WO2014103330A1 - 蛍光体分散液、led装置およびその製造方法 - Google Patents

蛍光体分散液、led装置およびその製造方法 Download PDF

Info

Publication number
WO2014103330A1
WO2014103330A1 PCT/JP2013/007680 JP2013007680W WO2014103330A1 WO 2014103330 A1 WO2014103330 A1 WO 2014103330A1 JP 2013007680 W JP2013007680 W JP 2013007680W WO 2014103330 A1 WO2014103330 A1 WO 2014103330A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
particles
dispersion liquid
phosphor dispersion
manufactured
Prior art date
Application number
PCT/JP2013/007680
Other languages
English (en)
French (fr)
Inventor
佐藤 淳
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014554157A priority Critical patent/JPWO2014103330A1/ja
Priority to EP13868246.3A priority patent/EP2940744A4/en
Priority to US14/653,617 priority patent/US20160002526A1/en
Publication of WO2014103330A1 publication Critical patent/WO2014103330A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7706Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a phosphor dispersion liquid for manufacturing an LED device, an LED device, and a manufacturing method thereof.
  • phosphors such as YAG phosphors are arranged in the vicinity of a gallium nitride (GaN) -based blue LED (Light Emitting Diode) chip, and the blue light emitted from the blue LED chip and the phosphor are blue light.
  • GaN gallium nitride
  • a technique for obtaining a white LED by mixing with yellow light emitted by secondary light emission in response to the light is widely used.
  • a white LED there is a method in which a transparent resin or a transparent ceramic precursor in which a phosphor is dispersed is applied and cured, and the LED chip and the mounting portion are sealed with a sealing film.
  • the specific gravity of the phosphor is larger than the specific gravity of the transparent resin or transparent ceramic precursor, the phosphor settles before the resin or transparent ceramic precursor cures, and the white LED emits light. It was the cause of unevenness and low efficiency.
  • Patent Document 1 describes that the use of a silicone resin having a viscosity of 100 to 10,000 mPa ⁇ s when cured as a sealing body suppresses phosphor settling and segregation.
  • Patent Document 2 describes that the phosphor can be uniformly dispersed by adopting a two-liquid configuration in which the phosphor dispersion and the precursor solution are applied separately.
  • Patent Document 3 describes that a scattering layer containing TiO 2 is disposed between an inorganic layer (ceramic material) containing a radiation source and a luminescent substance to overcome low efficiency and color point control. Yes.
  • JP 2002-314142 A International Publication No. 2012/023425 Special table 2009-549558
  • Patent Document 1 when the LED chip is sealed with a silicone resin, the sealing material may be deteriorated due to light emission from the LED chip or heat generation of the LED chip and the phosphor, which may be colored. Therefore, when sealed with a silicone resin, it has been difficult to obtain durability that can withstand long-term use.
  • Patent Document 2 a phosphor dispersion containing phosphor particles and a precursor solution containing a translucent ceramic precursor (organometallic compound) are separately prepared, applied, and applied. It has been proposed to cure the resulting ceramic precursor.
  • the present invention is an LED device having a wavelength conversion layer, and has high durability, chromaticity variation (chromaticity variation of light emission for each device), and chromaticity unevenness (chromaticity unevenness of light emission in one light-emitting device).
  • a suppressed LED device is provided.
  • a phosphor dispersion for forming a wavelength conversion layer included in such an LED device is provided.
  • the manufacturing method of an LED device including the process of forming a sealing film using it is provided.
  • the first of the present invention relates to the phosphor dispersion liquid shown below.
  • a phosphor dispersion liquid containing phosphor particles, light scattering fine particles, layered clay mineral particles, silicon oxide particles and a solvent, and the content of the light scattering fine particles with respect to the phosphor particles in the phosphor dispersion liquid A phosphor dispersion in which is 0.1 to 2.5% by mass.
  • the phosphor dispersion liquid according to [1], wherein the light scattering fine particles are white pigments.
  • the phosphor dispersion liquid according to [1] or [2], wherein the light scattering fine particles have a refractive index of 1.6 or more.
  • An LED device comprising: light scattering fine particles, layered clay mineral particles, and silicon oxide particles, wherein the content of the light scattering fine particles in the wavelength conversion layer is 0.05 to 2% by mass.
  • 3rd of this invention is related with the manufacturing method of the LED apparatus shown below.
  • a method for manufacturing the LED device according to [6] or [7], wherein a step of preparing an LED element, and on the LED element, according to any one of [1] to [5] Applying a phosphor dispersion liquid to form a phosphor layer, applying a translucent ceramic material composition containing a translucent ceramic material and a solvent on the phosphor layer, and the translucent layer. Forming a wavelength conversion layer in which the phosphor layer is bonded with a translucent ceramic by curing a photoceramic material.
  • a sealing film (phosphor film) using the phosphor dispersion liquid of the present invention, it is possible to provide an LED device in which chromaticity unevenness and chromaticity variation (light emitting element in-plane uniformity) are suppressed. it can.
  • An example of an LED device is shown.
  • An example of an LED device is shown.
  • An outline of a spray coating apparatus is shown.
  • Phosphor dispersion liquid contains phosphor particles, light scattering fine particles, layered clay mineral particles, silicon oxide particles, and a solvent. Furthermore, according to the usage aspect of a fluorescent substance dispersion liquid, a translucent ceramic material is further contained.
  • the phosphor particles contained in the phosphor dispersion liquid may be anything that is excited by the light emitted from the LED chip and emits fluorescence having a wavelength different from that of the light emitted from the LED chip.
  • examples of phosphor particles that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors.
  • the YAG phosphor receives blue light (wavelength 420 nm to 485 nm) emitted from the blue LED chip 3 and emits yellow fluorescence (wavelength 550 nm to 650 nm).
  • the phosphor particles are, for example, 1) An appropriate amount of flux (fluoride such as ammonium fluoride) is mixed with a mixed raw material having a predetermined composition, and pressed to form a molded body. 2) The obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
  • flux fluoride such as ammonium fluoride
  • a mixed raw material having a predetermined composition is obtained by sufficiently mixing stoichiometric ratios of oxides such as Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures. It is done. Moreover, the mixed raw material which has a predetermined composition mixes the solution which dissolved the rare earth element of Y, Gd, Ce, and Sm in the acid by the stoichiometric ratio, and oxalic acid, and obtains a coprecipitation oxide. 2) It can also be obtained by mixing this coprecipitated oxide with aluminum oxide or gallium oxide.
  • the kind of the phosphor is not limited to the YAG phosphor, and may be another phosphor such as a non-garnet phosphor that does not contain Ce.
  • the average particle diameter of the phosphor particles is preferably 1 ⁇ m to 50 ⁇ m, and more preferably 10 ⁇ m or less.
  • the particle diameter of the phosphor particles is too large, a gap generated between the phosphor particles becomes large in the coating film of the phosphor dispersion liquid obtained. Thereby, the intensity
  • the average particle diameter of the phosphor particles can be measured, for example, by a Coulter counter method.
  • the amount of the phosphor particles to be mixed in the phosphor dispersion is preferably 10 to 99% by mass, more preferably 20 to 97% by mass with respect to the total solid content of the phosphor dispersion. If the concentration of the phosphor particles is less than 10% by mass, there is a risk that sufficient fluorescence cannot be obtained from the coating film of the obtained phosphor dispersion liquid. On the other hand, when the amount of the phosphor particles exceeds 99% by mass, the amount of the layered clay mineral particles and the amount of the silicon oxide particles are relatively reduced, and the phosphor particles may settle in the phosphor dispersion liquid. .
  • the light scattering fine particles contained in the phosphor dispersion liquid are preferably white pigments.
  • white pigments include calcium carbonate, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, aluminum oxide, zirconium oxide, zinc sulfide, aluminum hydroxide, Boron nitride, aluminum nitride, potassium titanate, barium titanate, aluminum titanate, strontium titanate, calcium titanate, magnesium titanate, hydroxyapatite and the like are included. Of these, titanium oxide, aluminum oxide, zinc oxide, and barium sulfate are preferable.
  • the light scattering fine particles contain at least one of these white pigments, and may be a combination of two or more.
  • the refractive index of the light scattering fine particles is preferably 1.6 or more.
  • white pigments having a refractive index of 1.6 or more include titanium oxide (2.52), aluminum oxide (1.76), zinc oxide (1.95), barium sulfate (1.64), and the like.
  • the average primary particle size of the white pigment is preferably greater than 100 nm and not greater than 20 ⁇ m; more preferably greater than 100 nm and not greater than 10 ⁇ m; still more preferably greater than 200 nm and not greater than 2.5 ⁇ m.
  • the average primary particle size in the present invention refers to the value of D50 measured with a laser diffraction particle size distribution meter.
  • Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
  • the content of the light scattering fine particles in the phosphor dispersion liquid is preferably 0.1 to 2.5% by mass with respect to the phosphor particles.
  • the layered clay mineral particles contained in the phosphor dispersion liquid are particles made of a clay mineral having a layered structure.
  • the layered clay mineral particles have a flat plate shape. Therefore, when layered clay mineral particles are included, the viscosity of the phosphor dispersion increases. Further, the layered clay mineral particles have high affinity with the phosphor particles as described above. Therefore, when the layered clay mineral particles are uniformly dispersed in the first dispersion, the dispersibility of the phosphor particles is enhanced.
  • layered clay minerals include layered silicate minerals, imogolite, allophane and the like.
  • the layered silicate mineral is preferably a swellable clay mineral having a mica structure, a kaolinite structure, or a smectite structure, and particularly preferably a swellable clay mineral having a smectite structure rich in swelling properties. Since the swellable clay mineral particles form a card house structure in the phosphor dispersion liquid, the viscosity of the phosphor dispersion liquid increases only by being contained in a small amount.
  • layered clay minerals include natural or synthetic hectorite, saponite, stevensite, hydelite, montmorillonite, nontritite, bentonite, and other smectite genus clay minerals, Na-type tetralithic fluoric mica, Li-type tetralithic Swelling mica genus clay minerals such as fluorine mica, Na type fluorine teniolite, Li type fluorine teniolite, vermiculite and kaolinite, or a mixture thereof are included.
  • Examples of commercial products of layered clay mineral particles include Laponite XLG (synthetic hectorite analogue manufactured by LaPorte, UK), Laponite RD (synthetic hectorite analogue produced by LaPorte, UK), Thermabis (manufactured by Henkel, Germany) Synthetic hectorite analogues), smecton SA-1 (saponite analogues from Kunimine Industries), Bengel (natural bentonite sold by Hojun Co.), Kunivia F (natural montmorillonite sold by Kunimine Industries), Veegum (Natural hectorite manufactured by Vanderbilt, USA), Daimonite (synthetic swellable mica manufactured by Topy Industries, Ltd.), Somasif (synthetic swellable mica manufactured by Coop Chemical Co., Ltd.), SWN (Coop Chemical Co., Ltd.) Manufactured synthetic smectite), SWF (synthetic sme
  • the layered clay mineral particles may be modified (surface treatment) with a surface ammonium salt or the like.
  • surface treatment surface ammonium salt or the like.
  • the average particle size of the layered clay mineral particles is preferably 0.1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m.
  • the size of the layered clay mineral particles is 0.1 ⁇ m or more, the above-described viscosity improving effect is easily obtained.
  • the size of the layered clay mineral particles is larger than 100 ⁇ m, the light transmittance of the finally obtained phosphor particle coating film may be lowered.
  • the size of the layered clay mineral particles is measured by a Coulter counter method or the like.
  • the amount of the layered clay mineral particles in the phosphor dispersion is preferably 0.1 to 5% by mass, more preferably 0.5 to 4% by mass with respect to the total of the components excluding the phosphor particles in the phosphor dispersion. %.
  • concentration of the layered clay mineral particles is less than 0.1% by mass, the viscosity of the phosphor dispersion liquid is not sufficiently increased.
  • concentration of the layered clay mineral particles exceeds 5% by mass, the flowability of the phosphor dispersion liquid is lowered, and the dispersibility of the phosphor particles may be lowered in the process described later.
  • the viscosity of the phosphor dispersion does not increase as the ratio of the layered clay mineral particles increases.
  • the viscosity of the phosphor dispersion is determined by the content ratio with other components such as the amount of solvent and the amount of silicon oxide particles.
  • the phosphor dispersion liquid contains silicon oxide particles.
  • the difference in refractive index (1.46) of the silicon oxide particles is small from the refractive index of the translucent ceramic material (for example, the refractive index of polysiloxane is 1.41).
  • the viscosity of the phosphor dispersion liquid can be increased.
  • the average primary particle size of the silicon oxide particles is preferably 5 to 100 nm, more preferably 5 to 80 nm, and still more preferably 5 to 50 nm. When the average primary particle diameter of the silicon oxide particles is within such a range, the viscosity of the first dispersion liquid is likely to increase.
  • the average primary particle diameter of the silicon oxide particles is measured by a Coulter counter method.
  • the content of silicon oxide particles in the phosphor dispersion is preferably 1 to 40% by mass, more preferably 1 to 20% by mass, and more preferably the total of components excluding the phosphor particles in the phosphor dispersion. Preferably, it is 1 to 10% by mass. If the amount of silicon oxide particles is too small, the viscosity of the resulting phosphor dispersion does not increase sufficiently. On the other hand, if the amount of silicon oxide particles is too large, the amount of layered clay mineral particles is relatively decreased, and the phosphor particles may settle in the phosphor dispersion, or the dispersibility of the phosphor particles may decrease. is there.
  • the solvent contained in the phosphor dispersion liquid is not particularly limited as long as it can disperse layered clay mineral particles, silicon oxide particles, and light scattering fine particles.
  • the solvent include water, an organic solvent having excellent compatibility with water, and an organic solvent having low compatibility with water.
  • the solvent is particularly preferably an aliphatic alcohol.
  • the aliphatic alcohol may be a monovalent aliphatic alcohol or a divalent or higher polyhydric aliphatic alcohol. In particular, it is preferable to combine a monovalent aliphatic alcohol and a polyvalent aliphatic alcohol from the viewpoint of the viscosity of the obtained phosphor dispersion.
  • the viscosity of the phosphor dispersion liquid tends to be low. Moreover, the drying property of the coating film of the phosphor dispersion liquid is improved.
  • monovalent aliphatic alcohols include methanol, ethanol, propanol, butanol and the like.
  • the amount of monovalent aliphatic alcohol in the phosphor dispersion is preferably 10 to 50% by mass, more preferably 25 to 45% by mass, based on the total of components excluding the phosphor particles in the phosphor dispersion. It is.
  • the polyhydric aliphatic alcohol may be either a diol or a triol.
  • examples of polyhydric aliphatic alcohols include ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-butanediol, 1,4-butanediol, and preferably ethylene glycol, propylene glycol, 1,3. -Butanediol, 1,4-butanediol and the like are included.
  • the amount of the polyhydric alcohol in the phosphor dispersion is preferably 40 to 80% by mass, more preferably 50 to 70% by mass with respect to the total of components excluding the phosphor particles in the phosphor dispersion. .
  • the solvent of the phosphor dispersion liquid may contain water.
  • water When water is contained, water enters between the layers of the swellable clay mineral particles, which may be layered clay mineral particles, so that the swellable clay mineral particles swell and the viscosity of the phosphor dispersion liquid increases.
  • impurities when impurities are contained in water, there is a possibility of inhibiting swelling of the swellable clay mineral particles. Therefore, when the swellable clay mineral particles are swollen, the water to be mixed is pure water.
  • the solvent of the phosphor dispersion liquid contains an organic solvent having a boiling point of 150 ° C. or higher.
  • an organic solvent having a boiling point of 150 ° C. or higher is contained, the storage stability of the finally obtained phosphor dispersion liquid is improved.
  • the boiling point of the solvent is preferably 250 ° C. or lower. When the boiling point of the solvent exceeds 250 ° C., the solvent may be difficult to dry from the coating film of the phosphor dispersion liquid finally obtained.
  • the total amount of the solvent with respect to the phosphor dispersion liquid is preferably 55 to 99% by mass, and more preferably 75 to 98% by mass with respect to the total of components excluding the phosphor particles in the phosphor dispersion liquid. If the total amount of the solvent is less than 55% by mass, the viscosity of the phosphor dispersion liquid becomes too high, and the phosphor particles may not be uniformly dispersed in the steps described later. On the other hand, when the total amount of the solvent exceeds 99% by mass, the amount of layered clay mineral particles and oxide fine particles is relatively reduced, and the viscosity of the phosphor dispersion liquid is not sufficiently increased. There is a risk of particles settling.
  • the phosphor dispersion liquid may contain a translucent ceramic material.
  • the translucent ceramic material can be a compound that becomes a translucent ceramic (preferably a glass ceramic) by a sol-gel reaction.
  • Examples of the translucent ceramic material include metal alkoxide, metal acetylacetonate, metal carboxylate, polysilazane oligomer and the like, and metal alkoxide is preferable from the viewpoint of good reactivity.
  • the metal alkoxide may be an alkoxide of various metals, but is preferably an alkoxysilane or an aryloxysilane from the viewpoint of the stability of the translucent ceramic obtained and the ease of production.
  • Alkoxysilane and aryloxysilane may be monomolecular compounds (monomers) such as tetraethoxysilane, but are preferably polysiloxanes (oligomers).
  • Polysiloxane is a compound in which a silane compound is bonded to a chain or cyclic siloxane. A method for preparing polysiloxane will be described later.
  • the mass average molecular weight of the polysiloxane is preferably 1000 to 3000, more preferably 1200 to 2700, and further preferably 1500 to 2000. If the mass average molecular weight of the polysiloxane is less than 1000, the viscosity of the phosphor dispersion liquid may be too low. On the other hand, when the mass average molecular weight exceeds 3000, the viscosity of the phosphor dispersion liquid becomes high, and it may be difficult to apply the phosphor dispersion liquid.
  • the mass average molecular weight is a value (polystyrene conversion) measured by gel permeation chromatography.
  • the polysiloxane is obtained by polymerizing an alkoxysilane compound or an aryloxysilane compound.
  • the alkoxysilane compound or aryloxysilane compound is represented, for example, by the following general formula (I). Si (OR) n Y 4-n (I)
  • n represents the number of alkoxy groups or aryloxy groups (OR) and is an integer of 2 or more and 4 or less.
  • Each R independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms or a phenyl group.
  • Y represents a hydrogen atom or a monovalent organic group.
  • the monovalent organic group represented by Y include an aliphatic group having 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, still more preferably 50 or less, and particularly preferably 6 or less.
  • An alicyclic group, an aromatic group, and an alicyclic aromatic group are included.
  • These monovalent organic groups may be an aliphatic group, an alicyclic group, an aromatic group, or a group in which an alicyclic aromatic group is bonded via a linking group.
  • the linking group may be an atom such as O, N, or S, or an atomic group containing these.
  • the monovalent organic group represented by Y may have a substituent.
  • substituents include, for example, halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group
  • An organic functional group such as a group, a nitro group, a sulfonic acid group, a carboxy group, a hydroxy group, an acyl group, an alkoxy group, an imino group, and a phenyl group.
  • the group represented by Y is particularly preferably a methyl group.
  • Y is a methyl group, the light resistance and heat resistance of the wavelength conversion layer are improved.
  • the alkoxysilane or aryloxysilane represented by the general formula (I) includes the following tetrafunctional silane compounds, trifunctional silane compounds, and bifunctional silane compounds.
  • tetrafunctional silane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, triethoxymono Methoxysilane, trimethoxymonopropoxysilane, monomethoxytributoxysilane, monomethoxytripentyloxysilane, monomethoxytriphenyloxysilane, dimethoxydipropoxysilane, tripropoxymonomethoxysilane, trimethoxymonobutoxysilane, dimethoxydibutoxysilane , Triethoxymonopropoxysilane, diethoxydipropoxysilane, tributoxymonopropoxysilane, dimethoxymonoethoxy
  • trifunctional silane compounds include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, di Propoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxysilane Monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysilane, monophenyl Monohydrosilane compounds such as ruoxydiethoxysi
  • bifunctional silane compound examples include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxypropoxy.
  • Polysiloxane can be prepared by a method in which the silane compound is hydrolyzed in the presence of an acid catalyst, water, and an organic solvent, and subjected to a condensation reaction.
  • the mass average molecular weight of the polysiloxane can be adjusted by reaction conditions (particularly reaction time) and the like.
  • a tetrafunctional silane compound, a trifunctional silane compound, or a bifunctional silane compound may be preliminarily mixed at a desired molar ratio and polymerized randomly.
  • a trifunctional silane compound or a bifunctional silane compound may be polymerized to some extent alone to form an oligomer, and then the oligomer may be polymerized with only the tetrafunctional silane compound to form a block copolymer.
  • the acid catalyst for preparing the polysiloxane is particularly preferably an organic sulfonic acid represented by the following general formula (II).
  • R 8 —SO 3 H (II) the hydrocarbon group represented by R 8 is a linear, branched, or cyclic saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms.
  • the cyclic hydrocarbon group include an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, or an anthryl group, preferably a phenyl group.
  • the hydrocarbon group represented by R 8 in the general formula (II) may have a substituent.
  • substituents examples include linear, branched, or cyclic, saturated or unsaturated hydrocarbon groups having 1 to 20 carbon atoms; halogen atoms such as fluorine atoms; sulfonic acid groups; carboxyl groups; Amino group; cyano group and the like are included.
  • the organic sulfonic acid represented by the general formula (II) is preferably nonafluorobutanesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, or dodecylbenzenesulfonic acid.
  • the amount of the acid catalyst added during the preparation of the polysiloxane is preferably 1 to 1000 ppm by mass, more preferably 5 to 800 ppm by mass with respect to the total amount of the polysiloxane preparation.
  • the water addition rate is the ratio (%) of the number of moles of water molecules to be added to the number of moles of alkoxy groups or aryloxy groups of the silane compound contained in the polysiloxane preparation solution.
  • the water addition rate is preferably 50 to 200%, more preferably 75 to 180%.
  • solvents added during the preparation of polysiloxane include monohydric aliphatic alcohols such as methanol, ethanol, propanol and n-butanol; alkyls such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate Carboxylic acid ester; Polyhydric aliphatic alcohol such as ethylene glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, hexanetriol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, Diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol Monoethers of polyhydric aliphatic alcohols such as monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether;
  • the content of polysiloxane in the phosphor dispersion is preferably 1 to 10% by mass.
  • the viscosity of the phosphor dispersion liquid is appropriately selected depending on the method of applying the phosphor dispersion liquid, but is usually preferably 80 to 1000 mPa ⁇ s, more preferably 100 to 450 mPa ⁇ s.
  • the viscosity of the phosphor dispersion liquid is less than 80 mPa ⁇ s, the phosphor particles tend to settle during storage of the phosphor dispersion liquid.
  • the viscosity exceeds 1000 mPa ⁇ s, the viscosity of the phosphor dispersion liquid is too high, and it may be difficult to apply the phosphor dispersion liquid.
  • the viscosity of the phosphor dispersion liquid is adjusted by the stirring time for dispersing the phosphor particles, the shearing force during dispersion, and the like.
  • the above-mentioned viscosity is a value of 1 minute after the phosphor dispersion liquid has a viscosity of 25 ° C. and a vibrator of a vibration type viscosity measuring machine VM-10A (manufactured by Seconic Corporation) is immersed in the liquid.
  • the phosphor dispersion may be prepared by 1) preparing a mixture containing phosphor particles, layered clay mineral particles, silicon oxide particles, light scattering particles, and a solvent, and stirring them together. It may be prepared (batch method), 2) a mixture containing components other than phosphor particles may be stirred, and then the phosphor particles may be mixed and stirred (sequential method).
  • the mixture may be stirred or dispersed by a stirring device such as a stirring mill, a blade kneading stirring device, or a thin-film swirl type dispersing device.
  • a stirring device such as a stirring mill, a blade kneading stirring device, or a thin-film swirl type dispersing device.
  • Specific examples of the stirrer include Ultra Tarrax (manufactured by IKA Japan), TK auto homomixer (manufactured by Primix), TK pipeline homomixer (manufactured by Primics), TK Fillmix (manufactured by Primix), and Claremix.
  • a preferable example includes an ultrasonic dispersion device.
  • the phosphor dispersion is prepared by stirring a mixture containing components other than the phosphor particles, and then mixing and stirring the phosphor particles, specifically, the following two steps are performed.
  • Step of preparing first dispersion Step of preparing first dispersion by stirring a mixture containing layered clay mineral particles, silicon oxide particles, light scattering fine particles, and a solvent
  • Step of preparing phosphor dispersion First dispersion Step of preparing phosphor dispersion by mixing phosphor particles in liquid and stirring
  • First Dispersion Preparation Step In the first dispersion preparation step, a mixture containing layered clay mineral particles, silicon oxide particles, light scattering fine particles, and a solvent is stirred to prepare a first dispersion.
  • the mixture may contain other additives as required.
  • the mixture containing layered clay mineral particles, silicon oxide particles, light scattering fine particles, and a solvent can be agitated by applying a high shearing force.
  • a high shearing force By applying a high shearing force to the mixture, the layered clay mineral particles, silicon oxide particles, and aggregated particles of light scattering particles are crushed, and the layered clay mineral particles, silicon oxide particles, and light scattering particles are more uniformly dispersed.
  • the stirring time of the mixed solution is appropriately adjusted according to the amount of the mixed solution and the stirring method.
  • the mixture may be stirred and dispersed by a stirring device such as a stirring mill, a blade kneading stirring device, or a thin-film swirling disperser.
  • a stirring device such as a stirring mill, a blade kneading stirring device, or a thin-film swirling disperser.
  • Specific examples of the stirrer include Ultra Tarrax (manufactured by IKA Japan), TK auto homomixer (manufactured by Primix), TK pipeline homomixer (manufactured by Primics), TK Fillmix (manufactured by Primix), and Claremix.
  • the viscosity of the obtained first dispersion is 30 to 500 mPa ⁇ s, preferably 50 to 250 mPa ⁇ s.
  • the viscosity of the first dispersion is adjusted by the stirring (dispersing) time of the mixed solution and the shearing force during stirring (dispersing).
  • the viscosity of the first dispersion When the shearing force during stirring is increased, the viscosity of the first dispersion is likely to increase. In general, when the stirring (dispersing) time is short, the viscosity of the first dispersion tends to be low.
  • the above viscosity is the viscosity when the first dispersion is at 25 ° C., and the value is 1 minute after the vibrator of the vibration type viscosity measuring machine VM-10A (manufactured by Seconic Corporation) is immersed in the liquid. is there.
  • Step of preparing phosphor dispersion In the step of preparing phosphor dispersion, the mixture of phosphor particles mixed in the first dispersion obtained in the above step is stirred to uniformly disperse the phosphor particles. A phosphor dispersion is obtained.
  • the stirring of the mixture obtained by mixing phosphor particles in the first dispersion is preferably performed without applying a high shearing force to the mixture.
  • the layered clay mineral particles are uniformly dispersed in the first dispersion. Therefore, the phosphor particles are easily dispersed uniformly due to the affinity between the layered clay mineral particles and the phosphor particles without applying a high shearing force. Further, the layered clay mineral particles and the phosphor particles are uniformly dispersed in the phosphor dispersion liquid, so that the phosphor particles are difficult to settle.
  • Examples of the apparatus for stirring the mixture in which the phosphor particles are mixed with the first dispersion are performed by a rotation / revolution stirrer, a vibration stirrer, an overturning stirrer, a container rotating type mixer, a shaker, or the like. be able to.
  • Specific examples of the agitation device include a rotation / revolution type agitator: Nawataro Awatori (Sinky Corp.), a vibratory agitator: a rocking shaker (Seiwa Giken Corp.), a rocking mill (Seiwa Giken Corp.), and overturn rotation.
  • Mold stirrer Mix rotor (manufactured by ASONE), container rotating mixer: V-type blender (manufactured by Nishimura Machinery Co., Ltd.), rocking mixer (manufactured by Aichi Electric Co., Ltd.), shaker: shaking incubator (manufactured by ASONE), etc. Is included.
  • the stirring time of the mixture obtained by mixing the phosphor particles in the first dispersion is preferably 1 to 30 minutes, more preferably 5 to 15 minutes. If the stirring time is excessively long, the phosphor particles may be deteriorated. On the other hand, if the stirring time is excessively short, the phosphor particles may not be uniformly dispersed.
  • LED device of the present invention includes an LED element that emits light of a specific wavelength, and a wavelength conversion layer that is formed on the LED element and converts light from the LED element into light of another specific wavelength. Have. An arbitrary layer such as a transparent resin layer may be formed on the wavelength conversion layer.
  • FIG. 1 and 2 are cross-sectional views showing an example of the LED device 100.
  • FIG. The LED device shown in FIG. 1 includes an LED element having an LED chip 3, a wavelength conversion layer 6 formed on the LED chip, and a transparent resin layer 7.
  • the LED element included in the LED device 100 shown in FIG. 1 includes a package (LED substrate) 1, a metal part 2, an LED chip 3, and a wiring 4 that connects the metal part 2 and the LED chip 3. Have.
  • Package 1 may be, for example, a liquid crystal polymer or ceramic, but the material is not particularly limited as long as it has insulation and heat resistance.
  • the shape is not particularly limited, and may be concave as shown in FIG. 1, for example, or may be flat as shown in FIG.
  • the emission wavelength of the LED chip 3 is not particularly limited.
  • the LED chip 3 may emit blue light (light of about 420 nm to 485 nm), or may emit ultraviolet light, for example.
  • the configuration of the LED chip 3 is not particularly limited.
  • the LED chip 3 includes an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer (cladding layer). Layer) and a transparent electrode layer.
  • the LED chip 3 may have a light emitting surface of 200 to 300 ⁇ m ⁇ 200 to 300 ⁇ m, for example.
  • the height of the LED chip 3 is usually about 50 to 200 ⁇ m.
  • the metal part 2 can be a wiring made of a metal such as silver.
  • the metal part 2 may function as a reflecting plate that reflects light emitted from the LED chip 3 and the like.
  • the metal part 2 and the LED chip 3 may be connected via a wiring 4 as shown in FIG. 1, or may be connected via a protruding electrode 5 as shown in FIG.
  • a mode in which the metal part 2 and the LED chip 3 are connected via the wiring 4 is referred to as a wire bonding type, and a mode in which the metal part 2 and the LED chip 3 are connected via the protruding electrode 5 is referred to as a flip chip type.
  • the wavelength conversion layer 6 includes ceramic, phosphor particles bound with the ceramic, light scattering fine particles, layered clay mineral particles, and silicon oxide particles.
  • the wavelength conversion layer 6 receives light (excitation light) of a specific wavelength emitted from the LED chip 3 and emits light (fluorescence) of another specific wavelength. By mixing the excitation light and the fluorescence, the light from the LED device 100 becomes desired light. For example, when the light emitted from the LED chip 3 is blue and the fluorescence emitted from the phosphor particles contained in the wavelength conversion layer 6 is yellow or orange, the light from the LED device 100 is white.
  • the wavelength conversion layer 6 only needs to cover the light emitting surface of the LED chip 3, and may not completely cover the package 1, the metal part 2, the wiring 4, and the like.
  • the thickness of the wavelength conversion layer 6 is not particularly limited, but is usually preferably 15 to 300 ⁇ m, more preferably 30 to 200 ⁇ m. If the wavelength conversion layer 6 is too thick, cracks may occur in the wavelength conversion layer 6. On the other hand, if the thickness of the wavelength conversion layer 6 is too thin, the wavelength conversion layer 6 does not contain sufficient phosphor particles, and sufficient fluorescence may not be generated.
  • the thickness of the wavelength conversion layer 6 means the maximum thickness of the wavelength conversion layer 6 formed on the light emitting surface of the LED chip 3. The thickness of the wavelength conversion layer 6 is measured with a laser holo gauge.
  • the wavelength conversion layer 6 contains 0.05 to 2% by mass of light scattering fine particles, excitation light from the LED element and fluorescence from the phosphor are scattered by the wavelength conversion layer 6. As a result, the light emission from the LED device is averaged, and the chromaticity unevenness of the light emission is reduced.
  • the wavelength conversion layer 6 preferably contains 5 to 20% by mass of ceramic, and preferably contains 7 to 25% by mass of ceramic with respect to the phosphor particles. This is to sufficiently bind the phosphor particles.
  • the transparent resin layer 7 is formed so as to cover the wavelength conversion layer 6.
  • the transparent resin layer 7 protects the LED element and the wavelength conversion layer 6 from external impacts and gases. In addition, when the wavelength conversion layer 6 is provided, the light extraction efficiency is easily increased.
  • the transparent resin layer is a layer that includes a transparent resin and has high transparency to visible light.
  • transparent resins examples include epoxy-modified silicone resins, alkyd-modified silicone resins, acrylic-modified silicone resins, polyester-modified silicone resins, phenyl silicone resins and other silicone resins; epoxy resins; acrylic resins; methacrylic resins; Etc. are included.
  • a phenyl silicone resin is particularly preferable. When the transparent resin is a phenyl silicone resin, the moisture resistance of the LED device is increased.
  • the thickness of the transparent resin layer 7 is not particularly limited, but is usually preferably 25 ⁇ m to 5 mm, and more preferably 1 to 3 mm. In general, it is difficult to set the thickness of the transparent resin layer 7 to 25 ⁇ m. On the other hand, from the viewpoint of miniaturization of the LED device, the thickness of the transparent resin layer 7 is preferably 5 mm or less.
  • Method for Manufacturing LED Device The above-described method for manufacturing an LED device can be broadly divided into two liquid methods and one liquid method depending on the mode of the phosphor dispersion liquid.
  • a wavelength conversion layer is formed using a phosphor dispersion liquid that does not contain a translucent ceramic material but contains phosphor particles, and a translucent ceramic material composition that contains the translucent ceramic material.
  • the one-liquid method includes a step of forming a wavelength conversion layer using a phosphor dispersion liquid containing a translucent ceramic material and phosphor particles.
  • the manufacturing method by the two-component method includes 1) a step of preparing an LED element, and 2) applying a phosphor dispersion liquid on the LED element to form a phosphor particle layer.
  • the one-liquid manufacturing method includes 1) a step of preparing an LED element, and 2) a step of applying a phosphor dispersion liquid on the LED element to form a ceramic material layer. And 3) curing the translucent ceramic material to make the ceramic material layer a wavelength conversion layer.
  • the LED element is prepared through a process of electrically connecting the metal part formed in the package and the LED chip, and fixing the LED chip to the package.
  • phosphor dispersion liquid The phosphor dispersion liquid described above is applied so as to cover the light emitting surface of the LED chip, and a phosphor particle layer is formed on the LED element. You may apply
  • the means for applying the phosphor dispersion liquid is not particularly limited.
  • Examples of the method for applying the phosphor dispersion include conventionally known methods such as a bar coating method, a spin coating method, a spray coating method, a dispensing method, and a jet dispensing method.
  • the phosphor dispersion liquid is applied by a spray coating apparatus described later, the thickness of the phosphor particle layer can be reduced.
  • the coating amount of the fluorescent-containing composition is appropriately adjusted according to the thickness of the phosphor particle layer.
  • the thickness of the phosphor particle layer is preferably 15 to 300 ⁇ m, and more preferably 30 to 200 ⁇ m. If the thickness of the phosphor particle layer is less than 15 ⁇ m, the amount of the phosphor particles decreases, and there is a possibility that sufficient fluorescence cannot be obtained. On the other hand, if the thickness of the phosphor particle layer exceeds 300 ⁇ m, the concentration of the phosphor particles in the phosphor particle layer becomes excessively low, and the concentration of the phosphor particles may not be uniform.
  • the thickness of the phosphor particle layer means the maximum thickness of the phosphor particle layer formed on the light emitting surface of the LED chip. The thickness of the phosphor particle layer is measured with a laser holo gauge.
  • the temperature at which the solvent in the phosphor dispersion liquid is dried is usually 20 to 200 ° C., preferably 25 to 150 ° C. If it is lower than 20 ° C, the solvent may not be sufficiently evaporated. On the other hand, if it exceeds 200 ° C., the LED chip may be adversely affected.
  • the drying time is usually 0.1 to 30 minutes, preferably 0.1 to 15 minutes, from the viewpoint of production efficiency.
  • the spray coating device is composed of a coating liquid tank for storing the phosphor dispersion liquid, a head having a nozzle for discharging the coating liquid, and a connecting pipe that connects the coating liquid tank and the nozzle. It is preferable to have.
  • FIG. 3 shows an outline of a spray coating apparatus for coating the coating liquid.
  • the phosphor dispersion liquid is charged into the coating liquid tank 210 in the coating apparatus 200 shown in FIG.
  • the phosphor dispersion liquid 220 in the coating liquid tank 210 in the coating apparatus 200 shown in FIG. 3 is supplied with pressure to the head 240 through the connecting pipe 230.
  • the phosphor dispersion liquid 220 supplied to the head 240 is discharged as a discharge liquid 270 from the nozzle 250 and applied to the application target (LED chip 3).
  • the coating liquid is discharged from the nozzle 250 by wind pressure.
  • An opening that can be freely opened and closed is provided at the tip of the nozzle 250, and the opening may be opened and closed to control on / off of the discharge operation.
  • the tip of the nozzle 250 is disposed directly above the LED chip 3 and the phosphor dispersion liquid 220 is sprayed from directly above the LED chip 3.
  • the phosphor dispersion liquid 220 may be sprayed from directly above the LED chip 3 or from diagonally above the LED chip 3.
  • the phosphor dispersion liquid 220 can be appropriately applied to the entire surface of the LED chip 3. In this way, it is preferable to uniformly apply the phosphor dispersion liquid 220 also to the side surface of the LED chip 3.
  • the spray amount of the phosphor dispersion liquid 220 is constant, and the phosphor amount per unit area is constant.
  • the variation with time of the spray amount of the phosphor dispersion liquid 220 is set to be within 10%, preferably within 1%.
  • the temperature of the nozzle 250 is adjusted to 40 ° C. or lower, or is adjusted according to the viscosity of the phosphor dispersion liquid 220.
  • the substrate 1 of the LED element may be in a room temperature environment, or a temperature adjustment mechanism may be provided on the moving table to control the temperature of the substrate 1 of the LED element. If the temperature of the substrate 1 is set high at 30 to 100 ° C., the organic solvent in the phosphor dispersion liquid 220 sprayed onto the substrate 1 can be volatilized quickly, and the phosphor dispersion liquid 220 drips from the substrate 1.
  • the temperature of the substrate 1 is set as low as 5 to 20 ° C.
  • the solvent can be volatilized slowly, and the phosphor dispersion liquid 220 can be uniformly applied along the outer wall of the LED chip 3.
  • the film density and film strength of the phosphor particle layer can be increased, and a dense film can be formed.
  • the environmental atmosphere (temperature / humidity) of the coating apparatus 200 is kept constant, and the injection of the phosphor dispersion liquid 220 is stabilized.
  • a mask corresponding to the shape of the LED chip 3 may be disposed between the coating device 200 and the LED element, and the phosphor dispersion liquid 220 may be sprayed through the mask.
  • the mask needs to be made of a material that does not dissolve in the solvent that constitutes the phosphor dispersion liquid 220.
  • a flammable mask is preferably used from the viewpoint of recovery of the material such as the phosphor attached to the mask.
  • the phosphor dispersion liquid 220 When the phosphor dispersion liquid 220 is sprayed and applied to one LED element, the same operation as described above is repeated for the next LED element, and fluorescence is emitted onto the LED chips 3 of the plurality of LED elements.
  • the body dispersion liquid 220 is sequentially sprayed and applied. In this case, regardless of the switching of the LED elements, the phosphor dispersion liquid 220 may be continuously ejected, or each time the LED elements are switched, the ejection of the phosphor dispersion liquid 220 is temporarily stopped. The phosphor dispersion liquid 220 may be ejected intermittently.
  • the ejection amount of the phosphor dispersion liquid 220 to each LED element can be stabilized. If the phosphor dispersion liquid 220 is intermittently ejected, the amount of the phosphor dispersion liquid 220 used can be saved.
  • the nozzle 250 may be cleaned during the spraying / coating process.
  • a cleaning tank storing a cleaning liquid is installed in the vicinity of the spray device 200, and the tip of the nozzle 250 is placed during the suspension of the injection of the phosphor dispersion liquid 220 or the inspection of chromaticity / luminance of white light. It is immersed in the cleaning tank to prevent the tip of the nozzle 250 from drying. Further, during the suspension of the spraying / coating process, the phosphor dispersion liquid 220 may be hardened and the spraying holes of the nozzle 250 may be clogged. Sometimes it is preferable to clean the nozzle 250.
  • the manufacturing method by the two-component method includes a step of applying the translucent ceramic material composition so as to cover the phosphor particle layer.
  • the translucent ceramic material composition enters the voids in the phosphor particle layer and fills the gaps between particles such as phosphor particles, layered clay mineral particles, and silicon oxide particles contained in the phosphor particle layer.
  • coating method in particular of translucent ceramic material composition is not restrict
  • blade coating, spin coating coating, dispenser coating, spray coating, and the like can be used.
  • spray coating a thin wavelength conversion layer can be formed.
  • the spray coating apparatus can be the same as the spray coating apparatus used for coating the phosphor dispersion liquid described above.
  • the coating amount of the translucent ceramic material composition is such that the phosphor particles, layered clay mineral particles, silicon oxide particles, etc. contained in the phosphor particle layer can be sufficiently bound. If the coating amount of the translucent ceramic material composition is too small, the phosphor particles cannot be sufficiently bound, and the strength of the wavelength conversion layer may be lowered.
  • the translucent ceramic material composition includes a translucent ceramic material and a solvent, and includes inorganic oxide particles and the like as necessary.
  • the translucent ceramic material is the same as the translucent ceramic material that can be included in the phosphor dispersion liquid, and may be polysiloxane or the like.
  • the amount of polysiloxane contained in the translucent ceramic material composition is preferably 1 to 40% by mass with respect to the total mass of the translucent ceramic material composition. More preferably, it is 2 to 30% by mass. If the amount of polysiloxane is less than 1% by mass, the cured product of polysiloxane may not be able to bind phosphor particles sufficiently. On the other hand, when the amount of polysiloxane exceeds 40% by mass, the viscosity of the translucent ceramic material composition becomes excessively high, and it may be difficult to apply the translucent ceramic material composition.
  • the translucent ceramic material composition may include inorganic oxide particles.
  • inorganic oxide particles When inorganic oxide particles are contained in the translucent ceramic material composition, when the translucent ceramic material composition is cured, stress generated in the film is relaxed, and cracks are hardly generated in the wavelength conversion layer.
  • the solvent contained in the translucent ceramic material composition may be any solvent that can dissolve or uniformly disperse the above translucent ceramic material.
  • the solvent include monovalent aliphatic alcohols such as methanol, ethanol, propanol and n-butanol; alkyl carboxylic acid esters such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate; ethylene glycol , Diethylene glycol, propylene glycol, glycerin, trimethylolpropane, hexanetriol and other polyhydric aliphatic alcohols; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol mono Ethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, propylene Monoethers of polyhydric aliphatic alcohols such as recall mono
  • the solvent preferably contains water.
  • the amount of water is preferably 3 to 15% by mass, more preferably 5 to 10% by mass, based on the total mass of the translucent ceramic material composition.
  • the water content is preferably 10 to 120 parts by mass, more preferably 80 to 100 parts by mass with respect to 100 parts by mass of the polysiloxane. If the amount of water contained in the translucent ceramic material composition is too small, the polysiloxane may not be sufficiently hydrolyzed after application of the translucent ceramic material. On the other hand, if the amount of water contained in the translucent ceramic material composition is excessive, hydrolysis or the like may occur during storage of the translucent ceramic material composition, and the translucent ceramic material composition may be gelled. There is.
  • the solvent preferably contains an organic solvent having a boiling point of 150 ° C. or higher (for example, ethylene glycol, propylene glycol, etc.).
  • an organic solvent having a boiling point of 150 ° C. or higher for example, ethylene glycol, propylene glycol, etc.
  • the storage stability of the translucent ceramic material composition is enhanced.
  • the translucent ceramic material composition can be stably coated from the coating apparatus.
  • the boiling point of the solvent contained in the translucent ceramic material composition is preferably 250 ° C. or less. When the boiling point of the solvent exceeds 250 ° C., it may take time to dry the translucent ceramic material composition or the solvent may not be sufficiently dried.
  • the translucent ceramic material (one liquid method) contained in the phosphor dispersion liquid or the translucent ceramic material (two liquid method) contained in the translucent ceramic material composition is dried and cured. By curing the translucent ceramic material, a wavelength conversion layer in which the phosphor particle layer is bound with the translucent ceramic material is obtained.
  • the drying / curing method of the translucent ceramic material is appropriately selected according to the type of translucent ceramic material.
  • the coating film is preferably heated to 100 ° C. or higher, more preferably 150 to 300 ° C.
  • the heating temperature is less than 100 ° C., moisture generated during dehydration condensation cannot be sufficiently removed, and the light resistance of the wavelength conversion layer may be reduced.
  • Both the two-component method and the one-component manufacturing method may include a step of applying a transparent resin layer composition on the wavelength conversion layer to form a transparent resin layer.
  • the composition for a transparent resin layer contains a transparent resin and, if necessary, a solvent.
  • the transparent resin may be a curable resin that is transparent to visible light.
  • the kind of solvent is suitably selected according to the kind of transparent resin and the viscosity of the composition for transparent resin layers.
  • the coating method of the transparent resin layer composition is not particularly limited, and may be a coating method using a general coating device such as a dispenser. Moreover, the hardening method and hardening conditions of the composition for transparent resin layers are suitably selected with the kind of transparent resin.
  • An example of the curing method is heat curing.
  • Sample 1 3 g of bengel (manufactured by Hojun Co., Ltd .: natural bentonite) as layered clay mineral particles, 4.5 g of silicia 470 (manufactured by Fuji Silysia Chemical) as silicon oxide particles, 70 g of propylene glycol, 30 g of 1,3-butanediol, and isopropyl It added in the mixed solvent of 50g of alcohol.
  • the mixed solution was mixed with a TK auto homomixer (manufactured by Primex) to obtain a first dispersion. Thereafter, 90 g of phosphor particles were added to the first dispersion. This was stirred and mixed with Awatori Nertaro (manufactured by Shinky Corporation) to obtain a phosphor dispersion.
  • the viscosity of the obtained phosphor dispersion was 200 mPa ⁇ s.
  • Sample 2 3 g of bengel (manufactured by Hojun Co .: natural bentonite) as layered clay mineral particles, 4.5 g of silicia 470 (manufactured by Fuji Silysia Chemical Co.) as silicon oxide particles, and 0.6 g of titanium oxide particles, 70 g of propylene glycol, 1,
  • the mixture was added to a mixed solvent of 30 g of 3-butanediol and 50 g of isopropyl alcohol.
  • the mixed solution was mixed with a TK auto homomixer (manufactured by Primex) to obtain a first dispersion. Thereafter, 90 g of phosphor particles were added to the first dispersion. This was stirred and mixed with Awatori Nertaro (manufactured by Shinky Corporation) to obtain a phosphor dispersion.
  • the viscosity of the obtained phosphor dispersion was 200 mPa ⁇ s.
  • Sample 3 3 g of bengel (manufactured by Hojun Co .: natural bentonite) as layered clay mineral particles, 4.5 g of silicia 470 (manufactured by Fuji Silysia Chemical Co.) as silicon oxide particles, and 2.2 g of titanium oxide particles, 70 g of propylene glycol, 1,
  • the mixture was added to a mixed solvent of 30 g of 3-butanediol and 50 g of isopropyl alcohol.
  • the mixed solution was mixed with a TK auto homomixer (manufactured by Primex) to obtain a first dispersion. Thereafter, 90 g of phosphor particles were added to the first dispersion. This was stirred and mixed with Awatori Nertaro (manufactured by Shinky Corporation) to obtain a phosphor dispersion.
  • the viscosity of the obtained phosphor dispersion was 200 mPa ⁇ s.
  • Sample 4 3 g of bengel (manufactured by Hojun Co .: natural bentonite) as layered clay mineral particles, 4.5 g of silicia 470 (manufactured by Fuji Silysia Chemical) as silicon oxide particles, 0.8 g of aluminum oxide particles, and 0.8 g of titanium oxide particles.
  • 90 g of the phosphor particles were added to a mixed solvent of 70 g of propylene glycol, 30 g of 1,3-butanediol, and 50 g of isopropyl alcohol.
  • the mixed solution was batch-dispersed with a TK auto homomixer (manufactured by Primix) to obtain a phosphor dispersion.
  • the resulting phosphor dispersion had a viscosity of 400 mPa ⁇ s.
  • Sample 5 3 g of bengel (manufactured by Hojun Co., Ltd .: natural bentonite) as layered clay mineral particles, 4.5 g of silicia 470 (manufactured by Fuji Silysia Chemical Co.) as silicon oxide particles, and 1 g of zinc oxide particles, 70 g of propylene glycol, 1,3- This was added to a mixed solvent of 30 g of butanediol and 50 g of isopropyl alcohol. The mixed solution was mixed with TK fill mix (manufactured by Primex) to obtain a first dispersion. Thereafter, 90 g of phosphor particles were added to the first dispersion. This was stirred and mixed with Awatori Nertaro (manufactured by Shinky Corporation) to obtain a phosphor dispersion. The viscosity of the obtained phosphor dispersion was 200 mPa ⁇ s.
  • Sample 7 3 g of bengel (manufactured by Hojun Co., Ltd .: natural bentonite) as layered clay mineral particles, 4.5 g of silicia 470 (manufactured by Fuji Silysia Chemical Co.) as silicon oxide particles, and 2.4 g of titanium oxide particles, 70 g of propylene glycol, 1,
  • the mixture was added to a mixed solvent of 30 g of 3-butanediol and 50 g of isopropyl alcohol.
  • the mixed solution was mixed with a TK auto homomixer (manufactured by Primex) to obtain a first dispersion.
  • 90 g of phosphor particles were added to the first dispersion.
  • the viscosity of the obtained phosphor dispersion was 200 mPa ⁇ s.
  • Sample 8 3 g of bengel (manufactured by Hojun Co .: natural bentonite) as layered clay mineral particles, 4.5 g of silicia 470 (manufactured by Fuji Silysia Chemical Co.) as silicon oxide particles, and 3.5 g of barium sulfate particles, 70 g of propylene glycol, 1,
  • the mixture was added to a mixed solvent of 30 g of 3-butanediol and 50 g of isopropyl alcohol.
  • the mixed solution was mixed with a TK auto homomixer (manufactured by Primex) to obtain a first dispersion.
  • 90 g of phosphor particles were added to the first dispersion.
  • the viscosity of the obtained phosphor dispersion was 200 mPa ⁇ s.
  • Sample 9 2.5 g of micromica MK-100 (manufactured by Corp Chemical: synthetic mica) as layered clay mineral particles, 4 g of AEROSIL RX300 (manufactured by Nippon Aerosil Co., Ltd.) as silicon oxide particles, and 0.4 g of zinc oxide particles, The mixture was added to a mixed solvent of 90 g of 3-butanediol and 60 g of isopropyl alcohol. The mixed solution was mixed with an apex mill (manufactured by Kotobuki Industries Co., Ltd.) to obtain a first dispersion. Thereafter, 90 g of phosphor particles were added to the first dispersion. This was stirred and mixed with Awatori Nertaro (manufactured by Shinky Corporation) to obtain a phosphor dispersion. The resulting phosphor dispersion had a viscosity of 350 mPa ⁇ s.
  • Sample 11 3 g of bengel (made by Hojung: natural bentonite) as layered clay mineral particles, 4.5 g of silicia 470 (made by Fuji Silysia Chemical) as silicon oxide particles, and 1.5 g of calcium carbonate particles, 70 g of propylene glycol, 1,
  • the mixture was added to a mixed solvent of 30 g of 3-butanediol and 50 g of isopropyl alcohol.
  • the mixed solution was mixed with a TK auto homomixer (manufactured by Primex) to obtain a first dispersion. Thereafter, 90 g of phosphor particles were added to the first dispersion. This was stirred and mixed with Awatori Nertaro (manufactured by Shinky Corporation) to obtain a phosphor dispersion.
  • the viscosity of the obtained phosphor dispersion was 200 mPa ⁇ s.
  • Sample 12 2 g of bengel (made by Hojun Co., Ltd .: natural bentonite) as layered clay mineral particles, 2 g of silicia 470 (made by Fuji Silysia Chemical Co.) as silicon oxide particles, 0.8 g of aluminum oxide particles, and 0.8 g of titanium oxide particles, The mixture was added to a mixed solvent of 70 g of propylene glycol, 30 g of 1,3-butanediol, and 50 g of isopropyl alcohol. The mixed solution was mixed with a TK auto homomixer (manufactured by Primex) to obtain a first dispersion. Thereafter, 90 g of phosphor particles were added to the first dispersion. This was stirred and mixed with Awatori Nertaro (manufactured by Shinky Corporation) to obtain a phosphor dispersion. The resulting phosphor dispersion had a viscosity of 70 mPa ⁇ s.
  • Sample 13 5 g of Bengel (manufactured by Hojun Co., Ltd .: natural bentonite) as layered clay mineral particles, 8 g of silicia 470 (manufactured by Fuji Silysia Chemical) as silicon oxide particles, 0.8 g of aluminum oxide particles, 0.8 g of titanium oxide particles, and fluorescence 90 g of body particles were added to a mixed solvent of 70 g of propylene glycol, 30 g of 1,3-butanediol and 50 g of isopropyl alcohol. The mixed solution was collectively dispersed with an apex mill (manufactured by Kotobuki Industries Co., Ltd.) to obtain a phosphor dispersion. The viscosity of the obtained phosphor dispersion was 1050 mPa ⁇ s.
  • a translucent ceramic material composition was prepared by adding 15 parts by mass of tetramethoxysilane KBM04 (manufactured by Shin-Etsu Chemical Co., Ltd.), 5 parts by mass of methyltrimethoxysilane KBM13 (manufactured by Shin-Etsu Chemical Co., Ltd.), 40 parts by mass of isopropyl alcohol and 40 masses of ethanol. And 2 parts by mass of hydrochloric acid were mixed.
  • the phosphor dispersion liquid prepared in Samples 1 to 13 was applied in the concave portion of the LED element shown in FIG.
  • the spray coating conditions were a spray pressure of 0.2 MPa and a relative moving speed of 100 mm / s between the spray nozzle and the light output element from the LED element.
  • the phosphor layer was formed by heating at 150 ° C. for 1 hour.
  • a light-transmitting ceramic material composition was prepared on the phosphor layer so that the content of the phosphor layer (wavelength conversion layer) was 10% by mass and spray-coated.
  • the spray application conditions were a spray pressure of 0.1 MPa, a relative moving speed of 100 mm / s between the spray nozzle and the light emitting element from the LED element.
  • After applying the translucent ceramic material composition it was heated at 150 ° C. for 1 hour to obtain a wavelength conversion layer in which the phosphor layer was bound with the translucent ceramic.
  • phenyl silicone manufactured by Shin-Etsu Chemical Co., Ltd .; KER-6000 was applied on the wavelength conversion layer with a dispenser and heated at 150 ° C. for 1 hour. Thereby, a transparent resin layer having a thickness of 2 mm was formed.
  • Total luminous flux ratio A phosphor dispersion liquid from which the light scattering fine particles of Samples 2 to 13 were removed was prepared, and an LED device (sample) was produced by the same method as described above. With respect to the manufactured LED device, the total luminous flux value was measured with a spectral radiance meter CS-200 (manufactured by Konica Minolta Sensing).
  • an LED device (same as that prepared by chromaticity measurement) was prepared using the phosphor dispersion liquid prepared in Samples 2 to 13, and the total luminous flux values thereof were measured.
  • the ratio of the total luminous flux values of Samples 2 to 13 to the total luminous flux values of the comparative samples respectively corresponding to Samples 2 to 13 was obtained. This ratio was evaluated as follows. When the ratio is 96% or more, there is no practical problem. “ ⁇ ”: the ratio is 98% or more “ ⁇ ”: the ratio is 96% or more and less than 98% “ ⁇ ”: the ratio is less than 96%
  • Sample 1 that does not contain light scattering particles in the phosphor layer has chromaticity unevenness
  • samples 2 to 13 that contain light scattering particles in the phosphor layer can suppress chromaticity unevenness.
  • the sample 11 in which the light scattering fine particles are calcium carbonate having a low refractive index and the sample 13 having a high viscosity (1050 mPa ⁇ s) slight color unevenness occurred.
  • Samples 7 and 8 having a large amount of light scattering fine particles the total luminous flux value ratio indicating the light extraction efficiency was lowered.
  • the sealing film phosphor film
  • the phosphor dispersion liquid of the present invention variation in chromaticity among the devices is suppressed, and chromaticity unevenness (uniformity in light emitting surface of light emitting device). LED device with low can be provided.

Abstract

 本発明は、波長変換層を有するLED装置であって、高い耐久性と、色度ばらつき(装置ごとの発光の色度ばらつき)及び色度むら(一の発光装置における発光の色度むら)が抑制されたLED装置を提供することを目的とする。蛍光体粒子、光散乱微粒子、層状粘土鉱物粒子、酸化ケイ素粒子および溶媒を含有し、前記光散乱微粒子の含有率は0.1~2.5質量%である、蛍光体分散液によって、この目的は達成される。

Description

蛍光体分散液、LED装置およびその製造方法
 本発明は、LED装置を製造するための蛍光体分散液、LED装置およびその製造方法に関する。
 近年、窒化ガリウム(GaN)系の青色LED(Light Emitting Diode:発光ダイオード)チップの近傍にYAG蛍光体等の蛍光体を配置し、青色LEDチップから出射される青色光と、蛍光体が青色光を受けて二次発光することにより出射される黄色光との混色により白色LEDを得る技術が広く用いられている。
 このような白色LEDでは、蛍光体を分散させた透明樹脂や透明セラミックの前駆体を塗布および硬化させて、LEDチップや実装部を封止膜で封止する方法がある。しかし、蛍光体の比重は、透明樹脂や透明セラミックの前駆体の比重よりも大きいため、樹脂や透明セラミックの前駆体が硬化する前に蛍光体が沈降してしまい、白色LEDの発光時の色度むら、低効率等の原因となっていた。
 そこで、蛍光体の沈降を抑制して色度むらの発生を防止する方法が種々提案されている。例えば特許文献1には、樹脂硬化時の粘度が100~10000mPa・sのシリコーン樹脂を封止体として用いることにより、蛍光体の沈降や偏析を抑制すると記載されている。また特許文献2では、蛍光体分散液と、前駆体溶液を別体として塗布する2液構成とすることで、蛍光体を均一に分散できることが記載されている。
 一方で、特許文献3には、放射源と発光物質を含む無機層(セラミック材料)の間に、TiO2を含む散乱層を配置し、低効率、色点制御を克服することが記載されている。
特開2002-314142号公報 国際公開第2012/023425号 特表2009-549558号公報
 しかしながら、特許文献1のように、LEDチップをシリコーン樹脂で封止すると、LEDチップからの発光やLEDチップ及び蛍光体の発熱などにより封止材料が劣化して、着色する場合があった。そのため、シリコーン樹脂で封止すると、長期間の使用に耐えうるだけの耐久性を得ることが困難であった。
 一方で、シリコーン樹脂ではなく、セラミックでLEDチップを封止することによって、LEDチップの耐熱性や耐光性を向上させることが考えられる。しかしながら、セラミック層を形成するためには、セラミック前駆体と蛍光体粒子とを含有する溶液を用意しなければならない。このような溶液において、蛍光体粒子と透光性セラミック材料とが反応し、部分的に粘度が上昇したり、固化したりして、塗布することができなくなる問題、すなわちポットライフが短くなる問題が生じることが明らかになった。
 そのため、特許文献2のように、蛍光体粒子を含有する蛍光体分散液と、透光性セラミック前駆体(有機金属化合物)を含有する前駆体溶液とを別個に用意し、それぞれ塗布し、塗布されたセラミック前駆体を硬化することが提案されている。
 しかしながら、特許文献2のように、蛍光体分散液と前駆体液を別個に用意する2液構成としても、蛍光体分散液中の蛍光体粒子は、混合後に時間とともに沈降して、塗布後に色度むらが生じやすくなることが明らかになってきた。
 本発明は、波長変換層を有するLED装置であって、高い耐久性と、色度ばらつき(装置ごとの発光の色度ばらつき)及び色度むら(一の発光装置における発光の色度むら)が抑制されたLED装置を提供する。そのようなLED装置が具備する波長変換層を形成するための蛍光体分散液を提供する。また、それを用いて封止膜を形成する工程を含む、LED装置の製造方法を提供する。
 本発明の第1は、以下に示す蛍光体分散液に関する。
 [1]蛍光体粒子、光散乱微粒子、層状粘土鉱物粒子、酸化ケイ素粒子および溶媒を含有する蛍光体分散液であって、前記蛍光体分散液における蛍光体粒子に対する、前記光散乱微粒子の含有率が0.1~2.5質量%である、蛍光体分散液。
 [2]前記光散乱微粒子は白色顔料である、[1]に記載の蛍光体分散液。
 [3]前記光散乱微粒子の屈折率は1.6以上である、[1]または[2]に記載の蛍光体分散液。
 [4]粘度が80~1000mPa・sである、[1]~[3]のいずれかに記載の蛍光体分散液。
 [5]前記溶媒が脂肪族アルコールである、[1]~[4]のいずれかに記載の蛍光体分散液。
 本発明の第2は、以下に示すLED装置に関する。
 [6]LED素子と、前記LED素子から出射する光を他の波長の光に変換する波長変換層とを有し、前記波長変換層が、セラミックと、前記セラミックで結着された蛍光体粒子、光散乱微粒子、層状粘土鉱物粒子および酸化ケイ素粒子と、を含み、前記波長変換層における、前記光散乱微粒子の含有率が0.05~2質量%である、LED装置。
 [7]前記波長変換層上に配置された透明樹脂層をさらに含む、[6]に記載のLED装置。
 本発明の第3は、以下に示すLED装置の製造方法に関する。
 [8]前記[6]または[7]に記載のLED装置を製造する方法であって、LED素子を用意する工程と、前記LED素子上に、[1]~[5]のいずれかに記載の蛍光体分散液を塗布して、蛍光体層を形成する工程と、前記蛍光体層上に、透光性セラミック材料および溶媒を含む透光性セラミック材料組成物を塗布する工程と、前記透光性セラミック材料を硬化させて、前記蛍光体層が透光性セラミックで結着された波長変換層を形成する工程と、を含むLED装置の製造方法。
 本発明の蛍光体分散液を用いて封止膜(蛍光体膜)を形成することで、色度むら、色度ばらつき(発光素子面内均一性)が抑制されたLED装置を提供することができる。
LED装置の例を示す。 LED装置の例を示す。 スプレー塗布装置の概要を示す。
1.蛍光体分散液について
 本発明の蛍光体分散液は、蛍光体粒子、光散乱微粒子、層状粘土鉱物粒子、酸化ケイ素粒子および溶媒を含有する。さらに、蛍光体分散液の使用態様に応じて、透光性セラミック材料をさらに含有する。
 蛍光体粒子について
 蛍光体分散液に含まれる蛍光体粒子は、LEDチップが出射する光により励起されて、LEDチップが出射する光とは異なる波長の蛍光を発するものであればよい。例えば、黄色の蛍光を発する蛍光体粒子の例には、YAG(イットリウム・アルミニウム・ガーネット)蛍光体等がある。YAG蛍光体は、青色LEDチップ3が出射する青色光(波長420nm~485nm)を受けて、黄色の蛍光(波長550nm~650nm)を発する。
 蛍光体粒子は、例えば1)所定の組成を有する混合原料に、フラックス(フッ化アンモニウム等のフッ化物)を適量混合して加圧し、これを成形体とする。2)得られた成形体を坩堝に詰め、空気中で1350~1450℃の温度範囲で、2~5時間焼成し、焼結体とすることで得られる。
 所定の組成を有する混合原料は、Y、Gd、Ce、Sm、Al、La、Ga等の酸化物、または高温で容易に酸化物となる化合物を、化学量論比で十分に混合して得られる。また、所定の組成を有する混合原料は、1)Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶液と、シュウ酸とを混合し、共沈酸化物を得る。2)この共沈酸化物と、酸化アルミニウム、または酸化ガリウムとを混合しても得られる。
 蛍光体の種類は、YAG蛍光体に限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体等、他の蛍光体であってもよい。
 蛍光体粒子の平均粒径は1μm~50μmであることが好ましく、10μm以下であることがより好ましい。蛍光体粒子の粒径が大きいほど発光効率(波長変換効率)は高くなる。一方、蛍光体粒子の粒径が大きすぎると、得られる蛍光体分散液の塗膜において、蛍光体粒子どうしの間に生じる隙間が大きくなる。これにより、得られる蛍光体粒子層の強度が低下する場合がある。蛍光体粒子の平均粒径は、例えばコールターカウンター法によって測定することができる。
 蛍光体分散液に混合する蛍光体粒子の量は、蛍光体分散液の固形分全質量に対して10~99質量%であることが好ましく、より好ましくは20~97質量%である。蛍光体粒子の濃度が10質量%未満であると、得られる蛍光体分散液の塗膜から、十分に蛍光が得られないおそれがある。一方、蛍光体粒子の量が99質量%を超えると、相対的に層状粘土鉱物粒子の量や、酸化ケイ素粒子の量が少なくなり、蛍光体粒子が蛍光体分散液内で沈降する場合がある。
 光散乱微粒子について
 蛍光体分散液に含まれる光散乱微粒子は、白色顔料であることが好ましい。白色顔料の例には、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸マグネシウム、硫酸バリウム、硫酸カルシウム、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化チタン、酸化アルミニウム、酸化ジルコニウム、硫化亜鉛、水酸化アルミニウム、窒化ホウ素、窒化アルミニウム、チタン酸カリウム、チタン酸バリウム、チタン酸アルミニウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、ヒドロキシアパタイトなどが含まれる。なかでも、酸化チタン、酸化アルミニウム、酸化亜鉛、及び硫酸バリウムが好ましい。光散乱微粒子は、これらの白色顔料の少なくとも一種を含み、二種以上の組み合わせでもよい。
 光散乱微粒子の屈折率は1.6以上であることが好ましい。屈折率が1.6以上である白色顔料の例には、酸化チタン(2.52)、酸化アルミニウム(1.76)、酸化亜鉛(1.95)、硫酸バリウム(1.64)などが含まれる。
 白色顔料の平均一次粒径は、100nmより大きく、20μm以下であることが好ましく;100nmより大きく10μm以下であることがより好ましく;さらに好ましくは200nmより大きく2.5μm以下である。本発明における平均一次粒径とは、レーザー回析式粒度分布計で測定されるD50の値をいう。レーザー回析式粒度分布測定装置の例には、島津製作所製のレーザー回析式粒度分布測定装置等がある。
 蛍光体分散液における光散乱微粒子の含有量は、蛍光体粒子に対して0.1~2.5質量%であることが好ましい。
 層状粘土鉱物粒子について
 蛍光体分散液に含まれる層状粘土鉱物粒子は、層状構造を有する粘土鉱物からなる粒子である。層状粘土鉱物粒子は平板状を呈する。そのため、層状粘土鉱物粒子が含まれると、蛍光体分散液の粘度が高まる。また、層状粘土鉱物粒子は、前述のように蛍光体粒子と親和性が高い。したがって、第1分散液中に層状粘土鉱物粒子が均一に分散されていると、蛍光体粒子の分散性が高まる。
 層状粘土鉱物の例には、層状ケイ酸塩鉱物、イモゴライト、アロフェン等が含まれる。層状ケイ酸塩鉱物は、雲母構造、カオリナイト構造、またはスメクタイト構造を有する膨潤性粘土鉱物であることが好ましく、特に膨潤性に富むスメクタイト構造を有する膨潤性粘土鉱物であることが好ましい。膨潤性粘土鉱物粒子は、蛍光体分散液においてカードハウス構造を形成するため、少量含まれるだけで蛍光体分散液の粘度が高まる。
 層状粘土鉱物の具体例には、天然または合成の、ヘクトライト、サポナイト、スチブンサイト、ハイデライト、モンモリロナイト、ノントライト、ベントナイト等のスメクタイト属粘土鉱物や、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母属粘土鉱物およびバーミキュラライトやカオリナイト、またはこれらの混合物が含まれる。
 層状粘土鉱物粒子の市販品の例には、ラポナイトXLG(英国、ラポート社製合成ヘクトライト類似物質)、ラポナイトRD(英国、ラポート社製合成ヘクトライト類似物質)、サーマビス(独国、ヘンケル社製合成ヘクトライト類似物質)、スメクトンSA-1(クニミネ工業(株)製サポナイト類似物質)、ベンゲル(ホージュン(株)販売の天然ベントナイト)、クニビアF(クニミネ工業(株)販売の天然モンモリロナイト)、ビーガム(米国、バンダービルト社製の天然ヘクトライト)、ダイモナイト(トピー工業(株)製の合成膨潤性雲母)、ソマシフ(コープケミカル(株)製の合成膨潤性雲母)、SWN(コープケミカル(株)製の合成スメクタイト)、SWF(コープケミカル(株)製の合成スメクタイト)等が含まれる。
 層状粘土鉱物粒子は、表面アンモニウム塩等で修飾(表面処理)されたものであってもよい。層状粘土鉱物粒子の表面が修飾されていると、蛍光体分散液における層状粘土鉱物粒子の分散性が良好になる。
 層状粘土鉱物粒子の平均粒径は、0.1~100μmであることが好ましく、より好ましくは1~50μmである。層状粘土鉱物粒子の大きさが、0.1μm以上であると、前述の粘度向上効果が得られやすい。一方、層状粘土鉱物粒子の大きさが100μmより大きいと、最終的に得られる蛍光体粒子の塗布膜の光透過性が低下する場合がある。層状粘土鉱物粒子の大きさは、コールターカウンター法等で測定される。
 蛍光体分散液における層状粘土鉱物粒子の量は、蛍光体分散液の蛍光体粒子を除く成分の合計に対して0.1~5質量%であることが好ましく、より好ましく0.5~4質量%である。層状粘土鉱物粒子の濃度が0.1質量%未満であると、蛍光体分散液の粘度が十分に高まらない。一方、層状粘土鉱物粒子の濃度が5質量%を超えると、蛍光体分散液の流動性が低くなり、後述の工程において、蛍光体粒子の分散性が低下する場合がある。なお、層状粘土鉱物粒子の割合が増えれば増えるほど、蛍光体分散液の粘度が高まるわけではない。蛍光体分散液の粘度は、溶媒量や酸化ケイ素粒子量等、その他の成分との含有比率で定まる。
 酸化ケイ素粒子について
 蛍光体分散液は酸化ケイ素粒子を含有する。酸化ケイ素粒子の屈折率(1.46)は、透光性セラミック材料の屈折率(例えば、ポリシロキサンの屈折率は1.41)との差が小さい。また、蛍光体分散液に酸化ケイ素粒子が含まれると、蛍光体分散液の粘度を高めることができる。
 酸化ケイ素粒子の平均一次粒径は、5~100nmであることが好ましく、より好ましくは5~80nm、さらに好ましくは5~50nmである。酸化ケイ素粒子の平均一次粒径が、このような範囲であると、第1分散液の粘度が高まりやすい。酸化ケイ素粒子の平均一次粒径は、コールターカウンター法で測定される。
 蛍光体分散液における酸化ケイ素粒子の含有量は、蛍光体分散液の蛍光体粒子を除く成分の合計に対して1~40質量%であることが好ましく、より好ましくは1~20質量%、さらに好ましくは1~10質量%である。酸化ケイ素粒子の量が少なすぎると、得られる蛍光体分散液の粘度が十分に高まらない。一方で、酸化ケイ素粒子の量が多すぎると、相対的に層状粘土鉱物粒子の量が減少し、蛍光体分散液において蛍光体粒子が沈降したり、蛍光体粒子の分散性が低下するおそれがある。
 溶媒について
 蛍光体分散液に含まれる溶媒は、層状粘土鉱物粒子、酸化ケイ素粒子、及び光散乱微粒子を分散可能であれば、特に制限されない。溶媒の例には、水や、水との相溶性に優れた有機溶媒、水との相溶性が低い有機溶媒が含まれる。層状粘土鉱物粒子や酸化ケイ素粒子、光散乱微粒子の分散性、得られる蛍光体分散液の粘度等の観点から、溶媒は特に脂肪族アルコール類であることが好ましい。脂肪族アルコール類は、1価の脂肪族アルコールであってもよく、また2価以上の多価脂肪族アルコールであってもよい。特に、1価の脂肪族アルコールと多価脂肪族アルコールとを組み合わせると、得られる蛍光体分散液の粘度の観点から好ましい。
 蛍光体分散液に1価の脂肪族アルコールが含まれると、蛍光体分散液の粘度が低くなりやすい。また、蛍光体分散液の塗膜の乾燥性が良好となる。1価の脂肪族アルコールの例には、メタノール、エタノール、プロパノール、ブタノール等が含まれる。蛍光体分散液における1価の脂肪族アルコールの量は、蛍光体分散液の蛍光体粒子を除く成分の合計に対して10~50質量%であることが好ましく、より好ましくは25~45質量%である。
 一方、多価脂肪族アルコールが含まれると、蛍光体分散液の粘度の粘度が高まりやすい。多価脂肪族アルコールは、ジオールまたはトリオールのいずれであってもよい。多価脂肪族アルコールの例には、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリン、1,3-ブタンジオール、1,4-ブタンジオールなどが挙げられ、好ましくは、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール等が含まれる。蛍光体分散液における多価アルコールの量は、蛍光体分散液における蛍光体粒子を除く成分の合計に対して40~80質量%であることが好ましく、50~70質量%であることがより好ましい。
 蛍光体分散液の溶媒には、水が含まれてもよい。水が含まれていると、層状粘土鉱物粒子でありうる膨潤性粘土鉱物粒子の層間に水が入り込んで膨潤性粘土鉱物粒子が膨潤し、蛍光体分散液の粘度がより高まる。ただし、水に不純物が含まれると、膨潤性粘土鉱物粒子の膨潤を阻害するおそれがある。そこで、膨潤性粘土鉱物粒子を膨潤させる場合には、混合する水を純水とする。
 蛍光体分散液の溶媒には、沸点150℃以上の有機溶媒が含まれることも好ましい。沸点が150℃以上の有機溶媒が含まれると、最終的に得られる蛍光体分散液の保存安定性が向上する。一方、溶媒の沸点は250℃以下であることが好ましい。溶媒の沸点が250℃を超えると、最終的に得られる蛍光体分散液の塗膜から、溶媒が乾燥し難くなるおそれがある。
 蛍光体分散液に対する溶媒の総量は、蛍光体分散液における蛍光体粒子を除く成分の合計に対して55~99質量%であることが好ましく、より好ましくは75~98質量%である。溶媒の総量が55質量%未満であると、蛍光体分散液の粘度が高くなりすぎ、後述の工程において、蛍光体粒子を均一に分散できないおそれがある。一方、溶媒の総量が99質量%を超えると、相対的に層状粘土鉱物粒子や酸化物微粒子の量が少なくなり、蛍光体分散液の粘度が十分に高まらず、後述の工程で混合した蛍光体粒子が沈降するおそれがある。
 透光性セラミック材料について
 蛍光体分散液には、透光性セラミック材料が含まれていてもよい。透光性セラミック材料は、ゾル-ゲル反応によって透光性セラミック(好ましくはガラスセラミック)となる化合物でありうる。透光性セラミック材料の例には、金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート、ポリシラザンオリゴマー等が含まれ、反応性が良好であるとの観点から、金属アルコキシドが好ましい。
 金属アルコキシドは、各種金属のアルコキシドでありうるが、得られる透光性セラミックの安定性、及び製造容易性の観点から、アルコキシシランやアリールオキシシランであることが好ましい。
 アルコキシシランやアリールオキシシランは、テトラエトキシシラン等の単分子化合物(モノマー)であってもよいが、ポリシロキサン(オリゴマー)であることが好ましい。ポリシロキサンは、シラン化合物が鎖状または環状にシロキサン結合した化合物である。ポリシロキサンの調製方法は、後述する。
 ポリシロキサンの質量平均分子量は、好ましくは1000~3000であり、より好ましくは1200~2700であり、さらに好ましくは1500~2000である。ポリシロキサンの質量平均分子量が1000未満であると、蛍光体分散液の粘度が低くなり過ぎるおそれがある。一方、質量平均分子量が3000を超えると、蛍光体分散液の粘度が高くなり、蛍光体分散液の塗布が困難となる場合がある。質量平均分子量は、ゲルパーミエーションクロマトグラフィーで測定される値(ポリスチレン換算)である。
 ポリシロキサンは、アルコキシシラン化合物またはアリールオキシシラン化合物を重合して得られる。アルコキシシラン化合物またはアリールオキシシラン化合物は、例えば以下の一般式(I)で表される。
 Si(OR)4-n ・・・(I)
 一般式(I)中、nはアルコキシ基またはアリールオキシ基(OR)の数を表し、2以上4以下の整数である。また、Rは、それぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基またはフェニル基を表す。
 上記一般式(I)式中、Yは、水素原子、または1価の有機基を表す。Yで表される1価の有機基の具体例には、炭素数が1~1000、好ましくは500以下、より好ましくは100以下、さらに好ましくは50以下、特に好ましくは6以下の脂肪族基、脂環族基、芳香族基、脂環芳香族基が含まれる。これらの1価の有機基は、肪族基、脂環族基、芳香族基、及び脂環芳香族基が連結基を介して結合した基であってもよい。連結基は、O、N、S等の原子またはこれらを含む原子団であってもよい。また、Yで表される1価の有機基は、置換基を有していてもよい。置換基の例には、例えば、F、Cl、Br、I等のハロゲン原子;ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、メルカプト基、エポキシ基、エポキシシクロヘキシル基、グリシドキシ基、アミノ基、シアノ基、ニトロ基、スルホン酸基、カルボキシ基、ヒドロキシ基、アシル基、アルコキシ基、イミノ基、フェニル基等の有機官能基等が含まれる。
 一般式(I)において、Yで表される基は、特にメチル基であることが好ましい。Yがメチル基であると、波長変換層の耐光性及び耐熱性が良好になる。
 上記一般式(I)で表されるアルコキシシランまたはアリールオキシシランには、以下の4官能のシラン化合物、3官能のシラン化合物、2官能のシラン化合物が含まれる。
 4官能のシラン化合物の例には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、テトラペンチルオキシシラン、テトラフェニルオキシシラン、トリメトキシモノエトキシシラン、ジメトキシジエトキシシラン、トリエトキシモノメトキシシラン、トリメトキシモノプロポキシシラン、モノメトキシトリブトキシシラン、モノメトキシトリペンチルオキシシラン、モノメトキシトリフェニルオキシシラン、ジメトキシジプロポキシシラン、トリプロポキシモノメトキシシラン、トリメトキシモノブトキシシラン、ジメトキシジブトキシシラン、トリエトキシモノプロポキシシラン、ジエトキシジプロポキシシラン、トリブトキシモノプロポキシシラン、ジメトキシモノエトキシモノブトキシシラン、ジエトキシモノメトキシモノブトキシシラン、ジエトキシモノプロポキシモノブトキシシラン、ジプロポキシモノメトキシモノエトキシシラン、ジプロポキシモノメトキシモノブトキシシラン、ジプロポキシモノエトキシモノブトキシシラン、ジブトキシモノメトキシモノエトキシシラン、ジブトキシモノエトキシモノプロポキシシラン、モノメトキシモノエトキシモノプロポキシモノブトキシシランなどのテトラアルコキシシラン、テトラアリールオキシシラン等が含まれる。これらの中でもテトラメトキシシラン、テトラエトキシシランが好ましい。
 3官能のシラン化合物の例には、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリペンチルオキシシラン、トリフェニルオキシシラン、ジメトキシモノエトキシシラン、ジエトキシモノメトキシシラン、ジプロポキシモノメトキシシラン、ジプロポキシモノエトキシシラン、ジペンチルオキシルモノメトキシシラン、ジペンチルオキシモノエトキシシラン、ジペンチルオキシモノプロポキシシラン、ジフェニルオキシルモノメトキシシラン、ジフェニルオキシモノエトキシシラン、ジフェニルオキシモノプロポキシシラン、メトキシエトキシプロポキシシラン、モノプロポキシジメトキシシラン、モノプロポキシジエトキシシラン、モノブトキシジメトキシシラン、モノペンチルオキシジエトキシシラン、モノフェニルオキシジエトキシシラン等のモノヒドロシラン化合物;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリペンチルオキシシラン、メチルモノメトキシジエトキシシラン、メチルモノメトキシジプロポキシシラン、メチルモノメトキシジペンチルオキシシラン、メチルモノメトキシジフェニルオキシシラン、メチルメトキシエトキシプロポキシシラン、メチルモノメトキシモノエトキシモノブトキシシラン等のモノメチルシラン化合物;エチルトリメトキシシラン、エチルトリプロポキシシラン、エチルトリペンチルオキシシラン、エチルトリフェニルオキシシラン、エチルモノメトキシジエトキシシラン、エチルモノメトキシジプロポキシシラン、エチルモノメトキシジペンチルオキシシラン、エチルモノメトキシジフェニルオキシシラン、エチルモノメトキシモノエトキシモノブトキシシラン等のモノエチルシラン化合物;プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリペンチルオキシシラン、プロピルトリフェニルオキシシラン、プロピルモノメトキシジエトキシシラン、プロピルモノメトキシジプロポキシシラン、プロピルモノメトキシジペンチルオキシシラン、プロピルモノメトキシジフェニルオキシシラン、プロピルメトキシエトキシプロポキシシラン、プロピルモノメトキシモノエトキシモノブトキシシラン等のモノプロピルシラン化合物;ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリプロポキシシラン、ブチルトリペンチルオキシシラン、ブチルトリフェニルオキシシラン、ブチルモノメトキシジエトキシシラン、ブチルモノメトキシジプロポキシシラン、ブチルモノメトキシジペンチルオキシシラン、ブチルモノメトキシジフェニルオキシシラン、ブチルメトキシエトキシプロポキシシラン、ブチルモノメトキシモノエトキシモノブトキシシラン等のモノブチルシラン化合物が含まれる。これらの中でも、メチルトリメトキシシランおよびメチルトリエトキシシランがより好ましく、メチルトリメトキシシランがさらに好ましい。
 2官能のシラン化合物の具体例には、ジメトキシシラン、ジエトキシシラン、ジプロポキシシラン、ジペンチルオキシシラン、ジフェニルオキシシラン、メトキシエトキシシラン、メトキシプロポキシシラン、メトキシペンチルオキシシラン、メトキシフェニルオキシシラン、エトキシプロポキシシラン、エトキシペンチルオキシシラン、エトキシフェニルオキシシラン、メチルジメトキシシラン、メチルメトキシエトキシシラン、メチルジエトキシシラン、メチルメトキシプロポキシシラン、メチルメトキシペンチルオキシシラン、メチルメトキシフェニルオキシシラン、エチルジプロポキシシラン、エチルメトキシプロポキシシラン、エチルジペンチルオキシシラン、エチルジフェニルオキシシラン、プロピルジメトキシシラン、プロピルメトキシエトキシシラン、プロピルエトキシプロポキシシラン、プロピルジエトキシシラン、プロピルジペンチルオキシシラン、プロピルジフェニルオキシシラン、ブチルジメトキシシラン、ブチルメトキシエトキシシラン、ブチルジエトキシシラン、ブチルエトキシプロポキシシシラン、ブチルジプロポキシシラン、ブチルメチルジペンチルオキシシラン、ブチルメチルジフェニルオキシシラン、ジメチルジメトキシシラン、ジメチルメトキシエトキシシラン、ジメチルジエトキシシラン、ジメチルジペンチルオキシシラン、ジメチルジフェニルオキシシラン、ジメチルエトキシプロポキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルメトキシプロポキシシラン、ジエチルジエトキシシラン、ジエチルエトキシプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジペンチルオキシシラン、ジプロピルジフェニルオキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジブチルジプロポキシシラン、ジブチルメトキシペンチルオキシシラン、ジブチルメトキシフェニルオキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジペンチルオキシシラン、メチルエチルジフェニルオキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、メチルブチルジメトキシシラン、メチルブチルジエトキシシラン、メチルブチルジプロポキシシラン、メチルエチルエトキシプロポキシシラン、エチルプロピルジメトキシシラン、エチルプロピルメトキシエトキシシラン、ジプロピルジメトキシシラン、ジプロピルメトキシエトキシシラン、プロピルブチルジメトキシシラン、プロピルブチルジエトキシシラン、ジブチルメトキシエトキシシラン、ジブチルメトキシプロポキシシラン、ジブチルエトキシプロポキシシラン等が含まれる。中でもジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシランが好ましい。
 ポリシロキサンは、上記シラン化合物を、酸触媒、水、有機溶媒の存在下で加水分解し、縮合反応させる方法で調製できる。ポリシロキサンの質量平均分子量は、反応条件(特に反応時間)等で、調整可能である。
 この際、4官能シラン化合物と、3官能シラン化合物や2官能シラン化合物とを所望のモル比率で予め混合し、ランダムに重合させてもよい。また3官能シラン化合物または2官能シラン化合物を単独である程度重合させてオリゴマーとした後、このオリゴマーに4官能シラン化合物のみを重合させる等して、ブロック共重合体としてもよい。
 ポリシロキサンの調製用の酸触媒は、下記一般式(II)で表わされる有機スルホン酸であることが特に好ましい。
 R-SOH   …(II)
 上記一般式(II)において、Rで表される炭化水素基は、直鎖状、分岐鎖状、環状の飽和もしくは不飽和の炭素数1~20の炭化水素基である。環状の炭化水素基の例には、フェニル基、ナフチル基、またはアントリル基等の芳香族炭化水素基が含まれ、好ましくはフェニル基である。また、一般式(II)においてRで表される炭化水素基は、置換基を有してもよい。置換基の例には、直鎖状、分岐鎖状、または環状の、炭素数1~20の飽和若しくは不飽和の炭化水素基;フッ素原子等のハロゲン原子;スルホン酸基;カルボキシル基;水酸基;アミノ基;シアノ基等が含まれる。
 上記一般式(II)で表わされる有機スルホン酸は、特にノナフルオロブタンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、またはドデシルベンゼンスルホン酸であることが好ましい。
 ポリシロキサンの調製時に添加する酸触媒の量は、ポリシロキサン調製液全量に対して1~1000質量ppmであることが好ましく、より好ましくは5~800質量ppmである。
 ポリシロキサンの調製時に添加する水の量によって、ポリシロキサンの焼成物の性質が変化する。したがって、目的とする性質に応じて、ポリシロキサン調製時の水添加率を調整することが好ましい。水添加率とは、ポリシロキサン調製液に含まれるシラン化合物のアルコキシ基またはアリールオキシ基のモル数に対する、添加する水分子のモル数の割合(%)である。水添加率は、50~200%であることが好ましく、より好ましくは75~180%である。水添加率を、50%以上とすることで、波長変換層の性質が安定する。また200%以下とすることで透光性セラミック材料組成物の保存安定性が良好となる。
 ポリシロキサンの調製時に添加する溶媒の例には、メタノール、エタノール、プロパノール、n-ブタノール等の一価脂肪族アルコール;メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート等のアルキルカルボン酸エステル;エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ヘキサントリオール等の多価脂肪族アルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等の多価脂肪族アルコールのモノエーテル類、あるいはこれらのモノアセテート類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン、メチルイソアミルケトン等のケトン類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル等の多価アルコールの水酸基をすべてアルキルエーテル化した多価アルコールエーテル類;等が含まれる。これらは1種単独で添加してもよく、また2種以上を添加してもよい。
 蛍光体分散液にポリシロキサンが含まれる場合には、蛍光体分散液に対するポリシロキサンの含有量は、1~10質量%であることが好ましい。
 蛍光体分散液の粘度は、蛍光体分散液の塗布方法により適宜選択されるが、通常80~1000mPa・sであることが好ましく、より好ましくは100~450mPa・sである。蛍光体分散液の粘度が80mPa・s未満であると、蛍光体分散液保存中に蛍光体粒子が沈降しやすくなる。一方、粘度が1000mPa・sを超えると、蛍光体分散液の粘度が高すぎるため、蛍光体分散液の塗布が困難となる場合がある。蛍光体分散液の粘度は、蛍光体粒子を分散させるための攪拌時間、分散時の剪断力等で調整する。上記粘度は、蛍光体分散液が25℃の粘度であり、振動式粘度測定機VM-10A(株式会社セコニック社製)の振動子を液に浸漬してから1分後の値である。
2.蛍光体分液の調製方法について
 蛍光体分散液は、1)蛍光体粒子、層状粘土鉱物粒子、酸化ケイ素粒子、光散乱微粒子、及び溶媒を含む混合物を用意して一括攪拌して調製してもよいし(一括法)、2)蛍光体粒子以外の成分を含む混合物を攪拌し、その後に蛍光体粒子を混合して攪拌して調製してもよい(逐次法)。
 一括法について
 蛍光体分散液に含まれる成分の混合物を一括撹拌する場合には、撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機等の攪拌装置によって混合物を攪拌または分散すればよい。撹拌装置の具体例には、ウルトラタラックス(IKAジャパン社製)、TKオートホモミクサー(プライミクス社製)、TKパイプラインホモミクサー(プライミクス社製)、TKフィルミックス(プライミクス社製)、クレアミックス(エム・テクニック社製)、クレアSS5(エム・テクニック社製)、キャビトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)のようなメディアレス撹拌機;ビスコミル(アイメックス製)、アペックスミル(寿工業社製)、スターミル(アシザワ・ファインテック社製)、DCPスーパーフロー(日本アイリッヒ社製)、エムピーミル(井上製作所社製)、スパイクミル(井上製作所社製)、マイティーミル(井上製作所社製)、SCミル(三井鉱山社製)などのメディア攪拌機;アルティマイザー(スギノマシン社製)、ナノマイザー(吉田機械社製)、NANO3000(美粒社製)などの高圧衝撃式分散装置;が挙げられる。また、好ましい例には、超音波分散装置も含まれる。
 逐次法について
 蛍光体分散液を、蛍光体粒子以外の成分を含む混合物を攪拌し、その後に蛍光体粒子を混合して攪拌して調製する場合には、具体的には、以下の2つの工程で蛍光体分散液を調製する。
 第1分散液の調製工程:層状粘土鉱物粒子、酸化ケイ素粒子、光散乱微粒子、及び溶媒を含む混合物を攪拌して、第1分散液を調製する工程
 蛍光体分散液の調製工程:第1分散液に蛍光体粒子を混合し、攪拌して蛍光体分散液を調製する工程
 第1分散液の調製工程
 第1分散液の調製工程では、層状粘土鉱物粒子、酸化ケイ素粒子、光散乱微粒子、及び溶媒を含む混合物を攪拌して、第1分散液を調製する。当該混合物には、必要に応じて他の添加剤が含まれうる。
 層状粘土鉱物粒子、酸化ケイ素粒子、光散乱微粒子、及び溶媒を含む混合物に高い剪断力をかけて攪拌することができる。混合物に高い剪断力をかけることで、層状粘土鉱物粒子や酸化ケイ素粒子、光散乱微粒子の凝集粒子が解砕され、層状粘土鉱物粒子や酸化ケイ素粒子、光散乱微粒子がより均一に分散される。混合液の攪拌時間は、混合液の量や攪拌方法に合わせて適宜調整する。
 混合物に剪断力をかけながら攪拌を行うには、例えば、撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機等の攪拌装置により攪拌および分散すればよい。撹拌装置の具体例には、ウルトラタラックス(IKAジャパン社製)、TKオートホモミクサー(プライミクス社製)、TKパイプラインホモミクサー(プライミクス社製)、TKフィルミックス(プライミクス社製)、クレアミックス(エム・テクニック社製)、クレアSS5(エム・テクニック社製)、キャビトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)のようなメディアレス撹拌機;ビスコミル(アイメックス製)、アペックスミル(寿工業社製)、スターミル(アシザワ・ファインテック社製)、DCPスーパーフロー(日本アイリッヒ社製)、エムピーミル(井上製作所社製)、スパイクミル(井上製作所社製)、マイティーミル(井上製作所社製)、SCミル(三井鉱山社製)などのメディア攪拌機;アルティマイザー(スギノマシン社製)、ナノマイザー(吉田機械社製)、NANO3000(美粒社製)などの高圧衝撃式分散装置;が挙げられる。また、好ましい例には、超音波分散装置も含まれる。
 得られる第1分散液の粘度は、30~500mPa・sであり、好ましくは50~250mPa・sである。第1分散液の粘度が30mPa・s未満であると、後述する工程で混合する蛍光体粒子が沈降しやすくなる。一方、粘度が500mPa・sを超えると、粘度が高すぎるため、蛍光体粒子が均一に分散され難くなる。第1分散液の粘度は、混合液の攪拌(分散)時間や、攪拌(分散)時の剪断力で調整する。攪拌時の剪断力を高くすると、第1分散液の粘度が高まりやすい。また、一般に、攪拌(分散)時間が短いと、第1分散液の粘度が低くなる傾向がある。上記粘度は、第1分散液が25℃であるときの粘度であり、振動式粘度測定機VM-10A(株式会社セコニック社製)の振動子を液に浸漬してから1分後の値である。
 蛍光体分散液の調製工程
 蛍光体分散液の調製工程では、前述の工程で得られた第1分散液に蛍光体粒子を混合した混合物を攪拌して、蛍光体粒子を均一に分散させて、蛍光体分散液を得る。
 第1分散液に蛍光体粒子を混合した混合物の攪拌は、混合液に高い剪断力をかけずに行うことが好ましい。前述のように、第1分散液に層状粘土鉱物粒子が均一に分散されている。そのため、高い剪断力をかけなくとも、層状粘土鉱物粒子と蛍光体粒子との親和性によって、蛍光体粒子が均一に分散されやすい。また蛍光体分散液中に、層状粘土鉱物粒子及び蛍光体粒子が均一に分散されることで、蛍光体粒子が沈降し難くなる。
 第1分散液に蛍光体粒子を混合した混合物を攪拌する装置の例には、自転・公転式攪拌機や、振動式攪拌機、転倒回転型撹拌機、容器回転型混合機、振とう機等で行うことができる。撹拌装置の具体例には、自転・公転式撹拌機:あわとり練太郎(シンキー社製)、振動式撹拌機:ロッキングシェーカー(セイワ技研社製)、ロッキングミル(セイワ技研社製)、転倒回転型撹拌機:ミックスローター(アズワン社製)、容器回転型混合機:V型ブレンダー(西村機械製作所社製)、ロッキングミキサー(愛知電気社製)、振とう機:シェイキングインキュベーター(アズワン社製)等が含まれる。
 第1分散液に蛍光体粒子を混合した混合物の攪拌時間は、1~30分であることが好ましく、より好ましくは5~15分である。攪拌時間が過剰に長いと、蛍光体粒子が劣化するおそれがある。一方、攪拌時間が過剰に短いと、蛍光体粒子が均一に分散しないおそれがある。
3.LED装置
 本発明のLED装置は、特定波長の光を出射するLED素子と、前記LED素子上に形成され、前記LED素子からの光を、他の特定波長の光に変換する波長変換層とを有する。波長変換層上には、透明樹脂層などの任意の層が形成されていてもよい。
 図1及び図2は、LED装置100の例を示す断面図である。図1に示すLED装置は、LEDチップ3を有するLED素子と、LEDチップ上に形成された波長変換層6と、透明樹脂層7を有する。
(1)LED素子
 図1に示すLED装置100が有するLED素子は、パッケージ(LED基板)1と、メタル部2と、LEDチップ3と、メタル部2及びLEDチップ3を接続する配線4とを有する。
 パッケージ1は、例えば液晶ポリマーやセラミックでありうるが、絶縁性と耐熱性を有していれば、その材質は特に限定されない。またその形状も特に制限はなく、例えば図1に示すように凹状であってもよく、図2に示すように平板状であってもよい。
 LEDチップ3の発光波長は特に制限されない。LEDチップ3は、例えば青色光(420nm~485nm程度の光)を発するものであってもよく、紫外光を発するものであってもよい。
 LEDチップ3の構成は特に制限されない。LEDチップ3の発光色が青色である場合、LEDチップ3は、n-GaN系化合物半導体層(クラッド層)と、InGaN系化合物半導体層(発光層)と、p-GaN系化合物半導体層(クラッド層)と、透明電極層との積層体でありうる。LEDチップ3は、例えば200~300μm×200~300μmの発光面を有するものでありうる。LEDチップ3の高さは、通常50~200μm程度である。
 メタル部2は、銀等の金属からなる配線でありうる。LED素子において、メタル部2が、LEDチップ3からの出射光等を反射する反射板として機能してもよい。メタル部2及びLEDチップ3は、図1に示すように配線4を介して接続されてもよく、図2に示すように突起電極5を介して接続されてもよい。メタル部2及びLEDチップ3が配線4を介して接続される態様をワイヤボンディング型といい、突起電極5を介して接続される態様をフリップチップ型という。
 図1及び図2に示すLED素子には、パッケージ1に、1つのLEDチップ3のみが配置されているが;パッケージ1に、複数のLEDチップ3が配置されていてもよい。
(2)波長変換層
 波長変換層6は、セラミックと、前記セラミックで結着された蛍光体粒子、光散乱微粒子、層状粘土鉱物粒子および酸化ケイ素粒子とを含む。
 波長変換層6は、LEDチップ3が出射する特定波長の光(励起光)を受けて、他の特定波長の光(蛍光)を発する。励起光と蛍光とが混ざることで、LED装置100からの光が所望の光となる。例えば、LEDチップ3が出射する光が青色であり、波長変換層6に含まれる蛍光体粒子が発する蛍光が黄色やオレンジ色であると、LED装置100からの光が白色となる。
 波長変換層6は、LEDチップ3の発光面を被覆していればよく、パッケージ1やメタル部2、配線4等を完全に被覆していなくてもよい。波長変換層6の厚みは、特に制限されないが、通常15~300μmであることが好ましく、より好ましくは30~200μmである。波長変換層6の厚みが厚すぎると、波長変換層6にクラックが生じるおそれがある。一方で、波長変換層6の厚みが薄すぎると、波長変換層6内に、十分に蛍光体粒子が含まれず、十分な蛍光が発生しない可能性がある。波長変換層6の厚みとは、LEDチップ3の発光面上に形成された波長変換層6の最大厚みを意味する。波長変換層6の厚みは、レーザホロゲージで測定される。
 波長変換層6には、0.05~2質量%の光散乱微粒子が含まれているので、LED素子からの励起光および蛍光体からの蛍光が、波長変換層6で散乱する。その結果、LED装置からの発光が平均化され、発光の色度むらが低減される。
 波長変換層6には、5~20質量%のセラミックが含まれていることが好ましく、蛍光体粒子に対して7~25質量%のセラミックが含まれていることが好ましい。蛍光体粒子を十分に結着させるためである。
(3)透明樹脂層
 透明樹脂層7は、波長変換層6を覆うように形成される。透明樹脂層7は、外部の衝撃やガス等からLED素子や波長変換層6を保護する。また、波長変換層6を有すると、光取り出し効率も高まりやすい。透明樹脂層は、透明樹脂を含み、可視光に対する透過性が高い層である。
 透明樹脂の例には、エポキシ変性シリコーン樹脂、アルキッド変性シリコーン樹脂、アクリル変性シリコーン樹脂、ポリエステル変性シリコーン樹脂、フェニルシリコーン樹脂等のシリコーン樹脂;エポキシ樹脂;アクリル樹脂;メタクリル樹脂;ウレタン樹脂等の透明樹脂等が含まれる。特にフェニルシリコーン樹脂であることが好ましい。透明樹脂がフェニルシリコーン樹脂であると、LED装置の耐湿性が高まる。
 透明樹脂層7の厚みは、特に制限されないが、通常25μm~5mmであることが好ましく、さらに1~3mmであることが好ましい。一般的に、透明樹脂層7の厚みを25μmとすることは難しい。一方、LED装置の小型化との観点から、透明樹脂層7の厚みは5mm以下であることが好ましい。
4.LED装置の製造方法
 前述したLED装置を製造する方法は、蛍光体分散液の態様によって、二液法および一液法の二つに大別されうる。二液法とは、透光性セラミック材料を含有せず蛍光体粒子を含有する蛍光体分散液と、透光性セラミック材料を含有する透光性セラミック材料組成物とを用いて波長変換層を形成する工程を含む。一液法とは、透光性セラミック材料と蛍光体粒子とを含有する蛍光体分散液を用いて波長変換層を形成する工程を含む。
 本発明のLED装置の製造方法のうち、二液法による製造方法は、1)LED素子を用意する工程と、2)LED素子上に蛍光体分散液を塗布し、蛍光体粒子層を形成する工程と、3)蛍光体粒子層上に、透光性セラミック材料及び溶媒を含む透光性セラミック材料組成物を塗布する工程と、4)透光性セラミック材料を硬化させる工程と、を含む。
 本発明のLED装置の製造方法のうち、一液法による製造方法は、1)LED素子を用意する工程と、2)LED素子上に蛍光体分散液を塗布し、セラミック材料層を形成する工程と、3)透光性セラミック材料を硬化させて、セラミック材料層を波長変換層とする工程と、を含む。
 LED素子は、パッケージに形成されたメタル部と、LEDチップとを電気的に接続し、LEDチップをパッケージに固定する工程等を経て調製する。
 蛍光体分散液の塗布
 前述の蛍光体分散液を、LEDチップの発光面を覆うように塗布し、LED素子上に蛍光体粒子層を形成する。LEDチップの発光面とともに、LED素子のメタル部(メタル配線)などにも、蛍光体分散液を塗布してもよい。
 蛍光体分散液の塗布の手段は、特に制限されない。蛍光体分散液の塗布方法の例には、バーコート法、スピンコート法、スプレーコート法、ディスペンス法、ジェットディスペンス法等、従来公知の方法が含まれる。蛍光体分散液を後述のスプレー塗布装置等によって塗布すると、蛍光体粒子層の厚みを薄くできる。
 蛍光含有組成物の塗布量は、蛍光体粒子層の厚みに応じて適宜調整する。蛍光体粒子層の厚みは、15~300μmとすることが好ましく、30~200μmとすることがより好ましい。蛍光体粒子層の厚みが15μm未満であると、蛍光体粒子量が少なくなり、十分な蛍光が得られないおそれがある。一方、蛍光体粒子層の厚みが300μmを超えると、蛍光体粒子層中の蛍光体粒子の濃度が過剰に低くなるので、蛍光体粒子の濃度が均一にならないおそれがある。蛍光体粒子層の厚みとは、LEDチップの発光面上に形成した蛍光体粒子層の最大厚みを意味する。蛍光体粒子層の厚みは、レーザホロゲージで測定される。
 蛍光体分散液の塗布後に蛍光体分散液中の溶媒を乾燥させることが好ましい。蛍光体分散液中の溶媒を乾燥させる際の温度は、通常20~200℃であり、好ましくは25~150℃である。20℃未満であると、溶媒が十分に揮発しない可能性がある。一方、200℃を超えると、LEDチップに悪影響を及ぼす可能性がある。また、乾燥時間は、製造効率の面から、通常0.1~30分であり、好ましくは0.1~15分である。
・蛍光体分散液のスプレー塗布装置
 スプレー塗布装置は、蛍光体分散液を貯留する塗布液タンクと、塗布液を吐出するためのノズルを有するヘッドと、塗布液タンクとノズルとを連通させる連結管とを有することが好ましい。図3には、塗布液を塗布するためのスプレー塗布装置の概要が示される。
 図3に示される塗布装置200における塗布液タンク210には、蛍光体分散液が投入される。図3に示される塗布装置200における塗布液タンク210内の蛍光体分散液220は、圧力をかけられて連結管230を通じてヘッド240に供給される。ヘッド240に供給された蛍光体分散液220は、ノズル250から吐出液270として吐出されて、塗布対象物(LEDチップ3)に塗布される。スプレー塗布装置の場合には、ノズル250からの塗布液の吐出は風圧によって行われる。ノズル250の先端に開閉自在な開口部を設けて、この開口部を開閉操作して、吐出作業のオン・オフを制御する構成としてもよい。
 蛍光体分散液の塗布工程では、下記(1)~(9)の操作や条件設定などを行う。
 (1)基本的には、ノズル250の先端部をLEDチップ3の直上に配置して蛍光体分散液220をLEDチップ3の真上から噴射する。LEDチップ3の形状に合わせて、蛍光体分散液220をLEDチップ3の真上から噴射したり、LEDチップ3の斜め上方から噴射してもよい。斜め上方から噴射することで、LEDチップ3の全面に蛍光体分散液220を適切に塗布することができる。このようにして、LEDチップ3の側面に対しても蛍光体分散液220を均一に塗布することが好ましい。
 (2)蛍光体分散液220の噴射量は一定とし、単位面積当たりの蛍光体量を一定とする。蛍光体分散液220の噴射量の経時的なバラツキは10%以内とし、好ましくは1%以内とする。
 (3)ノズル250の温度を調整し、蛍光体分散液220の噴射時の粘度を調整する。好ましくは蛍光体分散液220の温度を40℃以下に調整するか、または蛍光体分散液220の粘度にあわせて調整する。この場合、LED素子の基板1を室温環境下においてもよいし、温度調整機構を移動台に設けてLED素子の基板1の温度をコントロールしてもよい。基板1の温度を30~100℃で高く設定すれば、基板1に噴射された蛍光体分散液220中の有機溶媒を早く揮発させることができ、蛍光体分散液220が基板1から液だれするのを防止することができる。逆に、基板1の温度を5~20℃と低く設定すれば、溶媒をゆっくり揮発させることができ、蛍光体分散液220をLEDチップ3の外壁に沿って均一に塗布することができる。ひいては蛍光体粒子層の膜密度や膜強度などを高めることができ、緻密な膜を形成することができる。
 (4)塗布装置200の環境雰囲気(温度・湿度)を一定とし、蛍光体分散液220の噴射を安定させる。
 (5)塗布装置200とLED素子との間に、LEDチップ3の形状に応じたマスクを配置し、当該マスクを介して蛍光体分散液220を噴射してもよい。マスクは、蛍光体分散液220を構成する溶媒に溶解しない材質のものを使用する必要があるが、マスクに付着した蛍光体等の材料の回収の観点から好ましくは可燃性のものを使用する。
 (6)1つのLED素子への蛍光体分散液220の噴射・塗布が終了したら、その次のLED素子に対して、上記と同様の操作を繰り返し、複数のLED素子のLEDチップ3上に蛍光体分散液220を順次噴射・塗布する。この場合、LED素子の切り替えとは無関係に、蛍光体分散液220を連続的に噴射し続けてもよいし、LED素子を切り替えるごとに蛍光体分散液220の噴射を一時的に休止して、蛍光体分散液220を断続的に噴射してもよい。蛍光体分散液220を連続的に噴射し続ければ、各LED素子に対する蛍光体分散液220の噴射量を安定させることができる。蛍光体分散液220を断続的に噴射すれば、蛍光体分散液220の使用量を節約することができる。
 (7)噴射・塗布工程中は、一定数のLED素子への蛍光体分散液220の噴射・塗布が終了するごとに、白色光の色度や輝度を実際に検査し、その検査結果を蛍光体分散液220の噴射量や噴射圧、噴射温度などにフィードバックしてもよい。
 (8)噴射・塗布工程中は、ノズル250をクリーニングしてもよい。この場合、スプレー装置200の近傍に、洗浄液を貯留したクリーニングタンクを設置し、蛍光体分散液220の噴射の休止中や白色光の色度・輝度の検査中などにおいて、ノズル250の先端部をクリーニングタンク中に浸漬させ、ノズル250の先端部の乾燥を防ぐ。また、噴射・塗布工程の休止中には、蛍光体分散液220が硬化してノズル250の噴射孔がつまる恐れがあるので、ノズル250をクリーニングタンク中に浸漬させるか、噴射・塗布工程の開始時にノズル250をクリーニングすることが好ましい。
 (9)噴射・塗布工程では、蛍光体分散液220をミスト状に噴射するため、蛍光体分散液220中の有機溶媒が揮発すると、蛍光体粒子、酸化物微粒子などの粉体が飛散することもある。そのため、好ましくは塗布装置200の全体をハウジングなどで被覆してフィルタ越しに集塵・排気しながら、噴射・塗布工程や検査工程の処理を実行する。蛍光体粒子をフィルタで捕集すれば、高価な蛍光体粒子を再利用することができる。
 透光性セラミック材料組成物の塗布
 二液法による製造方法は、透光性セラミック材料組成物を、蛍光体粒子層を覆うように塗布する工程を含む。透光性セラミック材料組成物は、蛍光体粒子層内の空隙に入り込み、蛍光体粒子層に含まれる蛍光体粒子や層状粘土鉱物粒子、酸化ケイ素粒子等の粒子同士の隙間を埋める。
・透光性セラミック材料組成物の塗布について
 透光性セラミック材料組成物の塗布方法は、特に制限されない。例えば、ブレード塗布、スピンコート塗布、ディスペンサ塗布、スプレー塗布などでありうるが、スプレー塗布によれば、厚みの薄い波長変換層を成膜できる。スプレー塗布装置は、前述の蛍光体分散液の塗布に用いるスプレー塗布装置と同様でありうる。
 透光性セラミック材料組成物の塗布量は、蛍光体粒子層に含まれる蛍光体粒子、層状粘土鉱物粒子、酸化ケイ素粒子等を十分に結着可能な量とする。透光性セラミック材料組成物の塗布量が少なすぎると、蛍光体粒子を十分に結着できず、波長変換層の強度が低くなるおそれがある。
 透光性セラミック材料組成物には、透光性セラミック材料及び溶媒が含まれ、必要に応じて無機酸化物粒子等が含まれる。透光性セラミック材料は、蛍光体分散液に含まれうる透光性セラミック材料と同様であり、ポリシロキサンなどでありうる。
 透光性セラミック材料がポリシロキサンである場合、透光性セラミック材料組成物に含まれるポリシロキサンの量は、透光性セラミック材料組成物全質量に対して1~40質量%であることが好ましく、より好ましくは2~30質量%である。ポリシロキサンの量が1質量%未満であると、ポリシロキサンの硬化物が蛍光体粒子等を十分に結着できなくなるおそれがある。一方、ポリシロキサンの量が40質量%を超えると、透光性セラミック材料組成物の粘度が過剰に高くなり、透光性セラミック材料組成物の塗布が困難となる場合がある。
 透光性セラミック材料組成物には、無機酸化物粒子が含まれてもよい。透光性セラミック材料組成物に無機酸化物粒子が含まれると、透光性セラミック材料組成物が硬化する際、膜に生じる応力が緩和され、波長変換層にクラックが発生し難くなる。
 透光性セラミック材料組成物に含まれる溶媒は、前述の透光性セラミック材料を溶解、もしくは均一に分散可能なものであればよい。溶媒の例には、メタノール、エタノール、プロパノール、n-ブタノール等の一価の脂肪族アルコール;メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート等のアルキルカルボン酸エステル;エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ヘキサントリオール等の多価脂肪族アルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等の多価脂肪族アルコールのモノエーテル類、あるいはこれらのモノアセテート類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル等の多価脂肪族アルコールの水酸基をすべてアルキルエーテル化した多価アルコールエーテル類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン、メチルイソアミルケトン等のケトン類;等が含まれる。透光性セラミック材料組成物中には、溶媒が1種のみ含まれてもよく、2種以上含まれてもよい。
 溶媒には、水が含まれることが好ましい。水の量は、透光性セラミック材料組成物全質量に対して、3~15質量%であることが好ましく、より好ましくは5~10質量%である。透光性セラミック材料がポリシロキサンである場合、水の含有量がポリシロキサン100質量部に対して10~120質量部であることが好ましく、80~100質量部であることがより好ましい。透光性セラミック材料組成物に含まれる水の量が少な過ぎると、透光性セラミック材料塗布後にポリシロキサンを十分に加水分解できない場合がある。一方、透光性セラミック材料組成物に含まれる水の量が過剰であると、透光性セラミック材料組成物の保存中に加水分解等が生じ、透光性セラミック材料組成物がゲル化するおそれがある。
 溶媒には、沸点が150℃以上である有機溶媒(例えばエチレングリコールや、プロピレングリコール等)が含まれることも好ましい。沸点が150℃以上の有機溶媒が含まれると、透光性セラミック材料組成物の保存安定性が高まる。また、塗布装置内で溶媒が揮発し難いため、透光性セラミック材料組成物を塗布装置から安定して塗布できる。
 一方、透光性セラミック材料組成物に含まれる溶媒の沸点は250℃以下であることが好ましい。溶媒の沸点が250℃を超えると、透光性セラミック材料組成物の乾燥に時間がかかったり、溶媒が十分に乾燥しないおそれがある。
 蛍光体分散液に含まれていた透光性セラミック材料(一液法)または透光性セラミック材料組成物に含まれていた透光性セラミック材料(二液法)を、乾燥・硬化させる。透光性セラミック材料を硬化させることで、蛍光体粒子層が透光性セラミック材料で結着された波長変換層が得られる。
 透光性セラミック材料の乾燥・硬化方法は透光性セラミック材料の種類に応じて適宜選択される。例えば、透光性セラミック材料がポリシロキサンである場合、塗膜を100℃以上に加熱することが好ましく、より好ましくは150~300℃に加熱する。透光性セラミック材料がポリシロキサンである場合、加熱温度が100℃未満であると、脱水縮合時に生じる水分を十分に除去できず、波長変換層の耐光性が低下するおそれがある。
 二液法および一液法による製造方法のいずれにも、波長変換層上に透明樹脂層用組成物を塗布して、透明樹脂層を形成する工程が含まれていてもよい。透明樹脂層用組成物には透明樹脂、および必要に応じて溶媒が含まれる。透明樹脂は、可視光に対して透明な硬化性樹脂などであればよい。溶媒の種類は、透明樹脂の種類や透明樹脂層用組成物の粘度に応じて適宜選択される。
 透明樹脂層用組成物の塗布方法は、特に制限されず、例えばディスペンサ等の一般的な塗布装置による塗布方法でありうる。また、透明樹脂層用組成物の硬化方法や硬化条件は、透明樹脂の種類により適宜選択する。硬化方法の一例として、加熱硬化が挙げられる。
1.蛍光体分散液の調製
 以下のサンプル1~13の蛍光体分散液を調製した。サンプル1~13で調製した蛍光体分散液の粘度測定は、振動式粘度測定機VM-10A(株式会社セコニック社製)にて、振動子を液に浸漬してから1分後の値を読みとった。測定結果を表1に示す。
 サンプル1
 層状粘土鉱物粒子としてベンゲル(ホージュン社製:天然ベントナイト)3gと、酸化ケイ素粒子としてサイリシア470(富士シリシア化学社製)4.5gとを、プロピレングリコール70g、1,3-ブタンジオール30g、及びイソプロピルアルコール50gの混合溶媒中に添加した。混合液をTKオートホモミクサー(プライミクス社製)で混合し、第1分散液を得た。
 その後、第1分散液に蛍光体粒子90gを添加した。これを、あわとり練太郎(シンキー社製)で撹拌混合して、蛍光体分散液を得た。得られた蛍光体分散液の粘度は、200mPa・sであった。
 サンプル2
 層状粘土鉱物粒子としてベンゲル(ホージュン社製:天然ベントナイト)3gと、酸化ケイ素粒子としてサイリシア470(富士シリシア化学社製)4.5gと、酸化チタン粒子0.6gとを、プロピレングリコール70g、1,3-ブタンジオール30g、及びイソプロピルアルコール50gの混合溶媒中に添加した。混合液をTKオートホモミクサー(プライミクス社製)で混合し、第1分散液を得た。
 その後、第1分散液に蛍光体粒子90gを添加した。これを、あわとり練太郎(シンキー社製)で撹拌混合して、蛍光体分散液を得た。得られた蛍光体分散液の粘度は、200mPa・sであった。
 サンプル3
 層状粘土鉱物粒子としてベンゲル(ホージュン社製:天然ベントナイト)3gと、酸化ケイ素粒子としてサイリシア470(富士シリシア化学社製)4.5gと、酸化チタン粒子2.2gとを、プロピレングリコール70g、1,3-ブタンジオール30g、及びイソプロピルアルコール50gの混合溶媒中に添加した。混合液をTKオートホモミクサー(プライミクス社製)で混合し、第1分散液を得た。
 その後、第1分散液に蛍光体粒子90gを添加した。これを、あわとり練太郎(シンキー社製)で撹拌混合して、蛍光体分散液を得た。得られた蛍光体分散液の粘度は、200mPa・sであった。
 サンプル4
 層状粘土鉱物粒子としてベンゲル(ホージュン社製:天然ベントナイト)3gと、酸化ケイ素粒子としてサイリシア470(富士シリシア化学社製)4.5gと、酸化アルミニウム粒子0.8gと、酸化チタン粒子0.8gと、蛍光体粒子90gとを、プロピレングリコール70g、1,3-ブタンジオール30g、及びイソプロピルアルコール50gの混合溶媒中に添加した。混合液をTKオートホモミクサー(プライミクス社製)で一括分散して、蛍光体分散液を得た。得られた蛍光体分散液の粘度は、400mPa・sであった。
 サンプル5
 層状粘土鉱物粒子としてベンゲル(ホージュン社製:天然ベントナイト)3gと、酸化ケイ素粒子としてサイリシア470(富士シリシア化学社製)4.5gと、酸化亜鉛粒子1gとを、プロピレングリコール70g、1,3-ブタンジオール30g、及びイソプロピルアルコール50gの混合溶媒中に添加した。混合液をTKフィルミックス(プライミクス社製)で混合し、第1分散液を得た。
 その後、第1分散液に蛍光体粒子90gを添加した。これを、あわとり練太郎(シンキー社製)で撹拌混合して、蛍光体分散液を得た。得られた蛍光体分散液の粘度は、200mPa・sであった。
 サンプル6
 層状粘土鉱物粒子としてベンゲル(ホージュン社製:天然ベントナイト)3gと、酸化ケイ素粒子としてサイリシア470(富士シリシア化学社製)4.5gと、硫酸バリウム粒子0.1gとを、プロピレングリコール70g、1,3-ブタンジオール30g、及びイソプロピルアルコール50gの混合溶媒中に添加した。混合液をTKオートホモミクサー(プライミクス社製)で混合し、第1分散液を得た。
 その後、第1分散液に蛍光体粒子90gを添加した。これを、あわとり練太郎(シンキー社製)で撹拌混合して、蛍光体分散液を得た。得られた蛍光体分散液の粘度は、200mPa・sであった。
 サンプル7
 層状粘土鉱物粒子としてベンゲル(ホージュン社製:天然ベントナイト)3gと、酸化ケイ素粒子としてサイリシア470(富士シリシア化学社製)4.5gと、酸化チタン粒子2.4gとを、プロピレングリコール70g、1,3-ブタンジオール30g、及びイソプロピルアルコール50gの混合溶媒中に添加した。混合液をTKオートホモミクサー(プライミクス社製)で混合し、第1分散液を得た。
 その後、第1分散液に蛍光体粒子90gを添加した。これを、あわとり練太郎(シンキー社製)で撹拌混合して、蛍光体分散液を得た。得られた蛍光体分散液の粘度は、200mPa・sであった。
 サンプル8
 層状粘土鉱物粒子としてベンゲル(ホージュン社製:天然ベントナイト)3gと、酸化ケイ素粒子としてサイリシア470(富士シリシア化学社製)4.5gと、硫酸バリウム粒子3.5gとを、プロピレングリコール70g、1,3-ブタンジオール30g、及びイソプロピルアルコール50gの混合溶媒中に添加した。混合液をTKオートホモミクサー(プライミクス社製)で混合し、第1分散液を得た。
 その後、第1分散液に蛍光体粒子90gを添加した。これを、あわとり練太郎(シンキー社製)で撹拌混合して、蛍光体分散液を得た。得られた蛍光体分散液の粘度は、200mPa・sであった。
 サンプル9
 層状粘土鉱物粒子としてミクロマイカMK-100(コープケミカル社製:合成雲母)2.5gと、酸化ケイ素粒子としてAEROSIL RX300(日本アエロジル社製)4gと、酸化亜鉛粒子0.4gとを、1,3-ブタンジオール90g、及びイソプロピルアルコール60gの混合溶媒中に添加した。混合液を、アペックスミル(寿工業社製)で混合し、第1分散液を得た。
 その後、第1分散液に蛍光体粒子90gを添加した。これを、あわとり練太郎(シンキー社製)で撹拌混合して、蛍光体分散液を得た。得られた蛍光体分散液の粘度は、350mPa・sであった。
 サンプル10
 層状粘土鉱物粒子としてルーセンタイトSWN(コープケミカル社製:スメクタイト)3gと、酸化ケイ素粒子としてマイクロビードSP-1(日揮触媒化成社製)4gと、硫酸バリウム粒子1.3gとを、1,3-ブタンジオール90g、イソプロピルアルコール30g、及びエタノール30gの混合溶媒中に添加した。混合液を、ナノマイザー(吉田機械社製)で混合し、第1分散液を得た。
 その後、第1分散液に蛍光体粒子90gを添加した。これを、あわとり練太郎(シンキー社製)で撹拌混合して、蛍光体分散液を得た。得られた蛍光体分散液の粘度は、250mPa・sであった。
 サンプル11
 層状粘土鉱物粒子としてベンゲル(ホージュン社製:天然ベントナイト)3gと、酸化ケイ素粒子としてサイリシア470(富士シリシア化学社製)4.5gと、炭酸カルシウム粒子1.5gとを、プロピレングリコール70g、1,3-ブタンジオール30g、及びイソプロピルアルコール50gの混合溶媒中に添加した。混合液をTKオートホモミクサー(プライミクス社製)で混合し、第1分散液を得た。
 その後、第1分散液に蛍光体粒子90gを添加した。これを、あわとり練太郎(シンキー社製)で撹拌混合して、蛍光体分散液を得た。得られた蛍光体分散液の粘度は、200mPa・sであった。
 サンプル12
 層状粘土鉱物粒子としてベンゲル(ホージュン社製:天然ベントナイト)2gと、酸化ケイ素粒子としてサイリシア470(富士シリシア化学社製)2gと、酸化アルミニウム粒子0.8gと、酸化チタン粒子0.8gとを、プロピレングリコール70g、1,3-ブタンジオール30g、及びイソプロピルアルコール50gの混合溶媒中に添加した。混合液をTKオートホモミクサー(プライミクス社製)で混合し、第1分散液を得た。
 その後、第1分散液に蛍光体粒子90gを添加した。これを、あわとり練太郎(シンキー社製)で撹拌混合して、蛍光体分散液を得た。得られた蛍光体分散液の粘度は、70mPa・sであった。
 サンプル13
 層状粘土鉱物粒子としてベンゲル(ホージュン社製:天然ベントナイト)5gと、酸化ケイ素粒子としてサイリシア470(富士シリシア化学社製)8gと、酸化アルミニウム粒子0.8gと、酸化チタン粒子0.8gと、蛍光体粒子90gとを、プロピレングリコール70g、1,3-ブタンジオール30g、及びイソプロピルアルコール50gの混合溶媒中に添加した。混合液をアペックスミル(寿工業社製)で一括分散して、蛍光体分散液を得た。得られた蛍光体分散液の粘度は、1050mPa・sであった。
 透光性セラミック材料組成物を、テトラメトキシシランKBM04(信越化学工業社製)15質量部とメチルトリメトシシランKBM13(信越化学工業社製)5質量部と、イソプロピルアルコール40質量部とエタノール40質量部と塩酸2質量部とを混合して調製した。
Figure JPOXMLDOC01-appb-T000001
 (LED装置の製造)
 サンプル1~13で調製した蛍光体分散液を、スプレー塗布装置により図1に示されるLED素子の凹部内に塗布した。スプレー塗布の条件は、スプレー圧0.2MPa、スプレーノズルとLED素子からの出射光素子との相対移動速度100mm/sとした。蛍光体分散液の塗布後、150℃で1時間加熱して、蛍光体層を形成した。
 続いて蛍光体層上に、透光性セラミック材料組成物を、蛍光体層(波長変換層)の含有率として10質量%になるように調製して、スプレー塗布した。スプレー塗布の条件は、スプレー圧0.1MPa、スプレーノズルとLED素子からの出射光素子との相対移動速度100mm/sとした。透光性セラミック材料組成物の塗布後、150℃で1時間加熱して、透光性セラミックで蛍光体層を結着した波長変換層を得た。
 さらに、波長変換層上に、フェニルシリコーン(信越化学工業社製;KER-6000)をディスペンサで塗布し、150℃で1時間加熱した。これにより、厚み2mmの透明樹脂層を形成した。
 サンプル1~13で作製したLED装置について、複数の発光装置の間での色度のばらつき、一の発光装置における発光の色度のばらつき、及び全光束値の比率を評価した。結果を表2に示す。
(複数の装置間での色度ばらつき)
 サンプル1~13のLED装置を、それぞれ5つずつ準備した。各LED装置から出射される光の色度を、分光放射輝度計(CS-1000A、コニカミノルタセンシング社製)で測定した。色度はCIE XYZ表色系のx値とy値を測定した。x+y+z=1の関係から得られるz座標は省略した。各実施例及び比較例の各5サンプルの色度(x値及びy値)について、それぞれ標準偏差を求めた。評価は、x値とy値の標準偏差の平均値で行った。基準を下記に示す。
 「○」・・・標準偏差の平均値が0.02以下(発光色の均一性が求められる用途にも適用可能)
 「△」・・・標準偏差の平均値が0.02より大きく0.025以下であり実用上問題なし
(一の装置での色度むら)
 一のLED装置の発光装置における色度むらを2次元色彩輝度計(CA-2000、コニカミノルタオプティクス社製)により測定した。具体的には、発光の平均色度のx値が0.33の一の発光装置を選択し、その発光装置の発光面を196×196に分割し、各分割面での色度の標準偏差を求め、下記基準で評価した。
 「○」・・・標準偏差が0.02以下
 「△」・・・標準偏差が0.02より大きく0.03以下(実用上問題なし)
 「×」・・・標準偏差が0.03より大きい(実用上好ましくない)
(全光束値の比率)
 サンプル2~13の光散乱微粒子を除いた蛍光体分散液を準備し、前述と同様の方法で、LED装置(サンプル)を作製した。作製したLED装置について、分光放射輝度計CS-200(コニカミノルタセンシング社製)で全光束値を測定した。
 一方、前述のサンプル2~13で調製した蛍光体分散液を用いて、LED装置(色度測定で作成したものと同じもの)を作製し、これらの全光束値を測定した。サンプル2~13にそれぞれ対応する比較サンプルの全光束値に対する、サンプル2~13の全光束値の比率を求めた。この比率を以下のように評価した。比率が96%以上である場合が、実用上問題ないレベルである。
 「◎」・・・比率が98%以上である
 「○」・・・比率が96%以上98%未満である
 「×」・・・比率が96%未満である
Figure JPOXMLDOC01-appb-T000002
 蛍光体層に光散乱微粒子を含まないサンプル1では色度むらが発生しているのに対して、蛍光体層に光散乱微粒子を含むサンプル2~13では、色度むらを抑制できていることがわかる。ただし、光散乱微粒子が、低い屈折率を有する炭酸カルシウムであるサンプル11や、粘度が高い(1050mPa・s)サンプル13では若干の色むらが生じた。また、光散乱微粒子の量が多いサンプル7および8では、光取り出し効率を示す全光束値比率が低下した。
 また、蛍光体分散液の粘度が低い(70mPa・s)サンプル12では、色度ばらつきが生じた。
 本発明の蛍光体分散液を用いて封止膜(蛍光体膜)を形成したLED装置は、装置ごとの色度ばらつきが抑制されており、色度むら(発光装置の発光面内均一性)の低いLED装置を提供することができる。
 1 パッケージ
 2 メタル部
 3 LEDチップ
 4 配線
 6 波長変換層
 7 透明樹脂層
 100 LED装置
 200 塗布装置
 210 塗布液タンク
 220 蛍光体分散液
 230 連結管
 240 ヘッド
 250 ノズル
 270 吐出液

Claims (8)

  1.  蛍光体粒子、光散乱微粒子、層状粘土鉱物粒子、酸化ケイ素粒子および溶媒を含有する蛍光体分散液であって、
     前記蛍光体粒子に対する、前記光散乱微粒子の含有率が0.1~2.5質量%である、蛍光体分散液。
  2.  前記光散乱微粒子は白色顔料である、請求項1に記載の蛍光体分散液。
  3.  前記光散乱微粒子の屈折率は1.6以上である、請求項1または2に記載の蛍光体分散液。
  4.  前記蛍光体分散液の粘度が80~1000mPa・sである、請求項1~3のいずれか1項に記載の蛍光体分散液。
  5.  前記溶媒が脂肪族アルコールである、請求項1~4のいずれか1項に記載の蛍光体分散液。
  6.  LED素子と、前記LED素子から出射する光を他の波長の光に変換する波長変換層とを有し、
     前記波長変換層が、セラミックと、前記セラミックで結着された蛍光体粒子、光散乱微粒子、層状粘土鉱物粒子および酸化ケイ素粒子と、を含み、
     前記波長変換層における、前記波長変換層の全体に対する前記光散乱微粒子の含有率が0.05~2質量%である、LED装置。
  7.  前記波長変換層の前記LED素子とは反対側の上面に配置された透明樹脂層をさらに含む、請求項6に記載のLED装置。
  8.  請求項6または7に記載のLED装置を製造する方法であって、
     LED素子を用意する工程と、
     前記LED素子上に、請求項1~5のいずれか1項に記載の蛍光体分散液を塗布して、蛍光体層を形成する工程と、
     前記蛍光体層の変換層の前記LED素子とは反対側の上面に、透光性セラミック材料および溶媒を含む透光性セラミック材料組成物を塗布する工程と、
     前記透光性セラミック材料を硬化させて、前記蛍光体層が透光性セラミックで結着された波長変換層を形成する工程と、
     を含むLED装置の製造方法。
     
PCT/JP2013/007680 2012-12-27 2013-12-27 蛍光体分散液、led装置およびその製造方法 WO2014103330A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014554157A JPWO2014103330A1 (ja) 2012-12-27 2013-12-27 蛍光体分散液、led装置およびその製造方法
EP13868246.3A EP2940744A4 (en) 2012-12-27 2013-12-27 PHOSPHORDISPERSION, LED DEVICE AND METHOD FOR THE PRODUCTION THEREOF
US14/653,617 US20160002526A1 (en) 2012-12-27 2013-12-27 Phosphor dispersion, led device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-284875 2012-12-27
JP2012284875 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014103330A1 true WO2014103330A1 (ja) 2014-07-03

Family

ID=51020444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007680 WO2014103330A1 (ja) 2012-12-27 2013-12-27 蛍光体分散液、led装置およびその製造方法

Country Status (4)

Country Link
US (1) US20160002526A1 (ja)
EP (1) EP2940744A4 (ja)
JP (1) JPWO2014103330A1 (ja)
WO (1) WO2014103330A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107794A1 (ja) * 2020-11-19 2022-05-27 日本電気硝子株式会社 波長変換部材及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170089053A (ko) * 2016-01-25 2017-08-03 삼성전자주식회사 수지 도포 장치 및 이를 사용한 발광소자 패키지 제조방법
CN105957977B (zh) * 2016-05-13 2019-02-05 京东方科技集团股份有限公司 一种封装材料、封装盖板、烧结设备、烧结方法及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232530A (ja) * 1985-04-08 1986-10-16 Nec Corp カラ−受像管の螢光面製造方法
JP2002314142A (ja) 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd 発光装置
JP2007019459A (ja) * 2005-06-06 2007-01-25 Mitsubishi Chemicals Corp 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2009096947A (ja) * 2007-10-19 2009-05-07 Mitsubishi Chemicals Corp 蛍光体含有組成物の製造方法
JP2009540558A (ja) 2006-06-08 2009-11-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 発光装置
WO2012023425A1 (ja) 2010-08-17 2012-02-23 コニカミノルタオプト株式会社 発光装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631230A (en) * 1984-04-02 1986-12-23 General Electric Company Unique epoxy resin compositions and composite molded bodies filled therewith
JP4999783B2 (ja) * 2007-07-12 2012-08-15 株式会社小糸製作所 発光装置
US9240506B2 (en) * 2009-12-08 2016-01-19 Lawrence Livermore National Security, Llc Transparent ceramic photo-optical semiconductor high power switches
CN102971383B (zh) * 2010-06-11 2014-11-12 株式会社艾迪科 含硅固化性组合物、该含硅固化性组合物的固化物及由该含硅固化性组合物形成的引线框基板
JP5766411B2 (ja) * 2010-06-29 2015-08-19 日東電工株式会社 蛍光体層および発光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232530A (ja) * 1985-04-08 1986-10-16 Nec Corp カラ−受像管の螢光面製造方法
JP2002314142A (ja) 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd 発光装置
JP2007019459A (ja) * 2005-06-06 2007-01-25 Mitsubishi Chemicals Corp 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2009540558A (ja) 2006-06-08 2009-11-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 発光装置
JP2009096947A (ja) * 2007-10-19 2009-05-07 Mitsubishi Chemicals Corp 蛍光体含有組成物の製造方法
WO2012023425A1 (ja) 2010-08-17 2012-02-23 コニカミノルタオプト株式会社 発光装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2940744A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107794A1 (ja) * 2020-11-19 2022-05-27 日本電気硝子株式会社 波長変換部材及びその製造方法

Also Published As

Publication number Publication date
EP2940744A1 (en) 2015-11-04
JPWO2014103330A1 (ja) 2017-01-12
US20160002526A1 (en) 2016-01-07
EP2940744A4 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5541433B1 (ja) 蛍光体分散液の製造方法、及びled装置の製造方法
US9708492B2 (en) LED device and coating liquid used for production of same
EP2940743A1 (en) Light emitting device
WO2014103326A1 (ja) 塗布液、及びその硬化物からなる反射層を備えるled装置
WO2013051280A1 (ja) 蛍光体分散液、及びこれを用いたled装置の製造方法
JP5843016B2 (ja) Led装置及びその製造方法
JP2014022508A (ja) Led装置及びその製造方法
JP6076909B2 (ja) 蛍光体分散液、およびled装置の製造方法
JP2014138081A (ja) 発光装置、波長変換・光拡散素子及びそれらの製造方法、光拡散セラミック層形成用組成物
WO2014030342A1 (ja) Led装置及びその製造方法
WO2014103330A1 (ja) 蛍光体分散液、led装置およびその製造方法
JP2014019844A (ja) 蛍光体分散液及びled装置の製造方法
JP2016154179A (ja) 発光装置、及びその製造方法
WO2015011925A1 (ja) Led装置の製造方法
JP5910340B2 (ja) Led装置、及びその製造方法
JP5729327B2 (ja) Led装置の製造方法
JP2014127495A (ja) Led装置、及びその製造方法
JP2014160713A (ja) Led装置の製造方法
JP2016181535A (ja) 発光装置、および発光装置製造用の塗布液
WO2016047745A1 (ja) 塗布液、それを用いたled装置の製造方法およびled装置
WO2014087629A1 (ja) ディスペンサー塗布用透光性セラミック材料、及びこれを用いたled装置の製造方法
WO2013187067A1 (ja) Led装置、及びその製造方法
WO2016047746A1 (ja) 塗布液、これを用いたled装置の製造方法、及びled装置
JP2017011130A (ja) 高比重粒子分散用溶液、及びこれを含む蛍光体分散液、並びに発光装置、及びその製造方法
JP2014165463A (ja) 発光装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554157

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14653617

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013868246

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013868246

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE