WO2013051280A1 - 蛍光体分散液、及びこれを用いたled装置の製造方法 - Google Patents

蛍光体分散液、及びこれを用いたled装置の製造方法 Download PDF

Info

Publication number
WO2013051280A1
WO2013051280A1 PCT/JP2012/006415 JP2012006415W WO2013051280A1 WO 2013051280 A1 WO2013051280 A1 WO 2013051280A1 JP 2012006415 W JP2012006415 W JP 2012006415W WO 2013051280 A1 WO2013051280 A1 WO 2013051280A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
mass
dispersion liquid
phosphor dispersion
parts
Prior art date
Application number
PCT/JP2012/006415
Other languages
English (en)
French (fr)
Inventor
小嶋 健
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Priority to US14/349,172 priority Critical patent/US9184352B2/en
Priority to EP12838811.3A priority patent/EP2752898A4/en
Publication of WO2013051280A1 publication Critical patent/WO2013051280A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a phosphor dispersion and a method for manufacturing an LED device using the same.
  • a light emitting device (LED device) using an LED chip has been applied to various uses in response to a demand for higher luminance and energy saving of the light emitting device.
  • white LED devices are used in lighting fields such as electric lamps that require white light and backlights for liquid crystal display devices.
  • An example of a white LED device is a device in which a blue LED chip and a phosphor that emits yellow light when receiving blue light are combined.
  • Another example of a white LED device that combines an LED chip and a phosphor is a device that combines an LED chip that emits ultraviolet light and a phosphor that emits blue, green, and red light by ultraviolet light.
  • a white LED device in which an LED chip and a phosphor are combined, white light can be obtained with a single light source (LED chip). Therefore, compared with a white LED device that combines a plurality of light sources (LED chips) having different colors to produce white light, the device can be simplified and power consumption can be suppressed.
  • the light from the LED device is colored when the balance between the emitted light of the LED chip and the fluorescence emitted by the phosphor is lost. Further, when this balance is lost, a problem of “color unevenness” in which the color (chromaticity) varies depending on the observation angle also occurs.
  • the phosphor is dispersed in a resin.
  • the phosphor particles are inorganic metal compounds having a very high specific gravity. Therefore, when dispersed and applied in a liquid resin, the phosphor particles are precipitated and the phosphor particles are deposited non-uniformly.
  • Patent Document 1 a technique for preventing the sedimentation of the phosphor particles by containing a liquid resin with an anti-settling agent for the phosphor particles is disclosed (Patent Document 1). reference). Further, in this document, the precipitation of the phosphor particles is suppressed by applying a liquid resin containing the phosphor particles and then curing the resin while rotating the resin (see Patent Document 1).
  • This white lighting device including a plurality of white LED devices has been developed.
  • This white illumination device is used in, for example, an automobile illumination device or a store illumination device in which chromaticity is particularly important.
  • chromaticity is particularly important.
  • the phosphor dispersion liquid in which the phosphor is dispersed is applied by a coating device such as a dispenser or a sprayer.
  • a coating device such as a dispenser or a sprayer.
  • a plurality of LED devices can be manufactured continuously.
  • the phosphor dispersion liquid stored in the coating liquid tank is supplied to the head of the coating apparatus, and the phosphor dispersion liquid is discharged from the nozzle.
  • the phosphor dispersion liquid is stored in the coating liquid tank, the phosphor particles gradually settle.
  • the present invention has been made in view of such a situation. That is, the present invention provides a phosphor dispersion liquid in which a phosphor is a dispersoid, and the phosphor dispersion liquid in which precipitation of the phosphor hardly occurs even when left standing. Another object of the present invention is to make it possible to easily discharge the phosphor dispersion liquid from the coating device during coating.
  • this invention also provides the manufacturing method of the 1st LED apparatus shown below.
  • a method for manufacturing an LED device comprising: an LED chip; and a phosphor layer that covers the LED chip and converts light of a specific wavelength emitted from the LED chip into light of another specific wavelength.
  • the manufacturing method of an LED apparatus including the binder precursor application
  • the following second phosphor dispersion liquid is also provided.
  • the phosphor dispersion liquid according to [6] wherein the phosphor dispersion liquid has a viscosity at 25 ° C. measured by a vibration viscometer of 60 mPa ⁇ s to 400 mPa ⁇ s.
  • this invention also provides the manufacturing method of the 2nd LED apparatus shown below.
  • a method for manufacturing an LED device comprising: [10] The method for manufacturing an LED device according to [9], further including a step of applying a solution containing an organometallic compound to the light emitting surface of the LED chip.
  • the phosphor dispersion liquid is applied by a spray coating apparatus, and the spray coating apparatus coats a coating liquid tank for storing the phosphor dispersion liquid, a head having a nozzle for discharging the phosphor dispersion liquid,
  • the method for manufacturing an LED device according to [9] or [10] comprising a connecting pipe that allows the liquid tank and the head to communicate with each other.
  • the present invention also provides a third phosphor dispersion described below.
  • the viscosity ⁇ 1 at a shear rate of 1000 (1 / s) at 25 ° C. is 10 to 500 mPa ⁇ s at a shear rate of 1 (1 / s) at 25 ° C.
  • the first phosphor dispersion liquid of the present invention has a high viscosity in a stationary state, that is, in the coating apparatus, and the phosphor particles are difficult to settle.
  • the viscosity is liable to decrease and the liquid is easily discharged from the coating apparatus. Therefore, when the first phosphor dispersion liquid is applied to form the phosphor layer of the LED device, the emitted light from the individual LED devices does not become colored or uneven in color. Furthermore, the chromaticity of the emitted light from the plurality of LED devices is uniform.
  • the second phosphor dispersion liquid of the present invention hardly causes the phosphor to settle. Therefore, the dispersion state of the phosphor is uniformly maintained for a long time even in the coating liquid tank of the phosphor dispersion liquid coating apparatus. Therefore, even if the application work time is long, the phosphor concentration in the applied dispersion does not change between the initial application work and the final application work. Therefore, even if a plurality of LED devices are continuously produced using the coating device, the chromaticity of light emission should be the same between the LED device obtained at the beginning of the coating operation and the LED device obtained at the end of the coating operation. Can do.
  • the viscosity is high in a stationary state, that is, in the coating apparatus, and the phosphor particles are difficult to settle. Therefore, even if a plurality of LED devices are continuously produced, the chromaticity of light emission can be made the same between the LED device obtained at the initial stage of the coating operation and the LED device obtained at the end of the coating operation.
  • the spray apparatus which apply
  • the present invention relates to a phosphor dispersion for forming a phosphor layer of an LED device, and a method for manufacturing an LED device using the same.
  • the LED device includes an LED chip and a phosphor layer that covers a light emitting surface of the LED chip and converts a part of light of a specific wavelength emitted from the LED chip into light of another specific wavelength. And an optional protective layer or the like is provided on the phosphor layer.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the LED device 100.
  • the LED chip 1 is disposed on a package (LED substrate) 2 and is connected to a metal portion (metal wiring) 3 disposed on the package 2 via a protruding electrode 4 and the like.
  • the LED chip 1 is, for example, a blue LED.
  • the blue LED includes an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), a p-GaN compound semiconductor layer (cladding layer), and a transparent electrode layer stacked on the package 2. And the like.
  • the LED chip 1 has a light emitting surface of 200 to 300 ⁇ m ⁇ 200 to 300 ⁇ m, for example.
  • the height of the LED chip 1 is usually about 50 to 200 ⁇ m.
  • Package 2 is, for example, liquid crystal polymer or ceramic, but the material is not particularly limited as long as it has insulation and heat resistance. Also, the shape is not particularly limited, and for example, as shown in FIG. 1, it may be a shape having a concave portion or a flat plate shape.
  • the metal part 3 is a wiring made of a metal such as silver, and may function as a reflector that reflects the light emitted from the LED chip 1 to the light extraction surface. As shown in FIG. 1, the metal part 3 may be connected to the LED chip 1 via the protruding electrode 4 or the like, or may be connected to the LED chip 1 via a wiring or the like. A mode in which the metal part 3 and the LED chip 1 are connected via the protruding electrode 4 is referred to as a flip chip type.
  • LED device 100 shown in FIG. 1 only one LED chip 1 is arranged in the package 2; however, a plurality of LED chips 1 may be arranged in the package 2.
  • the LED device 100 has a phosphor layer 5 that covers the light emitting surface of the LED chip 1.
  • the phosphor layer 5 contains phosphor particles.
  • the phosphor layer 5 only needs to cover the light emitting surface of the LED chip 1 (typically, the upper surface of the LED chip), and may cover the side surface of the LED chip 1 as shown in FIG.
  • the thickness of the phosphor layer 5 is not particularly limited, but is preferably 15 ⁇ m to 300 ⁇ m, and more preferably 20 to 100 ⁇ m.
  • the phosphor layer 5 receives light (excitation light) emitted from the LED chip 1 and emits fluorescence. By mixing the excitation light and the fluorescence, the light from the LED device 100 becomes a desired color. That is, the phosphor layer 5 functions as a wavelength conversion layer. For example, if the light from the LED chip 1 is blue and the fluorescence from the phosphor layer 5 is yellow, the light from the LED device 100 is white.
  • the phosphor particles need to be present uniformly in the phosphor layer 5. This is to make the light emitted from the LED device 100 have a desired color.
  • the phosphor dispersion liquid of the present invention is a liquid for forming the phosphor layer 5.
  • the phosphor layer 5 contains phosphor particles, clay mineral particles and inorganic particles, a binder, and other optional components.
  • the amount of phosphor particles contained in the phosphor layer 5 is preferably 50 to 95% by mass. If the amount of the phosphor particles is small, sufficient fluorescence cannot be obtained. On the other hand, when the amount of the phosphor particles is excessive, the amount of the binder is relatively decreased, and the strength of the phosphor layer 5 is lowered.
  • the binder of the phosphor layer 5 may be a translucent organic resin such as a silicone resin or a translucent ceramic such as glass; however, the heat resistance of the phosphor layer 5 is improved. From the above, the binder is preferably a translucent ceramic.
  • the amount of the translucent ceramic contained in the phosphor layer 5 is preferably 2 to 50% by mass, and 2.5 to 30% by mass. It is more preferable.
  • the content of the translucent ceramic in the phosphor layer 5 is less than 2% by mass, the amount of the binder is too small, so that the strength of the phosphor layer 5 is lowered.
  • the content of the translucent ceramic exceeds 50% by mass, the content of inorganic particles or the like is relatively lowered.
  • the strength of the phosphor layer 5 is lowered.
  • the amount of the clay mineral particles contained in the phosphor layer 5 is preferably 0.5% by mass or more and 20% by mass or less, and more preferably 0.5% by mass or more and 10% by mass or less. When the amount of clay mineral particles contained in the phosphor layer 5 exceeds 20% by mass, the strength of the phosphor layer 5 is not sufficient. On the other hand, when the amount of the clay mineral particles is less than 0.5% by mass, the amount of the clay mineral particles relative to the amount of the phosphor particles is small, and the viscosity of the phosphor dispersion liquid for forming the phosphor layer 5 is low. The phosphor particles are likely to settle. For this reason, the phosphor particles are not uniformly present in the phosphor layer 5, and the emitted light of the LED device may be uneven in color or colored.
  • the amount of inorganic particles contained in the phosphor layer 5 is preferably 0.5% by mass or more and 50% by mass or less, and more preferably 1% by mass or more and 40% by mass or less. If the amount of the inorganic particles contained in the phosphor layer 5 is less than 0.5% by mass or exceeds 50% by mass, the strength of the phosphor layer 5 is not sufficiently increased.
  • the phosphor layer 5 may be covered with a protective layer.
  • a protective layer made of a silicone resin.
  • the LED device 100 is further provided with other optical components (such as a lens) to form various optical members.
  • the phosphor dispersion liquid of the present invention is a composition for forming the phosphor layer 5 in the LED device described above.
  • the fluorescent substance layer 5 is obtained by apply
  • the binder to be combined may be an organic resin or a translucent ceramic.
  • the phosphor dispersion liquid of the present invention includes the following three types of phosphor dispersion liquids.
  • a phosphor dispersion containing phosphor particles, clay mineral particles, inorganic particles, and a solvent, and a viscosity ⁇ 1 at a shear rate of 1000 (1 / s) at 25 ° C. is 10 to 500 mPa ⁇ s.
  • a phosphor dispersion liquid comprising mineral particles, inorganic particles, and a dispersion solvent containing water and an organic solvent, wherein the water content is 0.1% by mass or more and 4% by mass or less.
  • the viscosity ⁇ 1 at a shear rate of 1000 (1 / s) at 25 ° C. is 10 to 500 mPa ⁇ s at a shear rate of 1 (1 / s) at 25 ° C.
  • the first phosphor dispersion liquid contains phosphor particles, clay mineral particles, inorganic particles, and a solvent.
  • the first phosphor dispersion liquid may further contain an optional additive.
  • the phosphor particles contained in the first phosphor dispersion liquid are excited by the wavelength (excitation wavelength) of light emitted from the LED chip, and emit fluorescence having a wavelength different from the excitation wavelength.
  • the LED chip emits blue light
  • the phosphor particles emit yellow fluorescence, thereby obtaining white light.
  • Examples of phosphors that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors.
  • the YAG phosphor receives blue light (wavelength 420 nm to 485 nm) emitted from the blue LED chip, and emits yellow light (wavelength 550 nm to 650 nm).
  • phosphor particles may be obtained by 1) mixing an appropriate amount of fluoride such as ammonium fluoride as a flux into a mixed raw material having a predetermined composition and pressurizing to obtain a molded body, and 2) crucible the obtained molded body. And sintered in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
  • fluoride such as ammonium fluoride
  • a mixed raw material having a predetermined composition is obtained by sufficiently mixing the oxides of Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. Can do.
  • the mixed raw material having a predetermined composition is a coprecipitation oxidation obtained by firing a solution obtained by dissolving a rare earth element of Y, Gd, Ce, and Sm in an acid in a stoichiometric ratio and coprecipitating with oxalic acid. It can be obtained by mixing a material with aluminum oxide and gallium oxide.
  • the kind of the phosphor particles is not limited to the YAG phosphor, and may be other phosphor particles such as a non-garnet phosphor that does not contain Ce.
  • Examples of preferable phosphor particles include silicate phosphors, nitride phosphors, oxynitride phosphors, sulfide phosphors, thiogallate phosphors, aluminate phosphors, and the like.
  • the average particle diameter of the phosphor particles is preferably 1 ⁇ m or more and 50 ⁇ m or less.
  • the particle diameter of the phosphor particles is too large, a gap is easily generated between the phosphor particles and the binder in the phosphor layer described above, and the strength of the phosphor layer is likely to be reduced.
  • the average particle diameter of the phosphor is measured by, for example, a Coulter counter method.
  • the content of the phosphor particles is preferably 10 to 70% by mass, more preferably 30 to 60% by mass with respect to the entire first phosphor dispersion.
  • the content of the phosphor particles is small, the amount of the phosphor contained in the phosphor layer is small and sufficient fluorescence cannot be obtained.
  • the content of the phosphor particles is excessive, the phosphor particles are likely to settle in the first phosphor dispersion.
  • clay mineral particles When clay mineral particles are contained in the first phosphor dispersion liquid, the viscosity of the phosphor dispersion liquid increases, and sedimentation of the phosphor particles is suppressed.
  • clay mineral particles include layered silicate minerals, imogolite, allophane, and the like, and layered silicate minerals are preferable.
  • the layered silicate mineral is preferably a swellable clay mineral having a mica structure, a kaolinite structure, or a smectite structure, and particularly preferably a swellable clay mineral having a smectite structure rich in swelling properties.
  • Layered silicate minerals tend to form a card house structure when the phosphor dispersion is left standing.
  • the viscosity of the phosphor dispersion increases significantly.
  • the card house structure is apt to collapse by applying a certain pressure, thereby reducing the viscosity of the phosphor dispersion. That is, when a layered silicate mineral is contained in the phosphor dispersion liquid, the viscosity of the phosphor dispersion liquid increases in a stationary state, and the viscosity of the phosphor dispersion liquid decreases when a certain pressure is applied.
  • layered silicate minerals include natural or synthetic hectrite, saponite, stevensite, hydelite, montmorillonite, nontrinite, bentonite and other smectite clay minerals, Na-type tetralithic fluoric mica, Li-type tetrasilicate.
  • swellable mica genus clay minerals such as thick fluorine mica, Na type fluorine teniolite, Li type fluorine teniolite, vermiculite and kaolinite, or a mixture thereof.
  • Examples of commercial products of clay mineral particles include Laponite XLG (synthetic hectorite analogue manufactured by LaPorte, UK), Laponite RD (Synthetic hectorite analogue produced by LaPorte, UK), Thermabis (Synthetic product manufactured by Henkel, Germany) Hectorite-like substance), smecton SA-1 (saponite-like substance manufactured by Kunimine Industry Co., Ltd.), Bengel (natural bentonite sold by Hojun Co., Ltd.), Kunivia F (natural montmorillonite sold by Kunimine Industry Co., Ltd.), bee gum ( Natural hectorite manufactured by Vanderbilt, USA), Daimonite (synthetic swellable mica manufactured by Topy Industries Co., Ltd.), Somasif (synthetic swellable mica manufactured by Coop Chemical Co., Ltd.), SWN (manufactured by Coop Chemical Co., Ltd.) Synthetic smectite), SW
  • the amount of the clay mineral particles is preferably 0.1 to 5% by mass, and more preferably 2 to 5% by mass with respect to the entire first phosphor dispersion.
  • the content of the clay mineral particles is small, the viscosity of the first phosphor dispersion liquid in a stationary state is difficult to increase. For this reason, the phosphor particles easily settle during the standing of the first phosphor dispersion liquid.
  • the content of the clay mineral particles is excessive, the viscosity of the phosphor dispersion liquid remains high even when a certain pressure is applied. For this reason, the first phosphor dispersion liquid may not be uniformly discharged from the coating apparatus.
  • the surface of the clay mineral particles may be modified (surface treatment) with an ammonium salt or the like in consideration of compatibility with the solvent in the first phosphor dispersion.
  • Inorganic particles When inorganic particles are contained in the first phosphor dispersion liquid, gaps generated at the interface between the phosphor particles and the clay mineral particles are filled, and the viscosity of the phosphor dispersion liquid is increased.
  • the inorganic particles include oxide particles such as silicon oxide, aluminum oxide, zirconium oxide, titanium oxide and zinc oxide, fluoride particles such as magnesium fluoride, or a mixture thereof.
  • the inorganic particles are preferably oxide particles; in particular, when the binder of the phosphor layer is a cured product (ceramic) of a silicon-containing organic compound such as polysiloxane, the viewpoint of stability of the phosphor layer with respect to the binder Therefore, the oxide particles are preferably silicon oxide.
  • the content of the inorganic particles in the first phosphor dispersion is preferably 1 to 40% by mass with respect to the total amount of the phosphor dispersion.
  • the amount of the inorganic particles exceeds 40% by mass, the viscosity of the phosphor dispersion liquid remains high even when a certain pressure is applied, and the phosphor dispersion liquid may not be uniformly discharged from the coating apparatus.
  • the amount of the inorganic particles is less than 1%, the viscosity of the phosphor dispersion liquid is lowered.
  • the average particle diameter of the inorganic particles is preferably 0.001 ⁇ m or more and 50 ⁇ m or less from the viewpoint of filling a gap generated at the interface between the phosphor particles and the clay mineral particles.
  • the average particle diameter of the inorganic particles can be measured, for example, by a Coulter counter method.
  • the surface of the inorganic particles may be treated with a silane coupling agent or a titanium coupling agent.
  • the compatibility between the inorganic particles and the solvent is increased by the surface treatment.
  • the solvent contained in the first phosphor dispersion liquid is not particularly limited as long as the phosphor particles, clay mineral particles, and inorganic particles can be uniformly dispersed, but may be a solvent having a boiling point of 250 ° C or lower. preferable. This is to facilitate drying of the solvent from the phosphor dispersion. If the boiling point is too high, the evaporation of the solvent is slow, so that when the phosphor dispersion liquid is applied to form a coating film, the phosphor particles tend to flow in the coating film.
  • the solvent preferably contains a monoalcohol and a dihydric or higher polyhydric alcohol.
  • monoalcohol When monoalcohol is contained, the viscosity of the phosphor dispersion liquid when a certain pressure is applied is likely to decrease, and the phosphor dispersion liquid is easily discharged from the coating apparatus.
  • monoalcohol include methanol, ethanol, propanol, butanol and the like.
  • the content of the monoalcohol is preferably 10 to 50% by mass, and more preferably 20 to 50% by mass with respect to the total phosphor dispersion.
  • the polyhydric alcohol may be either a diol or a triol.
  • examples of the polyhydric alcohol include ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-butanediol, 1,4-butanediol, and preferably ethylene glycol, propylene glycol, and 1,3-butane. Diols, 1,4-butanediol and the like are included.
  • the content of the polyhydric alcohol is preferably 10 to 60% by mass, and more preferably 20 to 50% by mass with respect to the entire phosphor dispersion.
  • the solvent of the first phosphor dispersion liquid may contain water.
  • water When water is contained in the first phosphor dispersion liquid, water enters between the layers of the clay mineral particles and the clay mineral particles swell. Therefore, the viscosity of the phosphor dispersion liquid is more likely to increase.
  • the amount of water contained in the first phosphor dispersion liquid is preferably 0.1 to 4% by mass, and more preferably 0.5 to 2% by mass with respect to the entire phosphor dispersion liquid. . If the water content is low, the clay mineral particles may not be sufficiently swollen. On the other hand, when the content of water in the phosphor dispersion liquid is too large, the wettability of the phosphor dispersion liquid decreases. Therefore, it is difficult to form a uniform coating film when the phosphor dispersion liquid is applied to the surface to be coated (light emitting surface of the LED chip).
  • the total amount of the solvent contained in the first phosphor dispersion liquid is appropriately set according to the viscosity of the whole phosphor dispersion liquid.
  • the total amount of the solvent contained in the phosphor dispersion is preferably 30 to 90% by mass, more preferably 40 to 70% by mass with respect to the entire phosphor dispersion.
  • the first phosphor dispersion liquid is mixed by adding phosphor particles, clay mineral particles and inorganic particles to a solvent, and, if necessary, other additives. Produced by stirring the mixture.
  • the stirring of the mixed liquid can be performed by, for example, a stirring mill, a blade kneading stirring device, a thin film swirling disperser, or the like.
  • a stirring mill a blade kneading stirring device
  • a thin film swirling disperser a thin film swirling disperser
  • the stirring device for producing the phosphor dispersion solution may be a known one.
  • Ultra Thalax manufactured by IKA Japan
  • TK auto homomixer manufactured by Primics
  • TK pipeline homomixer manufactured by Primix
  • TK Philmix manufactured by Primics
  • Claremix manufactured by M Technique
  • Claire SS5 manufactured by M Technique
  • Cavitron manufactured by Eurotech
  • medialess stirrer such as Fine Flow Mill (manufactured by Taiheiyo Kiko), Viscomill (manufactured by IMEX), Apex Mill (manufactured by Kotobuki Industries) ), Starmill (Ashizawa, Finetech), DCP Super Flow (Nihon Eirich), MP Mill (Inoue), Spike Mill (Inoue), Mighty Mill (Inoue), SC Mill Media stirrers such as (Mitsui Mining Co., Ltd.) and Ultimate
  • the phosphor particles are very hard particles, it is preferable to avoid wear of a portion where the stirrer and the phosphor dispersion liquid are in contact with each other, and mixing of wear powder associated therewith.
  • the material of the portion where the stirrer and the phosphor dispersion are in contact with each other may be ceramic such as titania, zirconia, alumina, or silicone carbide. It is also preferable to coat the wetted part with titanium-based oxide, chromium-based nitride, diamond-like carbon.
  • the first phosphor dispersion has a viscosity ⁇ 1 at a shear rate of 1000 (1 / s) at 25 ° C of 10 to 500 mPa ⁇ s.
  • the viscosity ⁇ 1 is preferably 50 to 300 mPa ⁇ s, more preferably 100 to 250 mPa ⁇ s. If the viscosity ⁇ 1 is too low, the coating film tends to flow and it is difficult to form the phosphor layer in a desired thickness. On the other hand, when the viscosity ⁇ 1 is too high, the discharge port of the coating device is clogged or excessive pressure is required for discharge when discharging from the coating device. Thereby, thickness unevenness arises in a coating film, or the density
  • the viscosity ⁇ 1 of the first phosphor dispersion can be adjusted by the type of solvent in the phosphor dispersion, the amount of clay mineral particles, and the like. For example, when the amount of monoalcohol in the phosphor dispersion liquid is large, the viscosity ⁇ 1 decreases. On the other hand, when the amount of polyhydric alcohol is large, the viscosity ⁇ 1 increases. Further, when the amount of clay mineral particles is large, the viscosity ⁇ 1 increases.
  • the first phosphor dispersion has a viscosity ⁇ 2 at a shear rate of 1 (1 / s) at 25 ° C. of 1.0 ⁇ 10 3 to 1.0 ⁇ 10 5 mPa ⁇ s.
  • the viscosity ⁇ 2 is preferably 5000 to 5.0 ⁇ 10 4 mPa ⁇ s, more preferably 1.0 ⁇ 10 4 to 2.0 ⁇ 10 4 mPa ⁇ s.
  • the viscosity ⁇ 2 is too low, the phosphor particles tend to settle when the phosphor dispersion liquid is allowed to stand; that is, when it is accommodated in the coating apparatus.
  • the concentration of the phosphor particles in the phosphor dispersion liquid supplied from the coating apparatus changes between the initial stage of the coating operation and the final stage of the coating work, and when a plurality of LED devices are manufactured continuously, the LED device is released for each LED device.
  • the chromaticity of the incident light is different.
  • the viscosity ⁇ 2 is too high, the fluidity inside the coating apparatus is low, and there is a possibility that the phosphor dispersion liquid cannot be sent to the discharge port or the nozzle is clogged, and the liquid cannot be discharged.
  • the viscosity ⁇ 2 of the first phosphor dispersion increases by increasing the stirring time during production of the phosphor dispersion or by increasing the pressure applied to the phosphor dispersion during stirring.
  • the clay mineral particles contained in the phosphor dispersion liquid become finer, and more card house structures are formed in the phosphor dispersion liquid. It is.
  • the viscosity ⁇ 2 is also increased by stirring and mixing the phosphor particles, clay mineral particles, and inorganic particles in a small amount of solvent and diluting the mixture with the solvent.
  • the clay mineral particles are easily miniaturized, and many card house structures are formed.
  • the phosphor dispersion liquid is produced by the method, the phosphor particles are easily adhered to the clay mineral particles and the inorganic particles, and are easily dispersed uniformly together with the clay mineral particles and the inorganic particles.
  • the viscosity of the first phosphor dispersion at 25 ° C. is measured under the following conditions using Rheo Stress RS600 manufactured by HAAKE.
  • the sensor is a parallel plate sensor having a diameter of 60 mm, and the gap (interval between the upper and lower plates) is 0.15 mm.
  • the sample amount for measurement is 2 cc per measurement, and in flow curve mode, starting at a shear rate of 0.1 (1 / s) and starting at 100,000 (1 / s) at an equal interval of 10 Measure the shear rate of the point.
  • the holding time at each shear rate (the time from changing the shear rate to starting measurement) is 1 minute.
  • a viscosity ⁇ 1 at a shear rate of 1,000 (1 / s) and a viscosity ⁇ 2 at a shear rate of 1 (1 / s) are read from a graph in which the shear rate and the viscosity are plotted, and used as measured values.
  • FIG. 2 shows the relationship between the viscosity and the shear rate when the viscosity of the phosphor dispersion liquid of the present invention is measured.
  • the phosphor dispersion liquid of the present invention has a viscosity ⁇ 1 at a shear rate of 1,000 (1 / s) and a viscosity ⁇ 2 at a shear rate of 1 (1 / s) both within a predetermined range. Become.
  • the second phosphor dispersion liquid includes a dispersion solvent containing water and an organic solvent, and phosphor particles, clay mineral particles, and inorganic particles dispersed in the dispersion solvent.
  • the phosphor dispersion liquid may further contain an arbitrary additive.
  • the phosphor particles, clay mineral particles, and inorganic particles contained in the second phosphor dispersion liquid may be the same as those contained in the first phosphor dispersion liquid.
  • the dispersion solvent in a 2nd fluorescent substance dispersion liquid contains water and an organic solvent.
  • water When water is contained in the second phosphor dispersion liquid, water enters between the layers of the clay mineral particles, the clay mineral particles swell, and the viscosity of the phosphor dispersion liquid is more likely to increase.
  • the content of water in the second phosphor dispersion is preferably 0.1 to 4% by mass, and more preferably 0.5 to 2% by mass with respect to the entire phosphor dispersion.
  • the phosphor in the phosphor dispersion liquid settles during the application operation, and the concentration of the phosphor in the applied phosphor dispersion liquid may change between the initial stage and the end of the application process.
  • the organic solvent in the second phosphor dispersion liquid preferably contains alcohols.
  • the alcohol may be a monoalcohol such as methanol, ethanol, propanol, or butanol, or a dihydric or higher polyhydric alcohol. Two or more alcohols may be combined.
  • the organic solvent in the second phosphor dispersion preferably contains both a monoalcohol and a dihydric or higher polyhydric alcohol. If a divalent or higher alcohol is used as a dispersion solvent, it is easy to increase the viscosity of the phosphor dispersion liquid and to prevent sedimentation of the phosphor particles as the dispersoid. Moreover, if monohydric alcohol is used as a dispersion
  • the boiling point of the dispersion solvent is preferably 250 ° C. or lower. This is to facilitate drying of the dispersion solvent from the dispersion solution. If the boiling point is too high, the dispersion solvent evaporates slowly, and when the dispersion solution is applied to form a coating film, the phosphor flows in the coating film.
  • Any polyhydric alcohol can be used as long as it can be used as a solvent.
  • the polyhydric alcohol that can be used include ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-butanediol, 1,4-butanediol, and preferably ethylene glycol, propylene glycol, and 1,3-butane. Diol, 1,4-butanediol, and the like.
  • the viscosity at 25 ° C. of the second phosphor dispersion measured with a vibration viscometer is usually 10 to 1000 mPa ⁇ s, preferably 12 to 500 mPa ⁇ s, and preferably 20 to 400 mPa ⁇ s. More preferred is 60 to 400 mPa ⁇ s.
  • the viscosity is low, the phosphor particles easily settle in the phosphor dispersion liquid, and the time until the supernatant layer is generated is shortened. On the other hand, if the viscosity is too high, it is difficult to apply the phosphor dispersion, particularly by spraying.
  • the second phosphor dispersion liquid is obtained by adding phosphor particles, clay mineral particles, and inorganic particles to a dispersion solvent, and further adding other additives as necessary. It can be produced by obtaining a mixture; stirring the mixture.
  • the stirring method and stirring device of the mixed liquid can be the same as the stirring method and stirring device of the first phosphor dispersion.
  • Third phosphor dispersion liquid contains phosphor particles, clay mineral particles, inorganic particles, and a solvent, and the solvent contains water.
  • the phosphor particles, clay mineral particles, and inorganic particles contained in the third phosphor dispersion liquid may be the same as those contained in the first phosphor dispersion liquid.
  • the solvent may be the same as the dispersion solvent in the second phosphor dispersion described above.
  • the third phosphor dispersion has a viscosity ⁇ 1 at a shear rate of 1000 (1 / s) at 25 ° C of 10 to 500 mPa ⁇ s.
  • the viscosity ⁇ 1 is preferably 50 to 300 mPa ⁇ s, more preferably 100 to 250 mPa ⁇ s. If the viscosity ⁇ 1 is too low, the coating film tends to flow and it is difficult to form the phosphor layer in a desired thickness. On the other hand, when the viscosity ⁇ 1 is too high, the discharge port of the coating device is clogged or excessive pressure is required for discharge when discharging from the coating device. Thereby, thickness unevenness arises in a coating film, or the density
  • the third phosphor dispersion has a viscosity ⁇ 2 at a shear rate of 1 (1 / s) at 25 ° C. of 1.0 ⁇ 10 3 to 1.0 ⁇ 10 5 mPa ⁇ s.
  • the viscosity ⁇ 2 is preferably 5000 to 5.0 ⁇ 10 4 mPa ⁇ s, more preferably 1.0 ⁇ 10 4 to 2.0 ⁇ 10 4 mPa ⁇ s.
  • the viscosity ⁇ 2 is too low, the phosphor particles tend to settle when the phosphor dispersion liquid is allowed to stand; that is, when it is accommodated in the coating apparatus.
  • the concentration of the phosphor particles in the phosphor dispersion liquid supplied from the coating apparatus changes between the initial stage of the coating operation and the final stage of the coating work, and when a plurality of LED devices are manufactured continuously, the LED device is released for each LED device.
  • the chromaticity of the incident light is different.
  • the viscosity ⁇ 2 is too high, the fluidity inside the coating apparatus is low, and there is a possibility that the phosphor dispersion liquid cannot be sent to the discharge port or the nozzle is clogged, and the liquid cannot be discharged.
  • the method for measuring and adjusting the viscosity of the third phosphor dispersion may be the same as the method for measuring and adjusting the viscosity of the first phosphor dispersion.
  • any of the phosphor dispersion liquids described above is preferably applied under a certain pressure.
  • a certain pressure at the time of application, the card house structure formed by the clay mineral particles can be destroyed, and the phosphor dispersion liquid can be applied in a low viscosity state.
  • preferable coating methods include various spray methods such as a micro spray method and an ultrasonic spray method, various dispense methods using a dispenser and a jet dispenser, an ink jet method, a bar coat method, a spin coat method, a dip coat method, and the like. .
  • the spray method and the dispense method are preferable in that the phosphor dispersion liquid can be continuously applied.
  • the coating apparatus 200 makes the coating liquid tank 210 storing the coating liquid (phosphor dispersion liquid) 220, the head 240 having the nozzle 250 for discharging the coating liquid 220, and the coating liquid tank 210 and the nozzle 240 communicate with each other. It is preferable to have a connecting pipe 230.
  • the coating liquid 220 in the coating liquid tank 210 in the coating apparatus 200 shown in FIG. 3 is supplied with pressure to the head 240 through the connecting pipe 230.
  • the coating liquid 220 supplied to the head 240 is discharged from the nozzle 250 and applied to the application target (LED chip).
  • the coating liquid is discharged from the nozzle 250 by wind pressure.
  • An opening that can be freely opened and closed is provided at the tip of the nozzle 250, and the opening may be opened and closed to control on / off of the discharge operation.
  • the phosphor particles dispersed in the coating liquid 220 accommodated in the coating liquid tank 210 may be gradually settled with the passage of time for the coating operation. This is because the specific gravity of the phosphor particles is large.
  • the concentration of the phosphor particles in the coating liquid 220 supplied to the head 240 changes; the concentration of the phosphor particles in the coating liquid 220 applied from the head 240 to the LED chip also changes.
  • the chromaticity of light emission from the LED device obtained at the initial stage of the coating operation is different from the chromaticity of light emission from the LED device obtained at the end of the coating operation, and the chromaticity of light emission of the LED device to be manufactured is different. Variation occurred.
  • the phosphor dispersion liquid of the present invention hardly causes sedimentation of phosphor particles, and a uniform dispersion state is easily maintained. Therefore, the phosphor particles in the phosphor dispersion liquid are uniformly dispersed even when stored in the coating liquid tank 210 of the coating apparatus 200 for a long time. As a result, the concentration of the phosphor in the phosphor dispersion liquid applied to the object to be coated is constant at the beginning and the end of the coating operation.
  • the viscosity of the phosphor dispersion liquid of the present invention decreases when a certain pressure is applied, the phosphor dispersion liquid can be uniformly applied to the light emitting surface of the LED chip 1 from the nozzle 250. Therefore, there is no uneven application of the phosphor particles, and the emitted light from each LED device is not colored or uneven in color.
  • An LED device includes a preparation process for preparing an LED chip, a phosphor dispersion liquid coating process for applying the phosphor dispersion liquid to the light emitting surface of the LED chip, and a light transmitting property for the light emitting surface of the LED chip. It can be manufactured by a process including a binder precursor coating step for applying a binder precursor-containing liquid containing a binder precursor, and a curing step for curing the translucent binder precursor.
  • the preparation process for preparing the LED chip may be a process of mounting the LED chip 1 on the package 2 to obtain the LED chip mounting package 90 (see FIG. 3).
  • the phosphor dispersion liquid coating process and the binder precursor coating process are processes for coating the phosphor dispersion liquid and the binder precursor containing liquid on the light emitting surface of the LED chip 1 of the LED chip mounting package 90.
  • the order of applying the phosphor dispersion liquid and the binder precursor-containing liquid is not limited, and may be applied simultaneously. Further, the phosphor dispersion liquid and the binder precursor-containing liquid may be repeatedly applied a plurality of times.
  • the method for applying the phosphor dispersion liquid and the binder precursor-containing liquid may be the same as the method for applying the phosphor dispersion liquid described above.
  • the curing step is a step of curing the translucent binder precursor in the binder precursor-containing liquid after applying the phosphor dispersion liquid and the binder precursor-containing liquid.
  • the phosphor layer 5 in which the phosphor particles are dispersed in the translucent binder is obtained by curing the translucent binder precursor.
  • the method for curing the light transmissive binder precursor is appropriately selected according to the type of the light transmissive binder precursor. For example, when the translucent binder precursor is a thermosetting resin, or when the translucent binder precursor is a translucent ceramic precursor, it may be a step of heat-curing the translucent binder precursor. .
  • the binder precursor-containing liquid includes a translucent binder precursor.
  • the translucent binder precursor may be a translucent resin precursor such as a silicone resin or an epoxy resin, or may be a translucent ceramic precursor such as an organometallic compound.
  • the light transmissive binder precursor is preferably a light transmissive ceramic precursor.
  • organometallic compound that is a translucent ceramic precursor examples include a compound that becomes a translucent ceramic (preferably a glass ceramic) by a sol-gel reaction.
  • organometallic compounds include metal alkoxides, metal acetylacetonates, metal carboxylates, and the like, but metal alkoxides that are easily gelled by hydrolysis and polymerization reactions are preferred.
  • the type of metal contained in the metal alkoxide is not limited, and a plurality of types of metal alkoxides may be combined.
  • the metal alkoxide preferably contains silicon from the viewpoint of the stability of the formed glass ceramic and the ease of production.
  • the metal alkoxide contained in the binder precursor-containing liquid may be a single molecule such as tetraethoxysilane, or may be a polysiloxane in which an organic siloxane compound is linked in a chain or in a ring shape; The viscosity of the contained liquid can be increased.
  • Polysiloxane is obtained by polymerizing alkoxysilane.
  • the alkoxysilane is represented, for example, by the following general formula (I). Si (OR) n Y 4-n (I)
  • n represents the number of alkoxides (OR) and is an integer of 2 or more and 4 or less.
  • R each independently represents an alkyl group or a phenyl group, and preferably represents an alkyl group having 1 to 5 carbon atoms or a phenyl group.
  • Y represents a hydrogen atom or an alkyl group.
  • the alkyl group has 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, still more preferably 50 or less, and particularly preferably 6 or less, an aliphatic group, alicyclic group, aromatic group, alicyclic aromatic group. It is a family group. These may have atoms or atomic groups such as O, N, and S in the linking group. Among these, a methyl group is particularly preferable.
  • Y is a methyl group, the light resistance and heat resistance of the phosphor layer are improved.
  • the monovalent organic group represented by Y may have a substituent.
  • substituents include, for example, halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group
  • An organic functional group such as a group, a nitro group, a sulfonic acid group, a carboxy group, a hydroxy group, an acyl group, an alkoxy group, an imino group, and a phenyl group.
  • the alkoxysilane represented by the general formula (I) can be, for example, the following tetrafunctional silane compound, trifunctional silane compound, bifunctional silane compound, or the like.
  • tetrafunctional silane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, triethoxymono Methoxysilane, trimethoxymonopropoxysilane, monomethoxytributoxysilane, monomethoxytripentyloxysilane, monomethoxytriphenyloxysilane, dimethoxydipropoxysilane, tripropoxymonomethoxysilane, trimethoxymonobutoxysilane, dimethoxydibutoxy
  • trifunctional silane compounds include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, di Propoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxysilane Monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysilane, monophenyl Monohydrosilane compounds such as ruoxydiethoxysi
  • bifunctional silane compound examples include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxypropoxy.
  • the mass average molecular weight of the polysiloxane contained in the binder precursor-containing liquid is preferably 1000 to 3000, more preferably 1200 to 2700, and still more preferably 1500 to 2000. If the mass average molecular weight of the polysiloxane is less than 1000, the viscosity of the binder precursor-containing liquid may be too low. On the other hand, when the mass average molecular weight exceeds 3000, the viscosity increases, and it may be difficult to apply the binder precursor-containing liquid.
  • the mass average molecular weight is a value (polystyrene conversion) measured by gel permeation chromatography.
  • polysilazane Another example of the organometallic compound contained in the binder precursor-containing liquid is polysilazane.
  • Polysilazane can be represented by the general formula: (R 1 R 2 SiNR 3 ) n .
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group, an aryl group, a vinyl group or a cycloalkyl group, but at least one of R 1 , R 2 and R 3 is A hydrogen atom, preferably all hydrogen atoms, and n represents an integer of 1 to 60.
  • the molecular shape of polysilazane may be any shape, for example, linear or cyclic.
  • the concentration of polysilazane contained in the binder precursor-containing liquid is preferably 5 to 50% by mass.
  • the concentration of polysilazane contained in the binder precursor-containing liquid is preferably higher. However, when the polysilazane concentration is high, the storage period of the binder precursor-containing liquid is shortened.
  • the binder precursor-containing liquid may contain a reaction accelerator together with an organometallic compound (particularly, polysilazane) that is a translucent ceramic precursor.
  • the reaction accelerator may be an acid or a base.
  • Specific examples of reaction accelerators include bases such as triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, Examples include, but are not limited to, acetic acid, metal carboxylates including nickel, iron, palladium, iridium, platinum, titanium, and aluminum.
  • a particularly preferred reaction accelerator is a metal carboxylate, and the addition amount is preferably 0.01 to 5 mol% based on polysilazane.
  • the binder precursor-containing liquid may contain a solvent.
  • the solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogen hydrocarbons, alcohols, ethers, esters and the like.
  • Preferred solvents are methyl ethyl ketone, tetrahydrofuran, benzene, toluene, xylene, dimethyl fluoride, chloroform, carbon tetrachloride, methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, propylene glycol, 1,3-butanediol, ethyl ether, isopropyl Ether, dibutyl ether, ethyl butyl ether and the like.
  • the binder precursor-containing liquid When the polysiloxane solution or the polysilazane solution is contained in the binder precursor-containing liquid, the binder precursor-containing liquid is applied, and the coating film is heated in the curing step.
  • the temperature for heating the coating film is preferably 150 ° C. to 500 ° C., and more preferably 150 ° C. to 350 ° C., from the viewpoint of suppressing deterioration of the package of the LED device.
  • the coating film is irradiated with VUV radiation (eg, excimer light) containing a wavelength component in the range of 170 to 230 nm, and then cured by heating.
  • VUV radiation eg, excimer light
  • Examples of First Phosphor Dispersion Liquid (1) Production of phosphor particles and production of YAG phosphor particles Yellow phosphor particles were produced by the following procedure. A mixture obtained by sufficiently mixing phosphor raw materials having the composition shown below was filled in an aluminum crucible, and an appropriate amount of fluoride such as ammonium fluoride was mixed therewith as a flux. The filler is fired in a reducing atmosphere in which hydrogen-containing nitrogen gas is circulated in a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ). [Raw material composition] Y 2 O 3 ⁇ 7.41g Gd 2 O 3 ... 4.01 g CeO 2 ... 0.63g Al 2 O 3 ... 7.77 g
  • the desired fired product was obtained by pulverizing, washing, separating and drying the obtained fired product.
  • the obtained phosphor was pulverized to obtain phosphor particles having a particle size of about 10 ⁇ m.
  • the composition of the obtained phosphor particles was examined to confirm that it was the desired phosphor. When the emission wavelength with respect to the excitation light having a wavelength of 465 nm was examined, the peak wavelength was approximately 570 nm.
  • Layered clay mineral Layered clay mineral A: (Synthetic mica) Micromica MK-100 (Coop Chemical) Layered clay mineral B: (Smectite) Lucentite SWN (Coop Chemical Co., Ltd.) Layered clay mineral C: (montmorillonite) Kunipia F (manufactured by Kunimine Industries) Layered clay mineral D: (Bentonite) Bengel HVP (manufactured by Hojun)
  • Silica A (Silica) AEROSIL RX300 (Nippon Aerosil) Silica B: (Silica) Silicia 470 (Fuji Silysia Chemical) Silica C: (Silica) VM-2270 (manufactured by Dow Corning) Silica D: (Silica) Microbead SP-1 (manufactured by JGC Catalysts & Chemicals) Silica E: (Silica) nip seal SS-50F (manufactured by Tosoh Silica) Alumina: AEROXIDE Alu-C (Nippon Aerosil)
  • Sample 16 YAG phosphor particles (100 parts by mass), Kunipia F (1.5 parts by mass), and silicia 470 (3 parts by mass) are composed of propylene glycol (100 parts by mass) and isopropyl alcohol (55 parts by mass). Added to the mixed solvent. The mixture was mixed with an ultrasonic dispersion apparatus GDS600RAT (manufactured by Ginsen) for 20 minutes with an amplitude of 30 ⁇ m to obtain a phosphor dispersion.
  • GDS600RAT manufactured by Ginsen
  • Viscosity was measured by Rheo Stress RS600 manufactured by HAAKE.
  • the sensor was a parallel plate sensor having a diameter of 60 mm, the gap (space between the upper and lower plates) was 0.15 mm, and the temperature was 25 ° C.
  • the measurement sample amount was 2 cc per measurement.
  • the viscosity is measured at a shear rate of 10 points at equal intervals from 100,000 (1 / s) to a shear rate of 0.1 (1 / s). The relationship between and was graphed.
  • the holding time at each shear rate (the time from changing the shear rate to starting measurement) was 1 minute.
  • the phosphor dispersion immediately after adjustment in each example and comparative example, and the binder precursor-containing liquid were applied by the following method to produce an LED device.
  • One substrate LED chip mounting package
  • the phosphor dispersion liquid was applied to one prepared LED chip mounting package with a spray device (see FIG. 3) under a certain condition.
  • the amount of the phosphor dispersion applied was 1 to 2 ml per substrate.
  • the substrate was heated at 150 ° C. for 1 hour.
  • a binder precursor-containing liquid was applied to the substrate under certain conditions.
  • the coating amount of the binder precursor containing liquid was 1 to 2 ml.
  • the coating film of the phosphor dispersion liquid and the binder precursor-containing liquid was heated at 150 ° C. for 1 hour to cure the ceramic precursor to obtain a phosphor layer.
  • the binder precursor-containing liquid is composed of 15 parts by mass of tetramethoxysilane KBM04 (manufactured by Shin-Etsu Chemical Co., Ltd.), 5 parts by mass of methyltrimethoxysilane KBM13 (manufactured by Shin-Etsu Chemical Co., Ltd.), 40 parts by mass of isopropyl alcohol and 40 parts by mass of ethanol. It was set as the liquid mixture with 2 mass parts of hydrochloric acid.
  • chromaticity of light emitted from 64 LED chips formed on an LED chip mounting package that is, chromaticity of combined light of light emitted from each LED chip and fluorescence emitted from a phosphor layer formed thereon
  • the x value and y value in the CIE color system were obtained.
  • the chromaticity was measured with a spectral radiance meter CS-1000A manufactured by Konica Minolta Sensing.
  • the variation (standard deviation) of the 64 x values was obtained. Based on the obtained standard deviation, chromaticity variation within the same substrate was evaluated according to the following criteria.
  • the 20th LED chip mounting package (substrate 20), the 30th LED chip mounting package (substrate 30), the 40th LED chip mounting package (substrate 40), and the 50th LED chip mounting package.
  • the average of x values (64 x values) was similarly obtained for 64 LED chips formed on (substrate 50).
  • the standard deviation was obtained based on the average value of the x values of the substrates (substrate 10, substrate 20, substrate 30, substrate 40, substrate 50). Based on the obtained standard deviation, the chromaticity variation between the substrates was evaluated according to the following criteria.
  • Example 10 The component compositions of Examples 10 to 12 and Comparative Example 8 are also the same. However, in Comparative Example 8, the viscosity ⁇ 1 was high, and chromaticity was uneven in the same substrate. Further, in Comparative Example 8, variation in chromaticity was observed between the substrates. This is presumably because the shearing force during mixing of the phosphor dispersion was too large. That is, a phosphor dispersion liquid having a desired viscosity can be obtained by adjusting the dispersion time at the time of mixing the phosphor dispersion liquid and the shearing force at the time of dispersion.
  • Second Phosphor Dispersion (1) Preparation of phosphor particles The phosphor particles were prepared in the same manner as the phosphor particles used in the first dispersion.
  • Sample 17 The phosphor particles (40 parts by mass), micromica MK-100 (2 parts by mass), nip seal SS-50F (2 parts by mass), 1,3-butanediol (36 parts by mass) and isopropyl alcohol (20 parts by mass). (Mass parts).
  • the phosphor dispersion liquid was prepared by mixing it with a fill mix.
  • Viscosity (vibration type) measurement of each sample The viscosity at 25 ° C. of the phosphor dispersions of samples 1 to 17 was measured using a vibration viscometer (VM-10A-L manufactured by CBC). Table 3 shows the measurement results.
  • Viscosity was measured with a rho-stress RS600 manufactured by HAAKE Corporation.
  • the sensor was a parallel plate sensor having a diameter of 60 mm, the gap (space between the upper and lower plates) was 0.15 mm, and the temperature was 25 ° C.
  • the measurement sample amount was 2 cc per measurement.
  • the viscosity is measured at a shear rate of 10 points at equal intervals from 100,000 (1 / s) to a shear rate of 0.1 (1 / s). The relationship between and was graphed.
  • the holding time at each shear rate (the time from changing the shear rate to starting measurement) was 1 minute.
  • 25 substrates (LED chip mounting packages) on which a total of 25 LED chips were mounted in 5 rows ⁇ 5 columns were prepared.
  • the phosphor dispersion liquid and the ceramic precursor solution were sequentially applied to the prepared 25 LED chip mounting packages using a spray device (see FIG. 3) under a certain condition.
  • 0.5 to 1 ml of the phosphor dispersion liquid and the ceramic precursor solution were applied to each substrate.
  • the ceramic precursor was cured to obtain a transparent ceramic.
  • the chromaticity of light emitted from the 25 LED devices formed on the fifth LED chip mounting package (substrate 5) was measured, and the x value and y value in the CIE color system were determined.
  • the average of the x value of light emission from 25 LED devices and the variation (standard deviation) of the x value of light emission from 25 LED devices were determined.
  • the chromaticity of light emission from 25 LED devices was measured, respectively, and the x value and y value in the CIE color system were determined.
  • variation (standard deviation) of x value of light emission from 25 LED apparatuses were calculated
  • the variation (standard deviation) in the chromaticity (x value) of light emission from each LED device is less than 0.01 and is suppressed for any substrate. Furthermore, the variation (standard deviation) of the average value of the substrate 5, the average value of the substrate 10, the average value of the substrate 15, the average value of the substrate 20, and the average value of the substrate 25 is 0.004 or less and is suppressed. I understand.
  • the phosphor particles are less likely to settle in the coating apparatus, and the ejectability from the coating apparatus is good. Therefore, the emitted light in each LED device is not colored or uneven in color, and the chromaticity of the emitted light from the plurality of LED devices is uniform. Therefore, the LED device manufactured using the phosphor dispersion liquid of the present invention is suitable for various lighting devices used indoors and outdoors, including store lighting that requires uniformity of chromaticity of emitted light. .

Abstract

 蛍光体分散液の静置時に、蛍光体粒子が沈降しない蛍光体粒子分散液の提供を目的とする。 蛍光体粒子、粘土鉱物粒子、無機粒子、及び溶媒を含有する蛍光体分散液であって、25℃における剪断速度1000(1/s)での粘度η1が、10~500mPa・sであり、25℃における剪断速度1(1/s)での粘度η2が、1.0×10~1.0×10mPa・sである、蛍光体分散液とする。

Description

蛍光体分散液、及びこれを用いたLED装置の製造方法
 本発明は、蛍光体分散液、及びこれを用いたLED装置の製造方法に関する。
 LEDチップを用いた発光装置(LED装置)は、発光装置の高輝度化および省エネルギー化の要望を受け、様々な用途に適用されている。特に、白色LED装置は、白色光が必要とされる電灯、液晶表示装置のバックライト等の照明分野に用いられている。
 白色LED装置の例に、青色LEDチップと、青色光を受けて黄色光を発する蛍光体とを組み合わせた装置がある。また、LEDチップと蛍光体とを組み合わせた白色LED装置の他の例には、紫外光を出射するLEDチップと、紫外光により青、緑、赤の光を出射する蛍光体とを組み合わせた装置;青色光を出射するLEDチップと、赤、緑の光を出射する蛍光体とを組み合わせた装置などがある。これらの白色LED装置では、LEDチップが出射する光と、蛍光体が発する蛍光とを混色することで、白色光が得られる。
 LEDチップと蛍光体とを組み合わせた白色LED装置では、一つの光源(LEDチップ)で白色光が得られる。したがって、色の異なる複数の光源(LEDチップ)を組み合わせて白色光とする白色LED装置と比べて、装置を簡素化でき、消費電力も抑制できる。
 ところが、LEDチップと蛍光体とを組み合わせた白色LED装置では、LEDチップの出射光と蛍光体が発する蛍光とのバランスが崩れると、LED装置からの光が着色する。また、このバランスが崩れると、観察角度によって色(色度)が異なる「色むら」という問題も発生する。
 白色LED装置からの光が着色したり、色むらが生じたりする原因の一つに、LED装置内で、蛍光体が不均一に存在することが挙げられる。一般的に、蛍光体は樹脂に分散させる。しかし、蛍光体粒子は、非常に比重の高い無機金属化合物である。そのため、液状の樹脂に分散させて塗布すると、蛍光体粒子が沈殿し、蛍光体粒子が不均一に堆積する。
 白色LED装置の出射光の色むらを低減するために、液状の樹脂に、蛍光体粒子の沈降防止剤を含有させ、蛍光体粒子の沈降を防止する技術が開示されている(特許文献1を参照)。当該文献ではさらに、蛍光体粒子を含む液状樹脂を塗布した後、これを回転させながら硬化させることでも、蛍光体粒子の沈降を抑制している(特許文献1を参照)。
 また近年、蛍光体粒子を透光性セラミック(ガラス)に分散させることも検討されている。しかし、この方法では、蛍光体粒子を分散させた分散液の粘度が低く、LEDチップの角部や側面に分散液が付着し難い。そのため、波長変換効率が低下したり、各方位で色度ずれや色調ムラが発生しやすい。そこで、蛍光体及びセラミック前駆体を含有する塗布液を霧状且つ螺旋状に回転させながら吹き付けて、色むらを改善する方法が提案されている(特許文献2を参照)。
特開2004-153109号公報 特開2003-115614号公報
 近年、複数の白色LED装置を含む白色照明装置が開発されている。この白色照明装置は、例えば自動車の照明装置や、色度が特に重要視される店舗用の照明装置などに用いられている。このような照明装置では、色度を一定にするため、複数の白色LED装置から出射する光の色度を、厳密に一致させることが必要である。
 一般的に、蛍光体を分散させた蛍光体分散液の塗布は、ディスペンサーやスプレーなどの塗布装置で行う。これらの塗布装置によれば、複数のLED装置を連続的に製造することができる。これらの塗布装置では、塗布液タンク内に収容された蛍光体分散液が、塗布装置のヘッドに供給され、ノズルから蛍光体分散液が吐出される。しかし、塗布液タンクに蛍光体分散液を収容しておくと、徐々に蛍光体粒子が沈降する。そのため、塗布作業初期と塗布作業終期で、ヘッドに供給される蛍光体分散液中の蛍光体粒子の濃度が異なり、複数のLED装置を連続して製造した場合、白色LED装置ごとに出射光の色度が相違するという問題があった。
 塗布液タンク内での蛍光体粒子の沈降を抑制するために、蛍光体分散液の粘度を上げることが考えられる。ところが、粘度を向上させるために成分組成を調整すると、ノズルが詰まることがある。また吐出に際し、過度の圧力をかけると、塗布むらができたり、塗膜の厚みが一定とならないため、着色や色むらが生じやすい。
 本発明はこのような状況に鑑みてなされたものである。すなわち、本発明は、蛍光体を分散質とする蛍光体分散液であって、静置されても蛍光体の沈降が生じにくい蛍光体分散液を提供する。さらに塗布時には、塗布装置から蛍光体分散液を容易に吐出可能とすることも目的とする。
 即ち、本発明によれば、以下に示す第一の蛍光体分散液が提供される。
 [1]蛍光体粒子、粘土鉱物粒子、無機粒子、及び溶媒を含有する蛍光体分散液であって、25℃における剪断速度1000(1/s)での粘度η1が、10~500mPa・sであり、かつ25℃における剪断速度1(1/s)での粘度η2が、1.0×10~1.0×10mPa・sである、蛍光体分散液。
 [2]前記粘土鉱物粒子が、層状ケイ酸塩鉱物である、[1]に記載の蛍光体分散液。
 [3]前記溶媒が、モノアルコールと、多価アルコールとを含む、[1]または[2]に記載の蛍光体分散液。
 また、本発明は、以下に示す第一のLED装置の製造方法も提供する。
 [4]LEDチップと、前記LEDチップを被覆し、前記LEDチップが発する特定の波長の光を他の特定の波長の光に変換する蛍光体層と、を有するLED装置の製造方法であって、前記LEDチップを準備する準備工程と、前記LEDチップ上に、[1]~[3]のいずれかに記載の蛍光体分散液を塗布する蛍光体分散液塗布工程と、前記LEDチップ上に、透光性バインダ前駆体を含有するバインダ前駆体含有液を塗布するバインダ前駆体塗布工程と、前記透光性バインダ前駆体を硬化させる硬化工程とを含む、LED装置の製造方法。
 [5]前記透光性バインダ前駆体が、透光性セラミック前駆体である、[4]に記載の製造方法。
 さらに、本発明によれば、以下に示す第二の蛍光体分散液も提供される。
 [6]蛍光体粒子と、粘土鉱物粒子と、無機粒子と、水及び有機溶媒を含む分散溶媒とを含む蛍光体分散液であって、前記水の含有量は、0.1質量%以上4質量%以下である、蛍光体分散液。
 [7]前記蛍光体分散液の振動式粘度計で測定される25℃の粘度は、60mPa・s~400mPa・sである、[6]に記載の蛍光体分散液。
 [8]前記有機溶媒は、モノアルコールと多価アルコールとを含有する、[6]または[7]に記載の蛍光体分散液。
 また、本発明は、以下に示す第二のLED装置の製造方法も提供する。
 [9]LEDチップを準備する工程と、前記LEDチップの発光面に、[6]~[8]のいずれかに記載の蛍光体分散液を塗布して蛍光体層を成膜する工程と、を含む、LED装置の製造方法。
 [10]前記LEDチップの発光面に、有機金属化合物を含む溶液を塗布する工程をさらに含む、[9]に記載のLED装置の製造方法。
 [11]前記蛍光体分散液はスプレー塗布装置によって塗布され、前記スプレー塗布装置は、蛍光体分散液を貯留する塗布液タンクと、蛍光体分散液を吐出するためのノズルを有するヘッドと、塗布液タンクとヘッドとを連通させる連結管とを備える、[9]または[10]に記載のLED装置の製造方法。
 [12]前記LED装置は白色LED装置である、[9]~[11]のいずれかに記載のLED装置の製造方法。
 本発明は、以下に示す第三の蛍光体分散液も提供する。
 [13]蛍光体粒子、粘土鉱物粒子、無機粒子、及び溶媒を含有する蛍光体分散液であって、前記溶媒は水を含み、前記水の含有量は、前記蛍光体分散液全量に対して0.1質量%以上4質量%以下であり、25℃における剪断速度1000(1/s)での粘度η1が、10~500mPa・sであり、かつ25℃における剪断速度1(1/s)での粘度η2が、1.0×10~1.0×10mPa・sである、蛍光体分散液。
 本発明の第一の蛍光体分散液は、静置状態、つまり塗布装置内では粘度が高く、蛍光体粒子が沈降し難い。一方で、一定の圧力をかけると粘度が低下しやすく、塗布装置から容易に吐出される。したがって、第一の蛍光体分散液を塗布し、LED装置の蛍光体層を形成すれば、個々のLED装置内からの出射光に着色や色むらが生じない。さらに、複数のLED装置からの出射光の色度が、均一となる。
 また、本発明の第二の蛍光体分散液でも、蛍光体の沈降が生じにくい。そのため、蛍光体分散液の塗布装置の塗布液タンク内においても、蛍光体の分散状態が均一に長時間維持される。そのため、塗布作業時間が長時間になっても、塗布される分散液における蛍光体濃度が、塗布作業初期と塗布作業終期とで変化しない。よって、塗布装置を用いて複数のLED装置を連続的に生産しても、塗布作業初期に得たLED装置と、塗布作業終期に得たLED装置とで、発光の色度を同一にすることができる。
 また、本発明の第三の蛍光体分散液でも、静置状態、つまり塗布装置内では粘度が高く、蛍光体粒子が沈降し難い。そのため、複数のLED装置を連続的に生産しても、塗布作業初期に得たLED装置と、塗布作業終期に得たLED装置とで、発光の色度を同一にすることができる。
本発明のLED装置の構成の一例を示す概略断面図である。 本発明の第一の蛍光体分散液を粘度測定した際の、剪断速度と粘度との関係の一例を示すグラフである。 本発明のLED装置の製造方法において、蛍光体分散液もしくはバインダ前駆体含有液を塗布するスプレー装置の一例を示す概略断面図である。
 以下、本発明を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内であれば種々に変更して実施することができる。
 本発明は、LED装置の蛍光体層を形成するための蛍光体分散液、及びこれを用いたLED装置の製造方法に関する。
1.LED装置について
 LED装置は、LEDチップと、LEDチップの発光面を覆い、LEDチップから出射される特定の波長の光の一部を、他の特定の波長の光に変換する蛍光体層とを有し、蛍光体層上には、任意の保護層等を有する。図1は、LED装置100の構成の一例を示す概略断面図である。
 LEDチップ1は、パッケージ(LED基板)2上に配設され、パッケージ2上に配設されたメタル部(メタル配線)3と、突起電極4等を介して接続される。
 LEDチップ1は、例えば青色LEDである。青色LEDは、パッケージ2に積層されたn-GaN系化合物半導体層(クラッド層)と、InGaN系化合物半導体層(発光層)と、p-GaN系化合物半導体層(クラッド層)と、透明電極層とからなる積層体等でありうる。LEDチップ1は、例えば200~300μm×200~300μmの発光面を有する。またLEDチップ1の高さは、通常50~200μm程度である。
 パッケージ2は、例えば液晶ポリマーやセラミックであるが、絶縁性と耐熱性を有していれば、その材質は特に限定されない。またその形状も特に制限はなく、例えば図1に示されるように、凹部を有する形状であってもよく、平板状であってもよい。
 メタル部3は、銀等の金属からなる配線であり、LEDチップ1の出射光を光取り出し面がに反射する反射板として機能する場合もある。メタル部3は、図1に示されるように、突起電極4等を介して、LEDチップ1と接続されてもよく、配線等を介して、LEDチップ1と接続されてもよい。突起電極4を介してメタル部3とLEDチップ1とを接続される態様を、フリップチップ型という。
 図1に示されるLED装置100には、パッケージ2に、1つのLEDチップ1のみが配置されているが;パッケージ2に、複数のLEDチップ1が配置されていてもよい。
 LED装置100は、LEDチップ1の発光面を覆う蛍光体層5を有する。蛍光体層5には、蛍光体粒子が含まれる。蛍光体層5は、LEDチップ1の発光面(典型的にはLEDチップの上面)を覆っていればよく、図1に示されるように、LEDチップ1の側面を覆っていてもよい。蛍光体層5の厚みは特に制限されないが、15μm~300μmであることが好ましく、20~100μmであることがさらに好ましい。
 蛍光体層5は、LEDチップ1から出射される光(励起光)を受けて、蛍光を発する。励起光と蛍光とが混ざることで、LED装置100からの光が所望の色となる。すなわち、蛍光体層5は、波長変換層として機能する。例えば、LEDチップ1からの光が青色であり、蛍光体層5からの蛍光が黄色であれば、LED装置100からの光は白色となる。
 蛍光体粒子は、蛍光体層5中に均一に存在する必要がある。LED装置100からの発光が所望の色になるようにするためである。本発明の蛍光体分散液は、蛍光体層5を成膜するための液である。
 蛍光体層5には、蛍光体粒子、粘土鉱物粒子および無機粒子と、バインダと、他の任意成分とが含まれる。
 蛍光体層5に含まれる蛍光体粒子の量は50~95質量%であることが好ましい。蛍光体粒子の量が少ないと、十分な蛍光が得られない。一方、蛍光体粒子の量が過剰であると、相対的にバインダ量が減少し、蛍光体層5の強度が低くなる。
 蛍光体層5のバインダは、シリコーン樹脂などの透光性有機樹脂であってもよいし、ガラスなどの透光性セラミックなどであってもよいが;蛍光体層5の耐熱性などを高める点からは、バインダは透光性セラミックであることが好ましい。
 蛍光体層5のバインダを透光性セラミックとする場合、蛍光体層5に含まれる透光性セラミックの量は、2~50質量%であることが好ましく、2.5~30質量%であることがより好ましい。蛍光体層5における透光性セラミックの含有量が2質量%未満では、バインダが少な過ぎるために、蛍光体層5の強度が低下する。一方、透光性セラミックの含有量が50質量%を超えると、無機粒子等の含有量が相対的に低下する。無機粒子等の含有量が相対的に低下すると、蛍光体層5の強度が低下する。
 蛍光体層5に含まれる粘土鉱物粒子の量は0.5質量%以上20質量%以下であることが好ましく、0.5質量%以上10質量%以下であることがより好ましい。蛍光体層5に含まれる粘土鉱物粒子の量が20質量%を超えると、蛍光体層5の強度が十分とならない。一方、粘土鉱物粒子の量が0.5質量%未満であると、蛍光体粒子の量に対する粘土鉱物粒子の量が少なく、蛍光体層5を形成するための蛍光体分散液の粘度が低くなり、蛍光体粒子が沈降しやすくなる。そのため、蛍光体層5内で蛍光体粒子が均一に存在せず、LED装置の出射光に色むらや着色が生じることがある。
 蛍光体層5に含まれる無機粒子の量は0.5質量%以上50質量%以下であることが好ましく、1質量%以上40質量%以下であることがより好ましい。蛍光体層5に含まれる無機粒子の量が0.5質量%未満であるか、50質量%を超えると、蛍光体層5の強度が十分に高まらない。
 蛍光体層5は、保護層に覆われていてもよい。例えば、蛍光体層5のバインダが透光性セラミックである場合には、蛍光体層5がシリコーン樹脂からなる保護層で覆われていてもよい。LED装置100には、さらに他の光学部品(レンズなど)が設けられて各種光学部材とされる。
2.蛍光体分散液について
 本発明の蛍光体分散液は、前述のLED装置における蛍光体層5を成膜するための組成物である。本発明の蛍光体分散液、及びバインダ前駆体含有液をLEDチップ上にそれぞれ塗布することで、蛍光体層5が得られる。組み合わせるバインダは、有機樹脂であってもよいし、透光性セラミックであってもよい。
 本発明の蛍光体分散液は、以下の三種類の蛍光体分散液がある。
 (i)蛍光体粒子、粘土鉱物粒子、無機粒子、及び溶媒を含有する蛍光体分散液であって、25℃における剪断速度1000(1/s)での粘度η1が、10~500mPa・sであり、25℃における剪断速度1(1/s)での粘度η2が、1.0×10~1.0×10mPa・sである蛍光体分散液
 (ii)蛍光体粒子と、粘土鉱物粒子と、無機粒子と、水及び有機溶媒を含む分散溶媒とを含む蛍光体分散液であって、前記水の含有量は、0.1質量%以上4質量%以下である、蛍光体分散液
 (iii)蛍光体粒子、粘土鉱物粒子、無機粒子、及び溶媒を含有する蛍光体分散液であって、溶媒に水が含まれ、水の含有量は、前記蛍光体分散液全量に対して0.1質量%以上4質量%以下であり、25℃における剪断速度1000(1/s)での粘度η1が、10~500mPa・sであり、かつ25℃における剪断速度1(1/s)での粘度η2が、1.0×10~1.0×10mPa・sである蛍光体分散液
 上記いずれの蛍光体分散液においても、蛍光体が沈降し難い。
2-1.第一の蛍光体分散液について
 第一の蛍光体分散液には、蛍光体粒子、粘土鉱物粒子、無機粒子、及び溶媒が含まれる。第一の蛍光体分散液には、さらに任意の添加剤が含まれていてもよい。
・蛍光体粒子
 第一の蛍光体分散液に含まれる蛍光体粒子は、LEDチップの出射光の波長(励起波長)により励起されて、励起波長と異なる波長の蛍光を発する。LEDチップが青色光を出射する場合には、蛍光体粒子が黄色の蛍光を発することによって、白色光が得られる。黄色の蛍光を発する蛍光体の例には、YAG(イットリウム・アルミニウム・ガーネット)蛍光体がある。YAG蛍光体は、青色LEDチップから出射される青色光(波長420nm~485nm)を受けて、黄色光(波長550nm~650nm)の蛍光を発する。
 蛍光体粒子は、例えば、1)所定の組成を有する混合原料に、フラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し、成形体を得て、2)得られた成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成し焼結体を得ることで製造される。
 所定の組成を有する混合原料は、Y、Gd、Ce、Sm、Al、La、Gaの酸化物、または高温で容易に酸化物となる化合物を、化学量論比で十分に混合して得ることができる。あるいは、所定の組成を有する混合原料は、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶液を、シュウ酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して得ることができる。
 蛍光体粒子の種類はYAG蛍光体に限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体などの他の蛍光体粒子でありうる。また好ましい蛍光体粒子の例には、シリケート系蛍光体、ナイトライド系蛍光体、オキシナイトライド系蛍光体、サルファイド系蛍光体、チオガレート系蛍光体、アルミネート系蛍光体等も含まれる。
 蛍光体粒子の平均粒径は1μm以上50μm以下であることが好ましい。蛍光体粒子の粒径が大きいほど発光効率(波長変換効率)は高くなる。一方で、蛍光体粒子の粒径が大きすぎると、前述の蛍光体層において、蛍光体粒子とバインダとの間に隙間が生じやすくなり、蛍光体層の強度が低下しやすい。蛍光体の平均粒径は、例えばコールターカウンター法によって測定する。
 蛍光体粒子の含有量は、第一の蛍光体分散液全体に対して10~70質量%であることが好ましく、30~60質量%であることがより好ましい。蛍光体粒子の含有量が少ないと、蛍光体層に含まれる蛍光体量が少なくなり、十分な蛍光が得られない。一方、蛍光体粒子の含有量が過剰であると、第一の蛍光体分散液中で蛍光体粒子が沈降しやすくなる。
・粘土鉱物粒子
 第一の蛍光体分散液に粘土鉱物粒子が含まれると、蛍光体分散液の粘度が高まり、蛍光体粒子の沈降が抑制される。粘土鉱物粒子の例には、層状ケイ酸塩鉱物、イモゴライト、アロフェン等が含まれ、層状ケイ酸塩鉱物であることが好ましい。層状ケイ酸塩鉱物は、雲母構造、カオリナイト構造、またはスメクタイト構造を有する膨潤性粘土鉱物であることが好ましく、特に膨潤性に富むスメクタイト構造を有する膨潤性粘土鉱物であることが好ましい。
 層状ケイ酸塩鉱物は、蛍光体分散液の静置状態でカードハウス構造を形成しやすい。層状ケイ酸塩鉱物がカードハウス構造を形成すると、蛍光体分散液の粘度が大幅に高まる。一方で、カードハウス構造は、一定の圧力を加える崩れやすく、これにより蛍光体分散液の粘度が低下する。すなわち、蛍光体分散液に層状ケイ酸塩鉱物が含まれると、静置状態では蛍光体分散液の粘度が高くなり、一定の圧力をかけた場合には蛍光体分散液の粘度が低くなる。
 層状ケイ酸塩鉱物の例には、天然または合成の、ヘクトライト、サポナイト、スチブンサイト、ハイデライト、モンモリロナイト、ノントライト、ベントナイト等のスメクタイト属粘土鉱物や、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母属粘土鉱物およびバーミキュラライトやカオリナイト、またはこれらの混合物が含まれる。
 粘土鉱物粒子の市販品の例には、ラポナイトXLG(英国、ラポート社製合成ヘクトライト類似物質)、ラポナイトRD(英国、ラポート社製合成ヘクトライト類似物質)、サーマビス(独国、ヘンケル社製合成ヘクトライト類似物質)、スメクトンSA-1(クニミネ工業(株)製サポナイト類似物質)、ベンゲル(ホージュン(株)販売の天然ベントナイト)、クニビアF(クニミネ工業(株)販売の天然モンモリロナイト)、ビーガム(米国、バンダービルト社製の天然ヘクトライト)、ダイモナイト(トピー工業(株)製の合成膨潤性雲母)、ソマシフ(コープケミカル(株)製の合成膨潤性雲母)、SWN(コープケミカル(株)製の合成スメクタイト)、SWF(コープケミカル(株)製の合成スメクタイト)等が含まれる。
 粘土鉱物粒子の量は、第一の蛍光体分散液全体に対して0.1~5質量%であることが好ましく、2~5質量%であることがより好ましい。粘土鉱物粒子の含有量が少ないと、静置状態における第一の蛍光体分散液の粘度が高まりにくい。そのため、第一の蛍光体分散液の静置中に蛍光体粒子が沈降しやすくなる。一方、粘土鉱物粒子の含有量が過剰であると、一定の圧力をかけても蛍光体分散液の粘度が高いままである。そのため、第一の蛍光体分散液が塗布装置から均一に吐出されないおそれがある。
 粘土鉱物粒子の表面は、第一の蛍光体分散液での溶媒との相溶性を考慮して、アンモニウム塩等で修飾(表面処理)されていてもよい。
・無機粒子
 第一の蛍光体分散液に無機粒子が含まれると、蛍光体粒子と粘土鉱物粒子との界面に生じる隙間が埋まり、蛍光体分散液の粘度が高まる。
 無機粒子の例には、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化チタンおよび酸化亜鉛などの酸化物粒子、フッ化マグネシウムなどのフッ化物粒子など、またはこれらの混合物が含まれる。無機粒子は、好ましくは酸化物粒子であり;特に、蛍光体層のバインダをポリシロキサン等の含ケイ素有機化合物の硬化物(セラミック)とする場合には、蛍光体層のバインダに対する安定性の観点から、酸化物粒子を酸化ケイ素とすることが好ましい。
 第一の蛍光体分散液における無機粒子の含有量は、蛍光体分散液全量に対して1~40質量%であることが好ましい。無機粒子の量が40質量%を超えると、一定の圧力をかけても蛍光体分散液の粘度が高いままとなり、蛍光体分散液が塗布装置から均一に吐出されないおそれがある。一方、無機粒子の量が1%未満であると、蛍光体分散液の粘度が低くなる。
 無機粒子の平均粒径は、蛍光体粒子と粘土鉱物粒子との界面に生じる隙間を埋めるとの観点から、0.001μm以上50μm以下であることが好ましい。無機粒子の平均粒径は、例えばコールターカウンター法によって測定することができる。
 無機粒子の表面は、シランカップリング剤やチタンカップリング剤で処理されていてもよい。表面処理によって、無機粒子と溶媒との相溶性が高まる。
・溶媒
 第一の蛍光体分散液に含まれる溶媒は、蛍光体粒子、粘土鉱物粒子、無機粒子を均一に分散可能であれば、特に制限されないが、沸点が250℃以下の溶媒であることが好ましい。蛍光体分散液から、溶媒を乾燥しやすくするためである。沸点が高すぎると溶媒の蒸発が遅いので、蛍光体分散液を塗布して塗膜としたときに、塗膜中で蛍光体粒子が流れやすい。
 溶媒には、モノアルコール、及び2価以上の多価アルコールが含まれることが好ましい。モノアルコールが含まれると、一定の圧力を加えたときの蛍光体分散液の粘度が低下しやすく、塗布装置から蛍光体分散液が吐出されやすくなる。モノアルコールの例には、メタノール、エタノール、プロパノール、ブタノール等が含まれる。モノアルコールの含有量は、蛍光体分散液全体に対して、10~50質量%であることが好ましく、20~50質量%であることがより好ましい。
 一方、多価アルコールが含まれると、蛍光体分散液の粘度が高まりやすく、静置時に蛍光体粒子が沈降し難くなる。多価アルコールは、ジオールまたはトリオールのいずれであってもよい。多価アルコールの例には、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリン、1,3-ブタンジオール、1,4-ブタンジオールなどが挙げられ、好ましくは、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール等が含まれる。多価アルコールの含有量は、蛍光体分散液全体に対して、10~60質量%であることが好ましく、20~50質量%であることがより好ましい。
 第一の蛍光体分散液の溶媒には、水が含まれてもよい。第一の蛍光体分散液に水が含まれていると、粘土鉱物粒子の層間に水が入り込んで粘土鉱物粒子が膨潤する。そのため、蛍光体分散液の粘度がより高まりやすくなる。
 第一の蛍光体分散液に含まれる水の量は、蛍光体分散液全体に対して、0.1~4質量%であることが好ましく、0.5~2質量%であることがより好ましい。水の含有量が少ないと、粘土鉱物粒子を十分に膨潤させることができない場合がある。一方、蛍光体分散液おける水の含有量が多すぎると、蛍光体分散液の濡れ性が低下する。そのため、蛍光体分散液を被塗布面(LEDチップの発光面)に塗布したときに、均一な塗布膜を成膜しにくくなる。
 第一の蛍光体分散液に含まれる溶媒の総量は、蛍光体分散液全体の粘度に応じて適宜設定される。通常、蛍光体分散液に含まれる溶媒の総量は、蛍光体分散液全体に対して30~90質量%であることが好ましく、より好ましくは40~70質量%である。
・第一の蛍光体分散液の製造方法
 第一の蛍光体分散液は、溶媒に、蛍光体粒子、粘土鉱物粒子および無機粒子と、さらに必要に応じて他の添加剤とを添加して混合液を得て;混合液を撹拌することで製造される。
 混合液の撹拌は、例えば、撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機などで行うことができる。撹拌条件を調整することで、蛍光体分散液における蛍光体粒子の粘度を調整できる。
 蛍光体分散溶液を製造するための撹拌装置は、公知のものでありうる。例えば、ウルトラタラックス(IKAジャパン社製)、TKオートホモミクサー(プライミクス社製)、TKパイプラインホモミクサー(プライミクス社製)、TKフィルミックス(プライミクス社製)、クレアミックス(エム・テクニック社製)、クレアSS5(エム・テクニック社製)、キャビトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)のようなメディアレス撹拌機、ビスコミル(アイメックス製)、アペックスミル(寿工業社製)、スターミル(アシザワ、ファインテック社製)、DCPスーパーフロー(日本アイリッヒ社製)、エムピーミル(井上製作所社製)、スパイクミル(井上製作所社製)、マイティーミル(井上製作所社製)、SCミル(三井鉱山社製)などのメディア攪拌機等やアルティマイザー(スギノマシン社製)、ナノマイザー(吉田機械社製)、NANO3000(美粒社製)などの高圧衝撃式分散装置が挙げられる。また、好ましい例には、超音波分散装置も含まれる。
 蛍光体粒子は、非常に硬い粒子であるため、攪拌装置と蛍光体分散液とが接する部分の摩耗、及びこれに伴う摩耗粉の混入を避けることが好ましい。具体的には、攪拌装置と蛍光体分散液とが接する部分の材質を、チタニア、ジルコニア、アルミナ等のセラミックや、シリコーンカーバイドとすることが挙げられる。また、接液部分を、チタン系酸化物、クロム系窒化物、ダイアモンド・ライク・カーボンでコートすることも好ましい。
・第一の蛍光体分散液の粘度
 第一の蛍光体分散液は、25℃における剪断速度1000(1/s)での粘度η1が10~500mPa・sである。粘度η1は、好ましくは50~300mPa・sであり、より好ましくは100~250mPa・sである。粘度η1が低すぎると、塗膜が流れやすく、蛍光体層を所望の厚さに形成することが難しい。一方、粘度η1が高すぎると、塗布装置からの吐出時に、塗布装置の吐出口で詰まったり、吐出に過度の圧力が必要となる。これにより、塗膜に厚みむらが生じたり、塗膜内で蛍光体粒子の濃度が不均一になったりする。
 第一の蛍光体分散液の粘度η1は、蛍光体分散液中の溶媒の種類や、粘土鉱物粒子の量等で調整できる。例えば、蛍光体分散液中のモノアルコール量が多いと、粘度η1が低下する。一方、多価アルコール量が多いと、粘度η1が高まる。また粘土鉱物粒子の量が多いと、粘度η1が高まる。
 また、第一の蛍光体分散液は、25℃における剪断速度1(1/s)での粘度η2が1.0×10~1.0×10mPa・sである。粘度η2は好ましくは5000~5.0×10mPa・sであり、より好ましくは1.0×10~2.0×10mPa・sである。粘度η2が低すぎると、蛍光体分散液を静置した際;すなわち塗布装置内に収容した際に蛍光体粒子が沈降しやすくなる。これにより、塗布作業初期と塗布作業終期で、塗布装置から供給される蛍光体分散液中の蛍光体粒子の濃度が変化し、複数のLED装置を連続して製造した場合、LED装置ごとに出射光の色度が相違する。一方、粘度η2が高すぎると、塗布装置内部での流動性が低く、蛍光体分散液を吐出口まで送液できなかったりノズルが詰まり、液を吐出できなくなる可能性がある。
 第一の蛍光体分散液の粘度η2は、蛍光体分散液の製造時の攪拌時間を長くする、もしくは攪拌時に蛍光体分散液にかかる圧力を高くすることで高まる。攪拌時間を長くしたり、攪拌時の圧力を高めることで、蛍光体分散液中に含まれる粘土鉱物粒子が微細化され、蛍光体分散液中で、より多くのカードハウス構造が形成されるためである。また、蛍光体分散液の製造時に、蛍光体粒子、粘土鉱物粒子、及び無機粒子を少量の溶媒中で攪拌・混合し、この混合物を溶媒で希釈することでも、粘度η2が高まる。高濃度で、蛍光体粒子、粘土鉱物粒子、無機粒子を攪拌・混合することで、これらに強い剪断力が加わって擦れ合う。これにより、粘土鉱物粒子が微細化されやすくなり、多くのカードハウス構造が形成される。また、当該方法で蛍光体分散液を製造すれば、蛍光体粒子が、粘土鉱物粒子や無機粒子と密着しやすく、粘土鉱物粒子や無機粒子とともに均一に分散されやすい。
 第一の蛍光体分散液の25℃の粘度は、HAAKE社製レオストレスRS600により、以下の条件で測定する。センサーは、直径60mmのパラレルプレートセンサーとし、ギャップ(上下プレートの間隔)は0.15mmとする。測定用のサンプル量は1回の測定あたり2ccとし、フローカーブモードで、剪断速度0.1(1/s)を出発点として、100,000(1/s)までの間、等間隔で10点の剪断速度を測定する。各剪断速度における保持時間(剪断速度を変更してから、測定開始するまでの時間)は1分とする。剪断速度と粘度とをプロットしたグラフから、剪断速度1,000(1/s)における粘度η1、及び剪断速度1(1/s)における粘度η2を読み取り、測定値とする。図2に、本発明の蛍光体分散液を粘度測定した際の、粘度と剪断速度との関係を示す。図2に示すように、本発明の蛍光体分散液は、剪断速度1,000(1/s)における粘度η1、及び剪断速度1(1/s)における粘度η2がいずれも所定の範囲内となる。
2-2.第二の蛍光体分散液について
 第二の蛍光体分散液には、水と有機溶媒とを含む分散溶媒と、分散溶媒中に分散した蛍光体粒子、粘土鉱物粒子および無機粒子とが含まれる。蛍光体分散液には、さらに任意の添加剤が含まれていてもよい。第二の蛍光体分散液に含まれる蛍光体粒子、粘土鉱物粒子、無機粒子は、前述の第一の蛍光体分散液に含まれるものと同様でありうる。
・分散溶媒
 第二の蛍光体分散液における分散溶媒には、水および有機溶媒が含まれる。第二の蛍光体分散液に水が含まれていると、粘土鉱物粒子の層間に水が入り込んで粘土鉱物粒子が膨潤し、蛍光体分散液の粘度がより高まりやすくなる。
 第二の蛍光体分散液おける水の含有量は、蛍光体分散液全体に対して、0.1~4質量%であることが好ましく、0.5~2質量%であることがより好ましい。水の含有量が少ないと、蛍光体の沈降が発生しやすくなる。そのため、塗布作業中に蛍光体分散液の蛍光体が沈降し、塗布される蛍光体分散液における蛍光体の濃度が、塗布作業初期と終期とで変わることがある。
 一方、蛍光体分散液おける水の含有量が多すぎると、蛍光体分散液の濡れ性が低下する。そのため、蛍光体分散液を被塗布面(LEDチップの発光面)に塗布したときに、均一な塗布膜を成膜しにくくなる。
 第二の蛍光体分散液における有機溶媒には、アルコール類が含まれることが好ましい。アルコール類は、メタノール、エタノール、プロパノール、ブタノールなどのモノアルコールでもよいし、2価以上の多価アルコールであってもよい。2種以上のアルコールを組み合わせてもよい。
 第二の蛍光体分散液における有機溶媒は、好ましくはモノアルコールおよび2価以上の多価アルコールのいずれをも含む。2価以上のアルコールを分散溶媒として用いれば、蛍光体分散液の粘度を高めやすく、分散質である蛍光体粒子の沈降が防止しやすくなる。また、1価アルコールを分散溶媒として用いれば、塗布膜の乾燥速度を早くすることができ、生産性を高めることができる。
 分散溶媒の沸点は、250℃以下であることが好ましい。分散溶液から、分散溶媒を乾燥しやすくするためである。沸点が高すぎると分散溶媒の蒸発が遅いので、分散溶液を塗布して塗膜としたときに、塗膜中で蛍光体が流れてしまう。
 2価以上の多価アルコールは、溶媒として用いることができる限り、いずれの多価アルコールでも使用できる。使用できる多価アルコールは、例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリン、1,3-ブタンジオール、1,4-ブタンジオールなどが挙げられ、好ましくは、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオールなどである。
 第二の蛍光体分散液の振動式粘度計で測定される25℃の粘度は、通常は10~1000mPa・sであり、12~500mPa・sであることが好ましく、20~400mPa・sであることがより好ましく、60~400mPa・sであることがさらに好ましい。粘度が低いと、蛍光体分散液において蛍光体粒子が沈降しやすくなり、上澄み層が発生するまでの時間が短くなる。一方、粘度が高すぎると、蛍光体分散液の塗布、特にスプレーによる塗布が困難になる。
・第二の蛍光体分散液の製造方法
 第二の蛍光体分散液は、分散溶媒に、蛍光体粒子、粘土鉱物粒子および無機粒子と、さらに必要に応じて他の添加剤とを添加して混合液を得て;混合液を撹拌することで製造されうる。混合液の攪拌方法や、攪拌装置は第一の蛍光体分散液の攪拌方法や攪拌装置と同様でありうる。
2-3.第三の蛍光体分散液
 第三の蛍光体分散液は、蛍光体粒子、粘土鉱物粒子、無機粒子、及び溶媒を含有し、溶媒には水が含まれる。第三の蛍光体分散液に含まれる蛍光体粒子、粘土鉱物粒子、無機粒子は、前述の第一の蛍光体分散液に含まれるものと同様でありうる。また、溶媒は前述の第二の蛍光体分散液における分散溶媒と同様でありうる。
・第三の蛍光体分散液の粘度
 第三の蛍光体分散液は、25℃における剪断速度1000(1/s)での粘度η1が10~500mPa・sである。粘度η1は、好ましくは50~300mPa・sであり、より好ましくは100~250mPa・sである。粘度η1が低すぎると、塗膜が流れやすく、蛍光体層を所望の厚さに形成することが難しい。一方、粘度η1が高すぎると、塗布装置からの吐出時に、塗布装置の吐出口で詰まったり、吐出に過度の圧力が必要となる。これにより、塗膜に厚みむらが生じたり、塗膜内で蛍光体粒子の濃度が不均一になったりする。
 また、第三の蛍光体分散液は、25℃における剪断速度1(1/s)での粘度η2が1.0×10~1.0×10mPa・sである。粘度η2は好ましくは5000~5.0×10mPa・sであり、より好ましくは1.0×10~2.0×10mPa・sである。粘度η2が低すぎると、蛍光体分散液を静置した際;すなわち塗布装置内に収容した際に蛍光体粒子が沈降しやすくなる。これにより、塗布作業初期と塗布作業終期で、塗布装置から供給される蛍光体分散液中の蛍光体粒子の濃度が変化し、複数のLED装置を連続して製造した場合、LED装置ごとに出射光の色度が相違する。一方、粘度η2が高すぎると、塗布装置内部での流動性が低く、蛍光体分散液を吐出口まで送液できなかったりノズルが詰まり、液を吐出できなくなる可能性がある。
 第三の蛍光体分散液の粘度の測定方法や調整方法は、第一の蛍光体分散液の粘度の測定方法や調整方法と同様でありうる。
2-4.蛍光体分散液の塗布方法
 前述のいずれの蛍光体分散液も、一定の圧力をかけて塗布することが好ましい。塗布時に、一定の圧力をかけることで、粘土鉱物粒子が形成しているカードハウス構造を崩し、粘度の低い状態で蛍光体分散液を塗布できる。好ましい塗布方法の例には、マイクロスプレー法や超音波スプレー法等の各種スプレー法、ディスペンサーや、ジェットディスペンサーによる各種ディスペンス法、インクジェット法、バーコート法、スピンコート法、ディップコート法等が含まれる。これらの中でも、スプレー法、及びディスペンス法が、連続的に蛍光体分散液を塗布可能である点で好ましい。
 蛍光体分散液の塗布を行い得るスプレー装置の概要を図3に示す。塗布装置200は、塗布液(蛍光体分散液)220を貯留する塗布液タンク210と、塗布液220を吐出するためのノズル250を有するヘッド240と、塗布液タンク210とノズル240とを連通させる連結管230とを有することが好ましい。
 図3に示される塗布装置200における塗布液タンク210内の塗布液220は、圧力をかけられて連結管230を通じてヘッド240に供給される。ヘッド240に供給された塗布液220は、ノズル250から吐出されて、塗布対象物(LEDチップ)に塗布される。スプレー塗布装置の場合には、ノズル250からの塗布液の吐出は風圧によって行われる。ノズル250の先端に開閉自在な開口部を設けて、この開口部を開閉操作して、吐出作業のオン・オフを制御する構成としてもよい。
 従来は、塗布液タンク210に収容された塗布液220に分散された蛍光体粒子は、塗布作業の時間の経過と共に、徐々に沈降する可能性があった。蛍光体粒子の比重が大きいからである。蛍光体粒子が沈降すると、ヘッド240に供給される塗布液220における蛍光体粒子の濃度が変化し;ヘッド240からLEDチップに塗布される塗布液220における蛍光体粒子の濃度も変化する。その結果、塗布作業初期に得られたLED装置からの発光の色度と、塗布作業終期に得られたLED装置からの発光の色度とが異なり、製造されるLED装置の発光の色度にばらつきが生じていた。
 これに対して本発明の蛍光体分散液は、蛍光体粒子の沈降が生じにくく、均一な分散状態が維持されやすい。そのため、塗布装置200の塗布液タンク210に長時間貯留されても、蛍光体分散液における蛍光体粒子は均一に分散している。その結果、塗布作業初期と終期とで、塗布対象物に塗布される蛍光体分散液における蛍光体の濃度が一定となる。
 また、本発明の蛍光体分散液は、一定の圧力をかけた場合には、粘度が低下するため、ノズル250から均一にLEDチップ1の発光面に塗布できる。したがって、蛍光体粒子の塗布むらがなく、各LED装置からの出射光に着色や色むらが生じない。
3.LED装置の製造方法
 LED装置は、LEDチップを準備する準備工程と、LEDチップの発光面に前述の蛍光体分散液を塗布する蛍光体分散液塗布工程と、LEDチップの発光面に透光性バインダ前駆体を含有するバインダ前駆体含有液を塗布するバインダ前駆体塗布工程と、透光性バインダ前駆体を硬化させる硬化工程とを含むプロセスで製造されうる。
 LEDチップを準備する準備工程は、パッケージ2に、LEDチップ1を実装し、LEDチップ実装パッケージ90を得る工程等でありうる(図3参照)。
 蛍光体分散液塗布工程、及びバインダ前駆体塗布工程は、このLEDチップ実装パッケージ90のLEDチップ1の発光面に蛍光体分散液、及びバインダ前駆体含有液を塗布する工程である。蛍光体分散液とバインダ前駆体含有液とを塗布する順序は限定されず、同時に塗布してもよい。また蛍光体分散液の塗布とバインダ前駆体含有液の塗布とを、複数回ずつ繰り返し行ってもよい。蛍光体分散液及びバインダ前駆体含有液の塗布方法は、前述の蛍光体分散液の塗布方法と同様でありうる。
 硬化工程は、蛍光体分散液及びバインダ前駆体含有液の塗布後、バインダ前駆体含有液中の透光性バインダ前駆体を硬化させる工程である。硬化工程で、透光性バインダ前駆体を硬化させることで、透光性バインダ内に蛍光体粒子が分散された蛍光体層5が得られる。透光性バインダ前駆体の硬化方法は、透光性バインダ前駆体の種類に応じて、適宜選択する。例えば透光性バインダ前駆体が熱硬化性樹脂である場合や、透光性バインダ前駆体が透光性セラミック前駆体である場合には、透光性バインダ前駆体を加熱硬化させる工程でありうる。
 [バインダ前駆体含有液]
 バインダ前駆体含有液には、透光性バインダ前駆体が含まれる。透光性バインダ前駆体の種類に制限はない。透光性バインダ前駆体は、シリコーン樹脂、エポキシ樹脂等の透光性樹脂の前駆体であってもよく、有機金属化合物等の透光性セラミック前駆体であってもよい。形成されるバインダの耐熱性の観点からは、透光性バインダ前駆体が透光性セラミック前駆体であることが好ましい。
 透光性セラミック前駆体である有機金属化合物の例には、ゾル-ゲル反応によって透光性セラミック(好ましくはガラスセラミック)となる化合物がある。有機金属化合物の例には、金属アルコキシド、金属アセチルアセトネート、金属カルボキシレートなどが含まれるが、加水分解と重合反応によりゲル化し易い金属アルコキシドが好ましい。透光性のガラスセラミックを形成可能であれば、金属アルコキシドに含まれる金属の種類に制限はなく、複数種の金属アルコキシドを組み合わせてもよい。金属アルコキシドは、形成されるガラスセラミックの安定性や製造の容易性の観点から、ケイ素を含有することが好ましい。
 バインダ前駆体含有液に含まれる金属アルコキシドは、テトラエトキシシランのような単分子でもよいし、有機シロキサン化合物が鎖状または環状に連結したポリシロキサンでもよいが;ポリシロキサンによれば、バインダ前駆体含有液の粘性を高めることができる。
 ポリシロキサンは、アルコキシシランを重合して得られる。アルコキシシランは、例えば以下の一般式(I)で表される。
 Si(OR)4-n   (I)
 一般式(I)中、nはアルコキシド(OR)の数を表し、2以上4以下の整数である。また、Rは、それぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。
 上記一般式(I)式中、Yは、水素原子またはアルキル基を表す。アルキル基は、炭素数が1~1000、好ましくは500以下、より好ましくは100以下、さらに好ましくは50以下、特に好ましくは6以下の脂肪族基、脂環族基、芳香族基、脂環芳香族基である。これらは、連結基にO、N、S等の原子または原子団を有してもよい。これらの中でも特にメチル基が好ましい。Yがメチル基である場合には、蛍光体層の耐光性及び耐熱性が良好になる。
 上記一般式(I)においてYで表される1価の有機基は、置換基を有していてもよい。置換基の例には、例えば、F、Cl、Br、I等のハロゲン原子;ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、メルカプト基、エポキシ基、エポキシシクロヘキシル基、グリシドキシ基、アミノ基、シアノ基、ニトロ基、スルホン酸基、カルボキシ基、ヒドロキシ基、アシル基、アルコキシ基、イミノ基、フェニル基等の有機官能基等が含まれる。
 上記一般式(I)で表されるアルコキシシランは、例えば以下の4官能のシラン化合物、3官能のシラン化合物、2官能のシラン化合物等とすることができる。
 4官能のシラン化合物の例には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、テトラペンチルオキシシラン、テトラフェニルオキシシラン、トリメトキシモノエトキシシラン、ジメトキシジエトキシシラン、トリエトキシモノメトキシシラン、トリメトキシモノプロポキシシラン、モノメトキシトリブトキシシラン、モノメトキシトリペンチルオキシシラン、モノメトキシトリフェニルオキシシラン、ジメトキシジプロポキシシラン、トリプロポキシモノメトキシシラン、トリメトキシモノブトキシシラン、ジメトキシジブトキシシラン、トリエトキシモノプロポキシシラン、ジエトキシジプロポキシシラン、トリブトキシモノプロポキシシラン、ジメトキシモノエトキシモノブトキシシラン、ジエトキシモノメトキシモノブトキシシラン、ジエトキシモノプロポキシモノブトキシシラン、ジプロポキシモノメトキシモノエトキシシラン、ジプロポキシモノメトキシモノブトキシシラン、ジプロポキシモノエトキシモノブトキシシラン、ジブトキシモノメトキシモノエトキシシラン、ジブトキシモノエトキシモノプロポキシシラン、モノメトキシモノエトキシモノプロポキシモノブトキシシランなどのテトラアルコキシシラン等が含まれる。これらの中でもテトラメトキシシラン、テトラエトキシシランが好ましい。
 3官能のシラン化合物の例には、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリペンチルオキシシラン、トリフェニルオキシシラン、ジメトキシモノエトキシシラン、ジエトキシモノメトキシシラン、ジプロポキシモノメトキシシラン、ジプロポキシモノエトキシシラン、ジペンチルオキシルモノメトキシシラン、ジペンチルオキシモノエトキシシラン、ジペンチルオキシモノプロポキシシラン、ジフェニルオキシルモノメトキシシラン、ジフェニルオキシモノエトキシシラン、ジフェニルオキシモノプロポキシシラン、メトキシエトキシプロポキシシラン、モノプロポキシジメトキシシラン、モノプロポキシジエトキシシラン、モノブトキシジメトキシシラン、モノペンチルオキシジエトキシシラン、モノフェニルオキシジエトキシシラン等のモノヒドロシラン化合物;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリペンチルオキシシラン、メチルモノメトキシジエトキシシラン、メチルモノメトキシジプロポキシシラン、メチルモノメトキシジペンチルオキシシラン、メチルモノメトキシジフェニルオキシシラン、メチルメトキシエトキシプロポキシシラン、メチルモノメトキシモノエトキシモノブトキシシラン等のモノメチルシラン化合物;エチルトリメトキシシラン、エチルトリプロポキシシラン、エチルトリペンチルオキシシラン、エチルトリフェニルオキシシラン、エチルモノメトキシジエトキシシラン、エチルモノメトキシジプロポキシシラン、エチルモノメトキシジペンチルオキシシラン、エチルモノメトキシジフェニルオキシシラン、エチルモノメトキシモノエトキシモノブトキシシラン等のモノエチルシラン化合物;プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリペンチルオキシシラン、プロピルトリフェニルオキシシラン、プロピルモノメトキシジエトキシシラン、プロピルモノメトキシジプロポキシシラン、プロピルモノメトキシジペンチルオキシシラン、プロピルモノメトキシジフェニルオキシシラン、プロピルメトキシエトキシプロポキシシラン、プロピルモノメトキシモノエトキシモノブトキシシラン等のモノプロピルシラン化合物;ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリプロポキシシラン、ブチルトリペンチルオキシシラン、ブチルトリフェニルオキシシラン、ブチルモノメトキシジエトキシシラン、ブチルモノメトキシジプロポキシシラン、ブチルモノメトキシジペンチルオキシシラン、ブチルモノメトキシジフェニルオキシシラン、ブチルメトキシエトキシプロポキシシラン、ブチルモノメトキシモノエトキシモノブトキシシラン等のモノブチルシラン化合物が含まれる。これらの中でも、メチルトリメトキシシランおよびメチルトリエトキシシランがより好ましく、メチルトリメトキシシランがさらに好ましい。
 2官能のシラン化合物の具体例には、ジメトキシシラン、ジエトキシシラン、ジプロポキシシラン、ジペンチルオキシシラン、ジフェニルオキシシラン、メトキシエトキシシラン、メトキシプロポキシシラン、メトキシペンチルオキシシラン、メトキシフェニルオキシシラン、エトキシプロポキシシラン、エトキシペンチルオキシシラン、エトキシフェニルオキシシラン、メチルジメトキシシラン、メチルメトキシエトキシシラン、メチルジエトキシシラン、メチルメトキシプロポキシシラン、メチルメトキシペンチルオキシシラン、メチルメトキシフェニルオキシシラン、エチルジプロポキシシラン、エチルメトキシプロポキシシラン、エチルジペンチルオキシシラン、エチルジフェニルオキシシラン、プロピルジメトキシシラン、プロピルメトキシエトキシシラン、プロピルエトキシプロポキシシラン、プロピルジエトキシシラン、プロピルジペンチルオキシシラン、プロピルジフェニルオキシシラン、ブチルジメトキシシラン、ブチルメトキシエトキシシラン、ブチルジエトキシシラン、ブチルエトキシプロポキシシシラン、ブチルジプロポキシシラン、ブチルメチルジペンチルオキシシラン、ブチルメチルジフェニルオキシシラン、ジメチルジメトキシシラン、ジメチルメトキシエトキシシラン、ジメチルジエトキシシラン、ジメチルジペンチルオキシシラン、ジメチルジフェニルオキシシラン、ジメチルエトキシプロポキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルメトキシプロポキシシラン、ジエチルジエトキシシラン、ジエチルエトキシプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジペンチルオキシシラン、ジプロピルジフェニルオキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジブチルジプロポキシシラン、ジブチルメトキシペンチルオキシシラン、ジブチルメトキシフェニルオキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジペンチルオキシシラン、メチルエチルジフェニルオキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、メチルブチルジメトキシシラン、メチルブチルジエトキシシラン、メチルブチルジプロポキシシラン、メチルエチルエトキシプロポキシシラン、エチルプロピルジメトキシシラン、エチルプロピルメトキシエトキシシラン、ジプロピルジメトキシシラン、ジプロピルメトキシエトキシシラン、プロピルブチルジメトキシシラン、プロピルブチルジエトキシシラン、ジブチルメトキシエトキシシラン、ジブチルメトキシプロポキシシラン、ジブチルエトキシプロポキシシラン等が含まれる。中でもジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシランが好ましい。
 バインダ前駆体含有液に含まれるポリシロキサンは、質量平均分子量が1000~3000であることが好ましく、1200~2700であることがより好ましく、1500~2000であることがさらに好ましい。ポリシロキサンの質量平均分子量が1000未満であると、バインダ前駆体含有液の粘度が低過ぎる場合がある。一方、質量平均分子量が3000を超えると、粘度が高くなり、バインダ前駆体含有液の塗布が困難となる場合がある。質量平均分子量は、ゲルパーミエーションクロマトグラフィーで測定される値(ポリスチレン換算)である。
 バインダ前駆体含有液に含まれる有機金属化合物の他の例には、ポリシラザンがある。ポリシラザンは、一般式:(RSiNRで表されうる。式中、R、RおよびRは、それぞれ独立して水素原子またはアルキル基、アリール基、ビニル基、シクロアルキル基を表すが、R、R、Rのうち少なくとも1つは水素原子であり、好ましくはすべてが水素原子であり、nは1~60の整数を表す。ポリシラザンの分子形状はいかなる形状であってもよく、例えば、直鎖状または環状であってもよい。バインダ前駆体含有液に含まれるポリシラザンの濃度は5~50質量%であることが好ましい。バインダ前駆体含有液に含まれるポリシラザンの濃度は高いほうが好ましい。ただし、ポリシラザンの濃度が高いと、バインダ前駆体含有液の保存期間が短縮する。
 バインダ前駆体含有液には、透光性セラミック前駆体である有機金属化合物(特に、ポリシラザン)とともに、反応促進剤が含まれていてもよい。反応促進剤は、酸または塩基などでありうる。反応促進剤の具体例には、トリエチルアミン、ジエチルアミン、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミンなどの塩基や、塩酸、シュウ酸、フマル酸、スルホン酸、酢酸や、ニッケル、鉄、パラジウム、イリジウム、白金、チタン、アルミニウムを含む金属のカルボン酸塩などが含まれるが、これに限られない。特に好ましい反応促進剤は金属カルボン酸塩であり、添加量はポリシラザンを基準にして0.01~5mol%であることが好ましい。
 バインダ前駆体含有液には、溶媒が含まれていてもよい。溶媒の例には、脂肪族炭化水素、芳香族炭化水素、ハロゲン炭化水素、アルコール類、エーテル類、エステル類などが含まれる。好ましい溶媒は、メチルエチルケトン、テトラヒドロフラン、ベンゼン、トルエン、キシレン、ジメチルフルオライド、クロロホルム、四塩化炭素、メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、エチルエーテル、イソプロピルエーテル、ジブチルエーテル、エチルブチルエーテルなどである。
 ポリシロキサン溶液またはポリシラザン溶液がバインダ前駆体含有液に含まれる場合には、バインダ前駆体含有液を塗布し、上記硬化工程で塗膜を加熱する。塗膜を加熱する温度は、LED装置のパッケージの劣化を抑制する観点からは、150℃~500℃が好ましく、150℃~350℃とすることがより好ましい。また、バインダ前駆体溶液にポリシラザンが含まれる場合には、170~230nmの範囲の波長成分を含むVUV放射線(例えばエキシマ光)を塗膜に照射して硬化させた後、さらに加熱硬化を行うことで、蛍光体層の水分の浸透防止効果をより向上させることができる。
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。以下に、各実施例の評価方法を示す。
1.第一蛍光体分散液の実施例
 (1)蛍光体粒子の作製・YAG蛍光体粒子の作製
 以下の手順で黄色蛍光体粒子を作製した。下記に示す組成の蛍光体原料を十分に混合した混合物を、アルミ坩堝に充填し、これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合した。充填物を、水素含有窒素ガスを流通させた還元雰囲気中において1350~1450℃の温度範囲で2~5時間焼成して、焼成品((Y0.72Gd0.24Al12:Ce0.04)を得た。
 [原料組成]
   Y ・・・ 7.41g
   Gd ・・・ 4.01g
   CeO ・・・ 0.63g
   Al ・・・ 7.77g
 得られた焼成品を粉砕、洗浄、分離、乾燥することで所望の蛍光体を得た。得られた蛍光体を粉砕して約10μmの粒径の蛍光体粒子とした。得られた蛍光体粒子の組成を調べて、所望の蛍光体であることを確認した。波長465nmの励起光に対する発光波長を調べたところ、おおよそ波長570nmにピーク波長を有していた。
 (2)蛍光体分散液の調製
 蛍光体分散液の調製には、以下の原料を用いた。
 (蛍光体粒子)
 窒化物蛍光体粒子:ASK-23PA(根本特殊化学社製)
 シリケート蛍光体粒子:SSE (ルミテック社製)
 (層状粘土鉱物)
 層状粘土鉱物A:(合成雲母)ミクロマイカMK-100(コープケミカル製)
 層状粘土鉱物B:(スメクタイト)ルーセンタイトSWN(コープケミカル社製)
 層状粘土鉱物C:(モンモリロナイト)クニピアF(クニミネ工業製)
 層状粘土鉱物D:(ベントナイト)ベンゲルHVP(ホージュン製)
 (粒状無機粒子)
 シリカA:(シリカ)AEROSIL RX300(日本アエロジル製)
 シリカB:(シリカ)サイリシア470(富士シリシア化学製)
 シリカC:(シリカ)VM-2270(ダウコーニング製)
 シリカD:(シリカ)マイクロビードSP-1(日揮触媒化成製)
 シリカE:(シリカ)ニップシールSS-50F(東ソー・シリカ製)
 アルミナ:AEROXIDE Alu-C(日本アエロジル製)
 (分散溶媒の有機溶媒)
 GL:グリセリン
 EG:エチレングリコール
 PG:プロピレングリコール
 EtOH:エタノール
 1,3-BD:1,3-ブタンジオール
 iso-PrOH:イソプロピルアルコール
 (2.1)サンプル1
 YAG蛍光体粒子(100質量部)と、ミクロマイカMK-100(3質量部)と、RX300(3質量部)とを、グリセリン(80質量部)と1,3-ブタンジオール(20質量部)とイソプロピルアルコール(50質量部)とからなる混合溶媒に添加した。混合物をクレアミックス(エム・テクニック社製)にて8000rpmで100分間混合し、蛍光体分散液とした。
 (2.2)サンプル2
 YAG蛍光体粒子(100質量部)と、ミクロマイカMK-100(3質量部)と、RX300(4質量部)とを、グリセリン(70質量部)と1,3-ブタンジオール(30質量部)とイソプロピルアルコール(60質量部)とからなる混合溶媒に添加した。混合物をTKホモミクサーMARKII2.5型(プライミクス社製)にて8000rpmで30分間混合し、蛍光体分散液とした。
 (2.3)サンプル3
 YAG蛍光体粒子(100質量部)と、ルーセンタイトSWN(4質量部)と、VM2270(2質量部)とを、グリセリン(90質量部)とイソプロピルアルコール(70質量部)とからなる混合溶媒に添加した。混合物をフィルミックスFM80-50(プライミクス社製)にて周速40m/sで180分間混合し、蛍光体分散液とした。
 (2.4)サンプル4
 窒化物蛍光体粒子(100質量部)と、クニピアF(3質量部)と、RX300(3質量部)とを、1,3-ブタンジオール(80質量部)とエタノール(20質量部)とからなる混合溶媒に添加した。混合物をフィルミックスFM80-50(プライミクス社製)にて周速20m/sで30分間混合し、蛍光体分散液とした。
 (2.5)サンプル5
 シリケート蛍光体粒子(100質量部)と、ミクロマイカMK-100(2.5質量部)と、サイリシア470(3質量部)とを、1,3-ブタンジオール(80質量部)とイソプロピルアルコール(30質量部)とからなる混合溶媒に添加した。混合物をスターバーストミニ(スギノマシン社製)にて処理圧力100MPaで30パスし、蛍光体分散液とした。
 (2.6)サンプル6
 YAG蛍光体粒子(100質量部)と、ベンゲルHVP(2質量部)と、SP-1(4質量部)とを、プロピレングリコール(90質量部)とイソプロピルアルコール(30質量部)とからなる混合溶媒に添加した。混合物をウルトラタラックスT50(IKAジャパン社製)にて5000rpmで30分間混合し、蛍光体分散液とした。
 (2.7)サンプル7
 YAG蛍光体粒子(100質量部)と、クニピアF(4質量部)と、サイリシア470(2質量部)とを、グリセリン(80質量部)とエタノール(20質量部)とからなる混合溶媒に添加した。混合物をクレアミックス(エム・テクニック社製)にて15000rpmで30分間混合し、蛍光体分散液とした。
 (2.8)サンプル8
 YAG蛍光体粒子(100質量部)と、ベンゲルHVP(2質量部)と、SS-50F(2質量部)とを、1,3-ブタンジオール(40質量部)とイソプロピルアルコール(80質量部)とからなる混合溶媒に添加した。混合物を、TKホモミクサーMARKII2.5型(プライミクス社製)にて12000rpmで300分間混合し、蛍光体分散液とした。
 (2.9)サンプル9
 YAG蛍光体粒子(100質量部)と、ルーセンタイトSWN(2質量部)と、VM2270(3質量部)とを、プロピレングリコール(30質量部)と1,3-ブタンジオール(30質量部)とイソプロピルアルコール(70質量部)とからなる混合溶媒に添加したに添加した。混合物を、クレアミックス(エム・テニック社製)にて12000rpmで300分間混合し、蛍光体分散液とした。
 (2.10)サンプル10
 YAG蛍光体粒子(100質量部)と、ミクロマイカMK-100(2質量部)と、SP-1(3.5質量部)とを、プロピレングリコール(100質量部)とイソプロピルアルコール(50質量部)とからなる混合溶媒に添加した。混合物をTKホモミクサーMARKII2.5型(プライミクス社製)にて12000rpmで100分間混合し、蛍光体分散液とした。
 (2.11)サンプル11
 YAG蛍光体粒子(100質量部)と、ミクロマイカMK-100(2質量部)と、SP-1(3.5質量部)とを、プロピレングリコール(100質量部)とイソプロピルアルコール(50質量部)とからなる混合溶媒に添加した。混合物をTKホモミクサーMARKII2.5型(プライミクス社製)にて12000rpmで50分間混合し、蛍光体分散液とした。
 (2.12)サンプル12
 YAG蛍光体粒子(100質量部)と、ミクロマイカMK-100(2質量部)と、SP-1(3.5質量部)とを、プロピレングリコール(100質量部)とイソプロピルアルコール(50質量部)とからなる混合溶媒に添加した。混合物をTKホモミクサーMARKII2.5型(プライミクス社製)にて12000rpmで10分間混合し、蛍光体分散液とした。
 (2.13)サンプル13
 YAG蛍光体粒子(100質量部)と、ルーセンタイトSWN(3質量部)と、VM2270(3質量部)とを、1,3-ブタンジオール(100質量部)とイソプロピルアルコール(60質量部)とからなる混合溶媒に添加した。混合物をフィルミックスFM80-50(プライミクス社製)にて周速30m/sで120分間混合し、蛍光体分散液とした。
 (2.14)サンプル14
 YAG蛍光体粒子(100質量部)と、ミクロマイカMK-100(3質量部)と、SS-50F(3質量部)とを、1,3-ブタンジオール(100質量部)とイソプロピルアルコール(55質量部)とからなる混合溶媒に添加した。混合物をウルトラタラックスT50(IKAジャパン社製)にて8000rpmで120分間混合し、蛍光体分散液とした。
 (2.15)サンプル15
 YAG蛍光体粒子(100質量部)と、ベンゲルHVP(2質量部)と、RX300(2質量部)と、AEROXIDE Alu-C(2質量部)とを、プロピレングリコール(100質量部)とイソプロピルアルコール(45質量部)とからなる混合溶媒に添加した。混合物を超音波分散装置GDS600RAT(ギンセン社製)にて振幅30μmで30分間混合し、蛍光体分散液とした。
 (2.16)サンプル16
 YAG蛍光体粒子(100質量部)と、クニピアF(1.5質量部)と、サイリシア470(3質量部)とを、プロピレングリコール(100質量部)とイソプロピルアルコール(55質量部)とからなる混合溶媒に添加した。混合物を超音波分散装置GDS600RAT(ギンセン社製)にて振幅30μmで20分間混合し、蛍光体分散液とした。
 (2.17)サンプル17
 YAG蛍光体粒子(100質量部)と、ミクロマイカMK-100(3質量部)と、SP-1(3質量部)とを、プロピレングリコール(120質量部)とイソプロピルアルコール(70質量部)とからなる混合溶媒に添加した。混合物をナノマイザーNM-L200(吉田機械興業社製)にて処理圧力20MPaで20パスし、蛍光体分散液とした。
 (2.18)サンプル18
 YAG蛍光体粒子(100質量部)と、ミクロマイカMK-100(3質量部)と、SP-1(3質量部)とを、プロピレングリコール(120質量部)とイソプロピルアルコール(70質量部)とからなる混合溶媒に添加した。混合物をナノマイザーNM-L200(吉田機械興業社製)にて処理圧力60MPaで20パスし、蛍光体分散液とした。
 (2.19)サンプル19
 YAG蛍光体粒子(100質量部)と、ミクロマイカMK-100(3質量部)と、SP-1(3質量部)とを、プロピレングリコール(120質量部)とイソプロピルアルコール(70質量部)とからなる混合溶媒に添加した。混合物をナノマイザーNM-L200(吉田機械興業社製)にて処理圧力80MPaで20パスし、蛍光体分散液とした。
 (2.20)サンプル20
 YAG蛍光体粒子(100質量部)と、ミクロマイカMK-100(3質量部)と、SP-1(3質量部)とを、プロピレングリコール(120質量部)とイソプロピルアルコール(70質量部)とからなる混合溶媒に添加した。混合物をナノマイザーNM-L200(吉田機械興業社製)にて処理圧力180MPaで300パスし、蛍光体分散液とした。
 (2.21)サンプル21
 YAG蛍光体粒子(100質量部)と、ルーセンタイトSWN(2質量部)と、SS-50F(3質量部)とを、エチレングリコール(80質量部)とイソプロピルアルコール(60質量部)とからなる混合溶媒に添加した。混合物をスターバーストミニ(スギノマシン社製)にて処理圧力100MPaで30パスし、蛍光体分散液とした。
 (2.22)サンプル22
 YAG蛍光体粒子(100質量部)と、クニピアF(2質量部)と、SP-1(3質量部)とを、エチレングリコール(100質量部)とエタノール(40質量部)とからなる混合溶媒に添加した。混合物をナノマイザーNM-L200(吉田機械興業社製)にて処理圧力20MPaで10パスし、蛍光体分散液とした。
 (2.23)サンプル23
 YAG蛍光体粒子(100質量部)と、ベンゲルHVP(2質量部)と、SS-50F(2質量部)とを、プロピレングリコール(120質量部)とエタノール(65質量部)とからなる混合溶媒に添加した。混合物をナノマイザーNM-L200(吉田機械興業社製)にて処理圧力20MPaで5パスし、蛍光体分散液とした。
Figure JPOXMLDOC01-appb-T000001
 (3)蛍光体分散液の評価
 得られた蛍光体分散液(サンプル1~23)について、それぞれ、粘度測定、同一基板内での色度ばらつき評価、基板間での色度ばらつき評価、及びノズル詰まりの評価を行った。
・粘度の測定
 HAAKE社製レオストレスRS600により粘度を測定した。センサーは、直径60mmのパラレルプレートセンサーとし、ギャップ(上下プレートの間隔)は0.15mm、温度は25℃とした。また、測定サンプル量は1回の測定あたり2ccとした。フローカーブモードで、剪断速度0.1(1/s)を出発点として、100,000(1/s)までの間、等間隔で10点の剪断速度で粘度測定を行い、剪断速度と粘度との関係をグラフにした。各剪断速度における保持時間(剪断速度を変更してから、測定開始するまでの時間)は1分とした。作成したグラフから、剪断速度1,000(1/s)における粘度η1、および、剪断速度1(1/s)における粘度η2、を読み取り、これを測定値とした。η1及びη2を表2に示す。
・同一基板内での色度ばらつき
 各実施例および比較例で調整した直後の蛍光体分散液、及び上記バインダ前駆体含有液を以下の手法にて塗布し、LED装置を製造した。
 8行×8列で計64個のLEDチップが実装された基板(LEDチップ実装パッケージ)を1枚用意した。用意した1枚のLEDチップ実装パッケージに、一定条件下でスプレー装置(図3参照)により蛍光体分散液を塗布した。蛍光体分散液の塗布量は、基板1枚当たり1~2mlとした。この基板を150℃で1時間加熱した。次に、この基板に一定条件下でバインダ前駆体含有液を塗布した。バインダ前駆体含有液の塗布量は、1~2mlとした。蛍光体分散液及びバインダ前駆体含有液の塗布膜を150℃で1時間加熱し、セラミック前駆体を硬化させて蛍光体層を得た。
 バインダ前駆体含有液は、テトラメトキシシランKBM04(信越化学工業社製)15質量部とメチルトリメトシシランKBM13(信越化学工業社製)5質量部と、イソプロピルアルコール40質量部とエタノール40質量部と塩酸2質量部との混合液とした。
 LEDチップ実装パッケージに形成した64個のLEDチップからの発光の色度;すなわち各LEDチップの出射光と、その上に形成された蛍光体層が発する蛍光との合成光の色度をそれぞれ測定し、CIE表色系でのx値とy値とを求めた。色度の測定は、コニカミノルタセンシング社製分光放射輝度計CS-1000Aで行った。色度は色空間をXYZ座標系で表したCIE-XYZ表色系で表示され、ある点と原点とを結ぶ直線が、平面x+y+z=1と交わる点で定義される。
 続いて、上記の64個のx値のばらつき(標準偏差)を求めた。求めた標準偏差に基づいて、以下の基準で同一基板内での色度ばらつきを評価した。
 標準偏差が0.01以下である場合:◎(実用上好ましい)
 標準偏差が0.01を超え0.02以下である場合:○(実用上許容可能である)
 標準偏差が0.02を超える場合:×(実用上好ましくない)
・基板間での色度ばらつき評価
 8行×8列で計64個のLEDチップが実装された基板(LEDチップ実装パッケージ)を50枚用意した。「同一基板内での色度ばらつき評価」と同様の方法により、LED装置を50個ずつ作製した。
 10枚目のLEDチップ実装パッケージ(基板10)に形成した64個のLEDチップからの発光;すなわち各LEDチップの出射光とその上に形成された蛍光体層が発する蛍光との合成光の色度を、それぞれ測定し、CIE表色系でのx値とy値とを求めた。続いて、これらのx値(64個のx値)の平均を求めた。
 同様に、20枚目のLEDチップ実装パッケージ(基板20)、30枚目のLEDチップ実装パッケージ(基板30)、40枚目のLEDチップ実装パッケージ(基板40)、50枚目のLEDチップ実装パッケージ(基板50)に形成した64個のLEDチップについても、同様にx値(64個のx値)の平均を求めた。続いて、各基板(基板10、基板20、基板30、基板40、基板50)のx値の平均値に基づき、標準偏差を求めた。求めた標準偏差に基づいて、以下の基準で基板間での色度ばらつきを評価した。
 標準偏差が0.01以下である場合:◎(実用上好ましい)
 標準偏差が0.01を超え0.015以下である場合:○(僅かに許容から外れる範囲)
 標準偏差が0.015を超える場合:×(実用上好ましくない)
・ノズル詰まりの評価
 蛍光体分散液をスプレーした後、一定時間停止してから再度スプレーを行うことを、繰り返し実施した。停止時間を5分間隔で延ばしていき、ノズル詰まり、すなわち噴射できない状態が発生するまでの時間を測定した。
 1時間停止後にスプレーを再開しても、ノズル詰まりが発生しなかった:◎(実用上好ましい)
 30分停止後に初めてノズル詰まりが発生した:○(実用上許容可能である)
 5分停止後にノズル詰まりが発生した:×(実用上好ましくない)
Figure JPOXMLDOC01-appb-T000002
 上記表2の比較例1、2、及び8に示されるように、蛍光体分散液の剪断速度1000(1/s)での粘度η1が500mPa・sを超えると、同一基板内で色むらが生じた。これは、スプレーでの噴射が不均一となり、同一基板内で蛍光体分散液の厚みにばらつきが生じたためと推察される。
 また、上記表2の比較例4、6、7、9、及び10に示されるように、蛍光体分散液の剪断速度1(1/s)での粘度η2が1000mPa・s未満となると、基板間で出射する光の色度にばらつきが見られた。これは、塗布装置内で、蛍光体粒子が沈降したためと推察される。一方で、比較例3及び5に示されるように、粘度η2が1.0×10mPa・sを超えると、ノズル詰まりが発生し、スプレーできなかった。
 次に、実施例5、6、及び比較例6を比較すると、これらは成分組成が同一であるにも係わらず、比較例6では粘度η2が低くなり、基板間で出射する光の色度にばらつきが見られた。これは、混合物の攪拌時間が足りず、粘土鉱物粒子による沈降抑制効果が十分に発揮されなかったためと推察される。
 また、実施例10~12、及び比較例8の成分組成も同一である。しかし、比較例8では、粘度η1が高く、同一の基板内で色度にむらが生じた。また比較例8では、基板間で、色度にばらつきが見られた。これは、蛍光体分散液の混合時の剪断力が大き過ぎたためと推察される。つまり、蛍光体分散液の混合時の分散時間、及び分散時の剪断力を調整することで、所望の粘度を有する蛍光体分散液が得られる。
2.第二蛍光体分散液の実施例
 (1)蛍光体粒子の調製
 蛍光体粒子は、第一分散液に用いた蛍光体粒子と同様に調製した。
 (2)蛍光体分散液の調製
 蛍光体分散液の調製には、以下の原料を用いた。(分散溶媒の有機溶媒)
 EG:エチレングリコール
 PG:プロピレングリコール
 EtOH:エタノール
 1,3-BD:1,3-ブタンジオール
 iso-PrOH:イソプロピルアルコール(粘土鉱物粒子)
 粘土鉱物a:(スメクタイト)ルーセンタイトSWN(コープケミカル社製)
 粘土鉱物b:(モンモリロナイト)クニピアF(クニミネ工業製)
 粘土鉱物c:(ベントナイト)ベンゲルHVP(ホージュン製)
 粘土鉱物d:(合成雲母)ミクロマイカMK-100(コープケミカル製)
 粘土鉱物e:(ヘクトライト)ラポナイトXLG(ラポート製)(無機粒子)
 無機粒子a:(シリカ)AEROSIL RX300(日本アエロジル製)
 無機粒子b:(シリカ)AEROSIL 200(日本アエロジル製)
 無機粒子c:(シリカ)サイリシア470(富士シリシア製)
 無機粒子d:(シリカ)ニップシール SS-50F(東ソー・シリカ製)
 無機粒子e:(シリカ)サンラブリー(AGCエスアイテック製)
 無機粒子f:(アルミナ)AEROXIDE Alu-C(日本アエロジル製)
 (2.1)サンプル1
 前記蛍光体粒子(42質量部)と、ルーセンタイトSWN(2質量部)と、サイリシア470(2質量部)を、1,3-ブタンジオール(31.8質量部)とイソプロピルアルコール(18質量部)と水(4.2質量部)とからなる混合溶媒に添加した。それをオートホモミキサーにて混合することで蛍光体分散液を調製した。
 (2.2)サンプル2
 前記蛍光体粒子(42質量部)と、ルーセンタイトSWN(2質量部)と、サイリシア470(2質量部)を、1,3-ブタンジオール(32質量部)とイソプロピルアルコール(18質量部)と水(4質量部)とからなる混合溶媒に添加した。それをオートホモミキサーにて混合することで蛍光体分散液を調製した。
 (2.3)サンプル3
 前記蛍光体粒子(42質量部)と、ルーセンタイトSWN(2質量部)と、サイリシア470(2質量部)を、1,3-ブタンジオール(34質量部)とイソプロピルアルコール(18質量部)と水(2質量部)とからなる混合溶媒に添加した。それをオートホモミキサーにて混合することで蛍光体分散液を調製した。
 (2.4)サンプル4
 前記蛍光体粒子(42質量部)と、ルーセンタイトSWN(2質量部)と、サイリシア470(2質量部)を、1,3-ブタンジオール(35質量部)とイソプロピルアルコール(18質量部)と水(1質量部)とからなる混合溶媒に添加した。それをオートホモミキサーにて混合することで蛍光体分散液を調製した。
 (2.5)サンプル5
 前記蛍光体粒子(42質量部)と、ルーセンタイトSWN(2質量部)と、サイリシア470(2質量部)を、1,3-ブタンジオール(35.9質量部)とイソプロピルアルコール(18質量部)と水(0.1質量部)とからなる混合溶媒に添加した。それをオートホモミキサーにて混合することで蛍光体分散液を調製した。
 (2.6)サンプル6
 前記蛍光体粒子(42質量部)と、ルーセンタイトSWN(2質量部)と、サイリシア470(2質量部)を、1,3-ブタンジオール(35.92質量部)とイソプロピルアルコール(18質量部)と水(0.08質量部)とからなる混合溶媒に添加した。それをオートホモミキサーにて混合することで蛍光体分散液を調製した。
 (2.7)サンプル7
 前記蛍光体粒子(35質量部)と、ミクロマイカMK-100(1.5質量部)と、AEROSIL RX300(1.5質量部)を、グリセリン(40質量部)とエタノール(20質量部)と水(2質量部)とからなる混合溶媒に添加した。それをウルトラタラックスにて混合することで蛍光体分散液を調製した。
 (2.8)サンプル8
 前記蛍光体粒子(35質量部)と、ミクロマイカMK-100(1.5質量部)と、AEROSIL RX300(1.5質量部)を、エチレングルコール(40質量部)とエタノール(20質量部)と水(2質量部)とからなる混合溶媒に添加した。それをアペックスミルにて混合することで蛍光体分散液を調製した。
 (2.9)サンプル9
 前記蛍光体粒子(35質量部)と、ミクロマイカMK-100(1.5質量部)と、AEROSIL RX300(1.5質量部)を、プロピレングルコール(40質量部)とイソプロピルアルコール(20質量部)と水(2質量部)とからなる混合溶媒に添加した。それをフィルミックスにて混合することで蛍光体分散液を調製した。
 (2.10)サンプル10
 前記蛍光体粒子(35質量部)と、ミクロマイカMK-100(1.5質量部)と、AEROSIL RX300(1.5質量部)を、1,3-ブタンジオール(40質量部)とイソプロピルアルコール(20質量部)と水(2質量部)とからなる混合溶媒に添加した。それをオートホモミクサーにて混合することで蛍光体分散液を調製した。
 (2.11)サンプル11
 前記蛍光体粒子(40質量部)と、クニピアF(2質量部)と、AEROSIL 200(2質量部)を、1,3-ブタンジオール(35質量部)とイソプロピルアルコール(20質量部)と水(1質量部)とからなる混合溶媒に添加した。それをフィルミックスにて混合することで蛍光体分散液を調製した。
 (2.12)サンプル12
 前記蛍光体粒子(40質量部)と、ベンゲルHVP(2質量部)と、サイリシア 470(2質量部)を、1,3-ブタンジオール(35質量部)とイソプロピルアルコール(20質量部)と水(1質量部)とからなる混合溶媒に添加した。それをフィルミックスにて混合することで蛍光体分散液を調製した。
 (2.13)サンプル13
 前記蛍光体粒子(40質量部)と、ミクロマイカMK-100(2質量部)と、ニップシールSS-50F(2質量部)を、1,3-ブタンジオール(35質量部)とイソプロピルアルコール(20質量部)と水(1質量部)とからなる混合溶媒に添加した。それをフィルミックスにて混合することで蛍光体分散液を調製した。
 (2.14)サンプル14
 前記蛍光体粒子(40質量部)と、ラポナイトXLG(2質量部)と、サンラブリー(2質量部)を、1,3-ブタンジオール(35質量部)とイソプロピルアルコール(20質量部)と水(1質量部)とからなる混合溶媒に添加した。それをフィルミックスにて混合することで蛍光体分散液を調製した。
 (2.15)サンプル15
 前記蛍光体粒子(40質量部)と、ルーセンタイトSWN(2質量部)と、AEROSIL 200(1質量部)と、AEROXIDE Alu-C(1質量部)を、1,3-ブタンジオール(35質量部)とイソプロピルアルコール(20質量部)と水(1質量部)とからなる混合溶媒に添加した。それをフィルミックスにて混合することで蛍光体分散液を調製した。
 (2.16)サンプル16
 前記蛍光体粒子(40質量部)と、ミクロマイカMK-100(2質量部)と、ニップシールSS-50F(2質量部)を、1,3-ブタンジオール(34質量部)とイソプロピルアルコール(17質量部)と水(5質量部)とからなる混合溶媒に添加した。それをフィルミックスにて混合することで蛍光体分散液を調製した。
 (2.17)サンプル17
 前記蛍光体粒子(40質量部)と、ミクロマイカMK-100(2質量部)と、ニップシールSS-50F(2質量部)を、1,3-ブタンジオール(36質量部)とイソプロピルアルコール(20質量部)とからなる混合溶媒に添加した。それをフィルミックスにて混合することで蛍光体分散液を調製した。
 (3)各サンプルの粘度(振動式)測定
 サンプル1~17の蛍光体分散液の25℃における粘度を、振動式粘度計(CBC社製VM-10A-L)を用いて測定した。測定結果を表3に示す。
 (4)各サンプルの粘度(η1及びη2)の測定
 HAAKE社製レオストレスRS600により粘度を測定した。センサーは、直径60mmのパラレルプレートセンサーとし、ギャップ(上下プレートの間隔)は0.15mm、温度は25℃とした。また、測定サンプル量は1回の測定あたり2ccとした。フローカーブモードで、剪断速度0.1(1/s)を出発点として、100,000(1/s)までの間、等間隔で10点の剪断速度で粘度測定を行い、剪断速度と粘度との関係をグラフにした。各剪断速度における保持時間(剪断速度を変更してから、測定開始するまでの時間)は1分とした。作成したグラフから、剪断速度1,000(1/s)における粘度η1、および、剪断速度1(1/s)における粘度η2、を読み取り、これを測定値とした。η1及びη2を表4に示す。
Figure JPOXMLDOC01-appb-T000003
 (5)セラミック前駆体溶液の調製
 ポリシロキサン14質量部を、イソプロピルアルコール86質量部に溶解させて、セラミック前駆体溶液を得た。
 5行×5列で計25個のLEDチップが実装された基板(LEDチップ実装パッケージ)を25枚用意した。用意した25枚のLEDチップ実装パッケージに、順番に、一定条件下でスプレー装置(図3参照)を用いて蛍光体分散液とセラミック前駆体溶液とを塗布した。基板1枚当たり、蛍光体分散液およびセラミック前駆体溶液を、それぞれ0.5~1ml塗布した。塗布膜を加熱することで、セラミック前駆体を硬化させて透明セラミックとした。
 5枚目のLEDチップ実装パッケージ(基板5)に形成した25個のLED装置からの発光の色度をそれぞれ測定し、CIE表色系でのx値とy値とを求めた。25個のLED装置からの発光のx値の平均と、25個のLED装置からの発光のx値のばらつき(標準偏差)とを求めた。
 同様に、10枚目のLEDチップ実装パッケージ(基板10)、15枚目のLEDチップ実装パッケージ(基板15)、20枚目のLEDチップ実装パッケージ(基板20)、25枚目のLEDチップ実装パッケージ(基板25)についても、25個のLED装置からの発光の色度をそれぞれ測定し、CIE表色系でのx値とy値とを求めた。そして、25個のLED装置からの発光のx値の平均と、25個のLED装置からの発光のx値のばらつき(標準偏差)とを求めた。それらを表4に示す。
 次に、基板5、基板10、基板15、基板20、基板25で得られたx値の平均値の標準偏差を求めた。それらを表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、比較例1と比較例3では、基板(基板5、基板10、基板15、基板20または基板25)における各LED装置からの発光の色度(x値)のばらつきが大きい(標準偏差が大きい)ことがわかる。これは、比較例1のサンプル1、および比較例3のサンプル16は、水の含有量が多いために、濡れ性が低いためであると考えられる。濡れ性が低いサンプル(蛍光体分散液)を塗布したために、1つの基板において、多量のサンプルが塗布されたLEDチップと、少量のサンプルが塗布されたLEDチップとが生じたと考えられる。その結果、1の基板にあるLED装置ごとに、蛍光体の供給量にばらつきが生じた。
 さらに、表4に示されるように、比較例2と比較例4では、基板5→基板10→基板15→基板20→基板25の順に、徐々にx値が高まっていくことがわかる。このことは、基板5→基板10→基板15→基板20→基板25の順に、塗布された蛍光体分散液における蛍光体の濃度が、徐々に高まっていることを示している。これは、スプレー装置の塗布液タンクに収容された蛍光体分散液における蛍光体粒子が徐々に沈降し、スプレー装置から塗布された蛍光体分散液における蛍光体濃度が徐々に変化(この場合には、蛍光体濃度が徐々に上昇)しているためである。
 これに対して各実施例では、いずれの基板についても、各LED装置からの発光の色度(x値)のばらつき(標準偏差)が0.01未満であり、抑制されていることがわかる。さらに、基板5の平均値、基板10の平均値、基板15の平均値、基板20の平均値および基板25の平均値のばらつき(標準偏差)が0.004以下であり、抑制されていることがわかる。
 本発明の蛍光体分散液は、塗布装置内で蛍光体粒子が沈降し難く、さらに塗布装置からの吐出性が良好である。したがって、個々のLED装置内の出射光に着色や色むらがなく、さらに複数のLED装置からの出射光の色度が均一である。したがって、本発明の蛍光体分散液を用いて製造されるLED装置は、出射光の色度の均一性が求められる店舗用照明をはじめ、屋内、屋外で使用される各種照明装置に好適である。
 1 LEDチップ
 2 パッケージ
 3 メタル部
 4 突起電極
 5 蛍光体層
 100 LED装置
 

Claims (13)

  1.  蛍光体粒子、粘土鉱物粒子、無機粒子、及び溶媒を含有する蛍光体分散液であって、
     25℃における剪断速度1000(1/s)での粘度η1が、10~500mPa・sであり、かつ
     25℃における剪断速度1(1/s)での粘度η2が、1.0×10~1.0×10mPa・sである、蛍光体分散液。
  2.  前記粘土鉱物粒子が、層状ケイ酸塩鉱物である、請求項1に記載の蛍光体分散液。
  3.  前記溶媒が、モノアルコールと、多価アルコールとを含む、請求項1に記載の蛍光体分散液。
  4.  LEDチップと、前記LEDチップを被覆し、前記LEDチップが発する特定の波長の光を他の特定の波長の光に変換する蛍光体層と、を有するLED装置の製造方法であって、
     前記LEDチップを準備する準備工程と、
     前記LEDチップ上に、請求項1に記載の蛍光体分散液を塗布する蛍光体分散液塗布工程と、
     前記LEDチップ上に、透光性バインダ前駆体を含有するバインダ前駆体含有液を塗布するバインダ前駆体塗布工程と、
     前記透光性バインダ前駆体を硬化させる硬化工程とを含む、LED装置の製造方法。
  5.  前記透光性バインダ前駆体が、透光性セラミック前駆体である、請求項4に記載の製造方法。
  6.  蛍光体粒子と、粘土鉱物粒子と、無機粒子と、水及び有機溶媒を含む分散溶媒とを含む蛍光体分散液であって、
     前記水の含有量は、0.1質量%以上4質量%以下である、蛍光体分散液。
  7.  前記蛍光体分散液の振動式粘度計で測定される25℃の粘度は、60mPa・s~400mPa・sである、請求項6に記載の蛍光体分散液。
  8.  前記有機溶媒は、モノアルコールと多価アルコールとを含む、請求項6に記載の蛍光体分散液。
  9.  LEDチップを準備する準備工程と、
     前記LEDチップの発光面に、請求項6に記載の蛍光体分散液を塗布して蛍光体層を成膜する工程と、
     を含む、LED装置の製造方法。
  10.  前記LEDチップの発光面に、有機金属化合物を含む溶液を塗布する工程をさらに含む、請求項9に記載のLED装置の製造方法。
  11.  前記蛍光体分散液はスプレー塗布装置によって塗布され、
     前記スプレー塗布装置は、蛍光体分散液を貯留する塗布液タンクと、蛍光体分散液を吐出するためのノズルを有するヘッドと、塗布液タンクとヘッドとを連通させる連結管とを備える、請求項9に記載のLED装置の製造方法。
  12.  前記LED装置は白色LED装置である、請求項9に記載のLED装置の製造方法。
  13.  蛍光体粒子、粘土鉱物粒子、無機粒子、及び溶媒を含有する蛍光体分散液であって、
     前記溶媒は水を含み、
     前記水の含有量は、前記蛍光体分散液全量に対して0.1質量%以上4質量%以下であり、
     25℃における剪断速度1000(1/s)での粘度η1が、10~500mPa・sであり、かつ
     25℃における剪断速度1(1/s)での粘度η2が、1.0×10~1.0×10mPa・sである、蛍光体分散液。
     
PCT/JP2012/006415 2011-10-07 2012-10-05 蛍光体分散液、及びこれを用いたled装置の製造方法 WO2013051280A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/349,172 US9184352B2 (en) 2011-10-07 2012-10-05 Phosphor dispersion liquid, and production method for LED device using same
EP12838811.3A EP2752898A4 (en) 2011-10-07 2012-10-05 PHOSPHORDISPERSION LIQUID AND MANUFACTURING METHOD FOR A LED DEVICE THEREFOR

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011222767 2011-10-07
JP2011-222767 2011-10-07
JP2012-031680 2012-02-16
JP2012031680 2012-02-16

Publications (1)

Publication Number Publication Date
WO2013051280A1 true WO2013051280A1 (ja) 2013-04-11

Family

ID=48043459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006415 WO2013051280A1 (ja) 2011-10-07 2012-10-05 蛍光体分散液、及びこれを用いたled装置の製造方法

Country Status (4)

Country Link
US (1) US9184352B2 (ja)
EP (1) EP2752898A4 (ja)
JP (1) JPWO2013051280A1 (ja)
WO (1) WO2013051280A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241601A (zh) * 2014-07-02 2014-12-24 宁波艾特米克锂电科技有限公司 一种免金属集流体的锂电池或超级电容电极的制备方法
WO2015011925A1 (ja) * 2013-07-24 2015-01-29 コニカミノルタ株式会社 Led装置の製造方法
JP2015070132A (ja) * 2013-09-30 2015-04-13 日亜化学工業株式会社 発光装置の製造方法および発光装置
EP2853577A4 (en) * 2012-08-13 2016-01-06 Konica Minolta Inc METHOD FOR PRODUCING A PHOSPHORDISPERSION LIQUID AND METHOD FOR PRODUCING AN LED DEVICE
WO2016043159A1 (ja) * 2014-09-16 2016-03-24 コニカミノルタ株式会社 蛍光体分散液、これを用いたled装置の製造方法、及びled装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088636A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 蛍光発光素子、光源装置、およびプロジェクター
CN104733594B (zh) * 2013-12-24 2017-09-19 展晶科技(深圳)有限公司 Led封装体
US9209016B1 (en) * 2014-10-14 2015-12-08 Macronix International Co., Ltd. Coating method and coating system
CN108948865B (zh) * 2017-12-18 2020-07-10 广东聚华印刷显示技术有限公司 电致发光材料墨水及其电致发光器件
CN108716618B (zh) 2018-04-19 2021-01-15 深圳市丰功文化传播有限公司 一种led发光条用的荧光胶及其led球泡灯

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181614A (ja) * 1999-12-24 2001-07-03 Teikoku Tsushin Kogyo Co Ltd El素子用蛍光体ペースト及びその製造方法
JP2003115614A (ja) 2001-10-03 2003-04-18 Nichia Chem Ind Ltd 発光装置の製造方法
JP2004153109A (ja) 2002-10-31 2004-05-27 Matsushita Electric Works Ltd 発光装置及びその製造方法
JP2004342782A (ja) * 2003-05-14 2004-12-02 Nichia Chem Ind Ltd 発光装置及びその製造方法
JP2007145973A (ja) * 2005-11-28 2007-06-14 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル用蛍光体ペースト
JP2007177035A (ja) * 2005-12-27 2007-07-12 Sekisui Chem Co Ltd 無機微粒子分散ペースト組成物
WO2007080803A1 (ja) * 2006-01-16 2007-07-19 Matsushita Electric Industrial Co., Ltd. 半導体発光装置
JP2009170824A (ja) * 2008-01-19 2009-07-30 Nichia Corp 発光装置
JP2009191091A (ja) * 2008-02-12 2009-08-27 Sanyo Chem Ind Ltd 無機微粒子分散ペースト組成物
JP2010500739A (ja) * 2006-08-09 2010-01-07 パナソニック株式会社 発光装置
JP2011001418A (ja) * 2009-06-17 2011-01-06 Sony Chemical & Information Device Corp 光半導体封止用樹脂組成物
WO2011065322A1 (ja) * 2009-11-30 2011-06-03 コニカミノルタオプト株式会社 発光ダイオードユニットの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525649B2 (ja) * 1988-08-01 1996-08-21 化成オプトニクス株式会社 発光組成物
EP1033587A3 (en) * 1999-02-26 2004-09-08 Fuji Photo Film Co., Ltd. Radiation image storage panel for double-side reading system
KR20070043142A (ko) * 2005-10-20 2007-04-25 삼성전기주식회사 티올계 분산제 및 그를 포함하는 황화계 형광체 페이스트조성물
KR100746749B1 (ko) * 2006-03-15 2007-08-09 (주)케이디티 광 여기 시트
WO2011065321A1 (ja) * 2009-11-30 2011-06-03 コニカミノルタオプト株式会社 発光ダイオードユニットの製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181614A (ja) * 1999-12-24 2001-07-03 Teikoku Tsushin Kogyo Co Ltd El素子用蛍光体ペースト及びその製造方法
JP2003115614A (ja) 2001-10-03 2003-04-18 Nichia Chem Ind Ltd 発光装置の製造方法
JP2004153109A (ja) 2002-10-31 2004-05-27 Matsushita Electric Works Ltd 発光装置及びその製造方法
JP2004342782A (ja) * 2003-05-14 2004-12-02 Nichia Chem Ind Ltd 発光装置及びその製造方法
JP2007145973A (ja) * 2005-11-28 2007-06-14 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル用蛍光体ペースト
JP2007177035A (ja) * 2005-12-27 2007-07-12 Sekisui Chem Co Ltd 無機微粒子分散ペースト組成物
WO2007080803A1 (ja) * 2006-01-16 2007-07-19 Matsushita Electric Industrial Co., Ltd. 半導体発光装置
JP2010500739A (ja) * 2006-08-09 2010-01-07 パナソニック株式会社 発光装置
JP2009170824A (ja) * 2008-01-19 2009-07-30 Nichia Corp 発光装置
JP2009191091A (ja) * 2008-02-12 2009-08-27 Sanyo Chem Ind Ltd 無機微粒子分散ペースト組成物
JP2011001418A (ja) * 2009-06-17 2011-01-06 Sony Chemical & Information Device Corp 光半導体封止用樹脂組成物
WO2011065322A1 (ja) * 2009-11-30 2011-06-03 コニカミノルタオプト株式会社 発光ダイオードユニットの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752898A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853577A4 (en) * 2012-08-13 2016-01-06 Konica Minolta Inc METHOD FOR PRODUCING A PHOSPHORDISPERSION LIQUID AND METHOD FOR PRODUCING AN LED DEVICE
WO2015011925A1 (ja) * 2013-07-24 2015-01-29 コニカミノルタ株式会社 Led装置の製造方法
JP2015070132A (ja) * 2013-09-30 2015-04-13 日亜化学工業株式会社 発光装置の製造方法および発光装置
CN104241601A (zh) * 2014-07-02 2014-12-24 宁波艾特米克锂电科技有限公司 一种免金属集流体的锂电池或超级电容电极的制备方法
WO2016043159A1 (ja) * 2014-09-16 2016-03-24 コニカミノルタ株式会社 蛍光体分散液、これを用いたled装置の製造方法、及びled装置

Also Published As

Publication number Publication date
US20150118773A1 (en) 2015-04-30
EP2752898A4 (en) 2015-09-09
US9184352B2 (en) 2015-11-10
JPWO2013051280A1 (ja) 2015-03-30
EP2752898A1 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
WO2013051280A1 (ja) 蛍光体分散液、及びこれを用いたled装置の製造方法
WO2013051281A1 (ja) Led装置の製造方法、およびそれに用いる蛍光体分散液
JP5999223B2 (ja) 発光装置の製造方法および蛍光体混合液
EP2940743A1 (en) Light emitting device
WO2014027460A1 (ja) 蛍光体分散液の製造方法、及びled装置の製造方法
JP6076909B2 (ja) 蛍光体分散液、およびled装置の製造方法
WO2013121903A1 (ja) 波長変換素子及びその製造方法、発光装置及びその製造方法
WO2012067200A1 (ja) 波長変換素子及びその製造方法、発光装置及びその製造方法
JP2014019844A (ja) 蛍光体分散液及びled装置の製造方法
JP5747994B2 (ja) 波長変換素子及びその製造方法、発光装置及びその製造方法
JP5803940B2 (ja) 発光装置およびその製造方法
WO2013046662A1 (ja) Led装置
WO2014103330A1 (ja) 蛍光体分散液、led装置およびその製造方法
JP2014160713A (ja) Led装置の製造方法
JP5870736B2 (ja) 蛍光体分散液の製造方法、およびそれを用いてled装置を製造する方法
JP2014127495A (ja) Led装置、及びその製造方法
JP6237631B2 (ja) Led装置の製造方法
JP5765428B2 (ja) Led装置の製造方法
JP5862675B2 (ja) 発光装置の製造方法
WO2012090999A1 (ja) 発光装置の製造方法
WO2013187067A1 (ja) Led装置、及びその製造方法
JP2013258339A (ja) 発光装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537425

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012838811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012838811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14349172

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE