WO2013121903A1 - 波長変換素子及びその製造方法、発光装置及びその製造方法 - Google Patents

波長変換素子及びその製造方法、発光装置及びその製造方法 Download PDF

Info

Publication number
WO2013121903A1
WO2013121903A1 PCT/JP2013/052433 JP2013052433W WO2013121903A1 WO 2013121903 A1 WO2013121903 A1 WO 2013121903A1 JP 2013052433 W JP2013052433 W JP 2013052433W WO 2013121903 A1 WO2013121903 A1 WO 2013121903A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting device
wavelength conversion
light emitting
light
manufacturing
Prior art date
Application number
PCT/JP2013/052433
Other languages
English (en)
French (fr)
Inventor
後藤 賢治
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to EP13749248.4A priority Critical patent/EP2816620A4/en
Priority to US14/377,649 priority patent/US20160013368A1/en
Publication of WO2013121903A1 publication Critical patent/WO2013121903A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Definitions

  • the present invention relates to a light emitting device having a light emitting element and a wavelength conversion unit that converts the wavelength of light emitted from the light emitting element.
  • phosphors such as YAG (yttrium, aluminum, garnet) phosphors are arranged in the vicinity of gallium nitride (GaN) blue LED (Light Emitting Diode) chips, and blue light emitted from the blue LED chips.
  • GaN gallium nitride
  • a technique for obtaining a white light emitting device by color mixture of yellow light emitted when the phosphor receives blue light and emits secondary light is widely used.
  • a technique for obtaining a white light emitting device by mixing blue light emitted from a blue LED chip and red light and green light emitted by each phosphor receiving blue light and secondary light emission is also used. Yes.
  • Such white light emitting devices have various uses, for example, there is a demand as an alternative to fluorescent lamps and incandescent lamps. In addition, it is also being used for lighting devices such as automobile headlights that require extremely high luminance. Since the headlight is required to have high visibility with respect to an object such as a distant sign, high performance is also required in terms of the color of the white light emitting device and the color uniformity of the irradiation range.
  • a method of sealing an LED chip or a mounting portion using a transparent resin in which a phosphor is dispersed is generally used.
  • the specific gravity of the phosphor particles is larger than that of the transparent resin.
  • the phosphor settles before the transparent resin is cured, and color unevenness occurs during light emission.
  • the luminous efficiency is lowered due to the sulfuration and discoloration of the metal electrode and the metal reflection part.
  • Patent Document 1 discloses a light-emitting device that attempts to suppress sedimentation and segregation of a phosphor by using a silicone resin having a viscosity of 100 to 10,000 mPa ⁇ s when cured as a sealing body.
  • Patent Document 2 discloses a light-emitting device in which a liquid translucent sealing material is added with a lipophilic compound obtained by adding an organic cation to a layered compound mainly composed of a viscous mineral as an anti-settling material for a phosphor, and the light emitting device A manufacturing method is disclosed.
  • Patent Document 3 discloses a configuration in which a barrier layer for preventing sulfidation is provided.
  • Patent Documents 1 and 2 the problem of uneven color due to sedimentation of the phosphor is improved to some extent.
  • phosphors are dispersed in a resin in any document, when used in a high-luminance lighting device as described above, the heat generated by the LED itself or the heat generated by the phosphor excited by the LED light is used. As a result, the resin is deteriorated and colored, whereby the transmittance may be reduced, and problems such as uneven color and surface scattering due to deformation of the resin may occur.
  • the technique of Patent Document 3 is not sufficient as a measure for preventing sulfidation.
  • An object of the present invention is to reduce the occurrence of color unevenness to the extent that it can be sufficiently used in applications where color uniformity is required, such as lighting, and to improve the antisulfurization performance and light extraction efficiency. It is an object of the present invention to provide a manufacturing method, a wavelength conversion element thereof, a manufacturing method of a light emitting device, and the light emitting device.
  • the present invention provides a step of applying a first liquid mixture containing a phosphor, swellable particles, inorganic particles, and a first solvent on a light emitting element, and a translucent ceramic material on the step. And a step of applying and heating the second mixed liquid containing the second solvent, and further applying a step of applying and heating the silicone sealing agent thereon.
  • the second mixed liquid contains water and / or inorganic particles.
  • the inorganic particles are preferably a metal oxide.
  • the silicone sealant is preferably phenyl silicone.
  • the light-emitting device of the present invention is manufactured by any one of the above-described methods for manufacturing a light-emitting device.
  • the present invention also includes a step of applying a first liquid mixture containing a phosphor, swellable particles, inorganic particles, and a first solvent to at least one surface of a translucent substrate, and a translucent ceramic material and It is set as the manufacturing method of the wavelength conversion element which has the process of apply
  • the second mixed liquid contains water and / or inorganic particles.
  • the inorganic particles are preferably a metal oxide.
  • the silicone sealing agent is preferably phenyl silicone.
  • the wavelength conversion element of the present invention is manufactured by the above-described method for manufacturing a wavelength conversion element.
  • the method for manufacturing a light emitting device of the present invention is obtained by adding a step of installing the wavelength converting element on the light emitting surface side of the light emitting element in the above method for manufacturing a wavelength converting element.
  • the light-emitting device of the present invention is manufactured by the above-described light-emitting device manufacturing method.
  • the present invention it is possible to reduce the occurrence of color unevenness to the extent that it can be sufficiently used in applications where color uniformity is required, such as lighting, and to improve the antisulfurization performance and light extraction efficiency.
  • FIG. 1 is a schematic cross-sectional view of a light emitting device according to a first embodiment of the present invention.
  • a metal part 2 is provided at the bottom of an LED substrate 1 having a concave cross section, and an LED element 3 is disposed on the metal part 2 as a light emitting element.
  • the LED element 3 is provided with a protruding electrode 4 on a surface facing the metal part 2, and the metal part 2 and the LED element 3 are connected via the protruding electrode 4 (flip chip type).
  • a blue LED element is used as the LED element 3.
  • a blue LED element is formed by laminating an n-GaN-based cladding layer, an InGaN light-emitting layer, a p-GaN-based cladding layer, and a transparent electrode on a sapphire substrate.
  • the wavelength conversion part 6 is provided in the recessed part of the LED board 1 so that the LED element 3 may be covered.
  • the wavelength conversion unit 6 includes a wavelength conversion layer 7 that covers the LED element 3, a ceramic layer 8 formed on the wavelength conversion layer 7, and a silicone sealing layer 11 formed on the ceramic layer 8. .
  • the wavelength conversion layer 7 is a part that converts light having a predetermined wavelength emitted from the LED element 3 into light having a different wavelength, and is excited by the wavelength from the LED element 3 to emit fluorescence having a wavelength different from the excitation wavelength. Contains the body.
  • the ceramic layer 8 is a layer for sealing and protecting the wavelength conversion layer 7, and has translucency that transmits at least the light of the LED element 3 and the fluorescence of the wavelength conversion layer 7.
  • the silicone sealing layer 11 is a layer intended to improve gas barrier properties, physical strength, light extraction efficiency, and the like, and has a light-transmitting property that transmits at least the light of the LED element 3 and the fluorescence of the wavelength conversion layer 7. .
  • the configuration and formation method of the wavelength conversion unit 6 (the wavelength conversion layer 7, the ceramic layer 8, and the silicone sealing layer 11) and the method for manufacturing the light emitting device 100 will be described in detail.
  • the wavelength conversion layer 7 is obtained by applying a mixed liquid (first mixed liquid) containing at least a phosphor, swellable particles, inorganic particles (inorganic fine particles), and a solvent (first solvent) and heating (drying). Is a layer.
  • first mixed liquid contains a light-transmitting ceramic material as a binder
  • the chemical reaction occurs over time from the preparation and the viscosity increases, and after 168 hours from the preparation, the viscosity becomes unfavorable for application.
  • the first mixed liquid preferably has a small amount of the binder component, and more preferably does not contain the binder component.
  • the ceramic layer 8 is a transparent ceramic layer (glass body) obtained by applying a mixed liquid (second mixed liquid) containing at least a translucent ceramic material and a solvent (second solvent) and heating (firing). .
  • the second liquid mixture may contain swellable particles, water, inorganic particles, and the like.
  • the silicone sealing layer 11 is a layer obtained by applying a silicone sealing agent containing a silicone resin and heating (curing) it. (Phosphor)
  • the phosphor is excited by the wavelength of the light emitted from the LED element 3 (excitation wavelength) and emits fluorescence having a wavelength different from the excitation wavelength.
  • a YAG (yttrium, aluminum, garnet) phosphor that converts blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element into yellow light (wavelength 550 nm to 650 nm) is used.
  • Such phosphors use oxides of Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures, and are mixed well in a stoichiometric ratio.
  • a mixed raw material is obtained.
  • a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of a solution obtained by dissolving a rare earth element of Y, Gd, Ce, or Sm in an acid with a stoichiometric ratio with oxalic acid, and aluminum oxide or gallium oxide.
  • an appropriate amount of fluoride such as ammonium fluoride is mixed with the obtained mixed raw material as a flux and pressed to obtain a molded body.
  • the obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the phosphor emission characteristics.
  • the YAG phosphor is used.
  • the type of the phosphor is not limited to this, and other phosphors such as a non-garnet phosphor containing no Ce are used. You can also.
  • the larger the particle size of the phosphor the higher the light emission efficiency (wavelength conversion efficiency), but the gap formed at the interface with the swellable particles becomes larger, and the film strength of the formed wavelength conversion layer 7 decreases. Therefore, in consideration of the size of the gap generated at the interface between the luminous efficiency and the swellable particles, it is preferable to use one having a volume average particle size of 1 ⁇ m to 50 ⁇ m.
  • the volume average particle diameter of the phosphor can be measured by, for example, a Coulter counter method or a laser diffraction / scattering particle diameter measuring apparatus. (Swellable particles)
  • swellable particles fluoride particles such as magnesium fluoride, aluminum fluoride, and calcium fluoride, layered silicate minerals, imogolite, and allophane can be used.
  • layered silicate mineral a swellable clay mineral having a structure such as a mica structure, a kaolinite structure, or a smectite structure is preferable, and a smectite structure rich in swelling properties is more preferable. Since the layered silicate mineral has a card house structure in the mixed solution, it has an effect of greatly increasing the viscosity of the mixed solution in a small amount. Further, since the layered silicate mineral has a flat plate shape, there is an effect of improving the film strength of the wavelength conversion layer 7.
  • the mineral is a solid substance having a certain chemical composition and crystal structure, which is a natural or synthetic inorganic substance.
  • layered silicate minerals include natural or synthetic hectrite, saponite, stevensite, hydelite, montmorillonite, nontrinite, bentonite, and other smectite clay minerals; Examples thereof include swellable mica genus clay minerals such as silicic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite, vermiculite and kaolinite, and mixtures thereof.
  • the content of the swellable particles in the first mixed solution is less than 0.1% by weight, the ratio of solid components such as phosphors, fine particles, and metal alkoxide in the first mixed solution increases, and the dispersibility thereof. Gets worse.
  • the content of the swellable particles exceeds 60% by weight, the scattering of excitation light by the swellable particles is often generated, the emission luminance of the wavelength conversion layer 7 is lowered, and the translucency of the ceramic layer 8 is lowered. Therefore, the content of the swellable particles in the first mixed solution is preferably 0.1% by weight to 60% by weight, and more preferably 0.5% by weight to 30% by weight.
  • the swelling particles have a thickening effect, but if the ratio in the wavelength conversion layer 7 or the ceramic layer 8 is high, the viscosity of the liquid mixture does not increase.
  • the viscosity of the liquid mixture is not limited to other solvents, phosphors, etc. Determined by the ratio with the ingredients.
  • the surface of the swellable particles modified with an ammonium salt or the like can be used as appropriate. (solvent)
  • water As the solvent, water, an organic solvent, or a mixed solvent of water and an organic solvent can be used.
  • Water has a role of swelling hydrophilic swellable particles.
  • the addition of water to the fluoride particles increases the viscosity of the liquid mixture, so that sedimentation of the phosphor can be suppressed.
  • swelling since there exists a possibility that swelling may be inhibited when the impurity is contained in water, it is necessary to use the pure water which does not contain an impurity as the water to add.
  • the organic solvent is used for improving the wettability of the mixed solution and adjusting the viscosity.
  • the addition of an organic solvent to the fluoride particles increases the viscosity of the liquid mixture, so that sedimentation of the phosphor can be suppressed.
  • water is added to the hydrophilic swellable particles to swell, it is preferable to use alcohols such as methanol, ethanol, propanol, and butanol having excellent compatibility with water as the organic solvent. Two or more kinds of alcohols may be combined.
  • the inorganic particles have a filling effect that fills gaps formed at the interface between the phosphor and the swellable particles, and a thickening effect that increases the viscosity of the mixed solution before heating.
  • the inorganic particles used in the present invention include metal oxide fine particles such as silicon oxide, titanium oxide, zinc oxide, aluminum oxide, and zirconium oxide. In consideration of compatibility with ceramic materials and solvents, inorganic particles whose surfaces are treated with a silane coupling agent or a titanium coupling agent can be used as appropriate.
  • the content of the inorganic particles in the wavelength conversion layer 7 is less than 0.5% by weight, the ratio of solid components such as phosphors in the first mixed solution increases, and the dispersibility thereof deteriorates to reduce the content during coating. Handling becomes difficult, and it becomes difficult to apply with uniform chromaticity.
  • the content of the inorganic particles exceeds 70% by weight, the scattering of excitation light by the inorganic particles occurs frequently, and the light emission luminance of the wavelength conversion layer 7 decreases. Therefore, the content of the inorganic particles in the first mixed solution is preferably 0.5% by weight to 70% by weight, more preferably 0.5% by weight to 65% by weight, and more preferably 1% by weight to 60% by weight. The following is more preferable.
  • the inorganic particles have a thickening effect, but if the ratio in the wavelength conversion layer 7 is high, the viscosity of the liquid mixture does not increase.
  • the viscosity of the liquid mixture is a ratio with other components such as a solvent and a phosphor. Determined.
  • the particle size distribution of the inorganic particles is not particularly limited, and may be distributed over a wide range or may be distributed over a relatively narrow range.
  • the central particle diameter of the primary particle diameter is 0.001 ⁇ m or more and 50 ⁇ m or less and is preferably smaller than the phosphor.
  • the average particle diameter of the inorganic particles can be measured, for example, by a Coulter counter method. (Translucent ceramic material)
  • the translucent ceramic material is a ceramic precursor, and an inorganic or organic metal compound can be used.
  • the metal compound include metal alkoxides, metal acetylacetonates, metal carboxylates, metal nitrates, metal oxides, and the like, and metal alkoxides that are easily gelled by hydrolysis and polymerization reaction are preferable.
  • the metal alkoxide may be a single molecule such as tetraethoxysilane, or may be a polysiloxane in which an organic siloxane compound is linked in a chain or a ring, but a polysiloxane that increases the viscosity of the mixed solution is preferable.
  • a translucent glass body can be formed, but it is preferable to contain a silicon
  • the silicone sealant a resin having a structure in which silicon atoms having an organic group such as an alkyl group or an aryl group are alternately bonded to oxygen atoms as a skeleton can be used.
  • the silicone sealing layer 11 can be formed by applying phenyl silicone as a silicone sealing agent on the ceramic layer 8 and heating at 150 ° C. for 1 hour. (Procedure for adjusting the first mixture)
  • a phosphor, swellable particles, inorganic particles (inorganic fine particles), and a solvent (first solvent) may be simply mixed.
  • the preferred viscosity of the first mixed liquid is 10 to 1000 mPa ⁇ s, more preferred viscosity is 12 to 800 mPa ⁇ s, and most preferred viscosity is 20 to 600 mPa ⁇ s.
  • swellable particles, water, and inorganic particles may be mixed in a solution in which a translucent ceramic material is dispersed in a solvent (second solvent) as necessary.
  • a solvent second solvent
  • the sol precursor solution may be heated to be in a gel state and further fired to form a transparent ceramic layer by a so-called sol-gel method.
  • the transparent ceramic layer may be formed directly without forming.
  • a metal alkoxide for example, a metal alkoxide, water for hydrolysis, a solvent, a catalyst, and the like.
  • the catalyst hydrochloric acid, sulfuric acid, nitric acid, acetic acid, hydrofluoric acid, ammonia and the like can be used.
  • the heating temperature of the gel is preferably 120 to 250 ° C., and preferably 120 to 200 ° C. from the viewpoint of further suppressing the deterioration of the LED element 3.
  • the heating temperature after coating is preferably 120 to 500 ° C., and from the viewpoint of further suppressing the deterioration of the LED element 3, 120 to 350 ° C. is preferable.
  • the coating device 10 mainly includes a movable table 20 that can move up and down, left and right, and back and forth, and a spray device 30 that can spray the first mixed liquid.
  • the spray device 30 is disposed above the movable table 20.
  • the spray device 30 has a nozzle 32 into which air is sent, and an air compressor (not shown) for sending air is connected to the nozzle 32.
  • the hole diameter at the tip of the nozzle 32 is 20 ⁇ m to 2 mm, preferably 0.1 to 0.3 mm.
  • the nozzle 32 can move up and down, left and right, and back and forth, like the moving table 20.
  • the spray gun W-101-142BPG manufactured by Anest Iwata is used as the nozzle 32, and the OFP-071C manufactured by Anest Iwata is used as the compressor.
  • the angle of the nozzle 32 can be adjusted, and the nozzle 32 can be tilted with respect to the movable table 20 (or the LED substrate 1 installed on the moving table 20).
  • the angle of the nozzle 32 with respect to the injection target (LED substrate 1) is preferably in the range of 0 to 60 ° when the vertical direction from the injection target is 0 °.
  • a tank 36 is connected to the nozzle 32 via a connecting pipe 34.
  • a first mixed solution 40 is stored in the tank 36.
  • the tank 36 contains a stirring bar, and the first mixed solution 40 is constantly stirred. If the 1st liquid mixture 40 is stirred, sedimentation of the fluorescent substance with large specific gravity can be suppressed, and the state which the fluorescent substance dispersed in the 1st liquid mixture 40 can be hold
  • Anest Iwata PC-51 is used as the tank.
  • a plurality of LED substrates 1 (on which the LED elements 3 are mounted in advance) are installed on the moving table 20, and the positional relationship between the LED substrate 1 and the nozzle 32 of the spray device 30. Is adjusted (position adjustment step).
  • the LED substrate 1 is installed on the moving table 20, and the LED substrate 1 and the tip of the nozzle 32 are arranged to face each other.
  • the first mixed solution 40 can be uniformly applied as the distance between the LED substrate 1 and the nozzle 32 increases, but the film strength also tends to decrease. It is suitable to keep the distance in the range of 3 to 30 cm.
  • the first mixed solution 40 is sprayed from the nozzle 32 and the first mixed solution 40 is applied to the LED substrate 1 while the LED substrate 1 and the nozzle 32 are moved relative to each other (spraying / coating step).
  • the moving base 20 and the nozzle 32 are moved to move the LED substrate 1 and the nozzle 32 back and forth and right and left.
  • Either one of the moving table 20 and the nozzle 32 may be fixed, and the other may be moved back and forth and left and right.
  • a method of applying a plurality of LED elements 3 in a direction orthogonal to the moving direction of the moving table 20 and moving the nozzle 32 in a direction orthogonal to the moving direction of the moving table 20 is also preferably used.
  • the first mixed solution 40 is sprayed from the tip of the nozzle 32 toward the LED substrate 1.
  • the distance between the LED substrate 1 and the nozzle 32 can be adjusted in the above range in consideration of the pressure of the air compressor.
  • the pressure of the compressor is adjusted so that the pressure (spray pressure) at the inlet (tip) of the nozzle 32 is 0.14 MPa.
  • the first mixed liquid 40 can be applied onto the LED element 3.
  • a nozzle that can control the dropping amount of the coating liquid and that does not cause nozzle clogging such as a phosphor is used.
  • a non-contact jet dispenser manufactured by Musashi Engineering Co., Ltd. or its dispenser can be used.
  • an ink jet apparatus a nozzle that can control the discharge amount of the coating liquid and does not cause clogging of nozzles such as phosphors is used.
  • an ink jet apparatus manufactured by Konica Minolta IJ can be used.
  • the wavelength conversion layer 7 having a uniform thickness (uniform phosphor distribution) is formed on the LED element 3 by heating (drying) the first mixed solution thus applied.
  • a predetermined amount of the second mixed liquid is sprayed on the wavelength conversion layer 7 by a spray coating method.
  • the coating apparatus 10 can also be used here. Part of the applied second mixed solution penetrates into the gaps between the phosphor particles and the swellable particles.
  • the ceramic layer 8 is formed by heating (baking) this.
  • the ceramic acts as a binder for the phosphor particles, the swellable particles, and the LED element 3.
  • the ceramic layer 8 is clearly formed on the wavelength conversion layer 7 and has a function of sealing the wavelength conversion layer 7.
  • the thickness of the wavelength conversion layer 7 is preferably 5 ⁇ m or more and 500 ⁇ m or less.
  • a predetermined amount of silicone sealant is applied onto the ceramic layer 8 by a dispenser.
  • the silicone sealing layer 11 is formed by heating (curing) this.
  • FIG. 3 is a schematic sectional view of a light emitting device according to a second embodiment of the present invention.
  • a metal part 2 is provided on a flat LED substrate 1, and the LED element 3 is disposed on the metal part 2 as a light emitting element.
  • the LED element 3 is provided with a protruding electrode 4 on a surface facing the metal part 2, and the metal part 2 and the LED element 3 are connected via the protruding electrode 4 (flip chip type).
  • the wavelength conversion element 9 includes a glass substrate 5 and a wavelength conversion unit 6 formed on the upper surface of the glass substrate 5.
  • the shape of the glass substrate 5 is not particularly limited, and a flat plate shape, a lens shape, or the like can be adopted.
  • the wavelength conversion unit 6 may be formed on the lower surface of the glass substrate 5.
  • the wavelength conversion unit 6 includes a wavelength conversion layer 7 formed on the glass substrate 5, a ceramic layer 8 formed on the wavelength conversion layer 7, and a silicone sealing layer 11 formed on the ceramic layer 8. is doing.
  • a predetermined amount of the first mixed liquid is applied to one side of the glass substrate 5, and heated to form the wavelength conversion layer 7 having a predetermined thickness.
  • a predetermined amount of the second liquid mixture is applied to the upper surface of the wavelength conversion layer 7. Part of the applied second mixed solution penetrates into the gaps between the phosphor particles and the swellable particles.
  • the ceramic layer 8 is formed by baking the glass substrate 5 with which the 2nd liquid mixture was apply
  • a predetermined amount of silicone sealant is applied to the upper surface of the ceramic layer 8.
  • the silicone sealing layer 11 is formed by heating the glass substrate 5 to which the silicone sealing agent is applied.
  • the application method of the first and second mixed liquids and the silicone sealant is not particularly limited, and various conventionally known methods such as a bar coating method, a spin coating method, and a spray coating method can be used. .
  • the light-emitting device 100 can be manufactured by cut
  • size for example, 2x2 mm
  • the glass substrate 5 is used in the said embodiment, if it is a board
  • FIG. 4 is a schematic cross-sectional view of a light emitting device according to a third embodiment of the present invention.
  • the metal part 2 is provided at the bottom of the LED substrate 1 having a concave cross section
  • the LED element 3 is disposed on the metal part 2
  • a lid is provided on the concave part of the LED substrate 1.
  • a wavelength conversion element 9 is provided. Since the configuration of other parts including the wavelength conversion element 9 is the same as that of the second embodiment, the description thereof is omitted.
  • the LED element 3 is disposed in the concave portion of the LED substrate 1, and the wavelength conversion element 9 used in the second embodiment is bonded to the upper end of the side wall of the LED substrate 1 so as to cover the concave portion. Can be manufactured.
  • light emitted from the side surface of the LED element 3 is also efficiently converted into fluorescence as compared with the second embodiment.
  • the shape and size of the concave portion of the LED substrate 1 can be appropriately designed according to the specifications of the light emitting device 102.
  • the side surface of the recess may be tapered.
  • a configuration in which the light emission efficiency of the light emitting device 102 is increased by using the inner surface of the recess as a reflection surface may be employed.
  • the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention.
  • a light emitting device that emits white light by using a blue LED and a phosphor together has been described as an example.
  • a green LED or a red LED and a phosphor are used in combination.
  • Examples 1 to 6 are examples of the light emitting device 100 of the first embodiment
  • Comparative Examples 1 and 2 are examples of the light emitting device having the same shape as the light emitting device 100 of the first embodiment.
  • examples of the second and third embodiments are omitted, results similar to those of Examples 1 to 6 were obtained.
  • the phosphor used in each example and comparative example is a mixture of 7.41 g of Y 2 O 3 , 4.01 g of Gd 2 O 3 , 0.63 g of CeO 2 , and 7.77 g of Al 2 O 3 as phosphor raw materials. Then, an aluminum crucible mixed with an appropriate amount of ammonium fluoride as a flux is filled in an aluminum crucible and baked at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours in a reducing atmosphere in which hydrogen-containing nitrogen gas is circulated. Thus, a fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ) was obtained.
  • the obtained fired product was pulverized, washed, separated, and dried to obtain yellow phosphor particles having a volume average particle diameter of about 1 ⁇ m.
  • the emission wavelength of excitation light with a wavelength of 465 nm was measured, it had a peak wavelength at a wavelength of approximately 570 nm.
  • the number of g is the mass ratio of each component in the liquid and is different from the amount actually prepared.
  • a first mixed solution was prepared by mixing 0.05 g of a silicic acid-treated silicic acid (manufactured by Nippon Aerosil Co., Ltd.) and 1.5 g of propylene glycol as a solvent.
  • This first mixed solution is sprayed onto the concave portion of the LED substrate 1 and the surface of the LED element 3 at a spray pressure of 0.2 MPa and a moving speed of 100 mm / s using the coating apparatus 10 and heated at 50 ° C. for 1 hour.
  • the wavelength conversion layer 7 was produced by drying.
  • 1 g of a polysiloxane dispersion polysiloxane 14 wt%, isopropyl alcohol 86 wt%) and isopropyl alcohol 0.3 g were mixed to prepare a second mixed solution.
  • the wavelength conversion layer 7 is formed by spraying the second mixed liquid on the wavelength conversion layer 7 using the coating apparatus 10 so as to have a maximum film thickness that does not cause cracks after baking, and heating and baking at 150 ° C. for 1 hour.
  • a ceramic layer 8 was produced while fixing the phosphor.
  • phenyl silicone (KER-6000; manufactured by Shin-Etsu Chemical Co., Ltd.) is applied onto the ceramic layer 8 by using a dispenser, and heated at 150 ° C. for 1 hour to cure, thereby producing the silicone sealing layer 11.
  • the light emitting device 100 was obtained.
  • a spray pressure and the moving speed of the moving stand 20 are adjusted suitably.
  • smectite (Lucentite SWN, manufactured by Corp Chemical Co., hereinafter abbreviated as SWN) which is a swellable particle, 0.05 g of RX300 which is an inorganic particle, and a solvent
  • a first mixed liquid was prepared by mixing 1.5 g of propylene glycol.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • 1 g of a polysiloxane dispersion and 0.3 g of a TiO 2 slurry dispersion having an average particle diameter of 20 nm were mixed to prepare a second mixture.
  • the ceramic layer 8 was produced on the same conditions as Example 1 using this 2nd liquid mixture.
  • the silicone sealing layer 11 was produced on the same conditions as Example 1 using phenyl silicone, and the light-emitting device 100 was obtained.
  • First mixing is performed by mixing 1 g of the phosphor prepared by the above preparation example, 0.05 g of synthetic mica that is a swellable particle, 0.05 g of RX300 that is an inorganic particle, and 1.5 g of propylene glycol that is a solvent.
  • a liquid was prepared.
  • a wavelength conversion layer 7 was produced under the same conditions as in Example 1 using this first mixed solution.
  • the ceramic layer 8 was produced on the same conditions as Example 1 using this 2nd liquid mixture.
  • the silicone sealing layer 11 was produced using phenyl silicone under the same conditions as in Example 1, and the light emitting device 100 was obtained.
  • First mixing is performed by mixing 1 g of the phosphor prepared by the above preparation example, 0.05 g of synthetic mica that is a swellable particle, 0.05 g of RX300 that is an inorganic particle, and 1.5 g of propylene glycol that is a solvent. A liquid was prepared. Using this first mixed solution, a wavelength conversion layer was produced under the same conditions as in Example 1. Next, 1 g of a polysiloxane dispersion and 0.3 g of isopropyl alcohol were mixed to prepare a second mixed solution. Using this second mixed solution, a ceramic layer 8 was produced under the same conditions as in Example 1, and a light emitting device 100 was obtained. (Evaluation, examination)
  • FIG. 5 shows the result.
  • the luminous efficiency was evaluated by measuring the total luminous flux of the light emitting device with a spectral radiance meter (CS-2000, manufactured by Konica Minolta Sensing) and making a relative comparison using the total luminous flux of Comparative Example 1 as a reference.
  • CS-2000 spectral radiance meter
  • the evaluation of the resistance to sulfuration was performed by measuring the total luminous flux of the light emitting device before and after the degradation test, and comparing the total luminous flux of each light emitting device after the degradation test relative to the total luminous flux of each light emitting device before the degradation test.
  • the deterioration test was performed by putting the light emitting device and sulfur powder in a sealed container and leaving them at 80 ° C. for one day.
  • the evaluation of chromaticity is a comparison and evaluation of chromaticity uniformity.
  • the chromaticity of light emission of each light-emitting device is measured using a spectral radiance meter (CS-1000A, manufactured by Konica Minolta Sensing). Evaluation was performed as follows. Five samples of each example and comparative example were prepared, and the chromaticity was measured for each sample, and the standard deviation of chromaticity was determined. The average chromaticity standard deviation is greater than 0.01 and less than or equal to 0.02 with no practical chromaticity variation (can be used sufficiently in applications where color uniformity is required, such as lighting. "O” as the degree), and "X” as a value larger than 0.02 as impractical.
  • Comparative Example 1 does not have the wavelength conversion layer 7 and the ceramic layer 8 referred to in the above embodiment, and a silicone sealing layer containing a phosphor is provided. As a result, the phosphor has settled and the chromaticity varies greatly. Moreover, it cannot be said that the light extraction efficiency (light emission efficiency) is very good, and the sulfuration resistance is low.
  • Comparative Example 2 has the wavelength conversion layer 7 and the ceramic layer 8 referred to in the above embodiment, the phosphors are uniformly dispersed, and the variation in chromaticity is within a practically acceptable range.
  • the silicone sealing layer 11 is not provided, the sulfurization resistance is low, and the luminous efficiency is worse than that of Comparative Example 1 having the silicone sealing layer.
  • Examples 1 to 6 have the wavelength conversion layer 7 and the ceramic layer 8, the phosphors are uniformly dispersed, and variations in chromaticity are in a range where there is no practical problem. Furthermore, since it has the silicone sealing layer 11, it has high sulfidation resistance and good luminous efficiency. Examples 1 to 6 show that the present invention can be carried out using various swellable particles, inorganic particles, and a translucent ceramic material.
  • the wavelength conversion unit 6 reduces the occurrence of color unevenness to an extent that it can be sufficiently used in applications where color uniformity is required, such as illumination, and has anti-sulfurization performance and light.
  • the extraction efficiency can be improved.
  • LED board 3 LED element (light emitting element) 5 Glass substrate (translucent substrate) 6 Wavelength Conversion Unit 7 Wavelength Conversion Layer 8 Ceramic Layer 9 Wavelength Conversion Element 11 Silicone Sealing Layer 40 First Mixed Liquid 100, 101, 102 Light-Emitting Device

Abstract

 照明のように色の均一性が求められる用途の発光装置において、十分使用可能な程度に色むらの発生を低減すること、さらに硫化防止性能及び光取り出し効率を向上させるため、発光装置は、蛍光体、膨潤性粒子、無機粒子、及び第1溶媒を含む第1混合液を発光素子上に塗布する工程と、その上に、透光性セラミック材料及び第2溶媒を含む第2混合液を塗布して加熱する工程と、さらにその上に、シリコーン封止剤を塗布して加熱する工程と、を有する製造方法によって製造されるものとする。

Description

波長変換素子及びその製造方法、発光装置及びその製造方法
 本発明は発光素子と、発光素子から出射される光の波長を変換する波長変換部とを有する発光装置に関する。
 近年、窒化ガリウム(GaN)系の青色LED(Light Emitting Diode:発光ダイオード)チップの近傍にYAG(イットリウム・アルミニウム・ガーネット)蛍光体等の蛍光体を配置し、青色LEDチップから出射される青色光と、蛍光体が青色光を受けて二次発光することにより出射される黄色光との混色により白色発光装置を得る技術が広く用いられている。また、青色LEDチップから出射される青色光と、各蛍光体が青色光を受けて二次発光することにより出射される赤色光及び緑色光との混色により白色発光装置を得る技術も用いられている。
 このような白色発光装置には様々な用途があり、例えば、蛍光灯や白熱電灯の代替品としての需要がある。また、自動車のヘッドライト等の非常に高い輝度が求められる照明装置へも使われつつある。ヘッドライトには、遠方の標識等の対象物に対する高い視認性が求められるため、白色発光装置の色味や照射範囲の色の均一性においても高い性能が求められる。
 このような白色発光装置では、蛍光体を分散させた透明樹脂を用いてLEDチップや実装部を封止する方法が一般的である。しかしながら、上記のような高レベルの色の均一性が求められる用途において、蛍光体を単に透明樹脂中に分散させてLEDチップを封止する構成では、蛍光体粒子の比重が透明樹脂より大きいため、透明樹脂が硬化する前に蛍光体が沈降し、発光時に色むら等を生じるという問題がある。また、使用環境によっては金属電極や金属反射部が硫化して変色することで発光効率が低下するという問題もある。
 そこで、蛍光体の沈降を抑制して色むら等の発生を防止する技術が種々提案されている。例えば特許文献1には、樹脂硬化時の粘度が100~10000mPa・sのシリコーン樹脂を封止体として用いることにより、蛍光体の沈降や偏析を抑制しようとする発光装置が開示されている。
 また特許文献2には、液状の透光性封止材料に、蛍光体の沈降防止材として粘度鉱物を主とする層状化合物に有機カチオンを添加してなる親油性化合物を加えた発光装置及びその製造方法が開示されている。
 また特許文献3には、硫化防止用のバリア層を設ける構成が開示されている。
特開2002-314142号公報 特開2004-153109号公報 特開2011-96842号公報
 特許文献1、2の技術によれば、蛍光体の沈降による色むらの問題については、ある程度改善される。しかしながら、何れの文献でも蛍光体を樹脂内に分散させているため、上記のような高輝度の照明装置に用いる場合、LED自身の発熱やLEDの光により励起された蛍光体からの発光による熱により、樹脂が劣化して着色することで透過率が低下したり、樹脂の変形による色むらや表面散乱といった問題が生じるおそれがある。また、高輝度なLEDではなくても長期間の使用に伴って同様の問題が生じるおそれがある。また、特許文献3の技術では硫化防止対策として十分でない。
 本発明は、照明のように色の均一性が求められる用途において十分使用可能な程度に色むらの発生を低減すること、硫化防止性能及び光取り出し効率を向上させることを課題とし、波長変換素子の製造方法、その波長変換素子、発光装置の製造方法、その発光装置をそれぞれ提供することを目的とする。
 上記目的を達成するために本発明は、蛍光体、膨潤性粒子、無機粒子、及び第1溶媒を含む第1混合液を発光素子上に塗布する工程と、その上に、透光性セラミック材料及び第2溶媒を含む第2混合液を塗布して加熱する工程と、さらにその上に、シリコーン封止剤を塗布して加熱する工程と、を有する発光装置の製造方法とする。
 上記の発光装置の製造方法において、前記第2混合液が水及び/又は無機粒子を含むことが好ましい。
 また上記の発光装置の製造方法において、前記無機粒子が金属酸化物であることが好ましい。
 また上記の発光装置の製造方法において、前記シリコーン封止剤がフェニルシリコーンであることが好ましい。
 また本発明の発光装置は、上記の発光装置の製造方法の何れかによって製造されたものである。
 また本発明は、蛍光体、膨潤性粒子、無機粒子、及び第1溶媒を含む第1混合液を透光性基板の少なくとも片面に塗布する工程と、その上に、透光性セラミック材料及び第2溶媒を含む第2混合液を塗布して加熱する工程と、さらにその上に、シリコーン封止剤を塗布して加熱する工程と、を有する波長変換素子の製造方法とする。
 上記の波長変換素子の製造方法において、前記第2混合液が水及び/又は無機粒子を含むことが好ましい。
 また上記の波長変換素子の製造方法において、前記無機粒子が金属酸化物であることが好ましい。
 また上記の波長変換素子の製造方法において、前記シリコーン封止剤がフェニルシリコーンであることが好ましい。
 また本発明の波長変換素子は、上記の波長変換素子の製造方法によって製造されたものである。
 また本発明の発光装置の製造方法は、上記の波長変換素子の製造方法において波長変換素子を発光素子の発光面側に設置する工程を加えたものである。
 また本発明の発光装置は、上記の発光装置の製造方法によって製造されたものである。
 本発明によると、照明のように色の均一性が求められる用途において十分使用可能な程度に色むらの発生を低減するとともに、硫化防止性能及び光取り出し効率を向上させることができる。
本発明の第1実施形態の発光装置の概略断面図である。 スプレーコート法を用いた塗布装置及び製造方法を概略的に説明するための模式図である。 本発明の第2実施形態の発光装置の概略断面図である。 本発明の第3実施形態の発光装置の概略断面図である。 実施例及び比較例における発光効率の評価、硫化耐性の評価及び色度の評価結果を示す図である。
 以下、本発明の波長変換素子及びそれを備えた発光装置の実施形態を、図面を参照しながら説明する。図1は、本発明の第1実施形態の発光装置の概略断面図である。図1に示すように、発光装置100は、断面凹状のLED基板1の底部にメタル部2が設けられ、メタル部2上に発光素子としてLED素子3を配置している。LED素子3は、メタル部2に対向する面に、突起電極4が設けられており、メタル部2とLED素子3とを突起電極4を介して接続している(フリップチップ型)。
 本実施形態では、LED素子3として青色LED素子を用いている。青色LED素子は、例えばサファイア基板上にn-GaN系クラッド層、InGaN発光層、p-GaN系クラッド層、及び透明電極を積層してなる。
 また、LED素子3を覆うようにLED基板1の凹部に波長変換部6が設けられている。波長変換部6は、LED素子3を覆う波長変換層7と、波長変換層7上に形成されたセラミック層8と、セラミック層8上に形成されたシリコーン封止層11とを有している。
 波長変換層7は、LED素子3から出射される所定波長の光を異なる波長の光に変換する部分であり、LED素子3からの波長により励起されて、励起波長と異なる波長の蛍光を出す蛍光体が含まれている。セラミック層8は、波長変換層7を封止して保護するための層であり、少なくともLED素子3の光及び波長変換層7の蛍光を透過する透光性を有する。シリコーン封止層11は、ガスバリア性向上、物理的強度向上、光取り出し効率向上などを目的とした層であり、少なくともLED素子3の光及び波長変換層7の蛍光を透過する透光性を有する。
 次に、波長変換部6(波長変換層7、セラミック層8及びシリコーン封止層11)の構成及び形成方法と、発光装置100の製造方法とについて詳述する。
 波長変換層7は、少なくとも蛍光体、膨潤性粒子、無機粒子(無機微粒子)、及び溶媒(第1溶媒)を含む混合液(第1混合液)を塗布し、加熱(乾燥)して得られる層である。ここで、第1混合液にバインダとなる透光性セラミック材料を含むと、調製から時間が経つと化学反応を起こして粘度が高くなり、調製から168時間後では塗布するのに好ましくない粘度にまで上昇する。すなわち、第1混合液にバインダ成分を含むと、第1混合液のポットライフが短くなってしまう。したがって、第1混合液は、バインダ成分の量が少ないことが好ましく、バインダ成分を含まないことがさらに好ましい。
 セラミック層8は、少なくとも透光性セラミック材料及び溶媒(第2溶媒)を含む混合液(第2混合液)を塗布し、加熱(焼成)して得られる透明性セラミック層(ガラス体)である。なお、第2混合液は膨潤性粒子、水、無機粒子などを含んでいてもよい。シリコーン封止層11は、シリコーン樹脂を含むシリコーン封止剤を塗布し、加熱(硬化)して得られる層である。
(蛍光体)
 蛍光体は、LED素子3からの出射光の波長(励起波長)により励起されて、励起波長と異なる波長の蛍光を出射するものである。本実施形態では、青色LED素子から出射される青色光(波長420nm~485nm)を黄色光(波長550nm~650nm)に変換するYAG(イットリウム・アルミニウム・ガーネット)蛍光体を使用している。
 このような蛍光体は、Y、Gd、Ce、Sm、Al、La、Gaの酸化物、または高温で容易に酸化物となる化合物を使用し、それらを化学量論比で十分に混合して混合原料を得る。或いは、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶液をシュウ酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。そして、得られた混合原料にフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し、成形体を得る。得られた成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成し、蛍光体の発光特性をもつ焼結体を得る。
 なお、本実施形態ではYAG蛍光体を使用しているが、蛍光体の種類はこれに限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体等の他の蛍光体を使用することもできる。また、蛍光体の粒径が大きいほど発光効率(波長変換効率)は高くなる反面、膨潤性粒子との界面に生じる隙間が大きくなって形成された波長変換層7の膜強度が低下する。従って、発光効率と膨潤性粒子との界面に生じる隙間の大きさを考慮し、体積平均粒径が1μm以上50μm以下のものを用いることが好ましい。蛍光体の体積平均粒径は、例えばコールターカウンター法やレーザー回折・散乱式粒径測定装置によって測定することができる。
(膨潤性粒子)
 膨潤性粒子としては、フッ化マグネシウム、フッ化アルミニウム、フッ化カルシウム等のフッ化物粒子、層状ケイ酸塩鉱物、イモゴライト、アロフェンなどを用いることができる。層状ケイ酸塩鉱物としては、雲母構造、カオリナイト構造、スメクタイト構造等の構造を有する膨潤性粘土鉱物が好ましく、膨潤性に富むスメクタイト構造がより好ましい。層状ケイ酸塩鉱物は、混合液中においてカードハウス構造をとるため、少量で混合液の粘度を大幅に増加させる効果がある。また、層状ケイ酸塩鉱物は平板状を呈するため、波長変換層7の膜強度を向上させる効果もある。
 ここでの鉱物とは、天然又は合成の無機質で一定の化学組成と結晶構造を有する固体物質であるとする。このような層状ケイ酸塩鉱物としては、天然または合成の、ヘクトライト、サポナイト、スチブンサイト、ハイデライト、モンモリロナイト、ノントライト、ベントナイト等のスメクタイト属粘土鉱物や、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母属粘土鉱物およびバーミキュラライトやカオリナイトまたはこれらの混合物が挙げられる。
 また、第1混合液中における膨潤性粒子の含有量が0.1重量%未満になると第1混合液中の蛍光体や微粒子、金属アルコキシドなどの固形成分の割合が高くなり、それらの分散性が悪化する。一方、膨潤性粒子の含有量が60重量%を超えると膨潤性粒子による励起光の散乱が多く発生し、波長変換層7では発光輝度が低下し、セラミック層8では透光性が低下する。従って、第1混合液において膨潤性粒子の含有量は0.1重量%以上60重量%以下とすることが好ましく、0.5重量%以上30重量%以下がより好ましい。
 膨潤性粒子には増粘効果があるが、波長変換層7やセラミック層8中での割合が高ければ混合液の粘度が高くなるわけではなく、混合液の粘度は溶媒、蛍光体など他の成分との比率で決まる。なお、溶媒との相溶性を考慮して、膨潤性粒子の表面をアンモニウム塩等で修飾(表面処理)したものを適宜用いることもできる。
(溶媒)
 溶媒としては、水、有機溶媒、又は水と有機溶媒の混合溶媒を用いることができる。水は親水性の膨潤性粒子を膨潤させる役割がある。例えば、フッ化物粒子に水を添加することにより混合液の粘性が増加するため、蛍光体の沈降を抑制することができる。なお、水に不純物が含まれていると膨潤を阻害するおそれがあるため、添加する水は不純物を含まない純水を用いる必要がある。
 有機溶媒は、混合液のぬれ性向上、粘度調整のために用いられる。例えば、フッ化物粒子に有機溶媒を添加することにより混合液の粘性が増加するため、蛍光体の沈降を抑制することができる。親水性の膨潤性粒子に水を添加して膨潤させる場合には、有機溶媒として、水との相溶性に優れたメタノール、エタノール、プロパノール、ブタノール等のアルコール類を用いることが好ましい。なお、2種以上のアルコールを組み合わせてもよい。一方、親油性の膨潤性粒子を用いる場合は、膨潤性粒子の膨潤に水は作用しないが、水を加えることにより粘度が増加するため、水との相溶性に優れた有機溶媒を用いることが好ましい。また、エチレングリコールやプロピレングリコールなどの高沸点の有機溶媒を用いることにより、混合液のポットライフが短くならず、またスプレー塗布時にはノズルの詰まりを防ぎ、取り扱い性に優れる。
(無機粒子)
 無機粒子は、蛍光体と膨潤性粒子との界面に生じる隙間を埋める充填効果、加熱前の混合液の粘性を増加させる増粘効果を有する。本発明に用いられる無機粒子としては、酸化ケイ素、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム等の金属酸化物微粒子等が挙げられる。なお、セラミック材料や溶媒との相溶性を考慮して、無機粒子の表面をシランカップリング剤やチタンカップリング剤で処理したものを適宜用いることもできる。
 また、波長変換層7における無機粒子の含有量が0.5重量%未満になると第1混合液中の蛍光体などの固形成分の割合が高くなり、それらの分散性が悪化して塗布時のハンドリングが悪化したり、均一な色度で塗布したりすることが困難になる。一方、無機粒子の含有量が70重量%を超えると無機粒子による励起光の散乱が多く発生し、波長変換層7の発光輝度が低下する。従って、第1混合液において無機粒子の含有量は0.5重量%以上70重量%以下とすることが好ましく、0.5重量%以上65重量%以下がより好ましく、1重量%以上60重量%以下がさらに好ましい。
 無機粒子には増粘効果があるが、波長変換層7中での割合が高ければ混合液の粘度が高くなるわけではなく、混合液の粘度は溶媒、蛍光体など他の成分との比率で決まる。
 無機粒子の粒径分布には特に制限はなく、広範囲に分布していてもよいし、比較的狭い範囲に分布していてもよい。なお、無機粒子の粒径としては、一次粒径の中心粒径が0.001μm以上50μm以下であり、蛍光体より小さいものが好ましい。無機粒子の平均粒径は、例えばコールターカウンター法によって測定することができる。
(透光性セラミック材料)
 透光性セラミック材料はセラミック前駆体であり、無機又は有機の金属化合物を用いることができる。金属化合物としては、金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート、金属硝酸塩、金属酸化物等が挙げられるが、加水分解と重合反応によりゲル化し易い金属アルコキシドが好ましい。
 金属アルコキシドは、テトラエトキシシランのような単分子のものでもよいし、有機シロキサン化合物が鎖状または環状に連なったポリシロキサンでもよいが、混合液の粘性が増加するポリシロキサンが好ましい。なお、透光性のガラス体を形成可能であれば金属の種類に制限はないが、形成されるガラス体の安定性や製造の容易性の観点から、ケイ素を含有していることが好ましい。また、複数種の金属を含有していてもよい。
(シリコーン封止剤)
 シリコーン封止剤としては、アルキル基やアリール基などの有機基をもつケイ素原子が酸素原子と交互に結合した構造を骨格として有する樹脂を用いることができる。なお、この骨格に他の添加元素を付与してもよい。例えば、セラミック層8上にシリコーン封止剤としてフェニルシリコーンを塗布し、150℃で1時間加熱することで、シリコーン封止層11を形成することができる。
(第1混合液の調整手順)
 第1混合液の調製手順としては、単に蛍光体、膨潤性粒子、無機粒子(無機微粒子)、溶媒(第1溶媒)を混合すればよい。第1混合液の好ましい粘度は10~1000mPa・sであり、さらに好ましい粘度は12~800mPa・sであり、最も好ましい粘度は20~600mPa・sである。
(第2混合液の調整手順)
 第2混合液の調製手順としては、透光性セラミック材料を溶媒(第2溶媒)に分散させた溶液に、必要に応じて膨潤性粒子、水、無機粒子を混合すればよい。第2混合液に膨潤性粒子を添加することにより、厚塗りしてもクラックの発生しにくい透光性セラミック層ができる。
 第2混合液としては、ゾル状の前駆体溶液を加熱によりゲル状態とし、さらに焼成する、いわゆるゾル・ゲル法により透明性セラミック層を形成するものであってもよいし、焼成することによりゲル化することなく直接透明性セラミック層を形成するものであってもよい。ゾル・ゲル法を用いる場合、例えば、金属アルコキシド、加水分解用の水、溶媒、触媒等を適宜混合することが好ましい。触媒としては、塩酸、硫酸、硝酸、酢酸、フッ酸、アンモニア等を用いることができる。金属アルコキシドとしてテトラエトキシシランを用いる場合、テトラエトキシシラン100質量部に対して、エチルアルコール138質量部、純水52質量部とすることが好ましい。この場合、ゲルの加熱温度は120~250℃が好ましく、LED素子3の劣化をより抑制する観点からは120~200℃が好ましい。また、金属アルコキシドとしてポリシロキサンを用いる場合、塗布後の加熱温度は120~500℃が好ましく、LED素子3の劣化をより抑制する観点からは120~350℃が好ましい。
(発光装置の製造方法)
 以上のようにして得られた第1混合溶液をLED素子3が搭載されたLED基板1上にスプレーコート法により所定量噴霧する。図2に、スプレーコート法を用いた塗布装置及び製造方法を概略的に説明するための模式図を示す。塗布装置10は、主に、上下、左右、前後に移動可能な移動台20と、第1混合液を噴射可能なスプレー装置30とを有している。
 スプレー装置30は移動台20の上方に配置されている。スプレー装置30はエアーが送り込まれるノズル32を有しており、ノズル32にはエアーを送り込むためのエアーコンプレッサー(図示略)が接続されている。ノズル32の先端部の孔径は20μm~2mmであり、好ましくは0.1~0.3mmである。ノズル32は移動台20と同様に、上下、左右、前後に移動可能となっている。
 例えば、ノズル32としてはアネスト岩田社製スプレーガンW-101-142BPGが、コンプレッサーとしてはアネスト岩田社製OFP-071Cがそれぞれ使用される。ノズル32は角度調整も可能であり、移動台20(またはこれに設置されるLED基板1)に対し傾斜させることができるようになっている。被噴射物(LED基板1)に対するノズル32の角度は、当該被噴射物から垂直方向を0°とした場合、0~60°の範囲であることが好ましい。
 ノズル32には連結管34を介してタンク36が接続されている。タンク36には第1混合液40が貯留されている。タンク36には撹拌子が入っており、第1混合液40が常に撹拌されている。第1混合液40を撹拌すれば、比重の大きい蛍光体の沈降を抑止することができ、蛍光体が第1混合液40中で分散した状態を保持することができる。例えば、タンクとしてはアネスト岩田社製PC-51が使用される。
 実際に第1混合液40を塗布する場合には、(LED素子3をあらかじめ実装した)複数のLED基板1を移動台20に設置し、LED基板1とスプレー装置30のノズル32との位置関係を調整する(位置調整工程)。
 詳しくは、LED基板1を移動台20に設置し、LED基板1とノズル32の先端部とを対向配置する。LED基板1とノズル32との距離を離すほど第1混合液40を均一に塗布することが可能であるが、膜強度が低下する傾向もあるため、LED基板1とノズル32の先端部との距離は3~30cmの範囲に保持することが適している。
 その後、LED基板1とノズル32とを互いに相対移動させながら、ノズル32から第1混合液を噴射してLED基板1に第1混合液40を塗布する(噴射・塗布工程)。詳しくは、一方では、移動台20とノズル32とを移動させてLED基板1とノズル32とを前後左右に移動させる。移動台20とノズル32とのうちいずれか一方の位置を固定し、他方を前後左右に移動させてもよい。また、移動台20の移動方向と直交する方向にLED素子3を複数配置し、ノズル32を移動台20の移動方向と直交する方向に移動させながら塗布する方法も好ましく用いられる。
 他方では、ノズル32にエアーを送り込み、第1混合液40をノズル32の先端部からLED基板1に向けて噴射する。LED基板1とノズル32との距離についてはエアーコンプレッサーの圧力を考慮して上記の範囲で調整可能である。例えば、ノズル32の入り口部(先端部)の圧力(スプレー圧)が0.14MPaとなるようにコンプレッサーの圧力を調整する。以上の操作により、第1混合液40をLED素子3上に塗布することができる。
 なお、塗布装置10を用いるのに代えて、ディスペンサーやインクジェット装置を用いて第1、第2混合液及びシリコーン封止剤を塗布(滴下または吐出)するようにしてもよい。ディスペンサーを使用する場合は、塗布液の滴下量を制御可能で、蛍光体などのノズル詰まりが発生しないようなノズルを用いる。たとえば、武蔵エンジニアリング社製の非接触ジェットディスペンサーや同社のディスペンサーを用いることができる。インクジェット装置を使用する場合も、塗布液の吐出量を制御可能で、蛍光体などのノズル詰まりが発生しないようなノズルを用いる。たとえば、コニカミノルタIJ社製のインクジェット装置を用いることができる。
 このようにして塗布した第1混合液を加熱(乾燥)することで、LED素子3上に均一な厚さ(均一な蛍光体分布)の波長変換層7が形成される。次に、波長変換層7の上に第2混合液をスプレーコート法により所定量噴霧する。ここでも塗布装置10を用いることができる。塗布された第2混合液の一部は蛍光体粒子や膨潤性粒子の隙間に浸透する。これを加熱(焼成)することでセラミック層8が形成される。
 ここで、波長変換層7に浸透した第2混合液はセラミックに変化するため、セラミックは蛍光体粒子と膨潤性粒子とLED素子3に対してバインダとして作用する。また、第2混合液が適度な粘度を有することで、波長変換層7上にセラミック層8が明確に形成され、波長変換層7を封止するという機能もある。
 なお、形成された波長変換部7の厚みが5μm未満である場合は波長変換効率が低下して十分な蛍光が得られず、波長変換層7の厚みが500μmを超える場合は膜強度が低下してクラック等が発生し易くなる。従って、波長変換層7の厚みは5μm以上500μm以下であることが好ましい。
 次に、セラミック層8の上にシリコーン封止剤をディスペンサーにより所定量塗布する。これを加熱(硬化)することでシリコーン封止層11が形成される。
 図3は、本発明の第2実施形態の発光装置の概略断面図である。図3に示すように、発光装置101は、平板状のLED基板1上にメタル部2を設け、メタル部2上に発光素子としてLED素子3を配置している。LED素子3は、メタル部2に対向する面に、突起電極4が設けられており、メタル部2とLED素子3とを突起電極4を介して接続している(フリップチップ型)。
 また、LED素子3の上面には波長変換素子9が設けられている。波長変換素子9は、ガラス基板5と、ガラス基板5の上面に形成された波長変換部6とを有している。ガラス基板5の形状には特に限定はなく、平板状、レンズ状等を採用できる。なお、波長変換部6はガラス基板5の下面に形成してもよい。波長変換部6は、ガラス基板5上に形成された波長変換層7と、波長変換層7上に形成されたセラミック層8と、セラミック層8上に形成されたシリコーン封止層11とを有している。
 発光装置101の製造方法としては、第1混合液をガラス基板5の片面に所定量塗布し、加熱して所定の膜厚の波長変換層7を形成する。次に、波長変換層7の上面に第2混合液を所定量塗布する。塗布された第2混合液の一部は蛍光体粒子や膨潤性粒子の隙間に浸透する。第2混合液が塗布されたガラス基板5を焼成することでセラミック層8が形成される。次に、セラミック層8の上面にシリコーン封止剤を所定量塗布する。シリコーン封止剤が塗布されたガラス基板5を加熱することでシリコーン封止層11が形成される。
 なお、第1、第2混合液及びシリコーン封止剤の塗布方法は特に限定されるものではなく、バーコート法、スピンコート法、スプレーコート法等、従来公知の種々の方法を用いることができる。
 そして、波長変換部6が形成されたガラス基板5を所定の大きさ(例えば2×2mm)に切断してLED素子3上に配置することにより、発光装置100を製造することができる。
 なお、上記実施形態ではガラス基板5を使用しているが、ガラス基板に限らず、透光性の無機材料からなる基板であれば、例えば、単結晶サファイア等の結晶基板やセラミック基板を用いてもよい。
 図4は、本発明の第3実施形態の発光装置の概略断面図である。図4に示すように、発光装置102は、断面凹状のLED基板1の底部にメタル部2が設けられ、メタル部2上にLED素子3が配置されるとともに、LED基板1の凹部に蓋をするように波長変換素子9が設けられている。波長変換素子9を含む他の部分の構成は第2実施形態と同様であるため説明を省略する。
 本実施形態の発光装置102は、LED基板1の凹部にLED素子3を配置し、第2実施形態で用いた波長変換素子9をLED基板1の側壁の上端に凹部を覆うように接着して製造することができる。
 本実施形態の発光装置102は、第2実施形態に比べて、LED素子3の側面から出射される光も効率良く蛍光に変換される。
 なお、LED基板1の凹部の形状や大きさは発光装置102の仕様に応じて適宜設計することができる。例えば、凹部の側面をテーパ状としてもよい。また、凹部の内面を反射面とすることにより、発光装置102の発光効率を高める構成としてもよい。
 その他、本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態では青色LEDと蛍光体とを併用することで白色発光する発光装置を例に挙げて説明したが、緑色LEDや赤色LEDと蛍光体とを併用する場合にも同様に適用できるのはもちろんである。さらに言えば、蛍光体は1種類だけでなく、紫外光を吸収して赤色、緑色、青色の光をそれぞれ放射する3種類の蛍光体や、青色光を吸収して赤色、緑色の光をそれぞれ放射する2種類の蛍光体を併用してもよい。また、第1混合液を塗布する前に、ガラス基板5又はLED素子3の表面に、上述したセラミック層8のような透光性のセラミック層を形成しておいてもよい。
 以下、本発明の発光装置について実施例及び比較例により更に具体的に説明する。実施例1~6は第1実施形態の発光装置100の例であり、比較例1、2は第1実施形態の発光装置100と同形状の発光装置の例である。なお、第2及び第3実施形態の実施例については省略しているが、実施例1~6と同様の結果が得られた。
(蛍光体の調製例)
 各実施例及び比較例で用いる蛍光体は、蛍光体原料として、Y237.41g、Gd234.01g、CeO20.63g、Al237.77gを十分に混合し、これにフラックスとしてフッ化アンモニウムを適量混合したものをアルミニウム製の坩堝に充填し、水素含有窒素ガスを流通させた還元雰囲気中において、1350~1450℃の温度範囲で2~5時間焼成して焼成品((Y0.72Gd0.243Al512:Ce0.04)を得た。
 得られた焼成品を粉砕、洗浄、分離、乾燥して、体積平均粒径が1μm程度の黄色蛍光体粒子を得た。波長465nmの励起光における発光波長を測定したところ、おおよそ波長570nmにピーク波長を有していた。
 以下の実施例及び比較例において示されるg数は液中の各成分の質量比であり、実際に調製する量とは異なる。
 上記調製例により調製した蛍光体1gと、膨潤性粒子である合成雲母(MK-100、コープケミカル社製)0.05gと、無機粒子であるRX300(1次粒子の平均粒径が7nmのシリル化処理無水ケイ酸;日本アエロジル社製)0.05gと、溶媒であるプロピレングリコール1.5gとを混合して第1混合液を調製した。この第1混合液を塗布装置10を用いてスプレー圧0.2MPa、移動台20の移動速度100mm/sにてLED基板1の凹部及びLED素子3表面に噴霧し、50℃で1時間加熱して乾燥させることで、波長変換層7を作製した。次に、ポリシロキサン分散液(ポリシロキサン14重量%、イソプロピルアルコール86重量%)1gと、イソプロピルアルコール0.3gとを混合して第2混合液を調製した。この第2混合液を塗布装置10を用いて波長変換層7上に焼成後にクラックの発生しない最大膜厚となるよう噴霧し、150℃で1時間加熱して焼成させることで、波長変換層7の蛍光体を固着させるとともにセラミック層8を作製した。次に、フェニルシリコーン(KER-6000;信越化学工業株式会社製)をディスペンサーを用いてセラミック層8上に塗布し、150℃で1時間加熱して硬化させることでシリコーン封止層11を作製し、発光装置100を得た。なお、最大膜厚となるように噴霧するには、スプレー圧や移動台20の移動速度を適宜調整する。
 上記調製例により調製した蛍光体1gと、膨潤性粒子であるスメクタイト(ルーセンタイトSWN、コープケミカル社製、以下SWNと略す)0.05gと、無機粒子であるRX300を0.05gと、溶媒であるプロピレングリコール1.5gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、平均粒径20nmのTiO2スラリー分散液0.3gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製した。次に、フェニルシリコーンを用いて実施例1と同条件でシリコーン封止層11を作製し、発光装置100を得た。
 上記調製例により調製した蛍光体1gと、膨潤性粒子であるSWN0.05gと、無機粒子であるサイリシア470(1次粒子の平均粒径14μm、富士シリシア社製)0.05gと、溶媒であるプロピレングリコール1.5gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、ジルコニアアルコキシド(テトラブトキシジルコニウム70重量%、1-ブタノール30重量%)0.2gと、平均粒径20nmのZrO2スラリー分散液0.3gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製した。次に、フェニルシリコーンを用いて実施例1と同条件でシリコーン封止層11を作製し、発光装置100を得た。
 上記調製例により調製した蛍光体1gと、膨潤性粒子であるSWN0.05gと、無機粒子であるサイリシア470を0.05gと、溶媒であるプロピレングリコール1.5gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、チタンアルコキシド(テトラブチルチタネート90重量%、1-ブタノール10重量%)0.2gと、平均粒径20nmのZrO2スラリー分散液0.3gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製した。次に、フェニルシリコーンを用いて実施例1と同条件でシリコーン封止層11を作製し、発光装置100を得た。
 上記調製例により調製した蛍光体1gと、膨潤性粒子である合成雲母0.05gと、無機粒子であるRX300を0.05gと、溶媒であるプロピレングリコール1.5gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、チタンキレート(チタンラクテート40重量%、2-プロパノール50重量%、水10重量%)0.2gと、平均粒径20nmのTiO2スラリー分散液0.3gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製した。次に、フェニルシリコーンを用いて実施例1と同条件でシリコーン封止層11を作製し、発光装置100を得た。
 上記調製例により調製した蛍光体1gと、膨潤性粒子であるSWN0.05gと、無機粒子であるサイリシア470を0.05gと、溶媒であるプロピレングリコール1.5gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層7を作製した。次に、ポリシロキサン分散液1gと、ジルコニアキレート(ジルコニウムテトラアセチルアセトネート20重量%、1-ブタノール80重量%)0.2gと、平均粒径20nmのZrO2スラリー分散液0.3gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製した。次に、フェニルシリコーンを用いて実施例1と同条件でシリコーン封止層11を作製し、発光装置100を得た。
比較例1
 フェニルシリコーン9gに上記調製例により調製した蛍光体1gを混合撹拌し、ディスペンサーを用いてLED基板1の凹部及びLED素子3表面に塗布し、150℃で1時間加熱して発光装置を得た。
比較例2
 上記調製例により調製した蛍光体1gと、膨潤性粒子である合成雲母0.05gと、無機粒子であるRX300を0.05gと、溶媒であるプロピレングリコール1.5gとを混合して第1混合液を調製した。この第1混合液を用いて実施例1と同条件で波長変換層を作製した。次に、ポリシロキサン分散液1gと、イソプロピルアルコール0.3gとを混合して第2混合液を調製した。この第2混合液を用いて実施例1と同条件でセラミック層8を作製し、発光装置100を得た。
(評価、検討)
 各実施例及び比較例のサンプルについて、発光効率の評価、硫化耐性の評価及び色度の評価を行った。図5にその結果を示す。発光効率の評価は、分光放射輝度計(CS-2000、コニカミノルタセンシング社製)により発光装置の全光束を測定し、比較例1の全光束を基準として相対比較した。
 硫化耐性の評価は、劣化試験前後での発光装置の全光束を測定し、劣化試験前の各発光装置の全光束を基準として劣化試験後の各発光装置の全光束を相対比較した。劣化試験は、発光装置と硫黄粉とを密閉容器に入れ、80℃で1日放置することで行った。
 色度の評価は、色度の均一性を比較・評価したものであり、各発光装置の発光の色度を分光放射輝度計(CS-1000A、コニカミノルタセンシング社製)を用いて測定し、以下のように評価した。各実施例及び比較例のサンプルを各々5つ用意し、それぞれについて色度を測定し、色度の標準偏差を求めた。そして、色度の標準偏差の平均が0.01より大きく0.02以下であるものを色度のばらつきが実用上問題ない(照明のように色の均一性が求められる用途において十分使用可能な程度)として「○」、0.02より大きいものを実用不可であるとして「×」とした。
 色度は、色空間をXYZ座標系で表したCIE-XYZ表色系で、ある点と原点を結ぶ直線が平面x+y+z=1と交わる点で定義される。色度は(x、y)座標で表し、x+y+z=1の関係から得られるz座標を省略すると、白色光の色度は(0.33,0.33)であり、色度がこの値に近いほど白色光に近くなる。x座標の値が小さくなると青色がかった白色になり、x座標の値が大きくなると黄色がかった白色になる。
 実施例及び比較例の評価結果を検討したところ、比較例1は、上記の実施形態でいう波長変換層7及びセラミック層8を有さず、蛍光体を含んだシリコーン封止層が設けられているだけなので、蛍光体が沈降しており、色度のばらつきが大きい。また、光取り出し効率(発光効率)もあまり良いとは言えず、硫化耐性も低い。
 比較例2は、上記の実施形態でいう波長変換層7及びセラミック層8を有しているので、蛍光体が一様に分散しており、色度のばらつきは実用上問題ない範囲である。しかし、シリコーン封止層11を有していないので、硫化耐性が低く、シリコーン封止層を有する比較例1よりも発光効率が悪い。
 実施例1~6は、波長変換層7及びセラミック層8を有しているので、蛍光体が一様に分散しており、色度のばらつきは実用上問題ない範囲である。さらに、シリコーン封止層11を有しているので、硫化耐性が高く、発光効率も良い。また、実施例1~6は、様々な膨潤性粒子、無機粒子、透光性セラミック材料で実施可能であることを示している。
 以上、上記実施形態及び実施例のような波長変換部6により、照明のように色の均一性が求められる用途において十分使用可能な程度に色むらの発生を低減するとともに、硫化防止性能及び光取り出し効率を向上させることができる。
   1 LED基板
   3 LED素子(発光素子)
   5 ガラス基板(透光性基板)
   6 波長変換部
   7 波長変換層
   8 セラミック層
   9 波長変換素子
   11 シリコーン封止層
   40 第1混合液
   100、101、102 発光装置

Claims (12)

  1.  蛍光体、膨潤性粒子、無機粒子、及び第1溶媒を含む第1混合液を発光素子上に塗布する工程と、
     その上に、透光性セラミック材料及び第2溶媒を含む第2混合液を塗布して加熱する工程と、
     さらにその上に、シリコーン封止剤を塗布して加熱する工程と、を有する発光装置の製造方法。
  2.  前記第2混合液が水及び/又は無機粒子を含むことを特徴とする請求項1記載の発光装置の製造方法。
  3.  前記無機粒子が金属酸化物であることを特徴とする請求項1又は2記載の発光装置の製造方法。
  4.  前記シリコーン封止剤がフェニルシリコーンであることを特徴とする請求項1~3の何れかに記載の発光装置の製造方法。
  5.  請求項1~4の何れかに記載の発光装置の製造方法によって製造された発光装置。
  6.  蛍光体、膨潤性粒子、無機粒子、及び第1溶媒を含む第1混合液を透光性基板の少なくとも片面に塗布する工程と、
     その上に、透光性セラミック材料及び第2溶媒を含む第2混合液を塗布して加熱する工程と、
     さらにその上に、シリコーン封止剤を塗布して加熱する工程と、を有する波長変換素子の製造方法。
  7.  前記第2混合液が水及び/又は無機粒子を含むことを特徴とする請求項6記載の波長変換素子の製造方法。
  8.  前記無機粒子が金属酸化物であることを特徴とする請求項6又は7記載の波長変換素子の製造方法。
  9.  前記シリコーン封止剤がフェニルシリコーンであることを特徴とする請求項6~8の何れかに記載の波長変換素子の製造方法。
  10.  請求項6~9の何れかに記載の波長変換素子の製造方法によって製造された波長変換素子。
  11.  請求項6~9の何れかに記載の波長変換素子の製造方法に、前記波長変換素子を発光素子の発光面側に設置する工程を加えた発光装置の製造方法。
  12.  請求項11に記載の発光装置の製造方法によって製造された発光装置。
PCT/JP2013/052433 2012-02-13 2013-02-04 波長変換素子及びその製造方法、発光装置及びその製造方法 WO2013121903A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13749248.4A EP2816620A4 (en) 2012-02-13 2013-02-04 WAVE LENGTH CONVERSION ELEMENT AND METHOD OF MANUFACTURING THEREFOR, AND LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREFOR
US14/377,649 US20160013368A1 (en) 2012-02-13 2013-02-04 Wavelength conversion element and method for manufacturing same, and light-emitting device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-028496 2012-02-13
JP2012028496 2012-02-13

Publications (1)

Publication Number Publication Date
WO2013121903A1 true WO2013121903A1 (ja) 2013-08-22

Family

ID=48984017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052433 WO2013121903A1 (ja) 2012-02-13 2013-02-04 波長変換素子及びその製造方法、発光装置及びその製造方法

Country Status (4)

Country Link
US (1) US20160013368A1 (ja)
EP (1) EP2816620A4 (ja)
JP (1) JPWO2013121903A1 (ja)
WO (1) WO2013121903A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149389A (ja) * 2015-02-10 2016-08-18 株式会社東芝 半導体発光装置及び蛍光体層の形成方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6277931B2 (ja) * 2014-10-01 2018-02-14 信越半導体株式会社 貼り合わせ不良部の検出方法及び検査システム
CN105202507A (zh) * 2015-10-23 2015-12-30 李峰 深水led照明密封结构
JP6966851B2 (ja) * 2016-03-18 2021-11-17 日東電工株式会社 光学部材、ならびに、該光学部材を用いたバックライトユニットおよび液晶表示装置
US11094530B2 (en) 2019-05-14 2021-08-17 Applied Materials, Inc. In-situ curing of color conversion layer
US11239213B2 (en) 2019-05-17 2022-02-01 Applied Materials, Inc. In-situ curing of color conversion layer in recess
US20220320380A1 (en) * 2021-03-31 2022-10-06 Lumileds Llc Thin Compact Wavelength Converting Structure for pcLED

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349347A (ja) * 1999-06-08 2000-12-15 Sanken Electric Co Ltd 半導体発光装置
JP2002314142A (ja) 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd 発光装置
WO2003034508A1 (en) * 2001-10-12 2003-04-24 Nichia Corporation Light emitting device and method for manufacture thereof
JP2004153109A (ja) 2002-10-31 2004-05-27 Matsushita Electric Works Ltd 発光装置及びその製造方法
JP2007036030A (ja) * 2005-07-28 2007-02-08 Nichia Chem Ind Ltd 発光装置及びその製造方法
JP2011096842A (ja) 2009-10-29 2011-05-12 Showa Denko Kk 発光装置、発光モジュール及び照明装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292591A (ja) * 2003-03-26 2004-10-21 Matsushita Electric Works Ltd 光半導体用樹脂組成物及び光半導体装置
JP4874510B2 (ja) * 2003-05-14 2012-02-15 日亜化学工業株式会社 発光装置及びその製造方法
JP2006319238A (ja) * 2005-05-16 2006-11-24 Koito Mfg Co Ltd 発光装置および車両用灯具
JP2007273562A (ja) * 2006-03-30 2007-10-18 Toshiba Corp 半導体発光装置
JP5386800B2 (ja) * 2006-07-26 2014-01-15 三菱化学株式会社 蛍光体含有組成物、発光装置、照明装置、および画像表示装置
JP5578597B2 (ja) * 2007-09-03 2014-08-27 独立行政法人物質・材料研究機構 蛍光体及びその製造方法、並びにそれを用いた発光装置
JP5113820B2 (ja) * 2009-10-27 2013-01-09 パナソニック株式会社 発光装置
US9112122B2 (en) * 2010-04-13 2015-08-18 Konica Minolta Advanced Layers, Inc. Light-emitting device and method for manufacturing same
WO2012067200A1 (ja) * 2010-11-19 2012-05-24 コニカミノルタオプト株式会社 波長変換素子及びその製造方法、発光装置及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349347A (ja) * 1999-06-08 2000-12-15 Sanken Electric Co Ltd 半導体発光装置
JP2002314142A (ja) 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd 発光装置
WO2003034508A1 (en) * 2001-10-12 2003-04-24 Nichia Corporation Light emitting device and method for manufacture thereof
JP2004153109A (ja) 2002-10-31 2004-05-27 Matsushita Electric Works Ltd 発光装置及びその製造方法
JP2007036030A (ja) * 2005-07-28 2007-02-08 Nichia Chem Ind Ltd 発光装置及びその製造方法
JP2011096842A (ja) 2009-10-29 2011-05-12 Showa Denko Kk 発光装置、発光モジュール及び照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2816620A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149389A (ja) * 2015-02-10 2016-08-18 株式会社東芝 半導体発光装置及び蛍光体層の形成方法

Also Published As

Publication number Publication date
EP2816620A1 (en) 2014-12-24
US20160013368A1 (en) 2016-01-14
EP2816620A4 (en) 2015-08-19
JPWO2013121903A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5742839B2 (ja) 発光装置及びその製造方法
US9318646B2 (en) LED device manufacturing method and fluorescent material-dispersed solution used in same
WO2013121903A1 (ja) 波長変換素子及びその製造方法、発光装置及びその製造方法
US9184352B2 (en) Phosphor dispersion liquid, and production method for LED device using same
JP2011238811A (ja) 波長変換素子および発光装置
JP2014022508A (ja) Led装置及びその製造方法
JP5768816B2 (ja) 波長変換素子及びその製造方法、発光装置及びその製造方法
JP5803541B2 (ja) Led装置およびその製造方法、並びにそれに用いる蛍光体分散液
JP2014138081A (ja) 発光装置、波長変換・光拡散素子及びそれらの製造方法、光拡散セラミック層形成用組成物
JP5747994B2 (ja) 波長変換素子及びその製造方法、発光装置及びその製造方法
JP2014019844A (ja) 蛍光体分散液及びled装置の製造方法
JP5880566B2 (ja) Led装置
JP2016154179A (ja) 発光装置、及びその製造方法
JP5803940B2 (ja) 発光装置およびその製造方法
JP5874425B2 (ja) 波長変換素子及びその製造方法、発光装置及びその製造方法
JP5729327B2 (ja) Led装置の製造方法
JP5910340B2 (ja) Led装置、及びその製造方法
US20160002526A1 (en) Phosphor dispersion, led device and method for manufacturing same
JP5765428B2 (ja) Led装置の製造方法
JP5862675B2 (ja) 発光装置の製造方法
JP2013258339A (ja) 発光装置及びその製造方法
WO2013187067A1 (ja) Led装置、及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500167

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013749248

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013749248

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE