WO2011115515A1 - Способ управления цветностью светового потока белого светодиода и устройство для его осуществления способа - Google Patents

Способ управления цветностью светового потока белого светодиода и устройство для его осуществления способа Download PDF

Info

Publication number
WO2011115515A1
WO2011115515A1 PCT/RU2010/000114 RU2010000114W WO2011115515A1 WO 2011115515 A1 WO2011115515 A1 WO 2011115515A1 RU 2010000114 W RU2010000114 W RU 2010000114W WO 2011115515 A1 WO2011115515 A1 WO 2011115515A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
lighting device
light flux
light
substrate
Prior art date
Application number
PCT/RU2010/000114
Other languages
English (en)
French (fr)
Inventor
Юрий Борисович СОКОЛОВ
Валерий Иванович ХОЛОДИЛОВ
Валерий Николаевич ОРЛОВСКИЙ
Original Assignee
Общество с ограниченной ответственностью "ДиС ПЛЮС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ДиС ПЛЮС" filed Critical Общество с ограниченной ответственностью "ДиС ПЛЮС"
Priority to CN201080065488.6A priority Critical patent/CN102934242B/zh
Priority to PCT/RU2010/000114 priority patent/WO2011115515A1/ru
Priority to RU2012120814/28A priority patent/RU2525166C2/ru
Priority to DE112010005456T priority patent/DE112010005456T5/de
Publication of WO2011115515A1 publication Critical patent/WO2011115515A1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/049Patterns or structured surfaces for diffusing light, e.g. frosted surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the invention relates to lighting technology, namely, to LED lighting devices equipped with white LEDs and designed to create external and internal lighting.
  • the most promising is the use of LEDs that create a white light flux.
  • Two main methods for producing such a luminous flux are known.
  • the first is a mixture of red, green and blue radiation, which are generated by semiconductor crystals that are closely located on the board.
  • the second way to create white radiation is to convert part of the ultraviolet or blue radiation of the crystal into a luminous flux with a phosphor, the wavelength of which is shifted to the yellow part of the spectrum, while mixing the primary radiation of the crystal and the secondary luminescent radiation of the phosphor creates a luminous flux with color coordinates corresponding to white .
  • white LEDs are made on the basis of a blue crystal (InGaN) and a yellow phosphor.
  • the phosphors used by most manufacturers of LEDs are modified versions of yttrium-aluminum garnet doped with trivalent cerium.
  • the luminescence spectrum of this phosphor is characterized by a maximum wavelength in the range of 530..570 nm.
  • the use of blue LEDs in combination with yellow phosphors allows you to achieve maximum light output at a color temperature of about 5000-8000 ° K.
  • the luminous flux of the primary radiation generated by the semiconductor crystal is converted by phosphor particles introduced into a transparent compound and / or placed on surfaces adjacent to the crystals.
  • the color of the mixed primary and luminescent radiation depends on many physicochemical and technological factors: the particle size and chemical composition of the phosphor, the concentration of the phosphor particles, the optical and geometric properties of the compound, and other reasons, taking into account the influence of which in real production is a complex technological task.
  • the resulting color irregularity of the resulting light flux depending on the angle of incidence on the illuminated surface, the uneven concentration of the phosphor particles involved in the conversion, can be smoothed out using reflective matte
  • SUBSTITUTE SHEET (RULE 26) surfaces and light-scattering optically transparent elements.
  • a known method of creating a white luminous flux in which, to control the color of the luminous flux, radiation is generated in the violet-blue region of the spectrum and a part of this radiation is converted by a phosphor based on the multicomponent AlInGaN system activated by rare-earth elements absorbing the primary radiation of crystals and emitting light in the yellow spectrum the mixing of which with the primary radiation creates a luminous flux with coordinates corresponding to the selected shade of white color (patent RU2219622, MKI H 01L33 / 00, published on December 20, 2003).
  • a solution is known in which, to control the color of the light flux, primary radiation is generated in the blue region of the spectrum, and the conversion of part of the primary radiation to the yellow part of the spectrum is performed by a complex phosphor from the group of alkaline earth metal orthosilicates (patent RU 2251761, MKI H01L33 / 00, publ. 10.05 .2005).
  • a solution is also known in which, to control the color of the light flux, primary radiation is generated by two sources, one of which emits in the blue and the other in the ultraviolet part of the spectrum, each of which has its own phosphor, which converts the primary radiation of the crystal into a luminescent stream, the mixture of which with part primary
  • SUBSTITUTE SHEET (RULE 26) 95 radiation forms a luminous flux of white color (patent US2006152140, MKI H01jl / 62, publ. 13.07.2006).
  • the method includes irradiating the anti-Stokes phosphor with infrared radiation and converting it into the yellow-green-orange spectrum.
  • the amount of converted primary radiation which determines the color shade of the resulting white color, depends on the concentration of phosphor particles contained in the volume or per unit area.
  • the technical result of the proposed solution is the ability to control the color of the light flux of the white LED; expansion of technological capabilities for the design of lighting devices based on a white LED; reducing lighting discomfort by reducing the brightness of the light-emitting surface.
  • a method of controlling the color of the light flux of a white LED including generating
  • the color of a white LED is characterized by the following set of essential features:
  • a lighting device for implementing the method comprising at least one LED generating a luminous flux with a color
  • a diffuser provided with spatially structured elements made in the volume or on the surface of the specified diffuser.
  • An essential feature, formulated as a “light flux conversion means” in this invention is a set of phosphor particles whose spatial arrangement is determined by the configuration of that part in
  • SUBSTITUTE SHEET (RULE 26)
  • substrate the applicant understands the structural element made of an optically transparent material capable of creating both flat and three-dimensional structures that can cover the radiation source.
  • the wall thickness of the substrate depends on the optical properties of the material and is determined taking into account the minimum possible loss of light and technological
  • the specific load of the phosphor on the surface and / or in the substrate material is selected from the expression:
  • p is the concentration of the phosphor in the binder, mg / cm 2 .
  • the term "specific load of the phosphor" refers to the weight of the phosphor per unit surface area. The choice of a specific value of p depends on the color of the light flux of the LED and the desired color of the resulting light flux;
  • a means of converting the light flux created by a white LED may include phosphor particles of different emission spectra
  • the substrate is made flat or in the form of parts, the surface of which is composed of a combination of surfaces of the first and second order, in particular, in the form of a plane or cylindroid;
  • the diffuser is made of optically transparent material capable of creating as
  • SUBSTITUTE SHEET (RULE 26) flat and three-dimensional structures that can cover the substrate;
  • the distance h mm between the substrate and the light-emitting surface of the diffuser is selected from a mathematical expression:
  • the diffuser is made of an optically transparent material capable of creating both flat and three-dimensional structures, which may contain a coating including means for converting the light flux;
  • - spatially structured elements of the diffuser are made in the form of a regularly repeating relief that does not have sharp edges, for example, in the form of hemispheres;
  • the LED is equipped with a reflector having a light-scattering surface
  • -reflector has a conical surface, the guide of which is made in the form of an equilateral quadrangle, or hexagon, or circle;
  • Diffuser is a protective element of the device.
  • the invention is illustrated by the following graphic materials illustrating a method for controlling the color of the light flux of a white LED and
  • Fig. 1 shows a control circuit of the light flux of a white LED
  • SUBSTITUTE SHEET (RULE 26) in Fig. 2 shows a diagram of a lighting device containing a substrate with a second-order surface and a flat diffuser;
  • Fig. 3 shows a diagram of a lighting device comprising a substrate with a flat surface and a flat diffuser
  • figure 4 shows a diagram of a lighting device, the diffuser of which is provided with a coating containing means for converting light flux.
  • the lighting device (fi .1) contains LED 1, generating a luminous flux with
  • the spectral component ⁇ enters into quantum interaction with the particles of the phosphor 3, while the non-converted part of the radiation ⁇ passes through the transparent base of the substrate 2 and is mixed in the diffuser 4 with the converted
  • the lighting device shown in FIG. 2 comprises a reflector 1, a substrate 2 with a second-order surface, and a flat diffuser 4.
  • the distance between the substrate 2 and the light-emitting surface of the diffuser 4 is chosen not exceeding 50 mm. Decrease h
  • Fig. 3 shows a device variant comprising a reflector 7, a flat substrate 2 including phosphor particles 3 and a flat diffuser 4 with structured elements 6 on the light emitting surface 5.
  • the distance h between the substrate and the light emitting surface 5 of the diffuser is selected depending on the particular embodiment of the device.
  • Figure 4 shows a variant of the device comprising a reflector 7, a flat substrate 2 including phosphor particles 3 and a flat diffuser 4 with structured elements b on the light emitting surface 5.
  • the distance h between the substrate 2 including the radiation conversion means 3 and the light emitting surface 5 of the diffuser is selected depending on the particular embodiment of the device. In this case, the value of h essentially corresponds to the thickness of the plate of the diffuser 5.
  • SUBSTITUTE SHEET (RULE 26) This embodiment requires an increased consumption of material for the diffuser, which, however, is offset by a significant simplification of the design of the lighting device for implementing the method.
  • a “cold” white LED as the primary radiation source, for example, the XLamp MX-6 LED from Sgee, with a color temperature of 6500 ... 8000 ° K or its analogues from other manufacturers.
  • Parts and components for a lighting device can be manufactured by known methods.
  • the information presented in the description is sufficient for a specialist to understand the principle of operation and design of devices that implement a method for changing the color characteristics of a white LED stream.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Изобретение относится к светотехнике. Техническим результатом предлагаемого решения является возможность управления цветностью светового потока белого светодиода и показателем ослепленности светоизлучающей поверхности, которые достигаются за счет преобразования светового потока белого светодиода люминофором, размещенным на поверхности и/или в материале подложки и последующего светорассеивания пространственно структурированными элементами. Количественные характеристики удельной нагрузки люминофора и расстояния между светоизлучающей поверхностью и подложкой приведены в описании. Даны варианты выполнения осветительного устройства.

Description

Способ управления цветностью светового потока белого светодиода и устройство для осуществления способа Область техники.
Изобретение относится к светотехнике, а именно, к светодиодным осветительным устройствам, оснащенным белыми светодиодами и предназначенным для создания внешнего и внутреннего освещения.
Предшествующий уровень техники.
Для общего и местного освещения наиболее перспективным является использование светодиодов, создающих световой поток белого цвета. Известно два основных способа получения такого светового потока. Первый заключается в смешение красного, зеленого и синего излучений, которые генерируются полупроводниковыми кристаллами, близко размещенными на плате . Второй путь создания излучения белого цвета состоит в преобразовании люминофором части ультрафиолетового или синего излучения кристалла в световой поток, длина волны которого смещена в желтую часть спектра, при этом смешение первичного излучения кристалла и вторичного люминесцентного излучения люминофора создает световой поток с координатами цветности, соответствующими белому цвету.
Второй способ создания белого цвета, несмотря на некоторые потери при преобразовании первичного излучения и технологические сложности при использовании люминофора, является наиболее распространенным в светотехнике.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Большей частью белые светодиоды изготавливаются на основе синего кристалла (InGaN) и желтого люминофора. По спектральным данным, люминофоры, применяемые большинством производителей светодиодов, являются модифицированными вариантами иттрий-алюминиевого граната, легированного трехвалентным церием. Спектр люминесценции этого люминофора характеризуется длиной волны максимума в диапазоне 530..570 нм. Использование синих светодиодов в сочетании с желтыми люминофорами позволяет достигать максимальной светоотдачи при цветной температуре порядка 5000-8000°К. Световой поток первичного излучения, создаваемого кристаллом полупроводника, преобразуется частицами люминофора, введенными в прозрачный компаунд и/или размещенными на смежных с кристаллами поверхностях. При этом цветность смешанного первичного и люминесцентного излучения зависит от многих физико-химических и технологических факторов: гранулометрического и химического состава люминофора, концентрации частиц люминофора, оптических и геометрических свойств компаунда и других причин, учет влияния которых в реальном производстве представляет собой сложную технологическую задачу. Возникающая цветовая неравномерность результирующего светового потока, зависящая от угла его падения на освещаемую поверхность, неравномерности концентрации частиц люминофора, участвующих в преобразовании, может быть выровнена с помощью отражающих матированных
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) поверхностей и светорассеивающих оптически прозрачных элементов .
Известен способ создания светового потока белого цвета, в котором для управления цветностью светового потока генерируют излучение в фиолетово- синей области спектра и преобразуют часть этого излучения люминофором на основе многокомпонентной системы AlInGaN, активированного редкоземельными элементами, поглощающим первичное излучение кристаллов и испускающим свет в желтой области спектра, смешение которого с первичным излучением и создает световой поток с координатами, соответствующими выбранному оттенку белого цвета (патент RU2219622, МКИ H01L33/00, опубл . 20.12.2003) .
Известно решение, в котором для управления цветностью светового потока генерируют первичное излучение в синей области спектра, а преобразование части первичного излучения в желтую часть спектра осуществляется сложным люминофором из группы ортосиликатов щелочно-земельных металлов (патент RU 2251761, МКИ H01L33/00, опубл . 10.05.2005) .
Известно также решение, в котором для управления цветностью светового потока генерируют первичное излучение двумя источниками, один из которых излучает в синей, а другой в ультрафиолетовой части спектра, каждому из которых соответствует свой люминофор, преобразующий первичное излучение кристалла в люминесцентный поток, смешение которых с частью первичного
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) 95 излучения образует световой поток белого цвета (патент US2006152140, МКИ H01jl/62, опубл. 13.07.2006) .
Известен также способ получения видимого света и люминесцентные источники на его основе,
100 описанные в патенте RU3213157, МКИ H01L33/00, опубликованного 20.12.2007 г. Способ включает облучение антистоксовского люминофора ИК- излучением и его преобразование в излучение желто- зелено-оранжевого диапазона спектра.
105 От концентрации люминофорных частиц, содержащихся в объеме или на единице площади, зависит в конечном итоге количество преобразуемого первичного излучения, определяющего цветовой оттенок результирующего белого цвета.
ПО Очевидно, что чем меньше люминофора принимает участие в преобразовании первичного светового потока, тем более высокая цветовая температура характерна для резуль ирующего излучения.
Во всех указанных аналогах целью операций с
115 разными первичными источниками светового излучения является получение светового потока, цветовая температура которого соответствует тому или иному оттенку белого цвета. Заслуживающим внимания является поиск пути управления цветом белого
120 светового потока, не требующего вмешательства в конструкцию источника, создающего световой поток белой цветности. Для управления цветовой температурой уже сформированного белого светового потока потребуется дополнительное количество
125 люминофора, однако технология преобразования
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) такого излучения и, в необходимых случаях, последующее выравнивание цветности по сечению светового потока, потребует незначительных технологических и конструктивных нововведений.
Важно отметить, что малые угловые размеры и большая яркость светодиодов без специальных мер защиты от световых бликов приводит к значительным зрительным нагрузкам, вызывающим ощущение
дискомфорта и подсознательное желания покинуть помещение с таким осветительными устройствами. Для уменьшения слепящего действия осветительной ус- тановки эффективным представляется уменьшение яркости излучения путем распределения его
светового потока на обширную поверхность, которое можно осуществлять одновременно с управлением цветностью излучения светодиода.
Техническим результатом предлагаемого решения является возможность управления цветностью светового потока белого светодиода; расширение технологических возможностей для конструирования осветительных устройств на основе белого светодиода; снижение дискомфортности освещения, за счет уменьшения яркости светоизлучающей поверхности.
Способ управления цветом светового потока белого светодиода, характеризуется следующей совокупностью существенных признаков:
Способ управления цветностью светового потока белого светодиода, включающий генерирование
светового потока с цветовой температурой более
6000°К, содержащего спектральную составляющую с
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) б длиной волны λ<490 нм; преобразование части
излучения λ в излучение с длиной волны L > 490 нм, например, в желто-зеленой, желтой или оранжевой 160 области спектра; смешение полученного светового
излучения с длиной волны L и светового потока, включающего не преобразованную часть составляющей λ.
Устройство для реализации способа управления
165 цветом белого светодиода характеризуется следующей совокупностью существенных признаков:
Осветительное устройство для осуществления способа, содержащее, по меньшей мере, один светодиод, генерирующий световой поток с цветовой
170 температурой более 6000°К; оптически прозрачную подложку, установленную с возможностью её облучения упомянутым световым потоком; средство преобразования упомянутого светового потока, выполненное в виде частиц люминофора, размещенных
175 на поверхности и/или в материале подложки; светорассеиватель, снабженный пространственно структурированными элементами, выполненными в объеме или на поверхности указанного светорассеивателя .
180 Под существенным признаком, сформулированным как "средство преобразования светового потока" в данном изобретении подразумевается совокупность частиц люминофора, пространственное расположение которых определяется конфигурацией той детали, в
185 объеме или на поверхности которой указанные
частицы содержатся.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Под термином "подложка" заявитель понимает элемент конструкции, выполненный из оптически прозрачного материала, способного создавать как плоские, так и объемные конструкции, которые могут охватывать источник излучения. Толщина стенки подложки зависит от оптических свойств материала и определяется с учетом минимально возможных потерь светового потока и технологических
возможностей её формообразования.
В качестве дополняющих и развивающих признаков устройства необходимо указать следующие:
-удельная нагрузка люминофора на поверхности и/или в материале подложки выбрана из выражения:
1 < р < 100 , где:
р - концентрация люминофора в связующем, мг/ см2. Под термином «удельная нагрузка люминофора» подразумевается вес люминофора, приходящийся на единицу площади поверхности. Выбор конкретного значения величины р зависит от цветности светового потока светодиода и желательной цветности результирующего светового потока;
-средство преобразования светового потока, созданного белым светодиодом, может включать частицы люминофора разного спектра свечения;
-подложка выполнена плоской или в виде деталей, поверхность которых составлена комбинацией поверхностей первого и второго порядка, в частности, в виде плоскости или цилиндроида;
- светорассеиватель выполнен из оптически прозрачного материала, способного создавать как
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) плоские, так и объемные конструкции, которые могут охватывать подложку;
-расстояние h мм между подложкой и светоизлучающей поверхностью светорассеивателя выбрано из математического выражения:
h < 50, где:
h-расстояние между подложкой и светоизлучающей поверхностью светорассеивателя, мм;
светорассеиватель выполнен из оптически прозрачного материала, способного создавать как плоские, так и объемные конструкции, которые могут содержать покрытие, включающее средство преобразования светового потока;
-пространственно структурированные элементы светорассеивателя выполнены в виде регулярно повторяющегося рельефа, не имеющего острых ребер, например, в виде полусфер;
-светодиод снабжен рефлектором, имеющим светорассеивающую поверхность;
-рефлектор имеете коническую поверхность, направляющая которой выполнена в виде равностороннего четырехугольника, или шестиугольника, или окружности;
-светорассеиватель является защитным элементом устройства .
Изобретение поясняется следующими графическими материалами, иллюстрирующими способ управления цветом светового потока белого светодиода и
воплощения способа в конкретных осветительных устройствах :
на фиг .1 показана схема управления светового потока белого светодиода;
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) на фиг .2 показана схема осветительного устройства, содержащего подложку с поверхностью второго порядка и плоским светорассеивателем;
на фиг.З показана схема осветительного устройства, содержащего подложку с плоской поверхностью и плоским светорассеивателем;
на фиг.4 показана схема осветительного устройства, светорассеиватель которого снабжен покрытием, содержащим средство преобразования светового потока. Краткое описание чертежей.
Осветительное устройство (фи .1 ) содержит светодиод 1, генерирующий световой поток с
цветовой температурой более 6000°К, освещающий оптически прозрачную подложку 2; средство
преобразования упомянутого светового потока, выполненное в виде частиц люминофора 3,
заключенных в материале подложки 2;
светорассеиватель 4 имеющий светоизлучающую
поверхность 5, снабженную пространственно
структурированными элементами 6, выполненными на поверхности 5 светорассеивателя 4. Часть
генерируемых светодиодом 1 световых волн со
спектральной составляющей λ, вступает в квантовое взаимодействие с частицами люминофора 3, при этом не преобразованная часть излучения λ проходит сквозь прозрачную основу подложки 2 и смешивается в светорассеивателе 4 с преобразованным
люминесцентным световым потоком, излученным
частицами люминофора 3. На светоизлучающей
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) поверхности 5, смешанный световой поток дополнительно перемешивается пространственно
структурированными элементами 6.
Показанное на фиг.2 осветительное устройство содержит рефлектор 1, подложку 2 с поверхностью второго порядка и плоский светорассеватель 4.
Расстояние между подложкой 2 и светоизлучающей поверхностью светорассеивателя 4 выбирают не превьшающим 50 мм. Уменьшение расстояния h
увеличивает неравномерность цвета на
светоизлучающей поверхности 5, а превышение этого расстояния сильно снижает яркость излучаемого светового потока.
На фиг .3 показан вариант устройства, содержащий рефлектор 7 , плоскую подложку 2, включающую частицы люминофора 3 и плоский светорассеиватель 4 со структурированными элементами 6 на светоизлучающей поверхности 5. Расстояние h между подложкой и светоизлучающей поверхностью 5 светорассеивателя выбирают в зависимости от конкретного воплощения устройства.
На фиг.4 показан вариант устройства, содержащий рефлектор 7, плоскую подложку 2, включающую частицы люминофора 3 и плоский светорассеиватель 4 со структурированными элементами б на светоизлучающей поверхности 5. Расстояние h между подложкой 2, включающей средство 3 преобразования излучения и светоизлучающей поверхностью 5 светорассеивателя выбирают в зависимости от конкретного воплощения устройства. В данном случае величина h по-существу соответствует толщине пластины светорассеивателя 5.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) Этот вариант воплощения требует повышенного расхода материала для светорассеивателя, что, однако, компенсируется существенным упрощением конструкции осветительного устройства для реализации способа.
Достаточно эффективным может быть использование в качестве первичного источника излучения светодиод «холодного» белого свечения, например, светодиод XLamp МХ-6 фирмы Сгее, с цветовой температурой 6500...8000°К или его аналогов других производителей.
Промышленная применимость
Детали и узлы для осветительного устройства могут быть изготовлены известными способами. Информации, изложенной в описании, достаточно для понимания специалистом принципа работы и конструкции устройств, реализующих способ изменения цветовых характеристик потока белого светодиода .
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)

Claims

Формула изобретения.
1. Способ управления цветностью светового потока белого светодиода, включающий генерирование светового потока с цветовой температурой более 6000°К и содержащего спектральную составляющую с длиной волны λ<490 нм; преобразование части излучения К в излучение с длиной волны L > 490 нм, например, в желто-зеленой, желтой или оранжевой области спектра; смешение полученного светового излучения L и светового потока, включающего не преобразованную часть составляющей с длиной волны λ.
2.Осветительное устройство для осуществления способа, содержащее, по меньшей мере, один светодиод, генерирующий световой поток с цветовой температурой более 6000 °К; оптически прозрачную подложку, установленную с возможностью её облучения упомянутым световым потоком; средство преобразования упомянутого светового потока, выполненное в виде частиц люминофора, размещенных на поверхности и/или в материале подложки; светорассеиватель , снабженный пространственно структурированными элементами, выполненными в объеме или на поверхности указанного
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) свеюрассеивателя . 3. Осветительное устройство по пункту 2, отличающееся тем, что удельная нагрузка люминофора на поверхности и/или в материале подложки выбрана из выражения :
1 < р < 100 , где
р - концентрация люминофора в связующем, мг/ см2.
4. Осветительное устройство по пункту 2, отличающееся тем, что средство преобразования светового потока белого светодиода включает частицы люминофора разного спектра свечения. 5. Осветительное устройство по пункту 2, отличающееся тем, что подложка выполнена плоской или в виде деталей, поверхность которых составлена комбинацией поверхностей первого и второго порядка, в частности, в виде плоскости или цилиндроида. б . Осветительное устройство по пункту 2 , отличающееся тем, что расстояние h мм между подложкой и светоизлучающей поверхностью светорассеивателя выбрано из математического выражения : h < 50, где h-расстояние между подложкой и светорассеивателем, мм. 7. Осветительное устройство по пункту 2,
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) отличающееся тем, что пространственно структурированные элементы светорассеивателя выполнены в виде регулярно повторяющегося рельефа, не имеющего острых ребер, например, в виде полусфер.
8. Осветительное устройство по пункту 2, отличающееся тем, что светодиод снабжен рефлектором, поверхность которого вьшолнена светорассеивающей .
9. Осветительное устройство по пункту 2,
отличающееся тем, что рефлектор имеете коническую поверхность, направляющая которой вьшолнена в виде равностороннего четырехугольника, или шестиугольника, или окружности.
10. Осветительное устройство по пункту 2, отличающееся тем, что светорассеиватель является защитным экраном устройства.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2010/000114 2010-03-16 2010-03-16 Способ управления цветностью светового потока белого светодиода и устройство для его осуществления способа WO2011115515A1 (ru)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080065488.6A CN102934242B (zh) 2010-03-16 2010-03-16 用以控制白色发光二极管(led)的光通量的色度的方法及用以执行该方法的装置
PCT/RU2010/000114 WO2011115515A1 (ru) 2010-03-16 2010-03-16 Способ управления цветностью светового потока белого светодиода и устройство для его осуществления способа
RU2012120814/28A RU2525166C2 (ru) 2010-03-16 2010-03-16 Способ управления цветностью светового потока белого светодиода и устройство для осуществления способа
DE112010005456T DE112010005456T5 (de) 2010-03-16 2010-03-16 Verfahren zur Lichtstromfarbregelung einer Weißleuchtdiode und Einrichtung zur Durchführung des Verfahrens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2010/000114 WO2011115515A1 (ru) 2010-03-16 2010-03-16 Способ управления цветностью светового потока белого светодиода и устройство для его осуществления способа

Publications (1)

Publication Number Publication Date
WO2011115515A1 true WO2011115515A1 (ru) 2011-09-22

Family

ID=44649430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2010/000114 WO2011115515A1 (ru) 2010-03-16 2010-03-16 Способ управления цветностью светового потока белого светодиода и устройство для его осуществления способа

Country Status (4)

Country Link
CN (1) CN102934242B (ru)
DE (1) DE112010005456T5 (ru)
RU (1) RU2525166C2 (ru)
WO (1) WO2011115515A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013101400U1 (de) * 2013-04-02 2014-07-03 Zumtobel Lighting Gmbh Anordnung zum Konvertieren des von einer LED-Lichtquelle emittierten Lichts
EP2940743A4 (en) * 2012-12-28 2016-07-27 Konica Minolta Inc LIGHT-EMITTING DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106166986B (zh) * 2016-07-29 2019-01-22 京东方科技集团股份有限公司 一种光转换器以及车用部件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089318A (ja) * 1998-09-14 2000-03-31 Sony Corp カメラ用照明装置
WO2007005013A1 (en) * 2005-07-01 2007-01-11 Lamina Lighting, Inc. Illumination devices comprising white light emitting diodes and diode arrays and method and apparatus for making them
RU2293910C2 (ru) * 2003-12-22 2007-02-20 Шотт Аг Прожектор с линзой френеля
RU2359362C2 (ru) * 2004-12-22 2009-06-20 Сеул Семикондактор Ко., Лтд. Светоизлучающее устройство

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU968602A1 (ru) 1980-12-05 1982-10-23 Вильнюсский Филиал Экспериментального Научно-Исследовательского Института Металлорежущих Станков Фотоэлектрическое растровое устройство дл измерени линейных и угловых перемещений
AT410266B (de) 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh Lichtquelle mit einem lichtemittierenden element
JP4039551B2 (ja) * 2002-01-29 2008-01-30 シチズン電子株式会社 蛍光体色度補正板
US6637905B1 (en) * 2002-09-26 2003-10-28 Agilent Technologies, Inc. Method and system for providing backlighting utilizing a luminescent impregnated material
RU2219622C1 (ru) 2002-10-25 2003-12-20 Закрытое акционерное общество "Светлана-Оптоэлектроника" Полупроводниковый источник белого света
KR100665298B1 (ko) * 2004-06-10 2007-01-04 서울반도체 주식회사 발광장치
US7564180B2 (en) 2005-01-10 2009-07-21 Cree, Inc. Light emission device and method utilizing multiple emitters and multiple phosphors
US7319246B2 (en) * 2005-06-23 2008-01-15 Lumination Llc Luminescent sheet covering for LEDs
RU2301475C1 (ru) * 2005-12-09 2007-06-20 Общество с ограниченной ответственностью Научно-производственное предприятие "Экосвет" Светоизлучающий узел, способ создания свечения светоизлучающего узла и устройство для осуществления способа создания свечения светоизлучающего узла
US8292463B2 (en) * 2006-07-28 2012-10-23 Koninklijke Philips Electronics N.V. Illumination module with similar heat and light propagation directions
US7859190B2 (en) * 2008-09-10 2010-12-28 Bridgelux, Inc. Phosphor layer arrangement for use with light emitting diodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089318A (ja) * 1998-09-14 2000-03-31 Sony Corp カメラ用照明装置
RU2293910C2 (ru) * 2003-12-22 2007-02-20 Шотт Аг Прожектор с линзой френеля
RU2359362C2 (ru) * 2004-12-22 2009-06-20 Сеул Семикондактор Ко., Лтд. Светоизлучающее устройство
WO2007005013A1 (en) * 2005-07-01 2007-01-11 Lamina Lighting, Inc. Illumination devices comprising white light emitting diodes and diode arrays and method and apparatus for making them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2940743A4 (en) * 2012-12-28 2016-07-27 Konica Minolta Inc LIGHT-EMITTING DEVICE
DE202013101400U1 (de) * 2013-04-02 2014-07-03 Zumtobel Lighting Gmbh Anordnung zum Konvertieren des von einer LED-Lichtquelle emittierten Lichts

Also Published As

Publication number Publication date
CN102934242B (zh) 2016-01-20
RU2525166C2 (ru) 2014-08-10
RU2012120814A (ru) 2014-04-27
CN102934242A (zh) 2013-02-13
DE112010005456T5 (de) 2013-06-13

Similar Documents

Publication Publication Date Title
RU2508616C2 (ru) Осветительное устройство с сид и одним или более пропускающими окнами
CA2951719C (en) White-light emitting diodes comprising laser source and metal oxide crystal phosphor
US9599293B2 (en) Full spectrum light emitting arrangement
US8491154B2 (en) Illumination system
JP2011509427A (ja) 表示装置及び照明装置
CN102980136A (zh) 直下式背光模块及其光源扩散结构
JP2011105951A (ja) 蛍光体の材料
US20070103931A1 (en) Assembly device for a sidelight light source module and liquid crystal panel
CN102759050A (zh) 背光模组及液晶显示装置
US20130258637A1 (en) Wavelength-converting structure for a light source
KR20160037050A (ko) 발광 모듈
JP5398742B2 (ja) 発光デバイス
JP2018506079A (ja) ダウンコンバージョンフィルム要素
CN108681147B (zh) 量子点背光模组、量子点led和液晶显示装置
JP2011159832A (ja) 半導体発光装置
JP6248743B2 (ja) 蛍光光源装置
RU2617672C2 (ru) Усиленный люминофором источник света для представления видимого рисунка и осветительное устройство
JP2022545426A (ja) 高いcriを有する高強度光源
CN101694862B (zh) 暖白光发光二极管及其锂化物荧光粉
JP6292033B2 (ja) 発光装置
RU2525166C2 (ru) Способ управления цветностью светового потока белого светодиода и устройство для осуществления способа
US20240027887A1 (en) Increased red content in high cri high brightness light source
RU2565419C1 (ru) Светоизлучающее тело и светодиодное осветительное устройство, содержащее такое тело
JP3118574U (ja) 側面光源モジュールを備えた液晶パネル装置
KR101653904B1 (ko) 형상이 패터닝된 무기물 형광체 함유 유리 복합체 및 이를 포함하는 led 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065488.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 112010005456

Country of ref document: DE

Ref document number: 1120100054568

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 8769/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012120814

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848064

Country of ref document: EP

Kind code of ref document: A1