited, and may be a coating method using a general coating device such as a dispenser, a jet dispenser, or a spray device. Moreover, the curing method and curing conditions of the coating solution are appropriately selected depending on the type of silane compound and the like. An example of the curing method is heat curing.
  • the coating film is heated after the coating solution is applied.
  • the heating temperature is preferably 20 to 200 ° C, more preferably 25 to 150 ° C. If the heating temperature is less than 20 ° C, the solvent in the coating film may not be sufficiently evaporated. On the other hand, if the temperature exceeds 200 ° C., the LED element may be adversely affected.
  • the drying / curing time is preferably from 0.1 to 120 minutes, more preferably from 5 to 60 minutes from the viewpoint of production efficiency.
  • FIG. 1 is a top view of an LED device 100A according to the embodiment.
  • FIG. 2 is a cross-sectional view of the LED device 100A according to the embodiment.
  • the LED element 2 will be described by taking a wire bonding type as an example.
  • the LED device 100 ⁇ / b> A includes a substrate 1, an LED element 2 disposed on the substrate 1, and a reflective layer 21 disposed at least around the LED element 2 on the substrate 1. And the wavelength conversion layer 11 covering the LED element 2 and the reflective layer 21.
  • the LED device 100A includes the reflective layer 21 that reflects the emitted light or the like of the LED element 2 to the light extraction surface side.
  • the reflective layer 21 is obtained by heating and curing the coating liquid according to the above-described embodiment.
  • the substrate 1 preferably has insulating properties and heat resistance, and is preferably made of a ceramic resin or a heat resistant resin.
  • the heat resistant resin include liquid crystal polymer, polyphenylene sulfide, aromatic nylon, epoxy resin, hard silicone resin, polyphthalic acid amide and the like.
  • the substrate 1 may contain an inorganic filler.
  • the inorganic filler can be titanium oxide, zinc oxide, alumina, silica, barium titanate, calcium phosphate, calcium carbonate, white carbon, talc, magnesium carbonate, boron nitride, glass fiber, and the like.
  • the wavelength of light emitted from the LED element 2 is not particularly limited.
  • the LED element 2 may be, for example, an element that emits blue light (light of about 420 nm to 485 nm) or an element that emits ultraviolet light.
  • the configuration of the LED element 2 is not particularly limited.
  • the LED element 2 is an element that emits blue light
  • the LED element 2 includes an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer. It may be a laminate of (cladding layer) and a transparent electrode layer.
  • the LED element 2 may have a light emitting surface of 200 to 300 ⁇ m ⁇ 200 to 300 ⁇ m, for example.
  • the height of the LED element 2 is usually about 50 to 200 ⁇ m.
  • only one LED element 2 is arranged on the substrate 1, but a plurality of LED elements 2 may be arranged on the substrate 1.
  • the reflective layer 21 is a layer that reflects the emitted light from the LED element 2 and the fluorescence emitted by the phosphor contained in the wavelength conversion layer 11 to the light extraction surface side of the LED device 100A. By providing the reflective layer 21, the amount of light extracted from the light extraction surface of the LED device 100A increases.
  • the reflective layer 21 is formed on the surface of the substrate 1 at least outside the region where the LED elements 2 are arranged.
  • the arrangement region of the LED element 2 refers to a light emitting surface of the LED element 2 and a connection part between the LED element 2 and the metal part (metal electrode part) 3. That is, the reflective layer 21 is formed in a region that does not hinder the emission of light from the LED element 2 and the connection between the LED element 2 and the metal part (metal electrode part) 3.
  • the reflective layer 21 is formed in at least the peripheral region of the LED element 2.
  • the reflective layer 21 is also formed on the inner wall surface 1b of the cavity. This is because when the reflective layer 21 is formed on the cavity inner wall surface 1b, the light traveling in the horizontal direction on the surface of the wavelength conversion layer 11 can be reflected by the reflective layer 21 and extracted.
  • the reflection layer of the conventional LED device is generally metal plating.
  • metal plating cannot be formed on the entire surface of the substrate in order to prevent electrical conduction. Therefore, there is a problem that light is absorbed by the substrate in the region where the metal plating is not formed.
  • a reflection layer made of a resin layer in which light diffusion particles are dispersed has been proposed, but is easily deteriorated by light emitted from the LED element, heat, or the like. Therefore, when the LED device is used for a long period of time, the light extraction from the LED device may be deteriorated due to deterioration of the resin.
  • the reflective layer 21 of the LED device 100A according to the embodiment is a layer in which a white pigment is bound with a binder (cured product of a silane compound), and electricity is not conducted. That is, in the LED device 100A according to the embodiment, the reflective layer 21 can be formed in an arbitrary region of the substrate 1 and can be formed in a gap between metal portions. Therefore, light can be efficiently extracted from the LED device 100A. Furthermore, the reflective layer 21 of the LED device 100 ⁇ / b> A according to the embodiment is difficult to be decomposed even when receiving heat or light from the LED element 2. Therefore, the light reflectivity of the reflective layer 21 does not change over a long period, and good light extraction performance is maintained for a long period.
  • the thickness of the reflective layer 21 is preferably 5 to 30 ⁇ m, more preferably 5 to 20 ⁇ m. If the thickness of the reflective layer 21 exceeds 30 ⁇ m, cracks are likely to occur in the reflective layer 21. On the other hand, when the thickness of the reflective layer 21 is less than 5 ⁇ m, the light reflectivity of the reflective layer 21 is not sufficient, and the light extraction efficiency may not be increased.
  • the amount of the binder contained in the reflective layer 21 is preferably 5 to 40% by mass, more preferably 10 to 30% by mass with respect to the total mass of the reflective layer 21. . If the amount of the binder is less than 5% by mass, the white pigment cannot be sufficiently retained by the binder, and pigment powder tends to be generated on the surface of the reflective layer 21. On the other hand, when the amount of the binder exceeds 40% by mass, the amount of the white pigment is relatively decreased, and the light reflectivity of the reflective layer 21 may not be sufficiently increased.
  • the binder includes a polymer (cured product) of a trifunctional silane compound, a tetrafunctional silane compound, or a bifunctional silane compound, or a polymer of these oligomers (cured product).
  • the amount of the component derived from the bifunctional silane compound (hereinafter also referred to as “bifunctional component”) with respect to the total amount of the component derived from the silane compound contained in the binder of the reflective layer 21 is less than 20 mol%. If the binder contains a bifunctional component, the reflective layer 21 is unlikely to crack. However, if the amount of the bifunctional component is 20 mol% or more, the ratio of the polar component composed of Si—O is reduced, so that the adhesion of the reflective layer 21 to the substrate 1 is reduced, and peeling easily occurs at these interfaces. Become.
  • tetrafunctional component The molar ratio of the component derived from the tetrafunctional silane compound (hereinafter also referred to as “tetrafunctional component”) to the component derived from the trifunctional silane compound contained in the binder (hereinafter also referred to as “trifunctional component”) is 0 or more. 3 or less.
  • the adhesion of the reflective layer 21 to the substrate 1 is improved.
  • the molar ratio exceeds 3
  • the degree of crosslinking of the silane compound polymer increases. Cracks are likely to occur in the reflective layer 21.
  • the ratio of the bifunctional component, trifunctional component, and tetrafunctional component of the silane compound contained in the binder can be determined by the aforementioned solid Si-NMR.
  • the configuration of the LED device 100A is not particularly limited, and various configurations can be taken.
  • the LED element 2 is not limited to the wire bonding type, for example, as shown in FIG. 3, a metal part (metal electrode part) 3B disposed on the substrate 1 and a flip connected via the protruding electrode 5 It may be a chip type.
  • the shape of the cavity shown in FIGS. 1 and 2 is not particularly limited, and may be, for example, a truncated pyramid shape, a columnar shape, a prismatic shape, or the like.
  • substrate 1 may be flat form as FIG. 4, FIG. 5 shows, for example.
  • the reflective layer 21 ⁇ / b> D may be formed not only in the peripheral region of the LED element 2 but also between the substrate 1 ⁇ / b> C and the LED element 2. That is, the LED element 2 may be disposed on the reflective layer 21D. Since the reflection layer 21D is also formed between the substrate 1C and the LED element 2, the reflection layer 21D reflects the light that goes around the back surface side of the LED element 2, so that the light extraction efficiency from the LED device 100D is increased. It is.
  • silane compound solutions 1 to 10 Each component was mixed in the component ratio shown in Table 1 below to prepare silane compound solutions 1 to 10.
  • Silane compound solution 1 Tetramethoxysilane 7.8% by mass, methyltrimethoxysilane 2.2% by mass, methanol 35% by mass, acetone 35% by mass, water 19.99% by mass and nitric acid 0.01% by mass were mixed. After stirring at 0 ° C. for 3 hours, the reaction was carried out at 26 ° C. with stirring for 3 days to obtain a silane compound solution 1 containing a polysiloxane oligomer. When the molecular weight of the polysiloxane oligomer in the obtained solution was measured by GPC, the weight average molecular weight in terms of polystyrene was 1800. Further, when solid Si-NMR was measured using a solid obtained by curing the solution at 150 ° C. as a sample, peaks corresponding to the Q component and the T component were observed. The ratio of T component, R4 / R3, was 3.2.
  • Silane compound solution 2 A mixture of 7.5% by mass of tetramethoxysilane, 2.5% by mass of methyltrimethoxysilane, 35% by mass of methanol, 35% by mass of acetone, 19.99% by mass of water and 0.01% by mass of nitric acid, After stirring at 0 ° C. for 3 hours, the reaction was carried out with stirring at 26 ° C. for 3 days to obtain a silane compound solution 2 containing a polysiloxane oligomer. When the molecular weight of the polysiloxane oligomer in the obtained solution was measured by GPC, the weight average molecular weight in terms of polystyrene was 2000. Further, when solid Si-NMR was measured using a solid obtained by curing the solution at 150 ° C. as a sample, peaks corresponding to the Q component and the T component were observed. The T component ratio, R4 / R3, was 2.7.
  • Silane compound solution 3 Silane compound solution 3 was obtained by mixing 20% by mass of methyltriethoxysilane, 60% by mass of ethanol, 19.99% by mass of water and 0.01% by mass of hydrochloric acid. When a solid Si-NMR measurement was performed using a solid obtained by curing the solution at 150 ° C. as a sample, only a peak corresponding to the T component was observed.
  • Silane compound solution 4 A mixture of 17% by mass of methyltriethoxysilane, 3% by mass of dimethyldiethoxysilane, 60% by mass of ethanol, 19.99% by mass of water and 0.01% by mass of hydrochloric acid was stirred at 28 ° C. for 2 days, and polysiloxane A silane compound solution 4 containing an oligomer was obtained.
  • the molecular weight of the polysiloxane oligomer in the obtained solution was measured by GPC, the weight average molecular weight in terms of polystyrene was 2300.
  • solid Si-NMR measurement was performed using a solid obtained by curing the solution at 150 ° C. as a sample, and peaks corresponding to the T component and the D component were observed. When the area ratio of the peaks was calculated, the content rate of the D component in the total silicon compound was 17.5 mol%.
  • silane compound solution 5 16% by weight of methyltriethoxysilane, 4% by weight of dimethyldiethoxysilane, 60% by weight of ethanol, 19.99% by weight of water and 0.01% by weight of hydrochloric acid were mixed and stirred for 2 days at 28 ° C.
  • a silane compound solution 5 containing an oligomer was obtained.
  • the molecular weight of the polysiloxane oligomer in the obtained solution was measured by GPC, the weight average molecular weight in terms of polystyrene was 2400.
  • solid Si-NMR measurement was performed using a solid obtained by curing the solution at 150 ° C. as a sample, and peaks corresponding to the T component and the D component were observed. When the area ratio of the peaks was calculated, the content ratio of the D component in the total silicon compound was 23.1 mol%.
  • Silane compound solution 6 Tetraethoxysilane 4.3% by mass, methyltrimethoxysilane 4.3% by mass, dimethyldimethoxysilane 1.4% by mass, methanol 70% by mass, water 19.99% by mass and nitric acid 0.01% by mass were mixed.
  • the mixture was stirred at 25 ° C. for 6 days to obtain a silane compound solution 6 containing a polysiloxane oligomer.
  • the molecular weight of the polysiloxane oligomer in the obtained solution was measured by GPC, the weight average molecular weight in terms of polystyrene was 1600. Further, solid Si-NMR measurement was performed using a solid obtained by curing the solution at 150 ° C.
  • Silane compound solution 7 3.9% by mass of tetraethoxysilane, 3.9% by mass of methyltrimethoxysilane, 1.6% by mass of dimethyldimethoxysilane, 70% by mass of methanol, 19.99% by mass of water and 0.01% by mass of nitric acid were mixed. The mixture was stirred at 25 ° C. for 6 days to obtain a silane compound solution 7 containing a polysiloxane oligomer. When the molecular weight of the polysiloxane oligomer in the obtained solution was measured by GPC, the weight average molecular weight in terms of polystyrene was 1500.
  • solid Si-NMR measurement was performed using a solid obtained by curing the solution at 150 ° C. as a sample, and peaks corresponding to the Q component, the T component, and the D component were observed.
  • the area ratio of the peaks was calculated, the ratio of the Q component to the T component, R4 / R3, was 0.9, and the content of the D component in the total silicon compound was 21.9 mol%.
  • silane compound solution 8 Tetraethoxysilane 7.2% by mass, methyltrimethoxysilane 1.8% by mass, dimethyldimethoxysilane 1% by mass, methanol 70% by mass, water 19.99% by mass and nitric acid 0.01% by mass, The mixture was stirred at 25 ° C. for 6 days to obtain a silane compound solution 8 containing a polysiloxane oligomer.
  • the molecular weight of the polysiloxane oligomer in the obtained solution was measured by GPC, the weight average molecular weight in terms of polystyrene was 1600. Further, solid Si-NMR measurement was performed using a solid obtained by curing the solution at 150 ° C.
  • Silane compound solution 9 9.6% by weight of methyltrimethoxysilane, 10.7% by weight of tetramethoxysilane, 70.5% by weight of n-butanol / methyl-3-methoxypropionate (1: 1 solution), 9.19% by weight of water, Nitric acid 0.01% by mass was stirred for 3 hours to cause a hydrolysis reaction. Then, the reaction solution containing a siloxane polymer was obtained by making it react at 26 degreeC for 2 days. The mass average molecular weight (Mw) of the siloxane polymer in the reaction solution was 1600.
  • Silane compound solution 10 15% by mass of methyltriethoxysilane was dissolved and mixed in 80% by mass of ethylene glycol dimethyl ether. Next, a mixture of 4.99% by mass of pure water and 0.01% by mass of concentrated nitric acid was added dropwise while slowly stirring, then stirred for about 3 hours, and then allowed to stand at room temperature for 6 days to obtain a solution. This solution was distilled under reduced pressure at 120 to 140 mmHg and 40 ° C. for 1 hour to obtain a silane compound solution 10. When the molecular weight of the polysiloxane oligomer in the obtained solution was measured by GPC, the weight average molecular weight in terms of polystyrene was 1800. Further, when solid Si-NMR was measured using a solid obtained by curing the solution at 150 ° C. as a sample, only a peak corresponding to the T component was observed.
  • Silicia 470 Silica (Silicia 470, manufactured by Fuji Silysia Chemical) average particle size of 14 ⁇ m
  • SP-1 Silica (Microbead SP-1, manufactured by JGC Catalysts & Chemicals) Average particle size 5 ⁇ m
  • VM2270 Silica (VM-2270, manufactured by Dow Corning) average particle size 5-15 ⁇ m
  • SS-50F Silica (Nip seal SS-50F, manufactured by Tosoh Silica) Average particle size 1.2 ⁇ m (Metal oxide fine particles)
  • Alu-C Alumina (AEROXIDE Alu-C, manufactured by Nippon Aerosil) average primary particle size 13 nm
  • ZR-210 ZrO 2 particles (TECNADIS-Zr-210, manufactured by TECNAN) Average particle size 10 to 15 nm Ti-
  • Examples 1 to 21 and Comparative Examples 1 to 4 As shown in Tables 3 and 4, the white pigment, the silane compound solution, and the adjustment liquid were mixed at the mixing ratios shown in Tables 3 and 4 to prepare Samples 1 to 25. Specifically, the white pigment (A) and the silane compound solution (B) prepared by the above method were mixed, and mixed and dispersed by the method shown in Table 3 below. And the liquid mixture of a white pigment (A) and a silane compound solution (B) was mixed with the adjustment liquid (C) prepared by the above-mentioned method, and it mixed and disperse
  • ⁇ Reflectance measurement> The coating solution was applied to a transparent 1 mm glass plate and cured by heat treatment at 150 ° C. for 1 hour to prepare a measurement sample having a reflective layer having a thickness of 20 ⁇ m. Then, the reflectance of each sample was measured with a spectrophotometer V-670 (manufactured by JASCO Corporation). The evaluation results were judged as follows. ⁇ : Reflectance at a wavelength of 500 nm was 95% or more ⁇ : Reflectance at a wavelength of 500 nm was 90% or more and less than 95% ⁇ : Reflectance at a wavelength of 500 nm was less than 90%
  • ⁇ Tape peeling experiment> A coating solution was applied on a silver plate and cured by heat treatment at 150 ° C. for 1 hour to prepare a measurement sample having a reflective layer having a thickness of 20 ⁇ m.
  • the work of attaching Nichiban cello tape (registered trademark) (24 mm) to the formed reflective layer and immediately peeling it off was repeated 20 times. And the state of the reflective layer was observed with the microscope for every operation
  • X The peeling of the reflective layer occurred at the time of 15 times of work.
  • Table 4 shows the following. It was found that when the ratio of the bifunctional silane compound exceeds 20% by mass, the adhesion to the substrate is lowered (Comparative Examples 2 and 3 using the silane compound solutions 5 and 7). From the comparison between Comparative Examples 1 and 4 using silane compound solutions 1 and 8 and Examples 1 to 21 using other silane compound solutions, the value of tetrafunctional silane compound / 3 functional silane compound exceeds 3. It was found that cracks occurred during film formation.
  • Example 15 by comparing Example 15 and Example 21, it was found that by preliminarily polymerizing and oligomerizing the silane compound, shrinkage during heat curing was suppressed and cracks were less likely to occur.
  • Example 14 From the comparison between Example 14 and Examples 1 to 12 and 15 to 21, it was found that the reflectance was lowered when the white pigment content was low.
  • Example 13 From comparison between Example 13 and Examples 1 to 12 and 15 to 21, it was found that if the white pigment content was too high, the amount of binder was insufficient and powder was likely to come out from the surface.

Abstract

 本願発明は、LED素子からの出射光等を反射するための反射層の劣化が少なく、長期間に亘り、効率よく光を取り出すことが可能なLED装置、及びその製造方法を提供することを課題とする。 当該課題を解決するため、白色顔料と、シラン化合物と、溶媒と、を含む塗布液であって、前記シラン化合物総量中の2官能シラン化合物の比率をR2(モル%)、3官能シラン化合物の比率をR3(モル%)、4官能シラン化合物の比率をR4(モル%)、としたときに、下記式1及び式2 0≦R2<20 (式1) 0≦R4/R3≦3 (式2) の両条件を満たす、塗布液とする。

Description

塗布液、及びその硬化物からなる反射層を備えるLED装置
 本発明は、塗布液及びその硬化物からなる反射層を備えるLED装置に関する。
 近年、窒化ガリウム(GaN)系の青色LED(Light Emitting Diode:発光ダイオード)チップの近傍に、YAG蛍光体等の蛍光体を配置し、青色LEDチップから出射する青色光と、青色光を受けた蛍光体から出射する黄色光とを混色し、白色光を得るLED装置が広く用いられている。また、各種蛍光体を青色LEDチップの近傍に配置し、青色LEDチップから出射する青色光と、青色光を受けて蛍光体が出射する赤色光と緑色光とを混色し、白色光を得るLED装置も開発されている。
 白色LED装置には様々な用途があり、例えば、蛍光灯や白熱電灯の代替品としての需要がある。このような照明装置は白色LED装置を複数個組み合わせた構成になっており、個々の白色LED装置の光取り出し効率をいかに上昇させるかがコスト低減、長寿命化を実現させる上で重要になってくる。
 従来のLED装置では、LED素子を配置する基板等が、LED素子の出射光や、蛍光体が発する蛍光を吸収しやすく、光取り出し性が十分でない、との問題があった。そこで、一般的なLED装置には、LED素子の周囲に、光反射率が高いリフレクタが配置されている。このようなリフレクタは、一般的に金属メッキ等から形成されている。
 しかし、金属メッキからなるリフレクタは、電気の導通を防ぐため、基板全面に形成することができない。そのため、リフレクタが形成されていない領域では、基板に光が吸収されてしまう、という問題があった。
 一方、金属メッキを樹脂層で覆ったリフレクタや(特許文献1)、白色の樹脂層で、金属メッキを覆ったリフレクタも提案されている(特許文献2)。
特開2005-136379号公報 特開2011-23621号公報
 しかしながら、リフレクタが樹脂からなる場合や、特許文献1の技術のように、金属メッキからなるリフレクタ表面を樹脂で被覆した場合には、樹脂が熱や光により劣化し、経時で反射層の光反射性が低下したり、電気が導通してしまう、という問題があった。特に、車載用のヘッドライト等、大光量が必要とされる用途において、樹脂が劣化しやすかった。
 また、特許文献2の技術のように、白色顔料が含まれる熱硬化性樹脂で、基板や金属メッキを被覆した場合、有機物が主骨格である熱硬化性樹脂(エポキシ樹脂等)が高温で着色する。その結果、反射率の低下を招き、光取出し効率が低下するという問題があった。
 一方、比較的耐熱性の高いシリコーン樹脂で、金属メッキ等を被覆することも検討されているが、シリコーン樹脂は、ガスを透過し易い。したがって、シリコーン樹脂で銀や銀メッキを被覆すると、空気中に存在する微量の硫化水素により、銀が変色して反射率が低下しやすい。したがって、光取出し効率の低下を十分に抑制できなかった。
 本発明はこのような状況に鑑みてなされたものである。すなわち、本発明は、長期間に亘って劣化が少なく、かつ効率良く光を反射可能なLED装置用の反射層、並びにこの反射層を得るための塗布液を提供することを目的とする。
 本発明は以下の発明に関する。
 1.白色顔料と、シラン化合物と、溶媒と、を含む塗布液であって、前記シラン化合物総量中の2官能シラン化合物の比率をR2(モル%)、3官能シラン化合物の比率をR3(モル%)、4官能シラン化合物の比率をR4(モル%)、としたときに、下記式1及び式2
 0≦R2<20           (式1)
 0≦R4/R3≦3         (式2)
の両条件を満たす、塗布液。
 2.前記2官能シラン化合物、前記3官能シラン化合物、前記4官能シラン化合物からなる群から選ばれる少なくとも1種が、あらかじめ重合されている、上記1に記載の塗布液。
 3.前記塗布液が、前記白色顔料とは別に、平均粒径5nm以上100nm未満の金属酸化物微粒子、平均粒径100nm以上100μm以下の無機粒子、粘土鉱物粒子、からなる群から選ばれる少なくとも1種をさらに含有する、上記1または2に記載の塗布液。
 4.前記粘土鉱物粒子が、層状ケイ酸塩鉱物、イモゴライト、アロフェン、からなる群から選ばれる少なくとも1種である、上記3に記載の塗布液。
 5.前記塗布液がシランカップリング剤をさらに含有する、上記1~4のいずれか1つに記載の塗布液。
 6.前記塗布液中の溶媒が、1価のアルコールおよび2価以上の多価アルコールの少なくとも一方を含有する、上記1~5のいずれか1つに記載の塗布液。
 7.前記白色顔料が、酸化チタン、酸化アルミニウム、硫酸バリウム、酸化亜鉛、窒化ホウ素からなる群から選ばれる少なくとも1種である、上記1~6のいずれか1つに記載の塗布液。
 8.前記塗布液の粘度が5mPa・sを超え、500mPa・s以下である、上記1~7のいずれか1つに記載の塗布液。
 9.前記塗布液の加熱硬化後の固形分中の白色顔料の濃度が60質量%以上、95質量%以下である、上記1~8のいずれか1つに記載の塗布液。
 10.基板と、前記基板上に配置されたLED素子と、前記基板上の前記LED素子の少なくとも周囲に配置された反射層と、前記LED素子及び前記反射層を覆う波長変換層とを有するLED装置であって、前記反射層は、白色顔料、シラン化合物、溶媒を含み、かつ前記シラン化合物総量中の2官能シラン化合物の比率をR2(モル%)、3官能シラン化合物の比率をR3(モル%)、4官能シラン化合物の比率をR4(モル%)、としたときに、下記式1及び式2
 0≦R2<20           (式1)
 0≦R4/R3≦3         (式2)
の両条件を満たす、塗布液を加熱硬化して得られる、LED装置。
 11.前記反射層は、前記LED素子の配置領域を除く前記基板上に配置されている、上記10に記載のLED装置。
 12.前記反射層は、前記基板と前記LED素子の間に形成されている上記10に記載のLED装置。
 本発明の塗布液によれば、長期間に亘って劣化が少なく、かつ効率良く光を反射可能なLED装置用の反射層が提供され、ひいては長期間に亘り、効率よく光を取り出すことが可能なLED装置が提供される。
実施形態に係るLED装置の上面図である。 実施形態に係るLED装置の断面図である。 実施形態の変形例に係るLED装置の断面図である。 実施形態の変形例に係るLED装置の断面図である。 実施形態の変形例に係るLED装置の断面図である。 固体Si-NMRスペクトルの一例を示す図である。
 以下に、実施形態を挙げて本発明の説明を行うが、本発明は以下の実施形態に限定されるものではない。図中同一の機能又は類似の機能を有するものについては、同一又は類似の符号を付して説明を省略する。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。
 [塗布液]
 実施形態に係る塗布液には、(A)白色顔料と、(B)シラン化合物と、(C)溶媒と、が含まれる。塗布液には、平均粒径5nm以上100nm未満の金属酸化物微粒子や、平均粒径100nm以上100μm以下の無機粒子、粘土鉱物粒子、シランカップリング剤等がさらに含まれてもよい。
 当該塗布液では、(B)シラン化合物総量中の2官能シラン化合物の比率をR2(モル%)、3官能シラン化合物の比率をR3(モル%)、4官能シラン化合物の比率をR4(モル%)、としたときに、下記式1及び式2
 0≦R2<20           (式1)
 0≦R4/R3≦3         (式2)
の両条件が満たされる。
 式1において、R2が20以上であると、塗布液を硬化して得られる層と、基材との密着性が低くなる。また塗布液を硬化して得られる層のガスバリア性が低下し、硫化耐性が低下するおそれがある。そのため、R2は、上記範囲であることが好ましく、0≦R2<15がより好ましく、0≦R2<10がさらに好ましい。
 一方、式2においてR4/R3の値が3を超えると、成膜時にクラックが発生するおそれがある。そのため、R4/R3の値は、3以下であることが好ましく、0≦R4/R3<2であることがより好ましく、0≦R4/R3<1であることがさらに好ましい。
 塗布液中におけるシラン化合物の2官能シラン化合物、3官能シラン化合物、4官能シラン化合物の比率は、塗布液を150℃で乾燥固化させて得られた試料の固体Si-NMRスペクトルから求めることができる。
 固体Si-核磁気共鳴(以下「NMR:Nuclear Magnetic Resonance」という。)スペクトルについて説明する。
 4官能シラン化合物の重合体は、SiO・nHOの示性式で表されるが、構造的には、ケイ素原子Siの四面体の各頂点に酸素原子Oが結合され、これらの酸素原子Oに更にケイ素原子Siが結合してネット状に広がった構造を有する。
 以下の模式図(A)は、上記の四面体構造を無視し、Si-Oのネット構造を表わしたものである。模式図(B)は、Si-Oのネット構造において、酸素原子Oの一部が他の成員(ここでは-H)で置換された場合を表わしたものである。4官能シラン化合物由来の模式図(A)に示されるように、4個の-OSiと結合した原子(Q)や、模式図(B)に示されるように3個の-OSiと結合した原子(Q)等がある。そして、固体Si-NMRスペクトルにおいて、4官能シラン化合物由来のケイ素原子に基づくピークは、Qサイトと総称され、上記各原子由来のピークは、Qピーク、Qピーク、・・・と呼ばれる。本明細書においてはQサイトに由来するQ~Qの各ピークをQピーク群と呼ぶこととする。有機置換基を含まないシリカ膜のQピーク群は、通常ケミカルシフト-80~-130ppmの領域に連続した多峰性のピークとして観測される。
Figure JPOXMLDOC01-appb-C000001
 これに対し、酸素原子が3つ結合し、それ以外の原子(通常は炭素である。)が1つ結合しているケイ素原子(即ち、3官能シラン化合物由来のケイ素)は、一般にTサイトと総称される。Tサイトに由来するピークはQサイトの場合と同様に、T~Tの各ピークとして観測される。本明細書においてはTサイトに由来する各ピークをTピーク群と呼ぶこととする。Tピーク群は一般にQピーク群より高磁場側(通常ケミカルシフト-80~-40ppm)の領域に連続した多峰性のピークとして観測される。
 さらに、酸素原子が2つ結合するとともに、それ以外の原子(通常は炭素である)が2つ結合しているケイ素原子(即ち、2官能シラン化合物由来のケイ素)は、一般にDサイトと総称される。Dサイトに由来するピークも、QサイトやTサイトに由来するピーク群と同様に、D~Dの各ピーク(Dピーク群)として観測され、QやTのピーク群より更に、高磁場側の領域(通常ケミカルシフト-3~-40ppmの領域)に、多峰性のピークとして観測される。
 同様に、酸素原子が1つ結合するとともに、それ以外の原子(通常は、炭素原子である)が3つ結合しているケイ素原子は、一般にMサイトと総称されて、最も高磁場側の領域(通常ケミカルシフト0~-3ppm)に多峰性のピークとして観測される。
 ここで、図6を参照する。図6は、シラン化合物の重合体の固体Si-NMRスペクトルの一例である。図6中、横軸はケミカルシフトを示しており、縦軸は各構造の化合物の存在量に依存した「相対強度」を示している。
 図6中、D11は実測データを示す。D12はガウス関数にてモデル化したデータを示す。D13は差スペクトルを示す。また、ピークP11は、Dピーク群を示し、当該Dピーク群のピークトップは、ケミカルシフト-20.0ppm近傍に存在する。また、ピークP12は、Tピーク群を示し、当該Tピーク群のピークトップは、ケミカルシフト-60.0ppm近傍に存在する。さらに、ピークP13は、Qピーク群を示し、当該Qピーク群のピークトップは、ケミカルシフト-100.0~-110ppm近傍に存在する。つまり、図6は、重合体に2官能シラン化合物由来のケイ素、3官能シラン化合物由来のケイ素、4官能シラン化合物由来のケイ素が含まれることを示している。
 これらのD、T、Qの各ピーク群の互いの面積比は、各ピーク群に対応する環境におかれたケイ素原子のモル比と夫々等しい。そのため、Qピーク群、Tピーク群、及びDピーク群の合計面積に対する、各ピーク群の面積の割合が、塗布液に含まれるケイ素原子の全モル量に対する、各シラン化合物(4官能シラン化合物、3官能シラン化合物、及び2官能シラン化合物)のモル比率と等しくなる。
 ここで、本発明の塗布液は、塗膜の硬化時にクラックが生じづらい。また当該塗布液を硬化して得られる層は、無機材料からなる層に対する密着性が良好である。さらに光反射特性や熱反射特性にも優れる。このような特性を活かせるのであれば本発明の塗布液の用途は特に制限されないが、本発明の塗布液は、LED装置の反射層を形成するための塗布液に、好適である。以下、塗布液を、反射層形成用塗布液とした場合を例に説明する。
 以下に各成分について詳細に説明する。
(白色顔料)
 塗布液に含まれる白色顔料は、反射性の高い粒子であれば、特に制限されない。
 白色顔料は、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸マグネシウム、硫酸バリウム、硫酸カルシウム、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化チタン、酸化アルミニウム、酸化ジルコニウム、硫化亜鉛、水酸化アルミニウム、窒化ホウ素、窒化アルミニウム、チタン酸カリウム、チタン酸バリウム、チタン酸アルミニウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、ヒドロキシアパタイト、等から選ばれる少なくとも一種でありうる。中でも酸化チタン、酸化アルミニウム、硫酸バリウム、酸化亜鉛及び窒化ホウ素の群より選ばれる1種又は2種以上の組合せからなる混合物が好ましい。
 白色顔料に窒化ホウ素が含まれると、得られる反射層の熱伝導性が高くなる。その結果、発光チップから発生した熱を、速やかに基板から逃がすことができる。したがって、LED装置の温度を低く保つことができ、装置寿命を長くすることができる。
 白色顔料の平均一次粒径は、100nm以上、20μm以下であることが好ましく、100nmより大きく10μm以下であることがより好ましく、さらに好ましくは200nm~2.5μmである。「平均一次粒径」とは、レーザー回折式粒度分布計で測定されるD50の値をいう。レーザー回折式粒度分布測定装置の例には、島津製作所製のレーザー回折式粒度分布測定装置等がある。
 塗布液に含まれる白色顔料の量は、塗布液に含まれる溶媒以外の成分の総質量に対して、60~95質量%であることが好ましく、70~90質量%であることがより好ましい。白色顔料の量が60質量%未満であると、得られる反射層の光反射性が十分とならず、光取り出し効率が高まらない場合がある。一方、白色顔料の含有量が95質量%を超えると、相対的にバインダの量が少なくなり、反射層の強度が低くなったり、反射層から白色顔料が欠落するおそれがある。
(シラン化合物)
 塗布液中に含まれるシラン化合物は、前述のように、2官能シラン化合物、3官能シラン化合物、または4官能シラン化合物でありうる。シラン化合物は、モノマーの状態であってもよいが;これらの重合物(オリゴマー)であってもよい。シラン化合物が、あらかじめ数個~数十個のモノマーが重合したオリゴマーであると、塗布液を硬化させたときの収縮が少なくなり、クラックが発生しにくくなる。
 塗布液に含まれるシラン化合物の総量は、塗布液に含まれる溶媒以外の成分の総質量に対して、5~40質量%であることが好ましく、10~30質量%であることがより好ましい。シラン化合物の総量が、5質量%未満であると、得られる反射層において、シラン化合物の重合体によって、白色顔料が十分に保持されない。その結果、反射層の表面に顔料粉が発生し易い。また、シラン化合物の総量が、40質量%を超えると、反射層の成膜時に硬化収縮が生じやすくなり、クラックが発生し易くなる。
・3官能シラン化合物
 3官能シラン化合物の例には、下記一般式(III)で表される化合物が含まれる。
  RSi(OR       (III)
 上記一般式中、Rは、それぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。また、Rは、水素原子またはアルキル基を表す。
 3官能シラン化合物の具体例には、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリペンチルオキシシラン、トリフェニルオキシシラン、ジメトキシモノエトキシシラン、ジエトキシモノメトキシシラン、ジプロポキシモノメトキシシラン、ジプロポキシモノエトキシシラン、ジペンチルオキシルモノメトキシシラン、ジペンチルオキシモノエトキシシラン、ジペンチルオキシモノプロポキシシラン、ジフェニルオキシルモノメトキシシラン、ジフェニルオキシモノエトキシシラン、ジフェニルオキシモノプロポキシシラン、メトキシエトキシプロポキシシラン、モノプロポキシジメトキシシラン、モノプロポキシジエトキシシラン、モノブトキシジメトキシシラン、モノペンチルオキシジエトキシシラン、モノフェニルオキシジエトキシシラン等のモノヒドロシラン化合物;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリペンチルオキシシラン、メチルモノメトキシジエトキシシラン、メチルモノメトキシジプロポキシシラン、メチルモノメトキシジペンチルオキシシラン、メチルモノメトキシジフェニルオキシシラン、メチルメトキシエトキシプロポキシシラン、メチルモノメトキシモノエトキシモノブトキシシラン等のモノメチルシラン化合物;エチルトリメトキシシラン、エチルトリプロポキシシラン、エチルトリペンチルオキシシラン、エチルトリフェニルオキシシラン、エチルモノメトキシジエトキシシラン、エチルモノメトキシジプロポキシシラン、エチルモノメトキシジペンチルオキシシラン、エチルモノメトキシジフェニルオキシシラン、エチルモノメトキシモノエトキシモノブトキシシラン等のモノエチルシラン化合物;プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリペンチルオキシシラン、プロピルトリフェニルオキシシラン、プロピルモノメトキシジエトキシシラン、プロピルモノメトキシジプロポキシシラン、プロピルモノメトキシジペンチルオキシシラン、プロピルモノメトキシジフェニルオキシシラン、プロピルメトキシエトキシプロポキシシラン、プロピルモノメトキシモノエトキシモノブトキシシラン等のモノプロピルシラン化合物;ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリプロポキシシラン、ブチルトリペンチルオキシシラン、ブチルトリフェニルオキシシラン、ブチルモノメトキシジエトキシシラン、ブチルモノメトキシジプロポキシシラン、ブチルモノメトキシジペンチルオキシシラン、ブチルモノメトキシジフェニルオキシシラン、ブチルメトキシエトキシプロポキシシラン、ブチルモノメトキシモノエトキシモノブトキシシラン等のモノブチルシラン化合物が含まれる。
 これらの3官能シラン化合物の一般式(III)で表されるRがメチル基であると、得られる反射層表面の疎水性が低くなる。これにより、反射層上に波長変換層を成膜する際、波長変換層を成膜するための組成物が濡れ広がりやすくなる。その結果、反射層と波長変換層との密着性が高まる。一般式(III)で表されるRがメチル基である3官能シラン化合物の例には、メチルトリメトキシシラン、及びメチルトリエトキシシランが含まれ、メチルトリメトキシシランであることが特に好ましい。
・4官能シラン化合物
 4官能シラン化合物の例には、下記一般式(IV)で表される化合物が含まれる。
  Si(OR   …(IV)
 上記一般式(IV)中、Rはそれぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。
 4官能シラン化合物の具体例には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシランテトラブトキシシラン、テトラペンチルオキシシラン、テトラフェニルオキシシラン、トリメトキシモノエトキシシラン、ジメトキシジエトキシシラン、トリエトキシモノメトキシシラン、トリメトキシモノプロポキシシラン、モノメトキシトリブトキシシラン、モノメトキシトリペンチルオキシシラン、モノメトキシトリフェニルオキシシラン、ジメトキシジプロポキシシラン、トリプロポキシモノメトキシシラン、トリメトキシモノブトキシシラン、ジメトキシジブトキシシラン、トリエトキシモノプロポキシシラン、ジエトキシジプロポキシシラン、トリブトキシモノプロポキシシラン、ジメトキシモノエトキシモノブトキシシラン、ジエトキシモノメトキシモノブトキシシラン、ジエトキシモノプロポキシモノブトキシシラン、ジプロポキシモノメトキシモノエトキシシラン、ジプロポキシモノメトキシモノブトキシシラン、ジプロポキシモノエトキシモノブトキシシラン、ジブトキシモノメトキシモノエトキシシラン、ジブトキシモノエトキシモノプロポキシシラン、モノメトキシモノエトキシモノプロポキシモノブトキシシランなどのアルコキシシラン、またはアリールオキシシラン等が含まれる。これらの中でもテトラメトキシシラン、テトラエトキシシランが好ましい。
・2官能シラン化合物
 2官能シラン化合物の例には、下記一般式(II)で表される化合物が含まれる。
  R Si(OR     (II)
 上記一般式(II)中、Rはそれぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。また、Rは水素原子またはアルキル基を表す。
 2官能のシラン化合物の具体例には、ジメトキシシラン、ジエトキシシラン、ジプロポキシシラン、ジペンチルオキシシラン、ジフェニルオキシシラン、メトキシエトキシシラン、メトキシプロポキシシラン、メトキシペンチルオキシシラン、メトキシフェニルオキシシラン、エトキシプロポキシシラン、エトキシペンチルオキシシラン、エトキシフェニルオキシシラン、メチルジメトキシシラン、メチルメトキシエトキシシラン、メチルジエトキシシラン、メチルメトキシプロポキシシラン、メチルメトキシペンチルオキシシラン、メチルメトキシフェニルオキシシラン、エチルジプロポキシシラン、エチルメトキシプロポキシシラン、エチルジペンチルオキシシラン、エチルジフェニルオキシシラン、プロピルジメトキシシラン、プロピルメトキシエトキシシラン、プロピルエトキシプロポキシシラン、プロピルジエトキシシラン、プロピルジペンチルオキシシラン、プロピルジフェニルオキシシラン、ブチルジメトキシシラン、ブチルメトキシエトキシシラン、ブチルジエトキシシラン、ブチルエトキシプロポキシシシラン、ブチルジプロポキシシラン、ブチルメチルジペンチルオキシシラン、ブチルメチルジフェニルオキシシラン、ジメチルジメトキシシラン、ジメチルメトキシエトキシシラン、ジメチルジエトキシシラン、ジメチルジペンチルオキシシラン、ジメチルジフェニルオキシシラン、ジメチルエトキシプロポキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルメトキシプロポキシシラン、ジエチルジエトキシシラン、ジエチルエトキシプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジペンチルオキシシラン、ジプロピルジフェニルオキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジブチルジプロポキシシラン、ジブチルメトキシペンチルオキシシラン、ジブチルメトキシフェニルオキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジペンチルオキシシラン、メチルエチルジフェニルオキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、メチルブチルジメトキシシラン、メチルブチルジエトキシシラン、メチルブチルジプロポキシシラン、メチルエチルエトキシプロポキシシラン、エチルプロピルジメトキシシラン、エチルプロピルメトキシエトキシシラン、ジプロピルジメトキシシラン、ジプロピルメトキシエトキシシラン、プロピルブチルジメトキシシラン、プロピルブチルジエトキシシラン、ジブチルメトキシエトキシシラン、ジブチルメトキシプロポキシシラン、ジブチルエトキシプロポキシシラン等が含まれる。中でもジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシランが好ましい。
・オリゴマー
 シラン化合物のオリゴマーは、2官能シラン化合物、3官能シラン化合物、及び4官能シラン化合物を所望の比率で混合し、酸触媒、水、溶媒の存在下で反応させて得られる。オリゴマーの分子量は、反応時間、温度、水の濃度等により調整される。
 オリゴマーは、GPC(ゲルパーミエーションクロマトグラフ)で測定される重量平均分子量が500~20000であることが好ましく、より好ましくは1000~10000であり、さらに好ましくは1500~6000である。オリゴマーの重合度が高すぎると塗布液の粘度が高くなったり、成分が析出するおそれがある。
 オリゴマー調製用の溶媒の例には、メタノール、エタノール、プロパノール、n-ブタノール等の一価アルコール;メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート等のアルキルカルボン酸エステル;エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ヘキサントリオール等の多価アルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等の多価アルコールのモノエーテル類、あるいはこれらのモノアセテート類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン、メチルイソアミルケトン等のケトン類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル等の多価アルコールの水酸基をすべてアルキルエーテル化した多価アルコールエーテル類;等が含まれる。これらは1種単独で添加してもよく、また2種以上を添加してもよい。
(溶媒)
 塗布液に含まれる溶媒は、シラン化合物と相溶性があり、白色顔料等を均一に分散可能であれば特に制限されないが、1価のアルコールおよび2価以上の多価アルコールの少なくともいずれか一方が含まれることが好ましい。1価のアルコールが含まれると、塗布液が濡れ広がりやすくなり、塗布し易くなる。一方、多価アルコールが含まれると、塗布液の粘度が高まりやすく、白色顔料が沈降し難くなる。
 1価のアルコールの例には、メタノール、エタノール、プロパノール、ブタノール等が含まれる。1価のアルコールの含有量は、塗布液全体に対して、10~50質量%であることが好ましく、20~40質量%であることがより好ましい。
 一方、多価アルコールは、ジオールまたはトリオールのいずれであってもよい。多価アルコールの例には、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリン、1,3-ブタンジオール、1,4-ブタンジオールなどが挙げられ、好ましくは、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール等が含まれる。多価アルコールの含有量は、塗布液全体に対して、10~50質量%であることが好ましく、20~40質量%であることがより好ましい。
 溶媒には、水が含まれてもよい。塗布液に水が含まれると、粘土鉱物粒子の層間に水が入り込んで粘土鉱物粒子が膨潤し、塗布液の粘度がより高まりやすくなる。
 塗布液に含まれる溶媒の総量は、塗布液全量に対して20~80質量%であることが好ましく、より好ましくは30~70質量%である。溶媒の総量が過剰に少ないと、塗布液の粘度が高まり、塗布安定性が低下する。一方、溶媒の総量が過剰に多いと、塗布液の粘度が低くなり、塗布液中で白色顔料が沈降する場合がある。
(粘土鉱物粒子)
 塗布液には、粘土鉱物粒子が含まれてもよい。塗布液に粘土鉱物粒子が含まれると、塗布液の粘度が高まり、白色顔料の沈降が抑制される。粘土鉱物粒子の例には、層状ケイ酸塩鉱物、イモゴライト、アロフェン等が含まれる。層状ケイ酸塩鉱物は、雲母構造、カオリナイト構造、またはスメクタイト構造を有する粘土鉱物が好ましい。
 層状ケイ酸塩鉱物粒子は、塗布液の静置状態でカードハウス構造を形成しやすい。層状ケイ酸塩鉱物粒子がカードハウス構造を形成すると、塗布液の粘度が大幅に高まる。一方で、カードハウス構造は、一定の圧力を加えると崩れやすく、これにより塗布液の粘度が低下する。すなわち、塗布液に層状ケイ酸塩鉱物粒子が含まれると、静置状態では塗布液の粘度が高くなり、一定の圧力をかけた場合には塗布液の粘度が低くなる。
 このような層状ケイ酸塩鉱物の例には、天然または合成の、ヘクトライト、サポナイト、スチブンサイト、ハイデライト、モンモリロナイト、ノントライト、ベントナイト、ラポナイト等のスメクタイト属粘土鉱物や、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母属粘土鉱物、白雲母、金雲母、フッ素金雲母、絹雲母、カリウム四ケイ素雲母等の非膨潤性雲母属粘土鉱物、およびバーミキュラライトやカオリナイト、またはこれらの混合物が含まれる。
 粘土鉱物粒子の市販品の例には、ラポナイトXLG(英国、ラポート社製合成ヘクトライト類似物質)、ラポナイトRD(英国、ラポート社製合成ヘクトライト類似物質)、サーマビス(独国、ヘンケル社製合成ヘクトライト類似物質)、スメクトンSA-1(クニミネ工業(株)製サポナイト類似物質)、ベンゲル(ホージュン(株)販売の天然ベントナイト)、クニビアF(クニミネ工業(株)販売の天然モンモリロナイト)、ビーガム(米国、バンダービルト社製の天然ヘクトライト)、ダイモナイト(トピー工業(株)製の合成膨潤性雲母)、ミクロマイカ(コープケミカル(株)製の合成非膨潤性雲母)、ソマシフ(コープケミカル(株)製の合成膨潤性雲母)、SWN(コープケミカル(株)製の合成スメクタイト)、SWF(コープケミカル(株)製の合成スメクタイト)、M-XF((株)レプコ製の白雲母)、S-XF((株)レプコ製の金雲母)、PDM-800(トピー工業(株)製のフッ素金雲母)、セリサイトOC-100R(オーケム通商(株)製の絹雲母)、PDM-K(G)325(トピー工業(株)製のカリウム四ケイ素雲母)等が含まれる。
 粘土鉱物粒子は、層状ケイ酸塩鉱物、イモゴライト、アロフェン、からなる群から選ばれる少なくとも1種であることが好ましい。これらの粒子は、表面積が非常に大きく、少量で塗布液の粘度を高めることができる。
 粘土鉱物粒子の含有量は、塗布液全質量に対して0.1~5質量%であることが好ましく、0.2~2質量%であることがより好ましい。粘土鉱物粒子の含有量が少ないと、塗布液の粘度が高まりにくく、白色顔料が沈降しやすくなる。一方、粘土鉱物粒子の含有量が過剰であると、塗布液の粘度が高くなり過ぎて、塗布液が塗布装置から均一に吐出されないおそれがある。
 粘土鉱物粒子の表面は、塗布液での溶媒との相溶性を考慮して、アンモニウム塩等で修飾(表面処理)されていてもよい。
(金属酸化物微粒子)
 塗布液には、平均粒径が5nm以上100nm未満の金属酸化物微粒子が含まれてもよい。塗布液中に金属酸化物微粒子が含まれると、得られる反射層表面に凹凸が生じ、反射層と波長変換層との間にアンカー効果が発現する。その結果、反射層と波長変換層との密着性が非常に良好となる。また、塗布液に金属酸化物微粒子が含まれると、ポリシロキサンの重縮合時や乾燥時に膜に生じる応力が緩和され、得られる反射層にクラックが生じることが抑制される。
 金属酸化物微粒子の種類は、特に制限されないが、比較的入手が容易である、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛、酸化スズ、酸化イットリウム、酸化セリウム、酸化チタン、酸化銅、酸化ビスマスの群から選択される1種以上の金属酸化物微粒子であることが好ましい。
 金属酸化物微粒子の表面は、シランカップリング剤やチタンカップリング剤で処理されていてもよい。表面処理によって、金属酸化物微粒子と、ポリシロキサンや溶媒との相溶性が高まる。
 金属酸化物微粒子の平均粒径は、上述したそれぞれの効果を考慮して5~100nmであることが好ましく、より好ましくは5~80nm、さらに好ましくは5~50nmである。このような範囲の平均粒径とすることで、反射層表面に微細な凹凸を形成でき、前述のアンカー効果が得られる。金属酸化物微粒子の平均粒径は、例えばコールターカウンター法によって測定することができる。
 また、金属酸化物微粒子は、多孔質であってもよく、その比表面積は200m/g以上であることが好ましい。金属酸化物微粒子が多孔質であると、多孔質の空隙部に不純物が吸着される。
 塗布液に含まれる金属酸化物微粒子の量は、塗布液に含まれる溶媒以外の成分の総質量に対して0.1~20質量%であることが好ましく、5~10質量%であることがより好ましい。金属酸化物微粒子の量が少なすぎると、前述のアンカー効果が十分とならない。一方で、多すぎると、相対的にポリシロキサンの量が減少し、得られる反射層の強度が低下するおそれがある。
(無機粒子)
 塗布液には、平均粒径100nm以上100μm以下の無機粒子が含まれてもよい。白色顔料粒子と粘土鉱物粒子との界面に生じる隙間が無機粒子によって埋まり、塗布液の粘度が高まる。
 無機粒子の例には、酸化ケイ素などの酸化物粒子、フッ化マグネシウムなどのフッ化物粒子など、またはこれらの混合物が含まれる。無機粒子は、好ましくは酸化物粒子であり、特に好ましくは酸化ケイ素である。
 無機粒子の表面は、シランカップリング剤やチタンカップリング剤で処理されていてもよい。表面処理によって、無機粒子と、ポリシロキサンや溶媒との相溶性が高まる。
 塗布液における無機粒子の含有量は、塗布液全質量に対して0.1~10質量%であることが好ましく、0.2~5質量%であることが、より好ましい。無機粒子が10質量%を超えると、反射層の成膜時にクラックを生じ易く、0.1%未満であると塗布液の増粘効果が低くなるからである。
 無機粒子の平均粒径は、白色顔料粒子と粘土鉱物粒子との界面に生じる隙間を埋めるとの観点から、100nm以上50μm以下であることが好ましく、1μm以上30μm以下であることが、より好ましい。無機粒子の平均粒径は、例えばコールターカウンター法によって測定することができる。
(シランカップリング剤)
 塗布液には、さらにシランカップリング剤が含まれることが好ましい。塗布液にシランカップリング剤が含まれると、得られる反射層と基板との密着性が高まり、LED装置の耐久性が向上する。
 シランカップリング剤の例には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、3-ウレイドプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン等が含まれる。塗布液には、これらが一種のみで含まれてもよく、二種以上含まれてもよい。
 塗布液に含まれるシランカップリング剤の量は、塗布液に含まれる溶媒以外の成分の総質量に対して0.5~10質量%であることが好ましく、1~7質量%であることが、より好ましい。シランカップリング剤が少なすぎると、得られる反射層と基板との密着性が十分に高まらず、多すぎると耐熱性が低下する恐れがある。
(金属アルコキシドまたは金属キレート)
 塗布液には、Si元素以外の金属元素を含む金属アルコキシドまたは金属キレートが含まれてもよい。金属アルコキシドまたは金属キレートは、反射層成膜時に、前述のシラン化合物や、基板表面に存在する水酸基と、メタロキサン結合を形成する。当該メタロキサン結合は非常に強固であるため、塗布液に金属アルコキシドまたは金属キレートが含まれると、得られる反射層と基材との密着性が高まる。
 また、金属アルコキシドまたは金属キレートの一部は、塗布液の硬化膜(反射層)中で、メタロキサン結合からなるナノサイズのクラスタを形成する。このクラスタの光触媒効果で、LED装置近傍に存在する金属腐食性の高い硫化ガス等を酸化し、腐食性の低い二酸化硫黄ガス等に変化させることが可能である。
 金属アルコキシドまたは金属キレートに含まれる金属元素は、Si以外の4族または13族の金属元素であることが好ましく、以下の一般式(V)で表される化合物が好ましい。
  Mm+m-n   (V)
 一般式(V)中、Mは4族または13族の金属元素(Siを除く)を表し、mはMの価数(3または4)を表す。Xは加水分解性基を表し、nはX基の数(2以上4以下の整数)を表す。ただし、m≧nである。Yは1価の有機基を表す。
 一般式(V)において、Mで表される4族または13族の金属元素は、アルミニウム、ジルコニウム、チタンであることが好ましく、ジルコニウムであることが特に好ましい。ジルコニウムのアルコキシドまたはキレートの硬化物は、一般的なLED素子の発光波長域(特に青色光(波長420~485nm))に吸収波長を有さない。つまり、当該硬化物には、LED素子からの光が吸収され難い。
 一般式(V)において、Xで表される加水分解性基は、水で加水分解され、水酸基を生成する基でありうる。加水分解性基の好ましい例には、炭素数が1~5の低級アルコキシ基、アセトキシ基、ブタノキシム基、クロル基等が含まれる。一般式(V)において、Xで表される基は、全て同一の基であってもよく、異なる基であってもよい。
 Xで表される加水分解性基は、反射層の成膜時に加水分解されて遊離する。そのためXで表される基から加水分解後に生成する化合物は、中性かつ軽沸であることが好ましい。そこで、Xで表される基は、炭素数1~5の低級アルコキシ基であることが好ましく、より好ましくはメトキシ基、またはエトキシ基である。
 一般式(V)において、Yで表される1価の有機基は、一般的なシランカップリング剤に含まれる1価の有機基でありうる。具体的には、炭素数が1~1000、好ましくは500以下、より好ましくは100以下、さらに好ましくは40以下、特に好ましくは6以下である脂肪族基、脂環族基、芳香族基、脂環芳香族基でありうる。Yで表される有機基は、脂肪族基、脂環族基、芳香族基、及び脂環芳香族基が連結基を介して結合した基であってもよい。連結基は、O、N、S等の原子またはこれらを含む原子団であってもよい。
 Yで表される有機基は、置換基を有してもよい。置換基の例には、F、Cl、Br、I等のハロゲン原子;ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、メルカプト基、エポキシ基、エポキシシクロヘキシル基、グリシドキシ基、アミノ基、シアノ基、ニトロ基、スルホン酸基、カルボキシ基、ヒドロキシ基、アシル基、アルコキシ基、イミノ基、フェニル基等の有機基が含まれる。
 一般式(V)で表されるアルミニウムの金属アルコキシドまたは金属キレートの具体例には、アルミニウムトリイソプロポキシド、アルミニウムトリn-ブトキシド、アルミニウムトリt-ブトシキド、アルミニウムトリエトキシド等が含まれる。
 一般式(V)で表されるジルコニウムの金属アルコキシドまたは金属キレートの具体例には、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラn-プロポキシド、ジルコニウムテトラi-プロポキシド、ジルコニウムテトラn-ブトキシド、ジルコニウムテトラi-ブトキシド、ジルコニウムテトラt-ブトキシド、ジルコニウムジメタクリレートジブトキシド、ジブトキシジルコニウムビス(エチルアセトアセテート)等が含まれる。
 一般式(V)で表されるチタン元素の金属アルコキシドまたは金属キレートの具体例には、チタンテトライソプロポキシド、チタンテトラn-ブトキシド、チタンテトラi-ブトキシド、チタンメタクリレートトリイソプロポキシド、チタンテトラメトキシプロポキシド、チタンテトラn-プロポキシド、チタンテトラエトキシド、チタンラクテート、チタニウムビス(エチルヘキソキシ)ビス(2-エチル-3-ヒドロキシヘキソキシド)、チタンアセチルアセトネート等が含まれる。
 ただし、上記で例示した金属アルコキシドまたは金属キレートは、入手容易な市販の有機金属アルコキシドまたは金属キレートの一部である。科学技術総合研究所発行の「カップリング剤最適利用技術」9章のカップリング剤及び関連製品一覧表に示される金属アルコキシドまたは金属キレートも、本発明に適用できる。
 塗布液に含まれる金属アルコキシドまたは金属キレートの量は、塗布液に含まれる溶媒以外の成分の総質量に対して1~10質量%であることが好ましく、2~7質量部であることがより好ましい。これらの含有量が、少なすぎると密着性向上効果等が得られず、多すぎると塗布液の保存性が低下する。
(調液方法)
 塗布液の調液方法は、白色顔料、シラン化合物、溶媒、金属酸化物微粒子、無機粒子、粘土鉱物粒子、シランカップリング剤等の原料を、一括して混合する方法であってもよく、複数の原料を予め混合して、後から混合液同士を混合する方法であってもよい。
 塗布液中の均一性を高めるために、塗布液の原料のすべて、または一部を、以下の装置で分散することが好ましい。このとき、増粘効果を高めるために、無機粒子、粘土鉱物粒子のいずれか一方、あるいは両方を、溶媒に分散させてから、残りの成分と混合してもよい。
 また、白色顔料の分散性を高めるためには、白色顔料を少なくとも1回、以下の装置で分散することが好ましい。以下の装置で白色顔料を分散すると、白色顔料の凝集が低減され、より緻密で反射率の高い塗膜が得られる。
・混合/分散装置
 混合液の撹拌、分散は、例えば、マグネチックスターラー、超音波分散装置、ホモジナイザー、撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機、高圧衝撃式分散装置、自転公転ミキサーなどで行うことができる。
 混合液の撹拌に用いられる撹拌装置としては公知のものを全て使用できる。例えば、ウルトラタラックス(IKAジャパン社製)、TKホモミクサー(プライミクス社製)、TKパイプラインホモミクサー(プライミクス社製)、TKフィルミックス(プライミクス社製)、クレアミックス(エム・テクニック社製)、クレアSS5(エム・テクニック社製)、キャビトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)のようなメディアレス撹拌機、ビスコミル(アイメックス製)、アペックスミル(寿工業社製)、スターミル(アシザワ、ファインテック社製)、DMPA・Sスーパーフロー(日本アイリッヒ社製)、エムピーミル(井上製作所社製)、スパイクミル(井上製作所社製)、マイティーミル(井上製作所社製)、SCミル(三井鉱山社製)などのメディア攪拌機等やアルティマイザー(スギノマシン社製)、ナノマイザー(吉田機械社製)、NANO3000(美粒社製)などの高圧衝撃式分散装置が挙げられる。また、あわとり練太郎(シンキー社製)などの自転公転式ミキサーや超音波分散装置も好適に用いることが可能である。
(塗布液の粘度)
 塗布液の粘度は、5mPa・sを超え、500mPa・s以下であることが好ましい。塗布液の粘度が上記下限値よりも低いと、白色顔料が沈降し、塗布装置内部で濃度が変化しやすくなる。その結果、塗布安定性が悪くなる。一方、上限値よりも高くなると、ディスペンサの圧損が徐々に小さくなり吐出量が多くなる。その結果、塗布安定性が悪くなりやすい。
(塗布方法及び硬化方法)
 塗布液の塗布方法は、特に制限されず、例えばディスペンサ、ジェットディスペンサ、スプレー装置等の一般的な塗布装置による塗布方法でありうる。また、塗布液の硬化方法や硬化条件は、シラン化合物の種類等によって適宜選択する。硬化方法の一例として、加熱硬化が挙げられる。
 具体的には、上記塗布液の塗布後、塗膜を加熱する。加熱温度は20~200℃であることが好ましく、より好ましくは25~150℃である。加熱温度が20℃未満であると、塗膜中の溶媒が十分に揮発しない可能性がある。一方、温度が200℃を超えると、LED素子に悪影響を及ぼす可能性がある。また、乾燥・硬化時間は、製造効率の面から、0.1~120分であることが好ましく、より好ましくは5~60分である。
(用途)
 以下に、塗布液の硬化物からなる反射層を含むLED装置について説明する。
 [LED装置]
 図1は、実施形態に係るLED装置100Aの上面図を示す。図2は、実施形態に係るLED装置100Aの断面図を示す。ここでは、LED素子2として、ワイヤボンディング型のものを例に挙げて説明する。
 図2に示すように、実施形態に係るLED装置100Aは、基板1と、基板1上に配置されたLED素子2と、基板1上のLED素子2の少なくとも周囲に配置された反射層21と、LED素子2及び反射層21を覆う波長変換層11とを有する。
 このように実施形態に係るLED装置100Aは、LED素子2の出射光等を、光取り出し面側に反射する反射層21を有する。反射層21は、上述の実施形態に係る塗布液を加熱硬化して得られる。
 図2に示されるように、LED素子2は、基板1の円錐台状のキャビティ(凹部)の底面1aに配置されている。LED素子2は、基板1に配設されたメタル部(金属電極部)3と、配線4を介して電気的に接続されている。
 反射層21は、LED素子2の配置領域を除く基板1上に配置されている。反射層21は、基板1の円錐台状のキャビティ(凹部)の底面1aから側面1bに連続して、すり鉢状に配置されている。反射層21は、上面視において、波長変換層11の外周に波長変換層11と同心円状のリング状に形成されている。
(1)基板について
 基板1は、絶縁性及び耐熱性を有することが好ましく、セラミック樹脂や耐熱性樹脂からなることが好ましい。耐熱性樹脂の例には、液晶ポリマー、ポリフェニレンスルフィド、芳香族ナイロン、エポキシ樹脂、硬質シリコーンレジン、ポリフタル酸アミド等が含まれる。
 基板1には、無機フィラーが含まれていてもよい。無機フィラーは、酸化チタン、酸化亜鉛、アルミナ、シリカ、チタン酸バリウム、リン酸カルシウム、炭酸カルシウム、ホワイトカーボン、タルク、炭酸マグネシウム、窒化ホウ素、グラスファイバー等でありうる。
(2)LED素子について
 LED素子2が出射する光の波長は特に制限されない。LED素子2は、例えば青色光(420nm~485nm程度の光)を発する素子であってもよく、紫外光を発する素子であってもよい。
 LED素子2の構成は、特に制限されない。LED素子2が、青色光を発する素子である場合、LED素子2は、n-GaN系化合物半導体層(クラッド層)と、InGaN系化合物半導体層(発光層)と、p-GaN系化合物半導体層(クラッド層)と、透明電極層との積層体でありうる。LED素子2は、例えば200~300μm×200~300μmの発光面を有するものでありうる。またLED素子2の高さは、通常50~200μm程度である。図1、図2に示されるLED装置100Aには、基板1に1つのLED素子2のみが配置されているが、基板1に複数のLED素子2が配置されていてもよい。
(3)反射層について
 反射層21は、LED素子2からの出射光や、波長変換層11に含まれる蛍光体が発する蛍光を、LED装置100Aの光取り出し面側に反射する層である。反射層21が配設されることで、LED装置100Aの光取り出し面から取り出される光量が増加する。
 反射層21は、基板1の表面のうち、少なくともLED素子2の配置領域以外に形成される。LED素子2の配置領域とは、LED素子2の発光面、及びLED素子2とメタル部(金属電極部)3との接続部をいう。つまり、反射層21は、LED素子2からの光の出射、及びLED素子2とメタル部(金属電極部)3との接続を阻害しない領域に形成される。反射層21は、例えば図2に示されるように、LED素子2の少なくとも周辺領域に形成される。
 図1及び図2に示されるように、基板1がキャビティを有する場合、キャビティ内壁面1bにも、反射層21が形成されることが好ましい。反射層21がキャビティ内壁面1bに形成されると、波長変換層11表面に水平な方向に進む光を、反射層21で反射させて、取り出すことができるからである。
 従来のLED装置の反射層は、一般的に金属メッキであった。しかし、金属メッキは、電気の導通防止のために、基板全面に形成することができない。そのため、金属メッキを形成していない領域では、基板に光が吸収されてしまうという問題があった。また、光拡散粒子を分散させた樹脂層からなる反射層等も提案されているが、LED素子からの出射光や熱等により劣化しやすい。そのため、LED装置を長期間使用すると、樹脂の劣化により、LED装置からの光取り出し性が低下する場合があった。
 これに対し、実施形態に係るLED装置100Aの反射層21は、白色顔料が、バインダ(シラン化合物の硬化物)で結着された層であり、電気が導通しない。つまり、実施形態に係るLED装置100Aでは、反射層21を基板1の任意の領域に形成でき、メタル部どうしの隙間等にも形成できる。したがって、LED装置100Aから効率よく光を取り出すことができる。さらに、実施形態に係るLED装置100Aの反射層21は、LED素子2からの熱や光を受けても分解し難い。したがって、反射層21の光反射性が長期に亘って変化することがなく、良好な光取り出し性が長期間維持される。
 反射層21の厚みは、5~30μmであることが好ましく、より好ましくは5~20μmである。反射層21の厚みが、30μmを超えると、反射層21にクラックが発生しやすくなる。一方、反射層21の厚みが5μm未満であると、反射層21の光反射性が十分ではなく、光取り出し効率が高まらない場合がある。
 当該反射層21には、白色顔料及びバインダ(シラン化合物の重合体)が含まれる。反射層21に含まれる白色顔料の量は、反射層21の全質量に対して60~95質量%であることが好ましく、より好ましくは70~90質量%である。白色顔料の量が60質量%未満であると、反射層21の光反射性が十分に高まらない場合がある。
 一方、反射層21に含まれるバインダの量(シラン化合物の重合体)は、反射層21の全質量に対して5~40質量%であることが好ましく、より好ましくは10~30質量%である。バインダの量が5質量%より少ないと、バインダによって白色顔料を十分に保持できず、反射層21の表面に顔料粉が発生しやすい。一方、バインダの量が40質量%を超えると、相対的に白色顔料の量が減少し、反射層21の光反射性が十分に高まらない場合がある。
 当該バインダには、前述のように、3官能シラン化合物、4官能シラン化合物、または2官能シラン化合物のモノマーの重合体(硬化物)、またはこれらのオリゴマーの重合体(硬化物)が含まれる。
 ここで、反射層21のバインダ中に含まれるシラン化合物由来の成分全量に対する、2官能シラン化合物由来の成分(以下、「2官能成分」とも称する)の量は、20モル%未満である。バインダ中に2官能成分が含まれると、反射層21にクラックが生じ難い。ただし、2官能成分の量が20モル%以上であると、Si-Oからなる極性成分の割合が低下するため、反射層21の基板1に対する密着性が低下し、これらの界面で剥離し易くなる。
 バインダ中に含まれる3官能シラン化合物由来の成分(以下、「3官能成分」とも称する)に対する、4官能シラン化合物由来の成分(以下、「4官能成分」とも称する)のモル比率は、0以上3以下である。
 バインダ中に4官能成分が含まれると、反射層21の基板1に対する密着性が向上するが、上記モル比率が3を超えると、シラン化合物の重合体(ポリシロキサン)の架橋度が大きくなり、反射層21にクラックが生じ易くなる。
 バインダ中に含まれるシラン化合物の2官能成分、3官能成分、4官能成分の比率は、前述の固体Si-NMRにより求めることができる。
(その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 LED装置100Aの構成は特に制限されることなく様々な構成を取ることができる。LED素子2は、ワイヤボンディング型に限られることなく、例えば図3に示されるような、基板1に配設されたメタル部(金属電極部)3Bと、突起電極5を介して接続されるフリップチップ型であっても構わない。また図1、図2に示したキャビティの形状は特に制限されることなく、例えば角錐台状や、円柱状、角柱状等であってもよい。
 さらに基板1は、例えば図4、図5に示されるように、平板状であってもよい。
 また例えば図5に示されるように、反射層21Dは、LED素子2の周辺領域だけでなく、基板1CとLED素子2との間に形成されてもよい。つまりLED素子2は反射層21D上に配置されても構わない。反射層21Dが基板1CとLED素子2との間にも形成されることで、LED素子2の裏面側に回り込む光を反射層21Dが反射するため、LED装置100Dからの光取り出し効率が高まるからである。
 このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
・シラン化合物溶液1~10の調製
 下記表1に示される成分比で各成分を混合し、シラン化合物溶液1~10を調製した。
Figure JPOXMLDOC01-appb-T000001
(シラン化合物溶液1)
 テトラメトキシシラン7.8質量%と、メチルトリメトキシシラン2.2質量%とメタノール35質量%とアセトン35質量%と水19.99質量%と硝酸0.01質量%とを混合して、23℃で3時間撹拌した後、26℃で3日間撹拌しながら反応させ、ポリシロキサンオリゴマーを含有するシラン化合物溶液1を得た。
 得られた溶液中の、ポリシロキサンオリゴマーの分子量をGPCにより測定したところ、ポリスチレン換算の重量平均分子量は1800であった。
 また、この溶液を150℃で硬化させた固体を試料として、固体Si-NMRの測定を行ったところ、Q成分と、T成分に対応するピークがみられ、それぞれの面積比から、Q成分とT成分の比、R4/R3は、3.2であった。
(シラン化合物溶液2)
 テトラメトキシシラン7.5質量%と、メチルトリメトキシシラン2.5質量%とメタノール35質量%とアセトン35質量%と水19.99質量%と硝酸0.01質量%とを混合して、23℃で3時間撹拌した後、26℃で3日間撹拌しながら反応させ、ポリシロキサンオリゴマーを含有するシラン化合物溶液2を得た。
 得られた溶液中の、ポリシロキサンオリゴマーの分子量をGPCにより測定したところ、ポリスチレン換算の重量平均分子量は2000であった。
 また、この溶液を150℃で硬化させた固体を試料として、固体Si-NMRの測定を行ったところ、Q成分と、T成分に対応するピークがみられ、それぞれの面積比から、Q成分とT成分の比、R4/R3は、2.7であった。
(シラン化合物溶液3)
 メチルトリエトキシシラン20質量%とエタノール60質量%と水19.99質量%と塩酸0.01質量%とを混合して、シラン化合物溶液3を得た。この溶液を150℃で硬化させた固体を試料として、固体Si-NMRの測定を行ったところ、T成分に対応するピークのみがみられた。
(シラン化合物溶液4)
 メチルトリエトキシシラン17質量%とジメチルジエトキシシラン3質量%とエタノール60質量%と水19.99質量%と塩酸0.01質量%とを混合して、28℃で2日間撹拌し、ポリシロキサンオリゴマーを含有するシラン化合物溶液4を得た。
 得られた溶液中の、ポロシロキサンオリゴマーの分子量をGPCにより測定したところ、ポリスチレン換算の重量平均分子量は2300であった。
 また、この溶液を150℃で硬化させた固体を試料として、固体Si-NMRの測定を行ったところ、T成分と、D成分に対応するピークがみられた。ピークの面積比を計算したところ、全ケイ素化合物中のD成分の含有率は17.5モル%であった。
(シラン化合物溶液5)
 メチルトリエトキシシラン16質量%とジメチルジエトキシシラン4質量%とエタノール60質量%と水19.99質量%と塩酸0.01質量%とを混合して、28℃で2日間撹拌し、ポリシロキサンオリゴマーを含有するシラン化合物溶液5を得た。
 得られた溶液中の、ポリシロキサンオリゴマーの分子量をGPCにより測定したところ、ポリスチレン換算の重量平均分子量は2400であった。
 また、この溶液を150℃で硬化させた固体を試料として、固体Si-NMRの測定を行ったところ、T成分と、D成分に対応するピークがみられた。ピークの面積比を計算したところ、全ケイ素化合物中のD成分の含有率は23.1モル%であった。
(シラン化合物溶液6)
 テトラエトキシシラン4.3質量%とメチルトリメトキシシラン4.3質量%とジメチルジメトキシシラン1.4質量%とメタノール70質量%と水19.99質量%と硝酸0.01質量%とを混合して、25℃で6日間撹拌し、ポリシロキサンオリゴマーを含有するシラン化合物溶液6を得た。
 得られた溶液中の、ポリシロキサンオリゴマーの分子量をGPCにより測定したところ、ポリスチレン換算の重量平均分子量は1600であった。
 また、この溶液を150℃で硬化させた固体を試料として、固体Si-NMRの測定を行ったところ、Q成分とT成分とD成分に対応するピークがみられた。ピークの面積比を計算したところ、Q成分とT成分の比、R4/R3は、0.9であり、全ケイ素化合物中のD成分の含有率は18.2モル%であった。
(シラン化合物溶液7)
 テトラエトキシシラン3.9質量%とメチルトリメトキシシラン3.9質量%とジメチルジメトキシシラン1.6質量%とメタノール70質量%と水19.99質量%と硝酸0.01質量%とを混合して、25℃で6日間撹拌し、ポリシロキサンオリゴマーを含有するシラン化合物溶液7を得た。
 得られた溶液中の、ポリシロキサンオリゴマーの分子量をGPCにより測定したところ、ポリスチレン換算の重量平均分子量は1500であった。
 また、この溶液を150℃で硬化させた固体を試料として、固体Si-NMRの測定を行ったところ、Q成分とT成分とD成分に対応するピークがみられた。ピークの面積比を計算したところ、Q成分とT成分の比、R4/R3は、0.9であり、全ケイ素化合物中のD成分の含有率は21.9モル%であった。
(シラン化合物溶液8)
 テトラエトキシシラン7.2質量%とメチルトリメトキシシラン1.8質量%とジメチルジメトキシシラン1質量%とメタノール70質量%と水19.99質量%と硝酸0.01質量%とを混合して、25℃で6日間撹拌し、ポリシロキサンオリゴマーを含有するシラン化合物溶液8を得た。
 得られた溶液中の、ポリシロキサンオリゴマーの分子量をGPCにより測定したところ、ポリスチレン換算の重量平均分子量は1600であった。
 また、この溶液を150℃で硬化させた固体を試料として、固体Si-NMRの測定を行ったところ、Q成分とT成分とD成分に対応するピークがみられた。ピークの面積比を計算したところ、Q成分とT成分の比、R4/R3は、3.4であり、全ケイ素化合物中のD成分の含有率は14.8モル%であった。
(シラン化合物溶液9)
 メチルトリメトキシシラン9.6質量%、テトラメトキシシラン10.7質量%、n-ブタノール/メチル-3-メトキシプロピオネート(1:1溶液)70.5質量%、水9.19質量%、硝酸0.01質量%を3時間撹拌して加水分解反応させた。
 その後、26℃で2日間反応させることにより、シロキサンポリマーを含む反応溶液を得た。反応溶液中のシロキサンポリマーの質量平均分子量(Mw)は1600であった。
 上記反応溶液400gに、n-ブタノール100gおよびメチル-3-メトキシプロピオネート100gを混合し、シリカ系被膜形成用塗布液を得たシラン化合物溶液9を得た。
 この溶液を150℃で硬化させた固体を試料として、固体Si-NMRの測定を行ったところ、Q成分と、T成分に対応するピークがみられ、それぞれの面積比から、Q成分とT成分の比、R4/R3は、1.0であった。
(シラン化合物溶液10)
 メチルトリエトキシシラン15質量%をエチレングリコールジメチルエーテル80質量%に溶解しかき混ぜた。次いで、純水4.99質量%と濃硝酸0.01質量%を混合したものを、ゆっくりかき混ぜながら滴下した後、約3時間かき混ぜ、その後室温で6日間静置させて溶液を得た。この溶液を120~140mmHg、40℃にて1時間減圧蒸留し、シラン化合物溶液10を得た。
 得られた溶液中の、ポリシロキサンオリゴマーの分子量をGPCにより測定したところ、ポリスチレン換算の重量平均分子量は1800であった。
 また、この溶液を150℃で硬化させた固体を試料として、固体Si-NMRの測定を行ったところ、T成分に対応するピークのみがみられた。
・調整液1~12の調製
 表2に示に示される成分比で各成分を配合した。当該混合液を表2に示される分散方法で混合して、調整液1~12を作製した。表2及び表3中の略号は以下の成分を表す。
Figure JPOXMLDOC01-appb-T000002
(溶媒)
 BD:1,3-ブタンジオール
 PG:プロピレングリコール
 IPA:イソプロピルアルコール
 EtOH:エタノール
(無機粒子)
 サイリシア470:シリカ(サイリシア470、富士シリシア化学製)平均粒径14μm
 SP-1:シリカ (マイクロビードSP-1、日揮触媒化成製)平均粒径5μm
 VM2270:シリカ(VM-2270、ダウコーニング製)平均粒径5~15μm
 SS-50F:シリカ(ニップシールSS-50F、東ソー・シリカ製)平均粒径1.2μm
(金属酸化物微粒子)
 Alu-C:アルミナ(AEROXIDE Alu-C、日本アエロジル製)平均一次粒径13nm
 ZR-210:ZrO粒子(TECNADIS-Zr-210、TECNAN社製)平均粒径10~15nm
 Ti-210:TiO粒子(TECNADIS-TI-210、TECNAN社製)平均粒径10~15nm
(粘土鉱物粒子)
 MK-100:合成雲母(ミクロマイカMK-100、コープケミカル製)
 ME-100:合成雲母(ソマシフME-100、コープケミカル製)
 SWN:スメクタイト(ルーセンタイトSWN、コープケミカル社製)
 クニピアF:モンモリロナイト(クニピアF、クニミネ工業製)
(シランカップリング剤)
 KBM-403:3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越シリコーン製)
 KBM-903:3-アミノプロピルトリメトキシシラン(KBM-903、信越シリコーン製)
 KBM-802:3-メルカプトプロピルメチルジメトキシシラン(KBM-802、信越シリコーン製)
 KBE-846:ビス(トリエトキシシリルプロピル)テトラスルフィド(KBE-846、信越シリコーン製)
(白色顔料)
 酸化チタン:CR-93 石原産業製
 酸化チタン:CR-95 石原産業製
 酸化アルミニウム:HD-11 ニッカトー製
 硫酸バリウム:NFJ-3-1999 山西物産製
 窒化ホウ素:AP-100S MARUKA製
[実施例1~21、および比較例1~4]
 表3及び表4に示されるように、白色顔料と、シラン化合物溶液と、調整液とを、表3及び表4に記載の混合比で混合し、サンプル1~サンプル25を調製した。
 具体的には、白色顔料(A)と上述の方法で調製されたシラン化合物溶液(B)とを混合し、下記表3に示される方法で混合・分散した。そして、上述の方法で調製された調整液(C)に、白色顔料(A)及びシラン化合物溶液(B)の混合液を混合し、下記表3に示される方法で混合・分散した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(評価)
<粘度評価>
 塗布液の粘度は、振動式粘度計VISCOMATE MODEL VM-10A(セコニック社製)を用いて測定した。測定温度は25℃とし、振動子を液体に浸漬してから、1分後の測定値を使用した。
<塗布量安定性評価>
 ディスペンサーのシリンジに塗布液を充填し、一定の条件下において、連続で10回のディスペンスを行い、滴下された液の合計質量を求めた。続いて、シリンジをそのまま保持した状態で、10分毎に同様の操作を行い、4時間後に同条件下において、連続で10回のディスペンスを行い、滴下された液の合計質量を求めた。
 下記式により、質量変化率を算出した。
 最初の10回で滴下された塗布液の合計質量をA、
 4時間後の10回で滴下された塗布液の合計質量をBとしたとき、
 質量変化率=((B-A)/A)×100%
 塗布量安定性を以下のように分類した。
 ○:質量変化率が3%未満であった。
 △:質量変化率が3%以上であった。
<製膜性評価(成膜時のクラック)>
 銀板上に塗布液を塗布し、150℃、1時間の熱処理により、硬化させて、厚さ20μmの反射層を備えた測定サンプルを作製した。このときの反射層の状態を目視で観察し、以下のように判断した。
 ○:反射層にクラックがみられなかった
 △:反射層に僅かなクラックが発生したが、反射層の欠落はみられなかった
 ×:反射層にクラックが発生し、反射層の一部が基板から欠落した
<反射率測定>
 透明な1mmのガラス板に塗布液を塗布し、150℃、1時間の熱処理により、硬化させて、厚さ20μmの反射層を備えた測定サンプルを作製した。そして、分光光度計V-670(日本分光株式会社製)により、各サンプルの反射率を測定した。評価結果の判断は、以下のように行った。
 ○:波長500nmにおける反射率が95%以上であった
 △:波長500nmにおける反射率が90%以上、95%未満であった
 ×: 波長500nmにおける反射率が90%未満であった
<テープ剥離実験>
 銀板上に塗布液を塗布し、150℃、1時間の熱処理により、硬化させて、厚さ20μmの反射層を備えた測定サンプルを作製した。形成された反射層にニチバン製セロテープ(登録商標)(24mm)を貼り付け、直ちに剥がす作業を20回繰り返して行った。そして、各回の作業毎に反射層の状態を顕微鏡により観察し、以下のように判断した。
 ◎:20回作業後も反射層の剥離がみられず、テープの表面に何も付着しなかった。
 ○:15回作業後は剥離がみられなかったが、20回作業後には、僅かに剥離がみられた。
 △:剥離は生じなかったが、1回目の作業後に、テープの表面に、白色顔料の粉が僅かに付着した。
 ×:15回作業時点で反射層の剥離が発生していた。
 評価結果を表4に示す。表4より以下のことが分かった。
 2官能シラン化合物の比率が20質量%を超えると、基材への密着性が低下することが分かった(シラン化合物溶液5及び7を用いた比較例2及び3)。
 シラン化合物溶液1,8を用いた比較例1,4と、その他のシラン化合物溶液を用いた実施例1~21との対比より、4官能シラン化合物/3官能シラン化合物の値が3を超えると、成膜時にクラックが発生することが分かった。
 実施例1および9と、実施例2~6、8、10~21との対比より、塗布液の粘度が低いと塗布量安定性が悪くなることが分かった。これは白色顔料沈降による濃度変化によるものと考えられる。
 また実施例7と、実施例2~6、8~21との対比より、塗布液の粘度が高すぎると塗布安定性が悪くなることが分かった。これはディスペンサの圧損が徐々に小さくなり吐出量が多くなったためと考えられる。
 実施例1および9と、実施例2、3、6、7、10~21との対比より、無機粒子が入ると粘度が上がり、沈降防止効果が得られ、塗布安定性が向上することが分かった。
 実施例3、12、21と、実施例1、2、4~8、13~20との対比より、金属酸化物微粒子(特に酸化ジルコニウム粒子、または酸化チタン粒子)が入ると、アンカー効果により膜の密着性が高まり、剥離強度が増すことが分かった。
 また、実施例15と実施例21との対比により、あらかじめシラン化合物を重合し、オリゴマー化しておくことにより、加熱硬化時の収縮が抑えられ、クラックが発生しにくくなっていることがわかった。
 実施例14と、実施例1~12、15~21との対比から、白色顔料の含有率が低いと反射率が低くなることが分かった。
 また実施例13と、実施例1~12、15~21との対比から、白色顔料の含有率が高すぎるとバインダーの量が不足し表面から粉が出やすくなることが分かった。
 実施例9~12、20、21と、実施例1、2、4~8、13~19との対比から、カップリング剤を入れると基板との密着性が高まり、硫化防止性能、剥離強度が向上することが分かった。
 1 基板
 2 LED素子
 11、11C、11D 波長変換層
 21、21C、21D 反射層
 100A、100B、100C、100D LED装置

Claims (12)

  1.  白色顔料と、シラン化合物と、溶媒と、を含む塗布液であって、
     前記シラン化合物総量中の2官能シラン化合物の比率をR2(モル%)、3官能シラン化合物の比率をR3(モル%)、4官能シラン化合物の比率をR4(モル%)、としたときに、下記式1及び式2
     0≦R2<20           (式1)
     0≦R4/R3≦3         (式2)
    の両条件を満たす、塗布液。
  2.  前記2官能シラン化合物、前記3官能シラン化合物、前記4官能シラン化合物からなる群から選ばれる少なくとも1種が、あらかじめ重合されている、請求項1に記載の塗布液。
  3.  前記塗布液が、前記白色顔料とは別に、平均粒径5nm以上100nm未満の金属酸化物微粒子、平均粒径100nm以上100μm以下の無機粒子、粘土鉱物粒子、からなる群から選ばれる少なくとも1種をさらに含有する、請求項1または2に記載の塗布液。
  4.  前記粘土鉱物粒子が、層状ケイ酸塩鉱物、イモゴライト、アロフェン、からなる群から選ばれる少なくとも1種である、請求項3に記載の塗布液。
  5.  前記塗布液がシランカップリング剤をさらに含有する、請求項1~4のいずれか1項に記載の塗布液。
  6.  前記塗布液中の溶媒が、1価のアルコールおよび2価以上の多価アルコールの少なくとも一方を含有する、請求項1~5のいずれか1項に記載の塗布液。
  7.  前記白色顔料が、酸化チタン、酸化アルミニウム、硫酸バリウム、酸化亜鉛、窒化ホウ素からなる群から選ばれる少なくとも1種である、請求項1~6のいずれか1項に記載の塗布液。
  8.  前記塗布液の粘度が5mPa・sを超え、500mPa・s以下である、請求項1~7のいずれか1項に記載の塗布液。
  9.  前記塗布液の加熱硬化後の固形分中の白色顔料の濃度が60質量%以上、95質量%以下である、請求項1~8のいずれか1項に記載の塗布液。
  10.  基板と、前記基板上に配置されたLED素子と、前記基板上の前記LED素子の少なくとも周囲に配置された反射層と、前記LED素子及び前記反射層を覆う波長変換層とを有するLED装置であって、
     前記反射層は、白色顔料、シラン化合物、溶媒を含み、かつ前記シラン化合物総量中の2官能シラン化合物の比率をR2(モル%)、3官能シラン化合物の比率をR3(モル%)、4官能シラン化合物の比率をR4(モル%)、としたときに、下記式1及び式2
     0≦R2<20           (式1)
     0≦R4/R3≦3         (式2)
    の両条件を満たす、塗布液を加熱硬化して得られる、LED装置。
  11.  前記反射層は、前記LED素子の配置領域を除く前記基板上に配置されている、請求項10に記載のLED装置。
  12.  前記反射層は、前記基板と前記LED素子の間に形成されている、請求項10に記載のLED装置。
PCT/JP2013/007664 2012-12-27 2013-12-27 塗布液、及びその硬化物からなる反射層を備えるled装置 WO2014103326A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014554154A JPWO2014103326A1 (ja) 2012-12-27 2013-12-27 塗布液、及びその硬化物からなる反射層を備えるled装置
US14/650,785 US20150307717A1 (en) 2012-12-27 2013-12-27 Coating liquid and led device including reflective layer made of product of curing thereof
EP13867793.5A EP2940748A4 (en) 2012-12-27 2013-12-27 COATING FLUID AND LED DEVICE HAVING A REFLECTIVE LAYER FORMED OF A CURED PRODUCT OF SAID COATING LIQUID

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012285347 2012-12-27
JP2012-285347 2012-12-27
JP2013153526 2013-07-24
JP2013-153526 2013-07-24

Publications (1)

Publication Number Publication Date
WO2014103326A1 true WO2014103326A1 (ja) 2014-07-03

Family

ID=51020440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007664 WO2014103326A1 (ja) 2012-12-27 2013-12-27 塗布液、及びその硬化物からなる反射層を備えるled装置

Country Status (4)

Country Link
US (1) US20150307717A1 (ja)
EP (1) EP2940748A4 (ja)
JP (1) JPWO2014103326A1 (ja)
WO (1) WO2014103326A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141626A (ja) * 2012-12-28 2014-08-07 Konica Minolta Inc 塗布液、反射膜、反射シート、太陽電池モジュール、led照明装置および実装用基板
WO2016047745A1 (ja) * 2014-09-26 2016-03-31 コニカミノルタ株式会社 塗布液、それを用いたled装置の製造方法およびled装置
WO2016047746A1 (ja) * 2014-09-26 2016-03-31 コニカミノルタ株式会社 塗布液、これを用いたled装置の製造方法、及びled装置
CN111087819A (zh) * 2018-10-23 2020-05-01 北京科化新材料科技有限公司 一种液体硅材料复合物及其制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011720B2 (en) * 2014-07-28 2018-07-03 Sumitomo Chemical Company, Limited Silicone-based encapsulating material composition and semiconductor light-emitting device
KR102170218B1 (ko) * 2014-08-05 2020-10-26 엘지이노텍 주식회사 발광소자 패키지
KR20160087048A (ko) * 2015-01-12 2016-07-21 삼성전자주식회사 발광다이오드 패키지
JP6459880B2 (ja) 2015-09-30 2019-01-30 日亜化学工業株式会社 発光装置及びその製造方法
JP6940749B2 (ja) * 2016-04-28 2021-09-29 日亜化学工業株式会社 発光装置
CN109152214B (zh) * 2017-06-19 2023-02-24 松下知识产权经营株式会社 布线基板及其制造方法
JP2022001630A (ja) * 2019-09-04 2022-01-06 株式会社リコー 活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク、組成物収容容器、2次元又は3次元の像の形成方法及び形成装置、硬化物並びに加飾体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136379A (ja) 2003-10-08 2005-05-26 Nichia Chem Ind Ltd 半導体装置
JP2005200546A (ja) * 2004-01-15 2005-07-28 Shin Etsu Chem Co Ltd シリコーンレジン組成物及びそれを用いた被覆物品
WO2007080803A1 (ja) * 2006-01-16 2007-07-19 Matsushita Electric Industrial Co., Ltd. 半導体発光装置
JP2010205954A (ja) * 2009-03-04 2010-09-16 Micro Coatec Kk Led照明構造体
JP2011023621A (ja) 2009-07-17 2011-02-03 Sharp Corp 発光装置
JP2011054902A (ja) * 2009-09-04 2011-03-17 Shin-Etsu Chemical Co Ltd 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP2012124358A (ja) * 2010-12-09 2012-06-28 Citizen Holdings Co Ltd 半導体発光装置及びその製造方法
JP2012138536A (ja) * 2010-12-28 2012-07-19 Konica Minolta Advanced Layers Inc 発光装置の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021533A (ja) * 2008-06-09 2010-01-28 Shin-Etsu Chemical Co Ltd 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
CN102395873A (zh) * 2009-04-13 2012-03-28 奥林巴斯株式会社 荧光传感器、针式荧光传感器以及测量分析物的方法
EP2500623A1 (en) * 2011-03-18 2012-09-19 Koninklijke Philips Electronics N.V. Method for providing a reflective coating to a substrate for a light-emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136379A (ja) 2003-10-08 2005-05-26 Nichia Chem Ind Ltd 半導体装置
JP2005200546A (ja) * 2004-01-15 2005-07-28 Shin Etsu Chem Co Ltd シリコーンレジン組成物及びそれを用いた被覆物品
WO2007080803A1 (ja) * 2006-01-16 2007-07-19 Matsushita Electric Industrial Co., Ltd. 半導体発光装置
JP2010205954A (ja) * 2009-03-04 2010-09-16 Micro Coatec Kk Led照明構造体
JP2011023621A (ja) 2009-07-17 2011-02-03 Sharp Corp 発光装置
JP2011054902A (ja) * 2009-09-04 2011-03-17 Shin-Etsu Chemical Co Ltd 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP2012124358A (ja) * 2010-12-09 2012-06-28 Citizen Holdings Co Ltd 半導体発光装置及びその製造方法
JP2012138536A (ja) * 2010-12-28 2012-07-19 Konica Minolta Advanced Layers Inc 発光装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2940748A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141626A (ja) * 2012-12-28 2014-08-07 Konica Minolta Inc 塗布液、反射膜、反射シート、太陽電池モジュール、led照明装置および実装用基板
WO2016047745A1 (ja) * 2014-09-26 2016-03-31 コニカミノルタ株式会社 塗布液、それを用いたled装置の製造方法およびled装置
WO2016047746A1 (ja) * 2014-09-26 2016-03-31 コニカミノルタ株式会社 塗布液、これを用いたled装置の製造方法、及びled装置
CN111087819A (zh) * 2018-10-23 2020-05-01 北京科化新材料科技有限公司 一种液体硅材料复合物及其制备方法和应用

Also Published As

Publication number Publication date
JPWO2014103326A1 (ja) 2017-01-12
EP2940748A1 (en) 2015-11-04
US20150307717A1 (en) 2015-10-29
EP2940748A4 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
WO2014103326A1 (ja) 塗布液、及びその硬化物からなる反射層を備えるled装置
WO2014109293A1 (ja) Led装置およびその製造に用いられる塗布液
WO2013099193A1 (ja) Led装置用封止剤、led装置、及びled装置の製造方法
JP5541433B1 (ja) 蛍光体分散液の製造方法、及びled装置の製造方法
WO2014104295A1 (ja) 発光装置
WO2013180259A1 (ja) 発光装置用封止材、及びこれを用いた発光装置、並びに発光装置の製造方法
JP2014138081A (ja) 発光装置、波長変換・光拡散素子及びそれらの製造方法、光拡散セラミック層形成用組成物
WO2014030342A1 (ja) Led装置及びその製造方法
JP2016154179A (ja) 発光装置、及びその製造方法
WO2015011925A1 (ja) Led装置の製造方法
JP2014019844A (ja) 蛍光体分散液及びled装置の製造方法
WO2014091762A1 (ja) Led装置用封止剤、及びこれを用いたled装置
WO2014103330A1 (ja) 蛍光体分散液、led装置およびその製造方法
JP5910340B2 (ja) Led装置、及びその製造方法
JP2016181535A (ja) 発光装置、および発光装置製造用の塗布液
JP2014127495A (ja) Led装置、及びその製造方法
JP2014141626A (ja) 塗布液、反射膜、反射シート、太陽電池モジュール、led照明装置および実装用基板
JP2014160713A (ja) Led装置の製造方法
WO2016047745A1 (ja) 塗布液、それを用いたled装置の製造方法およびled装置
JP2014041955A (ja) Led装置、及びその製造方法
WO2015049865A1 (ja) 発光素子用封止剤及びled装置
WO2016024604A1 (ja) 無機微粒子含有ポリシルセスキオキサン組成物およびその製造方法、ならびに発光装置およびその製造方法
WO2016047746A1 (ja) 塗布液、これを用いたled装置の製造方法、及びled装置
WO2016043159A1 (ja) 蛍光体分散液、これを用いたled装置の製造方法、及びled装置
WO2014087629A1 (ja) ディスペンサー塗布用透光性セラミック材料、及びこれを用いたled装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554154

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14650785

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013867793

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013867793

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE