WO2006118013A1 - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
WO2006118013A1
WO2006118013A1 PCT/JP2006/308048 JP2006308048W WO2006118013A1 WO 2006118013 A1 WO2006118013 A1 WO 2006118013A1 JP 2006308048 W JP2006308048 W JP 2006308048W WO 2006118013 A1 WO2006118013 A1 WO 2006118013A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
composite oxide
secondary battery
Prior art date
Application number
PCT/JP2006/308048
Other languages
English (en)
French (fr)
Inventor
Takashi Takeuchi
Akihiro Taniguchi
Shuji Tsutsumi
Kensuke Nakura
Hiroshi Matsuno
Hideo Sasaoka
Satoshi Matsumoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Sumitomo Metal Mining Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd., Sumitomo Metal Mining Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2006800050485A priority Critical patent/CN101120464B/zh
Priority to US11/794,579 priority patent/US7981546B2/en
Publication of WO2006118013A1 publication Critical patent/WO2006118013A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of the positive electrode active material.
  • a non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a separator interposed therebetween.
  • a microporous membrane made of polyolefin is mainly used.
  • the non-aqueous electrolyte uses an aprotic organic solvent in which lithium salts such as LiBF and LiPF are dissolved.
  • lithium-containing composite oxides as positive electrode active materials and carbon materials, silicon compounds, tin compounds, etc. as negative electrode materials
  • lithium secondary batteries with high energy density.
  • lithium cobalt oxide for example, LiCoO
  • Lithium cobalt oxide is
  • the potential to be generated is high and the safety is excellent, and the synthesis is relatively easy.
  • Nickel is a resource
  • Patent Literature 1 Co and A1 are added to LiNiO from the viewpoint of improving the thermal stability of LiNiO.
  • Patent Document 2 from the viewpoint of improving cycle characteristics and high-temperature storage characteristics, a general formula: Li Ni Co Mn AO (where A is Fe ⁇ V, Cr ⁇ Mn ⁇ Ti, Mg ⁇ Al, Consists of B and Ca
  • Group power selected at least one selected, 0. 05 ⁇ x ⁇ l. 10, 0. 10 ⁇ y + z ⁇ 0. 70, 0. 05 ⁇ z ⁇ 0. 40, 0 ⁇ a ⁇ 0. 1 ) is represented by the positive electrode active material electronic conductivity ⁇ is a 10- 4 ⁇ ⁇ 10- ⁇ Zcm have been proposed.
  • an active material having a composition that can improve cycle characteristics and high-temperature storage characteristics is not practical because of its low capacity.
  • Patent Document 3 from the viewpoint of improving cycle characteristics, a general formula: A P Ni M N O (formula
  • 2 A is at least one selected from alkali metals
  • P is a group force consisting of Mg, B, P and In
  • M is a group force selected from Mn, Co and AU
  • Cathode active material, graphite and carbon A positive electrode containing black has been proposed.
  • the high-temperature storage characteristics of the battery are governed by the crystal stability of the positive electrode active material. Therefore, the conductive agent (graphite and carbon black) does not sufficiently contribute to the improvement of high temperature storage characteristics.
  • Patent Document 4 from the viewpoint of improving cycle characteristics, a general formula: A B C D O (where,
  • A is at least one selected from alkali metals
  • B is a transition metal
  • C is a group force selected from Al
  • D is (a) an alkali metal other than A
  • B Transition metals other than B
  • Group IIa elements Group IIIb (excluding Al and In), Group IVb (excluding carbon and Sn), and Group Vb (excluding oxygen) Group force consisting of elements from 2 to 6th period
  • the cobalt is used as the transition metal
  • the cycle characteristics are improved, but when the nickel is used as the transition metal, there is no sufficient improvement.
  • Patent Document 5 from the viewpoint of improving high-temperature storage characteristics, 100 to 1500 ppm of alkali metal and Z or alkaline earth metal element is added to the composite oxide of lithium and transition metal. It has been proposed to contain. When cobalt is used as the transition metal, the high-temperature storage characteristics are improved. However, when nickel is used as the transition metal, there is no sufficient improvement.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-242891
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-111076
  • Patent Document 3 Japanese Patent Laid-Open No. 11-40154
  • Patent Document 4 Japanese Unexamined Patent Publication No. 63-121258
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2002-15740
  • the present invention has been made in view of the above, and by improving the lithium nickel oxide contained in the positive electrode, it has a high capacity and achieves both cycle characteristics and high-temperature storage characteristics. Furthermore, it aims at realizing a non-aqueous electrolyte secondary battery having excellent discharge load characteristics.
  • the present invention has the formula 1: Li Ni Co Al M 1 lithium-containing composite oxide represented by M 2 O
  • the element M 1 in formula 1 is at least one selected from the group consisting of Mn, Ti, Y, Nb, Mo and W, and the element M 2 in formula 1 is Mg, Ca, Sr And at least two selected from the group consisting of Ba, and the element M 2 contains at least Mg and Ca, and the formula 1 is expressed as 0. 97 ⁇ x ⁇ l. 1, 0. 05 ⁇ y ⁇ Cathode active material for non-aqueous electrolyte secondary batteries satisfying 0. 35, 0. 005 ⁇ z ⁇ 0. 1, 0. 0001 ⁇ v ⁇ 0. 05, and 0. 0001 ⁇ w ⁇ 0.05 About.
  • the composite oxide represented by Formula 1 is composed of primary particles, and the primary particles form secondary particles.
  • the average particle size of the primary particles is 0.1 m or more and 3 ⁇ m or less, and the average particle size of the secondary particles is 8 ⁇ m or more and 20 ⁇ m or less.
  • the present invention also provides a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a battery.
  • the present invention relates to a non-aqueous electrolyte secondary battery comprising a solution, wherein the positive electrode includes a positive electrode active material made of the above lithium-containing composite oxide.
  • BET specific surface area of the composite Sani ⁇ of the present invention as measured by nitrogen gas adsorption, 0. 2m 2 Zg or more and 1. is 5 m 2 Zg below.
  • Equation 1 preferably satisfies the relationship 0.l ⁇ vZw ⁇ 10.
  • the number of Mg atoms wl and the number of Ca atoms w2 contained in the composite oxide of the present invention satisfy the relationship 2 ⁇ wlZw2 ⁇ 20.
  • the tap density of the composite oxide of the present invention is preferably 2.2 g / cm 3 or more and 2.8 g / cm 3 or less.
  • the Li occupancy obtained by Rietveld analysis at the Li site of the complex oxide crystal of the present invention is preferably 97% or more.
  • the present invention further provides a lithium-containing composite represented by the formula 1: Li Ni Co Al M 1 M 2 O
  • the present invention relates to a method for producing a positive electrode active material made of an oxide.
  • the production method of the present invention has the formula 2: Ni C
  • Step 1 for obtaining a hydroxide represented by M 1 M 2 (OH) a, y containing the hydroxide y V w 2
  • Element M 1 in Formulas 1 and 2 is at least one selected from the group consisting of Mn, Ti, Y, Nb, Mo, and W.
  • Element M 2 in Formulas 1 and 2 is Mg, And at least two selected from the group consisting of Ca, Sr and Ba, and the element M 2 contains at least Mg and Ca. , 0. 0001 ⁇ v ⁇ 0.05, and 0.0001 ⁇ w ⁇ 0.05, and Equation 1 is 0.97 ⁇ x ⁇ l.1 and 0.005 ⁇ z ⁇ 0.1. Fulfill.
  • step b the above-mentioned hydroxy acid stirred in water is added with NaAlO to produce a brute acid.
  • step c the first compound is fired at 500 ° C or higher and 1100 ° C or lower in an oxidizing atmosphere.
  • step e the second compound is fired at 600 ° C or higher and 850 ° C or lower in an oxidizing atmosphere, I prefer to get a second acid.
  • the present invention relates to a positive electrode active material comprising a composite oxide obtained by the above production method.
  • primary particles aggregate to form secondary particles, and the average primary particle size is 0.1 ⁇ m or more and 3 ⁇ m or less.
  • a composite oxide having a diameter of 8 ⁇ m or more and 20 m or less can be easily obtained.
  • BET specific surface area as measured by nitrogen gas adsorption is 0. 2m 2 / g or more, 1. 5 m 2 / g and less is composite oxide can be obtained easily.
  • the stability of the crystal of the lithium-containing composite oxide is improved, and the side reaction between the positive electrode active material and the non-aqueous electrolyte is suppressed. Therefore, it is possible to provide a non-aqueous electrolyte secondary battery having high capacity and having both cycle characteristics and high-temperature storage characteristics. Moreover, according to the present invention, a nonaqueous electrolyte secondary battery excellent in discharge load characteristics can be provided.
  • FIG. 1 is a perspective view in which a part of a prismatic battery of the present invention is cut away.
  • FIG. 2 is a graph showing the relationship between the y value representing the Co content in the lithium-containing composite oxide, the discharge capacity, and the heat generation start temperature.
  • FIG. 3 is a diagram showing the relationship between the z value representing the content of A1 in the lithium-containing composite oxide, the discharge capacity, and the heat generation start temperature.
  • FIG. 4 is a diagram showing the relationship between the value representing the Li content in the lithium-containing composite oxide, the discharge capacity, and the high-temperature storage characteristics.
  • the positive electrode of the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode active material composed of a lithium-containing composite oxide, and the composite oxide is represented by the formula 1: Li Ni Co Al M 1 M 2 O. Is done.
  • the composite oxide is represented by the formula 1: Li Ni Co Al M 1 M 2 O. Is done.
  • Lithium nickel oxide doped with Co and Al improves the thermal stability of the crystal. However, when using lithium nickel oxide doped with Co and A1, LiCoO was used.
  • the battery cycle characteristics and high-temperature storage characteristics tend to be insufficient.
  • the reason why the cycle characteristics are lowered is thought to be that the crystal stability of lithium nickel oxide doped with Co and A1 is lowered during charging.
  • the element M 1 and the element M 2 have an effect of improving crystal stability during charging of lithium nickel oxide doped with Co and A1.
  • the element M 2 is generally easily replaced with the Ni layer other than the Ni layer, and is easily and efficiently introduced into the Li layer of the positive electrode active material. This is because, when the element M 2 is replaced with the Ni layer, the valence becomes 3 or less (that is, less than or equal to the Ni valence in the crystal) and disturbs the electrical neutrality in the crystal. However, if Li is replaced by elemental M 2, Li available amount is reduced to charging and discharging. Therefore, the battery capacity will decrease.
  • the element M 1 and the element M 2 are simultaneously contained in the crystal of the positive electrode active material, the element M 1 stabilizes the replacement of the element M 2 with the Ni layer. Therefore, both elements are efficiently introduced into the Ni layer. This is probably because the element M 1 has a valence of 3 or more in the crystal, so that the electrical neutrality of the crystal disturbed by the addition of the element M 2 is relaxed.
  • the positive electrode active material needs to contain appropriate amounts of Co and A1 from the viewpoint of improving the thermal stability. Further, the element M 1 and the element M 2 do not contribute to the battery capacity or contribute little. Therefore, from the viewpoint of securing capacity, it is desirable that the amount of addition of the element M 1 and the element M 2 to the positive electrode active material is at most / J.
  • Equation 1 becomes 0. 97 ⁇ x ⁇ l. 1, 0. 05 ⁇ y ⁇ 0. 35, 0. 005 ⁇ z ⁇ 0. 1, 0. 0001 ⁇ v ⁇ 0. 05, and 0. 0001 It is required to satisfy ⁇ w ⁇ 0.05.
  • the range of X representing the Li content is a value before charge / discharge (that is, immediately after the synthesis of the composite oxide). The value of X changes beyond the above range due to battery charge / discharge.
  • the y value force representing the Co content is less than 0.05, the effect of improving the thermal stability of the positive electrode active material cannot be obtained, and if it exceeds 0.35, the lithium nickel oxide originally has The advantages of high capacity cannot be utilized.
  • the preferred range of y-values is 0.10 ⁇ y ⁇ 0.30, even better! /, Range ⁇ to 0. 12 ⁇ y ⁇ 0.20.
  • the z-value power representing Al content is less than 0.005, the effect of improving the thermal stability of the positive electrode active material cannot be obtained, and if it exceeds 0.1, the lithium nickel oxide originally has The advantage of high capacity cannot be utilized.
  • a preferable range of the z value is 0.01 ⁇ z ⁇ 0.08, and a more preferable range is 0.02 ⁇ 0.06.
  • V value representing the content of the element Ml is less than 0.0001, the effect of improving the crystal stability during charging of the positive electrode active material cannot be obtained, and if it exceeds 0.05, lithium nickel acid It is not possible to take advantage of the high capacity inherent in the product.
  • a preferable range of the V value is 0.0 005 ⁇ v ⁇ 0.02, more preferably! /, And a range of 0.0015 ⁇ 0.015.
  • w value representing the content of the element Micromax 2 is less than 0.0001, the effect of improving the crystallinity stability that put upon the positive electrode active material charged is not obtained, while if more than 0.05, the lithium nickel The advantage of high capacity inherent in oxides cannot be utilized.
  • the preferred range for the w value is 0.0005 ⁇ w ⁇ 0.2, and the preferred range is 0 / 0015 ⁇ w ⁇ 0.015.
  • the element M 1 is at least one selected from the group consisting of Mn, Ti, Y, Nb, Mo, and W. These may be contained alone in the positive electrode active material or in combination of two or more.
  • elements M 2 is a so-called alkaline-earth metals, at least two species selected from Mg, Ca, the group consisting of Sr and Ba.
  • the positive electrode active material contains Mg and Ca as essential elements at the same time. That is, the positive electrode active material may include a Yogu further to Sr and Z or Ba may contain only Mg and Ca as the element M 2.
  • Proportions of the essential elements occupying the element M 2 is desirably 50 atomic 0/0 above. Since the ionic radii of Mg and Ca are closer to the ionic radius of Ni, it is thought that the stability of the crystal is improved by containing more Mg and Ca.
  • the ratio of the content of the element M 1 to the content of the element M 2 : vZw preferably satisfies 0.1.l ⁇ vZw ⁇ 10.
  • Mg and Ca enhances the effect of improving crystal stability. It is preferable that the number of Mg atoms wl and the number of Ca atoms w2 contained in the positive electrode active material satisfy the relationship 2 ⁇ wlZw2 ⁇ 20. It is more preferable to satisfy the relationship 5 ⁇ wlZw2 ⁇ 15. Mg ion radius is closer to Ni ion radius, so C It is considered that the stability of the crystal containing more Mg than a is improved.
  • the Li occupation ratio is preferably 97.0% or more.
  • Li occupancy is the Li site in the Li layer in the crystal structure of LiNiO.
  • Li occupancy can be obtained by Rietveld analysis.
  • Rietveld analysis is a technique that assumes a crystal structure model and refines the X-ray diffraction pattern, which also derives the crystal structure model force, to match the measured X-ray diffraction pattern.
  • refinement refers to changing various parameters (such as lattice constant and Li occupancy) of the crystal structure model along the measured X-ray diffraction pattern.
  • Composite Sani ⁇ used as a positive electrode active material in the present invention from the viewpoint of improving the storage properties, BET specific surface area force is measured by a nitrogen gas adsorption 0. 2m 2 Zg above, 1. 5 m 2 Zg than is desired to be lower, 0. 4m 2 Zg above, it is particularly desirable 1. is 3m 2 Zg below.
  • the average particle size of the primary particles of the composite oxide is controlled to be 0.1 ⁇ m or more and 3 ⁇ m or less, and the average particle size of the secondary particles formed by aggregation of the primary particles is 8 / zm. As above, it is necessary to control to 20 / zm or less. By controlling the particle size in this way, the composite oxide has an appropriate specific surface area, side reactions occurring at the interface between the positive electrode active material and the non-aqueous electrolyte are suppressed, and the high-temperature storage characteristics are greatly improved. Is done.
  • the average particle size of the primary particles is less than 0.1 ⁇ m, the specific surface area of the composite oxide is too large, and side reactions that occur at the interface between the positive electrode active material and the non-aqueous electrolyte are suppressed. It becomes difficult.
  • the average primary particle size exceeds 3 m, the primary particles cannot form secondary particles.
  • a preferable range of the average particle diameter of the primary particles is 0.3 m or more and 2 ⁇ m or less.
  • the average particle size of the secondary particles is less than 8 ⁇ m, the specific surface area of the positive electrode active material becomes too large, and it becomes difficult to suppress side reactions that occur at the interface between the positive electrode active material and the non-aqueous electrolyte. If the average particle size of the secondary particles exceeds 20 m, it will be difficult to obtain sufficient charge / discharge characteristics. .
  • a preferable range of the average particle diameter of the secondary particles is 10 / zm or more and 15 m or less.
  • the tap density of the composite Sani ⁇ is, 2. 2g / cm 3 or more, 2. 8g / cm 3 preferably be less that instrument 2. 3 g / cm 3 or more, 2. 7g / cm 3
  • a hydroxide compound represented by the formula 2: Ni Co M 1 M 2 (OH) is prepared (step a).
  • a hydroxide is prepared as a precursor, which is converted to the desired oxide.
  • A1 is contained in the hydroxide, it is extremely difficult to control the particle size of the complex oxide as described above. Therefore, it becomes impossible to obtain a positive electrode active material excellent in high-temperature storage characteristics.
  • a compound containing A1 is added to the hydroxide compound to obtain a first formulation (step b).
  • the obtained first compound is fired in an oxidizing atmosphere to form a first acid compound (step c).
  • a compound containing Li is added to the first acid compound to obtain a second compound (step d).
  • the obtained second compound is fired in an oxidizing atmosphere to form a lithium-containing composite oxide (second oxide) represented by Formula 1 (step e).
  • a positive electrode active material having an average primary particle size of 0.1 ⁇ m or more and 3 ⁇ m or less and an average secondary particle size of 8 ⁇ m or more and 20 ⁇ m or less. The substance can be easily obtained.
  • a composite oxide having a BET specific surface area force of 0.2 m 2 Zg or more and 1.5 m 2 Zg or less measured by nitrogen gas adsorption can be easily obtained. It is also easy to control the tap density of the composite oxide to 2.2 g / cm 3 or more and 2.8 g / cm 3 or less.
  • the average particle diameter (D1) of the primary particles of the composite oxide can be determined, for example, in the following manner. First, the cured product obtained by hardening the positive electrode active material with epoxy resin is cut with a focused ion beam (FIB) or the like. Observe the cut surface with a secondary ion microscope (SIM) and The secondary ion image of the particle is measured. The maximum diameter (maximum width: D) and the minimum diameter (minimum width: D) are obtained for any 100 primary particles observed at that time, and the average value of them is obtained.
  • FIB focused ion beam
  • SIM secondary ion microscope
  • those having a small particle size are likely not cut along the diameter of the primary particles that are substantially spherical. Therefore, it is preferable not to include particles smaller than a predetermined particle size in arbitrary 100 primary particles for which an average value is obtained. Specifically, in the measured particle size data (particle size distribution) of primary particles, it is preferable to use only 30% of the data from the larger particle size to obtain the average particle size.
  • the average particle diameter (D2) of the secondary particles can be obtained as a volume-based median diameter, for example, by analyzing the composite oxide using a laser diffraction particle size distribution analyzer.
  • the method for preparing the hydroxide compound represented by Formula 2 is not particularly limited, but in the raw material aqueous solution in which the Ni compound, the Co compound, the element M 1 compound, and the element M 2 compound are dissolved, A coprecipitation method in which an aqueous alkaline solution is poured to precipitate the hydroxide is preferred. Next, the coprecipitation method will be explained.
  • Ni compound nickel sulfate, nickel nitrate, nickel chloride and the like can be used. These may be used alone or in combination. Of these, nickel sulfate is particularly preferred.
  • Co compound cobalt sulfate, cobalt nitrate, salt salt, etc. can be used. These may be used alone or in combination. Of these, cobalt sulfate is particularly preferable.
  • the compound of an element M 1 can be used sulfates, nitrates, etc. Shioi ⁇ .
  • manganese sulfate, manganese salt, manganese nitrate and the like can be used for the Mn compound, and manganese sulfate is particularly preferable.
  • Ti compounds include basic titanium sulfate and titanium tetrachloride. In particular, basic titanium sulfate is preferable.
  • As the Y compound yttrium nitrate or the like can be used.
  • Nb compound niobium nitrate, potassium niobate, or the like can be used.
  • Mo compound sodium molybdate or ammonium molybdate can be used.
  • W compound sodium tungstate or ammonium tandasterate can be used.
  • a double salt containing a plurality of elements M 1 may be used.
  • [0045] to be a compound of an element M 2 it can be used sulfates, nitrates, and carbonates.
  • magnesium sulfate, magnesium nitrate, magnesium chloride, magnesium magnesium, magnesium acetate, etc. can be used as the Mg compound.
  • Ca compound calcium hydroxide, calcium chloride and the like can be used.
  • Sr compound strontium hydroxide, strontium chloride, or the like can be used.
  • Ba compound barium hydroxide, barium chloride and the like can be used.
  • a double salt containing a plurality of elements M 2 may be used.
  • the alkali concentration of the aqueous alkaline solution poured into the raw material aqueous solution in which the Ni compound, Co compound, element M 1 compound and element M 2 compound are dissolved is, for example, 10 to 50% by weight.
  • Examples of the alkali to be dissolved in the alkaline aqueous solution include sodium hydroxide, potassium hydroxide, lithium hydroxide, and the like.
  • the temperature of the raw material aqueous solution and the alkaline aqueous solution is not particularly limited, but is, for example, 20 to 60 ° C.
  • the raw material aqueous solution, pH of the aqueous solution is, for example, 10. so that the 5 above, when continuously dropped alkaline aqueous solution, Ni, Co, is a co-precipitate of elemental M 1 and the element M 2 A hydroxide is obtained.
  • this hydroxide is filtered, washed with water and dried, the hydroxide represented by Formula 2 is obtained.
  • the average particle size of the secondary particles of hydroxide generated at this time is approximately 8 to 20 m.
  • the average particle size of the secondary particles of hydroxide can be controlled by changing conditions such as the pH during the reaction and the dropping rate of the raw material liquid.
  • the raw material aqueous solution contains A1 ions, it is difficult to produce a hydroxide having an average secondary particle size of 8 m or more.
  • Step b A compound containing A1 is added to the hydroxide represented by formula 2 obtained in step a.
  • A1 to the hydroxide, it is possible to control the particle diameters of the primary particles and secondary particles of the composite oxide to be finally produced within a desired range.
  • the BET specific surface area and tap density can be easily controlled.
  • the compound containing A1 may be added by any method, but it is preferable to uniformly attach A1 to the surface of the hydroxide represented by formula 2.
  • A1 may be uniformly attach to the surface of the hydroxide represented by formula 2.
  • NaAlO is added to the hydroxide represented by Formula 2 being stirred in water, and then the pH of the water is adjusted to 10 to 10 using an acid.
  • hydroxyaluminum or basic hydroxyaluminum as a compound containing A1 is uniformly deposited on the surface of the hydroxide represented by Formula 2. Can be made.
  • hydroxide-aluminum As a compound containing A1 in the hydroxide compound represented by Formula 2, hydroxide-aluminum, acid-aluminum, aluminum nitrate, Just mix aluminum fluoride, salt or aluminum! /.
  • the hydroxide containing the compound containing A1 (first compound) is calcined in an oxidizing atmosphere (for example, in air or oxygen).
  • the firing is preferably performed at 500 ° C or higher and 1100 ° C or lower, more preferably 600 ° C or higher and 1000 ° C or lower.
  • the firing time is preferably a force depending on the firing temperature, for example, 1 to 10 hours.
  • a compound containing Li is added to the oxide (first oxide) obtained by the above baking.
  • the compound containing Li may be added by any method.
  • the first oxide and the compound containing Li may be mixed.
  • lithium carbonate, lithium hydroxide, lithium nitrate, lithium sulfate, lithium oxide, or the like can be used.
  • lithium carbonate and lithium hydroxide are the most advantageous in terms of environment and cost.
  • the average particle size of the lithium-containing compound is preferably 5 m or less. If the average particle size of the compound containing lithium is too large, the reaction may not proceed uniformly.
  • the first oxide compound (second compound) to which a compound containing Li is added is calcined in an oxidizing atmosphere (for example, in air or oxygen).
  • the firing is preferably performed at 600 ° C or higher and 850 ° C or lower, more preferably 700 ° C or higher and 800 ° C or lower.
  • the firing time is preferably a force depending on the firing temperature, for example, 5 to 72 hours.
  • Firing is preferably performed in two stages. It is preferable to perform preliminary firing at 400 ° C or higher and 550 ° C or lower, for example, for about 1 to 10 hours, followed by firing at 700 ° C or higher and 800 ° C or lower. According to such a two-stage firing method, an active material with high crystallinity can be obtained, and unreacted residue can be reduced.
  • a positive electrode active material composed of a complex oxide having a secondary particle size of 3 ⁇ m or less and an average secondary particle size of 8 ⁇ m or more and 20 ⁇ m or less.
  • the nonaqueous electrolyte secondary battery of the present invention is characterized by a positive electrode active material, and other components are not particularly limited.
  • the positive electrode is usually composed of a positive electrode core material and a positive electrode mixture supported thereon.
  • the positive electrode mixture can contain a binder, a conductive agent and the like in addition to the positive electrode active material.
  • the binder is not particularly limited in the force for which rubber particles such as fluorine resin such as polyvinylidene fluoride and polytetrafluoroethylene, and modified tali-tolyl rubber are preferably used.
  • the conductive agent carbon black such as acetylene black and ketjen black, and various graphites are preferably used, but are not particularly limited.
  • the negative electrode is usually composed of a negative electrode core material and a negative electrode mixture supported thereon.
  • the negative electrode mixture generally contains a negative electrode active material and a binder, and optionally contains a conductive agent and the like.
  • the negative electrode active material include various natural graphites, various artificial graphites, carbon materials such as amorphous carbon, silicon-containing composite materials such as silicides, and various alloy materials.
  • the binder is not particularly limited in force, in which fluorine particles such as polyvinylidene fluoride and modified polyvinylidene fluoride, and rubber particles such as styrene butadiene rubber are preferably used.
  • the conductive agent the same as the positive electrode can be used.
  • the separator is made of a polyolefin resin such as polyethylene or polypropylene.
  • the force with which a microporous film is common is not particularly limited.
  • the microporous film may be a single layer film made of one kind of polyolefin resin or a multilayer film made of two or more kinds of polyolefin resin.
  • Non-aqueous solvents include, but are not limited to, ethylene carbonate, propylene carbonate, dimethyl carbonate, jetyl carbonate, ethyl methyl carbonate, and y butyrolataton.
  • the non-aqueous solvent is preferably used in combination of two or more.
  • lithium salts include lithium hexafluorophosphate (LiPF) and lithium tetrafluoroborate (LiBF).
  • the non-aqueous electrolyte preferably contains beylene carbonate, cyclohexyl benzene, diphenyl ether or the like as an additive.
  • composite oxides having the compositions and physical properties of Nos. 1 to 31 shown in Tables 1 to 4 were prepared as positive electrode active materials, and batteries 1 to 31 were produced using these.
  • Nickel sulfate was prepared cobalt sulfate, element M 1 salt, and the elements M 2 a metal salt aqueous solution prepared by dissolving a salt.
  • concentration of nickel sulfate in the metal salt aqueous solution was ImolZL, and the concentrations of other salts were adjusted as appropriate according to Table 1.
  • the aqueous metal salt solution under stirring was maintained at 50 ° C., and an aqueous solution containing 30% by weight of sodium hydroxide was added dropwise to adjust the pH to 12 to precipitate a hydroxide.
  • the precipitate of hydroxide was filtered, washed with water and dried in air.
  • the salt of the element M 1, respectively manganese sulfate, basic titanium sulfate, yttrium nitrate, potassium dichromate O Bed acid, using sodium molybdate, and sodium tungstate.
  • the elemental M 2 salt uses magnesium sulfate and calcium sulfate, respectively, in a molar ratio of 9: 1.
  • the hydroxide carrying the compound containing A1 (first blend) was calcined at 700 ° C. for 10 hours in an air atmosphere to obtain the first oxide.
  • lithium hydroxide Li: in (Ni + Co + Al + element element M 2) Teal Le ratio of 1 were mixed so that 1, to obtain a second blend.
  • the second compound was heated to 750 ° C. for 10 hours in an oxygen atmosphere using an electric furnace and baked at 750 ° C. for 36 hours to synthesize a positive electrode active material.
  • the average particle diameter D1 of the primary particles of the composite oxide or the average particle diameter of the secondary particles can be changed by changing the synthesis conditions of the raw material hydroxide and the firing temperature of the second compound. D2 was changed.
  • a predetermined positive electrode active material 4 parts by weight of acetylene black as a conductive material and 5 parts by weight of polyvinylidene fluoride (PVDF) as a binder in a solvent of N-methylpyrrolidone (NMP) are dissolved.
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • FIG. 1 is a perspective view in which a part of the prismatic battery manufactured in this example is cut out.
  • the battery was assembled as follows. First, an electrode group 1 was constructed by winding a predetermined positive electrode and the negative electrode together with a 20 m thick microporous polyethylene resin separator interposed therebetween. An aluminum positive electrode lead 2 and a nickel negative electrode lead 3 were welded to the positive electrode and the negative electrode, respectively. An insulating ring (not shown) made of polyethylene resin was attached to the top of the electrode plate group 1 and housed in an aluminum battery case 4. The other end of the positive electrode lead 2 was spot welded to the aluminum sealing plate 5. The other end of the negative electrode lead 3 was spot welded to the lower part of the nickel negative electrode terminal 6 surrounded by the insulating resin 7 at the center of the sealing plate 5.
  • nonaqueous electrolyte After laser welding the opening end of the battery case 4 and the peripheral edge of the sealing plate 5, a predetermined amount of nonaqueous electrolyte was also injected into the injection locus provided on the sealing plate.
  • non-aqueous electrolytes a mixture of ethylene carbonate and ethylmethyl carbonate in a volume ratio of 1: 3 was added with lwt% of behylene carbonate.
  • Mn Mg Ca 1 0.05 0.03 0.005 0.005
  • Example 9 Mn Mg, Ca 1 0.10 0.03 0.005 0.005
  • Example 10 Mn Mg, Ca 1 0.12 0.03 0.005 0.005
  • Example 1 Mn Mg, Ca 1 0.20 0.03 0.005 0.005
  • Example 12 Mn Mg, Ca 1 0.30 0.03 0.005 0.005
  • D1 Average particle size of primary particles (m)
  • D2 Average particle size of secondary particles (m)
  • Nickel sulfate was prepared cobalt sulfate, aluminum sulfate, element M 1 salt, and the elements M 2 a metal salt aqueous solution prepared by dissolving a salt.
  • the concentration of nickel sulfate in the aqueous metal salt solution was ImolZL, and the concentrations of other salts were adjusted as appropriate according to Table 5.
  • the aqueous metal salt solution under stirring was maintained at 50 ° C., and an aqueous solution containing 30% by weight of sodium hydroxide was added dropwise thereto so as to have a pH of 12 to precipitate a hydroxide.
  • the precipitate of hydroxide was filtered, washed with water and dried in air.
  • the salt of the element M respectively manganese sulfate, basic titanium sulfate, yttrium nitrate, potassium dichromate O Bed acid, using sodium molybdate, and sodium tungstate.
  • element M 2 salt magnesium sulfate and calcium sulfate were used in a molar ratio of 9: 1, respectively.
  • a composite oxide was prepared in the same manner as in Example 1 except that the composition and physical properties of the positive electrode active material were changed as shown in Nos. 38 to 45 shown in Tables 7 and 8. Similarly, batteries 38 to 45 were produced.
  • a composite oxide was prepared in the same manner as in Example 1 except that the composition and physical properties of the positive electrode active material were changed as shown in Nos. 46 to 53 shown in Tables 9 and 10.
  • Example 1 In the same manner, batteries 46 to 53 were produced.
  • a composite oxide was prepared in the same manner as in Example 1 except that the composition and physical properties of the positive electrode active material were changed as shown in Nos. 54 to 60 shown in Tables 11 and 12. Similarly, batteries 54-60 were produced.
  • Example 54 Mn Mg, Ca 1 0.15 0.03 0.005 0.005 1.1
  • Example 55 Mn Mg, Ca 1 0.15 0.03 0.005 0.005 2.0
  • Example 56 Mn Mg, Ca 1 0.15 0.03 0.005 0.005 5.1
  • Example 57 Mn Mg, Ca 1 0.15 0.03 0.005 0.005 10.2
  • Example 58 Mn Mg, Ca 1 0.15 0.03 0.005 0.005 15.0
  • Example 59 Mn Mg, Ca 1 0.15 0.03 0.005 0.005 20.0
  • Example 60 Mn Mg, Ca 1 0.15 0.03 0.005 0.005 35.6 [0088] [Table 12]
  • a composite oxide was prepared in the same manner as in Example 1 except that the composition and physical properties of the positive electrode active material were changed as shown in Nos. 61 to 65 shown in Tables 13 and 14. Similarly, batteries 61 to 65 were produced.
  • a composite oxide was prepared in the same manner as in Example 1 except that the composition and physical properties of the positive electrode active material were changed as shown in Nos. 66 to 67 shown in Tables 15 and 16. Similarly, batteries 66 to 67 were produced.
  • a composite oxide was prepared in the same manner as in Example 1 except that the composition and physical properties of the positive electrode active material were changed as shown in Nos. 68 to 72 shown in Tables 17 and 18. Similarly, batteries 68 to 72 were produced.
  • a cured product obtained by hardening the positive electrode active material with epoxy resin was cut with a focused ion beam (FIB).
  • the cut surface was observed with a secondary ion microscope (SIM), and the secondary ion images of the composite oxide particles were measured. And for any 100 primary particles, the maximum diameter (D) and minimum
  • the particle size distribution of the positive electrode active material was measured with a laser diffraction particle size distribution analyzer (LA-910, manufactured by Horiba, Ltd.), and the volume-based median diameter (D50) was determined. The diameter.
  • the tapping stroke length was 2.5 cm, and the tap density when tapping 1000 times was obtained.
  • the first cycle charge / discharge was performed under the following conditions (1), and the discharge capacity (C) per gram of the positive electrode active material was determined.
  • Constant current charging Maximum current 600mA, end-of-charge voltage 4.2V
  • charge and discharge in the second cycle is performed at the ambient temperature of 20 ° C under the following conditions (2), and the discharge capacity per lg of the positive electrode active material (C) at a discharge current of 1000 mA
  • Constant current charging Maximum current 600mA, end-of-charge voltage 4.2V Constant voltage charging: Voltage value 4.2V, charging period 2 hours
  • the percentage of discharge capacity (C) per lg of active material was determined as a percentage and used as the discharge load characteristic.
  • charge / discharge at the third cycle is performed under the above condition (2) at an ambient temperature of 20 ° C.
  • the environment is changed under the following condition (3).
  • the 4th cycle was charged at a temperature of 20 ° C.
  • Constant current charging Maximum current value 600mA, end-of-charge voltage 4.4V
  • the battery After charging, the battery was disassembled, the positive electrode mixture was taken out from the positive electrode, and 2 mg of the mixture was placed in SUS PAN. Using a differential scanning calorimeter (DSC), the calorific value, which is an index of thermal stability of the positive electrode mixture, was measured. For measurement, RIGAKU Thermo Plus manufactured by Rigaku Corporation was used. The temperature was raised in the air atmosphere from room temperature to 400 ° C at a rate of 10 ° CZ, and the first exothermic temperature was obtained.
  • DSC differential scanning calorimeter
  • Constant current charging Maximum current 600mA, end-of-charge voltage 4.2V
  • Constant voltage charging Voltage value 4.2V, charging period 2 hours After charging, the battery was stored in a constant temperature bath at 60 ° C for 30 days. The battery after storage was discharged in the fourth cycle under the following condition (5).
  • charging / discharging at the fifth cycle was performed at the ambient temperature of 20 ° C. under the following condition (6), and the discharge capacity (C) per lg of the positive electrode active material at the fifth cycle was determined.
  • Constant current charging Maximum current value 600mA, end-of-charge voltage 4.2V
  • the ratio of 1000-5th was obtained as a percentage and used as high temperature storage characteristics. Thus, the recovery characteristics after high temperature storage were estimated.
  • Figure 2 shows the relationship between the y value representing the Co content, the discharge capacity, and the heat generation start temperature.
  • the discharge capacity is preferably a heat generation starting temperature of 200 mA or more, which is desirably maintained at 170 mAh / g or more.
  • the y value should be 0.05.5 ⁇ y ⁇ 0.35, preferably 0.10 ⁇ y ⁇ 0.30, more preferably 0.12 ⁇ y ⁇ 0.20. I can help you. [0113] [Consideration on z-value]
  • Fig. 3 shows the relationship between the z value representing the A1 content, the discharge capacity, and the heat generation start temperature.
  • Fig. 3 Forces, z value ⁇ or 0.75 to ⁇ ⁇ 0. 1
  • There is a necessary force S preferably ⁇ or 0, 01 ⁇ ⁇ ⁇ 0.08, more preferably 0.02 ⁇ ⁇ ⁇ 0 Power to be 06 S power.
  • Figure 4 shows the relationship between the X value representing the Li content, discharge capacity, and high-temperature storage characteristics based on batteries 68-72. From the capacity point of view, it can be seen that the X value needs to be 0.97 or more. Similarly, from this result, it can be seen that the occupation ratio of Li is preferably 97% or more. On the other hand, it can be seen that the high temperature storage characteristics should be 80% or more, and the X value should be 1.1 or less. If the X value exceeds 1.1, side reactions during high-temperature storage are considered to increase with an increase in the amount of excess Li.
  • the battery 61, 62 without the element M 2, batteries 1-6 of Example was added Mg, and Ca as the element M 2, Mg as the element M 2, Ca, batteries of embodiment in which ⁇ Ka ⁇ the Sr 66, the battery 67 of the embodiment described ⁇ Ka ⁇ Mg, Ca, and Ba as the element M 2 are both show a high capacity retention ratio and high-temperature storage characteristics, Rukotogawa; ⁇ Ru.
  • the present invention provides a non-aqueous electrolyte secondary battery that has a high capacity, has both cycle characteristics and high-temperature storage characteristics, and is excellent in discharge load characteristics.
  • Non-aqueous electrolyte secondary batteries can be used as a power source in a wide range of applications, from portable electronic devices that require high performance to electric vehicles and hybrid vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 非水電解液二次電池の正極活物質に、式1:LixNi1-y-z-v-wCoyAlzM1 vM2 wO2で表されるリチウム含有複合酸化物を用いる。元素M1は、Mn、Ti、Y、Nb、MoおよびWよりなる群から選ばれた少なくとも1種であり、元素M2は、Mg、Ca、Sr、BaおよびRaよりなる群から選ばれた少なくとも2種であり、元素M2は、少なくともMgとCaを含む。式1は0.97≦x≦1.1、0.05≦y≦0.35、0.005≦z≦0.1、0.0001≦v≦0.05、および0.0001≦w≦0.05を満たす。一次粒子の平均粒径は、0.1μm以上、3μm以下であり、二次粒子の平均粒径は、8μm以上、20μm以下である。

Description

明 細 書
非水電解液二次電池
技術分野
[0001] 本発明は、非水電解液二次電池に関し、詳しくは、その正極活物質の改良に関す る。
背景技術
[0002] 近年、民生用電子機器のポータブル化、コードレス化が急速に進んで 、る。これら の機器の駆動用電源を担う小型かつ軽量で、高エネルギー密度を有する二次電池 への要望も高まっている。このような観点から、非水電解質二次電池、特に、高電圧 で高工ネルギー密度を有するリチウム二次電池への期待は大きぐその開発が急が れている。
[0003] 非水電解質二次電池は、正極、負極およびそれらの間に介在するセパレータを具 備する。セパレータには、ポリオレフイン製の微多孔膜が主に用いられている。非水 電解液には、 LiBF、 LiPF等のリチウム塩を溶解した非プロトン性の有機溶媒が用
4 6
いられている。
[0004] 近年、リチウム含有複合酸化物を正極活物質として含み、炭素材料、シリコン化合 物、スズィ匕合物などを負極材料として含む電池力 高エネルギー密度のリチウム二次 電池として注目を集めている。リチウム含有複合酸化物としては、リチウムコバルト酸 化物(例えば LiCoO )が実用化されている。リチウムコバルト酸ィ匕物は、リチウムに対
2
する電位が高ぐ安全性に優れ、比較的合成が容易である。
[0005] コバルトの資源問題を回避するとともに、さらなる高容量を目指す観点から、リチウ ムニッケル酸ィ匕物(例えば LiNiO )を実用化する試みも盛んである。ニッケルは資源
2
が豊富であり、低コストィ匕が容易であり、高容量ィ匕にも適している。ただし、 LiNiO
2は
、高容量を有するものの、結晶の熱的安定性が低ぐサイクル特性や高温保存特性 に改善の余地がある。そこで、以下のような提案が為されている。
[0006] 特許文献 1では、 LiNiOの熱的安定性を改良する観点から、 LiNiOに Coと A1をド
2 2
ープすることが提案されている。しかし、熱的安定性に関しては一定の改善効果が見 られるものの、サイクル特性や高温保存特性に関しては、満足できる特性が得られて いない。
[0007] 特許文献 2では、サイクル特性や高温保存特性を改良する観点から、一般式: Li N i Co Mn A O (式中、 Aは、 Feゝ V、 Crゝ Mnゝ Ti、 Mgゝ Al、 Bおよび Caよりなる
1 2
群力ら選ば、れた少なくとも 1種、 0. 05≤x≤l. 10、 0. 10≤y+z≤0. 70、 0. 05≤z ≤0. 40、 0≤a≤0. 1)で表され、電子伝導度 σが 10— 4≤ σ≤ 10— ^Zcmである正 極活物質が提案されている。しかし、サイクル特性と高温保存特性の改善効果が得 られる組成の活物質は、容量が低くなるため、実用的ではない。
[0008] 特許文献 3では、サイクル特性を改良する観点から、一般式: A P Ni M N O (式
2 中、 Aは、アルカリ金属から選ばれた少なくとも 1種、 Pは、 Mg、 B、 Pおよび Inよりなる 群力 選ばれた少なくとも 1種、 Mは、 Mn、 Coおよび AUりなる群力 選ばれた少な くとも 1種、 Nは、 Si、 Al、 Ca、 Cu、 Sn、 Mo、 Nb、 Yおよび BUりなる群から選ばれた 少なくとも 1種、 0. 05≤w≤l. 2、 0. 0001≤v≤0. 2、 0. 5≤x≤0. 95, 0. 005≤ y≤0. 5、 0≤z≤0. 2)で表される正極活物質と、黒鉛と、カーボンブラックとを含む 正極が提案されている。しかし、電池の高温保存特性は、正極活物質の結晶安定性 に支配される。よって、導電剤(黒鉛とカーボンブラック)は、高温保存特性の改善に 、十分に寄与しない。
[0009] 特許文献 4では、サイクル特性を改良する観点から、一般式: A B C D O (式中、
2
Aは、アルカリ金属から選ばれた少なくとも 1種、 Bは、遷移金属、 Cは、 Al、 Inおよび Snよりなる群力 選ばれた少なくとも 1種、 Dは、(a) A以外のアルカリ金属、(b) B以 外の遷移金属、(c) IIa族元素、(d) IIIb族 (Al、Inを除く)、 IVb族 (炭素、 Snを除く)お よび Vb族 (酸素を除く)の第 2〜第 6周期の元素よりなる群力 選ばれた少なくとも 1 種、 0. 05≤x≤l. 10、 0. 85≤y≤l. 00、 0. 001≤z≤0. 10、 0. 001≤w≤0. 1 0、)で表される正極活物質を用いることが提案されている。しかし、遷移金属としてコ バルトを用いた場合には、サイクル特性が改善されるものの、遷移金属として-ッケ ルを用いた場合には、十分な改善は見られな 、。
[0010] 特許文献 5では、高温保存特性を改良する観点から、リチウムと遷移金属との複合 酸化物に、 100〜1500ppmのアルカリ金属および Zまたはアルカリ土類金属元素 を含有させることが提案されている。遷移金属としてコバルトを用いた場合には、高温 保存特性が改善される。しかし、遷移金属としてニッケルを用いた場合には、十分な 改善は見られない。
特許文献 1:特開平 5 - 242891号公報
特許文献 2:特開 2004 - 111076号公報
特許文献 3:特開平 11—40154号公報
特許文献 4:特開昭 63— 121258号公報
特許文献 5:特開 2002— 15740号公報
発明の開示
発明が解決しょうとする課題
[0011] 上記のように、リチウムニッケル酸ィ匕物の改良に関しては、ニッケルが本来有する高 容量と!/ヽぅ利点を損なわずに、サイクル特性と高温保存特性とを両立させる有効な方 策が見出されていないのが実情である。
[0012] 本発明は、上記を鑑みて為されたものであり、正極に含ませるリチウムニッケル酸ィ匕 物を改良することにより、高容量を有するとともに、サイクル特性と高温保存特性とを 両立し、更には放電負荷特性にも優れた非水電解液二次電池を実現することを目的 とする。
課題を解決するための手段
[0013] 本発明は、式 1: Li Ni Co Al M1 M2 Oで表されるリチウム含有複合酸化物
X 1-y-z-v-w y z v w 2
からなり、式 1中の元素 M1は、 Mn、 Ti、 Y、 Nb、 Moおよび Wよりなる群から選ばれた 少なくとも 1種であり、式 1中の元素 M2は、 Mg、 Ca、 Srおよび Baよりなる群から選ば れた少なくとも 2種であり、かつ、元素 M2は、少なくとも Mgと Caとを含み、式 1は、 0. 97≤x≤l. 1、 0. 05≤y≤0. 35、 0. 005≤z≤0. 1、 0. 0001≤v≤0. 05、およ び 0. 0001≤w≤0. 05を満たす非水電解液二次電池用の正極活物質に関する。こ こで、式 1で表される複合酸化物は、一次粒子からなり、一次粒子は二次粒子を形成 している。一次粒子の平均粒径は、 0. 1 m以上、 3 μ m以下であり、二次粒子の平 均粒径は、 8 μ m以上、 20 μ m以下である。
[0014] 本発明は、また、正極、負極、正極と負極との間に介在するセパレータ、および電 解液を具備する非水電解液二次電池であって、正極が上記のリチウム含有複合酸 化物からなる正極活物質を含む非水電解液二次電池に関する。
[0015] 窒素ガス吸着により測定される本発明の複合酸ィ匕物の BET比表面積は、 0. 2m2 Zg以上、 1. 5m2Zg以下であることが好ましい。
式 1は、 0. l≤vZw≤10の関係を満たすことが好ましい。
本発明の複合酸化物に含まれる、 Mgの原子数 wlと、 Caの原子数 w2とは、 2≤w lZw2≤ 20の関係を満たすことが好ましい。
本発明の複合酸ィ匕物のタップ密度は、 2. 2g/cm3以上、 2. 8g/cm3以下である ことが好ましい。
本発明の複合酸ィ匕物の結晶が有する Liサイトにおいて、リートベルト解析により求 められる Li占有率は、 97%以上であることが好ましい。
[0016] 本発明は、さらに、式 1 :Li Ni Co Al M1 M2 Oで表されるリチウム含有複合
X 1-y-z-v-w y z v w 2
酸化物からなる正極活物質の製造法に関する。本発明の製造法は、式 2 :Ni C
1-y-y- o M1 M2 (OH)で表される水酸ィ匕物を得る工程 a、前記水酸ィ匕物に対し、 Alを含む y V w 2
化合物を添加して、第 1配合物を得る工程 b、前記第 1配合物を酸ィ匕雰囲気中で焼 成して、第 1酸ィ匕物を得る工程 c、前記第 1酸ィ匕物に対し、 Liを含む化合物を添加し て、第 2配合物を得る工程 d、および前記第 2配合物を、酸化雰囲気中で焼成して、 式 1で表されるリチウム含有複合酸化物を第 2酸化物として得る工程 eを有する。式 1 および 2中の元素 M1は、 Mn、 Ti、 Y、 Nb、 Moおよび Wよりなる群から選ばれた少な くとも 1種であり、式 1および 2中の元素 M2は、 Mg、 Ca、 Srおよび Baよりなる群から選 ばれた少なくとも 2種であり、かつ、元素 M2は、少なくとも Mgと Caとを含み、式 1およ び 2は、 0. 05≤y≤0. 35、 0. 0001≤v≤0. 05、および 0. 0001≤w≤0. 05を満 たし、式 1は、 0. 97≤x≤l. 1および 0. 005≤z≤0. 1を満たす。
[0017] 工程 bは、水中で攪拌されている前記水酸ィ匕物に対し、 NaAlOを添加して力ゝら酸
2
を用いて水の pHを 10〜8に調整する工程を含むことが好まし 、。
工程 cでは、酸化雰囲気中で、 500°C以上、 1100°C以下で、第 1配合物を焼成して
、第 1酸ィ匕物を得ることが好ましい。
工程 eでは、酸化雰囲気中で、 600°C以上、 850°C以下で、第 2配合物を焼成して、 第 2酸ィ匕物を得ることが好ま 、。
[0018] 本発明は、上記製造法により得られた複合酸化物からなる正極活物質に関する。
上記製造法によれば、一次粒子が集合して二次粒子を形成しており、一次粒子の平 均粒径が 0. 1 μ m以上、 3 μ m以下であり、二次粒子の平均粒径が 8 μ m以上、 20 m以下である複合酸ィ匕物を容易に得ることができる。また、上記製造法によれば、 窒素ガス吸着により測定される BET比表面積が 0. 2m2/g以上、 1. 5m2/g以下で ある複合酸化物を容易に得ることができる。
発明の効果
[0019] 本発明によれば、リチウム含有複合酸ィ匕物の結晶の安定性が向上し、かつ正極活 物質と非水電解液との副反応が抑制される。よって、高容量を有するとともに、サイク ル特性と高温保存特性とを両立させた非水電解液二次電池を提供することができる 。また、本発明によれば、放電負荷特性にも優れた非水電解液二次電池を提供する ことができる。
図面の簡単な説明
[0020] [図 1]本発明の角型電池の一部を切り欠いた斜視図である。
[図 2]リチウム含有複合酸化物における Coの含有量を表す y値と、放電容量と、発熱 開始温度との関係を示す図である。
[図 3]リチウム含有複合酸化物における A1の含有量を表す z値と、放電容量と、発熱 開始温度との関係を示す図である。
[図 4]リチウム含有複合酸化物における Liの含有量を表す 値と、放電容量と、高温 保存特性との関係を示す図である。
発明を実施するための最良の形態
[0021] 本発明の非水電解液二次電池の正極は、リチウム含有複合酸化物からなる正極活 物質を含み、前記複合酸化物は、式 1 :Li Ni Co Al M1 M2 Oで表される。す
1
なわち、本発明で正極活物質として用いる複合酸ィ匕物は、 LiNiOに対し、熱的安定 性を改良する効果を有する Coと A1をドープするとともに、元素 M1および元素 M2をド ープした組成を有する。 A1には、高温時において、正極活物質と非水電解液との反 応を抑制する作用を有すると考えられる。 [0022] Coと Alをドープしたリチウムニッケル酸ィ匕物は、結晶の熱的安定性は向上する。し かし、 Coと A1をドープしたリチウムニッケル酸ィ匕物を用いた場合、 LiCoOを用いた
2 場合に比べて、電池のサイクル特性と高温保存特性が不十分になりやすい。サイク ル特性が低くなる原因は、充電時において、 Coと A1をドープしたリチウムニッケル酸 化物の結晶安定性が低下する点にあると考えられる。
[0023] 一般的に、元素 M1および元素 M2には、 Coと A1をドープしたリチウムニッケル酸ィ匕 物の充電時にける結晶安定性を向上させる効果がある。
ここで、元素 M2は、一般に、 Ni層以外に置換されやすぐ効率的に正極活物質の Li 層に導入されやすい。これは、元素 M2が Ni層へ置換される際、 3価以下 (すなわち 結晶中の Niの価数以下)の価数となり、結晶中の電気的中性を乱すためである。し かし、元素 M2によって Liが置換されると、充放電に利用可能な Li量が減少する。よつ て、電池容量は低下することになる。
一方、元素 M1と元素 M2とが同時に正極活物質の結晶中に含まれる場合には、元素 M1が元素 M2の Ni層への置換を安定ィ匕する。よって、両元素とも Ni層に効率的に導 入されるようになる。これは、元素 M1が結晶中で 3価以上の価数となるため、元素 M2 の添カ卩により乱された結晶の電気的中性が緩和されるためと考えられる。
[0024] 正極活物質は、熱的安定性を向上させる観点から、適量の Coと A1を含む必要があ る。また、元素 M1および元素 M2は、電池容量に寄与しないか、寄与が小さい。よって 、容量を確保する観点から、元素 M1および元素 M2の正極活物質への添加量は、最 /J、限に留めること力 S望まれる。よって、式 1は、 0. 97≤x≤l. 1、 0. 05≤y≤0. 35、 0. 005≤z≤0. 1、 0. 0001≤v≤0. 05、および 0. 0001≤w≤0. 05を満たすこと が要求される。ここで、 Liの含有量を表す Xの範囲は、充放電を行う前 (すなわち複合 酸化物の合成直後)の値である。電池の充放電により、 X値は上記範囲を超えて変化 する。
[0025] Coの含有量を表す y値力 0. 05未満では、正極活物質の熱的安定性を向上させ る効果が得られず、 0. 35を超えると、リチウムニッケル酸化物が本来有する高容量 の利点を活かすことができない。 y値の好ましい範囲は、 0. 10≤y≤0. 30であり、更 に好まし!/、範囲 ίま 0. 12≤y≤0. 20である。 [0026] Alの含有量を表す z値力 0. 005未満では、正極活物質の熱的安定性を向上させ る効果が得られず、 0. 1を超えると、リチウムニッケル酸化物が本来有する高容量の 利点を活かすことができない。 z値の好ましい範囲は、 0. 01≤z≤0. 08であり、更に 好まし ヽ範囲 ίま 0. 02≤ζ≤0. 06である。
[0027] 元素 Mlの含有量を表す V値が、 0. 0001未満では、正極活物質の充電時におけ る結晶安定性を向上させる効果が得られず、 0. 05を超えると、リチウムニッケル酸ィ匕 物が本来有する高容量の利点を活かすことができない。 V値の好ましい範囲は、 0. 0 005≤v≤0. 02であり、更に好まし! /、範囲 ίま 0. 0015≤ν≤0. 015である。
[0028] 元素 Μ2の含有量を表す w値が、 0. 0001未満では、正極活物質の充電時におけ る結晶安定性を向上させる効果が得られず、 0. 05を超えると、リチウムニッケル酸ィ匕 物が本来有する高容量の利点を活かすことができない。 w値の好ましい範囲は、 0. 0005≤w≤0. 2であり、更【こ好まし!/ヽ範囲 ίま 0. 0015≤w≤0. 015である。
[0029] 元素 M1は、 Mn、 Ti、 Y、 Nb、 Moおよび Wよりなる群から選ばれた少なくとも 1種で ある。これらは単独で正極活物質に含まれていてもよぐ 2種以上が含まれていてもよ い。
[0030] 元素 M2は、いわゆるアルカリ土類金属であり、 Mg、 Ca、 Srおよび Baよりなる群から 選ばれた少なくとも 2種である。ただし、正極活物質は、 Mgと Caとを同時に必須元素 として含む。すなわち、正極活物質は、元素 M2として Mgと Caだけを含んでもよぐ更 に Srおよび Zまたは Baを含んでもよい。元素 M2に占める必須元素(Mgおよび Ca) の割合は 50原子0 /0以上であることが望ましい。 Mgおよび Caのイオン半径は、 Niの イオン半径により近いため、 Mgや Caを多く含む方が、結晶の安定性が向上すると考 えられる。
[0031] 結晶安定性の向上を促進する観点から、元素 M1の含有量と元素 M2の含有量との 比: vZwは、 0. l≤vZw≤10を満たすことが好ましい。
理由は定かではないが、 Mgと Caとを共存させることにより、結晶の安定性を向上さ せる効果が高められる。正極活物質に含まれる Mgの原子数 wlと、 Caの原子数 w2 とは、 2≤wlZw2≤20の関係を満たすことが好ましぐ 5≤wlZw2≤15の関係を 満たすことが更に好ましい。 Mgのイオン半径は、 Niのイオン半径により近いため、 C aよりも Mgを多く含む方力 結晶の安定性が向上すると考えられる。
[0032] 結晶の安定性を向上させる観点からは、元素 M1および M2の添加量を多くすること が有効である。しかし、元素 M1および元素 M2の添加量が多くなると、 Li層に置換さ れる元素 M1および元素 M2も出現するようになると考えられる。よって、複合酸化物の 結晶中の Liサイトにおける Li占有率が低下し、容量が小さくなる。十分な容量を得る 観点からは、 Li占有率は、 97. 0%以上であることが好ましい。
なお、 Li占有率とは、 LiNiOの結晶構造における Li層中の Liサイトにおいて、他の
2
元素で置換されずに Liが占める割合を表す。 Li占有率は、リートベルト解析により求 められる。
ここで、リートベルト解析とは、結晶構造モデルを仮定し、結晶構造モデル力も導か れる X線回折パターンを、実測された X線回折パターンに合うように精密化する手法 である。精密化とは、結晶構造モデルの各種パラメータ (格子定数や Li占有率など) を、実測された X線回折パターンに沿って変化させることを言う。
[0033] 本発明で正極活物質として用いる複合酸ィ匕物は、保存特性を向上させる観点から 、窒素ガス吸着により測定される BET比表面積力 0. 2m2Zg以上、 1. 5m2Zg以 下であることが望まれ、 0. 4m2Zg以上、 1. 3m2Zg以下であることが特に望ましい。 そのためには、複合酸化物の一次粒子の平均粒径を 0. 1 μ m以上、 3 μ m以下に制 御し、一次粒子が凝集して形成する二次粒子の平均粒径を 8 /z m以上、 20 /z m以下 に制御する必要がある。このように粒径を制御することにより、複合酸化物は適正な 比表面積を有することとなり、正極活物質と非水電解液との界面で起こる副反応が抑 制され、高温保存特性が大きく改善される。
[0034] 一次粒子の平均粒径が 0. 1 μ m未満では、複合酸ィ匕物の比表面積が大きくなり過 ぎ、正極活物質と非水電解液との界面で起こる副反応の抑制が困難になる。また、 一次粒子の平均粒径が 3 mを超えると、一次粒子が二次粒子を形成できなくなる。 一次粒子の平均粒径の好ましい範囲は、 0. 3 m以上、 2 μ m以下である。
[0035] 二次粒子の平均粒径が 8 μ m未満では、正極活物質の比表面積が大きくなり過ぎ 、正極活物質と非水電解液との界面で起こる副反応の抑制が困難になる。また、二 次粒子の平均粒径が 20 mを超えると、十分な充放電特性を得ることが困難になる 。二次粒子の平均粒径の好ましい範囲は、 10 /z m以上、 15 m以下である。
[0036] 前記複合酸ィ匕物のタップ密度は、 2. 2g/cm3以上、 2. 8g/cm3以下であることが 好ましぐ 2. 3g/cm3以上、 2. 7g/cm3以下が特に好ましい。
[0037] 上記のような平均粒径を有する正極活物質を得るためには、以下の方法で複合酸 化物を調製することが有効である。
まず、式 2: Ni Co M1 M2 (OH)で表される水酸ィ匕物を調製する(工程 a)。す
1-y-v- y V w 2
なわち、水酸化物を前駆体として調製し、これが所望の酸化物に変換される。ここで 、水酸化物には、 A1を含めないことが重要である。水酸ィ匕物に A1が含まれている場 合、上記のように複合酸ィ匕物の粒径を制御することは著しく困難である。よって、高温 保存特性に優れた正極活物質を得ることもできなくなる。
[0038] 前記水酸ィ匕物を調製した後、その水酸ィ匕物に対して、 A1を含む化合物を添加し、 第 1配合物を得る(工程 b)。得られた第 1配合物は、酸化雰囲気中で焼成すること〖こ より、第 1酸ィ匕物とする(工程 c)。次に、第 1酸ィ匕物に対して、 Liを含む化合物を添加 し、第 2配合物を得る(工程 d)。得られた第 2配合物は、酸化雰囲気中で焼成するこ とにより、式 1で表されるリチウム含有複合酸ィ匕物 (第 2酸ィ匕物)とする(工程 e)。このよ うな方法によれば、一次粒子の平均粒径が 0. 1 μ m以上、 3 μ m以下であり、二次粒 子の平均粒径が 8 μ m以上、 20 μ m以下の正極活物質を容易に得ることができる。 すなわち、窒素ガス吸着により測定される BET比表面積力 0. 2m2Zg以上、 1. 5m 2Zg以下である複合酸ィ匕物を容易に得ることができる。また、複合酸化物のタップ密 度を、 2. 2g/cm3以上、 2. 8g/cm3以下に制御することも容易である。
[0039] 予め A1を含む水酸化物を調製し、これに Liを含む化合物を添加し、得られた配合 物を酸素雰囲気中で焼成する場合、通常は、上記のような粒径や BET比表面積を 有する複合酸化物を得ることはできな!ヽ。上記の物性を有する複合酸化物を得るに は、式 2で表される水酸化物を酸化雰囲気中で焼成し、得られた酸化物に A1を添加 することが要求される。
[0040] 複合酸化物の一次粒子の平均粒径 (D1)は、例えば、以下の要領で求めることが できる。まず、正極活物質をエポキシ榭脂などで固めた硬化物を、収束イオンビーム (FIB)などで切断する。切断面を二次イオン顕微鏡 (SIM)で観察し、複合酸化物の 粒子の二次イオン像を測定する。その際に観察される任意の 100個の一次粒子につ いて、最大径 (最大幅: D )と最小径 (最小幅: D )を求め、それらの平均値として
max min
各一次粒子の粒径 (D )を求める(D = (D +D ) Z2)。一次粒子の平均粒径 (D
n n max min
1)は、 100個の一次粒子の粒径 Dの平均値として求められる((D +D + +
n 1 2
D ) /100)。
100
この際、粒径の小さいものは、略球状である一次粒子の直径に沿って切断されてい ない可能性が高い。よって、平均値を求める任意の 100個の一次粒子には、所定の 粒径よりも小さい粒子を含めないことが好ましい。具体的には、計測された一次粒子 の粒径データ (粒度分布)において、粒径の大きい方から 30%のデータのみを活用 して平均粒径を求めることが好まし 、。
また、二次粒子の平均粒径 (D2)は、例えばレーザー回折式粒度分布計を用いて複 合酸ィ匕物を分析することにより、体積基準のメディアン径として得ることができる。
[0041] 以下、正極活物質の製造法について詳述する。
(i)工程 a
式 2で表される水酸ィ匕物の調製方法は、特に限定されないが、 Niィ匕合物、 Co化合 物、元素 M1の化合物および元素 M2の化合物を溶解させた原料水溶液に、アルカリ 水溶液を注いで水酸ィ匕物を沈殿させる共沈法が好ましい。そこで、次に共沈法につ いて説明する。
[0042] 共沈法では以下の原材料を用いることができる。
Niィ匕合物には、硫酸ニッケル、硝酸ニッケル、塩ィ匕ニッケルなどを用いることができ る。これらは単独で用いてもよぐ組み合わせて用いてもよい。これらのうちでは、特に 硫酸ニッケルが好ましい。
[0043] Co化合物には、硫酸コバルト、硝酸コバルト、塩ィ匕コノ レトなどを用いることができ る。これらは単独で用いてもよぐ組み合わせて用いてもよい。これらのうちでは、特に 硫酸コバルトが好ましい。
[0044] 元素 M1の化合物には、硫酸塩、硝酸塩、塩ィ匕物などを用いることができる。例えば 、 Mnィ匕合物には、硫酸マンガン、塩ィ匕マンガン、硝酸マンガンなどを用いることがで き、特に硫酸マンガンが好ましい。 Tiィ匕合物には、塩基性硫酸チタンや四塩化チタ ンなどを用いることができ、特に塩基性硫酸チタンが好ましい。 Yィ匕合物には、硝酸ィ ットリウムなどを用いることができる。 Nb化合物には、硝酸ニオブ、ニオブ酸カリウムな どを用いることができる。 Mo化合物には、モリブデン酸ナトリウムやモリブデン酸アン モ -ゥムなどを用いることができる。 Wィ匕合物には、タングステン酸ナトリウムやタンダ ステン酸アンモ-ゥムなどを用いることができる。複数種の元素 M1を含む複塩などを 用いてもよい。
[0045] 元素 M2の化合物にも、硫酸塩、硝酸塩、炭酸塩などを用いることができる。例えば 、 Mg化合物には、硫酸マグネシウム、硝酸マグネシウム、塩化マグネシウム、フツイ匕 マグネシウム、酢酸マグネシウム、などを用いることができる。 Ca化合物には、水酸ィ匕 カルシウム、塩化カルシウムなどを用いることができる。 Sr化合物には、水酸化スト口 ンチウム、塩化ストロンチウムなどを用いることができる。 Baィ匕合物には、水酸化バリ ゥム、塩化バリウムなどを用いることができる。複数種の元素 M2を含む複塩などを用 いてもよい。
[0046] Niィ匕合物、 Co化合物、元素 M1の化合物および元素 M2の化合物を溶解させた原 料水溶液に注ぐアルカリ水溶液のアルカリ濃度は、例えば 10〜50重量%である。ァ ルカリ水溶液に溶解させるアルカリとしては、水酸化ナトリウム、水酸ィ匕カリウム、水酸 ィ匕リチウムなどを用いることができる。
原料水溶液およびアルカリ水溶液の温度は、いずれも特に限定されないが、例え ば 20〜60°Cである。
[0047] 原料水溶液に、その水溶液の pHが、例えば 10. 5以上になるように、アルカリ水溶 液を連続的に滴下すると、 Ni、 Co、元素 M1および元素 M2の共沈物である水酸化物 が得られる。この水酸化物を、濾過し、水洗し、乾燥すると、式 2で表される水酸化物 が得られる。このとき生成する水酸ィ匕物の二次粒子の平均粒径は、およそ 8〜20 mである。水酸ィ匕物の二次粒子の平均粒径は、反応時の pHや原料液の滴下速度な どの条件を変化させることにより制御することができる。なお、原料水溶液が A1イオン を含む場合には、二次粒子の平均粒径が 8 m以上の水酸ィ匕物を生成させることは 困難である。
[0048] (ii)工程 b 工程 aで得られた式 2で表される水酸ィ匕物に、 A1を含む化合物を添加する。ここで A1を水酸化物に添加することにより、最終的に生成する複合酸化物の一次粒子およ び二次粒子の粒径を、所望の範囲に制御することが可能となる。また、 BET比表面 積やタップ密度の制御も容易となる。
[0049] A1を含む化合物は、どのような方法で添カ卩してもよいが、式 2で表される水酸ィ匕物 の表面に均一に A1を付着させることが好ましい。例えば、水中で攪拌されている式 2 で表される水酸化物に対し、 NaAlOを添カ卩し、その後、酸を用いて水の pHを 10〜
2
8に調整することが好ましい。このとき添加する酸には、硫酸、塩酸、硝酸などを用い ることができる。その後、水分を除去し、生成した粉末を乾燥させる。このような液相 反応によれば、 A1を含む化合物として水酸ィ匕アルミニウムや塩基性水酸ィ匕アルミ-ゥ ムを、式 2で表される水酸ィ匕物の表面に均一に析出させることができる。
[0050] 上記のような液相反応を用いる方法の他に、式 2で表される水酸ィ匕物に、 A1を含む 化合物として、水酸ィ匕アルミニウム、酸ィ匕アルミニウム、硝酸アルミニウム、フッ化アル ミニゥム、塩ィ匕アルミニウムなどを混合するだけでもよ!/、。
[0051] (ii)工程 c
A1を含む化合物が添加された水酸ィ匕物 (第 1配合物)は、酸化雰囲気下 (例えば空 気中もしくは酸素中)で焼成する。焼成は、 500°C以上、 1100°C以下で行うことが好 ましぐ 600°C以上、 1000°C以下で行うことが更に好ましい。焼成時間は、焼成温度 にもよる力 例えば 1〜10時間であることが好ましい。
[0052] (iii)工程 d
上記焼成で得られた酸化物 (第 1酸化物)に対し、 Liを含む化合物を添加する。 Li を含む化合物は、どのような方法で添加してもよいが、例えば、第 1酸化物と Liを含 む化合物とを混合するだけでもよ ヽ。
リチウムを含む化合物には、炭酸リチウム、水酸化リチウム、硝酸リチウム、硫酸リチ ゥム、酸化リチウムなどを用いることができる。なかでも炭酸リチウムおよび水酸化リチ ゥムが、環境面とコスト面で最も有利である。リチウムを含む化合物の平均粒径は、 5 m以下であることが好ましい。リチウムを含む化合物の平均粒径が大きすぎると、反 応が均一に進行しな 、ことがある。 [0053] (iv)工程 e
Liを含む化合物が添加された第 1酸ィ匕物 (第 2配合物)は、酸化雰囲気下 (例えば 空気中もしくは酸素中)で焼成する。焼成は、 600°C以上、 850°C以下で行うことが 好ましぐ 700°C以上、 800°C以下で行うことが更に好ましい。焼成時間は、焼成温 度にもよる力 例えば 5〜72時間であることが好ましい。
焼成は、 2段階で行うことが好ましい。 400°C以上、 550°C以下で、例えば 1〜10時 間程度の予備焼成を行った後、 700°C以上、 800°C以下で本焼成することが好まし い。このような 2段階の焼成法によれば、結晶性の高い活物質が得られるとともに、未 反応物の残留を低減することができる。
[0054] 以上のような方法によれば、式 1で表され、一次粒子の平均粒径が 0. 1 μ m以上、
3 μ m以下であり、二次粒子の平均粒径が 8 μ m以上、 20 μ m以下である複合酸ィ匕 物からなる正極活物質を容易に得ることができる。
[0055] 本発明の非水電解液二次電池は、正極活物質に特徴を有し、他の構成要素は特 に制限されない。
正極は、通常、正極芯材およびそれに担持された正極合剤からなる。正極合剤は、 正極活物質の他に、結着剤、導電剤などを含むことができる。結着剤には、例えばポ リフッ化ビ-リデン、ポリテトラフルォロエチレンなどのフッ素榭脂、変性アタリ口-トリ ルゴムなどのゴム粒子が好ましく用いられる力 特に限定されない。導電剤には、ァ セチレンブラック、ケッチェンブラック等のカーボンブラックや、各種黒鉛などが好まし く用いられるが、特に限定されない。
[0056] 負極は、通常、負極芯材およびそれに担持された負極合剤からなる。負極合剤は、 一般に負極活物質と結着剤を含み、必要に応じて導電剤等を含んでいる。負極活物 質には、例えば各種天然黒鉛、各種人造黒鉛、非晶質炭素などの炭素材料、シリサ イドなどのシリコン含有複合材料、各種合金材料等が用いられる。結着剤には、ポリ フッ化ビ-リデン、ポリフッ化ビ-リデンの変性体などのフッ素榭脂、スチレンブタジェ ンゴムなどのゴム粒子などが好ましく用いられる力 特に限定されない。導電剤には、 正極と同様のものを用いることができる。
[0057] セパレータは、例えばポリエチレン、ポリプロピレンなどのポリオレフイン樹脂からな る微多孔フィルムが一般的である力 特に限定されない。微多孔フィルムは、 1種の ポリオレフイン榭脂からなる単層膜であってもよぐ 2種以上のポリオレフイン榭脂から なる多層膜であってもよい。
[0058] 非水電解液には、リチウム塩を溶解した非水溶媒が用いられる。非水溶媒には、ェ チレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジェチルカーボ ネート、ェチルメチルカーボネート、 y ブチロラタトンなどが挙げられる力 特に限 定されない。非水溶媒は、 2種以上を組み合わせて用いることが好ましい。リチウム塩 には、例えば六フッ化リン酸リチウム (LiPF )、四フッ化ホウ酸リチウム (LiBF )などが
6 4 好ましく用いられるが、特に限定されない。非水電解液には、添加剤として、ビ-レン カーボネート、シクロへキシルベンゼン、ジフエ-ルエーテルなどを含ませることが好 ましい。
[0059] 以下、本発明を実施例に基づいて具体的に説明するが、以下の実施例は本発明 を限定するものではない。
《実施例 1》
以下の方法で、表 1〜4に示す No. 1〜31の組成および物性を有する複合酸化物 を正極活物質として調製し、これを用いて電池 1〜31を作製した。
[0060] ω正極活物質の調製
工程 a
硫酸ニッケル、硫酸コバルト、元素 M1の塩、および元素 M2の塩を溶解させた金属 塩水溶液を調製した。前記金属塩水溶液における硫酸ニッケルの濃度は ImolZL とし、その他の塩の濃度は表 1に従って適宜調整した。
攪拌下にある前記金属塩水溶液を 50°Cに維持し、その中に、水酸ィ匕ナトリウムを 3 0重量%含む水溶液を pH12になるように滴下して、水酸化物を沈殿させた。水酸ィ匕 物の沈殿を濾過して水洗し、空気中で乾燥させた。
[0061] 元素 M1の塩には、それぞれ硫酸マンガン、塩基性硫酸チタン、硝酸イットリウム、二 ォブ酸カリウム、モリブデン酸ナトリウム、およびタングステン酸ナトリウムを用いた。元 素 M2の塩には、それぞれ硫酸マグネシウムと硫酸カルシウムとを、モル比 9 : 1で用い [0062] 工程 b
得られた水酸ィ匕物を 30°Cの反応槽内の水中で攪拌し、反応槽に NaAlOを A1量
2 が表 1の組成になるように添加し、十分に攪拌後、反応槽内の pHが 9になるまで硫酸 を用いて中和した。その結果、 A1を含む化合物である水酸ィ匕アルミニウムが水酸ィ匕 物の表面に均一に析出した。その後、水分を除去し、生成した粉末を乾燥させた。
[0063] 工程 c
A1を含む化合物を担持した水酸化物 (第 1配合物)を、空気雰囲気中で、 700°Cで 、 10時間焼成し、第 1酸化物を得た。
[0064] 工程 d
第 1酸化物に対し、水酸化リチウムを、 Li: (Ni + Co+Al +元素 元素 M2)がモ ル比で 1: 1となるように混合し、第 2配合物を得た。
[0065] 工程 e
第 2配合物を、電気炉を用いて、酸素雰囲気中で、 750°Cまで 10時間で昇温し、 7 50°Cで 36時間焼成することにより、正極活物質を合成した。
なお、 No. 23〜31では、原料水酸化物の合成条件と第二配合物の焼成温度を変 化させることにより、複合酸化物の一次粒子の平均粒径 D1もしくは二次粒子の平均 粒径 D2を変化させた。
[0066] (ii)正極の作製
100重量部の所定の正極活物質に、導電材として 4重量部のアセチレンブラックと 、 N—メチルピロリドン (NMP)の溶剤に結着剤として 5重量部のポリフッ化ビ-リデン (PVDF)を溶解した溶液とを混合し、正極合剤を含むペーストを得た。このペースト を、集電体となる厚さ 15 mのアルミニウム箔の両面に塗布し、乾燥後、圧延し、所 定寸法に裁断して、正極を得た。
[0067] (ii)負極の作製
平均粒子径が約 20 μ mになるように粉砕および分級した 100重量部の鱗片状人 造黒鉛に、結着剤としてスチレン Zブタジエンゴムを 3重量部と、カルボキシメチルセ ルロースを 1重量%含む水溶液 100重量部とをカ卩え、混合し、負極合剤を含むぺー ストを得た。このペーストを、集電体となる厚さ 10 mの銅箔の両面に塗布し、乾燥 後、圧延し、所定寸法に裁断して、負極を得た。
[0068] (iii)電池の組み立て
所定の正極と、上記負極を用いて、角型非水電解質二次電池(幅 34mm、高さ 50 mm、厚み 5. 2mm、設計容量 950mAh)を組み立てた。図 1に、本実施例で作製し た角型電池の一部を切り欠いた斜視図を示す。
[0069] 上記電池は以下のようにして組み立てた。まず、所定の正極と上記負極とを、これら の間に介在させた厚さ 20 mの微多孔性ポリエチレン榭脂製セパレータとともに卷 回して、極板群 1を構成した。正極と負極には、それぞれアルミニウム製正極リード 2 およびニッケル製負極リード 3を溶接した。極板群 1の上部にポリエチレン榭脂製の 絶縁リング(図示しない)を装着し、アルミニウム製電池ケース 4内に収容した。正極リ ード 2の他端は、アルミニウム製封口板 5にスポット溶接した。また、負極リード 3の他 端は、封口板 5の中心部の絶縁榭脂 7で包囲されたニッケル製負極端子 6の下部に スポット溶接した。電池ケース 4の開口端部と封口板 5の周縁部とをレーザー溶接し てから、封口板に設けてある注入ロカも所定量の非水電解液を注液した。非水電解 質には、エチレンカーボネートとェチルメチルカーボネートとの体積比 1: 3の混合溶 媒に lwt%のビ-レンカーボネートを添カ卩したものに、 1. OmolZLの濃度で LiPF
6 を溶解したものを用いた。最後に注入口をアルミニウム製の封栓 8で塞ぎ、レーザー 溶接で密封して電池を完成させた。
[0070] [表 1]
1 ?
Figure imgf000019_0001
VM w02
No. M1 M2 X y z V w
1 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005
| 2 Ti Mg、 Ca 1 0.15 0.03 0.005 0.005 m m I 3 Y Mg、 Ca 1 0.15 0.03 0.005 0.005
4 Nb Mg、 Ca 1 0.15 0.03 0.005 0.005
5 Mo Mg、 Ca 1 0.15 0.03 0.005 0.005
¾施例 6 W Mg、 Ca 1 0.15 0.03 0.005 0.005
I 7 Mn Mg、 Ca 1 0.01 0.03 0.005 0.005
8 Mn Mg, Ca 1 0.05 0.03 0.005 0.005 実施例 9 Mn Mg、 Ca 1 0.10 0.03 0.005 0.005 実施例 10 Mn Mg、 Ca 1 0.12 0.03 0.005 0.005 実施例 1 1 Mn Mg、 Ca 1 0.20 0.03 0.005 0.005 実施例 12 Mn Mg、 Ca 1 0.30 0.03 0.005 0.005 実施例 13 Mn Mg. Ca 1 0.35 0.03 0.005 0.005 比較例 14 Mn Mg、 Ca 1 0.50 0.03 0.005 0.005 元素 Mにおいて Mg: Ca=9: 1 (原子比) 2]
Figure imgf000020_0001
D1:一次粒子の平均粒径( m) D2:二次粒子の平均粒径( m)
S:BET比表面積(m2/g)
T:タップ密度(g/cm3)
0:U占有率(%) ]
Figure imgf000021_0001
No. M1 M2 X y z V w 比較例 15 Mn Mg、 Ca 1 0.15 0.001 0.005 0.005 実施例 16 Mn Mg、 Ca 1 0.15 0.005 0.005 0.005 実施例 17 Mn Mg、 Ca 1 0.15 0.01 0.005 0.005 実施例 18 Mn Mg、 Ca 1 0.15 0.02 0.005 0.005 実施例 19 Mn Mg、 Ca 1 0.15 0.06 0.005 0.005 実施例 20 Mn Mg、 Ca 1 0.15 0.08 0.005 0.005 実施例 21 Mn Mg、 Ca 1 0.15 0.1 0.005 0.005 比較例 22 Mn Mg、 Ca 1 0.15 0.2 0.005 0.005 卖 例 23 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 実施例 24 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 実施例 25 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 実施例 26 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 比較例 2フ Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 実施例 28 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 実施例 29 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 実施例 30 Mn Mg、 Ca 1 0,15 0.03 0.005 0.005 比較例 31 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 元素 Mにおいて Mg: Ca=9 : 1 (原子比) 4]
Figure imgf000022_0001
D1:一次粒子の平均粒径( m)
D2:二次粒子の平均粒径( μ m)
S : BET比表面積 (m2/g)
T:タップ密度(g/cm3)
0 : Li占有率(%)
[0074] 《比較例 1》
以下の方法で、表 5〜6に示す No. 32〜37の組成および物性を有する複合酸ィ匕 物を正極活物質として調製し、これを用いて実施例 1と同様にして、電池 32〜37を 作製した。
[0075] (i)正極活物質の調製
硫酸ニッケル、硫酸コバルト、硫酸アルミニウム、元素 M1の塩、および元素 M2の塩 を溶解させた金属塩水溶液を調製した。前記金属塩水溶液における硫酸ニッケルの 濃度は ImolZLとし、その他の塩の濃度は表 5に従って適宜調整した。 攪拌下にある前記金属塩水溶液を 50°Cに維持し、その中に、水酸化ナトリウムを 3 0重量%含む水溶液を pH12になるように滴下して、水酸ィ匕物を沈殿させた。水酸ィ匕 物の沈殿を濾過して水洗し、空気中で乾燥させた。
[0076] 元素 M1の塩には、それぞれ硫酸マンガン、塩基性硫酸チタン、硝酸イットリウム、二 ォブ酸カリウム、モリブデン酸ナトリウム、およびタングステン酸ナトリウムを用いた。元 素 M2の塩には、それぞれ硫酸マグネシウムと硫酸カルシウムとを、モル比 9 : 1で用い た。
[0077] 得られた水酸化物と、水酸化リチウムとを、 Li: (Ni + Co+Al+元素 M4元素 M2) がモル比で 1 : 1となるように混合し、得られた配合物を、電気炉を用いて、酸素雰囲 気中で、 750°Cまで 10時間で昇温し、 750°Cで 36時間焼成することにより、正極活 物質を合成した。
[0078] [表 5]
Figure imgf000023_0001
元素 M において Mg: Ca=9: 1 (原子比)
[0079] [表 6]
Figure imgf000024_0001
D1:一次粒子の平均粒径( U m)
D2:二次粒子の平均粒径( m)
S : BET比表面積(m2/g)
T:タップ密度(g/cm3)
0 : Li占有率(%)
[0080] 《実施例 2》
正極活物質の組成および物性を表 7および 8に示す No. 38〜45のように変更した こと以外、実施例 1と同様にして、複合酸化物を調製し、これを用いて実施例 1と同様 にして、電池 38〜45を作製した。
[0081] [表 7]
Figure imgf000024_0002
元素 Mにおいて Mg: Ca=9: 1 (原子比)
[0082] [表 8] 物 te
D1 D2 S T 0
No.
( Ai m) ( m) (g/cm3) (%) 比較例 38 0.56 10.6 0.44 2.51 98.56 実施例 39 0.57 10.2 0.46 2.49 98.42 実施例 40 0.59 10.5 0.43 2.56 98.36 実施例 41 0.53 10.4 0.46 2.53 98.24 実施例 42 0.55 10.8 0.42 2.50 98.02 実施例 43 0.58 10.6 0.47 2.54 97.92 実施例 44 0.57 1 1.0 0.43 2.51 97.86 比較例 45 0.49 9.8 0.49 2.48 97.46
D1 :—次粒子の平均粒径( m)
M C
D2:二次粒子の平均粒径( U m)
S: BET比表面積(m2/g)
T:タップ密度 (gん m3)
0丄 i占有率(%)
[0083] 《実施例 3》
正極活物質の組成および物性を表 9および 10に示す No. 46〜53のように変更し たこと以外、実施例 1と同様にして、複合酸化物を調製し、これを用いて実施例 1と同 様にして、電池 46〜53を作製した。
[0084] [表 9]
Figure imgf000025_0001
[0085] [表 10]
Figure imgf000026_0002
D1:一次粒子の平均粒径( β m)
D2:二次粒子の平均粒径( m)
S : BET比表面積(m2/g)
Τ ··タップ密度 (g/cm3)
0丄 ί占有率(%)
[0086] 《実施例 4》
正極活物質の組成および物性を表 11および 12に示す No. 54〜60のように変更 したこと以外、実施例 1と同様にして、複合酸化物を調製し、これを用いて実施例 1と 同様にして、電池 54〜60を作製した。
[0087] [表 11]
Figure imgf000026_0001
1 2
No. w +w
M1 M2 X y z V w /w
(=w)
実施例 54 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 1.1 実施例 55 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 2.0 実施例 56 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 5.1 実施例 57 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 10.2 実施例 58 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 15.0 実施例 59 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 20.0 実施例 60 Mn Mg、 Ca 1 0.15 0.03 0.005 0.005 35.6 [0088] [表 12]
Figure imgf000027_0001
D1 :—次粒子の平均粒径( m)
D2 :二次粒子の平均粒径( μ m)
S : BET比表面積(m2/g)
T :タップ密度(g/cm3)
0丄 i占有率(%)
[0089] 《比較例 2》
正極活物質の組成および物性を表 13および 14に示す No. 61〜65のように変更 したこと以外、実施例 1と同様にして、複合酸化物を調製し、これを用いて実施例 1と 同様にして、電池 61〜65を作製した。
[0090] [表 13]
Figure imgf000027_0002
No.63の元素 Mにおいて Mg: Ca=9: 1 (原子比)
[0091] [表 14]
Figure imgf000028_0001
0丄 i占有率(%)
[0092] 《実施例 5》
正極活物質の組成および物性を表 15および 16に示す No. 66〜67のように変更 したこと以外、実施例 1と同様にして、複合酸化物を調製し、これを用いて実施例 1と 同様にして、電池 66〜67を作製した。
[0093] [表 15]
Figure imgf000028_0003
Figure imgf000028_0002
No.67の元素 Mにおいて Mg: Ca: Ba=8 : 1 : 1 (原子比〉
[0094] [表 16] 8048
Figure imgf000029_0001
D1 :—次粒子の平均粒径( m)
D2:二次粒子の平均粒径( U m)
S:BET比表面積(m2/g)
T:タップ密度 (g/cm3)
0:Li占有率(%)
[0095] 《実施例 6》
正極活物質の組成および物性を表 17および 18に示す No.68〜72のように変更 したこと以外、実施例 1と同様にして、複合酸化物を調製し、これを用いて実施例 1と 同様にして、電池 68〜72を作製した。
[0096] [表 17]
Figure imgf000029_0002
元素 Mにおいて Mg:Ca=9:1 (原子比)
[0097] [表 18] 物性
D1 D2 S T 0
No.
( m) ( m) (g/ cm3) (%) 比較例 68 0.15 8.2 1.45 2.24 94.89 実施例 69 0,32 9.4 0.76 2.36 97.02 実施例 70 0.54 1 1.3 0.42 2.58 98.06 実施例 71 0.57 12.1 0.39 2.60 98.14 比較例 72 0.62 12.5 0.32 2.63 98.26
D1:一次粒子の平均粒径( m)
D2 :二次粒子の平均粒径( m)
S : BET比表面積(m2/g)
T:タップ密度(g/cm3)
0丄 i占有率(%)
[0098] (評価 1)
上記実施例および比較例で調製した正極活物質の物性は、以下の要領で評価し た。
[一次粒子の平均粒径 (D1) ]
正極活物質をエポキシ榭脂で固めた硬化物を、収束イオンビーム (FIB)で切断し た。切断面を二次イオン顕微鏡 (SIM)により観測し、複合酸ィ匕物の粒子の二次ィォ ン像を測定した。そして、任意の 100個の一次粒子にっ 、て、最大径 (D )と最小
max 径 (D )の平均値を粒径 (D )として求めた。 100個の一次粒子の Dから、複合酸化 min n n 物の一次粒子の平均粒径 D1を見積もった(D1 = (D +D + · · · +ϋ ) Ζ100)。こ
1 2 100
こでは、計測された一次粒子の粒径データ (粒度分布)において、粒径の大きい方か ら 30%のデータのみを抽出し、その中力 任意の 100個の粒子を選択した。
[0099] [二次粒子の平均粒径 (D2) ]
正極活物質の粒度分布を、レーザー回折式粒度分布測定装置( (株)堀場製作所 製の LA— 910)で測定し、体積基準のメディアン径 (D50)を求め、これを二次粒子 の平均粒径とした。
[0100] [BET比表面積(S) ] BET—点法により、窒素ガス吸着による比表面積を求めた。測定装置には (株)マ ゥンテック製の Macsorb 1201を用 、た。
[0101] [タップ密度 (T) ]
タッピングのストローク長を 2. 5cmとし、 1000回のタッピングを行った際のタップ密 度を求めた。
[0102] [Li占有率 (O) ]
複合酸ィ匕物の X線回折パターンの測定には、 Cu-K a線を用いた X線回折装置( (株)リガク製の RINT2500)を使用した。得られた X線回折パターンを用いて、リート ベルト解析を行った。リートベルト解析は、解析用ソフトウェア「RIETAN2000」(F. I zumi and T. Ikeda、 Mater. Sci. Forum, 2000年、フリーウェア)を用いて行つ た。 Liの占有率は、空間群 R3—mにおける 3aサイトの一部を他元素で占有させる精 密化により求めた。
[0103] (評価 2)
上記実施例および比較例で作製した電池を以下の要領で評価した。結果を表 19 〜21に示す。
[放電容量]
環境温度 20°Cで、以下の条件(1)で、 1サイクル目の充放電を行い、正極活物質 1 gあたりの放電容量 (C )を求めた。
200
〈条件 (1)〉
定電流充電:最大電流値 600mA、充電終止電圧 4. 2V
定電圧充電:電圧値 4. 2V、充電期間 2時間
定電流放電:電流値 200mA、放電終止電圧 2. 5V
[0104] [放電負荷特性]
1サイクル目の充放電の後、以下の条件(2)で、環境温度 20°Cで、 2サイクル目の 充放電を行い、放電電流 1000mAにおける正極活物質 lgあたりの放電容量 (C )
1000 を求めた。
〈条件 (2)〉
定電流充電:最大電流値 600mA、充電終止電圧 4. 2V 定電圧充電:電圧値 4. 2V、充電期間 2時間
定電流放電:電流値 1000mA、放電終止電圧 2. 5V
1サイクル目の正極活物質 lgあたりの放電容量 (C )に対する、 2サイクル目の正極
200
活物質 lgあたりの放電容量 (C )の割合を、百分率で求め、放電負荷特性とした。
1000
[0105] [発熱開始温度]
2サイクル目の充放電の後、上記条件(2)で、環境温度 20°Cで、 3サイクル目の充 放電を行い、 3サイクル目の充放電の後、以下の条件(3)で、環境温度 20°Cで、 4サ イタル目の充電を行った。
〈条件 (3)〉
定電流充電:最大電流値 600mA、充電終止電圧 4. 4V
定電圧充電:電圧値 4. 4V、充電期間 2時間
充電終了後、電池を分解し、正極より正極合剤を取り出し、そのうちの 2mgを SUS PANに入れた。示差走査熱量計 (DSC)を用い、正極合剤の熱安定性の指標となる 発熱量の測定を行った。測定〖こは、(株)リガク製の RIGAKU Thermo Plusを用いた 。室温から 400°Cまで 10°CZ分の速度で、空気雰囲気中で昇温を行い、第 1発熱温 度を求めた。
[0106] [容量維持率]
2サイクル目の充放電の後、上記条件(2)で、環境温度 20°Cで、充放電サイクルを 繰り返し、 300サイクル目の放電容量 (C )を求めた。 2サイクル目の放電容量(
1000-300th
C )に対する、 300サイクル目の正極活物質 lgあたりの放電容量 (C )の割
1000 1000-300th 合を、百分率 (%)で求め、容量維持率とした。
[0107] [高温保存特性]
2サイクル目の充放電の後、上記条件(2)で、環境温度 20°Cで、 3サイクルの充放 電を行い、 3サイクル目の充放電の後、以下の条件 (4)で、環境温度 20°Cで、 4サイ クル目の充電を行った。
〈条件 (4)〉
定電流充電:最大電流値 600mA、充電終止電圧 4. 2V
定電圧充電:電圧値 4. 2V、充電期間 2時間 充電終了後、電池を 60°Cの恒温槽に 30日間保存した。保存後の電池について、以 下の条件(5)で、 4サイクル目の放電を行った。
〈条件 (5)〉
定電流放電:電流値 200mA、放電終止電圧 2. 5V
充電終了後、以下の条件(6)で、環境温度 20°Cで、 5サイクル目の充放電を行い、 5 サイクル目の正極活物質 lgあたりの放電容量 (C )を求めた。
1000-5th
〈条件 (6)〉
定電流充電:最大電流値 600mA、充電終止電圧 4. 2V
定電圧充電:電圧値 4. 2V、充電期間 2時間
定電流放電:電流値 1000mA、放電終止電圧 2. 5V
2サイクル目の正極活物質 lgあたりの放電容量 (C )に対する、 5サイクル目の正極
1000
活物質 lgあたりの放電容量 (C )
1000-5thの割合を、百分率で求め、高温保存特性とし た。こうして高温保存後の回復特性を見積もった。
[表 19]
Figure imgf000033_0001
[0109] [表 20]
Figure imgf000034_0001
[0110] [表 21]
Figure imgf000035_0001
[0111] (考察)
[M1に関する考察]
元素 M1を含まない電池 61、 63に対して、元素 M1として Mn、 Ti、 Y、 Nb、 Moもしく は Wを添加した実施例の電池;!〜 6は、 V、ずれも高 V、容量維持率と高温保存特性を 示していることがわかる。
[0112] [y値に関する考察]
Coの含有量を表す y値と、放電容量および発熱開始温度との関係を図 2に示す。 放電容量は、リチウムニッケル酸ィヒ物が本来的に有する高容量を維持する観点から 、 170mAh/g以上を維持することが望ましぐ発熱開始温度は、 200。C以上である ことが求められる。以上の視点から、 y値は 0. 05≤y≤0. 35である必要があり、好ま しくは、 0. 10≤y≤0. 30、更に好ましくは、 0. 12≤y≤0. 20であることカゎ力る。 [0113] [z値に関する考察]
A1の含有量を表す z値と、放電容量および発熱開始温度との関係を図 3に示す。 図 3力ら、 z値 ίま 0. 005≤ζ≤0. 1である必要力 Sあり、好ましく ίま、 0. 01≤ζ≤0. 08、 更に好ましくは、 0. 02≤ζ≤0. 06であること力 Sわ力る。
[0114] [X値と Li占有率に関する考察]
電池 68〜72に基づき、 Liの含有量を表す X値と、放電容量および高温保存特性と の関係を図 4に示す。容量の観点から、 X値は 0. 97以上である必要があることがわ 力る。同様に、この結果から、 Liの占有率は 97%以上であることが好ましいことがわ かる。一方で、高温保存特性は、 80%以上あることが望ましぐ X値は 1. 1以下である 必要があることがわかる。 X値が 1. 1を超えると、余剰 Li量の増加に伴い、高温保存 時の副反応が増加すると考えられる。
[0115] [M2に関する考察]
元素 M2を含まない電池 61、 62に対して、元素 M2として Mg、 Caを添加した実施例 の電池 1〜6、元素 M2として Mg、 Ca、 Srを添カ卩した実施例の電池 66、元素 M2として Mg、 Ca、 Baを添カ卩した実施例の電池 67は、いずれも高い容量維持率と高温保存 特性を示して 、ることがわ;^る。
[0116] [D1と D2に関する考察]
正極活物質の製造において、 A1イオンを原料水溶液に含ませ、 A1を含む水酸ィ匕 物を共沈させた比較例 1の電池 32〜37では、いずれも D1が 0. 1 m未満であり、 D 2も 8 m未満である。一方、正極活物質の製造において、 A1を含まない水酸ィ匕物を 共沈させ、後に A1を添カ卩した実施例 1の電池 1〜31では、いずれも D1が 0.: L m以 上であり、 D2も 8 μ m以上である。このこと力 、式 1の組成を有し、かつ、一次粒子 の平均粒径 D1が 0. 1 μ m以上であり、二次粒子の平均粒径 D2が 8 μ m以上である 正極活物質を得るためには、 A1を含まない水酸ィ匕物を共沈させ、後に A1を添加して リチウム含有複合酸ィ匕物を合成することが極めて重要であることが理解できる。
産業上の利用可能性
[0117] 本発明は、高容量を有するとともに、サイクル特性と高温保存特性とを両立し、更に は放電負荷特性にも優れた非水電解液二次電池を提供するものである。本発明の 非水電解液二次電池は、高性能が要求される携帯電子機器カゝら電気自動車やハイ ブリツド自動車に至るまで、幅広い用途に電源として用いることができる。

Claims

請求の範囲
[1] 式 1 :Li Ni Co Al M1 M2 Oで表されるリチウム含有複合酸化物からなり、
X 1-y-z-v-w y z v w 2
前記式 1中の元素 M1は、 Mn、 Ti、 Y、 Nb、 Moおよび Wよりなる群から選ばれた少 なくとも 1種であり、
前記式 1中の元素 M2は、 Mg、 Ca、 Srおよび Baよりなる群力 選ばれた少なくとも 2 種であり、かつ、元素 M2は、少なくとも Mgと Caとを含み、
前記式 1は、 0. 97≤x≤l. 1、 0. 05≤y≤0. 35, 0. 005≤z≤0. 1、 0. 0001≤ v≤0. 05、および 0. 0001≤w≤0. 05を満たし、
前記複合酸化物は、一次粒子からなり、前記一次粒子は、二次粒子を形成しており 前記一次粒子の平均粒径は、 0. 1 m以上、 3 μ m以下であり、
前記二次粒子の平均粒径は、 以上、 20 m以下である、非水電解液二次電 池用の正極活物質。
[2] 窒素ガス吸着により測定される前記複合酸ィ匕物の BET比表面積力 0. 2m2Zg以 上、 1. 5m2Zg以下である、請求項 1記載の正極活物質。
[3] 前記複合酸化物に含まれる、 Mgの原子数 wlと、 Caの原子数 w2と力 2≤wl/w
2≤ 20の関係を満たす、請求項 1記載の正極活物質。
[4] 前記複合酸化物のタップ密度が、 2. 2g/cm3以上、 2. 8g/cm3以下である、請求 項 1記載の正極活物質。
[5] 前記複合酸ィ匕物の結晶が有する Liサイトにおいて、リートベルト解析により求められ る Li占有率が、 97%以上である、請求項 1記載の正極活物質。
[6] 正極、負極、前記正極と前記負極との間に介在するセパレータ、および電解液を具 備する非水電解液二次電池であって、
前記正極は、リチウム含有複合酸化物からなる正極活物質を含み、
前記複合酸化物は、式 1 :Li Ni Co Al M1 M2 Oで表され、
x 1-y-z-v-w y z v w 2
前記式 1中の元素 M1は、 Mn、 Ti、 Y、 Nb、 Moおよび Wよりなる群から選ばれた少 なくとも 1種であり、
前記式 1中の元素 M2は、 Mg、 Ca、 Srおよび Baよりなる群力 選ばれた少なくとも 2 種であり、かつ、元素 M2は、少なくとも Mgと Caとを含み、
前記式 1は、 0. 97≤x≤l. 1、 0. 05≤y≤0. 35, 0. 005≤z≤0. 1、 0. 0001≤ v≤0. 05、および 0. 0001≤w≤0. 05を満たし、
前記複合酸化物は、一次粒子からなり、前記一次粒子は、二次粒子を形成しており 前記一次粒子の平均粒径は、 0. 1 m以上、 3 μ m以下であり、
前記二次粒子の平均粒径は、 以上、 20 m以下である、非水電解液二次電 池。
[7] 窒素ガス吸着により測定される前記複合酸ィ匕物の BET比表面積力 0. 2m2Zg以 上、 1. 5m2Zg以下である、請求項 6記載の非水電解液二次電池。
[8] 前記複合酸化物に含まれる、 Mgの原子数 wlと、 Caの原子数 w2と力 2≤wl/w
2≤ 20の関係を満たす、請求項 6記載の非水電解液二次電池。
[9] 前記複合酸化物のタップ密度が、 2. 2g/cm3以上、 2. 8g/cm3以下である、請求 項 6記載の非水電解液二次電池。
[10] 前記複合酸ィ匕物の結晶が有する Liサイトにおいて、リートベルト解析により求められ る Li占有率が、 97%以上である、請求項 6記載の非水電解液二次電池。
[11] 式 1: Li Ni Co Al M1 M2 Oで表されるリチウム含有複合酸化物からなる正
X 1-y-z-v-w y z v w 2
極活物質の製造法であって、
式 2 :Ni Co M1 M2 (OH)で表される水酸化物を得る工程 a、
1-y-v-w y v w 2
前記水酸ィ匕物に対し、 A1を含む化合物を添加して、第 1配合物を得る工程 b、 前記第 1配合物を、酸化雰囲気中で焼成して、第 1酸化物を得る工程 c、
前記第 1酸ィ匕物に対し、 Liを含む化合物を添加して、第 2配合物を得る工程 d、およ び
前記第 2配合物を、酸化雰囲気中で焼成して、前記式 1で表されるリチウム含有複合 酸化物を第 2酸化物として得る工程 eを有し、
前記式 1および 2中の元素 M1は、 Mn、 Ti、 Y、 Nb、 Moおよび Wよりなる群から選 ばれた少なくとも 1種であり、
前記式 1および 2中の元素 M2は、 Mg、 Ca、 Srおよび Baよりなる群から選ばれた少 なくとも 2種であり、かつ、元素 M2は、少なくとも Mgと Caとを含み、
前記式 1および 2は、 0. 05≤y≤0. 35, 0. 0001≤v≤0. 05、および 0. 0001≤ w≤0. 05を満たし、
前記式 1は、 0. 97≤x≤l. 1および 0. 005≤z≤0. 1を満たす、非水電解質二次 電池用の正極活物質の製造法。
[12] 前記工程 bが、水中で攪拌されている前記水酸ィ匕物に対し、 NaAlOを添加してか
2
ら酸を用いて水の pHを 10〜8に調整する工程を含む、請求項 11記載の非水電解 液二次電池用の正極活物質の製造法。
[13] 前記工程 cにおいて、酸化雰囲気中で、 500°C以上、 1100°C以下で、前記第 1配 合物を焼成する、請求項 11記載の正極活物質の製造法。
[14] 前記工程 eおいて、酸化雰囲気中で、 600°C以上、 850°C以下で、前記第 2配合物 を焼成する、請求項 11記載の正極活物質の製造法。
[15] 請求項 11記載の方法により得られた非水電解質二次電池用の正極活物質。
[16] 正極、負極、前記正極と前記負極との間に介在するセパレータ、および電解液を具 備し、前記正極は、請求項 15記載の正極活物質を含む、非水電解液二次電池。
PCT/JP2006/308048 2005-04-28 2006-04-17 非水電解液二次電池 WO2006118013A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800050485A CN101120464B (zh) 2005-04-28 2006-04-17 非水电解液二次电池
US11/794,579 US7981546B2 (en) 2005-04-28 2006-04-17 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005133135A JP4781004B2 (ja) 2005-04-28 2005-04-28 非水電解液二次電池
JP2005-133135 2005-04-28

Publications (1)

Publication Number Publication Date
WO2006118013A1 true WO2006118013A1 (ja) 2006-11-09

Family

ID=37307815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308048 WO2006118013A1 (ja) 2005-04-28 2006-04-17 非水電解液二次電池

Country Status (5)

Country Link
US (1) US7981546B2 (ja)
JP (1) JP4781004B2 (ja)
KR (1) KR100935987B1 (ja)
CN (1) CN101120464B (ja)
WO (1) WO2006118013A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016801A1 (ja) * 2007-07-27 2009-02-05 Panasonic Corporation リチウムイオン二次電池
JP2009054577A (ja) * 2007-07-27 2009-03-12 Panasonic Corp リチウムイオン二次電池
US20150188136A1 (en) * 2012-07-12 2015-07-02 Sumitomo Metal Mining Co., Ltd. Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996117B2 (ja) * 2006-03-23 2012-08-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法とそれを用いた非水系電解質二次電池
JP4984593B2 (ja) * 2006-03-28 2012-07-25 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP5045135B2 (ja) * 2007-02-08 2012-10-10 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
JP5103923B2 (ja) * 2007-02-08 2012-12-19 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
KR100816206B1 (ko) 2007-07-16 2008-03-28 삼성에스디아이 주식회사 리튬 이차 전지의 양극 활물질, 그 형성 방법 및 리튬 이차전지
JP5341325B2 (ja) * 2007-07-25 2013-11-13 日本化学工業株式会社 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP5251332B2 (ja) * 2007-07-30 2013-07-31 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法、並びにこれを用いた非水系電解質二次電池
JP5640311B2 (ja) 2007-09-28 2014-12-17 住友化学株式会社 リチウム複合金属酸化物および非水電解質二次電池
JP2009224307A (ja) * 2008-02-22 2009-10-01 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
JP5260990B2 (ja) * 2008-03-11 2013-08-14 三洋電機株式会社 密閉型電池及びその製造方法
CN101621125B (zh) * 2009-02-13 2011-03-30 成都晶元新材料技术有限公司 一种镍钴锰多元掺杂锂离子电池正极材料及其制备方法
JP2011023335A (ja) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd 非水二次電池用電極および非水二次電池
JP5638232B2 (ja) 2009-12-02 2014-12-10 住友金属鉱山株式会社 非水系電解質二次電池正極活物質用ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP2011187419A (ja) * 2010-03-11 2011-09-22 Jx Nippon Mining & Metals Corp リチウムイオン電池用正極、及び、リチウムイオン電池
CN102388490B (zh) * 2010-06-21 2014-11-12 丰田自动车株式会社 锂二次电池
WO2011161754A1 (ja) 2010-06-21 2011-12-29 トヨタ自動車株式会社 リチウムイオン二次電池
JP5477676B2 (ja) 2010-09-17 2014-04-23 トヨタ自動車株式会社 リチウムイオン二次電池
JP4915488B1 (ja) * 2011-03-28 2012-04-11 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
KR101336082B1 (ko) 2011-05-23 2013-12-03 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
JP2014514726A (ja) * 2011-05-23 2014-06-19 エルジー ケム. エルティーディ. エネルギー密度特性が向上した高エネルギー密度のリチウム二次電池
WO2012161476A2 (ko) 2011-05-23 2012-11-29 주식회사 엘지화학 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
WO2012161477A2 (ko) 2011-05-23 2012-11-29 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
KR101336083B1 (ko) 2011-05-23 2013-12-03 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
KR101336076B1 (ko) 2011-05-23 2013-12-03 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
US20170050864A1 (en) * 2011-05-30 2017-02-23 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
WO2012164693A1 (ja) * 2011-05-31 2012-12-06 トヨタ自動車株式会社 リチウム二次電池
JP5598726B2 (ja) * 2011-05-31 2014-10-01 トヨタ自動車株式会社 リチウム二次電池
JP5741932B2 (ja) * 2011-06-01 2015-07-01 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物とその製造方法、及び非水系電解質二次電池用正極活物質の製造方法
WO2013009078A2 (ko) 2011-07-13 2013-01-17 주식회사 엘지화학 에너지 밀도 특성이 향상된 고 에너지 리튬 이차전지
CN103050684B (zh) * 2011-10-14 2016-05-04 河南科隆集团有限公司 一种锂离子电池正极材料及其制备方法
CN102694166B (zh) * 2011-11-23 2014-08-13 横店集团东磁股份有限公司 一种锂镍钴铝复合金属氧化物的制备方法
WO2013109038A1 (ko) * 2012-01-17 2013-07-25 주식회사 엘지화학 양극 활물질 및 이를 포함하고 불순물 혹은 스웰링 제어를 위한 리튬 이차전지와 생산성이 향상된 양극 활물질의 제조방법
JP5365711B2 (ja) * 2012-02-21 2013-12-11 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物及びその製造方法
KR101713454B1 (ko) * 2012-08-28 2017-03-07 스미토모 긴조쿠 고잔 가부시키가이샤 비수계 전해질 이차 전지용 정극 활물질의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질 및 이것을 사용한 비수계 전해질 이차 전지
JP2014123529A (ja) * 2012-12-21 2014-07-03 Jfe Mineral Co Ltd リチウム二次電池用正極材料
CN103050686A (zh) * 2013-01-24 2013-04-17 湖南桑顿新能源有限公司 一种高密度锂离子电池正极材料镍钴铝酸锂及其制备方法
JP6017978B2 (ja) * 2013-01-24 2016-11-02 トヨタ自動車株式会社 正極活物質及び該活物質を用いたリチウム二次電池
WO2014181891A1 (ja) 2013-05-10 2014-11-13 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池
KR101785262B1 (ko) * 2013-07-08 2017-10-16 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 이를 채용한 양극 및 리튬이차전지
JP5701343B2 (ja) * 2013-07-10 2015-04-15 株式会社田中化学研究所 リチウム二次電池用正極活物質、正極および二次電池
JP6508892B2 (ja) * 2013-09-30 2019-05-08 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
CN110739451B (zh) 2014-01-27 2021-05-25 住友化学株式会社 锂二次电池用正极活性物质、锂二次电池用正极和锂二次电池
JP6486653B2 (ja) 2014-01-31 2019-03-20 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP6250432B2 (ja) * 2014-02-24 2017-12-20 チタン工業株式会社 チタンニオブ複合酸化物電極用活物質及びそれを用いたリチウム二次電池
JP6624885B2 (ja) 2015-02-19 2019-12-25 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP6768647B2 (ja) 2015-06-02 2020-10-14 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US10109854B2 (en) 2015-09-30 2018-10-23 Panasonic Corporation Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
JP6908368B2 (ja) 2016-02-29 2021-07-28 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP6341312B2 (ja) * 2016-03-31 2018-06-13 日亜化学工業株式会社 非水系電解質二次電池用正極活物質の製造方法
JP6368022B1 (ja) 2017-05-31 2018-08-01 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
WO2019044204A1 (ja) * 2017-08-30 2019-03-07 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP6749884B2 (ja) * 2017-12-05 2020-09-02 Jfeミネラル株式会社 リチウム二次電池用正極材料
JP7126173B2 (ja) * 2017-12-26 2022-08-26 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
CN109455772B (zh) * 2017-12-28 2020-01-10 北京当升材料科技股份有限公司 一种改性的锂离子电池用前驱体、正极材料及该前驱体和正极材料的制备方法
WO2020110590A1 (ja) 2018-11-28 2020-06-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池
WO2020158420A1 (ja) 2019-01-30 2020-08-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JPWO2020262348A1 (ja) * 2019-06-27 2020-12-30
EP4037029B1 (en) * 2019-09-27 2024-02-21 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2021235131A1 (ja) 2020-05-22 2021-11-25 パナソニックIpマネジメント株式会社 非水電解質二次電池
JPWO2022091939A1 (ja) 2020-10-29 2022-05-05
EP4239743A1 (en) 2020-10-30 2023-09-06 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
CN116508174A (zh) 2020-10-30 2023-07-28 松下知识产权经营株式会社 非水电解质二次电池
EP4254557A4 (en) 2020-11-30 2024-05-01 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERIES, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
EP4253328A4 (en) 2020-11-30 2024-05-15 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE FOR SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE AND SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE
CN116490990A (zh) 2020-11-30 2023-07-25 松下知识产权经营株式会社 非水电解质二次电池
WO2022114231A1 (ja) 2020-11-30 2022-06-02 パナソニックIpマネジメント株式会社 非水電解質二次電池
JPWO2022138104A1 (ja) 2020-12-25 2022-06-30
EP4366015A1 (en) 2021-06-30 2024-05-08 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
CN117597809A (zh) 2021-06-30 2024-02-23 松下知识产权经营株式会社 非水电解质二次电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274917A (ja) * 1996-04-04 1997-10-21 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池
JPH1145707A (ja) * 1997-05-27 1999-02-16 Tdk Corp 非水電解質電池用電極の製造方法
JPH11246225A (ja) * 1997-10-30 1999-09-14 Samsung Display Devices Co Ltd リチウム複合酸化物およびその製造方法並びにリチウム複合酸化物を活物質とする陽極を有するリチウムイオン二次電池
JP2000030693A (ja) * 1998-07-10 2000-01-28 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP2001110413A (ja) * 1999-10-01 2001-04-20 Mitsui Mining & Smelting Co Ltd リチウム二次電池用正極材料及びこれを用いたリチウム二次電池
JP2003308827A (ja) * 2002-04-12 2003-10-31 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004087487A (ja) * 2002-08-05 2004-03-18 Matsushita Electric Ind Co Ltd 正極活物質およびこれを含む非水電解質二次電池
JP2004111076A (ja) * 2002-09-13 2004-04-08 Sony Corp 正極活物質及び非水電解質二次電池
JP2004171961A (ja) * 2002-11-20 2004-06-17 Sumitomo Metal Mining Co Ltd リチウム二次電池正極活物質およびリチウム二次電池
JP2004311297A (ja) * 2003-04-09 2004-11-04 Mitsubishi Chemicals Corp 粉体状リチウム二次電池正極材料、リチウム二次電池正極、及びリチウム二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2547992B2 (ja) 1986-11-08 1996-10-30 旭化成工業株式会社 非水系二次電池
JP3244314B2 (ja) 1991-11-13 2002-01-07 三洋電機株式会社 非水系電池
US5631105A (en) * 1995-05-26 1997-05-20 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte lithium secondary battery
AU7452398A (en) 1997-05-27 1998-12-30 Tdk Corporation Method of producing electrode for non-aqueous electrolytic cells
JP4016453B2 (ja) 1997-07-18 2007-12-05 株式会社日立製作所 電極及びこれを用いた電池
JP4052810B2 (ja) 2000-04-26 2008-02-27 三菱化学株式会社 リチウム二次電池
US8241790B2 (en) * 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
CN100466341C (zh) * 2002-08-08 2009-03-04 松下电器产业株式会社 非水电解质二次电池用正极活性物质及其制造方法
CN100420087C (zh) 2003-06-23 2008-09-17 比亚迪股份有限公司 层叠式锂离子二次电池
CN1294665C (zh) * 2003-08-15 2007-01-10 比亚迪股份有限公司 非水二次电池用正极活性材料、其制备方法以及使用该材料的非水二次电池
US20040191161A1 (en) * 2002-11-19 2004-09-30 Chuanfu Wang Compounds of lithium nickel cobalt metal oxide and the methods of their fabrication

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274917A (ja) * 1996-04-04 1997-10-21 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池
JPH1145707A (ja) * 1997-05-27 1999-02-16 Tdk Corp 非水電解質電池用電極の製造方法
JPH11246225A (ja) * 1997-10-30 1999-09-14 Samsung Display Devices Co Ltd リチウム複合酸化物およびその製造方法並びにリチウム複合酸化物を活物質とする陽極を有するリチウムイオン二次電池
JP2000030693A (ja) * 1998-07-10 2000-01-28 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP2001110413A (ja) * 1999-10-01 2001-04-20 Mitsui Mining & Smelting Co Ltd リチウム二次電池用正極材料及びこれを用いたリチウム二次電池
JP2003308827A (ja) * 2002-04-12 2003-10-31 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004087487A (ja) * 2002-08-05 2004-03-18 Matsushita Electric Ind Co Ltd 正極活物質およびこれを含む非水電解質二次電池
JP2004111076A (ja) * 2002-09-13 2004-04-08 Sony Corp 正極活物質及び非水電解質二次電池
JP2004171961A (ja) * 2002-11-20 2004-06-17 Sumitomo Metal Mining Co Ltd リチウム二次電池正極活物質およびリチウム二次電池
JP2004311297A (ja) * 2003-04-09 2004-11-04 Mitsubishi Chemicals Corp 粉体状リチウム二次電池正極材料、リチウム二次電池正極、及びリチウム二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016801A1 (ja) * 2007-07-27 2009-02-05 Panasonic Corporation リチウムイオン二次電池
JP2009054577A (ja) * 2007-07-27 2009-03-12 Panasonic Corp リチウムイオン二次電池
US20150188136A1 (en) * 2012-07-12 2015-07-02 Sumitomo Metal Mining Co., Ltd. Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
US10084188B2 (en) * 2012-07-12 2018-09-25 Sumitomo Metal Mining Co., Ltd. Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance

Also Published As

Publication number Publication date
CN101120464A (zh) 2008-02-06
CN101120464B (zh) 2010-05-19
US20090035659A1 (en) 2009-02-05
US7981546B2 (en) 2011-07-19
KR20070097115A (ko) 2007-10-02
JP2006310181A (ja) 2006-11-09
KR100935987B1 (ko) 2010-01-08
JP4781004B2 (ja) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4781004B2 (ja) 非水電解液二次電池
JP6627241B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP4070585B2 (ja) リチウム含有複合酸化物およびそれを用いた非水二次電池
JP5030123B2 (ja) リチウム二次電池
JP6167822B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、およびこれを用いた非水系電解質二次電池
JP5079291B2 (ja) 非水電解質二次電池
JP2006351378A (ja) リチウムイオン二次電池
JP4813450B2 (ja) リチウム含有複合酸化物およびそれを用いた非水二次電池
JP2011023335A (ja) 非水二次電池用電極および非水二次電池
JP2013134822A (ja) 非水系二次電池用正極活物質及び非水系リチウム二次電池
JP6010902B2 (ja) リチウム遷移金属系化合物粉体、その製造方法、及びそれを用いたリチウム二次電池用正極及びリチウム二次電池
WO2007015473A1 (ja) 正極活物質、非水電解質電池用正極、非水電解質電池
JP2012038680A (ja) リチウム二次電池用正極活物質材料及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2008198363A (ja) 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
JP5145994B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法
JP5109447B2 (ja) 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
WO2014073701A1 (ja) 正極活物質、リチウム電池および正極活物質の製造方法
JP5176317B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP2013060319A (ja) リチウムマンガン(iv)ニッケル(iii)系酸化物、その酸化物を含むリチウムイオン二次電池用正極活物質、その正極活物質を用いたリチウムイオン二次電池及びそのリチウムイオン二次電池を搭載した車両
JP2018206609A (ja) 非水電解質二次電池
JP5141356B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP5181455B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP5045135B2 (ja) 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
JP7194493B2 (ja) 非水系電解質二次電池用正極活物質
JP5407232B2 (ja) 二次電池用正極活物質とその製造方法及びそれを用いた二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11794579

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680005048.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077018823

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731977

Country of ref document: EP

Kind code of ref document: A1