WO2014104295A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2014104295A1
WO2014104295A1 PCT/JP2013/085111 JP2013085111W WO2014104295A1 WO 2014104295 A1 WO2014104295 A1 WO 2014104295A1 JP 2013085111 W JP2013085111 W JP 2013085111W WO 2014104295 A1 WO2014104295 A1 WO 2014104295A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light diffusion
wavelength conversion
diffusion layer
silane compound
Prior art date
Application number
PCT/JP2013/085111
Other languages
English (en)
French (fr)
Inventor
貴志 鷲巣
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to EP13867392.6A priority Critical patent/EP2940743A4/en
Priority to US14/652,901 priority patent/US20150333233A1/en
Priority to JP2014554593A priority patent/JPWO2014104295A1/ja
Publication of WO2014104295A1 publication Critical patent/WO2014104295A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/477Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/112Deposition methods from solutions or suspensions by spraying
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present invention relates to a light emitting device.
  • the white LED devices there are light emitting devices equipped with various light emitting elements.
  • many white LED devices using an LED (Light Emitting Diode) chip as a light source have been developed, and the white LED devices have been put to practical use as various illumination devices.
  • the white LED device there is a device that obtains white light by using a blue LED chip as a light source and combining blue light from the blue LED chip and yellow fluorescence emitted from a phosphor upon receiving the blue light.
  • an ultraviolet LED chip as a light source and mixing blue light, green light, and red light emitted from a phosphor upon receiving ultraviolet light.
  • a wavelength conversion layer in which phosphor particles are dispersed in a transparent resin is disposed in the vicinity of the LED chip.
  • the specific gravity of the phosphor particles contained in the wavelength conversion layer is larger than the specific gravity of the transparent resin. Therefore, when the wavelength conversion layer is formed, the phosphor particles settle before the transparent resin is cured, and the concentration of the phosphor particles is not uniform. If the phosphor concentration is not uniform, chromaticity unevenness is likely to occur in the light emitted from the LED device. Furthermore, there is a problem that the difference between the chromaticity of light emitted in the front direction of the LED device and the chromaticity of light emitted in the oblique direction of the LED device becomes large.
  • the conventional light diffusion film is made of resin, there is a problem that it is easily deteriorated by light and heat emitted from the LED chip. In particular, in the LED device having high emission luminance and the LED device used outdoors, the light diffusion film is easily deteriorated.
  • Patent Document 1 In order to suppress the chromaticity unevenness of the emitted light of the white LED device described above, it is conceivable to apply the light diffusing member described in Patent Document 1 or Patent Document 2 to the white LED device.
  • the light diffusing member of Patent Document 1 needs to add a light scattering agent to the inside of the glass when the glass plate is manufactured.
  • the binder of the light diffusion layer of Patent Document 2 can be a cured product of an organic resin or a metal alkoxide.
  • the binder may be deteriorated by heat and light emitted from the LED chip.
  • the binder is a cured product of metal alkoxide, depending on the type of metal alkoxide, the adhesion between the light diffusion layer and other layers (for example, an adhesive layer, a glass substrate, etc.) is not sufficient, and peeling occurs at these interfaces There is a concern to do.
  • the light diffusion layer cannot follow the deformation of the glass substrate, and there is a concern that cracks may occur in the diffusion layer due to expansion of the glass substrate. Therefore, it is difficult to immediately apply the light diffusing member described in Patent Document 1 or Patent Document 2 to a white LED device.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a light-emitting device with little chromaticity unevenness in emitted light over a long period of time.
  • the present invention provides a light emitting member having a package, a light emitting element mounted on the package, a light extraction surface side of the light emitting member, a glass substrate, and a glass substrate on the glass substrate.
  • a wavelength conversion / light diffusion member having a formed wavelength conversion layer and a light diffusion layer, wherein the wavelength conversion layer includes phosphor particles, and the light diffusion layer includes light diffusion particles and an organosilicon compound.
  • the light emitting device includes a cured product.
  • the organosilicon compound is composed of a polymer of a trifunctional silane compound and a tetrafunctional silane compound, and a polymerization ratio of the trifunctional silane compound to the tetrafunctional silane compound is 3: 7 to 7: 3. It is preferable that
  • the organosilicon compound is a polymer of a bifunctional silane compound and a trifunctional silane compound, and a polymerization ratio of the bifunctional silane compound to the trifunctional silane compound is 1: 9 to 4: 6 is preferable.
  • the organosilicon compound is a polymer of a bifunctional silane compound, a trifunctional silane compound, and a tetrafunctional silane compound, and a polymerization ratio of the bifunctional silane compound to the trifunctional silane compound is 1. : 9 to 4: 6, and the polymerization ratio of the tetrafunctional silane compound to the polymer of the bifunctional silane compound and the trifunctional silane compound is preferably 9: 1 to 7: 3.
  • the light diffusing particles are at least one selected from the group consisting of titanium oxide, barium sulfate, barium titanate, boron nitride, zinc oxide, and aluminum oxide.
  • the light diffusion layer includes metal oxide fine particles having an average primary particle size of less than 100 nm.
  • the metal oxide fine particles are preferably at least one selected from the group consisting of zirconium oxide, titanium oxide, cerium oxide, silicon oxide, niobium oxide, and zinc oxide.
  • the light diffusion layer preferably contains a clay mineral.
  • the clay mineral is preferably an aluminum silicate compound.
  • the light diffusion layer includes a metal alkoxide or a metal chelate containing a divalent or higher metal element (excluding Si).
  • the wavelength conversion layer preferably contains a cured product of an organosilicon compound.
  • the wavelength conversion layer preferably contains a transparent resin.
  • the binder of the light diffusion layer is a cured product of an organosilicon compound, the light diffusion layer is less likely to be deteriorated by heat or light. Furthermore, the adhesiveness between the light diffusion layer and the glass substrate is high, and there is little peeling at these interfaces. Moreover, since a high-density wavelength conversion layer is formed on a glass substrate, a wavelength conversion layer having a uniform concentration of phosphor particles can be obtained, so that light with uniform chromaticity can be obtained.
  • light of uniform chromaticity can be extracted from the light emitting device over a long period of time.
  • an LED device using an LED chip as a light source will be described as an example of a light emitting device including various light emitting elements.
  • LED Device Examples of the structure of the LED device according to the four embodiments of the present invention are shown in the schematic sectional views of FIGS.
  • the LED devices 100 to 103 shown in FIGS. 1 to 4 the LED devices 100 to 103 emit light and convert the wavelength of the light emitted from the light emitting member 10 to emit fluorescence and diffuse it.
  • a wavelength conversion / light diffusion member 20 that equalizes the chromaticity of light emitted from the light source, and an adhesive layer 21 that bonds the light emitting member 10 and the wavelength conversion / light diffusion member 20 together.
  • the LED devices 101 and 102 shown in FIGS. 2 and 3 include a sealing material 22 for sealing the package 1.
  • the light emitting member 10 includes a package 1 (1a and 1b) and an LED chip 2 mounted on the package 1.
  • the wavelength conversion / light diffusion member 20 includes a glass substrate 11, a light diffusion layer 12, and a wavelength conversion layer 4 that emits fluorescence. In the LED devices 100 to 103, the wavelength conversion / light diffusion member 20 is disposed on the light extraction surface side of the light emitting member 10.
  • the order of stacking in the wavelength conversion / light diffusion member 20 is not limited, and it is sufficient that the light diffusion layer 12 and the wavelength conversion layer 4 are formed directly or indirectly on the glass substrate 11, as shown in FIGS.
  • the stacking order as shown is mentioned.
  • the glass substrate 11, the light diffusion layer 12, and the wavelength conversion layer 4 are laminated in this order.
  • the light diffusion layer 12, the glass substrate 11, and the wavelength conversion layer 4 are laminated in this order.
  • the glass substrate 11, the wavelength conversion layer 4, and the light diffusion layer 12 are laminated in this order.
  • the wavelength conversion / light diffusion member 20 shown in FIGS. 5 to 7 may be provided with an adhesive layer 21 on either side, and the total of the patterns for attaching the wavelength conversion / light diffusion member 20 shown in FIGS. Become one.
  • the wavelength conversion / light diffusion member 20 of FIG. 5 is used as an example, and the adhesive layer 21 is provided on the wavelength conversion layer 4 side, and the configuration (a) is adopted.
  • the binder of the light diffusion layer 12 is a cured product of an organosilicon compound.
  • the binder of the light diffusion layer 12 is an organic resin, the light diffusion layer 12 is deteriorated by light or heat from the LED chip or the like. Further, in FIGS. 5 and 6, the adhesion between the light diffusion layer 12 and the glass substrate 11 is insufficient, and in FIG. 7, the adhesion between the light diffusion layer 12 and the wavelength conversion layer 4 is insufficient. is there. For this reason, chromaticity unevenness occurs in the emitted light of the LED device, or the light extraction efficiency from the LED device decreases.
  • the light diffusion layer 12 is hardly deteriorated because the binder of the light diffusion layer 12 is a cured product of an organosilicon compound. Moreover, the silicon contained in the binder (organosilicon compound) and the hydroxyl group on the coated surface form a siloxane bond. Therefore, the adhesiveness between the light diffusing layer 12 and the glass substrate 11 or the adhesiveness between the light diffusing layer 12 and the wavelength conversion layer 4 is good, and it is difficult to peel off at these interfaces.
  • the wavelength conversion layer 4 is formed on the glass substrate 11 in the LED devices 100 to 103 shown in FIGS.
  • the specific gravity of the phosphor particles contained in the wavelength conversion layer 4 is larger than the specific gravity of the transparent resin.
  • the phosphor particles settle before the transparent resin is cured, and the concentration of the phosphor particles is not uniform. If the phosphor concentration is not uniform, chromaticity unevenness is likely to occur in the light emitted from the LED device. Furthermore, the difference between the chromaticity of the light emitted in the front direction of the LED device and the chromaticity of the light emitted in the oblique direction of the LED device increases.
  • a high-density composition for forming a wavelength conversion layer is applied in order to form the wavelength conversion layer 4 on the glass substrate 11. Therefore, since a high-density wavelength conversion layer is formed, the wavelength conversion layer 4 having a uniform concentration of phosphor particles is obtained, and the LED devices 100 to 103 that emit light of uniform chromaticity are obtained.
  • the LED devices 100 to 103 shown in FIGS. 1 to 4 can suppress the chromaticity unevenness of the emitted light over a long period of time.
  • the package 1 has a function of supporting the LED chip 2 and a function of electrically connecting the LED chip 2 to an external electrode (not shown). As shown in FIGS. 1 to 4, the package 1 can be a member having a substrate 1a and a metal portion 1b.
  • the shape of the substrate 1a is not particularly limited and may be a flat plate shape, but may be a concave shape as shown in FIGS.
  • the shape of the recess is not particularly limited, and may be a truncated cone shape, a truncated pyramid shape, a cylindrical shape, a prism shape, or the like as shown in FIGS.
  • the substrate 1a preferably has insulating properties and heat resistance, and is preferably made of a ceramic resin or a heat resistant resin.
  • the heat resistant resin include liquid crystal polymer, polyphenylene sulfide, aromatic nylon, epoxy resin, hard silicone resin, polyphthalic acid amide and the like.
  • the substrate 1a may contain an inorganic filler.
  • the inorganic filler can be titanium oxide, zinc oxide, alumina, silica, barium titanate, calcium phosphate, calcium carbonate, white carbon, talc, magnesium carbonate, boron nitride, glass fiber, and the like.
  • the metal portion 1b is made of a metal such as silver and plays a role of electrically connecting an external electrode (not shown) and the LED chip 2. Moreover, the metal part 1b may play the role which reflects the light from the LED chip 2 and the fluorescence from the wavelength conversion layer 4 to the light extraction surface side of the light emitting member.
  • the LED chip 2 is a semiconductor light emitting element that is electrically connected to the metal portion 1b of the package 1 and converts electric power into light.
  • the configuration of the LED chip 2 is not particularly limited.
  • the LED chip 2 is an element that emits blue light
  • the LED chip 2 includes an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer. It may be a laminate of (cladding layer) and a transparent electrode layer.
  • the LED chip 2 may have a light emitting surface of 200 to 300 ⁇ m ⁇ 200 to 300 ⁇ m, for example.
  • the height of the LED chip 2 is usually about 50 to 200 ⁇ m.
  • the wavelength of light emitted from the LED chip 2 is not particularly limited.
  • the LED chip 2 may be, for example, an element that emits blue light (light of about 420 nm to 485 nm) or an element that emits ultraviolet light.
  • the LED chip 2 may be connected to the metal part 1b of the package through wiring. Further, as shown in FIGS. 1 to 4, the metal part 1 b may be connected via the protruding electrode 5.
  • a mode in which the LED chip 2 is connected to the metal portion 1b via the wiring is referred to as a wire bonding type, and a mode in which the LED chip 2 is connected to the metal portion 1b via the protruding electrode 5 is referred to as a flip chip type.
  • the wavelength conversion layer 4 receives the light (excitation light) which LED chip 2 radiate
  • the color of the light emitted from the light extraction surface of the light emitting member 10 becomes a desired color. For example, when the light from the LED chip 2 is blue and the fluorescence emitted from the phosphor contained in the wavelength conversion layer 4 is yellow, the light from the LED devices 100 to 103 is white.
  • the wavelength conversion layer 4 includes phosphor particles and a binder.
  • the phosphor particles contained in the wavelength conversion layer 4 may be anything that is excited by light emitted from the LED chip 2 and emits fluorescence having a wavelength different from that of the light emitted from the LED chip 2.
  • examples of phosphor particles that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors.
  • the YAG phosphor receives blue light (wavelength 420 nm to 485 nm) emitted from the LED chip and emits yellow fluorescence (wavelength 550 nm to 650 nm).
  • the phosphor particles are, for example, 1) An appropriate amount of flux (fluoride such as ammonium fluoride) is mixed with a mixed raw material having a predetermined composition, and pressed to form a molded body. 2) The obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
  • flux fluoride such as ammonium fluoride
  • a mixed raw material having a predetermined composition is obtained by sufficiently mixing oxides such as Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. .
  • the mixed raw material which has a predetermined composition mixes the solution which dissolved 1) the rare earth elements of Y, Gd, Ce, and Sm in the acid in stoichiometric ratio, and oxalic acid, and obtains a coprecipitation oxide. 2) It can also be obtained by mixing this coprecipitated oxide with aluminum oxide or gallium oxide.
  • the kind of the phosphor is not limited to the YAG phosphor, and may be another phosphor such as a non-garnet phosphor that does not contain Ce.
  • the average particle diameter of the phosphor particles is preferably 1 ⁇ m to 50 ⁇ m, and more preferably 10 ⁇ m to 30 ⁇ m.
  • the particle diameter of the phosphor particles is too large, a gap generated at the interface between the phosphor particles and the binder becomes large in the wavelength conversion layer 4. As a result, the strength of the cured film of the wavelength conversion layer 4 is reduced, or gas easily enters the LED chip 2 side from the outside of the LED devices 100 to 103.
  • the average particle diameter of the phosphor particles can be measured, for example, by a Coulter counter method.
  • the binder contained in the wavelength conversion layer 4 is not particularly limited, and may be a transparent resin or a translucent ceramic.
  • transparent resins that can be binders include epoxy resins such as epoxy-modified silicone resins, alkyd-modified silicone resins, acrylic-modified silicone resins, polyester-modified silicone resins, methylsilicone resins, and phenylsilicone resins; epoxy resins; acrylic resins; Resin; Urethane resin and the like are included.
  • the thickness of the wavelength conversion layer 4 is usually about 25 ⁇ m to 5 mm.
  • the thickness of the wavelength conversion layer 4 means the maximum thickness of the wavelength conversion layer 4 formed on the glass substrate 11.
  • the thickness of the wavelength conversion layer 4 is measured with a laser holo gauge.
  • the amount of the phosphor particles contained in the wavelength conversion layer 4 is usually about 5 to 15% by mass with respect to the total mass of the wavelength conversion layer 4.
  • examples of the translucent ceramic that can be a binder include a cured product of an organosilicon compound.
  • the cured product of the organosilicon compound can be the same as the binder contained in the light diffusion layer described later (for example, a cured product of polysiloxane or polysilazane).
  • the thickness of the wavelength conversion layer 4 is not particularly limited, but is usually preferably 15 ⁇ m to 300 ⁇ m, and more preferably 20 to 100 ⁇ m. If the wavelength conversion layer 4 is too thick, the wavelength conversion layer 4 (particularly the translucent ceramic binder) may be cracked. On the other hand, if the thickness of the wavelength conversion layer 4 is too thin, the wavelength conversion layer 4 does not contain sufficient phosphor particles, and sufficient fluorescence may not be obtained. At this time, the total amount of phosphor particles contained in the wavelength conversion layer 4 is preferably 50 to 95% by mass with respect to the total mass of the wavelength conversion layer 4. If the amount of the phosphor particles is small, sufficient fluorescence cannot be obtained. On the other hand, when the amount of the phosphor particles is excessive, the amount of the binder is relatively reduced, and the intensity of the wavelength conversion layer 4 is lowered.
  • the wavelength conversion layer 4 may contain inorganic particles and clay mineral particles as necessary.
  • the strength of the wavelength conversion layer 4 tends to increase.
  • clay minerals include natural or synthetic hectrite, saponite, stevensite, hydelite, montmorillonite, nontrinite, bentonite, and other smectite genus clay minerals, Na-type tetralithic fluoromica, Li-type tetralithic fluoromica Swellable mica clay minerals such as Na-type fluorine teniolite and Li-type fluorine teniolite, vermiculite and kaolinite, aluminum silicate compounds, or a mixture thereof.
  • the clay mineral may have a surface modified with an ammonium salt or the like (surface treatment).
  • the aluminum silicate compound referred to here is a water that is composed of a number of Si—O—Al bonds, with silicon (Si), aluminum (Al), oxygen (O) and hydrogen (H) as the main constituent elements.
  • An example is imogolite.
  • a tube-like shape having an outer diameter of 2.0 to 2.5 nm, an inner diameter of 1.0 to 1.5 nm, and a length of several hundred nm is preferable.
  • the amount of the clay mineral particles contained in the wavelength conversion layer 4 is preferably 0.3 to 20% by mass, more preferably 0.5 to 15% by mass with respect to the total mass of the wavelength conversion layer 4. If the concentration of the clay mineral particles is less than 0.5% by mass, the strength of the wavelength conversion layer 4 may not be sufficiently increased. On the other hand, when the concentration of the clay mineral particles exceeds 20% by mass, the amount of the phosphor particles is relatively small, and sufficient fluorescence may not be obtained.
  • the strength of the wavelength conversion layer 4 increases.
  • the inorganic particles include fine oxide particles such as silicon oxide, titanium oxide, zinc oxide, aluminum oxide, and zirconium oxide.
  • the surface of the inorganic particles may be treated with a silane coupling agent or a titanium coupling agent. The surface treatment increases the adhesion between the inorganic particles and the translucent ceramic.
  • the inorganic particles can also be porous inorganic particles having a large specific surface area.
  • the average primary particle diameter of the inorganic particles is preferably 0.001 ⁇ m or more and 50 ⁇ m or less from the viewpoint of the smoothness of the wavelength conversion layer.
  • the average primary particle size in this embodiment refers to the value of D50 measured with a laser diffraction particle size distribution meter.
  • Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
  • the amount of inorganic particles contained in the wavelength conversion layer 4 is preferably 0.5 to 70% by mass, more preferably 0.5 to 65% by mass, and still more preferably based on the total amount of the wavelength conversion layer 4. Is 1.0 to 60% by mass. There exists a possibility that the intensity
  • the glass substrate 11 in the wavelength conversion / light diffusing member 20 has a role of supporting the light diffusing layer 12 and a role of protecting the light emitting member 10 from external impact, humidity, gas, and the like.
  • the thickness of the glass substrate 11 is preferably 50 to 500 ⁇ m, and more preferably 50 to 200 ⁇ m. If the thickness of the glass substrate is 50 ⁇ m or more, the light emitting member 10 can be sufficiently protected by the glass substrate. On the other hand, when the thickness of the glass substrate exceeds 200 ⁇ m, the LED devices 100 to 103 are enlarged.
  • the visible light transmittance of the glass substrate 11 measured in accordance with JIS K7361-1 (1997) is preferably 85% or more, more preferably 90% or more. If the visible light transmittance of the glass substrate 11 is 85% or more, the light extraction efficiency from the LED device 100 is good.
  • the kind in particular of glass substrate 11 is not restrict
  • the light diffusion layer 12 is a layer that diffuses light emitted from the LED chip 2 and light converted from the light emitted from the LED chip 2 by the wavelength conversion layer 4.
  • the light diffusion layer 12 includes light diffusion particles and a cured product (binder) of an organosilicon compound.
  • the light diffusion layer 12 may contain metal oxide fine particles, clay mineral, and a cured product of metal alkoxide or metal chelate as necessary.
  • a minute unevenness is formed on the surface of the light diffusion layer 12.
  • the unevenness is formed by, for example, metal oxide fine particles, but may be formed by other methods.
  • the arithmetic average roughness of the surface of the light diffusion layer 12 due to the unevenness is preferably 0.005 to 5.0 ⁇ m.
  • Arithmetic mean roughness (Ra) is defined by JIS B0601 (2001), and the measurement is performed by a white interferometer WYKOHD3000 manufactured by Veeco.
  • the surface roughness of the light diffusing layer 12 is determined by measuring an arbitrary number of points on the light diffusing layer 12 produced on the glass substrate 11 and an average of measured values of 30% of the total area on the light diffusing layer 12. To express.
  • the adhesiveness When the adhesiveness is lowered, it may be peeled off at these interfaces. In this case, chromaticity unevenness occurs in the light emitted from the LED device, or the light extraction efficiency from the LED device decreases.
  • the surface of the light diffusion layer 12 since the surface of the light diffusion layer 12 has a concavo-convex structure with a predetermined roughness, an anchor effect is obtained with the adhesive layer 21 and adhesion is good. Further, chromaticity unevenness of the emitted light can be suppressed, and a decrease in light extraction efficiency can be prevented.
  • the thickness of the light diffusion layer 12 is not particularly limited, but is preferably 200 nm to 30 ⁇ m, more preferably 500 nm to 10 ⁇ m. If the thickness of the light diffusion layer 12 is too thin, sufficient light diffusibility may not be obtained. On the other hand, if the thickness of the light diffusion layer 12 is too thick, the light diffusion layer 12 may be cracked.
  • the visible light transmittance of the light diffusion layer 12 measured in accordance with JIS K7361-1 (1997) is preferably 85% or more, more preferably 90% or more.
  • the visible light transmittance of the light diffusion layer is 85% or more, the light extraction efficiency from the LED devices 100 to 103 is good.
  • the total reflectance of the light diffusing particles is preferably 80% or more, and more preferably 90% or more.
  • the total reflectance of the light diffusing particles can be measured with a Hitachi spectrophotometer U4100 manufactured by Hitachi High-Tech.
  • Examples of light diffusing particles include zinc oxide (ZnO), barium titanate (BaTiO 3 ), barium sulfate (BaSO 4 ), titanium oxide (TiO 2 ), boron nitride (BrN), magnesium oxide (MgO), calcium carbonate (CaCO 3 ), aluminum oxide (Al 2 O 3 ), barium sulfate (BaO), zirconium oxide (ZrO 2 ) and the like are included. From the viewpoints of light diffusibility, handleability, etc., the light diffusing particles are more preferably zinc oxide, barium titanate, barium sulfate, titanium oxide, boron nitride, or aluminum oxide.
  • the light diffusion layer 12 may include only one type of light diffusion particle, or may include two or more types.
  • the average primary particle size of the light diffusing particles is preferably 100 nm to 20 ⁇ m, more preferably 100 nm to 10 ⁇ m, and further preferably 200 nm to 2.5 ⁇ m.
  • the average primary particle size in this embodiment refers to the value of D50 measured with a laser diffraction particle size distribution meter.
  • Examples of the laser diffraction particle size distribution measuring device include a laser diffraction particle size distribution measuring device manufactured by Shimadzu Corporation.
  • the amount of light diffusing particles contained in the light diffusing layer 12 is preferably 0.5 to 30% by mass, and more preferably 1 to 15% by mass with respect to the total mass of the light diffusing layer 12.
  • the amount of the light diffusing particles is less than 0.5% by mass, the light diffusing property of the light diffusing layer 12 is not sufficient, and the light emitted from the light emitting member 10 may not be sufficiently uniformed.
  • the content of the light diffusing particles exceeds 30% by mass, the light transmittance of the light diffusing layer 12 is lowered, and the light extraction efficiency from the LED devices 100 to 103 may be lowered.
  • the shape of the light diffusing particles is not particularly limited, but the light diffusing particles are preferably spherical from the viewpoint of the dispersibility of the light diffusing particles.
  • the shape of the light diffusing particles can be confirmed with a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • the cured product of the organosilicon compound is a binder that binds the light diffusion particles.
  • the amount of the cured organic silicon compound (binder) contained in the light diffusion layer 12 is preferably 70 to 97% by mass, more preferably 80 to 95% by mass, based on the total mass of the light diffusion layer. .
  • the amount of the cured organosilicon compound is less than 70% by mass, the light diffusion layer may not have sufficient strength.
  • the content of the cured product of the organosilicon compound exceeds 95% by mass, the amount of the light diffusing particles is relatively decreased, and the light diffusibility may not be sufficient.
  • the type of the organosilicon compound is not particularly limited, but is preferably (i) a polysilazane oligomer or (ii) a monomer of a silane compound or an oligomer thereof.
  • the polysilazane oligomer is represented by the general formula (I): (R 1 R 2 SiNR 3 ) n .
  • R 1 , R 2 and R 3 each independently represents a hydrogen atom or an alkyl group, an aryl group, a vinyl group or a cycloalkyl group, but R 1 , R 2 and R 3 At least one of them is a hydrogen atom, preferably all are hydrogen atoms.
  • n represents an integer of 1 to 60.
  • the molecular shape of the polysilazane oligomer may be any shape, for example, linear or cyclic.
  • a cured product of polysilazane can be obtained by subjecting the polysilazane oligomer represented by the above formula (I) to heating, excimer light treatment, UV light treatment, etc. in the presence of a reaction accelerator and a solvent as necessary.
  • the silane compound or oligomer thereof may be a bifunctional silane compound, a trifunctional silane compound, or a tetrafunctional silane compound monomer or oligomer thereof.
  • the binder (cured product of organosilicon compound) of the light diffusing layer 12 is particularly preferably a trifunctional silane compound, a monomer of a tetrafunctional silane compound, or a polymer of its oligomer (polysiloxane).
  • a cured product (polysiloxane) of a copolymer of a trifunctional silane compound and a tetrafunctional silane compound a film having a high crosslink density is formed, so that the strength of the light diffusion layer 12 is increased.
  • the adhesion between the surface to be coated and the light diffusion layer 12 is enhanced.
  • the adhesion between the light diffusion layer 12 and the adhesive layer 21 and the adhesion between the light diffusion layer 12 and the sealing material 22 are enhanced by the organic group derived from the trifunctional silane compound remaining in the polysiloxane.
  • the polymerization ratio of the trifunctional silane compound and the tetrafunctional silane compound is preferably 3: 7 to 7: 3, and more preferably 4: 6 to 6: 4. If the polymerization ratio of the tetrafunctional silane compound is excessive, the degree of crosslinking of the polysiloxane becomes excessively high and cracks are likely to occur in the light diffusion layer 12. Further, since the amount of organic groups remaining in the polysiloxane is reduced, the adhesion between the light diffusion layer 12 and the adhesive layer 21 may not be sufficiently increased. On the other hand, when the polymerization ratio of the trifunctional silane compound is excessive, a large amount of organic groups derived from the trifunctional silane compound remain in the polysiloxane. Therefore, the amount of polysiloxane bonds between the hydroxyl group present on the surface to be coated and the silicon in the polysiloxane decreases, and the adhesion between the light diffusion layer 12 and the surface to be coated may not be sufficient.
  • the binder (cured product of the organosilicon compound) of the light diffusion layer 12 may be a bifunctional silane compound, a trifunctional silane compound monomer or an oligomer polymer thereof (polysiloxane).
  • the polymerization ratio of the bifunctional silane compound and the trifunctional silane compound is preferably 1: 9 to 4: 6, and more preferably 1: 9 to 3: 7.
  • the amount of polysiloxane bonds between the hydroxyl group present on the surface of the glass substrate 11 and the silicon in the polysiloxane is sufficient, so that the light diffusion layer 12 and the glass substrate 11 are in close contact with each other. Sexually increases.
  • the adhesion between the light diffusion layer 12 and the adhesive layer 21 is sufficiently increased by the organic group derived from the bifunctional silane compound and the trifunctional silane compound.
  • the binder (cured product of the organosilicon compound) of the light diffusion layer 12 may be a polymer of a bifunctional silane compound, a trifunctional silane compound, or a tetrafunctional silane compound monomer or oligomer thereof.
  • the polymerization ratio of the bifunctional silane compound to the trifunctional silane compound is 1: 9 to 4: 6, and the polymerization ratio of the tetrafunctional silane compound to the polymer of the bifunctional silane compound and the trifunctional silane compound is 9: It is preferably 1 to 7: 3.
  • each R 4 independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
  • tetrafunctional silane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, and triethoxymonomethoxy.
  • Silane trimethoxymonopropoxysilane, monomethoxytributoxysilane, monomethoxytripentyloxysilane, monomethoxytriphenyloxysilane, dimethoxydipropoxysilane, tripropoxymonomethoxysilane, trimethoxymonobutoxysilane, dimethoxydibutoxysilane, Triethoxymonopropoxysilane, diethoxydipropoxysilane, tributoxymonopropoxysilane, dimethoxymonoethoxymonobutoxy Silane, diethoxymonomethoxymonobutoxysilane, diethoxymonopropoxymonobutoxysilane, dipropoxymonomethoxymonoethoxysilane, dipropoxymonomethoxymonobutoxysilane, dipropoxymonoethoxymonobutoxysilane, dipropoxymonoethoxymonobutoxysilane, dipropoxymonoethoxymonobutoxy
  • Examples of the trifunctional silane compound include a compound represented by the following general formula (III).
  • R 5 each independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms or a phenyl group.
  • R 6 represents a hydrogen atom or an alkyl group.
  • trifunctional silane compounds include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, di Propoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxysilane Monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysilane, monofluoro Monohydrosilane compounds such as nyloxydieth
  • a compound in which R 5 represented by the general formula (III) is a methyl group is preferable from the viewpoint of reactivity and the like.
  • Examples of the trifunctional silane compound in which R 5 represented by the general formula (III) is a methyl group include methyltrimethoxysilane and methyltriethoxysilane, and methyltrimethoxysilane is particularly preferable.
  • Examples of the bifunctional silane compound include a compound represented by the following general formula (IV).
  • R 7 each independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms or a phenyl group.
  • R 8 represents a hydrogen atom or an alkyl group.
  • bifunctional silane compound examples include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxypropoxy.
  • the polysiloxane can be obtained by heat-treating the silane compound monomer or oligomer thereof in the presence of an acid catalyst, water, and a solvent, if necessary.
  • the light diffusion layer 12 may contain metal oxide fine particles having an average primary particle size of less than 100 nm.
  • metal oxide fine particles When metal oxide fine particles are contained in the light diffusion layer 12, minute irregularities are generated on the surface of the light diffusion layer 12.
  • the surface roughness in the above-described range can also be formed by this unevenness. Therefore, an anchor effect is generated between the light diffusion layer 12 and the adhesive layer 21 or the sealing material 22, and the adhesion between the light diffusion layer 12 and the adhesive layer 21 or the sealing material 22 is likely to increase. Further, since the gap between the light diffusion particles contained in the light diffusion layer 12 is filled with the metal oxide fine particles, the strength of the light diffusion layer 12 is increased, and cracks are hardly generated in the light diffusion layer 12.
  • the average primary particle size of the metal oxide fine particles is less than 100 nm, preferably 5 nm or more and less than 100 nm, more preferably 5 to 80 nm, still more preferably 5 to 50 nm.
  • the average primary particle size of the metal oxide fine particles is less than 100 nm, the metal oxide fine particles easily enter the gaps between the light diffusion particles, and the strength of the light diffusion layer 12 is likely to increase.
  • the average primary particle size of the metal oxide fine particles is 5 nm or more, irregularities having a surface roughness in the above-described range are easily formed on the surface of the light diffusion layer 12, and the above-described anchor effect is easily obtained.
  • the type of metal oxide fine particles is not particularly limited, but is preferably at least one selected from the group consisting of zirconium oxide, titanium oxide, cerium oxide, niobium oxide, and zinc oxide. In particular, from the viewpoint of increasing the film strength, zirconium oxide fine particles are preferably contained.
  • the light diffusion layer 12 may contain only one kind of metal oxide fine particles, or two or more kinds.
  • the metal oxide fine particles may have a surface treated with a silane coupling agent or a titanium coupling agent. When the surface of the metal oxide fine particles is treated, the metal oxide fine particles are easily dispersed uniformly in the light diffusion layer 12.
  • the amount of the metal oxide fine particles contained in the light diffusion layer 12 is preferably 1 to 30% by mass, more preferably 1 to 20% by mass, and still more preferably 2% with respect to the total mass of the light diffusion layer. ⁇ 10% by mass.
  • the content of the metal oxide fine particles is less than 1% by mass, the anchor effect at the interface between the light diffusion layer 12 and the layer formed on the light diffusion layer 12 after the light diffusion layer 12 is formed and the strength of the film are sufficient. It will not rise.
  • the content of the metal oxide fine particles exceeds 30% by mass, the amount of the binder is relatively reduced, and the film strength of the light diffusion layer 12 may be reduced.
  • the light diffusion layer 12 may contain clay mineral. When clay mineral is contained in the light diffusion layer 12, the strength of the light diffusion layer 12 tends to increase.
  • clay minerals include natural or synthetic hectrite, saponite, stevensite, hydelite, montmorillonite, nontrinite, bentonite, and other smectite genus clay minerals, Na-type tetralithic fluoromica, Li-type tetralithic fluoromica Swellable mica clay minerals such as Na-type fluorine teniolite and Li-type fluorine teniolite, vermiculite and kaolinite, aluminum silicate compounds, or a mixture thereof.
  • the clay mineral may have a surface modified with an ammonium salt or the like (surface treatment).
  • the aluminum silicate compound referred to here is a water that is composed of a number of Si—O—Al bonds, with silicon (Si), aluminum (Al), oxygen (O) and hydrogen (H) as the main constituent elements.
  • An example is imogolite.
  • a tube-like shape having an outer diameter of 2.0 to 2.5 nm, an inner diameter of 1.0 to 1.5 nm, and a length of several hundred nm is preferable.
  • the amount of the clay mineral contained in the light diffusion layer 12 is preferably 0.3 to 20% by mass, more preferably 0.5 to 15% by mass with respect to the total mass of the light diffusion layer 12.
  • concentration of the clay mineral particles is less than 0.5% by mass, the strength of the light diffusion layer 12 may not be sufficiently increased.
  • concentration of the clay mineral particles exceeds 20% by mass, the amount of the light diffusing particles is relatively small, and there is a possibility that sufficient light diffusion cannot be obtained.
  • the light diffusion layer 12 may include a metal alkoxide or metal chelate cured of a metal element having a valence of 2 or more other than Si element.
  • the adhesion between the light diffusion layer 12 and the surface to be coated is enhanced. This is because the metal contained in the metal alkoxide or metal chelate forms a metalloxane bond with a hydroxyl group or the like on the coated surface.
  • the amount of metal element derived from metal alkoxide or metal chelate (excluding Si element) contained in the light diffusion layer 12 is 0.5 to 20 mol% with respect to the number of moles of Si element contained in the light diffusion layer. It is preferably 1 to 10 mol%.
  • the amount of the metal element is less than 0.5 mol%, the adhesion between the light diffusion layer 12 and the coated surface is not sufficiently increased.
  • the amount of the metal alkoxide or metal chelate is increased, the amount of the light diffusing particles is relatively decreased, so that the light diffusibility of the light diffusing layer 12 may be lowered.
  • the amount of the metal element and the amount of the Si element can be calculated by energy dispersive X-ray spectroscopy (EDX).
  • the type of metal element contained in the metal alkoxide or metal chelate is not particularly limited as long as it is a bivalent or higher-valent metal element (excluding Si), but is preferably a group 4 or group 13 element. That is, specifically, the metal alkoxide or metal chelate is preferably a compound represented by the following general formula (V).
  • M m + X n Y mn (V) M represents a Group 4 or Group 13 metal element, and m represents the valence (3 or 4) of M.
  • X represents a hydrolyzable group, and n represents the number of X groups (an integer of 2 or more and 4 or less). However, m ⁇ n. Y represents a monovalent organic group.
  • the group 4 or group 13 metal element represented by M is preferably aluminum, zirconium, or titanium, and particularly preferably zirconium.
  • the cured product of alkoxide or chelate containing elemental zirconium does not have an absorption wavelength in the emission wavelength region of general LED chip 2 (particularly blue light (wavelength 420 to 485 nm)). The light from the LED chip 2 is difficult to be absorbed.
  • the hydrolyzable group represented by X may be a group that is hydrolyzed with water to form a hydroxyl group.
  • the hydrolyzable group include a lower alkoxy group having 1 to 5 carbon atoms, an acetoxy group, a butanoxime group, a chloro group and the like.
  • all the groups represented by X may be the same group or different groups.
  • the hydrolyzable group represented by X is hydrolyzed when the metal element forms a metalloxane bond with a hydroxyl group or the like on the coated surface. Therefore, the group produced after hydrolysis is neutral and is preferably a light boiling group. Therefore, the group represented by X is preferably a lower alkoxy group having 1 to 5 carbon atoms, more preferably a methoxy group or an ethoxy group.
  • the monovalent organic group represented by Y may be a monovalent organic group contained in a general silane coupling agent. Specifically, the aliphatic group, alicyclic group, aromatic group, fatty acid having 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, further preferably 40 or less, and particularly preferably 6 or less. It may be a ring aromatic group.
  • the organic group represented by Y may be an aliphatic group, an alicyclic group, an aromatic group, or a group in which an alicyclic aromatic group is bonded via a linking group.
  • the linking group may be an atom such as O, N, or S, or an atomic group containing these.
  • the organic group represented by Y may have a substituent.
  • substituents include halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, Organic groups such as nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group and phenyl group are included.
  • metal alkoxide or metal chelate containing the aluminum element represented by the general formula (V) include aluminum triisopropoxide, aluminum tri-n-butoxide, aluminum tri-t-butoxide, aluminum triethoxide and the like. It is.
  • metal alkoxide or metal chelate containing a zirconium element represented by the general formula (V) include zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetra i-propoxide, zirconium.
  • Examples include tetra n-butoxide, zirconium tetra i-butoxide, zirconium tetra t-butoxide, zirconium dimethacrylate dibutoxide, dibutoxyzirconium bis (ethylacetoacetate) and the like.
  • metal alkoxide or metal chelate containing the titanium element represented by the general formula (V) include titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra i-butoxide, titanium methacrylate triisopropoxide, titanium.
  • examples include tetramethoxypropoxide, titanium tetra n-propoxide, titanium tetraethoxide, titanium lactate, titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), titanium acetylacetonate, and the like.
  • metal alkoxides or metal chelates exemplified above are a part of commercially available organometallic alkoxides or metal chelates.
  • the adhesion layer 21 is a layer which bonds the light emitting member 10 and the wavelength conversion and light-diffusion member 20 together. Specifically, it is a layer that is bonded so that the wavelength conversion / light diffusion member 20 faces the light extraction surface of the light emitting member 10. As shown in FIG. 1 or 3, the adhesive layer 21 has a frame shape around the concave portion of the concave package 1, that is, between the outer periphery of the light extraction surface of the light emitting member 10 and the wavelength conversion / light diffusion member 20. May be formed. Further, as shown in FIG. 2, it may be formed on the entire surface between the light emitting member 10 and the wavelength conversion / light diffusion member 20. Further, as shown in FIG.
  • the thickness of the pressure-sensitive adhesive layer 21 is appropriately selected according to the configuration of the LED device and the like, but is usually preferably 0.05 to 0.3 ⁇ m, more preferably 0.05 to 0.2 ⁇ m. If the thickness of the adhesive layer 21 is too thin, the light emitting member 10 and the wavelength conversion / light diffusion member 20 may not be sufficiently bonded. On the other hand, if the pressure-sensitive adhesive layer 21 is too thick, the light transmittance is lowered, and the light extraction efficiency from the LED devices 100 to 102 may be lowered.
  • the type of the adhesive layer 21 is not particularly limited, and may be an acrylic, urethane, rubber, or silicone adhesive layer. From the viewpoints of adhesion to the light emitting member 10 and the wavelength conversion / light diffusion member 20 and handling properties, a silicone-based adhesive layer is preferable.
  • the sealing material 22 seals the package 1 from the outside atmosphere in order to prevent deterioration due to moisture or oxygen in the air.
  • an epoxy compound such as bisphenol A type, F type, or novolac resin can be used. It is possible to use a method in which an acid anhydride such as an epoxy compound and an oxetane compound is allowed to coexist and is polymerized using an acid generator such as a sulfonium salt or a phosphonium salt as an initiator and then left standing at a high temperature for a certain period of time. .
  • a method of manufacturing the LED devices 100 to 103 of FIGS. 1 to 4 includes the following steps. 1) A step of preparing a light emitting member having a package, an LED chip mounted on the package, and a sealing material that covers the LED chip as required. 2) A glass substrate and formed on the glass substrate. Step of preparing a wavelength conversion / light diffusion member having a light diffusion layer and a wavelength conversion layer 3) An adhesive layer is formed on the light emission member and / or the wavelength conversion / light diffusion member, and the light emission member and the wavelength conversion / light diffusion member are formed. The process of laminating and bonding these
  • the light-emitting member preparation can be a step of (i) mounting an LED chip on a package and (ii) forming a sealing material layer on the LED chip as necessary.
  • the LED chip is mounted on the package by electrically connecting the metal part (wiring) of the package and the LED chip.
  • the LED chip and the metal part may be connected via a wiring or may be connected via a protruding electrode.
  • a sealing material layer is formed so as to cover at least the light emitting surface of the LED chip.
  • Wavelength conversion / light diffusing member preparation step The step of preparing the wavelength conversion / light diffusing member is a step of applying a light diffusing layer forming composition containing the aforementioned light diffusing particles and an organosilicon compound on a glass substrate. And a step of applying the wavelength conversion layer forming composition containing the phosphor particles and the binder described above. Note that it is possible to determine which process is performed first according to the layer configuration of the wavelength conversion / light diffusion member.
  • composition for forming a light diffusion layer may contain the above-mentioned metal oxide fine particles, clay mineral, metal alkoxide or metal chelate, solvent, etc. in addition to the above-mentioned organosilicon compound and light diffusion particles.
  • the amount of the organosilicon compound contained in the light diffusion layer forming composition is preferably 5 to 50% by mass with respect to the total mass of the light diffusion layer forming composition.
  • the organosilicon compound is an oligomer of a silane compound
  • the oligomer is prepared by polymerizing the silane compound. A method for preparing the oligomer of the silane compound will be described later.
  • the solvent contained in the composition for forming a light diffusion layer is not particularly limited as long as it can dissolve or disperse the organosilicon compound.
  • an aqueous solvent having excellent compatibility with water may be used, and a non-aqueous solvent having low compatibility with water may be used.
  • the boiling point of the solvent contained in the composition for forming a light diffusion layer is preferably 150 ° C. or higher.
  • the storage stability of the light diffusion layer forming composition is improved, and the light diffusion layer forming composition can be stably applied from a coating apparatus.
  • the boiling point of the solvent is preferably 250 ° C. or lower from the viewpoint of the drying property of the composition for forming a light diffusion layer.
  • the solvent contained in the light diffusion layer forming composition contains a divalent or higher polyhydric aliphatic alcohol.
  • polyhydric alcohol When polyhydric alcohol is contained, the viscosity of the composition for forming a light diffusion layer is increased, and light diffusion particles and the like are hardly precipitated.
  • the dihydric or higher polyhydric aliphatic alcohol include ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-butanediol, 1,4-butanediol, and the like.
  • the amount of polyhydric alcohol contained in the light diffusing layer forming composition is preferably 1 to 15% by mass, more preferably 1 to 10% by mass, based on the entire composition for forming the light diffusing layer. More preferably, it is 3 to 10% by mass.
  • the light diffusing layer forming composition may contain a reaction accelerator together with an organosilicon compound (particularly a polysilazane oligomer).
  • the reaction accelerator may be either acid or base.
  • reaction accelerators include amines such as triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, and triethylamine; hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, and Acids such as acetic acid; metal carboxylates including nickel, iron, palladium, iridium, platinum, titanium, and aluminum are included.
  • the reaction accelerator is particularly preferably a metal carboxylate.
  • the addition amount of the reaction accelerator is preferably 0.01 to 5 mol% with respect to the mass of the polysilazane oligomer.
  • the coating method of the light diffusion layer forming composition is not particularly limited, and examples thereof include a bar coating method, a spin coating method, a spray coating method, a dispenser coating method, and the like.
  • Examples of desktop coaters used for the bar coating method include TC-1 manufactured by Mitsui Electric Seiki Co., Ltd., and examples of wire bars include a wire bar manufactured by Tester Sangyo Co., Ltd.
  • the wire diameter of the wire bar is appropriately selected according to the film thickness of the light diffusion layer forming composition.
  • the coating speed of the tabletop coater is appropriately selected according to the viscosity of the light diffusing layer forming composition and the desired thickness of the light diffusing layer, but is generally 1 to 3 m / min. it can.
  • coating the composition for light-diffusion layer formation with a tabletop coater it is preferable to mount a glass plate on the coater stand with high flatness, and to apply
  • spin coaters used in the spin coating method include spin coater MS-A100 manufactured by Mikasa Corporation.
  • the number of rotations of the spin coater is appropriately selected according to the viscosity of the composition for forming a light diffusion layer, the thickness of the light diffusion layer, and the like. Generally, it can be set to about 300 rpm.
  • FIG. 8 is a schematic view of a spray device for applying the composition for forming a light diffusion layer.
  • the light diffusion layer forming composition 220 in the coating liquid tank 210 is supplied with pressure to the head 240 through the connecting pipe 230.
  • the light diffusion layer forming composition 220 supplied to the head 240 is discharged from the nozzle 250 and applied onto the glass substrate 11.
  • the discharge of the coating liquid from the nozzle 250 is performed by wind pressure.
  • An opening that can be freely opened and closed is provided at the tip of the nozzle 250, and the opening may be opened and closed to control on / off of the discharge operation.
  • the following operations (1) to (4) and conditions are set.
  • (1) The tip portion of the nozzle 250 is disposed immediately above the glass substrate 11 and the light diffusion layer forming composition 270 is sprayed from directly above the glass substrate 11.
  • the injection amount of the light diffusion layer forming composition 220 is controlled according to the viscosity of the light diffusion layer forming composition and the target film thickness. As long as coating is performed under the same conditions, the spray amount is constant and the coating amount per unit area is constant. The variation over time of the injection amount of the light diffusion layer forming composition 220 is set to be within 10%, preferably within 1%.
  • the injection amount of the light diffusion layer forming composition 220 is adjusted by the relative movement speed of the nozzle 250 with respect to the glass substrate 11, the injection pressure from the nozzle 250, and the like. Generally, when the viscosity of the composition for forming a light diffusion layer is high, the relative movement speed of the nozzle is slowed and the spray pressure is set high. The relative movement speed of the nozzle is usually about 30 mm / s to 200 mm / s, and the injection pressure is usually about 0.01 MPa to 0.4 MPa.
  • the surface roughness can be adjusted accordingly. If the injection pressure is lowered, the surface roughness is increased because it is easy to dry during the injection. On the other hand, when the injection pressure is lowered, the surface roughness is reduced because drying is difficult during injection.
  • the surface roughness can also be adjusted by adjusting the distance between the nozzle 250 and the glass substrate 11. In this case, when the distance is long, the surface roughness is increased because it is easy to dry during jetting. On the other hand, when the distance is shortened, the surface roughness is small because it is difficult to dry during jetting.
  • the environment atmosphere (temperature and humidity) of the coating apparatus 200 is kept constant, and the injection of the light diffusion layer forming composition 220 is stabilized.
  • the organosilicon compound is polysilazane
  • the dispersion 220 may be solidified. Therefore, it is preferable to reduce the humidity when spraying the light diffusion layer forming composition 220.
  • the nozzle 250 may be cleaned during the spraying / coating process.
  • a cleaning tank storing a cleaning liquid is installed in the vicinity of the coating apparatus 200. Then, during the suspension of the spraying of the dispersion liquid 220, the tip of the nozzle 250 is immersed in the cleaning tank to prevent drying of the tip of the nozzle 250. Further, during the suspension of the spraying / coating process, the light diffusion layer forming composition 220 may be hardened and the spray holes of the nozzle 250 may be clogged, so that the nozzle 250 may be immersed in the cleaning tank or sprayed / coated. It is preferable to clean the nozzle 250 at the start of the process.
  • the solvent contained in the light diffusion layer forming composition is removed by drying.
  • the organosilicon compound contained in the composition for forming a light diffusion layer is cured by firing.
  • the temperature for drying and curing the composition for forming a light diffusion layer is preferably 20 to 200 ° C., more preferably 25 to 150 ° C. If the temperature is lower than 20 ° C, the solvent may not be sufficiently evaporated. On the other hand, if the temperature exceeds 200 ° C., the LED chip may be adversely affected.
  • the drying / curing time is preferably from 0.1 to 30 minutes, more preferably from 0.1 to 15 minutes, from the viewpoint of production efficiency.
  • the coating film is irradiated with VUV radiation having a wavelength in the range of 170 to 230 nm (eg, excimer light) and cured, and then heat-cured to obtain a denser film. Is formed.
  • VUV radiation having a wavelength in the range of 170 to 230 nm (eg, excimer light) and cured, and then heat-cured to obtain a denser film. Is formed.
  • the oligomer (polysiloxane oligomer) of the silane compound contained in the above-mentioned composition for forming a light diffusion layer can be prepared by the following method.
  • the monomer of the silane compound is hydrolyzed in the presence of an acid catalyst, water, and an organic solvent to cause a condensation reaction.
  • the mass average molecular weight of the oligomer of the silane compound is adjusted by reaction conditions (particularly reaction time).
  • the mass average molecular weight of the silane compound oligomer contained in the composition for forming a light diffusion layer is preferably 1000 to 3000, more preferably 1200 to 2700, and further preferably 1500 to 2000.
  • the mass average molecular weight of the oligomer of the silane compound contained in the composition for forming a light diffusion layer is less than 1000, the viscosity of the composition for forming a light diffusion layer is lowered, and liquid repellency or the like is likely to occur during the formation of the light diffusion layer. Become.
  • the mass average molecular weight of the oligomer of the silane compound contained in the composition for forming a light diffusion layer exceeds 3000, the viscosity of the composition for forming a light diffusion layer increases, and it may be difficult to form a uniform film.
  • the mass average molecular weight is a value (polystyrene conversion) measured by gel permeation chromatography.
  • the acid catalyst for preparing the oligomer of the silane compound only needs to act as a catalyst during hydrolysis of the silane compound, and may be either an organic acid or an inorganic acid.
  • inorganic acids include sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid and the like, with phosphoric acid and nitric acid being particularly preferred.
  • organic acids include compounds having a carboxylic acid residue such as formic acid, oxalic acid, fumaric acid, maleic acid, glacial acetic acid, acetic anhydride, propionic acid, and n-butyric acid; organic sulfonic acid, and organic sulfone
  • a sulfur-containing acid residue such as an acid esterified product (organic sulfate ester or organic sulfite ester), is included.
  • the acid catalyst for preparing the oligomer of the silane compound is particularly preferably an organic sulfonic acid represented by the following general formula (VI).
  • R 8 —SO 3 H (VI) the hydrocarbon group represented by R 8 is a linear, branched, or cyclic saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms.
  • the cyclic hydrocarbon group include an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, or an anthryl group, preferably a phenyl group.
  • the hydrocarbon group represented by R 8 in the general formula (VI) may have a substituent.
  • substituents examples include linear, branched, or cyclic, saturated or unsaturated hydrocarbon groups having 1 to 20 carbon atoms; halogen atoms such as fluorine atoms; sulfonic acid groups; carboxyl groups; Amino group; cyano group and the like are included.
  • the organic sulfonic acid represented by the general formula (VI) is particularly preferably nonafluorobutanesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, or dodecylbenzenesulfonic acid.
  • the amount of the acid catalyst added at the time of preparing the oligomer of the silane compound is preferably 1 to 1000 ppm by mass, more preferably 5 to 800 ppm by mass with respect to the total amount of the oligomer preparation solution.
  • the film quality of the resulting polysiloxane varies depending on the amount of water added when preparing the oligomer of the silane compound. Therefore, it is preferable to adjust the water addition rate during oligomer preparation according to the target film quality.
  • the water addition rate is the ratio (%) of the number of moles of water molecules to be added to the number of moles of alkoxy groups or aryloxy groups of the silane compound contained in the oligomer preparation solution.
  • the water addition rate is preferably 50 to 200%, more preferably 75 to 180%. By setting the water addition rate to 50% or more, the film quality of the light diffusion layer is stabilized. Moreover, the storage stability of the composition for light-diffusion layer forming becomes favorable by setting it as 200% or less.
  • Examples of the solvent to be added when preparing the oligomer of the silane compound include monohydric alcohols such as methanol, ethanol, propanol and n-butanol; alkylcarboxylic acids such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate.
  • Acid esters such as ethylene glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, hexanetriol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether , Diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol mono Monoethers of polyhydric alcohols such as butyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, or their monoacetates; methyl acetate, ethyl acetate, butyl acetate, etc.
  • Esters such as acetone, methyl ethyl ketone, methyl isoamyl ketone; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether Jie Polyhydric alcohols ethers and all alkyl-etherified hydroxyl of polyhydric alcohols such as glycol methyl ethyl ether; and the like. These may be added alone or in combination of two or more.
  • the method for forming the wavelength conversion layer is appropriately selected depending on the type of binder of the wavelength conversion layer.
  • a wavelength conversion layer is formed by applying a composition for forming a wavelength conversion layer containing the phosphor particles, the transparent resin or a precursor thereof, and a solvent.
  • the type of the solvent contained in the composition for forming a wavelength conversion layer when the binder is a transparent resin is not particularly limited as long as it can dissolve the transparent resin or a precursor thereof.
  • the solvent include hydrocarbons such as toluene and xylene; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether and tetrahydrofuran; esters such as propylene glycol monomethyl ether acetate and ethyl acetate.
  • the coating method of the wavelength conversion layer forming composition is not particularly limited, and the same method as the coating method of the light diffusion layer forming composition described above can be used.
  • the wavelength conversion layer forming composition After the application of the wavelength conversion layer forming composition, the wavelength conversion layer forming composition is cured.
  • the curing method and curing conditions of the wavelength conversion layer forming composition are appropriately selected depending on the type of transparent resin.
  • An example of the curing method is heat curing.
  • a composition for forming a wavelength conversion layer containing the above-described phosphor particles and the above-described translucent ceramic precursor is applied, and the translucent ceramic precursor is applied.
  • a wavelength conversion layer can be formed by curing.
  • the composition for forming a wavelength conversion layer includes the above-described clay mineral particles, inorganic particles, and a solvent as necessary. When the clay mineral particles and inorganic particles described above are included, the viscosity of the wavelength conversion layer forming composition increases, and the phosphor particles are difficult to settle.
  • the solvent contained in the composition for forming a wavelength conversion layer is water, an organic solvent having excellent compatibility with water, or an organic solvent having low compatibility with water.
  • the solvent include monovalent aliphatic alcohols such as methanol, ethanol, propanol and butanol, and divalents such as ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-butanediol and 1,4-butanediol. These polyhydric alcohols are included.
  • the boiling point of the solvent is preferably 150 ° C. or higher.
  • the storage stability of the composition for forming a wavelength conversion layer is improved, and the composition for forming a wavelength conversion layer can be stably applied from a coating apparatus.
  • the boiling point of the solvent is preferably 250 ° C. or less from the viewpoint of the drying property of the composition for forming a wavelength conversion layer.
  • the solvent may contain water.
  • water When water is contained, the clay mineral particles described above swell and the viscosity of the wavelength conversion layer forming composition is further increased.
  • impurities when impurities are contained in water, there is a possibility of inhibiting the swelling of the clay mineral particles. Therefore, it is preferable to use pure water as the water contained in the solvent.
  • the coating method of the wavelength conversion layer forming composition is not particularly limited, and the same method as the coating method of the light diffusion layer forming composition described above can be used.
  • the solvent is dried and the translucent ceramic precursor is cured.
  • the temperature during drying / curing is usually 20 to 200 ° C., preferably 25 to 150 ° C. If the temperature is lower than 20 ° C., the solvent does not volatilize sufficiently and the translucent ceramic precursor may not be cured. On the other hand, if it exceeds 200 ° C., the LED chip may be adversely affected.
  • the drying / curing time is usually 0.1 to 30 minutes, preferably 0.1 to 15 minutes from the viewpoint of production efficiency.
  • the phosphor particles and the translucent ceramic precursor may be applied in two liquids. Specifically, a phosphor layer containing a phosphor particle, clay mineral particles, inorganic particles, and a solvent is applied to form a phosphor layer, and a translucent ceramic precursor and a phosphor layer are formed on the phosphor layer. A composition for a translucent ceramic layer containing a solvent is applied to form a wavelength conversion layer.
  • the solvent contained in the phosphor dispersion and the translucent ceramic layer composition may be the same solvent as that used when the phosphor particles and the translucent ceramic precursor are applied in a single liquid. Further, the method for applying the phosphor dispersion liquid, the method for applying the composition for translucent ceramic layer, and the drying / curing method may be the same as the method for applying these in one liquid.
  • Adhesive layer forming step and bonding step After forming the light emitting member and the wavelength conversion / light diffusing member, an adhesive layer is formed on one or both of them, and these are bonded together. For example, as shown in FIGS. 1 and 3, when the package 1 having a recess and the periphery of the wavelength conversion / light diffusion member 20 are bonded together, the periphery of the recess of the package 1 and the wavelength conversion / light diffusion member 20 are combined.
  • the adhesive layer 21 is formed in a frame shape on either or both of them, and the light emitting member 10 and the wavelength conversion / light diffusion member 20 are bonded together. For example, as shown in FIG.
  • the method for forming the adhesive layer is not particularly limited, and may be a known method for forming an adhesive layer.
  • a pressure-sensitive adhesive sheet in which a pressure-sensitive adhesive is formed in a film shape may be prepared, and this may be adhered to a light emitting member and / or a wavelength conversion / light diffusion member to form a pressure-sensitive adhesive layer.
  • methods for directly applying the adhesive include application by a comma coater, printing by various printing methods, application by a spray application device, application by a dispenser, and the like.
  • the pressure-sensitive adhesive is cured as necessary.
  • Examples of the effect method of the pressure-sensitive adhesive include heat curing and curing by ultraviolet irradiation.
  • a package made of polyphthalamide (PPA) resin containing a white pigment and integrally formed with a lead frame was prepared.
  • the package was a rectangular parallelepiped of 3.2 mm ⁇ 2.8 mm ⁇ 1.8 mm, with a truncated cone-shaped recess having an opening diameter of 2.4 mm, a wall surface angle of 45 °, and a depth of 0.85 mm.
  • the electrode part provided in this package and the LED chip were connected by a gold wire, and the LED chip was mounted on the package.
  • the outer shape of the LED chip was 305 ⁇ m ⁇ 330 ⁇ m ⁇ 100 ⁇ m.
  • the peak wavelength of the LED chip was 475 nm.
  • -Composition B for wavelength conversion layer formation An organic silicon compound (manufactured by Shin-Etsu Silicone Co., Ltd., KER2600) and a yellow phosphor (manufactured by Nemoto Special Chemical Co., Ltd., YAG 450C205 (volume average particle size particle size D50 20.5 ⁇ m)) are mixed to form a wavelength conversion layer forming composition B Was prepared.
  • the concentration of the yellow phosphor in the wavelength conversion layer forming composition B was 5% by mass.
  • a polyester resin solution was prepared by mixing 50 g of a polyester resin (Byron 220 manufactured by Toyobo Co., Ltd.) and 50 g of a diluting solvent (G-004 solvent manufactured by Teikoku Ink Co., Ltd.).
  • the composition for forming a light diffusion layer was applied by a bar coating method onto a glass plate having a thickness of 100 ⁇ m and a size of 100 mm ⁇ 100 mm.
  • the composition for forming a light diffusion layer was dried at 120 ° C. for 10 minutes under atmospheric pressure to produce a light diffusion member in which a glass substrate and a light diffusion layer were laminated.
  • the thickness of the light diffusion layer after drying was 1 ⁇ m.
  • An adhesive (LPS-5547 manufactured by Shin-Etsu Chemical Co., Ltd.) was applied on the light diffusion layer of this light diffusion member to form an adhesive layer. Thereafter, the light diffusing layer of the light diffusing member and the wavelength conversion layer of the light emitting member produced in Comparative Example 1 were opposed to each other to obtain an LED device.
  • a composition for forming a light diffusion layer was applied on a glass plate having a thickness of 100 ⁇ m and a size of 100 mm ⁇ 100 mm by a bar coating method.
  • the composition for forming a light diffusion layer was dried at 150 ° C. for 1 hour under atmospheric pressure to produce a light diffusion member in which a glass substrate and a light diffusion layer were laminated.
  • the thickness of the light diffusion layer after drying was 1 ⁇ m.
  • An adhesive (LPS-5547 manufactured by Shin-Etsu Chemical Co., Ltd.) was applied on the light diffusion layer of this light diffusion member to form an adhesive layer.
  • the light diffusing layer of the light diffusing member and the wavelength conversion layer of the light emitting member prepared in Comparative Example 1 were opposed to each other to obtain an LED device.
  • Tetramethoxysilane (3.25 g), methanol (4.00 g), and acetone (4.00 g) were mixed and stirred. Further, 5.46 g of water and 4.7 ⁇ L of 60% nitric acid were added to this mixed solution and stirred for 3 hours to obtain a polysiloxane solution. Subsequently, 0.13 g of titanium oxide (Fuji Titanium Industry TA-100 particle size 600 nm) and 2 g of 1,3-butanediol were mixed with the polysiloxane solution to prepare a composition for forming a light diffusion layer.
  • titanium oxide Fluji Titanium Industry TA-100 particle size 600 nm
  • 1,3-butanediol were mixed with the polysiloxane solution to prepare a composition for forming a light diffusion layer.
  • a composition for forming a light diffusion layer was applied on a glass plate having a thickness of 100 ⁇ m and a size of 100 mm ⁇ 100 mm by a bar coating method.
  • the composition for forming a light diffusion layer was dried at 150 ° C. for 1 hour under atmospheric pressure to produce a light diffusion member in which a glass substrate and a light diffusion layer were laminated.
  • the thickness of the light diffusion layer after drying was 1.5 ⁇ m.
  • the aforementioned wavelength conversion layer forming composition A was applied to a desired thickness by a bar coating method.
  • the LED chip was mounted on the package to obtain a light emitting member.
  • An adhesive (LPS-5547 manufactured by Shin-Etsu Chemical Co., Ltd.) was applied to the upper surface of the package substrate to form an adhesive layer. Then, the wavelength conversion layer of the wavelength conversion / light diffusing member and the adhesive layer were opposed to each other and bonded to obtain the LED device shown in FIG.
  • Example 2 7.0 g of polysilazane (manufactured by AZ Electronic Materials, NN120; polysilazane 20 mass%, dibutyl ether 80 mass%) and 0.05 g of titanium oxide (Fuji Titanium Industry TA-100 particle size 600 nm) are mixed to form a light diffusion layer. A forming composition was prepared. The following was carried out similarly to Example 1, and obtained the LED device shown by FIG.
  • a zirconium oxide (ZrO 2 ) dispersion having an average primary particle size of 5 nm (30 wt% methanol solution, manufactured by Sakai Chemical Co., Ltd.), titanium oxide (Fuji Titanium Industry TA-100, particle size 600 nm) was added to the polysiloxane solution.
  • a composition for forming a light diffusion layer was prepared by mixing 0.13 g and 2 g of 1,3-butanediol. The following was carried out similarly to Example 1, and obtained the LED device shown by FIG.
  • a zirconium oxide (ZrO 2 ) dispersion (30 wt% methanol solution, manufactured by Sakai Chemical Co., Ltd.) having an average primary particle size of 5 nm and barium sulfate (Sakai Chemical Industry BF-10, particle size 600 nm) were added to the polysiloxane solution.
  • a composition for forming a light diffusion layer was prepared by mixing 0.13 g and 2 g of 1,3-butanediol. The following was carried out similarly to Example 1, and obtained the LED device shown by FIG.
  • an aluminum silicate compound imogolite dispersion (water dispersion of imogolite 0.3 wt%) synthesized as described below and titanium oxide (Fuji Titanium Industry TA-100, particle size 600 nm) were added to the polysiloxane solution.
  • a composition for forming a light diffusion layer was prepared by mixing 0.13 g and 2 g of 1,3-butanediol. The following was carried out similarly to Example 1, and obtained the LED device shown by FIG.
  • the produced sodium chloride was removed by washing with water, concentrated hydrochloric acid was added again, the pH was adjusted to 4.0, the mixture was heated to 100 ° C., and maintained for 24 hours to prepare an imogolite dispersion that is an aluminum silicate compound.
  • acetylacetone manufactured by Kanto Chemical Co., Inc.
  • ZC-580 manufactured by Matsumoto Fine Chemical Co., Ltd.
  • a zirconium oxide (ZrO 2 ) dispersion having an average primary particle size of 5 nm (30 wt% methanol solution, manufactured by Sakai Chemical Co., Ltd.), 0.13 g of titanium oxide (Fuji Titanium Industry TA-100, particle size 600 nm), and 1 , 3-butanediol 2 g was mixed to prepare a composition for forming a light diffusion layer. The following was carried out similarly to Example 1, and obtained the LED device shown by FIG.
  • a zirconium oxide (ZrO 2 ) dispersion having an average primary particle size of 5 nm (30 wt% methanol solution, manufactured by Sakai Chemical Co., Ltd.), 0.13 g of titanium oxide (Fuji Titanium Industry TA-100, particle size 600 nm), and 1 , 3-butanediol 2 g was mixed to prepare a composition for forming a light diffusion layer. The following was carried out similarly to Example 1, and obtained the LED device shown by FIG.
  • a zirconium oxide (ZrO 2 ) dispersion having an average primary particle size of 5 nm (30 wt% methanol solution, manufactured by Sakai Chemical Co., Ltd.), titanium oxide (Fuji Titanium Industry TA-100, particle size 600 nm) was added to the polysiloxane solution.
  • a composition for forming a light diffusion layer was prepared by mixing 0.13 g and 2 g of 1,3-butanediol.
  • a composition for forming a light diffusion layer was applied on a glass plate having a thickness of 100 ⁇ m and a size of 100 mm ⁇ 100 mm by a bar coating method.
  • the composition for forming a light diffusion layer was dried at 150 ° C. for 1 hour under atmospheric pressure to produce a light diffusion member in which a glass substrate and a light diffusion layer were laminated.
  • the thickness of the light diffusion layer after drying was 1.5 ⁇ m.
  • the above-described wavelength conversion layer forming composition A was applied to the glass substrate surface opposite to the light diffusion layer of this light diffusion member to a desired thickness by a bar coating method.
  • the LED chip was mounted on the package to obtain a light emitting member.
  • An adhesive (LPS-5547 manufactured by Shin-Etsu Chemical Co., Ltd.) was applied to the upper surface of the package substrate to form an adhesive layer. Then, the wavelength conversion layer of the wavelength conversion / light diffusing member and the adhesive layer were opposed to each other and bonded to obtain the LED device having the configuration (b) described above.
  • a zirconium oxide (ZrO 2 ) dispersion having an average primary particle size of 5 nm (30 wt% methanol solution, manufactured by Sakai Chemical Co., Ltd.), titanium oxide (Fuji Titanium Industry TA-100, particle size 600 nm) was added to the polysiloxane solution.
  • a composition for forming a light diffusion layer was prepared by mixing 0.13 g and 2 g of 1,3-butanediol.
  • the aforementioned wavelength conversion layer forming composition A was applied to a desired thickness by a bar coating method.
  • the wavelength conversion layer forming composition A was dried at 150 ° C. for 1 hour under atmospheric pressure to prepare a wavelength conversion member in which the wavelength conversion layer was laminated on the glass substrate.
  • composition for forming a light diffusion layer was applied on the wavelength conversion layer of the wavelength conversion member by a spray method.
  • the composition for forming a light diffusion layer was dried at 150 ° C. for 1 hour under atmospheric pressure to produce a wavelength conversion / light diffusion member in which a glass substrate, a wavelength conversion layer, and a light diffusion layer were laminated.
  • the thickness of the light diffusion layer after drying was 1.5 ⁇ m as measured by observing the cross section with a scanning electron microscope.
  • the LED chip was mounted on the package to obtain a light emitting member.
  • An adhesive (LPS-5547 manufactured by Shin-Etsu Chemical Co., Ltd.) was applied to the upper surface of the package substrate to form an adhesive layer. Thereafter, the light diffusing layer of the wavelength conversion / light diffusing member and the adhesive layer were made to face each other and bonded to obtain the LED device having the configuration of (c) described above.
  • Example 21 The wavelength conversion / light diffusing member produced in Example 19 was bonded to the light diffusing layer and the adhesive layer opposite to those in Example 19 to obtain the LED device having the above-described configuration (e). .
  • Example 22 The wavelength conversion / light diffusing member produced in Example 10 was bonded to the glass substrate and the adhesive layer opposite to those in Example 10 to obtain the LED device having the configuration of (d) described above.
  • Example 23 The wavelength conversion / light diffusing member produced in Example 20 was bonded to the glass substrate and the adhesive layer opposite to those in Example 20, to obtain the LED device having the above-described configuration (f).
  • the maximum value of the difference in x values is 0.03 or more, the color unevenness is large and is actually harmful. If the maximum value of the difference in x values is less than 0.03, the color unevenness is small and the actual harm is high. It can be evaluated as not.
  • each LED device was light-emitted with the electric current value of 20 mA for 1000 hours in a 150 degreeC high temperature tank.
  • the total luminous flux value was measured for the LED devices before and after light emission.
  • the ratio of the total luminous flux value after 1000 hours of light emission to the total luminous flux value before emission for 1000 hours ((total luminous flux value after 1000 hours emission / total luminous flux value before 1000 hours emission) ⁇ 100) was calculated. This ratio is shown in Table 1. If the ratio is less than 90%, it can be evaluated that the deterioration is remarkable, and if the ratio is 90% or more, it can be evaluated that there is almost no deterioration.
  • the wavelength conversion / light diffusion member is disposed on the light emitting member (Examples 1 to 23), light from the light emitting member is diffused by the wavelength conversion / light diffusion member, and chromaticity unevenness is suppressed.
  • a high-density composition for forming a wavelength conversion layer is applied. Therefore, since a high-density wavelength conversion layer is formed, it is assumed that a wavelength conversion layer having a uniform concentration of phosphor particles is obtained, and light having a uniform chromaticity is emitted.
  • the binder of the light diffusion layer was a polyester resin (Comparative Example 2)
  • the total luminous flux value was greatly reduced after the durability test. It is presumed that the total light flux value after the durability test was lowered because the light diffusion layer was deteriorated by the durability test and the light transmittance of the light diffusion layer was lowered.
  • the binder of the light diffusion layer was a cured product of an organosilicon compound (Examples 1 to 23 and Comparative Example 3), the total luminous flux value hardly decreased even after the durability test.
  • Example 3 When the binder of the light diffusion layer is a cured product of a tetrafunctional silane compound (Examples 1 and 2), and the polymerization ratio of the trifunctional silane compound and the tetrafunctional silane compound is 2: 8 In Example 3, cracks occurred in the light diffusion layer. When there are many tetrafunctional components, it is guessed that the crosslinking density was excessively high and the light diffusion layer could not follow the expansion of the glass substrate and cracks were generated. Moreover, it is thought that the amount of shrinkage at the time of hardening is also a cause of cracks. Further, in these examples, partial peeling occurred at the interface between the wavelength conversion layer and the light diffusion layer. It is inferred that the adhesion at these interfaces was insufficient.
  • the polymerization ratio of the trifunctional silane compound to the tetrafunctional silane compound is 3: 7 to 7: 3 (Examples 5 to 23)
  • the interface between the glass substrate and the light diffusion layer light diffusion No peeling occurred at any of the interface between the layer and the adhesive layer and the interface between the light diffusion layer and the wavelength conversion layer.
  • metal oxide fine particles were contained in the light diffusion layer (Examples 10 to 23)
  • no crack was generated. It is presumed that the metal oxide fine particles filled the gap between the binder and the light diffusing particles to increase the strength of the light diffusing layer.
  • the light diffusion layer contains a cured product of metal alkoxide or metal chelate (Examples 17 and 18)
  • the adhesion between the glass substrate and the light diffusion layer or the adhesion between the wavelength conversion layer and the light diffusion layer is improved. It has risen. Since the metal contained in the metal chelate formed a strong metalloxane bond with the hydroxyl group or the like on the coated surface, it is considered that good adhesion was obtained.
  • Example 25 The LED device shown in FIG. 1 was obtained in the same manner as in Example 24 except that the titanium oxide of Example 24 was changed to barium sulfate (Sakai Chemical Industry BF-10, particle size 600 nm).
  • Example 30 The LED device shown in FIG. 1 was obtained in the same manner as in Example 29, except that the titanium oxide in Example 29 was changed to barium sulfate (Sakai Chemical Industry BF-10, particle size 600 nm).
  • Example 34 The LED device shown in FIG. 1 was obtained in the same manner as in Example 33, except that the titanium oxide in Example 33 was changed to barium sulfate (Sakai Chemical Industry BF-10, particle size 600 nm).
  • Example 35 The LED device shown in FIG. 1 was obtained in the same manner as in Example 33 except that the zirconium oxide in Example 33 was changed to an aluminum silicate compound.
  • the aluminum silicate compound was obtained in the same manner as in Example 12.
  • Example 36 The LED device shown in FIG. 1 was obtained in the same manner as in Example 33 except that the zirconium oxide of Example 33 was changed to Kunivia F (natural montmorillonite sold by Kunimine Industries, Ltd.).
  • Kunivia F natural montmorillonite sold by Kunimine Industries, Ltd.
  • acetylacetone manufactured by Kanto Chemical Co., Inc.
  • ZC-580 manufactured by Matsumoto Fine Chemical Co., Ltd.
  • a zirconium oxide (ZrO 2 ) dispersion having an average primary particle size of 5 nm (30 wt% methanol solution, manufactured by Sakai Chemical Co., Ltd.), 0.13 g of titanium oxide (Fuji Titanium Industry TA-100, particle size 600 nm), and 1 , 3-butanediol 2 g was mixed to prepare a composition for forming a light diffusion layer. The following was carried out similarly to Example 1, and obtained the LED device shown by FIG.
  • a zirconium oxide (ZrO 2 ) dispersion having an average primary particle size of 5 nm (30 wt% methanol solution, manufactured by Sakai Chemical Co., Ltd.), 0.13 g of titanium oxide (Fuji Titanium Industry TA-100, particle size 600 nm), and 1 , 3-butanediol 2 g was mixed to prepare a composition for forming a light diffusion layer. The following was carried out similarly to Example 1, and obtained the LED device shown by FIG.
  • Example 40 The LED device shown in FIG. 1 was obtained in the same manner as in Example 39 except that the titanium oxide in Example 39 was changed to barium sulfate (Sakai Chemical Industry BF-10, particle size 600 nm).
  • Example 41 The LED device shown in FIG. 1 was obtained in the same manner as in Example 40 except that the zirconium oxide of Example 40 was changed to an aluminum silicate compound.
  • the aluminum silicate compound was obtained in the same manner as in Example 12.
  • Example 42 The LED device shown in FIG. 1 was obtained in the same manner as in Example 41 except that the zirconium oxide of Example 41 was changed to Kunivia F (natural montmorillonite sold by Kunimine Industry Co., Ltd.).
  • Kunivia F natural montmorillonite sold by Kunimine Industry Co., Ltd.
  • acetylacetone manufactured by Kanto Chemical Co., Inc.
  • ZC-580 manufactured by Matsumoto Fine Chemical Co., Ltd.
  • a zirconium oxide (ZrO 2 ) dispersion having an average primary particle size of 5 nm (30 wt% methanol solution, manufactured by Sakai Chemical Co., Ltd.), 0.13 g of titanium oxide (Fuji Titanium Industry TA-100, particle size 600 nm), and 1 , 3-butanediol 2 g was mixed to prepare a composition for forming a light diffusion layer. The following was carried out similarly to Example 1, and obtained the LED device shown by FIG.
  • a zirconium oxide (ZrO 2 ) dispersion having an average primary particle size of 5 nm (30 wt% methanol solution, manufactured by Sakai Chemical Co., Ltd.), 0.13 g of titanium oxide (Fuji Titanium Industry TA-100, particle size 600 nm), and 1 , 3-butanediol 2 g was mixed to prepare a composition for forming a light diffusion layer. The following was carried out similarly to Example 1, and obtained the LED device shown by FIG.
  • the light emitting device of the present invention has little chromaticity unevenness of the emitted light. Therefore, it is suitable for various lighting devices used indoors and outdoors, including automotive headlights that require chromaticity uniformity of emitted light.
  • LED chip (light emitting device) 4 Wavelength conversion layer 12 Light diffusion layer 20 Wavelength conversion / light diffusion member 100 to 103 LED device (light emitting device)

Abstract

 長期間に亘って、出射する光に色度ムラが少ない発光装置を提供することを目的とする。そのため、LED装置(発光装置)は、パッケージと、パッケージに実装されたLEDチップとを有する発光部材と、発光部材の光取り出し面側に取り付けられ、ガラス基板と、ガラス基板上に形成された波長変換層及び光拡散層とを有する波長変換・光拡散部材と、を備え、波長変換層は、蛍光体粒子を含み、光拡散層は、光拡散粒子及び有機ケイ素化合物の硬化物を含む構成とする。

Description

発光装置
 本発明は、発光装置に関する。
 従来から、各種の発光素子を搭載した発光装置がある。中でもLED(Light  Emitting  Diode)チップを光源とする白色LED装置が多数開発されており、白色LED装置は、各種照明装置として実用化されている。白色LED装置の例には、青色LEDチップを光源とし、青色LEDチップからの青色光と、青色光を受けて蛍光体が発する黄色の蛍光とを組み合わせて白色光を得る装置がある。また、紫外LEDチップを光源とし、紫外光を受けて蛍光体が発する青色光、緑色光、及び赤色光を混色させて、白色光を得る装置もある。
 このような白色LED装置では、LEDチップ近傍に、蛍光体粒子を透明樹脂に分散させた波長変換層を配置する。しかし、波長変換層に含まれる蛍光体粒子の比重は、透明樹脂の比重より大きい。そのため、波長変換層の形成時、透明樹脂を硬化させる前に蛍光体粒子が沈降してしまい、蛍光体粒子の濃度が均一にならない。蛍光体濃度が不均一であると、LED装置から出射する光に色度ムラが生じやすい。さらに、LED装置の正面方向に出射する光の色度と、LED装置の斜め方向に出射する光の色度の差が大きくなる、という問題がある。
 そこで、白色LED装置の波長変換層上に、光拡散フィルムを配置することが検討されている。しかし、従来の光拡散フィルムは樹脂からなるため、LEDチップが発する光や熱によって劣化しやすい、という問題があった。また特に、発光輝度の高いLED装置や、屋外で使用されるLED装置では、光拡散フィルムが劣化しやすかった。
 一方、LED装置より大面積の液晶テレビや、プロジェクションテレビ等の分野では、光を拡散させるための光拡散部材が多数提案されている。例えば、内部に光散乱剤を含むガラス基板を、液晶テレビの導光体とすることが提案されている(特許文献1)。また、ガラス基板と、このガラス基板上に形成された光拡散層とからなる光拡散部材を、プロジェクションテレビのスクリーンに適用することも提案されている(特許文献2)。特許文献2の光拡散部材における光拡散層には、光拡散粒子と、バインダとが含まれる。
特開2011-99899号公報 特開2007-127858号公報
 前述の白色LED装置の出射光の色度ムラを抑制するため、特許文献1や特許文献2に記載の光拡散部材を、白色LED装置に適用することが考えられる。しかし、特許文献1の光拡散部材は、ガラス板の製造時に、ガラス内部に光散乱剤を添加する必要がある。
 また、特許文献2の光拡散層のバインダは、有機樹脂または金属アルコキシドの硬化物でありうる。しかし、バインダを有機樹脂とすると、LEDチップが発する熱や光によって、バインダが劣化するおそれがある。一方、バインダを金属アルコキシドの硬化物とすると、金属アルコキシドの種類によっては、光拡散層と他の層(例えば粘着層やガラス基板等)との密着性が十分とならず、これらの界面で剥離することが懸念される。さらに、金属アルコキシドの種類によっては、光拡散層がガラス基板の変形に追従できず、ガラス基板の膨張等によって、拡散層にクラックが生じることも懸念される。したがって、特許文献1や特許文献2に記載の光拡散部材を、直ちに白色LED装置に適用することは難しかった。
 本発明はこのような状況に鑑みてなされたものであり、長期間に亘って、出射する光に色度ムラが少ない発光装置を提供することを目的とする。
 上記目的を達成するために本発明は、パッケージと、前記パッケージに実装された発光素子とを有する発光部材と、前記発光部材の光取り出し面側に取り付けられ、ガラス基板と、前記ガラス基板上に形成された波長変換層及び光拡散層とを有する波長変換・光拡散部材と、を備え、前記波長変換層は、蛍光体粒子を含み、前記光拡散層は、光拡散粒子及び有機ケイ素化合物の硬化物を含む、発光装置とする。
 上記の発光装置において、前記有機ケイ素化合物が、3官能シラン化合物及び4官能シラン化合物の重合体からなり、前記3官能シラン化合物と前記4官能シラン化合物との重合比率が3:7~7:3であることが好ましい。
 また上記の発光装置において、前記有機ケイ素化合物が、2官能シラン化合物及び3官能シラン化合物の重合体からなり、前記2官能シラン化合物と前記3官能シラン化合物との重合比率が1:9~4:6であることが好ましい。
 また上記の発光装置において、前記有機ケイ素化合物が、2官能シラン化合物、3官能シラン化合物及び4官能シラン化合物の重合体からなり、前記2官能シラン化合物と前記3官能シラン化合物との重合比率が1:9~4:6であり、前記2官能シラン化合物と前記3官能シラン化合物の重合体に対して前記4官能シラン化合物の重合比率が9:1~7:3であることが好ましい。
 また上記の発光装置において、前記光拡散粒子が、酸化チタン、硫酸バリウム、チタン酸バリウム、窒化ホウ素、酸化亜鉛、及び酸化アルミニウムからなる群から選ばれる少なくとも1種であることが好ましい。
 また上記の発光装置において、前記光拡散層が、平均一次粒径が100nm未満である金属酸化物微粒子を含むことが好ましい。
 また上記の発光装置において、前記金属酸化物微粒子が、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化ケイ素、酸化ニオブ、及び酸化亜鉛の群から選ばれる少なくとも1種であることが好ましい。
 また上記の発光装置において、前記光拡散層が、粘土鉱物を含むことが好ましい。
 また上記の発光装置において、前記粘土鉱物が、アルミニウムケイ酸塩化合物であることが好ましい。
 また上記の発光装置において、前記光拡散層が、2価以上の金属元素(Siを除く)を含む金属アルコキシド又は金属キレートの硬化物を含むことが好ましい。
 また上記の発光装置において、前記波長変換層が、有機ケイ素化合物の硬化物を含むことが好ましい。
 また上記の発光装置において、前記波長変換層が、透明樹脂を含むことが好ましい。
 本発明の発光装置では、光拡散層のバインダが、有機ケイ素化合物の硬化物であるため、光拡散層が熱や光によって劣化するおそれが少ない。さらに、光拡散層とガラス基板等との密着性が高く、これらの界面での剥離も少ない。また、高密度な波長変換層をガラス基板上に形成するので、蛍光体粒子の濃度が均一な波長変換層が得られるため、均一な色度の光が得られる。
 したがって、本発明によると、長期間に亘って、発光装置から均一な色度の光を取り出すことができる。
本発明の一実施形態であるLED装置の一例を示す概略断面図である。 本発明の一実施形態であるLED装置の他の例を示す概略断面図である。 本発明の一実施形態であるLED装置の他の例を示す概略断面図である。 本発明の一実施形態であるLED装置の他の例を示す概略断面図である。 本発明の一実施形態である波長変換・光拡散部材の一例を示す概略断面図である。 本発明の一実施形態である波長変換・光拡散部材の他の例を示す概略断面図である。 本発明の一実施形態である波長変換・光拡散部材の他の例を示す概略断面図である。 本発明の一実施形態であるLED装置の製造工程の一部を説明する図である。
 以下では各種の発光素子を搭載した発光装置の一実施形態として、LEDチップを光源とするLED装置を例に説明する。
1.LED装置
 本発明の4つの実施形態のLED装置の構造の例をそれぞれ図1~図4の概略断面図に示す。図1~図4に示したLED装置100~103には、光を出射する発光部材10と、発光部材10から出射する光を波長変換して蛍光を発するとともに拡散させて、LED装置100~103から出射する光の色度を均一化する波長変換・光拡散部材20と、発光部材10及び波長変換・光拡散部材20を貼り合わせる粘着層21とが含まれる。さらに、図2及び図3に示したLED装置101、102には、パッケージ1を封止する封止材22が含まれる。発光部材10には、パッケージ1(1a及び1b)と、パッケージ1に実装されたLEDチップ2とが含まれる。波長変換・光拡散部材20には、ガラス基板11と、光拡散層12と、蛍光を発する波長変換層4とが含まれる。LED装置100~103において、波長変換・光拡散部材20は、発光部材10の光取り出し面側に配置される。
 波長変換・光拡散部材20における積層順序には限定はなく、ガラス基板11上に直接又は間接的に光拡散層12と波長変換層4とが形成されていればよく、図5~図7に示すような積層順序が挙げられる。図5では、ガラス基板11、光拡散層12、波長変換層4の順に積層されている。図6では、光拡散層12、ガラス基板11、波長変換層4の順に積層されている。図7では、ガラス基板11、波長変換層4、光拡散層12の順に積層されている。図5~7の波長変換・光拡散部材20は、どちらの面に粘着層21を設けてもよく、図5~7の波長変換・光拡散部材20をパッケージ1に貼り合わせるパターンの合計は6つとなる。
 これらのパターンから得られるLED装置の構成を(a)~(f)に記す。なお、粘着層及び封止材は省略している。何れの構成でも本発明の効果は得られるが、耐摩耗性を考慮すると、ガラス基板が外側になる(a)又は(c)の構成が好ましい。
(a)ガラス基板/光拡散層/波長変換層/LEDチップ(図5の波長変換・光拡散部材を使用)
(b)光拡散層/ガラス基板/波長変換層/LEDチップ(図6の波長変換・光拡散部材を使用)
(c)ガラス基板/波長変換層/光拡散層/LEDチップ(図7の波長変換・光拡散部材を使用)
(d)波長変換層/光拡散層/ガラス基板/LEDチップ(図5の波長変換・光拡散部材を使用)
(e)波長変換層/ガラス基板/光拡散層/LEDチップ(図6の波長変換・光拡散部材を使用)
(f)光拡散層/波長変換層/ガラス基板/LEDチップ(図7の波長変換・光拡散部材を使用)
 なお、図1~4では、一例として図5の波長変換・光拡散部材20を用い、波長変換層4側に粘着層21を設け、上記(a)の構成としている。
 図1~図4のLED装置100~103において、光拡散層12のバインダは有機ケイ素化合物の硬化物である。
 前述のように、もし光拡散層12のバインダが有機樹脂であると、LEDチップ等からの光や熱によって、光拡散層12が劣化する。さらに、図5及び6では光拡散層12とガラス基板11との密着性、図7では光拡散層12と波長変換層4との密着性が不十分であり、これらの界面で剥離することもある。そのため、LED装置の出射光に色度ムラが生じたり、LED装置からの光取り出し効率が低下したりする。
 これに対し、図1~図4のLED装置100~103では、光拡散層12のバインダが有機ケイ素化合物の硬化物であるため、光拡散層12が劣化し難い。また、バインダ(有機ケイ素化合物)に含まれるケイ素と、被塗布面の水酸基等とが、シロキサン結合を形成する。そのため、光拡散層12とガラス基板11との密着性又は光拡散層12と波長変換層4との密着性が良好であり、これらの界面で剥離し難い。
 さらに、図1~図4のLED装置100~103において、波長変換層4がガラス基板11上に形成されている。
 前述のように、もし波長変換層4がパッケージ1の凹部に充填されていると、波長変換層4に含まれる蛍光体粒子の比重が透明樹脂の比重より大きいため、波長変換層4の形成時に、透明樹脂を硬化させる前に蛍光体粒子が沈降してしまい、蛍光体粒子の濃度が均一にならない。蛍光体濃度が不均一であると、LED装置から出射する光に色度ムラが生じやすい。さらに、LED装置の正面方向に出射する光の色度と、LED装置の斜め方向に出射する光の色度の差が大きくなる。
 これに対し、図1~図4のLED装置100~103では、波長変換層4をガラス基板11上に形成するために、高密度な波長変換層形成用組成物を塗布している。よって、高密度な波長変換層が形成されるので、蛍光体粒子の濃度が均一な波長変換層4が得られ、均一な色度の光を出射するLED装置100~103が得られる。
 このように、図1~図4のLED装置100~103では、長期間に亘って、出射光の色度ムラを抑制できる。
 次に、図1~図4のLED装置100~103の各構成部材の詳細について説明する。
・パッケージ
 パッケージ1は、LEDチップ2を支持する機能、及びLEDチップ2を外部の電極(図示せず)と電気的に接続する機能を果たす。パッケージ1は、図1~図4に示されるように、基板1aと、メタル部1bとを有する部材等でありうる。
 基板1aの形状は特に制限されず、平板状であってもよいが、図1~4に示されるように凹状であってもよい。凹部の形状は特に制限されず、図1~4に示されるように、円錐台状であってもよく、角錐台状や円柱状、角柱状等であってもよい。
 基板1aは、絶縁性及び耐熱性を有することが好ましく、セラミック樹脂や耐熱性樹脂からなることが好ましい。耐熱性樹脂の例には、液晶ポリマー、ポリフェニレンスルフィド、芳香族ナイロン、エポキシ樹脂、硬質シリコーンレジン、ポリフタル酸アミド等が含まれる。
 基板1aには、無機フィラーが含まれていてもよい。無機フィラーは、酸化チタン、酸化亜鉛、アルミナ、シリカ、チタン酸バリウム、リン酸カルシウム、炭酸カルシウム、ホワイトカーボン、タルク、炭酸マグネシウム、窒化ホウ素、グラスファイバー等でありうる。
 メタル部1bは、銀等の金属からなり、外部の電極(不図示)とLEDチップ2とを、電気的に接続する役割を果たす。またメタル部1bは、LEDチップ2からの光や、波長変換層4からの蛍光を、発光部材の光取り出し面側に反射する役割を果たしてもよい。
・LEDチップ
 LEDチップ2は、パッケージ1のメタル部1bと電気的に接続されて、電力を光に変換する半導体発光素子である。
 LEDチップ2の構成は、特に制限されない。LEDチップ2が、青色光を発する素子である場合、LEDチップ2は、n-GaN系化合物半導体層(クラッド層)と、InGaN系化合物半導体層(発光層)と、p-GaN系化合物半導体層(クラッド層)と、透明電極層との積層体でありうる。LEDチップ2は、例えば200~300μm×200~300μmの発光面を有するものでありうる。またLEDチップ2の高さは、通常50~200μm程度である。図1~4に示されるLED装置100~103には、パッケージ1に1つのLEDチップ2のみが配置されているが、パッケージ1に複数のLEDチップ2が配置されていてもよい。
 LEDチップ2が出射する光の波長は特に制限されない。LEDチップ2は、例えば青色光(420nm~485nm程度の光)を発する素子であってもよく、紫外光を発する素子であってもよい。
 LEDチップ2は、パッケージのメタル部1bと、配線を介して接続されてもよい。また、図1~4に示されるように、メタル部1bと、突起電極5を介して接続されてもよい。LEDチップ2が配線を介してメタル部1bに接続される態様をワイヤーボンディング型といい、LEDチップ2が突起電極5を介してメタル部1bに接続される態様をフリップチップ型という。
・波長変換層
 波長変換層4は、LEDチップ2が出射する光(励起光)を受けて、蛍光を発する。励起光と蛍光とが混ざることで、発光部材10の光取り出し面から出射する光の色が所望の色となる。例えば、LEDチップ2からの光が青色であり、波長変換層4に含まれる蛍光体が発する蛍光が黄色であると、LED装置100~103からの光が白色となる。
 波長変換層4には、蛍光体粒子とバインダが含まれる。波長変換層4に含まれる蛍光体粒子は、LEDチップ2から出射する光によって励起され、LEDチップ2が出射する光と異なる波長の蛍光を発するものであればよい。例えば、黄色の蛍光を発する蛍光体粒子の例には、YAG(イットリウム・アルミニウム・ガーネット)蛍光体等がある。YAG蛍光体は、LEDチップが出射する青色光(波長420nm~485nm)を受けて、黄色の蛍光(波長550nm~650nm)を発する。
 蛍光体粒子は、例えば1)所定の組成を有する混合原料に、フラックス(フッ化アンモニウム等のフッ化物)を適量混合して加圧し、これを成形体とする。2)得られた成形体を坩堝に詰め、空気中で1350~1450℃の温度範囲で、2~5時間焼成し、焼結体とすることで得られる。
 所定の組成を有する混合原料は、Y、Gd、Ce、Sm、Al、La、Ga等の酸化物、または高温で容易に酸化物となる化合物を、化学両論比で十分に混合して得られる。また、所定の組成を有する混合原料は、1)Y、Gd、Ce、Smの希土類元素を化学両論比で酸に溶解した溶液と、シュウ酸とを混合し、共沈酸化物を得る。2)この共沈酸化物と、酸化アルミニウム、または酸化ガリウムとを混合しても得られる。
 蛍光体の種類は、YAG蛍光体に限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体等、他の蛍光体であってもよい。
 蛍光体粒子の平均粒径は1μm~50μmであることが好ましく、10μm~30μmであることがより好ましい。蛍光体粒子の粒径が大きいほど発光効率(波長変換効率)は高くなる。一方、蛍光体粒子の粒径が大きすぎると、波長変換層4において、蛍光体粒子とバインダとの界面に生じる隙間が大きくなる。これにより、波長変換層4の硬化膜の強度が低下したり、LED装置100~103の外部から、LEDチップ2側にガスが侵入しやすくなる。蛍光体粒子の平均粒径は、例えばコールターカウンター法によって測定することができる。
 波長変換層4に含まれるバインダは特に制限されず、透明樹脂であってもよく、透光性セラミックであってもよい。バインダでありうる透明樹脂の例には、エポキシ変性シリコーン樹脂、アルキッド変性シリコーン樹脂、アクリル変性シリコーン樹脂、ポリエステル変性シリコーン樹脂、メチルシリコーン樹脂、フェニルシリコーン樹脂等のシリコーン樹脂;エポキシ樹脂;アクリル樹脂;メタクリル樹脂;ウレタン樹脂等が含まれる。
 波長変換層4に含まれるバインダが透明樹脂である場合、波長変換層4の厚みは、通常25μm~5mm程度である。波長変換層4の厚みとは、ガラス基板11上に形成された波長変換層4の最大厚みを意味する。波長変換層4の厚みは、レーザホロゲージで測定される。このとき、波長変換層4に含まれる蛍光体粒子の量は、波長変換層4の全質量に対して、通常、5~15質量%程度である。
 一方、バインダでありうる透光性セラミックの例には、有機ケイ素化合物の硬化物が含まれる。有機ケイ素化合物の硬化物は、後述する光拡散層に含まれるバインダと同様(例えばポリシロキサンまたはポリシラザンの硬化物)でありうる。
 波長変換層4に含まれるバインダが透光性セラミックである場合、波長変換層4の厚みは、特に制限されないが、通常15μm~300μmであることが好ましく、20~100μmであることがさらに好ましい。波長変換層4の厚みが厚すぎると、波長変換層4(特に透光性セラミックバインダ)にクラックが生じるおそれがある。一方で、波長変換層4の厚みが薄すぎると、波長変換層4内に、十分に蛍光体粒子が含まれず、十分な蛍光が得られない可能性がある。このとき、波長変換層4に含まれる蛍光体粒子の総量は、波長変換層4の全質量に対して50~95質量%であることが好ましい。蛍光体粒子の量が少ないと、十分な蛍光が得られない。一方、蛍光体粒子の量が過剰であると、相対的にバインダ量が減少し、波長変換層4の強度が低くなる。
 波長変換層4に含まれるバインダが透光性セラミックである場合、波長変換層4には、必要に応じて、無機粒子や粘土鉱物粒子が含まれてもよい。
 波長変換層4に粘土鉱物粒子が含まれると、波長変換層4の強度が高まりやすい。粘土鉱物の例には、天然または合成の、ヘクトライト、サポナイト、スチブンサイト、ハイデライト、モンモリロナイト、ノントライト、ベントナイト等のスメクタイト属粘土鉱物や、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母属粘土鉱物およびバーミキュラライトやカオリナイト、アルミニウムケイ酸塩化合物、またはこれらの混合物が含まれる。粘土鉱物は、表面をアンモニウム塩等で修飾(表面処理)されたものであってもよい。
 ここで言うアルミニウムケイ酸塩化合物は、主な構成元素を珪素(Si)、アルミニウム(Al)、酸素(O)および水素(H)とし、多数のSi-O-Al結合で組み立てられた和水珪酸アルミニウムである。例えばイモゴライトが挙げられる。そして、その外径が2.0~2.5nm、内径が1.0~1.5nm、長さが数百nmのチューブ状の形態を有するものが好ましい。
 波長変換層4に含まれる粘土鉱物粒子の量は、波長変換層4の全質量に対して0.3~20質量%であることが好ましく、より好ましく0.5~15質量%である。粘土鉱物粒子の濃度が0.5質量%未満であると、波長変換層4の強度が十分に高まらない場合がある。一方、粘土鉱物粒子の濃度が20質量%を超えると、相対的に蛍光体粒子の量が少なくなり、十分な蛍光が得られないおそれがある。
 波長変換層4中に無機粒子が含まれると、波長変換層4の強度が高まる。無機粒子の例には、酸化ケイ素、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム等の酸化物微粒子等が含まれる。無機粒子の表面は、シランカップリング剤やチタンカップリング剤で処理されていてもよい。表面処理によって、無機粒子と透光性セラミックとの密着性が高まる。また、無機粒子は、比表面積の大きい多孔質の無機粒子でもありうる。
 無機粒子の粒径は、波長変換層の平滑性の観点から、平均一次粒径が0.001μm以上50μm以下であることが好ましい。本実施形態における平均一次粒径とは、レーザー回折式粒度分布計で測定されるD50の値をいう。レーザー回折式粒度分布測定装置の例には、島津製作所製のレーザー回折式粒度分布測定装置等がある。
 波長変換層4に含まれる無機粒子の量は、波長変換層4の全量に対して0.5~70質量%であることが好ましく、より好ましくは0.5~65質量%であり、さらに好ましくは1.0~60質量%である。無機粒子の量が0.5質量%未満であると、波長変換層4の強度が十分に高まらないおそれがある。一方、無機粒子の量が70質量%を超えると、相対的に蛍光体粒子の量が少なくなり、十分な蛍光が得られないおそれがある。
・ガラス基板
 波長変換・光拡散部材20におけるガラス基板11は、光拡散層12を支持する役割と、発光部材10を外部の衝撃や、湿度、ガス等から保護する役割を果たす。ガラス基板11の厚みは、50~500μmであることが好ましく、50~200μmであることがより好ましい。ガラス基板の厚みが50μm以上であれば、ガラス基板によって、発光部材10を十分に保護できる。一方、ガラス基板の厚みが200μmを超えるとLED装置100~103が大型化する。
 ガラス基板11のJIS K7361-1(1997年)に準拠して測定される可視光透過率は85%以上であることが好ましく、より好ましくは90%以上である。ガラス基板11の可視光透過率が、85%以上であれば、LED装置100からの光取り出し効率が良好となる。ガラス基板11の種類は特に制限されないが、耐衝撃性等の観点から、強化ガラスであることが好ましい。
・光拡散層
 光拡散層12は、LEDチップ2から発光した光と、LEDチップ2から発光した光が波長変換層4により変換された光とを拡散する層である。光拡散層12には、光拡散粒子と、有機ケイ素化合物の硬化物(バインダ)とが含まれる。光拡散層12には、必要に応じて、金属酸化物微粒子、粘土鉱物、及び金属アルコキシドまたは金属キレートの硬化物が含まれてもよい。
 光拡散層12の表面には微少な凹凸が形成されている。この凹凸は、例えば金属酸化物微粒子によって形成されるが、他の方法によって形成してもよい。この凹凸による光拡散層12の表面の算術平均粗さは0.005~5.0μmであることが好ましい。算術平均粗さ(Ra)はJIS B0601(2001年)で定義され、その測定はVeeco社製 白色干渉計 WYKOHD3000等によって測定される。
 光拡散層12の表面粗さは、ガラス基板11上に作製した光拡散層12上の任意の数点を測定し、光拡散層12上の全面積の30%の面積の測定値の平均で表す。
 前述した(a)、(c)~(e)の構成のLED装置の場合、光拡散層12が形成された上に粘着層21又は波長変換層4が形成されるため、それらの層との密着性が必要である。そこで、前述したように、光拡散層12の表面の算術平均粗さを0.005~5.0μmとすることで、それらの層との間でアンカー効果が得られるため密着性が向上する。この表面粗さの下限値より低いとアンカー効果が十分に得られないおそれがある。一方、この表面粗さの上限値より高いと製造時に凹凸部分に気泡を巻き込んでしまうことが懸念され、密着性も低下するおそれがある。
 密着性が低下すると、これらの界面で剥離することもある。この場合、LED装置の出射光に色度ムラが生じたり、LED装置からの光取り出し効率が低下したりする。これに対して、光拡散層12の表面に所定の粗さの凹凸構造があることで、粘着層21との間でアンカー効果が得られ、密着性が良好であるので、長期間に亘って、出射光の色度ムラを抑制でき、光取り出し効率の低下も防ぐことができる。
 また、光拡散層12の厚みは特に制限されないが、200nm~30μmであることが好ましく、500nm~10μmであることがより好ましい。光拡散層12の厚みが薄過ぎると、十分な光拡散性が得られない可能性がある。一方、光拡散層12の厚みが厚過ぎると、光拡散層12にクラックが発生する恐れがある。
 光拡散層12のJIS K7361-1(1997年)に準拠して測定される可視光透過率は85%以上であることが好ましく、より好ましくは90%以上である。光拡散層の可視光透過率が85%以上であれば、LED装置100~103からの光取り出し効率が良好となる。
(光拡散粒子)
 光拡散層12に含まれる光拡散粒子は、光拡散性の高い粒子であれば、特に制限はない。光拡散粒子の全反射率は80%以上であることが好ましく、さらに好ましくは90%以上である。光拡散粒子の全反射率は日立ハイテク社製、日立分光光度計U4100により測定できる。
 光拡散粒子の例には、酸化亜鉛(ZnO)、チタン酸バリウム(BaTiO3)、硫酸バリウム(BaSO4)、酸化チタン(TiO2)、窒化ホウ素(BrN)、酸化マグネシウム(MgO)、炭酸カルシウム(CaCO3)、酸化アルミニウム(Al23)、硫酸バリウム(BaO)、酸化ジルコニウム(ZrO2)等が含まれる。光拡散性、及び取り扱い性等の観点から、光拡散粒子は酸化亜鉛、チタン酸バリウム、硫酸バリウム、酸化チタン、窒化ホウ素、または酸化アルミニウムであることがより好ましい。光拡散層12には、光拡散粒子が1種のみ含まれてもよく、また2種以上が含まれてもよい。
 光拡散粒子の平均一次粒径は、100nm~20μmであることが好ましく、より好ましくは100nm~10μmであり、さらに好ましくは200nm~2.5μmである。本実施形態における平均一次粒径とは、レーザー回折式粒度分布計で測定されるD50の値をいう。レーザー回折式粒度分布測定装置の例には、島津製作所製のレーザー回折式粒度分布測定装置等がある。
 光拡散層12に含まれる光拡散粒子の量は、光拡散層12の全質量に対して0.5~30質量%であることが好ましく、1~15質量%であることがより好ましい。光拡散粒子の量が0.5質量%未満であると、光拡散層12の光拡散性が十分とならず、発光部材10から出射する光を、十分に均一化できない可能性がある。一方、光拡散粒子の含有量が30質量%を超えると、光拡散層12の光透過性が低下し、LED装置100~103からの光取り出し効率が低下するおそれがある。
 光拡散粒子の形状は特に制限されないが、光拡散粒子の分散性等の観点から、光拡散粒子が球状であることが好ましい。光拡散粒子の形状は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)で確認できる。
(有機ケイ素化合物の硬化物(バインダ))
 有機ケイ素化合物の硬化物は、前記光拡散粒子を結着するバインダである。光拡散層12に含まれる有機ケイ素化合物の硬化物(バインダ)の量は、光拡散層全質量に対して、70~97質量%であることが好ましく、より好ましくは80~95質量%である。有機ケイ素化合物の硬化物の量が70質量%未満であると、光拡散層の強度が十分とならない場合がある。一方、有機ケイ素化合物の硬化物の含有量が95質量%を超えると、相対的に光拡散粒子の量が減少し、光拡散性が十分とならない場合がある。
 有機ケイ素化合物の種類は、特に制限されないが、(i)ポリシラザンオリゴマー、もしくは(ii)シラン化合物のモノマーまたはそのオリゴマーであることが好ましい。
 (i)ポリシラザンオリゴマーは、一般式(I):(R12SiNR3nで表される。一般式(I)中、R1、R2およびR3は、それぞれ独立して水素原子またはアルキル基、アリール基、ビニル基、またはシクロアルキル基を表すが、R1、R2、R3のうち少なくとも1つは水素原子であり、好ましくはすべてが水素原子である。nは1~60の整数を表す。ポリシラザンオリゴマーの分子形状はいかなる形状であってもよく、例えば、直鎖状または環状であってもよい。
 ポリシラザンの硬化物は、上記式(I)で表されるポリシラザンオリゴマーを、必要に応じて反応促進剤、及び溶媒の存在下、加熱、エキシマ光処理、UV光処理すること等で得られる。
 (ii)シラン化合物またはそのオリゴマーは、2官能シラン化合物、3官能シラン化合物、もしくは4官能シラン化合物のモノマーまたはそのオリゴマーでありうる。
 光拡散層12のバインダ(有機ケイ素化合物の硬化物)は、特に3官能シラン化合物及び4官能シラン化合物のモノマーまたはそのオリゴマーの重合体(ポリシロキサン)であることが好ましい。バインダが3官能シラン化合物と4官能シラン化合物との共重合体の硬化物(ポリシロキサン)であると、架橋密度の高い膜が形成されるため、光拡散層12の強度が高まる。また、被塗布面に存在する水酸基と、ポリシロキサン中のケイ素とがシロキサン結合するため、被塗布面と光拡散層12との密着性が高まる。その一方で、ポリシロキサン中に残存する3官能シラン化合物由来の有機基によって、光拡散層12と粘着層21との密着性や光拡散層12と封止材22との密着性も高まる。
 3官能シラン化合物及び4官能シラン化合物の重合比率は、3:7~7:3であることが好ましく、4:6~6:4であることがより好ましい。4官能シラン化合物の重合比率が過剰であると、ポリシロキサンの架橋度が過剰に高くなり、光拡散層12にクラックが生じやすくなる。また、ポリシロキサン中に残存する有機基の量が少なくなるため、光拡散層12と粘着層21との密着性が十分に高まらないおそれがある。一方、3官能シラン化合物の重合比率が過剰であると、ポリシロキサン中に、3官能シラン化合物由来の有機基が多量に残存する。そのため、被塗布面に存在する水酸基と、ポリシロキサン中のケイ素との間でのポリシロキサン結合量が少なくなり、光拡散層12と被塗布面との密着性が十分とならないおそれがある。
 光拡散層12のバインダ(有機ケイ素化合物の硬化物)は、2官能シラン化合物及び3官能シラン化合物のモノマーまたはそのオリゴマーの重合体(ポリシロキサン)でもありうる。2官能シラン化合物及び3官能シラン化合物の重合比率は1:9~4:6であることが好ましく、1:9~3:7であることが好ましい。重合比率が上記範囲であると、ガラス基板11表面に存在する水酸基と、ポリシロキサン中のケイ素との間でのポリシロキサン結合量が十分であるため、光拡散層12とガラス基板11との密着性が十分に高まる。一方、2官能シラン化合物及び3官能シラン化合物由来の有機基によって、光拡散層12と粘着層21との密着性が十分に高まる。
 光拡散層12のバインダ(有機ケイ素化合物の硬化物)は、2官能シラン化合物、3官能シラン化合物、及び4官能シラン化合物のモノマーまたはそのオリゴマーの重合体でもありうる。2官能シラン化合物と3官能シラン化合物との重合比率が1:9~4:6であり、2官能シラン化合物と前記3官能シラン化合物の重合体に対して4官能シラン化合物の重合比率が9:1~7:3であることが好ましい。
 4官能シラン化合物の例には、下記一般式(II)で表される化合物が含まれる。
  Si(OR44   …(II)
 上記一般式(II)中、R4はそれぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。
 4官能シラン化合物の具体例には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシランテトラブトキシシラン、テトラペンチルオキシシラン、テトラフェニルオキシシラン、トリメトキシモノエトキシシラン、ジメトキシジエトキシシラン、トリエトキシモノメトキシシラン、トリメトキシモノプロポキシシラン、モノメトキシトリブトキシシラン、モノメトキシトリペンチルオキシシラン、モノメトキシトリフェニルオキシシラン、ジメトキシジプロポキシシラン、トリプロポキシモノメトキシシラン、トリメトキシモノブトキシシラン、ジメトキシジブトキシシラン、トリエトキシモノプロポキシシラン、ジエトキシジプロポキシシラン、トリブトキシモノプロポキシシラン、ジメトキシモノエトキシモノブトキシシラン、ジエトキシモノメトキシモノブトキシシラン、ジエトキシモノプロポキシモノブトキシシラン、ジプロポキシモノメトキシモノエトキシシラン、ジプロポキシモノメトキシモノブトキシシラン、ジプロポキシモノエトキシモノブトキシシラン、ジブトキシモノメトキシモノエトキシシラン、ジブトキシモノエトキシモノプロポキシシラン、モノメトキシモノエトキシモノプロポキシモノブトキシシランなどのアルコキシシラン、またはアリールオキシシラン等が含まれる。これらの中でもテトラメトキシシラン、テトラエトキシシランが好ましい。
 3官能シラン化合物の例には、下記一般式(III)で表される化合物が含まれる。
  R5Si(OR63   …(III)
 上記一般式(III)中、R5は、それぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。また、R6は、水素原子またはアルキル基を表す。
 3官能シラン化合物の具体例には、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリペンチルオキシシラン、トリフェニルオキシシラン、ジメトキシモノエトキシシラン、ジエトキシモノメトキシシラン、ジプロポキシモノメトキシシラン、ジプロポキシモノエトキシシラン、ジペンチルオキシルモノメトキシシラン、ジペンチルオキシモノエトキシシラン、ジペンチルオキシモノプロポキシシラン、ジフェニルオキシルモノメトキシシラン、ジフェニルオキシモノエトキシシラン、ジフェニルオキシモノプロポキシシラン、メトキシエトキシプロポキシシラン、モノプロポキシジメトキシシラン、モノプロポキシジエトキシシラン、モノブトキシジメトキシシラン、モノペンチルオキシジエトキシシラン、モノフェニルオキシジエトキシシラン等のモノヒドロシラン化合物;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリペンチルオキシシラン、メチルモノメトキシジエトキシシラン、メチルモノメトキシジプロポキシシラン、メチルモノメトキシジペンチルオキシシラン、メチルモノメトキシジフェニルオキシシラン、メチルメトキシエトキシプロポキシシラン、メチルモノメトキシモノエトキシモノブトキシシラン等のモノメチルシラン化合物;エチルトリメトキシシラン、エチルトリプロポキシシラン、エチルトリペンチルオキシシラン、エチルトリフェニルオキシシラン、エチルモノメトキシジエトキシシラン、エチルモノメトキシジプロポキシシラン、エチルモノメトキシジペンチルオキシシラン、エチルモノメトキシジフェニルオキシシラン、エチルモノメトキシモノエトキシモノブトキシシラン等のモノエチルシラン化合物;プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリペンチルオキシシラン、プロピルトリフェニルオキシシラン、プロピルモノメトキシジエトキシシラン、プロピルモノメトキシジプロポキシシラン、プロピルモノメトキシジペンチルオキシシラン、プロピルモノメトキシジフェニルオキシシラン、プロピルメトキシエトキシプロポキシシラン、プロピルモノメトキシモノエトキシモノブトキシシラン等のモノプロピルシラン化合物;ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリプロポキシシラン、ブチルトリペンチルオキシシラン、ブチルトリフェニルオキシシラン、ブチルモノメトキシジエトキシシラン、ブチルモノメトキシジプロポキシシラン、ブチルモノメトキシジペンチルオキシシラン、ブチルモノメトキシジフェニルオキシシラン、ブチルメトキシエトキシプロポキシシラン、ブチルモノメトキシモノエトキシモノブトキシシラン等のモノブチルシラン化合物が含まれる。
 これらの3官能シラン化合物の中でも、一般式(III)で表されるR5がメチル基である化合物が、反応性等の観点から好ましい。一般式(III)で表されるR5がメチル基である3官能シラン化合物の例には、メチルトリメトキシシラン、及びメチルトリエトキシシランが含まれ、メチルトリメトキシシランであることが特に好ましい。
 2官能シラン化合物の例には、下記一般式(IV)で表される化合物が含まれる。
  R7 2Si(OR82   …(IV)
 上記一般式(IV)中、R7はそれぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。また、R8は水素原子またはアルキル基を表す。
 2官能のシラン化合物の具体例には、ジメトキシシラン、ジエトキシシラン、ジプロポキシシラン、ジペンチルオキシシラン、ジフェニルオキシシラン、メトキシエトキシシラン、メトキシプロポキシシラン、メトキシペンチルオキシシラン、メトキシフェニルオキシシラン、エトキシプロポキシシラン、エトキシペンチルオキシシラン、エトキシフェニルオキシシラン、メチルジメトキシシラン、メチルメトキシエトキシシラン、メチルジエトキシシラン、メチルメトキシプロポキシシラン、メチルメトキシペンチルオキシシラン、メチルメトキシフェニルオキシシラン、エチルジプロポキシシラン、エチルメトキシプロポキシシラン、エチルジペンチルオキシシラン、エチルジフェニルオキシシラン、プロピルジメトキシシラン、プロピルメトキシエトキシシラン、プロピルエトキシプロポキシシラン、プロピルジエトキシシラン、プロピルジペンチルオキシシラン、プロピルジフェニルオキシシラン、ブチルジメトキシシラン、ブチルメトキシエトキシシラン、ブチルジエトキシシラン、ブチルエトキシプロポキシシシラン、ブチルジプロポキシシラン、ブチルメチルジペンチルオキシシラン、ブチルメチルジフェニルオキシシラン、ジメチルジメトキシシラン、ジメチルメトキシエトキシシラン、ジメチルジエトキシシラン、ジメチルジペンチルオキシシラン、ジメチルジフェニルオキシシラン、ジメチルエトキシプロポキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルメトキシプロポキシシラン、ジエチルジエトキシシラン、ジエチルエトキシプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジペンチルオキシシラン、ジプロピルジフェニルオキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジブチルジプロポキシシラン、ジブチルメトキシペンチルオキシシラン、ジブチルメトキシフェニルオキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジペンチルオキシシラン、メチルエチルジフェニルオキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、メチルブチルジメトキシシラン、メチルブチルジエトキシシラン、メチルブチルジプロポキシシラン、メチルエチルエトキシプロポキシシラン、エチルプロピルジメトキシシラン、エチルプロピルメトキシエトキシシラン、ジプロピルジメトキシシラン、ジプロピルメトキシエトキシシラン、プロピルブチルジメトキシシラン、プロピルブチルジエトキシシラン、ジブチルメトキシエトキシシラン、ジブチルメトキシプロポキシシラン、ジブチルエトキシプロポキシシラン等が含まれる。これらの中でもジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシランが好ましい。
 ポリシロキサンは、上記シラン化合物のモノマーまたはそのオリゴマーを、必要に応じて酸触媒、水、及び溶媒の存在下、加熱処理すること等で得られる。
(金属酸化物微粒子)
 光拡散層12には、平均一次粒径が100nm未満の金属酸化物微粒子が含まれてもよい。光拡散層12に金属酸化物微粒子が含まれると、光拡散層12の表面に微少な凹凸が生じる。この凹凸によっても前述した範囲の表面粗さが形成されうる。よって、光拡散層12と粘着層21又は封止材22との間にアンカー効果が生じ、光拡散層12と粘着層21又は封止材22との密着性が高まりやすい。また、金属酸化物微粒子によって光拡散層12に含まれる光拡散粒子同士の隙間が埋まるため、光拡散層12の強度が高まり、光拡散層12にクラックが生じ難くなる。
 金属酸化物微粒子の平均一次粒径は100nm未満であり、好ましくは5nm以上100nm未満、より好ましくは5~80nm、さらに好ましくは5~50nmである。金属酸化物微粒子の平均一次粒径が100nm未満であると、光拡散粒子同士の隙間に金属酸化物微粒子が入り込みやすくなり、光拡散層12の強度が高まりやすい。また、金属酸化物微粒子の平均一次粒径が5nm以上であると、光拡散層12表面に前述した範囲の表面粗さとなる凹凸が形成されやすく、前述のアンカー効果が得られやすい。
 金属酸化物微粒子の種類は、特に制限はないが、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化ニオブ、及び酸化亜鉛の群から選ばれる少なくとも1種であることが好ましい。特に、膜強度が高くなるとの観点から、酸化ジルコニウム微粒子が含まれることが好ましい。光拡散層12には、金属酸化物微粒子が1種のみ含まれてもよく、2種以上が含まれてもよい。
 金属酸化物微粒子は、表面がシランカップリング剤やチタンカップリング剤で処理されたものであってもよい。金属酸化物微粒子の表面が処理されていると、金属酸化物微粒子が光拡散層12中に均一に分散されやすくなる。
 光拡散層12に含まれる金属酸化物微粒子の量は、光拡散層全質量に対して、1~30質量%であることが好ましく、より好ましくは1~20質量%であり、さらに好ましくは2~10質量%である。金属酸化物微粒子の含有量が1質量%未満であると、光拡散層12と光拡散層12が形成された後にその上に形成される層との界面におけるアンカー効果や、膜の強度が十分に高まらない。一方、金属酸化物微粒子の含有量が30質量%を超えると、相対的にバインダの量が少なくなり、光拡散層12の膜強度が低下するおそれがある。
(粘土鉱物)
 光拡散層12には、粘土鉱物が含まれてもよい。光拡散層12に粘土鉱物が含まれると、光拡散層12の強度が高まりやすい。粘土鉱物の例には、天然または合成の、ヘクトライト、サポナイト、スチブンサイト、ハイデライト、モンモリロナイト、ノントライト、ベントナイト等のスメクタイト属粘土鉱物や、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母属粘土鉱物およびバーミキュラライトやカオリナイト、アルミニウムケイ酸塩化合物、またはこれらの混合物が含まれる。粘土鉱物は、表面をアンモニウム塩等で修飾(表面処理)されたものであってもよい。
 ここで言うアルミニウムケイ酸塩化合物は、主な構成元素を珪素(Si)、アルミニウム(Al)、酸素(O)および水素(H)とし、多数のSi-O-Al結合で組み立てられた和水珪酸アルミニウムである。例えばイモゴライトが挙げられる。そして、その外径が2.0~2.5nm、内径が1.0~1.5nm、長さが数百nmのチューブ状の形態を有するものが好ましい。
 光拡散層12に含まれる粘土鉱物の量は、光拡散層12の全質量に対して0.3~20質量%であることが好ましく、より好ましく0.5~15質量%である。粘土鉱物粒子の濃度が0.5質量%未満であると、光拡散層12の強度が十分に高まらない場合がある。一方、粘土鉱物粒子の濃度が20質量%を超えると、相対的に光拡散粒子の量が少なくなり、十分な光拡散が得られないおそれがある。
(金属アルコキシドまたは金属キレートの硬化物)
 光拡散層12には、Si元素以外の2価以上の金属元素の金属アルコキシドまたは金属キレートの硬化物が含まれてもよい。図1~4のLED装置100~103において光拡散層12に金属アルコキシドまたは金属キレートの硬化物が含まれると、光拡散層12と被塗布面との密着性が高まる。金属アルコキシドまたは金属キレートに含まれる金属が、被塗布面の水酸基等と、メタロキサン結合を形成するためである。
 光拡散層12に含まれる、金属アルコキシドまたは金属キレート由来の金属元素(Si元素を除く)の量は、光拡散層に含まれるSi元素のモル数に対して、0.5~20モル%であることが好ましく、より好ましくは1~10モル%である。金属元素の量が、0.5モル%未満であると、光拡散層12と被塗布面との密着性が十分に高まらない。一方、金属アルコキシドまたは金属キレートの硬化物量が多くなると光拡散粒子の量が相対的に減少するため、光拡散層12の光拡散性が低下するおそれがある。金属元素の量、及びSi元素の量は、エネルギー分散型X線分光法(EDX)で算出できる。
 金属アルコキシドまたは金属キレートに含まれる金属元素の種類は、2価以上の金属元素(Siを除く)であれば特に制限されないが、4族または13族の元素であることが好ましい。すなわち、金属アルコキシドまたは金属キレートは、具体的には、下記の一般式(V)で表される化合物であることが好ましい。
  Mm+nm-n   …(V)
 一般式(V)中、Mは4族または13族の金属元素を表し、mはMの価数(3または4)を表す。Xは加水分解性基を表し、nはX基の数(2以上4以下の整数)を表す。ただし、m≧nである。Yは1価の有機基を表す。
 一般式(V)において、Mで表される4族または13族の金属元素は、アルミニウム、ジルコニウム、チタンであることが好ましく、ジルコニウムであることが特に好ましい。ジルコニウム元素を含むアルコキシドまたはキレートの硬化物は、一般的なLEDチップ2の発光波長域(特に青色光(波長420~485nm)に吸収波長を有さない。そのためジルコニウムのアルコキシドまたはキレートの硬化物に、LEDチップ2からの光等が吸収され難い。
 一般式(V)において、Xで表される加水分解性基は、水で加水分解され、水酸基を生成する基でありうる。加水分解性基の好ましい例には、炭素数が1~5の低級アルコキシ基、アセトキシ基、ブタノキシム基、クロル基等が含まれる。一般式(V)において、Xで表される基は、全て同一の基であってもよく、異なる基であってもよい。
 Xで表される加水分解性基は、前述のように、金属元素が被塗布面の水酸基等とメタロキサン結合を形成する際に、加水分解される。そのため加水分解後に生成される化合物が中性であり、かつ軽沸である基が好ましい。そこで、Xで表される基は、炭素数1~5の低級アルコキシ基であることが好ましく、より好ましくはメトキシ基、またはエトキシ基である。
 一般式(V)において、Yで表される1価の有機基は、一般的なシランカップリング剤に含まれる1価の有機基でありうる。具体的には、炭素数が1~1000、好ましくは500以下、より好ましくは100以下、さらに好ましくは40以下、特に好ましくは6以下である脂肪族基、脂環族基、芳香族基、脂環芳香族基でありうる。Yで表される有機基は、脂肪族基、脂環族基、芳香族基、及び脂環芳香族基が連結基を介して結合した基であってもよい。連結基は、O、N、S等の原子またはこれらを含む原子団であってもよい。
 Yで表される有機基は、置換基を有してもよい。置換基の例には、F、Cl、Br、I等のハロゲン原子;ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、メルカプト基、エポキシ基、エポキシシクロヘキシル基、グリシドキシ基、アミノ基、シアノ基、ニトロ基、スルホン酸基、カルボキシ基、ヒドロキシ基、アシル基、アルコキシ基、イミノ基、フェニル基等の有機基が含まれる。
 一般式(V)で表される、アルミニウム元素を含む金属アルコキシドまたは金属キレートの具体例には、アルミニウムトリイソプロポキシド、アルミニウムトリn-ブトキシド、アルミニウムトリt-ブトシキド、アルミニウムトリエトキシド等が含まれる。
 一般式(V)で表される、ジルコニウム元素を含む金属アルコキシドまたは金属キレートの具体例には、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラn-プロポキシド、ジルコニウムテトラi-プロポキシド、ジルコニウムテトラn-ブトキシド、ジルコニウムテトラi-ブトキシド、ジルコニウムテトラt-ブトキシド、ジルコニウムジメタクリレートジブトキシド、ジブトキシジルコニウムビス(エチルアセトアセテート)等が含まれる。
 一般式(V)で表されるチタン元素を含む金属アルコキシドまたは金属キレートの具体例には、チタンテトライソプロポキシド、チタンテトラn-ブトキシド、チタンテトラi-ブトキシド、チタンメタクリレートトリイソプロポキシド、チタンテトラメトキシプロポキシド、チタンテトラn-プロポキシド、チタンテトラエトキシド、チタンラクテート、チタニウムビス(エチルヘキソキシ)ビス(2-エチル-3-ヒドロキシヘキソキシド)、チタンアセチルアセトネート等が含まれる。
 ただし、上記で例示した金属アルコキシドまたは金属キレートは、入手容易な市販の有機金属アルコキシドまたは金属キレートの一部である。科学技術総合研究所発行の「カップリング剤最適利用技術」9章のカップリング剤及び関連製品一覧表に示される金属アルコキシドまたは金属キレートの硬化物も、本実施形態に適用し得る。
・粘着層
 粘着層21は、発光部材10と波長変換・光拡散部材20とを貼り合わせる層である。具体的には、発光部材10の光取り出し面に波長変換・光拡散部材20が対向するように貼り合わせる層である。粘着層21は、図1又は3に示されるように、凹状のパッケージ1の凹部の周囲、つまり発光部材10の光取り出し面の外周と、波長変換・光拡散部材20との間に、枠状に形成されてもよい。また、図2に示されるように、発光部材10と波長変換・光拡散部材20との間の全面に形成されてもよい。また、図4に示されるように、LEDチップ2と波長変換・光拡散部材20との間の全面に形成されてもよい。図3では、波長変換・光拡散部材20と封止材22との間に、空隙層があるが、波長変換・光拡散部材20と封止材22とが密着していてもよい。
 粘着層21の厚みは、LED装置の構成等に応じて、適宜選択されるが、通常0.05~0.3μmであることが好ましく、より好ましくは0.05~0.2μmである。粘着層21の厚みが薄すぎると、発光部材10と波長変換・光拡散部材20とを十分に貼り合わせることができないおそれがある。一方、粘着層21の厚みが厚すぎると、光透過性が低下し、LED装置100~102からの光取り出し効率が低下する場合がある。
 粘着層21の種類は特に制限されず、アクリル系、ウレタン系、ゴム系、シリコーン系の粘着層等でありうる。発光部材10及び波長変換・光拡散部材20との密着性、及び取り扱い性の観点等から、シリコーン系の粘着層が好ましい。
・封止材
 封止材22は、水分や大気中の酸素による劣化を防ぐため、パッケージ1を封止して外部雰囲気から遮断するものである。封止材22としては、例えば、ビスフェノールAタイプやFタイプ、ノボラック樹脂などのエポキシ化合物を用いることができる。エポキシ化合物とオキセタン化合物などの酸無水物を共存させ、スルホニウム塩、ホスホニウム塩などの酸発生剤を開始剤として重合し、これを一定時間高温下に放置することで硬化させる方法を用いることができる。
2.LED装置の製造方法
 図1~4のLED装置100~103を製造する方法には、以下の工程が含まれる。
 1)パッケージと、このパッケージに実装されたLEDチップと、必要に応じてLEDチップを被覆する封止材とを有する発光部材を準備する工程
 2)ガラス基板と、このガラス基板上に形成された光拡散層及び波長変換層とを有する波長変換・光拡散部材を準備する工程
 3)発光部材及び/または波長変換・光拡散部材上に粘着層を形成し、発光部材及び波長変換・光拡散部材を重ね合わせ、これらを接着する工程
 1)発光部材準備工程
 発光部材の準備は、(i)パッケージにLEDチップを実装し、(ii)必要に応じてこのLEDチップ上に、封止材の層を形成する工程等でありうる。
 (i)パッケージのメタル部(配線)と、LEDチップとを電気的に接続することで、LEDチップをパッケージに実装する。LEDチップ及びメタル部は、前述のように、配線を介して接続してもよく、突起電極を介して接続してもよい。
 (ii)LEDチップの実装後、少なくともLEDチップの発光面を覆うように、封止材の層を形成する。
 2)波長変換・光拡散部材準備工程
 波長変換・光拡散部材を準備する工程は、ガラス基板上に、前述の光拡散粒子及び有機ケイ素化合物が含まれる光拡散層形成用組成物を塗布する工程と、前述の蛍光体粒子及びバインダが含まれる波長変換層形成用組成物を塗布する工程と、でありうる。なお、波長変換・光拡散部材の層構成に応じてどちらの工程を先に行うかを決めることができる。
 光拡散層形成用組成物には、前述の有機ケイ素化合物及び光拡散粒子以外に、前述の金属酸化物微粒子、粘土鉱物、金属アルコキシドまたは金属キレート、溶媒等が含まれてもよい。
 光拡散層形成用組成物に含まれる有機ケイ素化合物の量は、光拡散層形成用組成物の全質量に対して5~50質量%であることが好ましい。なお、有機ケイ素化合物が、シラン化合物のオリゴマーである場合、シラン化合物を重合してオリゴマーを調製する。シラン化合物のオリゴマーの調製方法については、後述する。
 光拡散層形成用組成物に含まれる溶媒は、有機ケイ素化合物を溶解または分散可能なものであれば特に制限はない。例えば水との相溶性に優れた水性溶媒であってもよく、また、水との相溶性が低い非水性溶媒であってもよい。
 光拡散層形成用組成物に含まれる溶媒の沸点は150℃以上であることが好ましい。沸点が150℃以上の有機溶媒が含まれると、光拡散層形成用組成物の保存安定性が向上し、光拡散層形成用組成物を塗布装置から安定して塗布できる。一方、光拡散層形成用組成物の乾燥性の観点から、溶媒の沸点は250℃以下であることが好ましい。
 光拡散層形成用組成物に含まれる溶媒には、2価以上の多価脂肪族アルコールが含まれることが特に好ましい。多価アルコールが含まれると、光拡散層形成用組成物の粘度が高まり、光拡散粒子等が沈殿し難くなる。2価以上の多価脂肪族アルコールの例には、例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリン、1,3-ブタンジオール、1,4-ブタンジオール等が含まれる。
 光拡散層形成用組成物に含まれる多価アルコールの量は、光拡散層形成用組成物全体に対して、1~15質量%であることが好ましく、より好ましくは1~10質量%であり、さらに好ましくは3~10質量%である。
 光拡散層形成用組成物には、有機ケイ素化合物(特にポリシラザンオリゴマー)と共に、反応促進剤が含まれてもよい。反応促進剤は、酸または塩基のいずれであってもよい。反応促進剤の例には、トリエチルアミン、ジエチルアミン、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、及びトリエチルアミン等のアミン;塩酸、シュウ酸、フマル酸、スルホン酸、及び酢酸等の酸;ニッケル、鉄、パラジウム、イリジウム、白金、チタン、アルミニウムを含む金属カルボン酸塩等が含まれる。反応促進剤は、金属カルボン酸塩であることが、特に好ましい。反応促進剤の添加量は、ポリシラザンオリゴマーの質量に対して0.01~5mol%であることが好ましい。
 光拡散層形成用組成物の塗布方法は特に制限されず、その例には、バーコート法、スピンコート法、スプレーコート法、ディスペンサー塗布法等が含まれる。
 バーコート法に用いる卓上コーターの例には、三井電機精機株式会社製 TC-1等があり、ワイヤーバーの例には、テスター産業株式会社製のワイヤーバー等がある。ワイヤーバーのワイヤー径は、光拡散層形成用組成物の膜厚に応じて適宜選択される。また、卓上コーターの塗工速度は光拡散層形成用組成物の粘度、及び光拡散層の所望の厚みに応じて適宜選択されるが、一般的には、1~3m/分とすることができる。また、卓上コーターで光拡散層形成用組成物を塗布する場合には、平坦性の高いコーター台の上にガラス板を載置し、光拡散層形成用組成物を塗布することが好ましい。
 スピンコート法に用いるスピンコーターの例には、ミカサ株式会社製 スピンコーター MS-A100等がある。スピンコーターの回転数は、光拡散層形成用組成物の粘度、及び光拡散層の厚み等に応じて、適宜選択される。一般的には、300rpm程度に設定することができる。
 スプレーコート法で、光拡散層形成用組成物をガラス基板11上に塗布する場合の例を、図8を用いて説明する。図8は、光拡散層形成用組成物を塗布するためのスプレー装置の概略図である。図8に示される塗布装置200において、塗布液タンク210内の光拡散層形成用組成物220は、圧力をかけられて連結管230を通じてヘッド240に供給される。ヘッド240に供給された光拡散層形成用組成物220は、ノズル250から吐出されて、ガラス基板11上に塗布される。ノズル250からの塗布液の吐出は風圧によって行われる。ノズル250の先端に開閉自在な開口部を設けて、この開口部を開閉操作して、吐出作業のオン・オフを制御する構成としてもよい。
 光拡散層形成用組成物の塗布工程では、下記(1)~(4)の操作や条件設定などをおこなう。
 (1)ノズル250の先端部をガラス基板11の直上に配置して光拡散層形成用組成物270をガラス基板11の真上から噴射する。
 (2)光拡散層形成用組成物220の噴射量を、光拡散層形成用組成物の粘度や目的の膜厚に応じて制御する。同一の条件で塗布をする限り、噴射量を一定とし、単位面積当たりの塗布量を一定とする。光拡散層形成用組成物220の噴射量の経時的なバラツキは10%以内とし、好ましくは1%以内とする。光拡散層形成用組成物220の噴射量は、ガラス基板11に対するノズル250の相対移動速度と、ノズル250からの噴射圧力などで調整する。一般的には、光拡散層形成用組成物の粘度が高い場合、ノズルの相対移動速度を遅くし、かつ噴射圧力を高く設定する。ノズルの相対移動速度は通常、約30mm/s~200mm/s程度であり、噴射圧力は通常、約0.01MPa~0.4MPa程度である。
 また、噴射圧力を調整することで噴射中の乾燥状態を調整することができるため、これにより表面粗さを調整することができる。噴射圧力を低くすると噴射中に乾燥しやすいので表面粗さは大きくなる。一方、噴射圧力を低くすると噴射中に乾燥しにくいので表面粗さは小さくなる。なお、ノズル250とガラス基板11との距離を調整することでも表面粗さを調整することができる。この場合、距離が長くなると噴射中に乾燥しやすいので表面粗さは大きくなる。一方、距離を短くすると噴射中に乾燥しにくいので表面粗さは小さくなる。
 (3)光拡散層形成用組成物220を塗布する際には、塗布装置200の環境雰囲気(温度・湿度)を一定とし、光拡散層形成用組成物220の噴射を安定させる。特に、有機ケイ素化合物がポリシラザンである場合、ポリシラザンは吸湿性を有しているため、分散液220が固化する可能性がある。そこで、光拡散層形成用組成物220を噴射するときの湿度を低くすることが好ましい。
 (4)噴射・塗布工程中に、ノズル250をクリーニングしてもよい。この場合、塗布装置200の近傍に、洗浄液を貯留したクリーニングタンクを設置する。そして、分散液220の噴射の休止中などに、ノズル250の先端部をクリーニングタンク中に浸漬させ、ノズル250の先端部の乾燥を防ぐ。また、噴射・塗布工程の休止中には、光拡散層形成用組成物220が硬化してノズル250の噴射孔がつまる恐れがあるので、ノズル250をクリーニングタンク中に浸漬させるか、噴射・塗布工程の開始時にノズル250をクリーニングすることが好ましい。
 光拡散層形成用組成物をいずれの方法で塗布した場合においても、光拡散層形成用組成物の塗布後、光拡散層形成用組成物に含まれる溶媒を乾燥により除去する。併せて、光拡散層形成用組成物に含まれる有機ケイ素化合物を焼成によって硬化させる。光拡散層形成用組成物を乾燥・硬化させる際の温度は、20~200℃であることが好ましく、より好ましくは25~150℃である。温度が20℃未満であると、溶媒が十分に揮発しない可能性がある。一方、温度が200℃を超えると、LEDチップに悪影響を及ぼす可能性がある。また、乾燥・硬化時間は、製造効率の面から、0.1~30分であることが好ましく、より好ましくは0.1~15分である。有機ケイ素化合物がポリシラザンオリゴマーである場合には、波長170~230nmの範囲のVUV放射線(例えばエキシマ光)を塗膜に照射して硬化させた後に、さらに加熱硬化を行うことで、より緻密な膜が形成される。
 (シラン化合物のオリゴマーの調製方法)
 前述の光拡散層形成用組成物に含まれるシラン化合物のオリゴマー(ポリシロキサンオリゴマー)は、以下の方法で調製できる。シラン化合物のモノマーを、酸触媒、水、有機溶媒の存在下で加水分解し、縮合反応させる。シラン化合物のオリゴマーの質量平均分子量は、反応条件(特に反応時間)等で調整する。
 光拡散層形成用組成物に含まれるシラン化合物のオリゴマーの質量平均分子量は、好ましくは1000~3000であり、より好ましくは1200~2700であり、さらに好ましくは1500~2000である。光拡散層形成用組成物に含まれるシラン化合物のオリゴマーの質量平均分子量が1000未満であると、光拡散層形成用組成物の粘度が低くなり、光拡散層形成時に、液はじき等が生じやすくなる。一方、光拡散層形成用組成物に含まれるシラン化合物のオリゴマーの質量平均分子量が3000を超えると、光拡散層形成用組成物の粘度が高くなり、均一な膜形成が困難となる場合がある。質量平均分子量は、ゲルパーミエーションクロマトグラフィーで測定される値(ポリスチレン換算)である。
 シラン化合物のオリゴマー調製用の酸触媒は、シラン化合物の加水分解時に触媒として作用するものであればよく、有機酸または無機酸のいずれであってもよい。無機酸の例には、硫酸、リン酸、硝酸、塩酸等が含まれ、リン酸及び硝酸が特に好ましい。また、有機酸の例には、ギ酸、シュウ酸、フマル酸、マレイン酸、氷酢酸、無水酢酸、プロピオン酸、及びn-酪酸など、カルボン酸残基を有する化合物;有機スルホン酸、及び有機スルホン酸のエステル化物(有機硫酸エステル、有機亜硫酸エステル)など、硫黄含有酸残基を有する化合物が含まれる。
 シラン化合物のオリゴマー調製用の酸触媒は、下記一般式(VI)で表わされる有機スルホン酸であることが特に好ましい。
 R8-SO3H   …(VI)
 上記一般式(VI)において、R8で表される炭化水素基は、直鎖状、分岐鎖状、環状の飽和もしくは不飽和の炭素数1~20の炭化水素基である。環状の炭化水素基の例には、フェニル基、ナフチル基、またはアントリル基等の芳香族炭化水素基が含まれ、好ましくはフェニル基である。また、一般式(VI)においてR8で表される炭化水素基は、置換基を有してもよい。置換基の例には、直鎖状、分岐鎖状、または環状の、炭素数1~20の飽和若しくは不飽和の炭化水素基;フッ素原子等のハロゲン原子;スルホン酸基;カルボキシル基;水酸基;アミノ基;シアノ基等が含まれる。
 上記一般式(VI)で表わされる有機スルホン酸は、特にノナフルオロブタンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、またはドデシルベンゼンスルホン酸であることが好ましい。
 シラン化合物のオリゴマー調製時に添加する酸触媒の量は、オリゴマー調製液全量に対して1~1000質量ppmであることが好ましく、より好ましくは5~800質量ppmである。
 シラン化合物のオリゴマー調製時に添加する水の量によって、得られるポリシロキサンの膜質が変化する。したがって、目的とする膜質に応じて、オリゴマー調製時の水添加率を調整することが好ましい。水添加率とは、オリゴマー調製液に含まれるシラン化合物のアルコキシ基またはアリールオキシ基のモル数に対する、添加する水分子のモル数の割合(%)である。水添加率は、50~200%であることが好ましく、より好ましくは75~180%である。水添加率を、50%以上とすることで、光拡散層の膜質が安定する。また200%以下とすることで光拡散層形成用組成物の保存安定性が良好となる。
 シラン化合物のオリゴマー調製時に添加する溶媒の例には、メタノール、エタノール、プロパノール、n-ブタノール等の一価アルコール;メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート等のアルキルカルボン酸エステル;エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ヘキサントリオール等の多価アルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等の多価アルコールのモノエーテル類、あるいはこれらのモノアセテート類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン、メチルイソアミルケトン等のケトン類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル等の多価アルコールの水酸基をすべてアルキルエーテル化した多価アルコールエーテル類;等が含まれる。これらは1種単独で添加してもよく、また2種以上を添加してもよい。
 波長変換層の形成方法は、波長変換層のバインダの種類等によって、適宜選択される。
 a)バインダが透明樹脂である場合には、前述の蛍光体粒子と、前述の透明樹脂またはその前駆体と、溶媒とを含む波長変換層形成用組成物を塗布して波長変換層を形成することができる。バインダが透明樹脂である場合の波長変換層形成用組成物に含まれる溶媒は、上記透明樹脂またはその前駆体を溶解させることが可能なものであれば、その種類は特に制限されない。溶媒の例には、トルエン、キシレンなどの炭化水素類;アセトン、メチルエチルケトンなどのケトン類;ジエチルエーテル、テトラヒドロフランなどのエーテル類;プロピレングリコールモノメチルエーテルアセテート、エチルアセテートなどのエステル類等が含まれる。
 この波長変換層形成用組成物の塗布方法は特に制限されず、前述した光拡散層形成用組成物の塗布方法と同様の方法を用いることができる。
 波長変換層形成用組成物の塗布後、波長変換層形成用組成物を硬化させる。波長変換層形成用組成物の硬化方法や硬化条件は、透明樹脂の種類により適宜選択される。硬化方法の一例として、加熱硬化が挙げられる。
 b)バインダが透光性セラミックである場合には、前述の蛍光体粒子と、前述の透光性セラミック前駆体とを含む波長変換層形成用組成物を塗布し、透光性セラミック前駆体を硬化させることで、波長変換層を形成することができる。波長変換層形成用組成物には、必要に応じて、前述の粘土鉱物粒子、無機粒子、及び溶媒が含まれる。前述の粘土鉱物粒子や無機粒子が含まれると、波長変換層形成用組成物の粘度が高まり、蛍光体粒子が沈降し難くなる。
 バインダが透光性セラミックである場合の波長変換層形成用組成物に含まれる溶媒は、水や、水との相溶性に優れた有機溶媒、さらには水との相溶性が低い有機溶媒でありうる。溶媒の例には、メタノール、エタノール、プロパノール、ブタノールなどの1価の脂肪族アルコールや、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリン、1,3-ブタンジオール、1,4-ブタンジオール等の2価以上の多価アルコールが含まれる。
 溶媒の沸点は150℃以上であることが好ましい。沸点が150℃以上の有機溶媒が含まれると、波長変換層形成用組成物の保存安定性が向上し、波長変換層形成用組成物を塗布装置から安定して塗布できる。一方、波長変換層形成用組成物の乾燥性の観点から、溶媒の沸点は250℃以下であることが好ましい。
 また、溶媒には、水が含まれてもよい。水が含まれると、前述の粘土鉱物粒子が膨潤し、波長変換層形成用組成物の粘度がより高まる。ただし、水に不純物が含まれると、粘土鉱物粒子の膨潤を阻害するおそれがある。そこで、溶媒に含まれる水を純水とすることが好ましい。
 この波長変換層形成用組成物の塗布方法は特に制限されず、前述した光拡散層形成用組成物の塗布方法と同様の方法を用いることができる。
 波長変換層形成用組成物の塗布後、溶媒の乾燥、及び透光性セラミック前駆体の硬化を行う。乾燥・硬化時の温度は、通常20~200℃であり、好ましくは25~150℃である。温度が20℃未満であると、溶媒が十分に揮発せず、透光性セラミック前駆体が硬化しない可能性がある。一方、200℃を超えると、LEDチップに悪影響を及ぼす可能性がある。また、乾燥・硬化時間は、製造効率の面から、通常0.1~30分であり、好ましくは0.1~15分である。
 c)バインダが透光性セラミックである場合には、蛍光体粒子と、透光性セラミック前駆体とを、2液にわけて塗布してもよい。具体的には、前述の蛍光体粒子、粘土鉱物粒子、無機粒子、及び溶媒を含む蛍光体分散液を塗布して蛍光体層を形成し、この蛍光体層上に透光性セラミック前駆体及び溶媒を含む透光性セラミック層用組成物を塗布して波長変換層を形成する。
 蛍光体分散液及び透光性セラミック層用組成物に含まれる溶媒は、蛍光体粒子と、透光性セラミック前駆体とを一液で塗布する場合と同様の溶媒でありうる。また、蛍光体分散液の塗布方法や、透光性セラミック層用組成物の塗布方法や、乾燥・硬化方法についてもこれらを一液で塗布する場合の方法と同様でありうる。
 3)粘着層形成工程及び貼り合わせ工程
 前述の発光部材、及び波長変換・光拡散部材の形成後、これらのいずれか一方、もしくは両方に粘着層を形成し、これらを貼り合わせる。例えば図1、3に示されるように、凹部を有するパッケージ1と、波長変換・光拡散部材20の周囲とを貼り合わせる場合には、パッケージ1の凹部の周囲、及び波長変換・光拡散部材20のいずれか一方、もしくは両方に粘着層21を枠状に形成して、発光部材10及び波長変換・光拡散部材20を貼り合わせる。また、例えば図2に示されるように、発光部材10上面の全面、及び波長変換・光拡散部材20を貼り合わせる場合には、発光部材10及び波長変換・光拡散部材20のいずれか一方、もしくは両方に粘着層21を形成して、発光部材10及び波長変換・光拡散部材20を貼り合わせる。
 粘着層の形成方法は、特に制限されず、公知の粘着層の形成方法でありうる。例えば、粘着剤をフィルム状に形成した粘着シートを準備し、これを発光部材及び/または波長変換・光拡散部材に貼着して、粘着層を形成してもよい。また、粘着剤を発光部材及び/または波長変換・光拡散部材に直接塗布してもよい。粘着剤を直接塗布する方法の例には、コンマコーターによる塗布、各種印刷法による印刷、スプレー塗布装置による塗布、ディスペンサーによる塗布等がある。
 発光部材10と波長変換・光拡散部材20との貼着後、必要に応じて、粘着剤を硬化させる。粘着剤の効果方法の例には、加熱硬化、紫外線照射による硬化等がある。
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。
(1)パッケージ及びLEDチップの準備
 白色顔料を含むポリフタル酸アミド(PPA)樹脂からなり、リードフレームが一体成型されたパッケージを準備した。パッケージは、3.2mm×2.8mm×1.8mmの直方体に、開口径2.4mm、壁面角度45°、深さ0.85mmの円錐台状の凹部が形成されたものとした。このパッケージに設けられた電極部分と、LEDチップとを、金ワイヤーで接続し、LEDチップをパッケージに実装した。LEDチップの外形は、305μm×330μm×100μmとした。また、LEDチップのピーク波長は、475nmとした。
(2)波長変換層形成用組成物の準備
・波長変換層形成用組成物A
 テトラメトキシシラン3.25g、メタノール4.00g、及びアセトン4.00gを混合し、これを撹拌した。この混合液にさらに、水5.46g、60%硝酸4.7μLを加えて3時間撹拌し、ポリシロキサン溶液を得た。続いてポリシロキサン溶液に、黄色蛍光体(根本特殊化学製、YAG 450C205(体積平均粒径 粒径D50 20.5μm))6.5gを混合し、波長変換層形成用組成物Aを調製した。
・波長変換層形成用組成物B
 有機ケイ素化合物(信越シリコーン社製、KER2600)と、黄色蛍光体(根本特殊化学製、YAG 450C205(体積平均粒径 粒径D50 20.5μm))とを混合し、波長変換層形成用組成物Bを調製した。波長変換層形成用組成物Bにおける黄色蛍光体の濃度は、5質量%とした。
(3)LED装置の作製
[比較例1]
 LEDチップを実装したパッケージの凹部に、波長変換層形成用組成物Bをディスペンサーでポッティングした。これを150℃で2時間静置し、波長変換層を形成し、パッケージ、LEDチップ、及び波長変換層を有する発光部材を得た。
[比較例2]
 ポリエステル樹脂(東洋紡績社製 バイロン220)50gと、希釈溶剤(帝国インキ社製 G-004溶剤)50gとを混合し、ポリエステル樹脂溶液を作製した。作製したポリエステル樹脂溶液100g、イソシアネート系硬化剤(帝国インキ社製 210硬化剤)5g、ガラス用補強剤(帝国インキ社製)0.5g、消泡剤(帝国インキ社製)1g、酸化ケイ素微粒子(洞海化学工業社製 サンスフェアNP-30)5.6g、アクリル樹脂微粒子(積水化成品工業社製 MBX-8)7.8g、及びアクリル-スチレン共重合体の微粒子(積水化成品工業社製)11.1gを混合し、光拡散層形成用組成物を調製した。
 厚さ100μm、大きさ100mm×100mmのガラス板上に、前記光拡散層形成用組成物をバーコート法で塗布した。光拡散層形成用組成物を120℃で10分間、大気圧下で乾燥させて、ガラス基板と光拡散層とが積層された光拡散部材を作製した。光拡散層の乾燥後の膜厚は1μmであった。
 この光拡散部材の光拡散層上に、粘着剤(信越化学工業社製LPS-5547)を塗布し、粘着層を形成した。その後、光拡散部材の光拡散層と、比較例1で作製した発光部材の波長変換層とを対向させて、貼り合わせ、LED装置を得た。
[比較例3]
 テトラメトキシシラン3.25g、メタノール4.00g、及びアセトン4.00gを混合し、これを撹拌した。この混合液にさらに、水5.46g、60%硝酸4.7μLを加えて3時間撹拌し、ポリシロキサン溶液を得た。続いてポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g及び1,3-ブタンジオール2gを混合して、光拡散層形成用組成物を調製した。
 厚さ100μm、大きさ100mm×100mmのガラス板上に、光拡散層形成用組成物をバーコート法で塗布した。光拡散層形成用組成物を150℃で1時間、大気圧下で乾燥させて、ガラス基板と光拡散層とが積層された光拡散部材を作製した。光拡散層の乾燥後の膜厚は1μmであった。
 この光拡散部材の光拡散層上に、粘着剤(信越化学工業社製LPS-5547)を塗布し、粘着層を形成した。光拡散部材の光拡散層と、比較例1で作製した発光部材の波長変換層とを対向させて、貼り合わせ、LED装置を得た。
(実施例1)
 テトラメトキシシラン3.25g、メタノール4.00g、及びアセトン4.00gを混合し、これを撹拌した。この混合液にさらに、水5.46g、60%硝酸4.7μLを加えて3時間撹拌し、ポリシロキサン溶液を得た。続いてポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g及び1,3-ブタンジオール2gを混合して、光拡散層形成用組成物を調製した。
 厚さ100μm、大きさ100mm×100mmのガラス板上に、光拡散層形成用組成物をバーコート法で塗布した。光拡散層形成用組成物を150℃で1時間、大気圧下で乾燥させて、ガラス基板と光拡散層とが積層された光拡散部材を作製した。光拡散層の乾燥後の膜厚は1.5μmであった。
 この光拡散部材の光拡散層上に、前述した波長変換層形成用組成物Aをバーコート法で所望の厚さに塗布した。波長変換層形成用組成物Aを150℃で1時間、大気圧下で乾燥させて、図5に示した、ガラス基板と光拡散層と波長変換層とが積層された波長変換・光拡散部材を作製した。
 パッケージにLEDチップを実装し、発光部材を得た。パッケージの基板の上面に粘着剤(信越化学工業社製LPS-5547)を塗布し、粘着層を形成した。その後、波長変換・光拡散部材の波長変換層と、粘着層とを対向させて、貼り合わせ、図1に示されるLED装置を得た。
(実施例2)
 ポリシラザン(AZエレクトロニックマテリアルズ社製 NN120;ポリシラザン20質量%、ジブチルエーテル80質量%)7.0gと、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.05gを混合して、光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例3)
 メチルトリメトキシシラン0.60g、テトラメトキシシラン2.60g、メタノール4.00g、アセトン4.00gを混合し、これを撹拌した。この混合液にさらに、水5.46g、60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=2:8のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例4)
 メチルトリメトキシシラン2.40g、テトラメトキシシラン0.65g、メタノール4.00g、アセトン4.00gを混合し、これを撹拌した。この混合液にさらに、水5.46g、60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=8:2のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例5)
 メチルトリメトキシシラン0.90g、テトラメトキシシラン2.40g、メタノール4.00g、及びアセトン4.00gを混合し、これを撹拌した。この混合液にさらに、水5.46g、60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=3:7のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例6)
 メチルトリメトキシシラン1.20g、テトラメトキシシラン1.85g、メタノール4.00g、アセトン4.00gを混合し、これを撹拌した。この混合液にさらに、水5.46g及び60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例7)
 メチルトリメトキシシラン1.80g、テトラメトキシシラン1.30g、メタノール4.00g、及びアセトン4.00gを混合し、これを撹拌した。さらに、水5.46g及び60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例8)
 メチルトリメトキシシラン2.40g、テトラメトキシシラン0.65g、メタノール4.00g、及びアセトン4.00gを混合し、これを撹拌した。この混合液にさらに、水5.46g及び60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例9)
 メチルトリメトキシシラン1.20g、テトラメトキシシラン1.95g、メタノール4.00g、及びアセトン4.00gを混合、撹拌した。この混合液にさらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、硫酸バリウム(堺化学工業 BF-10 粒径600nm)0.13g、1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例10)
 メチルトリメトキシシラン1.20g、テトラメトキシシラン1.95g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、平均一次粒径5nmの酸化ジルコニウム(ZrO2)分散液(30wt%メタノール溶液 堺化学株式会社製)0.3g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例11)
 メチルトリメトキシシラン1.20g、テトラメトキシシラン1.95g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g及び60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、平均一次粒径5nmの酸化ジルコニウム(ZrO2)分散液(30wt%メタノール溶液 堺化学株式会社製)0.3g、硫酸バリウム(堺化学工業 BF-10 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例12)
 メチルトリメトキシシラン1.20g、テトラメトキシシラン1.95g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、下記のように合成したアルミニウムケイ酸塩化合物 イモゴライト分散液(イモゴライト0.3wt%の水分散液)0.3g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(アルミニウムケイ酸塩化合物であるイモゴライト分散液の合成)
 1L容量の攪拌機付き容器に0.1mol/Lのオルトケイ酸ナトリウム250mLと0.15mol/Lの塩化アルミニウム六水和物250mLを混合し、攪拌しながら1Nの水酸化ナトリウム水溶液50mLを滴下した。この時の溶液は90℃のプレートヒーターにより加熱し、この温度を10時間維持した。次に、濃塩酸を加え、溶液のpHを7.0とした。生成した塩化ナトリウムを水洗により除去し、再度濃塩酸を加え、pHを4.0として100℃に加熱し、24時間維持することでアルミニウムケイ酸塩化合物であるイモゴライト分散液を作製した。
(実施例13)
 メチルトリメトキシシラン1.20g、テトラメトキシシラン1.95g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、ベンゲル(ホージュン(株)販売の天然ベントナイト)0.09g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例14)
 メチルトリメトキシシラン1.20g、テトラメトキシシラン1.95g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、クニビアF(クニミネ工業(株)販売の天然モンモリロナイト)0.09g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例15)
 メチルトリメトキシシラン1.20g、テトラメトキシシラン1.95g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、ソマシフ(コープケミカル(株)製の合成膨潤性雲母)0.09g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例16)
 メチルトリメトキシシラン1.20g、テトラメトキシシラン1.95g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、SWN(コープケミカル(株)製の合成スメクタイト)0.09g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例17)
 メチルトリメトキシシラン1.20g、テトラメトキシシラン1.95g、メタノール4.00g、アセトン4.00gを混合し、撹拌した。さらに、水5.46g、60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、安定化剤としてアセチルアセトン(関東化学社製)をポリシロキサン溶液の全量に対して10質量%添加し、ZrキレートとしてZC-580(マツモトファインケミカル社製)を、その固形分量が、光拡散層形成用組成物の固形分に対して10質量%となるように添加した。さらに、平均一次粒径5nmの酸化ジルコニウム(ZrO2)分散液(30wt%メタノール溶液 堺化学株式会社製)0.3g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例18)
 メチルトリメトキシシラン1.20g、テトラメトキシシラン1.95g、メタノール4.00g、及びアセトン4.00gを混合し、これを撹拌した。この混合液にさらに、水5.46g及び60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、安定化剤としてアセチルアセトン(関東化学社製)をポリシロキサン溶液の全量に対して10質量%添加し、Alアルコキシド;ALR15GB(高純度化学社製)を、その固形分量が、光拡散層形成用組成物の固形分に対して10質量%となるように添加した。さらに、平均一次粒径5nmの酸化ジルコニウム(ZrO2)分散液(30wt%メタノール溶液 堺化学株式会社製)0.3g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例19)
 メチルトリメトキシシラン1.20g、テトラメトキシシラン1.95g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、平均一次粒径5nmの酸化ジルコニウム(ZrO2)分散液(30wt%メタノール溶液 堺化学株式会社製)0.3g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。
 厚さ100μm、大きさ100mm×100mmのガラス板上に、光拡散層形成用組成物をバーコート法で塗布した。光拡散層形成用組成物を150℃で1時間、大気圧下で乾燥させて、ガラス基板と光拡散層とが積層された光拡散部材を作製した。光拡散層の乾燥後の膜厚は1.5μmであった。
 この光拡散部材の光拡散層とは逆側のガラス基板面に、前述した波長変換層形成用組成物Aをバーコート法で所望の厚さに塗布した。波長変換層形成用組成物Aを150℃で1時間、大気圧下で乾燥させて、図6に示した、光拡散層とガラス基板と波長変換層とが積層された波長変換・光拡散部材を作製した。
 パッケージにLEDチップを実装し、発光部材を得た。パッケージの基板の上面に粘着剤(信越化学工業社製LPS-5547)を塗布し、粘着層を形成した。その後、波長変換・光拡散部材の波長変換層と、粘着層とを対向させて、貼り合わせ、前述した(b)の構成のLED装置を得た。
(実施例20)
 メチルトリメトキシシラン1.20g、テトラメトキシシラン1.95g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、3官能成分:4官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、平均一次粒径5nmの酸化ジルコニウム(ZrO2)分散液(30wt%メタノール溶液 堺化学株式会社製)0.3g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。
 厚さ100μm、大きさ100mm×100mmのガラス板上に、前述した波長変換層形成用組成物Aをバーコート法で所望の厚さに塗布した。波長変換層形成用組成物Aを150℃で1時間、大気圧下で乾燥させて、ガラス基板に波長変換層が積層された波長変換部材を作製した。
 波長変換部材の波長変換層上に、前述した光拡散層形成用組成物をスプレー法により塗布した。光拡散層形成用組成物を150℃で1時間、大気圧下で乾燥させて、ガラス基板と波長変換層と光拡散層とが積層された波長変換・光拡散部材を作製した。光拡散層の乾燥後の膜厚は断面を走査型電子顕微鏡で観察することで測定したところ1.5μmであった。
 パッケージにLEDチップを実装し、発光部材を得た。パッケージの基板の上面に粘着剤(信越化学工業社製LPS-5547)を塗布し、粘着層を形成した。その後、波長変換・光拡散部材の光拡散層と、粘着層とを対向させて、貼り合わせ、前述した(c)の構成のLED装置を得た。
(実施例21)
 実施例19で作製した波長変換・光拡散部材を、実施例19とは逆に光拡散層と、粘着層とを対向させて、貼り合わせ、前述した(e)の構成のLED装置を得た。
(実施例22)
 実施例10で作製した波長変換・光拡散部材を、実施例10とは逆にガラス基板と、粘着層とを対向させて、貼り合わせ、前述した(d)の構成のLED装置を得た。
(実施例23)
 実施例20で作製した波長変換・光拡散部材を、実施例20とは逆にガラス基板と、粘着層とを対向させて、貼り合わせ、前述した(f)の構成のLED装置を得た。
[評価]
 実施例及び比較例で作製したLED装置について、LED装置から出射する光の色度ムラ、LED装置の耐久性、光拡散層に発生するクラックの有無、及び光拡散層の密着性を評価した。
 (LED装置から出射する光の色度ムラの評価)
 実施例及び比較例で作製したLED装置の光出射面の正面を0°とし、0°及び±70°の位置における光の色度(x値)を測定した。色度の測定は、分光放射輝度計(CS-1000A、コニカミノルタセンシング社製)で行った。各LED装置について、LED装置正面(0°)の出射光の色度と、LED装置側方(±70°)の出射光の色度との差(x値の差)を算出した。この値を表1に示す。なお、x値の差の最大値が0.03以上であると、色ムラが大きく実害性があり、x値の差の最大値が0.03未満であれば、色ムラが少なく実害性がないと評価できる。
 (LED装置の耐久性試験)
 実施例及び比較例で作製したLED装置について、150℃の高温槽中で各LED装置を20mAの電流値で1000時間発光させた。発光前後のLED装置について、全光束値を測定した。そして、1000時間発光前の全光束値に対する、1000時間発光後の全光束値の比率((1000時間発光後の全光束値/1000時間発光前の全光束値)×100)を算出した。この比率を表1に示す。当該比率が90%未満であると劣化が著しいと評価でき、比率が90%以上であると、ほとんど劣化が無いと評価できる。
 (光拡散層に発生するクラックの有無、及び光拡散層の密着性)
 実施例及び比較例で作製したLED装置について、ヒートショック試験機によるヒートショック試験を行い、クラックの発生の有無と、密着性を評価した。ヒートショック試験では、LED装置を-40℃にて30分保存した後、100℃にて30分保存する工程を1サイクルとし、これを3000サイクル行った。ヒートショック試験後に、光拡散層にクラックが発生したか、顕微鏡(オリンパス社製BX50)で確認し、以下のように評価した。
 クラック評価
 ×・・・クラックが生じ、実害性がある
 △・・・部分的にクラックが発生しているが、実害性は無い
 ○・・・わずかにクラックが発生しているが、実害性は無い
 ◎・・・クラック無し
 また、ヒートショック試験後のLED装置において、光拡散層と粘着層との界面、光拡散層とガラス板との界面、又は光拡散層と波長変換層との界面に、それぞれ剥離が生じたか、顕微鏡(オリンパス社製BX50)で確認した。
 密着性評価
 ×・・・剥離が生じ、実害性がある
 △・・・部分的に剥離が生じているが実害性は無い
 ○・・・わずかに剥離が生じているが実害性は無い
 ◎・・・剥離なし
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、パッケージの凹部に波長変換層を形成した場合(比較例1~3)には、色度ムラ(x値の差)が大きかった。波長変換層がパッケージの凹部に充填されていると、波長変換層に含まれる蛍光体粒子の比重が透明樹脂の比重より大きいため、波長変換層の形成時に、透明樹脂を硬化させる前に蛍光体粒子が沈降してしまい、蛍光体粒子の濃度が均一にならないためであると推察される。
 これに対し、発光部材上に波長変換・光拡散部材を配設すると(実施例1~23)、発光部材からの光が波長変換・光拡散部材によって拡散されて、色度ムラが抑制された。波長変換層をガラス基板上(ガラス基板に形成された光拡散層上)に形成するために、高密度な波長変換層形成用組成物を塗布している。よって、高密度な波長変換層が形成されるので、蛍光体粒子の濃度が均一な波長変換層が得られ、均一な色度の光が出射されたと推察される。
 また、光拡散層のバインダがポリエステル樹脂である場合(比較例2)には、耐久性試験後に、全光束値が大きく低下した。耐久性試験によって光拡散層が劣化して、光拡散層の光透過性が低下したため、耐久試験後の全光束値が低下したと推察される。これに対し、光拡散層のバインダが有機ケイ素化合物の硬化物である場合(実施例1~23及び比較例3)には、耐久性試験後も全光束値が殆ど低下しなかった。
 また、光拡散層のバインダが、4官能のシラン化合物の硬化物である場合(実施例1及び2)、及び3官能のシラン化合物及び4官能のシラン化合物の重合比率が2:8である場合(実施例3)には、光拡散層にクラックが生じた。4官能成分が多いと、架橋密度が過剰に高く、光拡散層がガラス基板の膨張等に追従できずにクラックが生じたと推察される。また、硬化時の収縮量が大きいことも、クラックの一因と考えられる。またこれらの例では、波長変換層と光拡散層との界面に部分的に剥離が生じた。それらの界面での密着性が不十分であったためと推察される。
 一方、3官能のシラン化合物と4官能のシラン化合物との重合比率が8:2である場合(実施例4)には、ガラス基板と光拡散層との界面に部分的に剥離が生じた。光拡散層に含まれる有機基の量が多く、ガラス基板と光拡散層との密着性が不十分であったためと推察される。
 これに対し、3官能のシラン化合物と4官能のシラン化合物との重合比率が3:7~7:3である場合(実施例5~23)、ガラス基板と光拡散層との界面、光拡散層と粘着層との界面、光拡散層と波長変換層との界面のいずれにも、剥離が生じなかった。また特に、光拡散層に金属酸化物微粒子が含まれる場合(実施例10~23)、クラックが生じなかった。金属酸化物微粒子によって、バインダと光拡散粒子との隙間が埋まり、光拡散層の強度が高まったと推察される。またさらに、光拡散層に金属アルコキシドまたは金属キレートの硬化物が含まれると(実施例17及び18)、ガラス基板と光拡散層との密着性又は波長変換層と光拡散層との密着性が高まった。金属キレートに含まれる金属が、被塗布面の水酸基等と強固なメタロキサン結合を形成したため、良好な密着性が得られたと考えられる。
(実施例24)
 ジメチルジメトキシシラン0.3g、メチルトリメトキシシラン3.06g、メタノール4.00g、及びアセトン4.00gを混合し、これを撹拌した。さらに、水5.46g及び60%硝酸4.7μLを加えて3時間撹拌し、2官能成分:3官能成分=1:9のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例25)
 実施例24の酸化チタンを硫酸バリウム(堺化学工業 BF-10 粒径600nm)に変更した以外は、実施例24と同様にして、図1に示されるLED装置を得た。
(実施例26)
 ジメチルジメトキシシラン0.6g、メチルトリメトキシシラン2.6g、メタノール4.00g、及びアセトン4.00gを混合し、これを撹拌した。さらに、水5.46g及び60%硝酸4.7μLを加えて3時間撹拌し、2官能成分:3官能成分=2:8のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例27)
 ジメチルジメトキシシラン0.9g、メチルトリメトキシシラン2.4g、メタノール4.00g、及びアセトン4.00gを混合し、これを撹拌した。さらに、水5.46g及び60%硝酸4.7μLを加えて3時間撹拌し、2官能成分:3官能成分=3:7のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例28)
 ジメチルジメトキシシラン1.2g、メチルトリメトキシシラン1.85g、メタノール4.00g、及びアセトン4.00gを混合し、これを撹拌した。さらに、水5.46g及び60%硝酸4.7μLを加えて3時間撹拌し、2官能成分:3官能成分=4:6のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例29)
 ジメチルジメトキシシラン0.28g、メチルトリメトキシシラン2.22g、テトラメトキシシラン0.71g、メタノール4.00g、及びアセトン4.00gを混合し、これを撹拌した。さらに、水5.46g及び60%硝酸4.7μLを加えて3時間撹拌し、2官能成分:3官能成分:4官能成分=1:7:2のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.14g及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例30)
 実施例29の酸化チタンを硫酸バリウム(堺化学工業 BF-10 粒径600nm)に変更した以外は、実施例29と同様にして、図1に示されるLED装置を得た。
(実施例31)
 ジメチルジメトキシシラン0.3g、メチルトリメトキシシラン2.85g、テトラメトキシシラン0.4g、メタノール4.00g、及びアセトン4.00gを混合し、これを撹拌した。さらに、水5.46g及び60%硝酸4.7μLを加えて3時間撹拌し、2官能成分:3官能成分:4官能成分=1:8:1のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.14g及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例32)
 ジメチルジメトキシシラン0.2g、メチルトリメトキシシラン1.3g、テトラメトキシシラン0.7g、メタノール4.00g、及びアセトン4.00gを混合し、これを撹拌した。さらに、水5.46g及び60%硝酸4.7μLを加えて3時間撹拌し、2官能成分:3官能成分:4官能成分=1:6:3のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.14g及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例33)
 ジメチルジメトキシシラン0.6g、メチルトリメトキシシラン2.6g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、2官能成分:3官能成分=2:8のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化ジルコニウム(ZrO2)の分散液30質量%イソプロピルアルコール溶液(ZRPA30WT%-E11、CIKナノテック株式会社製)0.3g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例34)
 実施例33の酸化チタンを硫酸バリウム(堺化学工業 BF-10 粒径600nm)に変更した以外は、実施例33と同様にして、図1に示されるLED装置を得た。
(実施例35)
 実施例33の酸化ジルコニウムをアルミニウムケイ酸塩化合物に変更した以外は、実施例33と同様にして、図1に示されるLED装置を得た。なお、アルミニウムケイ酸塩化合物は実施例12と同様にして得た。
(実施例36)
 実施例33の酸化ジルコニウムをクニビアF(クニミネ工業(株)販売の天然モンモリロナイト)に変更した以外は、実施例33と同様にして、図1に示されるLED装置を得た。
(実施例37)
 ジメチルジメトキシシラン0.6g、メチルトリメトキシシラン2.6g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、2官能成分:3官能成分=2:8のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、安定化剤としてアセチルアセトン(関東化学社製)をポリシロキサン溶液の全量に対して10質量%添加し、ZrキレートとしてZC-580(マツモトファインケミカル社製)を、その固形分量が、光拡散層形成用組成物の固形分に対して10質量%となるように添加した。さらに、平均一次粒径5nmの酸化ジルコニウム(ZrO2)分散液(30wt%メタノール溶液 堺化学株式会社製)0.3g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例38)
 ジメチルジメトキシシラン0.6g、メチルトリメトキシシラン2.6g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、2官能成分:3官能成分=2:8のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、安定化剤としてアセチルアセトン(関東化学社製)をポリシロキサン溶液の全量に対して10質量%添加し、Alアルコキシド;ALR15GB(高純度化学社製)を、その固形分量が、光拡散層形成用組成物の固形分に対して10質量%となるように添加した。さらに、平均一次粒径5nmの酸化ジルコニウム(ZrO2)分散液(30wt%メタノール溶液 堺化学株式会社製)0.3g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例39)
 ジメチルジメトキシシラン0.28g、メチルトリメトキシシラン2.22g、テトラメトキシシラン0.71g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、2官能成分:3官能成分=2:8のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、酸化ジルコニウム(ZrO2)の分散液30質量%イソプロピルアルコール溶液(ZRPA30WT%-E11、CIKナノテック株式会社製)0.3g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例40)
 実施例39の酸化チタンを硫酸バリウム(堺化学工業 BF-10 粒径600nm)に変更した以外は、実施例39と同様にして、図1に示されるLED装置を得た。
(実施例41)
 実施例40の酸化ジルコニウムをアルミニウムケイ酸塩化合物に変更した以外は、実施例40と同様にして、図1に示されるLED装置を得た。なお、アルミニウムケイ酸塩化合物は実施例12と同様にして得た。
(実施例42)
 実施例41の酸化ジルコニウムをクニビアF(クニミネ工業(株)販売の天然モンモリロナイト)に変更した以外は、実施例41と同様にして、図1に示されるLED装置を得た。
(実施例43)
 ジメチルジメトキシシラン0.28g、メチルトリメトキシシラン2.22g、テトラメトキシシラン0.71g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、2官能成分:3官能成分=2:8のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、安定化剤としてアセチルアセトン(関東化学社製)をポリシロキサン溶液の全量に対して10質量%添加し、ZrキレートとしてZC-580(マツモトファインケミカル社製)を、その固形分量が、光拡散層形成用組成物の固形分に対して10質量%となるように添加した。さらに、平均一次粒径5nmの酸化ジルコニウム(ZrO2)分散液(30wt%メタノール溶液 堺化学株式会社製)0.3g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
(実施例44)
 ジメチルジメトキシシラン0.28g、メチルトリメトキシシラン2.22g、テトラメトキシシラン0.71g、メタノール4.00g、及びアセトン4.00gを混合し、撹拌した。さらに、水5.46g、及び60%硝酸4.7μLを加えて3時間撹拌し、2官能成分:3官能成分=2:8のポリシロキサンを含むポリシロキサン溶液を得た。続いて前記ポリシロキサン溶液に、安定化剤としてアセチルアセトン(関東化学社製)をポリシロキサン溶液の全量に対して10質量%添加し、Alアルコキシド;ALR15GB(高純度化学社製)を、その固形分量が、光拡散層形成用組成物の固形分に対して10質量%となるように添加した。さらに、平均一次粒径5nmの酸化ジルコニウム(ZrO2)分散液(30wt%メタノール溶液 堺化学株式会社製)0.3g、酸化チタン(富士チタン工業 TA-100 粒径600nm)0.13g、及び1,3-ブタンジオール2gを混合して光拡散層形成用組成物を調製した。以下は実施例1と同様にして、図1に示されるLED装置を得た。
[評価]
 実施例24~44で作成したLED装置について、LED装置から出射する光の色度ムラ、LED装置の耐久性、光拡散層の密着性を実施例1と同様に評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 本発明の発光装置は、出射光の色度ムラが少ない。そのため、出射光の色度の均一性が必要とされる自動車用ヘッドライトをはじめ、屋内、屋外で使用される各種照明装置に好適である。
   1 パッケージ
   2 LEDチップ(発光素子)
   4 波長変換層
   12 光拡散層
   20 波長変換・光拡散部材
   100~103 LED装置(発光装置)

Claims (12)

  1.  パッケージと、前記パッケージに実装された発光素子とを有する発光部材と、
     前記発光部材の光取り出し面側に取り付けられ、ガラス基板と、前記ガラス基板上に形成された波長変換層及び光拡散層とを有する波長変換・光拡散部材と、を備え、
     前記波長変換層は、蛍光体粒子を含み、
     前記光拡散層は、光拡散粒子及び有機ケイ素化合物の硬化物を含む、発光装置。
  2.  前記有機ケイ素化合物が、3官能シラン化合物及び4官能シラン化合物の重合体からなり、
     前記3官能シラン化合物と前記4官能シラン化合物との重合比率が3:7~7:3であることを特徴とする請求項1に記載の発光装置。
  3.  前記有機ケイ素化合物が、2官能シラン化合物及び3官能シラン化合物の重合体からなり、
     前記2官能シラン化合物と前記3官能シラン化合物との重合比率が1:9~4:6であることを特徴とする請求項1に記載の発光装置。
  4.  前記有機ケイ素化合物が、2官能シラン化合物、3官能シラン化合物及び4官能シラン化合物の重合体からなり、
     前記2官能シラン化合物と前記3官能シラン化合物との重合比率が1:9~4:6であり、
     前記2官能シラン化合物と前記3官能シラン化合物の重合体に対して前記4官能シラン化合物の重合比率が9:1~7:3であることを特徴とする請求項1に記載の発光装置。
  5.  前記光拡散粒子が、酸化チタン、硫酸バリウム、チタン酸バリウム、窒化ホウ素、酸化亜鉛、及び酸化アルミニウムからなる群から選ばれる少なくとも1種であることを特徴とする請求項1~4のいずれかに記載の発光装置。
  6.  前記光拡散層が、平均一次粒径が100nm未満である金属酸化物微粒子を含むことを特徴とする請求項1~5の何れかに記載の発光装置。
  7.  前記金属酸化物微粒子が、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化ケイ素、酸化ニオブ、及び酸化亜鉛の群から選ばれる少なくとも1種であることを特徴とする請求項6に記載の発光装置。
  8.  前記光拡散層が、粘土鉱物を含むことを特徴とする請求項1~7の何れかに記載の発光装置。
  9.  前記粘土鉱物が、アルミニウムケイ酸塩化合物であることを特徴とする請求項8に記載の発光装置。
  10.  前記光拡散層が、2価以上の金属元素(Siを除く)を含む金属アルコキシド又は金属キレートの硬化物を含むことを特徴とする請求項1~9の何れかに記載の発光装置。
  11.  前記波長変換層が、有機ケイ素化合物の硬化物を含むことを特徴とする請求項1~10の何れかに記載の発光装置。
  12.  前記波長変換層が、透明樹脂を含むことを特徴とする請求項1~10の何れかに記載の発光装置。
PCT/JP2013/085111 2012-12-28 2013-12-27 発光装置 WO2014104295A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13867392.6A EP2940743A4 (en) 2012-12-28 2013-12-27 LIGHT-EMITTING DEVICE
US14/652,901 US20150333233A1 (en) 2012-12-28 2013-12-27 Light emitting device
JP2014554593A JPWO2014104295A1 (ja) 2012-12-28 2013-12-27 発光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-286797 2012-12-28
JP2012286797 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014104295A1 true WO2014104295A1 (ja) 2014-07-03

Family

ID=51021364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085111 WO2014104295A1 (ja) 2012-12-28 2013-12-27 発光装置

Country Status (4)

Country Link
US (1) US20150333233A1 (ja)
EP (1) EP2940743A4 (ja)
JP (1) JPWO2014104295A1 (ja)
WO (1) WO2014104295A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038009A1 (de) * 2014-09-09 2016-03-17 Osram Opto Semiconductors Gmbh Optoelektronisches bauteil
WO2016087656A1 (de) * 2014-12-05 2016-06-09 Osram Opto Semiconductors Gmbh Konversionselement, optoelektronisches halbleiterbauelement und verfahren zur herstellung von konversionselementen
JP2017028010A (ja) * 2015-07-17 2017-02-02 日亜化学工業株式会社 発光装置
KR20170052209A (ko) * 2015-11-04 2017-05-12 엘지이노텍 주식회사 광학 플레이트, 발광 소자 및 광원 모듈
JP2017527122A (ja) * 2014-09-08 2017-09-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクスモジュール
WO2018193753A1 (ja) * 2017-04-17 2018-10-25 東京エレクトロン株式会社 絶縁膜の成膜方法、絶縁膜の成膜装置及び基板処理システム
JP2020519004A (ja) * 2017-05-03 2020-06-25 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス半導体チップおよびオプトエレクトロニクス半導体チップを作製する方法
CN112639570A (zh) * 2018-07-31 2021-04-09 东丽先端素材株式会社 颜色转换片和包括其的背光单元
JP7430911B2 (ja) 2020-11-25 2024-02-14 協立化学産業株式会社 封止用組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102501878B1 (ko) * 2015-08-13 2023-02-21 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 패키지
CN107450261B (zh) * 2016-05-31 2021-02-05 佳能株式会社 波长转换元件、光源装置和图像投影装置
US10795186B2 (en) 2016-11-30 2020-10-06 The Regents Of The University Of Michigan Enhancement of forward scattering, suppression of backscattering, and spectral tuning of optical hedgehog particles
CN108365079B (zh) * 2017-01-26 2020-09-08 光宝电子(广州)有限公司 具有发光功能的电子制品及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127858A (ja) 2005-11-04 2007-05-24 Asahi Glass Co Ltd 光拡散板とそれを用いた透過型スクリーン
JP2010205954A (ja) * 2009-03-04 2010-09-16 Micro Coatec Kk Led照明構造体
JP2011021078A (ja) * 2009-07-14 2011-02-03 Jsr Corp オルガノポリシロキサンならびにこれを含む硬化性組成物およびその製造方法
JP2011054902A (ja) * 2009-09-04 2011-03-17 Shin-Etsu Chemical Co Ltd 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP2011099899A (ja) 2009-11-04 2011-05-19 Maruzen Chemicals Co Ltd 光散乱部材およびその製造方法
JP2012049519A (ja) * 2010-07-26 2012-03-08 Mitsubishi Chemicals Corp 半導体発光装置用パッケージ及び発光装置
WO2012067200A1 (ja) * 2010-11-19 2012-05-24 コニカミノルタオプト株式会社 波長変換素子及びその製造方法、発光装置及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639501A (en) * 1985-09-04 1987-01-27 Massachusetts Institute Of Technology Method for forming new preceramic polymers containing silicon
JP2007067204A (ja) * 2005-08-31 2007-03-15 Toshiba Lighting & Technology Corp 発光ダイオード装置
KR100997946B1 (ko) * 2005-12-22 2010-12-02 파나소닉 전공 주식회사 Led를 가진 조명 장치
US8080828B2 (en) * 2006-06-09 2011-12-20 Philips Lumileds Lighting Company, Llc Low profile side emitting LED with window layer and phosphor layer
US8637883B2 (en) * 2008-03-19 2014-01-28 Cree, Inc. Low index spacer layer in LED devices
TWI460499B (zh) * 2009-09-04 2014-11-11 Eternal Materials Co Ltd 光學元件
JP2011071404A (ja) * 2009-09-28 2011-04-07 Kyocera Corp 発光装置および照明装置
JP5707697B2 (ja) * 2009-12-17 2015-04-30 日亜化学工業株式会社 発光装置
DE102010005169A1 (de) * 2009-12-21 2011-06-22 OSRAM Opto Semiconductors GmbH, 93055 Strahlungsemittierendes Halbleiterbauelement
JP2011159813A (ja) * 2010-02-01 2011-08-18 Panasonic Electric Works Co Ltd 発光装置
WO2011115515A1 (ru) * 2010-03-16 2011-09-22 Общество с ограниченной ответственностью "ДиС ПЛЮС" Способ управления цветностью светового потока белого светодиода и устройство для его осуществления способа
JP5733743B2 (ja) * 2010-12-15 2015-06-10 日東電工株式会社 光半導体装置
JPWO2012132232A1 (ja) * 2011-03-31 2014-07-24 パナソニック株式会社 半導体発光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127858A (ja) 2005-11-04 2007-05-24 Asahi Glass Co Ltd 光拡散板とそれを用いた透過型スクリーン
JP2010205954A (ja) * 2009-03-04 2010-09-16 Micro Coatec Kk Led照明構造体
JP2011021078A (ja) * 2009-07-14 2011-02-03 Jsr Corp オルガノポリシロキサンならびにこれを含む硬化性組成物およびその製造方法
JP2011054902A (ja) * 2009-09-04 2011-03-17 Shin-Etsu Chemical Co Ltd 光半導体ケース形成用白色熱硬化性シリコーン樹脂組成物及び光半導体ケース
JP2011099899A (ja) 2009-11-04 2011-05-19 Maruzen Chemicals Co Ltd 光散乱部材およびその製造方法
JP2012049519A (ja) * 2010-07-26 2012-03-08 Mitsubishi Chemicals Corp 半導体発光装置用パッケージ及び発光装置
WO2012067200A1 (ja) * 2010-11-19 2012-05-24 コニカミノルタオプト株式会社 波長変換素子及びその製造方法、発光装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2940743A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017527122A (ja) * 2014-09-08 2017-09-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクスモジュール
US10276762B2 (en) 2014-09-08 2019-04-30 Osram Opto Semiconductors Gmbh Optoelectronic component
WO2016038009A1 (de) * 2014-09-09 2016-03-17 Osram Opto Semiconductors Gmbh Optoelektronisches bauteil
CN106688096A (zh) * 2014-09-09 2017-05-17 欧司朗光电半导体有限公司 光电子构件
US10026880B2 (en) 2014-09-09 2018-07-17 Osram Opto Semiconductors Gmbh Optoelectronic component
WO2016087656A1 (de) * 2014-12-05 2016-06-09 Osram Opto Semiconductors Gmbh Konversionselement, optoelektronisches halbleiterbauelement und verfahren zur herstellung von konversionselementen
JP2017028010A (ja) * 2015-07-17 2017-02-02 日亜化学工業株式会社 発光装置
KR20170052209A (ko) * 2015-11-04 2017-05-12 엘지이노텍 주식회사 광학 플레이트, 발광 소자 및 광원 모듈
KR102531104B1 (ko) * 2015-11-04 2023-05-10 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 광학 플레이트, 발광 소자 및 광원 모듈
JPWO2018193753A1 (ja) * 2017-04-17 2020-02-20 東京エレクトロン株式会社 絶縁膜の成膜方法、絶縁膜の成膜装置及び基板処理システム
KR20190139921A (ko) * 2017-04-17 2019-12-18 도쿄엘렉트론가부시키가이샤 절연막의 성막 방법, 절연막의 성막 장치 및 기판 처리 시스템
TWI793115B (zh) * 2017-04-17 2023-02-21 日商東京威力科創股份有限公司 絕緣膜之成膜方法、絕緣膜之成膜裝置及基板處理系統
US11631581B2 (en) 2017-04-17 2023-04-18 Tokyo Electron Limited Insulating film forming method, insulating film forming device, and substrate processing system
WO2018193753A1 (ja) * 2017-04-17 2018-10-25 東京エレクトロン株式会社 絶縁膜の成膜方法、絶縁膜の成膜装置及び基板処理システム
KR102595053B1 (ko) * 2017-04-17 2023-10-30 도쿄엘렉트론가부시키가이샤 절연막의 성막 방법, 절연막의 성막 장치 및 기판 처리 시스템
JP2020519004A (ja) * 2017-05-03 2020-06-25 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス半導体チップおよびオプトエレクトロニクス半導体チップを作製する方法
CN112639570A (zh) * 2018-07-31 2021-04-09 东丽先端素材株式会社 颜色转换片和包括其的背光单元
JP2021533404A (ja) * 2018-07-31 2021-12-02 東レ先端素材株式会社Toray Advanced Materials Korea, Inc. 色変換シート及びこれを含むバックライトユニット
JP7055956B2 (ja) 2018-07-31 2022-04-19 東レ先端素材株式会社 色変換シート及びこれを含むバックライトユニット
JP7430911B2 (ja) 2020-11-25 2024-02-14 協立化学産業株式会社 封止用組成物

Also Published As

Publication number Publication date
EP2940743A4 (en) 2016-07-27
US20150333233A1 (en) 2015-11-19
JPWO2014104295A1 (ja) 2017-01-19
EP2940743A1 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
WO2014104295A1 (ja) 発光装置
US9708492B2 (en) LED device and coating liquid used for production of same
JP5843016B2 (ja) Led装置及びその製造方法
JP2014130871A (ja) 発光装置
WO2013099193A1 (ja) Led装置用封止剤、led装置、及びled装置の製造方法
JP2014158011A (ja) Led装置の製造方法
WO2016121855A1 (ja) 投射型表示装置用カラーホイール及びその製造方法、並びにこれを含む投射型表示装置
WO2014103326A1 (ja) 塗布液、及びその硬化物からなる反射層を備えるled装置
JP2014022508A (ja) Led装置及びその製造方法
WO2014030342A1 (ja) Led装置及びその製造方法
JP2014135400A (ja) 発光装置及び波長変換素子
JP2014138081A (ja) 発光装置、波長変換・光拡散素子及びそれらの製造方法、光拡散セラミック層形成用組成物
JP2014130903A (ja) 半導体発光装置及びその製造方法
JP2014019844A (ja) 蛍光体分散液及びled装置の製造方法
JP2016154179A (ja) 発光装置、及びその製造方法
WO2015011925A1 (ja) Led装置の製造方法
JP2016145273A (ja) 無機微粒子含有ポリシロキサン組成物、及びその製造方法
JP5910340B2 (ja) Led装置、及びその製造方法
JP2014127495A (ja) Led装置、及びその製造方法
JP5729327B2 (ja) Led装置の製造方法
WO2014103330A1 (ja) 蛍光体分散液、led装置およびその製造方法
JP2014160713A (ja) Led装置の製造方法
JP2014041955A (ja) Led装置、及びその製造方法
WO2015049865A1 (ja) 発光素子用封止剤及びled装置
WO2016024604A1 (ja) 無機微粒子含有ポリシルセスキオキサン組成物およびその製造方法、ならびに発光装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554593

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013867392

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013867392

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14652901

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE