WO2006118034A1 - 薬液容器収容体およびその製造方法 - Google Patents

薬液容器収容体およびその製造方法 Download PDF

Info

Publication number
WO2006118034A1
WO2006118034A1 PCT/JP2006/308206 JP2006308206W WO2006118034A1 WO 2006118034 A1 WO2006118034 A1 WO 2006118034A1 JP 2006308206 W JP2006308206 W JP 2006308206W WO 2006118034 A1 WO2006118034 A1 WO 2006118034A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
plastic
chemical
oxygen
layer
Prior art date
Application number
PCT/JP2006/308206
Other languages
English (en)
French (fr)
Inventor
Isamu Tateishi
Hitoshi Mori
Yasushi Morimoto
Original Assignee
Otsuka Pharmaceutical Factory, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Factory, Inc. filed Critical Otsuka Pharmaceutical Factory, Inc.
Priority to EP06745438.9A priority Critical patent/EP1875889B1/en
Priority to CN2006800173080A priority patent/CN101180026B/zh
Priority to US11/911,644 priority patent/US8465819B2/en
Priority to CA2604611A priority patent/CA2604611C/en
Priority to DK06745438.9T priority patent/DK1875889T3/en
Priority to JP2007514626A priority patent/JP4939405B2/ja
Priority to KR1020077026574A priority patent/KR101231965B1/ko
Priority to ES06745438.9T priority patent/ES2529741T3/es
Priority to AU2006241992A priority patent/AU2006241992B8/en
Publication of WO2006118034A1 publication Critical patent/WO2006118034A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/10Bag-type containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • Y10T428/1383Vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit is sandwiched between layers [continuous layer]

Definitions

  • the present invention relates to a chemical solution container housing body in which a chemical solution container filled and sealed with a chemical solution is accommodated in an outer bag and sealed, and a method for manufacturing the same.
  • plastic containers for storing chemical solutions have been widely used as plastic containers that are lightweight, flexible, easy to handle, and easy to dispose of.
  • plastics polyolefins such as polyethylene and polypropylene are frequently used from the viewpoint of stability to chemical solutions and pharmaceutical safety.
  • polyolefin is a material having a high oxygen permeability, it is not necessarily suitable for the purpose of storing and storing a chemical solution that easily undergoes oxidative degradation from the viewpoint of maintaining the quality of the chemical solution.
  • Patent Document 1 an infusion solution comprising an aqueous solution containing an amino acid is filled in a primary medical container having gas permeability, and the infusion agent filled in the primary medical container is a deoxidizing agent.
  • an infusion solution package characterized by being housed in a secondary packaging container that is substantially impermeable to oxygen is described.
  • Patent Document 2 describes a chemical container film having the following properties (1) to (4), wherein an inorganic compound film is formed on at least one surface of a plastic film.
  • Oxygen permeability is 1 ccZm 2 ⁇ 24hr ⁇ atm or less;
  • Moisture permeability is lgZm 2 '24hr'atm or less
  • Hue b value is 5 or less.
  • Patent Document 3 includes a resin container having a flexible wall having at least a discharge port, and the container wall is divided into an inner layer and an outer layer with an intermediate layer of polyvinyl alcohol as a boundary.
  • the innermost layer is a polyolefin layer with a thickness in the range of 50 to 800 m.
  • the moisture permeability of the outer layer So (g / m 4hrs: temperature 40 ° C, 90% RH) is 2 of the moisture permeability Si (g / m 2 24hrs: temperature 40 ° C, 90% RH) of the inner layer.
  • an infusion container having gas noriality characterized in that the outer layer is provided so as to be twice or more, and an infusion container in which this container is packaged in a package in the presence of a desiccant. Has been.
  • this document describes that the gas innocence of the container wall is immediately recovered even after the infusion container is autoclaved.
  • Patent Document 1 Japanese Patent Laid-Open No. 63-275346
  • Patent Document 2 Japanese Patent Laid-Open No. 11-285520
  • Patent Document 3 Japanese Patent Laid-Open No. 10-80464
  • oxygen barrier plastic a plastic film having an oxygen barrier property
  • a plastic film or an aluminum film on which silica or alumina is deposited is used as a conventional plastic film having an oxygen barrier property.
  • Plastic films using inorganic materials such as laminated plastic films are known.
  • a chemical container formed using an oxygen-nore plastic film is excellent in the oxygen-nore property of the film. If the space is sealed with oxygen, the contents will deteriorate over time, and if the bacteria are mistakenly mixed in the chemical solution, the bacteria will not grow. Absent. Therefore, before filling and sealing the chemical solution in the chemical solution container, treatment to reduce dissolved oxygen in the chemical solution is performed, or the head space is replaced with an inert gas such as nitrogen, and the replacement rate is 100%. As a result, the manufacturing equipment becomes complicated and heavy, leading to increased costs. . However, the above-mentioned oxygen-nore plastic may cause a pinhole due to an impact caused by vibration during transportation.
  • plastics having oxygen-noria properties for example, polysalt-vinylidene, polyacrylo-tolyl, polybulual alcohol, ethylene butyalcohol copolymer, and the like are known, and these are formed into a film shape. It is also supplied as a product.
  • plastic films do not have sufficient heat resistance, impact resistance, flexibility, transparency, etc., are not suitable for incineration at the time of disposal, or are in contact with chemicals to remove eluate. It may not occur, so it is not appropriate to use it as it is to form a chemical container.
  • polybulal alcohol or ethylene butyalcohol copolymer has the disadvantage that the oxygen barrier properties fluctuate greatly due to changes in humidity.
  • Patent Document 3 describes that the gas barrier property of the infusion container is recovered immediately after the autoclave sterilization treatment. Oxygen present in the infusion container is not considered at all. However, problems such as oxidative deterioration of contents over time and bacterial growth have not been solved.
  • the object of the present invention is to maintain the properties required for plastic pharmaceutical liquid containers, including heat resistance, impact resistance, flexibility, transparency, and elution resistance for plastic forming materials.
  • Another object of the present invention is to provide a chemical container container capable of highly suppressing deterioration of chemicals accompanying bacterial permeation and bacterial growth, and a method for producing the same.
  • the present invention provides:
  • the steam sterilization treatment is a treatment in which the plastic pharmaceutical solution container is heated for 10 to 60 minutes in an inert gas atmosphere at a temperature of 100 to 121 ° C. and in a steam saturated state, (1) the chemical container container,
  • the plastic forming the plastic pharmaceutical solution container is a multilayer film, and has a seal layer having a polyolefin-based plastic force on the inner side surface of the plastic pharmaceutical solution container, and is disposed outside the plastic pharmaceutical solution container.
  • the water vapor permeability force of the entire layer provided on the outer surface side of the plastic pharmaceutical solution container from the intermediate layer is 1 to 50 gZm 2 '24h at a temperature of 25 ° C and a humidity of 90% RH.
  • the chemical container container according to (3) characterized in that:
  • the plastic forming the plastic pharmaceutical solution container has an oxygen permeability of 500-1000 cm 3 at a temperature of 25 ° C and humidity of 60% RH within 12 hours after being subjected to steam sterilization or hot water sterilization. / m 2 '24h'atm, the chemical container container according to (1) above,
  • the plastic forming the plastic pharmaceutical solution container has an oxygen permeability of 0.5 to 70 cm 3 Zm 2 '2 at a temperature of 25 ° C and a humidity of 60% RH when the oxygen permeability is in a steady state.
  • the outer packaging bag has a water vapor permeability at a temperature of 25 ° C. and a humidity of 90% RH of 0.5 to 30 gZm 2 ′ 24 h. ,
  • Oxygen permeability at a temperature of 25 ° C and humidity of 60% RH within 12 hours after steam sterilization or hot water sterilization is 200 cm 3 Zm 2 '24h'atm or more, and oxygen
  • the drug solution is housed in a plastic drug container made of plastic with a permeability of 10 OcmVm 2 24h 'atm or less at a temperature of 25 ° C and a humidity of 60% RH when the permeability is steady.
  • the plastic drug container is steam sterilized or hot water sterilized, and then the plastic drug container after steam sterilization or hot water sterilization is treated with an oxygen scavenger.
  • a method of manufacturing a container for a chemical solution which is housed in an outer bag having a sealed structure and sealed.
  • the steam sterilization treatment is a treatment in which the plastic pharmaceutical solution container is heated for 10 to 60 minutes in an inert gas atmosphere at a temperature of 100 to 121 ° C. and in a steam saturated state, (13)
  • the outer packaging bag has a water vapor permeability at a temperature of 25 ° C. and a humidity of 90% RH of 0.5 to 30 gZm 2 ′ 24h, (13) Manufacturing method,
  • the plastic drug container and the oxygen scavenger are accommodated in the outer bag and sealed before the space between the plastic drug container and the outer bag is filled with an inert gas.
  • the oxygen permeability (O GTR) of plastic is JIS K 7126 “Plastic
  • Method A (as defined in “Testing method for water vapor permeability of sticky films and sheets (instrument measurement method)") Measured according to the humidity sensor method).
  • the oxygen permeability is preferably a measured value within 8 hours after steam sterilization or hot water sterilization, and more preferably within 6 hours after steam sterilization or hot water sterilization. It is a measured value. In general, it takes about 4 hours to lower the temperature of the plastic that has been subjected to steam sterilization or hot water sterilization to 25 ° C, which is the measurement temperature for oxygen permeability, by cooling. .
  • the steam sterilization treatment or the hot water sterilization treatment is preferably performed at normal pressure or under a pressurized atmosphere at a pressure of 40 OOhPa or less, more preferably at a pressure of 2000 to 35 OOhPa. It is performed under a pressurized atmosphere.
  • the above steady state means that the oxygen permeability (for example, the oxygen permeability measured under certain conditions such as temperature of 25 ° C and humidity of 60% RH) over time is ⁇ 5% per hour. Within, preferably when within ⁇ 3%.
  • the plastic pharmaceutical liquid container in the chemical container container of the present invention has an oxygen permeability of 100 cm 3 Zm in an environment of a temperature of 25 ° C and a humidity of 60% RH when the oxygen permeability is in a steady state. 2 ⁇ 24h ⁇ atm or less, V, formed of a so-called low oxygen permeable plastic.
  • V formed of a so-called low oxygen permeable plastic.
  • the plastic forming the plastic pharmaceutical solution container has an oxygen permeability of 200 cm 3 in an environment at a temperature of 25 ° C and a humidity of 60% RH after steam sterilization or hot water sterilization. / m 2 ⁇ 24h ⁇ atm or more, and oxygen permeability is extremely high compared to when oxygen permeability is in a steady state.
  • the oxygen permeability of plastic after steam sterilization or hot water sterilization usually does not rapidly return to the state before steam sterilization or hot water sterilization.
  • the chemical container after steam sterilization treatment or hot water sterilization treatment is housed in an outer bag having oxygen barrier properties together with a deoxidizing agent until the oxygen permeability of the plastic is greatly reduced, and sealed.
  • oxygen remaining in the chemical liquid container for example, oxygen remaining in the head space of the chemical liquid container or dissolved oxygen in the chemical liquid
  • the oxidative deterioration of the chemical liquid stored in the chemical container can be highly suppressed. Moreover, even if a small amount of bacteria are mistakenly mixed, the growth can be highly suppressed.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of plastic forming a plastic pharmaceutical solution container.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the plastic forming the plastic pharmaceutical solution container.
  • FIG. 3 is a schematic cross-sectional view showing still another embodiment of the plastic forming the plastic pharmaceutical solution container.
  • FIG. 4 is a front view showing one embodiment of a chemical solution bag.
  • FIG. 5 is a graph showing the change with time in oxygen permeability of the multilayer film obtained in Example 1.
  • FIG. 6 is a graph showing the change over time in the dissolved oxygen concentration of the chemical container containers obtained in the examples and comparative examples.
  • FIG. 7 is a graph showing changes over time in the dissolved oxygen concentration of the chemical liquid containers (chemical liquid bags) obtained in Examples and Comparative Examples.
  • FIG. 8 is a graph showing changes with time in oxygen permeability of the multilayer film obtained in Example 1 in a state of being accommodated in an outer bag.
  • the chemical liquid container container of the present invention includes a plastic pharmaceutical liquid container that contains and seals a chemical liquid and is subjected to steam sterilization treatment or hydrothermal sterilization treatment, an oxygen scavenger, and the plastic pharmaceutical liquid container and oxygen scavenger. And an exterior bag for storing and sealing the container.
  • the plastic pharmaceutical container has an oxygen permeability of 200 cm 3 at a temperature of 25 ° C. and a humidity of 60% RH within 12 hours after being subjected to steam sterilization or hot water sterilization. / m 2 '24h'atm or more and plastic with oxygen permeability at steady state of 25 ° C and humidity 60% RH of 100cm 3 Zm 2 '24h'atm or less It is formed by.
  • the oxygen permeability at a temperature of 25 ° C and a humidity of 60% RH within 12 hours after the steam sterilization or hot water sterilization of the plastic is particularly preferable in the above range.
  • the oxygen permeability at a temperature of 25 ° C and a humidity of 60% RH within 12 hours after the steam sterilization treatment or hot water sterilization treatment of the plastic is below the above range, After steam sterilization treatment or hot water sterilization treatment for plastic pharmaceutical liquid containers, the effect of removing oxygen contained in the head space in plastic pharmaceutical liquid containers and dissolved oxygen in chemical liquids to the outside also decreases. In other words, the effect of suppressing or preventing the deterioration of acid and sour in the chemical solution will be reduced.
  • the upper limit of oxygen permeability after steam sterilization or hot water sterilization is not particularly limited, but the upper limit is about 1000 cm 3 Zm 2 ⁇ 24 h 'atm due to the nature of plastic used for plastic pharmaceutical liquid containers. .
  • the oxygen permeability at a temperature 25 ° C, humidity of 60% RH when the oxygen permeability is in a steady state among the above range, preferably, 70cmVm 2 - 24h- atm or less More preferably 30 cm 3 Zm 2 ′ 24 h′atm or less, and still more preferably 0.5 to: LO cm 3 Zm 2 ′ 24 h ′ atm.
  • the plastic oxygen permeability force at a temperature of 25 ° C and humidity of 60% RH when the oxygen permeability is in a steady state. If the above range is exceeded, for example, after opening the outer packaging bag of the chemical container container, the above When the chemical solution container is left unattended, the permeation of oxygen into the chemical solution container cannot be suppressed, and the chemical solution contained in the chemical solution container causes deterioration of the acidity of the chemical solution.
  • the lower limit of oxygen permeability when the oxygen permeability is in a steady state is preferably zero, but 0.5 cm 3 Zm 2 '24h' atm due to the nature of plastic used in plastic pharmaceutical liquid containers The degree is preferred.
  • the lower limit of the oxygen permeability, lcmVm 2 - 24 h 'Yogumata be about atm, 5cm 3 Zm 2' may be about 24H'atm.
  • the oxygen permeability of plastic is JIS K 7126 "Plastic
  • Oxygen permeability measured according to the B method (isobaric method) specified in “Testing methods for gas permeability of films and sheets”. As a measuring instrument used to measure oxygen permeability
  • the treatment conditions of the steam sterilization treatment or the hot water sterilization treatment for the plastic pharmaceutical liquid container are not particularly limited, and specifically, according to the general treatment conditions of the sterilization treatment for the container containing the chemical solution. If, for example, the type and amount of the chemical solution to be contained, the material of the plastic forming the container, the thickness, etc. are set appropriately, and the sterilization treatment for the liquid content should be set appropriately to meet the intended conditions. Good.
  • the heating time may be 10 to 60 minutes in an atmosphere of a temperature of 100 to 121 ° C and a steam saturated state.
  • the pressurizing conditions during the steam sterilization treatment are not particularly limited, but are preferably normal pressure or pressurized at a pressure of 4000 hPa or less, more preferably at a pressure of 2000 to 3500 hPa.
  • the hot water sterilization treatment may be performed in accordance with conventionally known conditions or steam sterilization treatment conditions.
  • hot water at about 100 to 120 ° C. is used under normal pressure or under pressure. Just spray or spray for about 60 minutes.
  • the steam sterilization treatment or hot water sterilization treatment is preferably performed in an inert gas atmosphere.
  • the head space of the chemical container before being stored and sealed in the outer bag can be replaced to some extent by the inert gas during the steam sterilization process or hot water sterilization process, and is stored in the outer bag.
  • the amount of oxygen contained in the chemical container before sealing can be reduced in advance.
  • the amount of oxygen scavenger required to remove oxygen in the chemical container and the time required for deoxygenation after the chemical container is stored in the outer bag and sealed can be reduced. It is possible to further improve the effect of suppressing and preventing deterioration.
  • the inert gas is not particularly limited !, but is, for example, a gas such as nitrogen or argon that is unlikely (preferably not generated) to cause oxidation or other alteration to a chemical solution. It is preferable.
  • the oxygen permeability after steam sterilization treatment or hot water sterilization treatment or the steady state oxygen permeability of the plastic forming the plastic pharmaceutical solution container can be changed by changing the plastic type, thickness, etc.
  • the plastic is a multilayer film, it can be set to an appropriate value by changing the layer configuration, thickness, and the like.
  • the oxygen permeability of the plastic forming the plastic pharmaceutical solution container is the oxygen permeability value after the steam sterilization treatment or the hot water sterilization treatment, and the oxygen permeability in the steady state.
  • a polyol-based plastic as a plastic for forming the chemical solution container.
  • polyol plastics include, but are not limited to, ethylene-vinyl And alcohol alcohol copolymers.
  • ethylene content of ethylene is 10 to 45 mole 0/0 - Byurua alcohol copolymer.
  • the ethylene content of the ethylene Bulle alcohol copolymer falls below 10 mol 0/0, for example, there may not come a sufficient water resistance to withstand steam sterilization or hot water sterilization at secured.
  • the oxygen permeability increased by steam sterilization or hot water sterilization may not be restored even after the temperature of the plastic is lowered.
  • the above-mentioned polyol-based plastic may be, for example, a polyamide-based resin (for example, nylon-6) or a phosphorus-based antioxidant (for example, for example).
  • a polyamide-based resin for example, nylon-6
  • a phosphorus-based antioxidant for example, for example
  • Tris (2,4 di-t-butylphenol) phosphite, etc.) can be blended.
  • the blending amount of these polyamide-based phosphatase-based anti-oxidation agents should be set within a range that does not affect the chemical solution contained in the chemical solution container.
  • the plastic forming the plastic pharmaceutical liquid container has a polyol-based plastic as an intermediate layer, which is closer to the inner surface side of the chemical liquid container than the intermediate layer. It is desirable that the plastic film has a multilayer structure in which a sealing layer (innermost layer) having a plastic force is provided and a protective layer (outermost layer) is provided on the outer surface side of the chemical solution container from the intermediate layer.
  • the sealing layer (innermost layer) forms a welding surface when the peripheral edge of a plastic film is welded to form, for example, an infusion bag or the like, and the inner surface of the chemical solution container It forms a surface that comes into direct contact with the chemical solution. Therefore, As the plastic forming the sealing layer (innermost layer), for example, heat sealing is required and safety against chemicals is established.
  • plastic for forming the seal layer include, for example, polyolefin plastic.
  • Polyolefin plastics include, for example, polyethylene (ethylene homopolymer), ethylene a -olefin copolymer, polypropylene (propylene homopolymer), propylene 'a-olefin random copolymer, propylene' a-olefin block copolymer.
  • a-olefins in the ethylene'a-olefin copolymers include, for example, ⁇ -olefins having 3 to 6 carbon atoms such as propylene, 1-butene, 1-pentene, 1-hexene, and 4-methyl-1-pentene.
  • Examples of the a-olefin used in the propylene 'a olefin random copolymer and propylene' a -olefin block copolymer include, for example, ethylene, or, for example, 1-butene, 1 pentene, 1-hexene, 4-methyl. Examples include ⁇ -olefins having 4 to 6 carbon atoms such as 1-pentene.
  • the polyolefin plastic used for the seal layer is preferably polyethylene, polypropylene, or a mixed resin thereof.
  • the sealing layer is preferably formed of a plastic made of a mixed resin of polyethylene and polypropylene.
  • the protective layer (outermost layer) is a layer forming the outer surface of the plastic pharmaceutical solution container. Therefore, as a plastic for forming the protective layer (outermost layer), for example, in the steam sterilization process or the hot water sterilization process, the intermediate layer that is the polyol plastic force is not directly affected by moisture. From the viewpoint of maintaining a predetermined strength according to the viewpoint and the shape and application of the chemical solution container, it may be appropriately selected.
  • the entire layer provided on the outer surface side of the plastic pharmaceutical liquid container with respect to the intermediate layer is preferably the polyol-based layer.
  • the intermediate layer having plastic strength is directly affected by moisture, it is required to have a certain water vapor permeability for the effect of the present invention.
  • the water vapor permeability of the protective layer is not particularly limited, but the temperature is 25 ° C, the humidity in 90% RH, preferably, 'a 24h, more preferably, 3 ⁇ 30gZm 2' l ⁇ 50gZm 2 is 24h, more preferably, 3: a LOg / m 2 '24h.
  • the water vapor transmission rate is JIS K 7129 "of plastic films and sheets.
  • Method A moisture sensitive sensor method specified in “Water vapor permeability test method (instrument measurement method)”.
  • plastics for forming the protective layer include plastics such as polyolefin, polyamide, and polyester.
  • plastics such as polyolefin, polyamide, and polyester.
  • polyolefin plastic are the same as those exemplified above.
  • polyamide-based plastic include nylon 6, nylon 6, 6, nylon 6 and 10 nylons, and the like.
  • polyester plastic include polyethylene terephthalate and polybutylene terephthalate.
  • the plastic forming the plastic pharmaceutical liquid container is a multilayer film
  • a specific embodiment thereof is, for example, as described above, the polyolefin plastic in the innermost layer forming the inner surface side of the plastic pharmaceutical liquid container. It has a strong sealing layer, and has a protective layer on the outermost layer on the outer side of the plastic drug solution container, and also has a polyol plastic force between the sealing layer and the protective layer.
  • a multilayer film having a three-layer structure having an intermediate layer may be mentioned.
  • the multilayer film preferably further has a low water-absorbing layer having a low water-absorbing plastic force on the inner side surface (sealing layer side) of the plastic pharmaceutical solution container relative to the intermediate layer.
  • a low water-absorbing layer having a low water-absorbing plastic force on the inner side surface (sealing layer side) of the plastic pharmaceutical solution container relative to the intermediate layer.
  • low water-absorbing plastic examples include polycyclic olefin.
  • Polycyclic olefin is extremely low in water absorption rate. Specifically, it is 0.01% or less. Therefore, it is suitable for achieving the object of reducing the influence of moisture on the intermediate layer, which also has a polyol plastic power.
  • polyolefins include, for example, a copolymer of ethylene and a dicyclopentagen compound (or a hydrogenated product thereof), and a copolymer of ethylene and a norbornene compound (or a compound thereof). Hydrogenated products), ring-opening polymers of cyclopentagen compounds (or hydrogenated products thereof), ring-opening copolymers composed of two or more cyclopentagen compounds (or hydrogenated products thereof), etc.
  • polycyclic olefins include, for example, a copolymer of ethylene and a dicyclopentagen compound (or a hydrogenated product thereof), and a copolymer of ethylene and a norbornene compound (or a compound thereof). Hydrogenated products), ring-opening polymers of cyclopentagen compounds (or hydrogenated products thereof), ring-opening copolymers composed of two or more cyclopentagen compounds (or hydrogenated products thereof), etc.
  • polycyclic olefins include, for example, a cop
  • the multilayer film may be provided with a layer made of a plastic containing an elastomer for the purpose of imparting flexibility, transparency and impact resistance to a plastic drug container, for example. Monkey.
  • elastomer examples include polyolefin elastomers such as polyethylene elastomers and polypropylene elastomers, and examples include styrene ethylene Z butylene styrene block copolymer (SEBS), styrene butadiene styrene block copolymer (SBS).
  • SEBS styrene ethylene Z butylene styrene block copolymer
  • SBS styrene butadiene styrene block copolymer
  • Styrene isoprene styrene block copolymer (SIS), modified SEBS modified with maleic acid, styrene-ethylene Z-propylene-styrene block copolymer (SEPS), styrene-ethylene Z-butylene block copolymer (SEB), Examples thereof include styrene-based elastomers such as styrene-ethylene Z-propylene block copolymer (SEP), and among them, polyethylene-based elastomers are preferable.
  • SIS Styrene isoprene styrene block copolymer
  • SEPS styrene-ethylene Z-propylene-styrene block copolymer
  • SEB styrene-ethylene Z-butylene block copolymer
  • SEP styrene-ethylene Z-propylene block copolymer
  • polyethylene-based elastomers are preferable.
  • the plastic forming the plastic pharmaceutical solution container is not limited to this, and examples thereof include those formed into a film by an extrusion method such as a T-die method or an inflation method.
  • a plastic drug solution container having excellent flexibility and flexibility can be formed.
  • FIGS. 1 to 3 are schematic cross-sectional views showing preferred embodiments of the layer structure of the multilayer film when the plastic forming the plastic pharmaceutical solution container is a multilayer film. That is, as a preferable embodiment in the case of exerting power, it is not limited to this, but for example, (I) Sealing layer 1 consisting of a mixed resin of polyethylene and polypropylene, layer 2 consisting of polyethylene, in order from the innermost layer forming the inner side I of the plastic drug container to the outermost layer forming the outer side o And a low water-absorbing layer 3 that also becomes a polycyclic polyolefin, an intermediate layer 4 that also has an ethylene-vinyl alcohol copolymer power, and a protective layer 5 that has a polyethylene power. Further, the low water-absorbing layer 3 and the intermediate layer 4 And between the intermediate layer 4 and the protective layer 5, respectively, have adhesive layers 6, 7 made of adhesive resin (for example, adhesive polyolefin, etc.), Multilayer film (see Figure 1),
  • the sealing layer 1 made of a mixed resin of polyethylene and polypropylene, and the layer 2 made of polyethylene in that order.
  • An intermediate layer 4 made of an ethylene butyl alcohol copolymer, and a protective layer 5 made of polyethylene, and between the layer 2 and the intermediate layer 4 made of polyethylene, and the intermediate layer 4 and the protective layer
  • a 6-layer multilayer film (see Fig. 2) having adhesive layers 8 and 7 each made of an adhesive resin (for example, adhesive polyolefin, etc.)
  • an adhesive is applied between the low water absorption layer 3 and the intermediate layer 4 or between the intermediate layer 4 and the protective layer 5 in each layer. This can be achieved. Further, an adhesive layer made of an adhesive resin may be interposed in the same manner as in the case of the multilayer film shown in the above (I) and ( ⁇ ). On the other hand, in the multilayer film shown in the above (I) and (i), the adhesion between the low water absorption layer 3 and the intermediate layer 4 and the adhesion between the intermediate layer 4 and the protective layer 5 are performed between each layer. , 7, 8), simply by applying an adhesive.
  • the thickness of each layer is not particularly limited, and as a whole plastic pharmaceutical liquid container, oxygen permeability after steam sterilization or hot water sterilization, and steady state If the oxygen permeability is set to meet the above range,
  • the thickness of the intermediate layer should be 3 to 20 ⁇ m, and the total thickness of the multilayer film should be about 180 to 300 ⁇ m. Is preferred.
  • the form of the plastic pharmaceutical liquid container is not particularly limited, and as described above, for example, a bag-shaped chemical liquid container excellent in flexibility and flexibility, such as an infusion bag (see FIG. 4).
  • a bag-shaped chemical liquid container excellent in flexibility and flexibility such as an infusion bag (see FIG. 4).
  • it may be a chemical container such as an infusion bottle that has flexibility and flexibility while maintaining the container shape by itself.
  • the bag-shaped chemical solution container such as the infusion nose may be a single-solution chemical solution bag or a so-called multi-chamber bag having a plurality of storage chambers partitioned by easy-peeling seal portions. Good.
  • the method for forming these infusion bags, infusion bottles and the like is not particularly limited, and various methods such as laminating and coextrusion, for example, may be appropriately selected and employed depending on the form of the chemical solution container. Can do.
  • the chemical solution accommodated in the plastic drug container in the present invention is not particularly limited, and various drugs can be mentioned.
  • the above-mentioned plastic pharmaceutical solution containers have reduced oxygen intrusion from the outside in the normal environment where the chemical solution containers are used, and the strength of oxygen absorption after steam sterilization treatment or hot water sterilization treatment is also reduced. It is housed in an outer bag with oxygen barrier properties together with the agent and sealed, so that oxygen remaining in the head space and dissolved oxygen in the chemical solution can be removed over time.
  • an infusion solution in particular, an infusion solution containing an easily oxidizable substance such as L-cystine, L-tryptophan, fat, vitamin A, vitamin B, and vitamin C is preferable.
  • the outer bag has an oxygen barrier property, and has an oxygen permeability at a temperature of 25 ° C and a humidity of 60% RH, preferably 0.5 cm 3 Zm 2 '24h' atm or less, more preferably 0.1 cm 3 Z24h'm 2 'atm or less.
  • the outer bag has a certain water vapor permeability. In this case, the moisture in the outer bag can be released to the outside, and the oxygen permeability of the plastic pharmaceutical solution container tends to be in a steady state.
  • the water vapor permeability of the outer bag is preferably about 0.5 to 30 gZm 2 ′ 24 h, although there is a balance with oxygen barrier properties.
  • the forming material of the outer bag is not particularly limited, for example,
  • the inner side of the outer bag a heat-sealable plastic (for example, polyolefin such as polyethylene and polypropylene), and a laminated layer on the outer side of the outer bag than the molten adhesive layer
  • a heat-sealable plastic for example, polyolefin such as polyethylene and polypropylene
  • a laminated layer on the outer side of the outer bag than the molten adhesive layer A multilayer film having an aluminum foil
  • Examples of the inorganic oxide in the vapor-deposited film of the inorganic oxide include, for example, alumina (aluminum oxide), silica (cyanide oxide), magnesium oxide, titanate. Examples include fleas. Among these, from the viewpoint of the transparency of the deposited film, preferably, alumina is used. Further, as a material for forming the outer bag having a certain water vapor permeability, for example, polyvinyl alcohol or A multilayer film in which a plastic layer having an appropriate oxygen barrier property and water vapor permeability is laminated, such as polyvinyl chloride and polyvinylidene.
  • the outer bag forming material exemplified above may further be subjected to light-shielding printing using an ink containing a colorant or an ultraviolet absorber on the outer surface side of the outer bag.
  • a strong protective film such as polyester or polyolefin may be laminated on the outer side of the outer bag.
  • the oxygen scavenger is not particularly limited, and various oxygen scavengers can be mentioned. Specific examples include those containing iron compounds such as iron hydroxide, iron oxide and iron carbide as active ingredients, and those using low-molecular phenol and activated carbon. It is.
  • Commercially available oxygen scavengers include, for example, the registered trademark “AGELESS” manufactured by Mitsubishi Gas Chemical Co., Ltd., the product name “Modulan” manufactured by Nippon Gyaku Co., Ltd., and products manufactured by Nippon Soda Co., Ltd. The name “SEKIYURU” and the registered trademark “TAMOTSU” manufactured by Oji Chemical Co., Ltd.
  • the oxygen scavenger is, for example, a chemical container that has been subjected to steam sterilization treatment or hot water sterilization treatment in a state in which the bag has a high oxygen permeability and is filled with a plastic film (eg, polyolefin). At the same time, it can be accommodated in the outer bag.
  • a plastic film eg, polyolefin
  • the chemical container container and the manufacturing method thereof of the present invention for example, even a chemical liquid containing an easily oxidizable substance can be stored stably for a long period of time without causing acid deterioration.
  • the chemical solution bag when used, it is possible to prevent the acid solution from deteriorating.
  • the components of the plastic pharmaceutical solution container forming plastic are as follows.
  • PE (1) Ethylene ⁇ 1-butene copolymer (density 0.940g / cm 3 , water vapor permeability 7g / m 2 '24h (25 ° C, 90% RH, 20 111), trade name "Ultzex ( (Registered trademark) 40208 ", Prime Polymer Co., Ltd.)
  • PE (2) Ethylene 1-butene copolymer (density 0.920 gZcm 3 , trade name “Ultzex (registered trademark) 2010”, Prime Polymer Co., Ltd.) 45% by weight, ethylene 1-butene copolymer Polymer (density 0.885 g / cm 3 , trade name “Tuffmer (registered trademark) A0585X”, made by Prime Polymer Co., Ltd.) 50% by weight, polyethylene homopolymer (density 0.965 g / cm 3 , trade name “Hi-X) (R) 65150BJ, Ltd. Prime polymer) a mixture of 5 wt% • EVOH (l): ethylene content 27 mol 0/0, trade name "Ebaru (registered trademark) L101", Ltd. Kuraray )
  • EVOH (2) ethylene content of 44 mole 0/0, the trade name of "Ebaru (registered trademark) E105", Co., Ltd. Kuraray) • COP: Norbornene-based ring-opening polymer hydrogenated product (water absorption of less than 0.01%, trade name “ZENOA (registered trademark) 1020RJ, manufactured by ZEON CORPORATION)”
  • Each layer shown in Table 1 was co-extruded so as to be laminated in the order shown in Table 1 to obtain a multilayer film for forming a chemical solution bag (plastic pharmaceutical solution container) 10 shown in FIG.
  • This multilayer film is a seven-layer film shown in FIG.
  • the water vapor permeability of the laminate comprising the protective layer 5 and the adhesive layer 7 of the multilayer film was 4. lg / m 2 -24 h (25. C, 90% RH).
  • the two multilayer films described above were overlapped and the peripheral edge portion 11 was heat-sealed according to a conventional method, thereby producing a chemical solution bag 10 shown in FIG.
  • the port member 12 was a port-type mouth member formed using the PE (1).
  • Each layer shown in Table 1 was co-extruded so as to be laminated in the order shown in Table 1 to obtain a multilayer film for forming the drug solution bag 10.
  • This multilayer film is a six-layer film shown in FIG.
  • a chemical solution bag 10 shown in Fig. 4 was produced in the same manner as in Example 1 except that the two multilayer films described above were used.
  • a chemical solution bag 10 shown in Fig. 4 was produced in the same manner as in Example 1 except that the two multilayer films described above were used.
  • Each layer shown in Table 1 was co-extruded so as to be laminated in the order shown in Table 1 to obtain a multilayer film for forming the drug solution bag 10.
  • This multilayer film is a V, 5-layer film without an adhesive layer.
  • a chemical solution bag 10 shown in Fig. 4 was produced in the same manner as in Example 1 except that the two multilayer films described above were used.
  • Table 1 shows the layer configuration of the chemical solution bag 10 and the oxygen permeability of the multilayer film forming the chemical solution bag 10 for Examples 1-2 and Comparative Examples 1-2.
  • Adhesive layer (20ju m) (20ju m) (20ju m)
  • the unit of oxygen permeability is cm "7 m 2 '24h' atm.
  • the multilayer film obtained in Example 1 was subjected to high-pressure steam sterilization for 30 minutes in a steam-saturated nitrogen atmosphere (temperature 110.C, pressure 2700 hPa), and then the surface of the multilayer film was heated to about 40 ° C. Water was removed with warm air for 1 minute. After steam sterilization, this multilayer film is left for 3 weeks in an atmosphere at a temperature of 25 ° C and humidity of 60% RH to change the oxygen permeability (temperature 25 ° C, humidity 60% RH) over time. Observed. For measurement of oxygen permeability, a trade name “OX-TRAN (registered trademark)” manufactured by MOCON was used.
  • FIG. 5 is a graph showing measurement results of changes in oxygen permeability over time. As shown in Figure 5 In addition, it took about 3 days after the steam sterilization process until the oxygen permeability (temperature 25 ° C, humidity 60% RH) of the multilayer film reached a steady state.
  • the drug solution bags 10 produced in Examples 1-2 and Comparative Examples 1-2 were each filled with 300 mL of distilled water for injection and sealed.
  • the headspace volume was about 30 mL, and nitrogen substitution (about 50%) was performed so that the oxygen concentration became 10%.
  • each chemical solution bag 10 in a sterilization kettle and heating in a steam-saturated nitrogen atmosphere (temperature 110 ° C, pressure 2700 hPa) for 30 minutes, high-pressure steam sterilization is performed. Treated. The oxygen concentration in the nitrogen atmosphere was adjusted to 2% or less.
  • the outer surface of the medicinal solution bag 10 was removed by blowing hot air of about 40 ° C for 1 minute to remove water. After removing the water from the force, it was housed in an outer bag together with an oxygen scavenger (Mitsubishi Gas Chemical Co., Ltd .; trade name “AGELESS (registered trademark))” and sealed to obtain a chemical container container.
  • an oxygen scavenger Mitsubishi Gas Chemical Co., Ltd .; trade name “AGELESS (registered trademark)
  • the outer bag is a bag body having a three-layer multilayer film force in which the inner side layer is polyethylene, the intermediate layer is polybulal alcohol, the outer side is stretched polypropylene, and the temperature is 25 ° C, humidity
  • the oxygen permeability at 60% RH was 0.1 lcm 3 Zm 2 '24h' atm or less, and the water vapor permeability at a temperature of 25 ° C and a humidity of 90% RH was 0.5 gZm 2 '24h.
  • this outer bag was adjusted so that the volume of the inner space was about 300 to 500 mL, and the oxygen concentration in the outer bag became 2% or less by nitrogen replacement.
  • the chemical container containers obtained in Examples 1 and 2 and Comparative Examples 1 and 2 are each left in an environment of a temperature of 25 ° C. and a humidity of 60% RH, and the oxygen contained in the contents liquid every day The concentration was measured with a non-destructive oxygen concentration meter (product name “Fibox 3”, manufactured by PreSens).
  • the chemical container container used in the above evaluation test 1 is further allowed to stand for 7 days from the production of the chemical container container to bring the oxygen concentration in the contents liquid close to Oppm, then at a temperature of 25 ° C and humidity Remove the chemical bag 10 from the outer bag in an environment of 60% RH and leave it in an environment with a temperature of 25 ° C and a humidity of 60% RH for a specified time. Each time, the oxygen concentration in the liquid contents was measured with a nondestructive oxygen concentration meter (“Fibox 3” above).
  • the chemical container container obtained in Example 1 above (specimen different from those used in Evaluation Tests 1 and 2) was left for various days in an environment of temperature 25 ° C and humidity 60% RH, respectively. After each product was taken out, the chemical solution bag was taken out, the film was cut off and the moisture was wiped off, and then the oxygen permeability was measured using the product name “OX-TRAN (registered trademark)” manufactured by MOCON. did. The results are shown in Fig. 8.
  • the oxygen permeability (temperature 25 ° C, humidity 60% RH) of the multilayer film is about 3-4 days after high-pressure steam sterilization treatment because it was wrapped in an outer bag. Showed a high value. It was also found that it takes about 10 days after steam sterilization for oxygen permeability to reach a steady state. Therefore, after the steam sterilization treatment and before the oxygen permeability returns to a steady state, the oxygen in the chemical solution bag 10 can be sufficiently absorbed by the oxygen scavenger.
  • the layers shown in Table 2 are coextruded so as to be laminated in the order shown in Table 2 to form a chemical solution bag (plastic pharmaceutical solution container) 10 shown in FIG.
  • a multilayer film was obtained.
  • This multilayer film is a seven-layer film shown in Fig. 1. Is.
  • the water vapor permeability of the laminate composed of the protective layer 5 and the adhesive layer 7 of the multilayer film was 4. lg / m 2 -24h (25 ° C, 90% RH).
  • the two multilayer films described above were overlapped and the peripheral edge portion 11 was heat-sealed in accordance with a conventional method, thereby producing a chemical solution bag 10 shown in FIG.
  • the port member 12 was a port-type mouth member formed using the PE (1).
  • Each layer shown in Table 2 was co-extruded so as to be laminated in the order shown in Table 2 to obtain a multilayer film for forming the drug solution bag 10.
  • This multilayer film is a seven-layer film shown in FIG.
  • the water vapor permeability of the laminate comprising the protective layer 5 and the adhesive layer 7 of the multilayer film was 7. Og / m 2 -24h (25 ° C, 90% RH).
  • a chemical solution bag 10 shown in FIG. 4 was produced in the same manner as in Example 3 except that the above-described two multilayer films were used.
  • Each layer shown in Table 2 was co-extruded so as to be laminated in the order shown in Table 2 to obtain a multilayer film for forming the drug solution bag 10.
  • This multilayer film is a six-layer film shown in FIG.
  • the water vapor permeability of the laminate comprising the protective layer 5 and the adhesive layer 7 of the multilayer film was 5. lg / m 2 -24h (25 ° C, 90% RH).
  • a chemical solution bag 10 shown in Fig. 4 was produced in the same manner as in Example 3 except that the above-described two multilayer films were used.
  • Each layer shown in Table 2 was co-extruded so as to be laminated in the order shown in Table 2 to obtain a multilayer film for forming the drug solution bag 10.
  • This multilayer film is a seven-layer film shown in FIG.
  • the water vapor permeability of the laminate comprising the protective layer 5 and the adhesive layer 7 of the multilayer film was 3.2 g / m 2 -24 h (25 ° C., 90% RH).
  • a chemical solution bag 10 shown in Fig. 4 was produced in the same manner as in Example 3 except that the above-described two multilayer films were used.
  • Table 2 shows the layer configuration of the chemical solution bag 10 and the oxygen permeability of the multilayer film forming the chemical solution bag 10 for Examples 3 to 6. [0075] [Table 2]
  • the unit of oxygen permeability is cm m 2 '24h'atm.
  • the unit of water vapor permeability is g / m 24h.
  • the drug solution bags 10 prepared in Examples 3 to 6 were each filled with 300 mL of distilled water for injection and sealed.
  • the headspace volume was about 30 mL, and nitrogen substitution (about 50%) was performed so that the oxygen concentration became 10%.
  • each chemical solution bag 10 was placed in a sterilization kettle and heated in a steam-saturated nitrogen atmosphere (temperature 110 ° C., pressure 2700 hPa) for 30 minutes to perform high-pressure steam sterilization.
  • the oxygen concentration in the nitrogen atmosphere was adjusted to 2% or less.
  • the outer surface force of the chemical solution bag 10 is also removed by spraying warm air of about 40 ° C for 1 minute to remove water, and then the oxygen scavenger (manufactured by Mitsubishi Gas Chemical). And a product name “AGELESS (registered trademark)”), and the product was accommodated in an outer bag and sealed to obtain a chemical container container.
  • the outer bag is a bag made of a multilayer film having a three-layer structure in which the inner side layer is polyethylene, the intermediate layer is polybutyl alcohol, and the outer side is also stretched polypropylene.
  • Oxygen permeability force at temperature of 25 ° C and humidity 60% RH 0.lc m 3 Zm 2 '24h' atm or less
  • water vapor permeability force at temperature of 25 ° C and humidity 90% RH 0.5g / Use m 2 ⁇ 24h.
  • the intermediate layer is a bag body having a three-layered multilayer film structure in which the inner layer and the outer layer have a polyethylene force and the polyethylene layer has a temperature of 25 ° C and a humidity of 60.
  • the outer bag was adjusted so that the volume of the internal space was about 300 to 500 mL, and the oxygen concentration in the outer bag became 2% or less by nitrogen substitution.
  • Example 5 when a test similar to the above-described evaluation test 2 was performed, in Examples 3, 4 and 6, the oxygen contained in the content liquid was removed after 96 hours (4 days) from the outer bag. Since the concentration was below 0.5 ppm, it was found that oxygen penetration into the contents was suppressed as much as possible. On the other hand, in Example 5, after 72 hours (3 days) after taking out the outer bag force, the oxygen concentration in the content liquid was less than 2 ppm, and the intrusion of oxygen into the content liquid was sufficiently acceptable. I was acknowledged that it was.
  • the present invention includes, for example, a chemical container, an infusion solution, It is suitable for use in medical containers such as containers, especially for use in medical containers that contain chemical solutions containing easily oxidizable substances.

Landscapes

  • Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Packages (AREA)
  • Wrappers (AREA)

Abstract

 本発明は、耐熱性、耐衝撃性、柔軟性、透明性、プラスチック形成材料についての耐溶出性といった、プラスチック製薬液容器に要求される特性を維持しつつ、酸素の透過に伴う薬液の劣化、細菌の増殖などを高度に抑制することができる薬液容器収容体と、その製造方法とを提供することを目的とする。本発明は、上記課題を解決するために、蒸気滅菌処理または熱水滅菌処理がされてから12時間以内における酸素透過度(25°C、60%RH)が200cm3/m2・24h・atm以上であり、定常状態における酸素透過度(25°C、60%RH)が100cm3/m2・24h・atm以下であるプラスチック製薬液容器に、薬液を収容、密封し、このプラスチック製薬液容器に蒸気滅菌処理または熱水滅菌処理をした上で、脱酸素剤ととともに、酸素バリア性を有する外装袋に収容、密封する。

Description

明 細 書
薬液容器収容体およびその製造方法
技術分野
[0001] 本発明は、薬液が充填、密封された薬液容器を外装袋に収容、密封してなる薬液 容器収容体と、その製造方法とに関する。
背景技術
[0002] 近年、薬液を収容する容器には、軽量、柔軟で、取扱い性が良好であり、し力も、 廃棄が容易なプラスチック製の容器が広く用いられており、このプラスチック製容器を 形成するプラスチックとしては、薬液に対する安定性、医薬上の安全性などの観点か ら、ポリエチレンやポリプロピレンなどのポリオレフインが多用されている。
しかし、ポリオレフインは、酸素の透過度が高い素材であることから、酸化分解など が生じ易い薬液を収容して、保存する用途には、薬液の品質保持などの観点から、 必ずしも適切ではない。
[0003] 一方、特許文献 1には、アミノ酸を含有した水溶液からなる輸液剤が気体透過性を 有する医療用一次容器に充填され、該医療用一次容器に充填された輸液剤が脱酸 素剤と共に、実質的に酸素を透過しない二次包装容器内に収納されてなることを特 徴とする輸液剤の包装体が記載されて 、る。
また、特許文献 2には、プラスチックフィルムの少なくとも片面に、無機化合物膜が 形成されてなる、以下の(1)〜 (4)物性を有する薬液容器用フィルムが記載されてい る。
( 1 )酸素透過度が 1 ccZm2 · 24hr · atm以下;
(2)透湿度が lgZm2' 24hr'atm以下;
(3)光線透過率が 80%以上;
(4)色相 b値が 5以下。
[0004] また、特許文献 3には、少なくとも排出口が形成された可撓壁を有した榭脂容器か らなり、上記容器壁はポリビニルアルコールの中間層を境に内層と外層に分かれて 多層形成され、上記最内層は、厚みが 50乃至 800 mの範囲のポリオレフイン層で あり、上記外層の透湿量 So (g/m 4hrs :温度 40°C、 90%RH)が上記内層の透 湿量 Si(g/m224hrs :温度 40°C、 90%RH)の 2倍以上になるように、上記外層が設 けられていることを特徴とするガスノリア一性を有する輸液容器や、この容器を、乾燥 剤を共存させて包装体で包装してある輸液容器が記載されている。また、同文献に は、上記輸液容器について、オートクレープ滅菌処理した後においても、容器壁のガ スノリア一性が直ぐに回復する旨が記載されている。
特許文献 1:特開昭 63 - 275346号公報
特許文献 2:特開平 11― 285520号公報
特許文献 3:特開平 10— 80464号公報
発明の開示
発明が解決しょうとする課題
[0005] しかるに、特許文献 1に記載の発明のように、一次容器が酸素透過性を有している 場合には、二次容器の開封後に一次容器が放置されることによって、一次容器の収 容液の酸ィ匕劣化を防止できなくなる。し力も、例えば、一次容器に外部から他の薬剤 を混注する場合などにおいて、誤って、薬液中に細菌などが混入されたときには、一 次容器の外部力 の酸素の透過により、細菌の増殖が加速されるおそれがある。
[0006] 一方、従来、酸素バリア性が付与されたプラスチック (以下、単に「酸素バリア性ブラ スチック」という。)のフィルムとしては、例えば、シリカやアルミナが蒸着されたプラス チックフィルム、アルミニウムフィルムがラミネートされたプラスチックフィルムなどの、 無機物を利用したプラスチックフィルムが知られている。
しかし、例えば、特許文献 2に記載の発明のように、酸素ノリア性プラスチックのフィ ルムを用いて形成された薬液容器は、上記フィルムの酸素ノリア性に優れて 、るが ゆえに、薬液容器のヘッドスペースに酸素が含まれた状態で密封された場合に、経 時的に内容物が酸ィ匕劣化したり、薬液中に誤って細菌が混入された場合に細菌が 増殖したりすることを免れない。それゆえ、薬液容器への薬液の充填、密封前に、薬 液の溶存酸素を低減させる処理を施したり、上記ヘッドスペースを窒素などの不活性 ガスで置換して、その置換率を限りなく 100%に近づけたりすることが必要になり、そ の結果、製造設備が複雑で大掛力りなものとなって、コストの上昇などを招いてしまう 。し力も、上記の酸素ノリア性プラスチックは、搬送時の振動などによる衝撃でピンホ ールを生じるおそれもある。
[0007] また、酸素ノリア性を有するプラスチックとして、例えば、ポリ塩ィ匕ビユリデン、ポリア クリロ-トリル、ポリビュルアルコール、エチレン ビュルアルコール共重合体などが 知られており、これらは、フィルム状に成形されたものとしても供給されている。
しかし、これらのプラスチックフィルムは、耐熱性、耐衝撃性、柔軟性、透明性などが 十分でなかったり、廃棄時に焼却処理をすることが適当でないものであったり、薬液と の接触によって溶出物を生じるおそれがあるものであったりすることから、そのままの 状態で薬液容器の形成に使用することは適切でない。とりわけ、ポリビュルアルコー ルゃエチレン ビュルアルコール共重合体については、湿度の変化により酸素バリ ァ性が大きく変動するという不具合がある。
[0008] 一方、特許文献 3には、オートクレープ滅菌処理後、直ちに輸液容器のガスバリア 性が回復する旨が記載されている力 輸液容器内に存在する酸素について、全く考 慮されていないことから、経時的な内容物の酸化劣化、細菌の増殖などの問題につ いては解決されていない。
そこで、本発明の目的は、耐熱性、耐衝撃性、柔軟性、透明性、プラスチック形成 材料につ ヽての耐溶出性と ヽつた、プラスチック製薬液容器に要求される特性を維 持しつつ、酸素の透過に伴う薬液の劣化、細菌の増殖などを高度に抑制することが できる薬液容器収容体と、その製造方法とを提供することである。
課題を解決するための手段
[0009] 上記目的を達成するために、本発明は、
(1) 薬液が収容、密封されかつ蒸気滅菌処理または熱水滅菌処理がされたプラス チック製薬液容器と、脱酸素剤と、前記プラスチック製薬液容器および前記脱酸素剤 を収容、密封するための、酸素バリア性を有する外装袋と、を備え、前記プラスチック 製薬液容器を形成するプラスチックは、蒸気滅菌処理または熱水滅菌処理がされて 力も 12時間以内における温度 25°C、湿度 60%RHでの酸素透過度力 200cmV m2' 24h'atm以上であり、かつ、酸素透過度が定常状態であるときの温度 25°C、湿 度 60%RHでの酸素透過度が、 100cm3Zm2' 24h' atm以下であることを特徴とす る、薬液容器収容体、
(2) 前記蒸気滅菌処理が、温度 100〜121°Cおよび水蒸気飽和状態の不活性ガ ス雰囲気下で、前記プラスチック製薬液容器を 10〜60分間加熱する処理であること を特徴とする、前記(1)に記載の薬液容器収容体、
(3) 前記プラスチック製薬液容器を形成するプラスチックが、多層フィルムであって 、前記プラスチック製薬液容器の内側面側にポリオレフイン系プラスチック力 なるシ 一ル層を有し、前記プラスチック製薬液容器の外側面側に保護層を有し、かつ、前 記シール層と前記保護層との間に、ポリオール系プラスチック力もなる中間層を有し ていることを特徴とする、前記(1)に記載の薬液容器収容体、
(4) 前記中間層を形成するポリオール系プラスチックが、エチレン含有量が 10〜4 5モル0 /0のエチレン ビュルアルコール共重合体であることを特徴とする、前記(3) に記載の薬液容器収容体、
(5) 前記多層フィルムのうち、前記中間層よりも前記プラスチック製薬液容器の外側 面側に設けられる層全体の水蒸気透過度力 温度 25°C、湿度 90%RHにおいて、 1 〜50gZm2' 24hであることを特徴とする、前記(3)に記載の薬液容器収容体、
(6) 前記多層フィルム力 前記シール層と、前記中間層との間に、さらに低吸水性 プラスチック力もなる低吸水性層を有していることを特徴とする、前記(3)に記載の薬 液容器収容体、
(7) 前記低吸水性プラスチックが、ポリ環状ォレフィンであることを特徴とする、前記 (6)に記載の薬液容器収容体、
(8) 前記プラスチック製薬液容器を形成するプラスチックは、蒸気滅菌処理または 熱水滅菌処理がされてから 12時間以内における温度 25°C、湿度 60%RHでの酸素 透過度が、 500〜1000cm3/m2' 24h'atmであることを特徴とする、前記(1)に記 載の薬液容器収容体、
(9) 前記プラスチック製薬液容器を形成するプラスチックは、酸素透過度が定常状 態であるときの温度 25°C、湿度 60%RHでの酸素透過度力 0. 5〜70cm3Zm2' 2 4h'atmであることを特徴とする、前記(1)に記載の薬液容器収容体、
(10) 前記プラスチック製薬液容器が、蒸気滅菌処理後または熱水滅菌処理後、酸 素透過度が定常状態になるまでに少なくとも 2日要するプラスチック力 形成されて いることを特徴とする、前記(1)に記載の薬液容器収容体、
(11) 前記プラスチック製薬液容器に収容、密封される薬液が、易酸化性物質を含 む薬液であることを特徴とする、前記(1)に記載の薬液容器収容体、
(12) 前記外装袋は、温度 25°C、湿度 90%RHにおける水蒸気透過度が、 0. 5〜 30gZm2' 24hであることを特徴とする、前記(1)に記載の薬液容器収容体、
(13) 蒸気滅菌処理または熱水滅菌処理がされてから 12時間以内における温度 2 5°C、湿度 60%RHでの酸素透過度が 200cm3Zm2' 24h'atm以上であり、かつ、 酸素透過度が定常状態であるときの温度 25°C、湿度 60%RHでの酸素透過度が 10 OcmVm2 · 24h' atm以下であるプラスチックで形成されたプラスチック製薬液容器 に、薬液を収容して密封した後、このプラスチック製薬液容器に蒸気滅菌処理または 熱水滅菌処理をし、次いで、蒸気滅菌処理後または熱水滅菌処理後のプラスチック 製薬液容器と、脱酸素剤とを、酸素バリア性を有する外装袋に収容して、密封するこ とを特徴とする、薬液容器収容体の製造方法、
(14) 前記蒸気滅菌処理が、温度 100〜121°Cおよび水蒸気飽和状態の不活性ガ ス雰囲気下で、前記プラスチック製薬液容器を 10〜60分間加熱する処理であること を特徴とする、前記(13)に記載の薬液容器収容体の製造方法、
(15) 前記外装袋は、温度 25°C、湿度 90%RHにおける水蒸気透過度が、 0. 5〜 30gZm2' 24hであることを特徴とする、前記(13)に記載の薬液容器収容体の製造 方法、
(16) 前記プラスチック製薬液容器と、前記脱酸素剤とを、前記外装袋に収容して、 密封する前に、前記プラスチック製薬液容器と前記外装袋との間の空間を不活性ガ スで置換することを特徴とする、前記(13)に記載の薬液容器収容体の製造方法、 を提供するものである。
本発明において、プラスチックの酸素透過度(O GTR)は、 JIS K 7126 「プラ
2 -1987 スチックフィルム及びシートの気体透過度試験方法」に規定の B法 (等圧法)に従って 測定したものであり、また、プラスチックの水蒸気透過度は、 JIS K 7129 「ブラ
-1992 スチックフィルム及びシートの水蒸気透過度試験方法 (機器測定法)」に規定の A法( 感湿センサー法)に従って測定したものである。
[0011] また、本発明において、プラスチック製薬液容器を形成するプラスチックの酸素透 過度としては、
(a) 蒸気滅菌処理 (水蒸気飽和状態の雰囲気下での加熱処理;例えば、蒸気滅菌 、高圧蒸気滅菌 (オートクレープ)など)や、熱水滅菌処理 (例えば、熱水シャワー滅 菌、熱水スプレー滅菌など)の後に、プラスチックの表面に付着した水分を除去して、 放冷し、蒸気滅菌処理後または熱水滅菌処理後から 12時間以内で、かつ、温度 25 °C、湿度 60%RHの条件下(一般的に、常温でかつ比較的中程度の湿度の環境下) で測定された値と、
(b) 酸素透過度の経時変化が観察されなくなった状態、すなわち、酸素透過度が 定常状態であるときに、温度 25°C、湿度 60%RHの条件下で測定された値と、 が規定されている。
[0012] 上記の酸素透過度は、好ましくは、蒸気滅菌処理後または熱水滅菌処理後 8時間 以内の測定値であり、より好ましくは、蒸気滅菌処理後または熱水滅菌処理後 6時間 以内の測定値である。なお、蒸気滅菌処理または熱水滅菌処理がされたプラスチッ クの温度を、放冷により、酸素透過度の測定温度である 25°Cまで低下させるには、通 常、 4時間程度の経過を要する。
[0013] また、蒸気滅菌処理または熱水滅菌処理は、好ましくは、常圧で、または、気圧 40 OOhPa以下の加圧雰囲気下で行われるものであり、より好ましくは、気圧 2000〜35 OOhPaの加圧雰囲気下で行われるものである。
また、上記の定常状態とは、酸素透過度 (例えば、温度 25°C、湿度 60%RHなどの 、一定条件下で測定された酸素透過度)の経時的変化が、 1時間あたり ± 5%以内、 好ましくは、 ± 3%以内となったときをいう。
[0014] また、通常、薬液容器の形成に用いられるプラスチックについて、蒸気滅菌処理後 または熱水滅菌処理後、放冷により、酸素透過度を定常状態にまで戻すには、一般 に、蒸気滅菌処理後または熱水滅菌処理後から 2日間、好ましくは、 3日間、より好ま しくは、 4日間の経過を要する。
発明の効果 [0015] 本発明の薬液容器収容体におけるプラスチック製薬液容器は、酸素透過度が定常 状態であるときに、温度 25°C、湿度 60%RHの環境下での酸素透過度が 100cm3Z m2 · 24h · atm以下である、 V、わゆる低酸素透過性のプラスチックで形成されて 、るこ とから、本発明によれば、上記薬液容器収容体の外装袋の開封後に、上記薬液容 器が放置されたとしても、薬液容器内への酸素の透過を抑制して、薬液容器に収容 されている薬液の酸ィ匕劣化を防止することができる。
[0016] また、上記プラスチック製薬液容器を形成するプラスチックは、蒸気滅菌処理後ま たは熱水滅菌処理後における、温度 25°C、湿度 60%RHの環境下での酸素透過度 が 200cm3/m2 · 24h · atm以上であって、酸素透過度が定常状態であるときに比べ て、極めて高い酸素透過性を示すものである。し力も、蒸気滅菌処理後または熱水 滅菌処理後のプラスチックの酸素透過度は、通常、蒸気滅菌処理または熱水滅菌処 理がされる前の状態へと急激には戻らない。このため、蒸気滅菌処理後または熱水 滅菌処理後の薬液容器を、プラスチックの酸素透過度が大幅に低下するまでの間に 、脱酸素剤とともに、酸素バリア性を有する外装袋に収容し、密封する本発明の薬液 容器収容体の製造方法によれば、上記薬液容器内に残存した酸素 (例えば、薬液 容器のヘッドスペースに残存した酸素や、薬液中の溶存酸素)を、薬液容器中から 除去することができる。
[0017] それゆえ、上記の薬液容器収容体およびその製造方法によれば、薬液容器に収 容された薬液についての酸化劣化を、高度に抑制することができる。また、誤って微 量の細菌が混入しても、その増殖を高度に抑制することができる。
図面の簡単な説明
[0018] [図 1]図 1は、プラスチック製薬液容器を形成するプラスチックの一実施形態を示す概 略断面図である。
[図 2]図 2は、プラスチック製薬液容器を形成するプラスチックの他の実施形態を示す 概略断面図である。
[図 3]図 3は、プラスチック製薬液容器を形成するプラスチックのさらに他の実施形態 を示す概略断面図である。
[図 4]図 4は、薬液バッグの一実施形態を示す正面図である。 [図 5]図 5は、実施例 1で得られた多層フィルムについての酸素透過度の経時的変化 を示すグラフである。
[図 6]図 6は、実施例および比較例で得られた薬液容器収容体につ!ヽての溶存酸素 濃度の経時的変化を示すグラフである。
[図 7]図 7は、実施例および比較例で得られた薬液容器 (薬液バッグ)についての溶 存酸素濃度の経時的変化を示すグラフである。
[図 8]図 8は、実施例 1で得られた多層フィルムについて、外装袋内に収容された状 態での酸素透過度の経時的変化を示すグラフである。
符号の説明
[0019] 1 シール層
4 中間層
5 保護層
10 プラスチック製薬液容器
発明の実施形態
[0020] 本発明の薬液容器収容体は、薬液が収容、密封されかつ蒸気滅菌処理または熱 水滅菌処理がされたプラスチック製薬液容器と、脱酸素剤と、上記プラスチック製薬 液容器および脱酸素剤を収容、密封するための外装袋とを備えて ヽる。
本発明の薬液容器収容体において、プラスチック製薬液容器は、蒸気滅菌処理ま たは熱水滅菌処理がされてから 12時間以内における温度 25°C、湿度 60%RHでの 酸素透過度が 200cm3/m2' 24h'atm以上であり、かつ、酸素透過度が定常状態 であるときの温度 25°C、湿度 60%RHでの酸素透過度が 100cm3Zm2' 24h'atm 以下であるプラスチックで形成されていることを特徴とする。
[0021] 上記プラスチックの、蒸気滅菌処理または熱水滅菌処理がされてから 12時間以内 における温度 25°C、湿度 60%RHでの酸素透過度は、上記範囲の中でも特に、好 ましくは、 500cm3Zm2' 24h'atm以上であり、より好ましくは、 700cm3/m2- 24h-a tm以上であり、さらに好ましくは、 700〜1000cm3Zm2' 24h'atmである。
[0022] 上記プラスチックについて、蒸気滅菌処理または熱水滅菌処理がされてから 12時 間以内における温度 25°C、湿度 60%RHでの酸素透過度が、上記範囲を下回ると、 プラスチック製薬液容器に対する蒸気滅菌処理後または熱水滅菌処理後に、プラス チック製薬液容器内のヘッドスペースに含まれる酸素や薬液の溶存酸素などを当該 薬液容器力も外部へと除去させる効果が低下して、薬液の酸ィ匕劣化を抑制、防止す る効果の低下を招いてしまう。一方、蒸気滅菌処理後または熱水滅菌処理後の酸素 透過度の上限は特に限定されないが、プラスチック製薬液容器に用いられるプラス チックの性質上、 1000cm3Zm2 · 24h' atm程度が上限となる。
[0023] 上記プラスチックの、酸素透過度が定常状態であるときの温度 25°C、湿度 60%R Hでの酸素透過度は、上記範囲の中でも特に、好ましくは、 70cmVm2- 24h- atm 以下であり、より好ましくは、 30cm3Zm2' 24h'atm以下であり、さらに好ましくは、 0 . 5〜: LOcm3Zm2' 24h'atmである。
上記プラスチックについて、酸素透過度が定常状態であるときの温度 25°C、湿度 6 0%RHでの酸素透過度力 上記範囲を上回ると、例えば、薬液容器収容体の外装 袋の開封後、上記薬液容器が放置された場合などにおいて、薬液容器内への酸素 の透過を抑制することができず、薬液容器に収容されて 、る薬液の酸ィ匕劣化を招 ヽ てしまう。一方、酸素透過度が定常状態であるときの酸素透過度の下限は、ゼロであ ることが好ましいが、プラスチック製薬液容器に用いられるプラスチックの性質上、 0. 5cm3Zm2' 24h' atm程度が好ましい。なお、酸素透過度の下限は、 lcmVm2- 24 h' atm程度であってもよぐまた、 5cm3Zm2' 24h'atm程度であってもよい。
[0024] なお、プラスチックの酸素透過度は、上述のとおり、 JIS K 7126 「プラスチック
-1987
フィルム及びシートの気体透過度試験方法」に規定の B法 (等圧法)に従って測定さ れた酸素透過度 (O GTR)である。酸素透過度の測定に用いられる測定機器として
2
は、例えば、 MOCON社製の商品名「OX— TRAN (登録商標)」や、 LYSSY社製 の商品名「OPT— 5000」などが挙げられる。
[0025] プラスチック製薬液容器に対する蒸気滅菌処理または熱水滅菌処理の処理条件 は、特に限定されず、薬液が収容された容器に対する滅菌処理の一般的な処理条 件に合わせて、具体的には、例えば、収容される薬液の種類、量、容器を形成する プラスチックの材質、厚みなどの条件に合わせて、かつ、内容液に対する滅菌処理 1S 所期の条件と適合するように、適宜設定すればよい。 [0026] 一般的には、蒸気滅菌処理は、温度 100〜121°Cおよび水蒸気飽和状態の雰囲 気中にて、加熱時間を 10〜60分とすればよい。また、蒸気滅菌処理時の加圧条件 は、特に限定されないが、好ましくは、常圧、または、気圧 4000hPa以下の加圧下で あり、より好ましくは、気圧 2000〜3500hPaのカロ圧下である。
一方、熱水滅菌処理は、従来公知の条件、または、蒸気滅菌処理の条件に準じて 処理すればよぐ例えば、常圧下または加圧下において、 100〜120°C程度の熱水 を、 10〜60分間程度、噴射または噴霧すればよい。
[0027] また、蒸気滅菌処理または熱水滅菌処理は、不活性ガス雰囲気下で行うことが好ま しい。この場合には、外装袋に収容、密封される前の薬液容器のヘッドスペースを、 蒸気滅菌処理または熱水滅菌処理中に、上記不活性ガスによってある程度置換さ せることができ、外装袋に収容、密封される前の薬液容器に含まれる酸素の量を、予 め低減させることができる。また、薬液容器の外装袋への収容、密封後に、薬液容器 内の酸素を除去するために必要となる脱酸素剤の量や、脱酸素処理に要する時間 を少なくすることができ、薬液の酸ィ匕劣化の抑制、防止効果をより一層向上させること ができる。
[0028] 上記不活性ガスとしては、特に限定されな!、が、例えば、窒素、アルゴンなどの、薬 液に対して酸化、その他の変質を生じさせにくい (好ましくは、生じさせない)気体で あることが好ましい。
プラスチック製薬液容器を形成するプラスチックについての、蒸気滅菌処理後また は熱水滅菌処理後における酸素透過度や、定常状態における酸素透過度は、上記 プラスチックの種類、厚みなどを変えることにより、また、上記プラスチックが多層フィ ルムである場合には、その層構成、厚みなどを変えることにより、それぞれ、適宜の値 に設定することができる。
[0029] また、プラスチック製薬液容器を形成するプラスチックの酸素透過度にっ ヽて、蒸 気滅菌処理後または熱水滅菌処理後における酸素透過度の値と、定常状態におけ る酸素透過度での値とに、顕著な差を設けるためには、例えば、薬液容器を形成す るプラスチックとして、ポリオール系プラスチックを用いることが好ましい。
ポリオール系プラスチックとしては、これに限定されないが、例えば、エチレンービニ ルアルコール共重合体などが挙げられる。
[0030] なかでも、好ましくは、エチレン含有量が 10〜45モル0 /0であるエチレン—ビュルァ ルコール共重合体が挙げられる。
エチレン ビュルアルコール共重合体のエチレン含有量が 10モル0 /0を下回ると、 例えば、蒸気滅菌処理または熱水滅菌処理に耐えるための十分な耐水性を確保で きなくなるおそれがある。また、蒸気滅菌処理または熱水滅菌処理によって上昇した 酸素透過度が、プラスチックの温度を低下させた後においても、元に戻らなくなるお それがある。
[0031] 逆に、エチレン ビュルアルコール共重合体のエチレン含有量力 5モル0 /0を超え ると、蒸気滅菌処理や熱水滅菌処理により白化して、容器の透明性が著しく低下して しまう。また、定常状態における酸素透過度が、温度 25°C、湿度 60%RHの条件下 で上記範囲を上回るおそれがあり、その結果、薬液容器収容体の外装袋の開封後、 上記薬液容器が放置された場合などにぉ ヽて、薬液容器内への酸素の透過を抑制 することができなくなるおそれがある。上記エチレン含有量は、上記範囲の中でも、特 に好ましく ίま、 25〜35モノレ0 /0である。
[0032] 上記ポリオール系プラスチックには、薬液容器の耐熱性を上げる目的で、必要に応 じて、例えば、ポリアミド系榭脂(例えば、ナイロン— 6など。)やリン系酸化防止剤(例 えば、トリス(2, 4 ジ— t—ブチルフエ-ル)ホスファイトなど。)を配合することができ る。これらポリアミド系榭脂ゃリン系酸ィ匕防止剤の配合量は、薬液容器に収容される 薬液に影響を及ぼさな ヽ範囲で設定すればょ ヽ。
[0033] プラスチック製薬液容器を形成するプラスチックは、薬液容器としての基本的性質 を維持するという観点から、ポリオール系プラスチックを中間層として、この中間層より も薬液容器の内側面側に、ポリオレフイン系プラスチック力 なるシール層(最内層) を設け、上記中間層よりも薬液容器の外側面側に保護層 (最外層)を設けた、多層構 造のプラスチックフィルムであることが望まし 、。
[0034] 上記シール層(最内層)は、例えば、輸液バッグなどを形成するためにプラスチック フィルムの周縁部が溶着される場合において、その溶着面をなすものであり、また、 薬液容器の内側面となって、薬液と直接に接触する面をなすものである。それゆえ、 上記シール層(最内層)を形成するプラスチックとしては、例えば、ヒートシールが可 能であること、薬液に対する安全性が確立されていることなどが求められる。
[0035] 上記シール層(最内層)を形成するためのプラスチックの具体例としては、例えば、 ポリオレフイン系プラスチックが挙げられる。
ポリオレフイン系プラスチックとしては、例えば、ポリエチレン(エチレンホモポリマー) 、エチレン. aーォレフィンコポリマー、ポリプロピレン(プロピレンホモポリマー)、プロ ピレン' aーォレフインランダムコポリマー、プロピレン' aーォレフインブロックコポリマ 一などが挙げられる。また、上記エチレン' aーォレフィンコポリマーの aーォレフイン としては、例えば、プロピレン、 1—ブテン、 1—ペンテン、 1—へキセン、 4—メチル一 1 ペンテンなどの炭素数 3〜6の α—ォレフインが挙げられ、上記プロピレン' a ォレフィンランダムコポリマーおよびプロピレン' aーォレフインブロックコポリマーの a ーォレフインとしては、例えば、エチレン、または、例えば、 1ーブテン、 1 ペンテン、 1—へキセン、 4—メチル 1—ペンテンなどの炭素数 4〜6の α—ォレフインが挙げ られる。
[0036] シール層に用いられるポリオレフイン系プラスチックは、上記例示のなかでも、好ま しくは、ポリエチレン、ポリプロピレン、これらの混合榭脂などが挙げられる。
また、例えば、易剥離性を有する隔壁 (易剥離シール部)で区画された複数の収容 室を有する袋状の薬液容器 (いわゆる複室バッグなど)を作製する場合には、易剥離 シール部の形成を容易にするために、シール層をポリエチレンとポリプロピレンとの混 合榭脂からなるプラスチックで形成することが好ましい。
[0037] 上記保護層 (最外層)は、プラスチック製薬液容器の外側面をなす層である。それ ゆえ、上記保護層(最外層)を形成するプラスチックとしては、例えば、蒸気滅菌処理 時または熱水滅菌処理時において、上記ポリオール系プラスチック力 なる中間層が 直接水分の影響を受けないようにするという観点や、薬液容器の形状、用途などに応 じて、所定の強度を保つことができるようにするという観点から、適宜選択すればよい
[0038] また、上記保護層(最外層)、または上記多層フィルムのうち、上記中間層よりもブラ スチック製薬液容器の外側面側に設けられる層全体につ ヽては、上記ポリオール系 プラスチック力もなる中間層が直接水分の影響を受けな 、ようにしつつ、本発明の作 用効果上、ある程度の水蒸気透過性を有していることが求められる。保護層(または 、上記多層フィルムのうち、上記中間層よりもプラスチック製薬液容器の外側面側に 設けられる層全体)についての水蒸気透過度としては、特に限定されないが、温度 2 5°C、湿度 90%RHにおいて、好ましくは、 l〜50gZm2' 24hであり、より好ましくは、 3〜30gZm2' 24hであり、さらに好ましくは、 3〜: LOg/m2' 24hである。
[0039] なお、上記水蒸気透過度は、 JIS K 7129 「プラスチックフィルム及びシートの
-1992
水蒸気透過度試験方法 (機器測定法)」に規定の A法 (感湿センサー法)に従って測 定したものである。
上記保護層(最外層)を形成するためのプラスチックの具体例としては、例えば、ポ リオレフイン系、ポリアミド系、ポリエステル系などのプラスチックが挙げられる。上記ポ リオレフイン系プラスチックとしては、上記例示したのと同じものが挙げられる。また、 上記ポリアミド系プラスチックとしては、例えば、ナイロン 6、ナイロン 6, 6、ナイ口 ン一 6, 10のナイロン類などが挙げられる。また、ポリエステル系のプラスチックとして は、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどが挙げられる
[0040] プラスチック製薬液容器を形成するプラスチックが、多層フィルムである場合におい て、その具体的態様としては、例えば、上述のとおり、プラスチック製薬液容器の内側 面側をなす最内層にポリオレフイン系プラスチック力 なるシール層を有しており、プ ラスチック製薬液容器の外側面側をなす最外層に保護層を有しており、かつ、上記 シール層と上記保護層との間にポリオール系プラスチック力もなる中間層を有してい る、 3層構造の多層フィルムが挙げられる。
[0041] また、上記多層フィルムは、上記中間層よりもプラスチック製薬液容器の内側面側( シール層側)に、さらに、低吸水性プラスチック力もなる低吸水性層を有していること が好ましい。この場合、上記ポリオール系プラスチック力もなる中間層力 薬液中の水 分による影響を受け難くすることができる。
上記低吸水性プラスチックとしては、例えば、ポリ環状ォレフィンなどが挙げられる。
[0042] ポリ環状ォレフィンは、吸水率が極めて低ぐ具体的には、 0. 01%以下であること から、ポリオール系プラスチック力もなる中間層の水分による影響を少なくするという 目的を達成する上で、好適である。
なお、上記吸水率は、 JIS K 7209 「プラスチック 吸水率の求め方」に規定
-2000
の B法 (沸騰水に浸漬後の吸水率)に従って測定したものである。
[0043] ポリ環状ォレフィンの具体例としては、例えば、エチレンとジシクロペンタジェン系化 合物との共重合体 (またはその水素添加物)、エチレンとノルボルネン系化合物との 共重合体 (またはその水素添加物)、シクロペンタジェン系化合物の開環重合体 (ま たはその水素添加物)、 2種以上のシクロペンタジェン系化合物(またはその水素添 加物)からなる開環共重合体などのポリ環状ォレフィンが挙げられる。
[0044] 上記多層フィルムには、さら〖こ、例えば、プラスチック製薬液容器に柔軟性、透明性 、耐衝撃性を付与する目的で、エラストマ一を含有するプラスチックからなる層を設け ることがでさる。
上記エラストマ一としては、例えば、ポリエチレン系エラストマ一、ポリプロピレン系ェ ラストマーなどのポリオレフイン系エラストマ一や、例えば、スチレン エチレン Zブチ レン スチレンブロック共重合体(SEBS)、スチレン ブタジエン スチレンブロック 共重合体(SBS)、スチレン イソプレン スチレンブロック共重合体(SIS)、マレイン 酸などで変性された変性 SEBS、スチレン一エチレン Zプロピレン一スチレンブロック 共重合体(SEPS)、スチレン エチレン Zブチレンブロック共重合体(SEB)、スチレ ンーエチレン Zプロピレンブロック共重合体(SEP)などのスチレン系エラストマ一な どが挙げられ、なかでも、好ましくは、ポリエチレン系エラストマ一が挙げられる。
[0045] プラスチック製薬液容器を形成するプラスチックとしては、これに限定されないが、 例えば、 Tダイ法やインフレーション法などの押出成形法によってフィルム状に成形さ れたものが挙げられる。このプラスチックフィルムを用いて上記薬液容器を形成するこ とにより、可撓性および柔軟性に優れたプラスチック製薬液容器を形成することがで きる。
図 1〜3は、プラスチック製薬液容器を形成するプラスチックが多層フィルムである 場合の、当該多層フィルムの層構成の好適態様を示す概略断面図である。すなわち 、力かる場合の好適態様としては、これに限定されないが、例えば、 (I) プラスチック製薬液容器の内側面側 Iをなす最内層から外側面側 oをなす最外 層にかけて、順に、ポリエチレンとポリプロピレンとの混合榭脂からなるシール層 1、ポ リエチレンからなる層 2、ポリ環状ォレフインカもなる低吸水性層 3、エチレン一ビニル アルコール共重合体力もなる中間層 4、および、ポリエチレン力 なる保護層 5を有し ており、さらに、低吸水性層 3と中間層 4との間、および、中間層 4と保護層 5との間に 、それぞれ、接着性榭脂 (例えば、接着性ポリオレフインなど。)からなる接着層 6, 7 を有している、 7層構造の多層フィルム(図 1参照)、
(II) プラスチック製薬液容器の内側面側 Iをなす最内層から外側面側 Oをなす最外 層にかけて、順に、ポリエチレンとポリプロピレンとの混合榭脂からなるシール層 1、ポ リエチレンからなる層 2、エチレン ビュルアルコール共重合体からなる中間層 4、お よび、ポリエチレンからなる保護層 5を有しており、さらに、ポリエチレンからなる層 2と 中間層 4との間、および、中間層 4と保護層 5との間に、それぞれ、接着性榭脂 (例え ば、接着性ポリオレフインなど。)からなる接着層 8, 7を有している、 6層構造の多層フ イルム(図 2参照)、
(III) プラスチック製薬液容器の内側面側 Iをなす最内層から外側面側 Oをなす最 外層にかけて、順に、ポリエチレン力もなるシール層 1,、ポリ環状ォレフインカもなる 低吸水性層 3、エチレン ビュルアルコール共重合体からなる中間層 4、および、ポリ エチレン力もなる保護層 5を有している、 4層構造の多層フィルム(図 3参照)、 が挙げられる。
[0046] なお、上記 (ΠΙ)に示す多層フィルムにおいて、低吸水性層 3と中間層 4との間や中 間層 4と保護層 5との間の接着は、各層間に接着剤を塗布することにより達成すること ができる。また、上記 (I)および (Π)に示す多層フィルムの場合と同様にして、接着性 榭脂からなる接着層を介在させてもよい。一方、上記 (I)および (Π)に示す多層フィ ルムにおいては、低吸水性層 3と中間層 4との接着や中間層 4と保護層 5との接着は 、各層間に接着層(6, 7, 8)を介在させずに、単に、接着剤を塗布することにより達 成することちでさる。
[0047] 上記多層フィルムにお 、て、各層の厚みは特に限定されず、プラスチック製薬液容 器全体として、蒸気滅菌処理後または熱水滅菌処理後の酸素透過度や、定常状態 での酸素透過度が、上述の範囲を満たすように設定すればょ 、。
また、プラスチック製薬液容器を、例えば、柔軟な薬液バッグとして形成する場合に は、上記中間層の厚みを 3〜20 μ mとし、多層フィルム全体の厚さを 180〜300 μ m 程度とすることが好ましい。
[0048] プラスチック製薬液容器の形態は特に限定されず、上述のように、例えば、輸液バ ッグなどのような、可撓性および柔軟性に優れた袋状の薬液容器(図 4参照)であつ てもよく、例えば、輸液ボトルなどのような、可撓性および柔軟性を有しつつ、それ自 身で容器形状を維持し得る強度を備えた薬液容器であってもよい。また、上記輸液 ノ ッグなどの袋状の薬液容器は、単室の薬液バッグであってもよぐ易剥離シール部 で区画された複数の収容室を有する、いわゆる複室バッグであってもよい。
[0049] これら輸液バッグ、輸液ボトルなどの形成方法としては、特に限定されず、例えば、 ラミネート、共押出などの、種々の方法を、薬液容器の形態に応じて適宜選択して採 用することができる。
本発明の薬液容器収容体にぉ ヽて、プラスチック製薬液容器に収容される薬液は 、特に限定されず、種々の薬剤が挙げられる。なかでも、上記のプラスチック製薬液 容器は、薬液容器を使用する通常の環境下で、外部からの酸素の侵入が抑制され ており、し力も、蒸気滅菌処理後または熱水滅菌処理後に、酸素吸収剤とともに酸素 バリア性を有する外装袋に収容され、密封されることで、ヘッドスペースに残存した酸 素や薬液中の溶存酸素が経時的に除去され得るものであることから、プラスチック製 薬液容器に収容される薬液としては、輸液、とりわけ、 L—システィン、 L—トリプトファ ン、脂肪、ビタミン A、ビタミン B、ビタミン Cなどの、酸化し易い物質を含む輸液が好
1
適である。
[0050] 本発明の薬液容器収容体において、外装袋は、酸素バリア性を有しており、温度 2 5°C、湿度 60%RHでの酸素透過度力 好ましくは、 0. 5cm3Zm2' 24h' atm以下で あり、より好ましくは、 0. lcm3Z24h'm2' atm以下である。
外装袋の酸素透過度が上記範囲を上回ると、プラスチック製薬液容器のヘッドスぺ ースに残存した酸素や薬液中の溶存酸素を事後的に除去する効果が得られにくくな る。 [0051] また、外装袋は、ある程度の水蒸気透過性を有して 、ることが好ま 、。この場合、 外装袋内の水分を外部に放出することができ、プラスチック製薬液容器の酸素透過 度が定常状態になり易いからである。
外装袋の水蒸気透過度としては、酸素バリア性との兼ね合いもあるが、好ましくは、 0. 5〜30gZm2' 24h程度であることが好ましい。
[0052] 外装袋の形成材料としては、特に限定されないが、例えば、
'外装袋の内側面側をなす、ヒートシールが可能なプラスチック (例えば、ポリエチレ ン、ポリプロピレンなどのポリオレフイン)力もなる溶融接着層と、この溶融接着層よりも 外装袋の外側面側に積層されたアルミニウム箔と、を有する多層フィルム;
•上記溶融接着層と、この溶着接着層における外装袋の外側面側表面に形成された
、無機物(例えば、アルミニウムなど。)や無機酸ィ匕物(例えば、アルミナなど。)の蒸 着膜とを含有して!/ヽる蒸着膜含有フィルム
などが挙げられる。
[0053] 上記無機酸ィ匕物の蒸着膜における無機酸ィ匕物としては、例えば、アルミナ (アルミ ユウム酸ィ匕物)、シリカ(ケィ素酸化物)、マグネシウム酸ィ匕物、チタン酸ィ匕物などが挙 げられる。なかでも、蒸着膜の透明性の観点から、好ましくは、アルミナが挙げられる また、ある程度の水蒸気透過性を有する外装袋の形成材料としては、例えば、溶着 接着層の外側面側に、ポリビニルアルコールやポリ塩ィ匕ビユリデンなどの、適度の酸 素バリア性と水蒸気透過性とを有するプラスチック層が積層された多層フィルムが挙 げられる。
[0054] 上記例示の外装袋の形成材料には、さらに、その外装袋の外側面側に、着色剤や 紫外線吸収剤を含有するインクを用いた遮光印刷が施されたものであってもよぐま た、外装袋の外側面側に、ポリエステルやポリオレフインなど力 なる保護フィルムが 積層されたものであってもよい。
本発明の薬液容器収容体において、脱酸素剤としては、特に限定されず、種々の 脱酸素剤が挙げられる。具体的には、例えば、水酸化鉄、酸化鉄、炭化鉄などの鉄 化合物を有効成分とするもの、低分子フエノールと活性炭を用いたものなどが挙げら れる。また、脱酸素剤の市販品としては、例えば、三菱ガス化学 (株)製の登録商標「 エージレス」、日本ィ匕薬 (株)製の商品名「モジュラン」、日本曹達 (株)製の商品名「セ キユール」、王子化工 (株)製の登録商標「タモツ」などが挙げられる。
[0055] また、脱酸素剤は、例えば、酸素透過度の高!、プラスチックフィルム (例えば、ポリ ォレフィンなど)力 なる袋に充填した状態で、蒸気滅菌処理または熱水滅菌処理が された薬液容器とともに、上記外装袋内に収容させればよ ヽ。
本発明の薬液容器収容体およびその製造方法によれば、例えば、易酸化性物質 を含む薬液であっても、長期にわたって安定して、酸ィ匕劣化させることなく保存するこ とができる。しかも、薬液バッグの使用時において、薬液の酸ィ匕劣化を防止すること ができる。
実施例
[0056] 次に、本発明を実施例および比較例に基づいて説明する力 本発明は下記の実 施例によって限定されるものではない。
<プラスチック製薬液容器の作製 >
プラスチック製薬液容器形成用プラスチック (多層フィルム)を構成する各成分は、 次のとおりである。
•PE (1):エチレン · 1—ブテン共重合体 (密度 0. 940g/cm3、水蒸気透過度 7g/ m2' 24h (25°C、 90%RH、 20 111)、商品名「ゥルトゼックス(登録商標)40208」、 ( 株)プライムポリマー製)
•PE (2):エチレン · 1ーブテン共重合体 (密度 0. 920gZcm3、商品名「ウルトゼック ス (登録商標) 2010」、(株)プライムポリマー製) 45重量%と、エチレン · 1—ブテン共 重合体 (密度 0. 885g/cm3,商品名「タフマー(登録商標) A0585X」、(株)プライ ムポリマー製) 50重量%と、ポリエチレンホモポリマー(密度 0. 965g/cm3、商品名「 ハイゼックス (登録商標) 65150BJ、(株)プライムポリマー製) 5重量%との混合物 •EVOH (l):エチレン含有量 27モル0 /0、商品名「ェバール (登録商標) L101」、(株 )クラレ製)
•EVOH (2):エチレン含有量 44モル0 /0、商品名「ェバール(登録商標) E105」、(株 )クラレ製) •COP :ノルボルネン系開環重合体水素添加物(吸水率 0. 01%未満、商品名「ゼォ ノア (登録商標) 1020RJ、 日本ゼオン (株)製)
•PP :ポリプロピレン (密度 0. 900gZcm3、商品名「B355」、(株)プライムポリマー製 )
•NY:ナイロンー6 (商品名「アミラン (登録商標) CM1017J、東レ (株)製) •PE— PP :上記 PE (1) 85重量%と、ポリプロピレンホモポリマー(密度 0. 910g/c m3、商品名「J103WA」、(株)プライムポリマー製) 15重量%との混合物
•adherent PE :不飽和カルボン酸変性ポリエチレン(密度 0. 905gZcm3、水蒸気 透過度 10gZm2' 24h (25°C、 90%RH、 20 ^ m) , (株)プライムポリマー製の接着 性ポリオレフイン、商品名「アドマー (登録商標)」)
•ΡΒΤ:ポリブチレンテレフタレート(水蒸気透過度 23gZm2' 24h (25°C、 90%RH、 10 m)、三菱エンジニアプラスチックス (株)製)
実施例 1
表 1に示す各層を、表 1に記載した順で積層されるように、共押出成形して、図 4に 示す薬液バッグ (プラスチック製薬液容器) 10を形成するための多層フィルムを得た 。この多層フィルムは、図 1に示す 7層構造のフィルムである。また、上記多層フィルム の保護層 5と接着層 7とからなる積層体についての水蒸気透過度は、 4. lg/m2- 24 h (25。C、 90%RH)であった。
[0057] 次いで、上記した多層フィルム 2枚を重ね合わせて、常法に従って、周縁部 11を熱 シールすることにより、図 4に示す薬液バッグ 10を作製した。なお、ロ部材 12には、 上記 PE (1)を用いて成形されたポート型の口部材を用いた。
実施例 2
表 1に示す各層を、表 1に記載した順で積層されるように、共押出成形して、薬液バ ッグ 10を形成するための多層フィルムを得た。この多層フィルムは、図 2に示す 6層 構造のフィルムである。
[0058] 次いで、上記した多層フィルム 2枚を用いたこと以外は、実施例 1と同様にして、図 4 に示す薬液バッグ 10を作製した。
比較例 1 表 1に示す各層を、表 1に記載した順で積層されるように、共押出成形して、薬液バ ッグ 10を形成するための多層フィルムを得た。この多層フィルムは、図 1に示したもの と同様の、 7層構造のフィルムである。
[0059] 次いで、上記した多層フィルム 2枚を用いたこと以外は、実施例 1と同様にして、図 4 に示す薬液バッグ 10を作製した。
比較例 2
表 1に示す各層を、表 1に記載した順で積層されるように、共押出成形して、薬液バ ッグ 10を形成するための多層フィルムを得た。この多層フィルムは、接着層を有しな V、5層構造のフィルムである。
[0060] 次いで、上記した多層フィルム 2枚を用いたこと以外は、実施例 1と同様にして、図 4 に示す薬液バッグ 10を作製した。
実施例 1〜2および比較例 1〜2について、薬液バッグ 10の層構成と、薬液バッグ 1 0を形成する多層フィルムの酸素透過度とを、表 1に示す。
[0061] [表 1]
実施例 1 実施例 2 比較例 1 比較例 2
<多層フィルムの層構成 >
(外倒面側 0)
PE (1) PE (1) PE (1) PE (1)
保護 層
{20 u m) (20// m) (20 u m) (20 m)
Adherent PE Adherent PE Adherent PE
接着層 (20ju m) (20ju m) (20ju m) 一
EVOH (1) EVOH (2)
中 間 層 ― ―
その他の層
接着 層
低吸水性層 その他の層
Figure imgf000023_0001
― ― ―
ポリエチレン PE (2) PE (2) PE (2) PE (2)
からなる層 (145 i< m) (155// m) (145 / m) (100 m)
PE-PP PE-PP PE-PP
シール層
(30 ^ m) (30^ m) (30// m)
(内側面側 I)
<多層フィルムの総厚み >
250 m 250 ju m 250 ju m 260 ju m
ぐ酸素透過度 >
定常状態 5 20 270 900
滅菌処理から
800 800
6時間轻過後 ― ―
※ r多層フィルムの層構成 J 欄のカツコ内の数値は、 各層の厚みである。
酸素透過度の単位は、 cm"7 m2'24h 'atm である。
[0062] <プラスチック製薬液容器形成用プラスチックに対する評価試験 >
実施例 1で得られた多層フィルムについて、水蒸気飽和状態の窒素雰囲気 (温度 1 10。C、圧力 2700hPa)中にて 30分間高圧蒸気滅菌処理した後、多層フィルムの表 面を約 40°Cの温風で 1分間除水させた。蒸気滅菌処理後、この多層フィルムを、温 度 25°C、湿度 60%RHの雰囲気下で 3週間放置して、酸素透過度 (温度 25°C、湿 度 60%RH)の経時的変化を観察した。なお、酸素透過度の測定には、 MOCON社 製の商品名「OX— TRAN (登録商標)」を使用した。
[0063] 図 5は、酸素透過度の経時的変化の測定結果を示すグラフである。図 5に示すよう に、多層フィルムの酸素透過度 (温度 25°C、湿度 60%RH)が定常状態に達するま でには、上記蒸気滅菌処理後、 3日間程度を要した。
<薬液容器収容体の製造 >
実施例 1〜2および比較例 1〜2で作製された薬液バッグ 10に、それぞれ、注射用 蒸留水 300mLを充填し、密封した。なお、ヘッドスペースの容量は約 30mLとし、そ の酸素濃度が 10%となるように窒素置換 (約 50%)した。
[0064] 次 、で、薬液バッグ 10を、それぞれ滅菌釜中に載置して、水蒸気飽和状態の窒素 雰囲気 (温度 110°C、圧力 2700hPa)中にて 30分間加熱することにより、高圧蒸気 滅菌処理を施した。上記窒素雰囲気中の酸素濃度は、 2%以下となるように調節した 高圧蒸気滅菌処理後、約 40°Cの温風を 1分間吹き当てて、除水させることにより、 薬液バッグ 10の外側表面力も水分を取り除いた後、脱酸素剤 (三菱ガス化学製;商 品名「エージレス (登録商標)」)とともに、外装袋内に収容して、密封することにより、 薬液容器収容体を得た。
[0065] 上記外装袋は、内側面側層がポリエチレン、中間層がポリビュルアルコール、外側 面側が延伸ポリプロピレン力もなる、 3層構造の多層フィルム力もなる袋体であって、 温度 25°C、湿度 60%RHでの酸素透過度は、 0. lcm3Zm2' 24h' atm以下であり、 温度 25°C、湿度 90%RHでの水蒸気透過度は、 0. 5gZm2' 24hであった。また、こ の外装袋は、内部の空間の容積を約 300〜500mLとし、窒素置換により、外装袋内 の酸素濃度が 2%以下となるように調整した。
[0066] なお、高圧蒸気滅菌処理後、薬液バッグを外装袋内に収容し、密封するまでの時 間は、 1時間以内であった。
<薬液容器収容体に対する評価試験 1 >
上記実施例 1〜2および比較例 1〜2で得られた薬液容器収容体を、それぞれ、温 度 25°C、湿度 60%RHの環境下に放置し、 1日毎に、内容液中の酸素濃度を非破 壊酸素濃度計 (製品名「Fibox 3」、 PreSens社製)で測定した。
[0067] その結果、図 6に示すように、実施例 1、 2および比較例 1、 2のいずれの薬液容器 収容体についても、外装袋への収容、密封後、約 7日を経過することにより、内容液 中の酸素濃度を lppm以下にまで低減させ得ることがわ力つた。
<薬液容器収容体に対する評価試験 2 >
上記評価試験 1で使用した薬液容器収容体を、さらに、薬液容器収容体の製造か ら 7日間放置して、内容液中の酸素濃度を Oppmにまで近づけた後、温度 25°C、湿 度 60%RHの環境下で、薬液バッグ 10を外装袋から取り出して、輸液バッグ用の吊り 下げスタンドに架けた状態で、温度 25°C、湿度 60%RHの環境下で放置し、所定時 間毎に、内容液中の酸素濃度を非破壊酸素濃度計 (前出の「Fibox 3」)で測定し た。
[0068] その結果、図 7に示すように、実施例 1および 2の薬液バッグでは、外装袋から取り 出した後も、内容液中への酸素の侵入を極力抑えることができた。これに対し、比較 例 1および比較例 2の薬液バッグでは、酸素の侵入が顕著であった。
<薬液容器収容体に対する評価試験 3 >
上記実施例 1で得られた薬液容器収容体 (評価試験 1および 2で使用したのとは別 の検体)を、それぞれ温度 25°C、湿度 60%RHの環境下に、種々の日数放置したも のを作製し、それぞれについて、薬液バッグを取り出し、フィルムを切り取って水分を 払拭した後、その酸素透過度を、 MOCON社製の商品名「OX— TRAN (登録商標 )」を使用して測定した。その結果を図 8に示す。
[0069] 図 8に示すように、多層フィルムの酸素透過度(温度 25°C、湿度 60%RH)は、外装 袋で包装されていたことにより、高圧蒸気滅菌処理後、 3〜4日間程度は高い値を示 していた。また、酸素透過度が定常状態に達するには、蒸気滅菌処理後、 10日間程 度を要することがわ力つた。よって、蒸気滅菌処理後、酸素透過度が定常状態に戻る までの間に、薬液バッグ 10内の酸素を脱酸素剤で十分に吸収することが可能であつ た。
[0070] <プラスチック製薬液容器の作製 >
実施例 3
上記例示のプラスチックを使用し、表 2に示す各層を、表 2に記載した順で積層され るように、共押出成形して、図 4に示す薬液バッグ (プラスチック製薬液容器) 10を形 成するための多層フィルムを得た。この多層フィルムは、図 1に示す 7層構造のフィル ムである。また、上記多層フィルムの保護層 5と接着層 7とからなる積層体についての 水蒸気透過度は、 4. lg/m2- 24h(25°C, 90%RH)であった。
[0071] 次いで、上記した多層フィルム 2枚を重ね合わせて、常法に従って、周縁部 11を熱 シールすることにより、図 4に示す薬液バッグ 10を作製した。なお、ロ部材 12には、 上記 PE (1)を用いて成形されたポート型の口部材を用いた。
実施例 4
表 2に示す各層を、表 2に記載した順で積層されるように、共押出成形して、薬液バ ッグ 10を形成するための多層フィルムを得た。この多層フィルムは、図 1に示す 7層 構造のフィルムである。また、上記多層フィルムの保護層 5と接着層 7とからなる積層 体についての水蒸気透過度は、 7. Og/m2- 24h (25°C, 90%RH)であった。
[0072] 次いで、上記した多層フィルム 2枚を用いたこと以外は、実施例 3と同様にして、図 4 に示す薬液バッグ 10を作製した。
実施例 5
表 2に示す各層を、表 2に記載した順で積層されるように、共押出成形して、薬液バ ッグ 10を形成するための多層フィルムを得た。この多層フィルムは、図 2に示す 6層 構造のフィルムである。また、上記多層フィルムの保護層 5と接着層 7とからなる積層 体についての水蒸気透過度は、 5. lg/m2- 24h (25°C, 90%RH)であった。
[0073] 次いで、上記した多層フィルム 2枚を用いたこと以外は、実施例 3と同様にして、図 4 に示す薬液バッグ 10を作製した。
実施例 6
表 2に示す各層を、表 2に記載した順で積層されるように、共押出成形して、薬液バ ッグ 10を形成するための多層フィルムを得た。この多層フィルムは、図 1に示す 7層 構造のフィルムである。また、上記多層フィルムの保護層 5と接着層 7とからなる積層 体についての水蒸気透過度は、 3. 2g/m2- 24h (25°C, 90%RH)であった。
[0074] 次いで、上記した多層フィルム 2枚を用いたこと以外は、実施例 3と同様にして、図 4 に示す薬液バッグ 10を作製した。
実施例 3〜6について、薬液バッグ 10の層構成と、薬液バッグ 10を形成する多層フ イルムの酸素透過度とを、表 2に示す。 [0075] [表 2]
実施例 3 実施例 4 実施例 5 実施例 6
<多層フィルムの層構成 >
(外側面側 o)
PE (1) PE (1) PE (1)
保護 S (20μπι) (16/Lim) (30/itn)
Adherent Adherent Adherent Adherent
接着層 PE PE PE PE
(20μηι) (20 / m) (16// m) (20 / m)
EVOH (1) EVOH (1) EVOH (1) EVOH (1)
中 間層
(15jum) (5/im) (4j«m) {Sum)
Adherent Adherent Adherent Adherent
接着層 PE PE PE PE
(20 m) (20 /m) (16μπι) (20( m)
a.
低吸水性層 一
PE (2) PE (2) PE (2) PE (2)
ポリエチレン
(130〃 m) (155jum> (124// m)
PE-PP PE-PP PE-PP PE-PP
シール層
(30i/m) (30 fi m) {24 μπι) (40 μ m)
(内側面側 I)
ぐ保護 S+接着層
4.1 7.0 5.1 3.2
水蒸気透過度 >
: O ¾
<多層フィルムの
250 250 200 m 300 / m
総厚み〉
<酸素透過度 >
定常状態 1 5 25 5
滅菌処理から
500 200 1000 500
6時間絰過後
※ 「多層フィルムの層構成」 檷のカツコ内の数値は、 各層の厚みである。
※ 酸素透過度の単位は、 cm m2'24h'atm である。
« 水蒸気透過度の単位は、 g/m 24h である。
[0076] <薬液容器収容体の製造 >
実施例 3〜6で作製された薬液バッグ 10に、それぞれ、注射用蒸留水 300mLを充 填し、密封した。なお、ヘッドスペースの容量は約 30mLとし、その酸素濃度が 10% となるように窒素置換 (約 50%)した。
次いで、薬液バッグ 10を、それぞれ滅菌釜中に載置して、水蒸気飽和状態の窒素 雰囲気(温度 110°C、圧力 2700hPa)中にて 30分間加熱することにより、高圧蒸気 滅菌処理を施した。上記窒素雰囲気中の酸素濃度は、 2%以下となるように調節した [0077] 高圧蒸気滅菌処理後、約 40°Cの温風を 1分間吹き当てて、除水させることにより、 薬液バッグ 10の外側表面力も水分を取り除いた後、脱酸素剤 (三菱ガス化学製;商 品名「エージレス (登録商標)」)とともに、外装袋内に収容して、密封することにより、 薬液容器収容体を得た。
上記外装袋は、実施例 3、 5および 6においては、内側面側層がポリエチレン、中間 層がポリビュルアルコール、外側面側が延伸ポリプロピレン力もなる、 3層構造の多層 フィルムからなる袋体であって、温度 25°C、湿度 60%RHでの酸素透過度力 0. lc m3Zm2' 24h' atm以下であり、温度 25°C、湿度 90%RHでの水蒸気透過度力 0. 5g/m2 · 24hであるものを用 、た。
[0078] 一方、実施例 4においては、中間層がエチレン ·ビュルアルコール共重合体、内外 層がポリエチレン力もなる、 3層構造の多層フィルム力もなる袋体であって、温度 25°C 、湿度 60%RHでの酸素透過度力 0. 5cm3Zm2' 24h' atmであり、温度 25°C、湿 度 90%RHでの酸素透過度力 3cm3Zm2' 24h' atmであるものを用いた。
[0079] また、上記外装袋は、内部の空間の容積を約 300〜500mLとし、窒素置換により、 外装袋内の酸素濃度が 2%以下となるように調整した。
<薬液容器収容体に対する評価試験 >
上記実施例 3〜6で得られた薬液容器収容体につ ヽて、上記評価試験 1と同様の 試験を行ったところ、いずれも、外装袋への収容、密封後、約 7日を経過することによ り、内容液中の酸素濃度を lppm以下にまで低減させることができた。
[0080] また、上記評価試験 2と同様の試験を行ったところ、実施例 3、 4および 6につ ヽて は、外装袋から取り出して 96時間(4日)後において、内容液中の酸素濃度は 0. 5p pmを下回っていたことより、内容液中への酸素の侵入が極力抑えられていることが わかった。一方、実施例 5については、外装袋力も取り出して 72時間(3日)後におい て、内容液中の酸素濃度は 2ppmを下回っており、内容液中への酸素の侵入が、十 分許容範囲であることがわ力つた。
[0081] なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示 にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな 本発明の変形例は、後記特許請求の範囲に含まれるものである。
産業上の利用可能性
本発明の薬液容器収容体およびその製造方法によれば、薬液容器に収容された 薬液についての酸ィ匕劣化を、高度に抑制することができることから、本発明は、例え ば、薬液容器、輸液容器などの医療用容器の用途において、とりわけ、易酸化性物 質を含む薬液などを収容する医療用容器の用途において、好適である。

Claims

請求の範囲
[1] 薬液が収容、密封されかつ蒸気滅菌処理または熱水滅菌処理がされたプラスチッ ク製薬液容器と、脱酸素剤と、前記プラスチック製薬液容器および前記脱酸素剤を 収容、密封するための、酸素バリア性を有する外装袋と、を備え、
前記プラスチック製薬液容器を形成するプラスチックは、蒸気滅菌処理または熱水 滅菌処理がされてから 12時間以内における温度 25°C、湿度 60%RHでの酸素透過 度力 200cm3/m2' 24h'atm以上であり、かつ、酸素透過度が定常状態であるとき の温度 25°C、湿度 60%RHでの酸素透過度力 100cm3Zm2' 24h' atm以下であ ることを特徴とする、薬液容器収容体。
[2] 前記蒸気滅菌処理が、温度 100〜121°Cおよび水蒸気飽和状態の不活性ガス雰 囲気下で、前記プラスチック製薬液容器を 10〜60分間加熱する処理であることを特 徴とする、請求項 1に記載の薬液容器収容体。
[3] 前記プラスチック製薬液容器を形成するプラスチックが、多層フィルムであって、前 記プラスチック製薬液容器の内側面側にポリオレフイン系プラスチック力もなるシール 層を有し、前記プラスチック製薬液容器の外側面側に保護層を有し、かつ、前記シ ール層と前記保護層との間に、ポリオール系プラスチック力もなる中間層を有してい ることを特徴とする、請求項 1に記載の薬液容器収容体。
[4] 前記中間層を形成するポリオール系プラスチックが、エチレン含有量が 10〜45モ ル%のエチレン ビニルアルコール共重合体であることを特徴とする、請求項 3に記 載の薬液容器収容体。
[5] 前記多層フィルムのうち、前記中間層よりも前記プラスチック製薬液容器の外側面 側に設けられる層全体の水蒸気透過度力 温度 25°C、湿度 90%RHにおいて、 1〜 50gZm2' 24hであることを特徴とする、請求項 3に記載の薬液容器収容体。
[6] 前記多層フィルム力 前記シール層と、前記中間層との間に、さらに低吸水性ブラ スチック力もなる低吸水性層を有して 、ることを特徴とする、請求項 3に記載の薬液容 器収容体。
[7] 前記低吸水性プラスチック力 ポリ環状ォレフィンであることを特徴とする、請求項 6 に記載の薬液容器収容体。
[8] 前記プラスチック製薬液容器を形成するプラスチックは、蒸気滅菌処理または熱水 滅菌処理がされてから 12時間以内における温度 25°C、湿度 60%RHでの酸素透過 度力 500〜1000cm3Zm2' 24h'atmであることを特徴とする、請求項 1に記載の 薬液容器収容体。
[9] 前記プラスチック製薬液容器を形成するプラスチックは、酸素透過度が定常状態で あるときの温度 25°C、湿度 60%RHでの酸素透過度力 0. 5〜70cm3Zm2' 24h'a tmであることを特徴とする、請求項 1に記載の薬液容器収容体。
[10] 前記プラスチック製薬液容器が、蒸気滅菌処理後または熱水滅菌処理後、酸素透 過度が定常状態になるまでに少なくとも 2日要するプラスチック力 形成されているこ とを特徴とする、請求項 1に記載の薬液容器収容体。
[11] 前記プラスチック製薬液容器に収容、密封される薬液が、易酸化性物質を含む薬 液であることを特徴とする、請求項 1に記載の薬液容器収容体。
[12] 前記外装袋は、温度 25°C、湿度 90%RHにおける水蒸気透過度力 0. 5〜30g /m2 · 24hであることを特徴とする、請求項 1に記載の薬液容器収容体。
[13] 蒸気滅菌処理または熱水滅菌処理がされてから 12時間以内における温度 25°C、 湿度 60%RHでの酸素透過度が 200cm3Zm2' 24h'atm以上であり、かつ、酸素透 過度が定常状態であるときの温度 25°C、湿度 60%RHでの酸素透過度が 100cm3 /m2 · 24h · atm以下であるプラスチックで形成されたプラスチック製薬液容器に、薬 液を収容して密封した後、このプラスチック製薬液容器に蒸気滅菌処理または熱水 滅菌処理をし、次いで、蒸気滅菌処理後または熱水滅菌処理後のプラスチック製薬 液容器と、脱酸素剤とを、酸素バリア性を有する外装袋に収容して、密封することを 特徴とする、薬液容器収容体の製造方法。
[14] 前記蒸気滅菌処理が、温度 100〜121°Cおよび水蒸気飽和状態の不活性ガス雰 囲気下で、前記プラスチック製薬液容器を 10〜60分間加熱する処理であることを特 徴とする、請求項 13に記載の薬液容器収容体の製造方法。
[15] 前記外装袋は、温度 25°C、湿度 90%RHにおける水蒸気透過度力 0. 5〜30g Zm2' 24hであることを特徴とする、請求項 13に記載の薬液容器収容体の製造方法 前記プラスチック製薬液容器と、前記脱酸素剤とを、前記外装袋に収容して、密封 する前に、前記プラスチック製薬液容器と前記外装袋との間の空間を不活性ガスで 置換することを特徴とする、請求項 13に記載の薬液容器収容体の製造方法。
PCT/JP2006/308206 2005-04-28 2006-04-19 薬液容器収容体およびその製造方法 WO2006118034A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP06745438.9A EP1875889B1 (en) 2005-04-28 2006-04-19 Housing body for medical liquid container and process for producing the same
CN2006800173080A CN101180026B (zh) 2005-04-28 2006-04-19 药液容器收容体及其制造方法
US11/911,644 US8465819B2 (en) 2005-04-28 2006-04-19 Drug solution container package and method for manufacturing the same
CA2604611A CA2604611C (en) 2005-04-28 2006-04-19 Drug solution container package and method for manufacturing the same
DK06745438.9T DK1875889T3 (en) 2005-04-28 2006-04-19 Medical liquid container storage body and method of manufacture thereof
JP2007514626A JP4939405B2 (ja) 2005-04-28 2006-04-19 薬液容器収容体およびその製造方法
KR1020077026574A KR101231965B1 (ko) 2005-04-28 2006-04-19 약액 용기 수용체 및 그 제조 방법
ES06745438.9T ES2529741T3 (es) 2005-04-28 2006-04-19 Cuerpo de alojamiento para envase de líquido médico y procedimiento para producir el mismo
AU2006241992A AU2006241992B8 (en) 2005-04-28 2006-04-19 Drug solution container package and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-132624 2005-04-28
JP2005132624 2005-04-28

Publications (1)

Publication Number Publication Date
WO2006118034A1 true WO2006118034A1 (ja) 2006-11-09

Family

ID=37307835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308206 WO2006118034A1 (ja) 2005-04-28 2006-04-19 薬液容器収容体およびその製造方法

Country Status (12)

Country Link
US (1) US8465819B2 (ja)
EP (1) EP1875889B1 (ja)
JP (2) JP4939405B2 (ja)
KR (1) KR101231965B1 (ja)
CN (1) CN101180026B (ja)
AU (1) AU2006241992B8 (ja)
CA (1) CA2604611C (ja)
DK (1) DK1875889T3 (ja)
ES (1) ES2529741T3 (ja)
PT (1) PT1875889E (ja)
TW (1) TWI299988B (ja)
WO (1) WO2006118034A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014032A1 (ja) 2007-07-20 2009-01-29 Otsuka Pharmaceutical Factory, Inc. 薬剤容器および多層フィルム
JPWO2007055312A1 (ja) * 2005-11-10 2009-04-30 田辺三菱製薬株式会社 ピラゾロン化合物含有水溶液が充填されたプラスチック容器
JP2009153729A (ja) * 2007-12-27 2009-07-16 Dainippon Printing Co Ltd 医療用プラスチック製容器用の包装袋
JP2009153730A (ja) * 2007-12-27 2009-07-16 Dainippon Printing Co Ltd プレフィルドシリンジ用の包装袋
WO2015092328A1 (fr) * 2013-12-20 2015-06-25 bioMérieux Utilisation de film polymere pour l'emballage de milieu de culture
JP2016520553A (ja) * 2013-04-08 2016-07-14 イノファーマ ライセンシング エルエルシー 酸化感受性製剤のための安定なすぐ使用できる注入バッグを製造するプロセス
US9901513B2 (en) 2006-10-27 2018-02-27 Otsuka Pharmaceutical Factory, Inc. Drug solution having reduced dissolved oxygen content, method of producing the same and drug solution containing unit having reduced dissolved oxygen content
JP2019014137A (ja) * 2017-07-06 2019-01-31 大日本印刷株式会社 バリア性積層体および輸液バッグ用外装袋
JP7452219B2 (ja) 2020-04-20 2024-03-19 Ube株式会社 ポリアミド樹脂組成物

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2266521T3 (da) * 2008-03-14 2013-10-28 Otsuka Pharma Co Ltd Plastikampul
CN102836066B (zh) * 2008-03-14 2014-11-05 株式会社大塚制药工厂 着色塑料容器
US20100293892A1 (en) * 2008-12-12 2010-11-25 Edwards Lifesciences Corporation Method of Packaging and Package for Sensors
EP2398506B1 (en) * 2009-02-13 2018-01-10 Mercer Technologies Limited Sterilisation services apparatus and method of sterilisation
US20100247936A1 (en) * 2009-03-24 2010-09-30 Baxter International Inc. Non-pvc films with tough core layer
JP5491514B2 (ja) * 2009-10-02 2014-05-14 株式会社細川洋行 収容容器
CN102883960B (zh) 2010-02-16 2015-08-19 耐斯特科技有限公司 具有复合灵活壁的流体容器
FR2995789A1 (fr) * 2012-09-25 2014-03-28 Pharmadyne Utilisation d'une poche preremplie en perfusion ambulatoire
BR112015022171B1 (pt) 2013-03-14 2023-01-03 Fresenius Kabi Deutschland Gmbh Sistema de embalagem farmacêutica para um fármaco sensível ao oxigênio injetável
CA2902343C (en) 2013-03-14 2022-08-02 Becton Dickinson France S.A.S. Injectable morphine formulations
FR3015439B1 (fr) * 2013-12-20 2017-03-24 Biomerieux Sa Utilisation de film polymere pour l'emballage de milieu de culture
CN107106409A (zh) * 2014-10-02 2017-08-29 泰尔茂株式会社 用于容纳蛋白质溶液制剂的医疗用容器
CN107073889B (zh) * 2014-10-03 2019-06-28 三井化学东赛璐株式会社 层叠膜、输液袋用外包装袋及输液袋包装体
CN108910262A (zh) * 2017-04-01 2018-11-30 南京光谷数据处理有限公司 用于氧化干燥型油墨的环保回收包装物
PL3804686T3 (pl) * 2017-10-10 2023-12-11 Sun Pharmaceutical Industries Ltd Dożylna infuzyjna postać dawkowania dla pemetreksedu
FR3097736B1 (fr) * 2019-06-26 2021-07-09 Ceva Sante Animale Conditionnements polymeriques et leur utilisation pour conserver une composition pharmaceutique
KR102246313B1 (ko) * 2020-06-17 2021-04-29 에스알테크노팩 주식회사 수액 용기용 다층 필름 및 그 제조 방법, 이를 포함하는 수액 용기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275346A (ja) 1987-05-07 1988-11-14 Terumo Corp 輸液剤の包装体
JPH04276253A (ja) * 1991-03-04 1992-10-01 Nippon Zeon Co Ltd 医療用または食品包装用容器
JPH1080464A (ja) 1996-09-06 1998-03-31 Material Eng Tech Lab Inc ガスバリアー性を有する輸液容器
JPH11285520A (ja) 1998-04-01 1999-10-19 Mitsui Chem Inc 薬品容器用フィルム
JP2003010287A (ja) * 2001-03-27 2003-01-14 Nipro Corp アルブミン溶液収容プラスチック容器

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131049A (en) * 1979-04-02 1980-10-11 Sumitomo Chem Co Ltd Novel thermoplastic resin composition
GB2025895B (en) * 1979-07-17 1982-10-13 Montedison Spa Bags made of composite thermoplastic films for preserving transfusion blood
JPS57206447A (en) * 1981-06-12 1982-12-17 Terumo Corp Plastic container receiving liquid drug pasturized with high pressure steam and production thereof
WO1988008694A1 (en) 1987-05-07 1988-11-17 Terumo Kabushiki Kaisha Packed transfusion
JPH0624575B2 (ja) 1989-01-30 1994-04-06 森下ルセル株式会社 輸液入り合成樹脂容器の製造方法
JP2716514B2 (ja) * 1989-03-31 1998-02-18 住友ベークライト株式会社 積層体
US5032632A (en) * 1990-05-15 1991-07-16 E. I. Du Pont De Nemours And Company Oxidation-resistant ethylene vinyl alcohol polymer compositions
JP2960520B2 (ja) * 1990-10-09 1999-10-06 株式会社細川洋行 バリアー性輸液包装材
JP3030525B2 (ja) * 1991-07-29 2000-04-10 キョーラク株式会社 薬液用プラスチック容器
JPH0767936A (ja) 1993-07-12 1995-03-14 Otsuka Pharmaceut Factory Inc 輸液容器
US5766751A (en) * 1994-01-24 1998-06-16 Sumitomo Chemical Company, Ltd. Laminate, laminate film and shaped article comprising inorganic laminar compound
CA2165209A1 (en) * 1994-04-20 1995-11-02 Yoshitomi Pharmaceutical Industries Ltd. Container filled with infusion liquids, infusion preparation and high calorie infusion preparation comprising vitamins
JP2932162B2 (ja) 1995-10-05 1999-08-09 テルモ株式会社 アミノ酸及び還元糖電解質を含有する輸液剤
ES2163574T3 (es) * 1995-12-04 2002-02-01 Jms Co Ltd Recipiente para uso medico.
SE9601348D0 (sv) * 1996-04-10 1996-04-10 Pharmacia Ab Improved containers for parenteral fluids
JP3700039B2 (ja) * 1997-01-20 2005-09-28 株式会社大塚製薬工場 プラスチックフィルム製複室容器
JP3906455B2 (ja) 1998-05-11 2007-04-18 株式会社大塚製薬工場 多層フィルム及びその製品
US6713137B1 (en) * 1998-11-23 2004-03-30 Fresenius Kabi Ab Medical containers
JP4492985B2 (ja) * 2000-02-24 2010-06-30 三菱商事プラスチック株式会社 液体医薬品用プラスチック容器及び液体医薬品の保存回収方法
JP2002160771A (ja) * 2000-11-24 2002-06-04 Material Eng Tech Lab Inc 複室容器
JP2002173171A (ja) * 2000-12-05 2002-06-18 Mitsubishi Engineering Plastics Corp 積層フィルム製の医療溶液用袋
DE60234142D1 (de) 2001-03-27 2009-12-10 Nipro Corp Albuminlösung enthaltender Kunststoffbehälter
US6698213B2 (en) * 2001-05-22 2004-03-02 Integrated Biosystems, Inc. Systems and methods for freezing and storing biopharmaceutical material
FI20011686A0 (fi) 2001-08-22 2001-08-22 Wihuri Oy Hörysterilisoitava monikerroskalvo sekä siitä valmistettavat säilytysastiat
DE60211731T2 (de) 2001-11-01 2007-05-16 Integrated Biosystems Inc., Napa Vorrichtung und verfahren zum einfrieren und zur lagerung von biopharmazeutischem material
JP2003205014A (ja) 2002-01-10 2003-07-22 Fumio Murai 加熱処理済複室容器
CA2482520C (en) * 2002-04-30 2011-01-04 Otsuka Pharmaceutical Factory, Inc. Multiple-chamber medical container and bag for enclosing same
JP2004128248A (ja) * 2002-10-03 2004-04-22 Nikon Corp 磁気遮蔽部材、磁気シールドルーム及び露光装置
PT1616549E (pt) * 2003-04-23 2012-11-12 Otsuka Pharma Co Ltd Ampola de plástico de enchimento de uma solução de fármaco e processo para a sua produção
WO2005004902A1 (ja) 2003-07-10 2005-01-20 Nipro Corporation プラスチック容器入り組換えヒト血清アルブミン製剤
JP4535840B2 (ja) 2003-10-28 2010-09-01 株式会社大塚製薬工場 医療用複室容器の製造方法
JP2005304911A (ja) * 2004-04-23 2005-11-04 Inter Medic Kk 医療用複室容器及びその製造方法
JP2006020657A (ja) 2004-07-05 2006-01-26 Otsuka Pharmaceut Factory Inc 微量元素配合輸液製剤
JP4488907B2 (ja) 2005-01-05 2010-06-23 株式会社大塚製薬工場 医療用二重包装製剤の製造方法および医療用二重包装製剤
JP4607609B2 (ja) 2005-02-08 2011-01-05 株式会社大塚製薬工場 薬液バッグ、薬液バッグ収容体および薬液バッグ収容体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275346A (ja) 1987-05-07 1988-11-14 Terumo Corp 輸液剤の包装体
JPH04276253A (ja) * 1991-03-04 1992-10-01 Nippon Zeon Co Ltd 医療用または食品包装用容器
JPH1080464A (ja) 1996-09-06 1998-03-31 Material Eng Tech Lab Inc ガスバリアー性を有する輸液容器
JPH11285520A (ja) 1998-04-01 1999-10-19 Mitsui Chem Inc 薬品容器用フィルム
JP2003010287A (ja) * 2001-03-27 2003-01-14 Nipro Corp アルブミン溶液収容プラスチック容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1875889A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189469A (ja) * 2005-11-10 2013-09-26 Mitsubishi Tanabe Pharma Corp ピラゾロン化合物含有水溶液が充填されたプラスチック容器
JPWO2007055312A1 (ja) * 2005-11-10 2009-04-30 田辺三菱製薬株式会社 ピラゾロン化合物含有水溶液が充填されたプラスチック容器
JP5973118B2 (ja) * 2005-11-10 2016-08-23 田辺三菱製薬株式会社 ピラゾロン化合物含有水溶液が充填されたプラスチック容器
US9901513B2 (en) 2006-10-27 2018-02-27 Otsuka Pharmaceutical Factory, Inc. Drug solution having reduced dissolved oxygen content, method of producing the same and drug solution containing unit having reduced dissolved oxygen content
JP5330240B2 (ja) * 2007-07-20 2013-10-30 株式会社大塚製薬工場 薬剤容器および多層フィルム
EP2174636A4 (en) * 2007-07-20 2011-08-31 Otsuka Pharma Co Ltd MEDICAMENT CONTAINER AND MULTILAYER FILM
US8328783B2 (en) 2007-07-20 2012-12-11 Otsuka Pharmaceutical Factory, Inc. Drug container and multilayer film
CN101754742B (zh) * 2007-07-20 2013-05-01 株式会社大塚制药工厂 药剂容器及多层薄膜
EP2174636A1 (en) * 2007-07-20 2010-04-14 Otsuka Pharmaceutical Factory, Inc. Medicine container and multilayer film
WO2009014032A1 (ja) 2007-07-20 2009-01-29 Otsuka Pharmaceutical Factory, Inc. 薬剤容器および多層フィルム
JP2009153730A (ja) * 2007-12-27 2009-07-16 Dainippon Printing Co Ltd プレフィルドシリンジ用の包装袋
JP2009153729A (ja) * 2007-12-27 2009-07-16 Dainippon Printing Co Ltd 医療用プラスチック製容器用の包装袋
JP2019081767A (ja) * 2013-04-08 2019-05-30 イノファーマ ライセンシング エルエルシー 酸化感受性製剤のための安定なすぐ使用できる注入バッグを製造するプロセス
JP2016520553A (ja) * 2013-04-08 2016-07-14 イノファーマ ライセンシング エルエルシー 酸化感受性製剤のための安定なすぐ使用できる注入バッグを製造するプロセス
WO2015092328A1 (fr) * 2013-12-20 2015-06-25 bioMérieux Utilisation de film polymere pour l'emballage de milieu de culture
JP2017502886A (ja) * 2013-12-20 2017-01-26 ビオメリューBiomerieux 培養培地の包装用ポリマーフィルムの使用
US20160354998A1 (en) * 2013-12-20 2016-12-08 Biomerieux Use of polymer film for packaging a culture medium
EP3450330A1 (fr) * 2013-12-20 2019-03-06 bioMérieux Utilisation de film polymère pour l'emballage de milieu de culture
FR3015438A1 (fr) * 2013-12-20 2015-06-26 Biomerieux Sa Utilisation de film polymere pour l'emballage de milieu de culture
US10538067B2 (en) 2013-12-20 2020-01-21 Biomerieux Use of polymer film for packaging a culture medium
JP2019014137A (ja) * 2017-07-06 2019-01-31 大日本印刷株式会社 バリア性積層体および輸液バッグ用外装袋
JP7452219B2 (ja) 2020-04-20 2024-03-19 Ube株式会社 ポリアミド樹脂組成物

Also Published As

Publication number Publication date
JP2011212505A (ja) 2011-10-27
EP1875889B1 (en) 2014-11-26
JP5167392B2 (ja) 2013-03-21
KR101231965B1 (ko) 2013-02-08
CA2604611C (en) 2013-10-22
CN101180026B (zh) 2012-02-22
PT1875889E (pt) 2015-01-14
EP1875889A4 (en) 2013-11-27
TW200716079A (en) 2007-05-01
EP1875889A1 (en) 2008-01-09
TWI299988B (en) 2008-08-21
JP4939405B2 (ja) 2012-05-23
CA2604611A1 (en) 2006-11-09
US20090032426A1 (en) 2009-02-05
DK1875889T3 (en) 2014-12-08
JPWO2006118034A1 (ja) 2008-12-18
AU2006241992B8 (en) 2011-11-17
AU2006241992A1 (en) 2006-11-09
ES2529741T3 (es) 2015-02-25
KR20080003423A (ko) 2008-01-07
AU2006241992B2 (en) 2011-11-03
US8465819B2 (en) 2013-06-18
CN101180026A (zh) 2008-05-14

Similar Documents

Publication Publication Date Title
JP5167392B2 (ja) 薬液容器収容体およびその製造方法
US5129894A (en) Package units for medical purposes
EP0686091B1 (en) Autoclavable multilayer films
EP2303570B1 (en) Evoh barrier film with reduced autoclave shock
TWI437984B (zh) 醫療容器用多層體及醫療容器
WO2009081462A1 (ja) 医療容器用多層体および医療容器
JP5587597B2 (ja) 包装体
JP2005349182A (ja) 薬剤容器
JP3700039B2 (ja) プラスチックフィルム製複室容器
JP3906455B2 (ja) 多層フィルム及びその製品
KR100740508B1 (ko) 이중 챔버 수액 용기 및 이에 적용되는 다층 필름
JPH0525503B2 (ja)
US8025977B2 (en) Multilayer film
JP5106804B2 (ja) 多層容器の製造方法
JP4506241B2 (ja) 密封容器の製造方法
RU2448677C2 (ru) Многослойный корпус для медицинских контейнеров и медицинский контейнер
JP2020157571A (ja) 積層体、包装体及び包装物品
JP4273260B2 (ja) 容器入り食品または医薬品の製造方法
JPS6239470A (ja) 酸素により変質することのない薬液入りプラスチツク容器の製造方法
JPH10277134A (ja) 酸素易変質性薬剤入り容器の包装体及びその滅菌処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680017308.0

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2604611

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11911644

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006241992

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007514626

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006745438

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006241992

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020077026574

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006745438

Country of ref document: EP