WO2006098288A1 - Iii族窒化物結晶の製造方法及び製造装置 - Google Patents

Iii族窒化物結晶の製造方法及び製造装置 Download PDF

Info

Publication number
WO2006098288A1
WO2006098288A1 PCT/JP2006/304934 JP2006304934W WO2006098288A1 WO 2006098288 A1 WO2006098288 A1 WO 2006098288A1 JP 2006304934 W JP2006304934 W JP 2006304934W WO 2006098288 A1 WO2006098288 A1 WO 2006098288A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
crystal
seed crystal
container
holding container
Prior art date
Application number
PCT/JP2006/304934
Other languages
English (en)
French (fr)
Inventor
Hirokazu Iwata
Seiji Sarayama
Minoru Fukuda
Tetsuya Takahashi
Akira Takahashi
Original Assignee
Ricoh Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Company, Ltd. filed Critical Ricoh Company, Ltd.
Priority to EP06728999.1A priority Critical patent/EP1860213B8/en
Priority to CN2006800002301A priority patent/CN1954101B/zh
Priority to US11/596,250 priority patent/US8337617B2/en
Publication of WO2006098288A1 publication Critical patent/WO2006098288A1/ja
Priority to US13/679,499 priority patent/US9376763B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/32Seed holders, e.g. chucks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling

Definitions

  • the present invention relates to a method for producing an in-group nitride crystal and an apparatus for producing an in-group nitride crystal, and more specifically, to a method for producing an in-group nitride crystal by a flux method and the implementation of the method.
  • the present invention relates to a suitable manufacturing apparatus.
  • InGaAIN III-nitride semiconductor
  • SiC silicon carbide
  • MO-CVD metal organic chemical vapor deposition
  • MBE molecular beam crystal growth
  • the sapphire substrate is an insulator, it was impossible to take out the electrode from the substrate side as in the conventional light emitting device. As a result, it is necessary to take out the group III nitride semiconductor side force electrode. As a result, there is a disadvantage that the area of the device is increased and the cost is increased. As the area of the device increases, a new problem arises of warping of the substrate due to the combination of different materials such as a sapphire substrate and a group IV nitride semiconductor.
  • the group III nitride semiconductor device fabricated on a sapphire substrate is difficult to separate by chip cleavage, and it is not easy to obtain the cavity facet required for a laser diode (LD). .
  • the end faces of the resonator are formed by dry etching or by separating the sapphire substrate to a thickness of 100 ⁇ m or less and then separating it close to cleaving. . Therefore, it is difficult to form the resonator end face and separate the chips in a single process as in the conventional LD, resulting in high costs due to process complexity.
  • GaN substrate that is the same as the material for crystal growth on the substrate is most appropriate. For this reason, crystal growth of Balta GaN has been studied by vapor phase growth and melt growth. However, a high quality and practical size GaN substrate has not been realized yet.
  • Patent Document 1 discloses a method of additionally replenishing a group m metal during crystal growth of a group m nitride crystal in order to increase the size of the group m nitride crystal.
  • a growth vessel 102 and a group III metal supply pipe 103 are provided in a reaction vessel 101, pressure is applied to the group III metal supply tube from the outside, and a group III metal 104 is placed in the reaction vessel 102 containing the flux. It is characterized by additional replenishment.
  • generation of miscellaneous crystals is a problem that hinders the enlargement of crystals.
  • the raw materials are also consumed for the growth of miscellaneous crystals.
  • more raw materials than are required to grow the desired crystal are required, and since the supply efficiency of the raw material is reduced, it is necessary to increase the size of the desired crystal. It will take a long time.
  • Patent Document 2 discloses a method of growing a crystal by locally heating a seed crystal.
  • the seed crystal and the melt only in the vicinity thereof are heated to a temperature at which crystal growth is possible, and other melts are maintained at a temperature at which crystal growth does not occur. Nuclear growth can be suppressed and only the seed crystal can be efficiently grown.
  • the inventors of the present invention have succeeded in growing large crystals of good quality by suppressing the growth of miscellaneous crystals on the inner wall of the melt holding container by appropriately selecting the crystal growth conditions. .
  • the present invention has been made under vigorous circumstances, and an object of the present invention is to improve the quality of the seed crystal.
  • An object of the present invention is to provide a method and an apparatus for producing a group m nitride that can grow crystals greatly in a shorter time than before.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-058900
  • Patent Document 2 JP 2002-068896 A
  • a method for producing a group III nitride crystal wherein a seed crystal is grown in a holding vessel in which a melt containing a group III metal, an alkali metal and nitrogen is held,
  • a method for producing a group nitride crystal is provided.
  • the seed crystal when a seed crystal is grown in a holding container in which a melt containing a Group III metal, an alkali metal, and nitrogen is held, the seed crystal is brought into contact with the melt, and the seed crystal is in this state.
  • the crystal environment is in the first state, which is out of the condition of crystal growth.
  • the nitrogen concentration in the melt increases and the melt nitrogen concentration reaches a concentration suitable for crystal growth of the seed crystal, the environment of the seed crystal is in a second state suitable for the crystal growth conditions. It is said.
  • the nitrogen concentration in the melt does not increase until the occurrence of polynuclears, so that the precipitation of microcrystals on the inner wall of the holding container is suppressed.
  • a method for producing a metal nitride crystal in a holding container in which a melt containing a group III metal, an alkali metal and nitrogen is held There is provided a method for producing a group m nitride crystal comprising a step of maintaining the temperature of the holding container at or above the temperature of the melt.
  • the temperature of the holding vessel is higher than the temperature of the melt. Retained.
  • the heat generated when the crystal nuclei are generated is not dissipated from the inner wall of the holding container, so that unnecessary fine crystal precipitation on the inner wall of the holding container is suppressed. Accordingly, it is possible to prevent the raw material from being wasted and to grow a large m-group nitride crystal in a shorter time than before.
  • a holding container for holding a melt containing a Group III metal, an alkali metal and nitrogen, and a heating means for directly heating the holding container;
  • An apparatus for producing a group III nitride crystal comprising:
  • the temperature of the holding container can be maintained at a temperature equal to or higher than the temperature of the melt, and the heat generated when the crystal nuclei are generated is dissipated from the inner wall of the holding container. Therefore, the precipitation of miscellaneous crystals on the inner wall of the holding container is suppressed. Accordingly, it is possible to prevent the raw material from being wasted, and it is possible to grow the seed crystal with high quality and in a shorter time than in the past.
  • a holding container in which a melt containing a Group III metal, an alkali metal and nitrogen is held; an auxiliary container in which the holding container is housed;
  • An apparatus for producing a group III nitride crystal comprising:
  • the holding container for holding the melt is accommodated in the auxiliary container and heated by the heater disposed outside the auxiliary container. That is, heat is transferred in the order of auxiliary container ⁇ holding container ⁇ melt.
  • the holding container has a higher temperature than the melt. Therefore, the precipitation of miscellaneous crystals on the inner wall of the holding container is suppressed because the heat generated when the crystal nuclei are generated is not dissipated from the inner wall of the holding container. Therefore, it is possible to prevent the raw material from being wasted, and it is possible to grow a large X-ray nitride crystal in a shorter time than before.
  • the present invention when a metal group nitride crystal is produced in a holding vessel in which a melt containing a Group III metal, an alkali metal, and nitrogen is held, if the nitrogen concentration in the melt is stabilized, Crystals are in contact with the melt. In a state where the nitrogen concentration in the melt is stable, crystal growth proceeds rather than nucleation, so that a seed crystal can be grown in which the seed crystal has a new crystal nucleus and does not become a polycrystal. That is, the seed crystal can be grown with high quality in a shorter time than in the past.
  • a holding container for holding a melt containing a Group III metal, an alkali metal and nitrogen, and a heating means for heating the holding container,
  • a growth inhibiting member that is disposed in the vicinity of the inner wall of the holding container and prevents crystal growth of the microcrystals deposited on the inner wall of the holding container;
  • An apparatus for producing a group III nitride crystal comprising:
  • the crystal growth of the microcrystals deposited on the inner wall of the holding container is inhibited by the growth inhibiting member. That is, the growth of miscellaneous crystals is suppressed. As a result, it is possible to grow seed crystals with high quality and in a shorter time than before.
  • a fixing auxiliary container in which a melt containing a Group III metal, an alkali metal, and nitrogen is held, and a holding container that is accommodated in the fixing auxiliary container and is entirely crushed in the melt in the fixing auxiliary container
  • An immersion mechanism for pulling up the holding container from the fixing auxiliary container and bringing a seed crystal into contact with the melt in the holding container;
  • An apparatus for producing a group III nitride crystal comprising:
  • waste of raw materials due to growth of miscellaneous crystals can be suppressed, and most of the raw materials can be used for crystal growth of seed crystals. That is, the seed crystal can be grown with high quality and in a shorter time than in the past.
  • a movable auxiliary container in which a melt containing a Group III metal, an alkali metal, and nitrogen is held; a holding container in which the movable auxiliary container is housed;
  • a Group III nitride crystal comprising: a take-out means for transferring the melt in the movable auxiliary container to the holding container; and an immersion mechanism for bringing a seed crystal into contact with the melt transferred in the holding container.
  • waste of raw materials due to growth of miscellaneous crystals can be suppressed, and most of the raw materials can be used for crystal growth of seed crystals. That is, the seed crystal can be grown with high quality and in a shorter time than before.
  • a holding container for holding a melt containing a Group III metal, an alkali metal and nitrogen, and a heating means for heating the holding container,
  • An immersion mechanism for bringing a seed crystal into contact with the melt in the holding container A removing device for mechanically removing fine crystals deposited on the inner wall of the holding container, and a Group III nitride crystal manufacturing apparatus comprising:
  • waste of raw materials due to growth of miscellaneous crystals can be suppressed, and most of the raw materials can be used for crystal growth of seed crystals. That is, the seed crystal can be grown with high quality and in a shorter time than in the past.
  • a large group II I nitride crystal can be grown in a shorter time than in the prior art. It is possible to grow a crystal of a group III nitride.
  • FIG. 1 is a diagram for explaining a schematic configuration of a manufacturing apparatus used for carrying out a GaN crystal manufacturing method according to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a method for producing a GaN crystal using the production apparatus of FIG.
  • FIG. 3 is a diagram for explaining a schematic configuration of a manufacturing apparatus used for carrying out a GaN crystal manufacturing method according to a third embodiment of the present invention.
  • FIG. 4A is a diagram (No. 1) for explaining the production method of the GaN crystal using the production apparatus of FIG.
  • FIG. 4B is a diagram (No. 2) for explaining the production method of the GaN crystal using the production apparatus of FIG.
  • FIG. 5 is a diagram for explaining a schematic configuration of a GaN crystal manufacturing apparatus according to a fourth embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a schematic configuration of a GaN crystal manufacturing apparatus according to fifth to eighth embodiments of the present invention. 7] FIG. 7 is a view for explaining a manufacturing method by the manufacturing apparatus of FIG.
  • FIG. 8 is a diagram for explaining a schematic configuration of a GaN crystal manufacturing apparatus according to a ninth embodiment of the present invention.
  • FIG. 9 is a view for explaining a manufacturing method by the manufacturing apparatus of FIG.
  • FIG. 10 is a diagram for explaining a schematic configuration of a GaN crystal manufacturing apparatus according to a tenth embodiment of the present invention.
  • FIG. 11A is a view (No. 1) for explaining the production method by the production apparatus of FIG.
  • FIG. 11B is a view (No. 2) for explaining the production method by the production apparatus of FIG.
  • FIG. 11C is a view (No. 3) for explaining the production method by the production apparatus of FIG. [12]
  • FIG. 12 is a diagram for explaining a manufacturing method by the manufacturing apparatus of FIG.
  • FIG. 13 is a diagram for explaining a schematic configuration of a GaN crystal manufacturing apparatus according to an eleventh embodiment of the present invention.
  • FIG. 14A is a view (No. 1) for describing a production method by the production apparatus of FIG.
  • FIG. 14B is a diagram (No. 2) for explaining the production method by the production apparatus of FIG.
  • FIG. 14C is a diagram (No. 3) for explaining the production method by the production apparatus of FIG.
  • FIG. 14D is a view (No. 4) for explaining the production method by the production apparatus of FIG.
  • FIG. 15 is a diagram for explaining a schematic configuration of a GaN crystal manufacturing apparatus according to a twelfth embodiment of the present invention.
  • FIG. 16A is a view (No. 1) for explaining the production method by the production apparatus of FIG.
  • FIG. 16B is a view (No. 2) for explaining the production method by the production apparatus of FIG.
  • FIG. 16C is a view (No. 3) for explaining the production method by the production apparatus of FIG.
  • FIG. 16D is a view (No. 4) for explaining the production method by the production apparatus of FIG.
  • FIG. 17 is a diagram for explaining a schematic configuration of a GaN crystal manufacturing apparatus according to a thirteenth embodiment of the present invention.
  • FIG. 18A is a view (No. 1) for explaining the production method by the production apparatus of FIG.
  • FIG. 18B is a view (No. 2) for explaining the production method by the production apparatus of FIG.
  • FIG. 18C is a diagram (No. 3) for explaining the production method by the production apparatus of FIG. ⁇ 19] A schematic diagram showing the configuration of the manufacturing apparatus according to the fourteenth embodiment.
  • FIG. 20 is a first enlarged view of the seed crystal holder, piping, and thermocouple shown in FIG.
  • FIG. 21 is a second enlarged view of the seed crystal holder, piping, and thermocouple shown in FIG.
  • FIG. 23 is a diagram showing the relationship between the temperature of the seed crystal shown in FIG. 19 and the flow rate of nitrogen gas. 24] Another schematic diagram showing the configuration of the manufacturing apparatus according to the fourteenth embodiment.
  • FIG. 25 is still another schematic diagram showing the configuration of the manufacturing apparatus according to the fourteenth embodiment.
  • ⁇ 26 It is still another schematic diagram showing the configuration of the manufacturing apparatus according to the fourteenth embodiment.
  • ⁇ 27] is still another schematic diagram showing the configuration of the manufacturing apparatus according to the fourteenth embodiment.
  • ⁇ 28] is still another schematic diagram showing the configuration of the manufacturing apparatus according to the fourteenth embodiment.
  • 29] is still another schematic diagram showing the configuration of the manufacturing apparatus according to the fourteenth embodiment.
  • FIG. 30 is still another schematic diagram showing the configuration of the manufacturing apparatus according to the fourteenth embodiment.
  • FIG. 31 is a graph showing the relationship between nitrogen gas pressure and crystal growth temperature when a GaN crystal is grown.
  • Container holder part of immersion mechanism
  • Blade member (removal means)
  • FIG. 1 shows a schematic configuration of a manufacturing apparatus 100A used in the implementation of the method for manufacturing a group IV nitride crystal according to the first embodiment of the present invention.
  • manufacturing apparatus 100A is an apparatus for manufacturing Balta GaN by a flux method, and holds reaction vessel 102, melt holding vessel 104, heater 106, heater 180, and seed crystal 110. It comprises a seed crystal holder 112, a gas supply pipe 122, a valve 124, a pressure gauge 126, a pressure regulator 128, a gas cylinder 130, and the like.
  • the reaction vessel 102 is a closed vessel made of stainless steel. In the reaction vessel 102, a melt holding vessel 104 is held.
  • the seed crystal holder 112 can move the seed crystal 110 up and down without opening the reaction vessel 102.
  • the melt holding vessel 104 is made of P-BN (pioritic boron nitride) and can be taken out from the reaction vessel 102.
  • a melt 108 containing sodium (Na) as an alkali metal and metal gallium (Ga) as a group III metal is placed in the melt holding container 104.
  • the heater 106 is provided adjacent to the outside of the reaction vessel 102. That is, the melt holding container 104 is heated via the reaction container 102.
  • the heater 180 is attached in the vicinity of a portion of the seed crystal holder 112 where the seed crystal 110 is held, and can heat the seed crystal 110 without opening the reaction vessel 102.
  • the gas supply pipe 122 is a pipe for supplying nitrogen (N) gas into the reaction vessel 102.
  • reaction vessel 102 It is provided between the reaction vessel 102 and the nitrogen gas cylinder 130.
  • the nozzle 124 is provided in the middle of the gas supply pipe 122 and near the reaction vessel 102.
  • valve 124 When valve 124 is open, nitrogen gas is supplied into reaction vessel 102. In the closed state, the supply of nitrogen gas into the reaction vessel 102 is shut off.
  • the gas supply pipe 122 can be disconnected in front of the valve 124 (nitrogen gas cylinder 130 side). As a result, the reaction vessel 102 can be moved into the glove box and operated.
  • the pressure regulator 128 is provided in the middle of the gas supply pipe 122 and near the nitrogen gas cylinder 130, and is used to adjust the pressure of the nitrogen gas supplied into the reaction vessel 102.
  • the pressure gauge 126 is provided in the middle of the gas supply pipe 122 and between the valve 124 and the reaction vessel 102, and is used to monitor the pressure of nitrogen gas supplied into the reaction vessel 102. It is done.
  • the gas supply pipe 122 is disconnected in front of the valve 124, and the reaction vessel 102 is placed in a glove box with an argon (Ar 3) atmosphere.
  • the melt holding container 104 is taken out from the reaction vessel 102, and the melt 108 containing raw material Ga and flux Na is put into the melt holding vessel 104.
  • the melt holding container 104 is accommodated in a predetermined position in the reaction container 102.
  • a columnar GaN crystal having a c-axis length of about 5 mm is attached to the seed crystal holder 112 as the seed crystal 110.
  • the seed crystal holder 112 is operated to lower the seed crystal 110, and the seed crystal 110 is brought into contact with or immersed in the melt 108.
  • the nitrogen concentration in the melt 108 increases with time. After about 20 hours, the nitrogen concentration in the melt 108 reaches a concentration suitable for crystal growth.
  • the retention time is a value measured in advance as an experiment as the time required for the nitrogen concentration in the melt 108 to be a concentration suitable for crystal growth.
  • the seed crystal holder 112 is operated to pull up the seed crystal 110 that has grown from the melt 108.
  • the seed crystal 110 had grown to a length of about 10 mm in the c-axis direction.
  • the temperature of the seed crystal 110 in the melt 108 is set higher than the temperature of the melt 108,
  • the temperature of the seed crystal 110 is lowered at a timing (arrow A in FIG. 2) at which the nitrogen concentration in the melt 108 reaches a concentration suitable for the growth of high-quality crystals before the occurrence of polynuclear.
  • the nitrogen concentration in the melt 108 does not increase until the occurrence of polynuclearity, and remains constant, so that precipitation of miscellaneous crystals on the inner wall of the melt holding vessel 104 is suppressed, and most of the raw material is seed crystals 110. It can be used for crystal growth of GaN crystals.
  • the second embodiment is characterized in that the temperature and pressure in the first embodiment are different. Therefore, the manufacturing apparatus is the same as the manufacturing apparatus 100A in the first embodiment. Therefore, in the following, the explanation will focus on the differences from the first embodiment, and the same reference numerals will be used for the same or equivalent components as those in the first embodiment described above, and the explanation will be given. Simplified or omitted.
  • the melt holding container 104 is taken out from the reaction vessel 102, and the melt 108 containing raw material Ga and flux Na is put into the melt holding vessel 104.
  • the melt holding container 104 is accommodated in a predetermined position in the reaction container 102.
  • a columnar GaN crystal having a c-axis length of about 5 mm is attached to the seed crystal holder 112 as the seed crystal 110.
  • the valve 124 is closed and the inside of the reaction vessel 102 is shut off from the outside. (7) Remove the reaction vessel 102 from the glove box and connect the gas supply pipe 122 in front of the valve 124.
  • the pressure regulator 128 sets the pressure of the nitrogen gas to 3 MPa. This pressure is set such that when the melt 108 reaches the crystal growth temperature, the pressure in the reaction vessel 102 becomes 7 MPa.
  • the crystal growth temperature is set higher than that in the first embodiment, and is set to 850 ° C.
  • the seed crystal holder 112 is operated to lower the seed crystal 110, and the seed crystal 110 is brought into contact with or immersed in the melt 108.
  • the holding time is a value measured in advance as an experiment as the time required for the nitrogen concentration in the melt 108 to be a concentration suitable for crystal growth. Since the crystal growth temperature is higher than that of the first embodiment, the holding time is shorter than that of the first embodiment.
  • the seed crystal holder 112 is operated to pull up the seed crystal 110 from which the crystal has grown from the melt 108. (17) Stop energization of heater 106.
  • a GaN crystal similar to that of the first embodiment can be obtained in a shorter time than the first embodiment. That is, when the seed crystal is grown in a state where the seed crystal is held in the melt, the growth of the low quality crystal is suppressed, and a large high quality crystal of GaN can be produced in a shorter time than before.
  • FIG. 3 shows a schematic configuration of a GaN crystal manufacturing apparatus 100B used for carrying out the method for manufacturing a group III nitride crystal according to the third embodiment of the present invention.
  • the manufacturing apparatus 100B has a configuration excluding the heater 180 in the first embodiment. Therefore, in the following description, differences from the first embodiment are mainly described, and the same reference numerals are used for the same or equivalent components as in the first embodiment described above, and the description is simplified. It shall be hesitant or omitted.
  • the melt holding vessel 104 is taken out from the reaction vessel 102, and a melt 108 containing Ga as a raw material and Na as a flux is put into the melt holding vessel 104.
  • the melt holding container 104 is accommodated in a predetermined position in the reaction container 102.
  • a columnar GaN crystal having a c-axis length of about 5 mm is attached to the seed crystal holder 112 as the seed crystal 110.
  • the seed crystal holder 112 is operated to lower the seed crystal 110, and the seed crystal 110 is held below the melt 108.
  • Nitrogen also dissolves the melt 108 surface force, so the nitrogen concentration at the bottom of the melt 108 is low. That is, the seed crystal 110 has a low nitrogen concentration. Keep it in the right area. Here, almost no crystal growth occurs because the environment of the seed crystal 110 is out of the condition force of crystal growth.
  • the retention time is a value measured in advance by experiment as the time required for the nitrogen concentration in the upper melt of the melt 108 to be a concentration suitable for the growth of high-quality crystals. is there.
  • the seed crystal holder 112 is manipulated to raise the seed crystal 110 and move the seed crystal 110 to the top of the melt 108. That is, the seed crystal 110 is moved to a region where the nitrogen concentration is high.
  • the environment of the seed crystal 110 is in a state suitable for growing a high-quality crystal, crystal growth of the GaN crystal from the seed crystal 110 is started.
  • the seed crystal 110 when the nitrogen concentration in the melt 108 is lower than the concentration suitable for crystal growth, the seed crystal 110 is held below the melt 108.
  • the seed crystal 110 is moved to the upper part of the melt 108 when the nitrogen concentration in the upper part of the melt 108 reaches a concentration suitable for crystal growth.
  • the nitrogen concentration in the melt 108 does not increase until the occurrence of polynuclearity, but becomes constant, and precipitation of miscellaneous crystals on the inner wall of the melt holding vessel 104 is suppressed, and most of the raw material is taken from the seed crystal 110. It can be used for crystal growth of GaN crystals.
  • GaN Balta crystal which is a group III nitride. That is, when the seed crystal is grown in a state where the seed crystal is held in the melt, the growth of the low quality crystal is suppressed, and a high quality crystal of large GaN can be manufactured in a shorter time than before.
  • the nitrogen concentration of the melt 108 is controlled by the nitrogen pressure in the atmosphere in contact with the melt 108 at the gas-liquid interface and the temperature of the melt 108.
  • the force described in the case of the GaN crystal manufacturing apparatus is not limited to this, but is a group III metal nitride crystal other than Ga. There may be.
  • an alkali metal other than Na may be used as the flux!
  • FIG. 5 shows a schematic configuration of a GaN crystal manufacturing apparatus 200 A as a group III nitride crystal manufacturing apparatus according to the fourth embodiment of the present invention.
  • a manufacturing apparatus 200A shown in FIG. 5 is an apparatus for manufacturing Balta GaN by a flux method, and includes a reaction vessel 202, a melt holding vessel 204 as a holding vessel, a heater 206 as a heating means, A seed crystal holder 212 for holding the seed crystal 210, a gas supply pipe 222, a valve 224, a pressure gauge 226, a pressure regulator 228, and the like are included.
  • the reaction vessel 202 is a closed vessel made of stainless steel.
  • a melt holding vessel 204 is accommodated together with a heater 206.
  • the seed crystal holder 212 can move the seed crystal 210 up and down without opening the reaction vessel 202.
  • the melt holding container 204 is made of P—BN (pioritic boron nitride) and can be taken out from the reaction container 202.
  • a melt 208 containing sodium (Na) as an alkali metal and metal gallium (Ga) as a group III metal is placed.
  • the heater 206 has a cylindrical shape, and can accommodate the melt holding container 204 therein. As described above, the entire wall of the melt holding container 204 is directly heated by the heater 206, so that heat radiation through the wall of the melt holding container 204 can be prevented. Accordingly, the relationship between the temperature of the melt holding container 204 wall (T2) and the temperature of the melt 208 (T3) is always T2 ⁇ T3.
  • the temperature (referred to as T1) of the seed crystal 210 is lower than the temperature of the melt 208 when not in contact with or immersed in the melt 208.
  • the gas supply pipe 222 is a pipe for supplying nitrogen (sodium) gas into the reaction vessel 202.
  • the nozzle 224 is provided in the middle of the gas supply pipe 222 and close to the reaction vessel 202. Nitrogen gas is supplied into the reaction vessel 202 when the valve 224 is open, and supply of nitrogen gas into the reaction vessel 202 is shut off when the valve 224 is closed.
  • the gas supply pipe 222 can be disconnected in front of the valve 224 (on the nitrogen gas cylinder 130 side). As a result, the reaction vessel 202 can be moved into the glove box and operated.
  • the pressure regulator 228 is provided in the middle of the gas supply pipe 222 and near the nitrogen gas cylinder 130, and is used to adjust the pressure of the nitrogen gas supplied into the reaction vessel 202.
  • the pressure gauge 226 is provided in the middle of the gas supply pipe 222 and between the valve 224 and the reaction vessel 202, and is used to monitor the pressure of nitrogen gas supplied into the reaction vessel 202. I can.
  • the melt holding container 204 is taken out from the reaction vessel 202, and the melt 208 containing the raw material Ga and the flux Na is put into the melt holding vessel 204.
  • the melt holding container 204 is accommodated in a heater 206 disposed in the reaction container 202.
  • a columnar GaN crystal having a c-axis length of about 5 mm is attached to the seed crystal holder 212 as the seed crystal 210.
  • the valve 224 is closed to shut off the reaction vessel 202 from the outside.
  • the pressure of the nitrogen gas is set to 2.5 MPa by the pressure regulator 228.
  • This pressure is a pressure at which the pressure in the reaction vessel 202 becomes 5 MPa when the melt 208 reaches the crystal growth temperature.
  • the crystal growth temperature is 800 ° C.
  • the seed crystal holder 212 is operated to pull up the seed crystal 210 grown from the melt 208.
  • reaction vessel 202 When the reaction vessel 202 is opened after cooling, almost no precipitation of miscellaneous crystals on the inner wall of the melt holding vessel 204 is observed, and the seed crystal 210 grows to a length of about 10 mm in the c-axis direction. It was.
  • the seed crystal immersion mechanism is configured by the seed crystal holder 212, the gas supply pipe 222, the valve 224, the pressure gauge 226, and the pressure adjustment.
  • the device 228 constitutes a nitrogen gas supply mechanism.
  • the temperature of the melt holding container 204 is heated to the temperature of the melt 208 or higher, and the seed crystal 210 having a temperature lower than the temperature of the melt 208 is obtained. Crystal growth is performed by contacting or dipping in the melt 208.
  • the heat generated when the crystal nuclei are generated is not dissipated from the inner wall of the melt holding vessel 204, the generation of nuclei of miscellaneous crystals on the inner wall of the melt holding vessel 204 is suppressed. Therefore, most of the raw material can be used for growing the seed crystal 210, and the seed crystal can be grown with high quality and large size in a shorter time than before.
  • the contact or immersion time of seed crystal 210 is not limited to 300 hours, but may be changed depending on the size of the GaN Balta crystal that is required.
  • FIG. 6 shows Ga as a group III nitride crystal production apparatus according to the fifth embodiment of the present invention.
  • a schematic configuration of an N crystal manufacturing apparatus 100B is shown. In the following, the first mentioned
  • a manufacturing apparatus 200B shown in FIG. 6 is an apparatus for manufacturing Balta GaN by a flux method, and includes a reaction vessel 202, a melt holding vessel 204 as a holding vessel, a heater 206 as a heating means, an auxiliary vessel 214, It includes a gas supply pipe 222, a valve 224, a pressure gauge 226, a pressure regulator 228, and the like.
  • the auxiliary container 214 is made of P—BN and is accommodated in the reaction container 202. This auxiliary container 214 can be removed from the reaction container 202.
  • the melt holding container 204 is made of P-BN and is accommodated in the auxiliary container 214.
  • the melt holding container 204 can be taken out from the auxiliary container 214.
  • a melt 208 containing sodium (Na) as an alkali metal and metal gallium (Ga) as a group III metal is placed in the melt holding container 204.
  • the heater 206 is provided adjacent to the outside of the reaction vessel 202. That is, the melt holding container 204 is heated via the reaction container 202 and the auxiliary container 214.
  • the crystal growth temperature is set to 800 ° C.
  • the melt 208 containing the raw material Ga and the flux Na is placed in the melt holding container 204.
  • the auxiliary container 214 is housed in a predetermined position in the reaction container 202 together with the melt holding container 204.
  • the valve 224 is closed to shut off the reaction vessel 202 from the outside.
  • the valve 224 is opened and nitrogen gas is supplied into the reaction vessel 202.
  • pressure Use the pressure regulator 228 to set the pressure of nitrogen gas to 2.5 MPa.
  • This pressure is a pressure at which the pressure in the reaction vessel 202 becomes 5 MPa when the melt 208 reaches the crystal growth temperature.
  • the crystal growth temperature is 800 ° C.
  • the gas supply pipe 222, the valve 224, the pressure gauge 226, and the pressure regulator 228 constitute a nitrogen gas supply mechanism.
  • the melt holding container 204 is accommodated in the auxiliary container 214 containing the indium. Then, the melt 208 is heated through the auxiliary container 214, indium, and the melt holding container 204. As a result, the temperature of the melt holding container 204 is maintained higher than that of the melt 208, and the heat generated when the crystal nuclei are generated is not dissipated from the inner wall of the melt holding container 204. Precipitation of unnecessary miscellaneous crystals (microcrystals) on the inner wall of the liquid holding container 204 is suppressed. Therefore, most of the raw material can be used for growing a desired crystal, and a large GaN crystal can be grown in a shorter time than before.
  • the present embodiment is characterized in that gallium is used instead of indium in the fifth embodiment described above. Therefore, the manufacturing apparatus is the manufacturing apparatus 20 according to the fifth embodiment. Same as OB. Therefore, in the following, differences from the fifth embodiment will be mainly described, and the same reference numerals are used for the same or equivalent components as those of the fifth embodiment described above, and the description will be simplified. Hesitate or omit.
  • the melt 208 containing the raw material Ga and the flux Na is placed in the melt holding container 204.
  • the melt holding container 204 is accommodated in the auxiliary container 214.
  • the auxiliary container 214 is disposed at a predetermined position in the reaction container 202 together with the melt holding container 204.
  • the valve 224 is closed to shut off the reaction vessel 202 from the outside.
  • the valve 224 is opened and nitrogen gas is supplied into the reaction vessel 202.
  • the pressure regulator 228 sets the pressure of the nitrogen gas to 2.5 MPa.
  • This pressure is a pressure at which the pressure in the reaction vessel 202 becomes 5 MPa when the melt 208 reaches the crystal growth temperature.
  • the crystal growth temperature is 800 ° C.
  • This seventh embodiment is characterized in that sodium is used in place of indium in the fifth embodiment described above. Therefore, the manufacturing apparatus is the same as the manufacturing apparatus 200B in the fifth embodiment. Therefore, in the following, differences from the fifth embodiment will be mainly described, and the same reference numerals will be used for the same or equivalent components as those of the fifth embodiment described above, and the description thereof will be made. Simplified or omitted.
  • the melt 208 containing the raw material Ga and the flux Na is placed in the melt holding container 204.
  • the melt holding container 204 is accommodated in the auxiliary container 214.
  • the auxiliary container 214 is disposed at a predetermined position in the reaction container 202 together with the melt holding container 204.
  • the valve 224 is closed to shut off the reaction vessel 202 from the outside.
  • the valve 224 is opened and nitrogen gas is supplied into the reaction vessel 202.
  • the pressure of the nitrogen gas is set to 2.5 MPa by the pressure regulator 228.
  • This pressure is a pressure at which the pressure in the reaction vessel 202 becomes 5 MPa when the melt 208 reaches the crystal growth temperature.
  • the crystal growth temperature is 800 ° C.
  • This eighth embodiment is characterized in that the material of the melt holding container 204 in the fifth embodiment described above is silicon nitride having a thermal conductivity lower than that of P—BN.
  • Other configurations are the same as those of the second embodiment. Therefore, in the following description, differences from the fifth embodiment will be mainly described, and the same reference numerals are used for the same or equivalent components as those of the fifth embodiment described above, and the description thereof will be simplified. Or omitted.
  • the melt 208 containing the raw material Ga and the flux Na is placed in the melt holding container 204.
  • the melt holding container 204 is accommodated in the auxiliary container 214.
  • the auxiliary container 214 is disposed at a predetermined position in the reaction container 202 together with the melt holding container 204.
  • the valve 224 is closed to shut off the reaction vessel 202 from the outside.
  • the valve 224 is opened and nitrogen gas is supplied into the reaction vessel 202.
  • the pressure regulator 228 sets the pressure of the nitrogen gas to 2.5 MPa.
  • This pressure is a pressure at which the pressure in the reaction vessel 202 becomes 5 MPa when the melt 208 reaches the crystal growth temperature.
  • the crystal growth temperature is 800 ° C.
  • Remelting of the generated crystal nuclei that is radiated to the inner wall of the container 204 is smaller than in the fifth to seventh embodiments is more effective than in the fifth to seventh embodiments, and the melt holding container Precipitation of miscellaneous crystals on the inner wall of 204 is suppressed. As a result, a GaN crystal larger than those in the fifth to seventh embodiments can be obtained.
  • FIG. 8 shows a schematic configuration of a GaN crystal manufacturing apparatus 200C as an apparatus for manufacturing a group IV nitride crystal according to a ninth embodiment of the present invention.
  • This manufacturing apparatus 200C is characterized in that a seed crystal holding mechanism 212 for holding the seed crystal 210 is added to the manufacturing apparatus 200B in the fifth embodiment described above.
  • Other configurations are the same as those of the fifth embodiment. Therefore, the following description will focus on the differences from the fifth embodiment, and the same reference numerals will be used for the same or equivalent components as in the fifth embodiment described above, and the description will be simplified. Hesitate or omit.
  • the seed crystal holding mechanism 212 can move the seed crystal 210 up and down without opening the reaction vessel 202.
  • the melt 208 containing the raw material Ga and the flux Na is placed in the melt holding container 204.
  • the auxiliary container 214 is housed in a predetermined position in the reaction container 202 together with the melt holding container 204.
  • a columnar GaN crystal having a c-axis length of about 5 mm is attached to the seed crystal holding mechanism 2 12 mm.
  • the pressure regulator 228 sets the pressure of the nitrogen gas to 2.5 MPa.
  • This pressure is a pressure at which the pressure in the reaction vessel 202 becomes 5 MPa when the melt 208 reaches the crystal growth temperature.
  • the crystal growth temperature is 800 ° C.
  • the seed crystal holding mechanism 212 is operated to lower the seed crystal 210, and as an example, as shown in FIG. 9, the seed crystal 210 is contacted or immersed (so-called seeding) in the melt 208. Thereby, crystal growth of the seed crystal 210 is started.
  • the seed crystal holding mechanism 212 is operated to pull up the seed crystal 210 grown from the melt 208.
  • an immersion mechanism is configured by the seed crystal holder 212, and the gas supply pipe 222, the valve 224, the pressure gauge 226, and the pressure regulator 228
  • a nitrogen gas supply mechanism is configured.
  • the melt holding container 204 is hotter than the melt 208, the heat generated by the nucleation is not dissipated from the inner wall force of the melt holding container 204. , Nucleation is suppressed. As a result, unnecessary fine crystal precipitation on the inner wall of the melt holding container 204 is suppressed. Therefore, most of the raw material can be used for crystal growth of the seed crystal 210. That is, the seed crystal can be grown with high quality and large size in a shorter time than conventional.
  • the force described in the case of the GaN crystal manufacturing apparatus is not limited to this as the group III nitride crystal manufacturing apparatus, but a group III metal nitride crystal other than Ga is used. There may be.
  • an alkali metal other than Na may be used as the flux.
  • FIG. 10 shows a schematic configuration of a GaN crystal manufacturing apparatus 300A as a group III nitride crystal manufacturing apparatus according to a tenth embodiment of the present invention.
  • a manufacturing apparatus 300A shown in FIG. 10 includes a reaction vessel 302, a melt holding vessel 304 as a holding vessel, a fixing auxiliary vessel 314, a heater 306 as a heating means, and a seed crystal holder for holding a seed crystal 310. 312, a container holder 315 for raising and lowering the melt holding container 304, a gas supply pipe 322, a valve 324, a pressure gauge 326, a pressure regulator 328, etc.
  • the reaction vessel 302 is a closed vessel made of stainless steel. In the reaction vessel 302, a melt holding vessel 304 is accommodated.
  • the seed crystal holder 312 can move the seed crystal 310 up and down without opening the reaction vessel 302.
  • the melt holding vessel 304 is made of P-BN (pioritic boron nitride) and can be taken out from the reaction vessel 302. In the melt holding container 304, there is an alkali A melt 308 containing sodium (Na) as a metal and metal gallium (Ga) as a group VIII metal is charged.
  • the fixing auxiliary container 314 is made of P-BN and has a size that allows the melt holding container 304 to be placed therein.
  • the fixing auxiliary container 314 is accommodated in the reaction container 302.
  • the container holder 315 can move the melt holding container 304 up and down without opening the reaction container 302.
  • the heater 306 is provided adjacent to the outside of the reaction vessel 302. That is, the melt holding container 304 is heated via the reaction container 302 and the fixed auxiliary container 314.
  • the gas supply pipe 322 is a pipe for supplying nitrogen (N) gas into the reaction vessel 302.
  • reaction vessel 302 And provided between the reaction vessel 302 and the nitrogen gas cylinder 130.
  • the nozzle 324 is provided in the middle of the gas supply pipe 322 and close to the reaction vessel 302. Nitrogen gas is supplied into the reaction vessel 302 when the valve 324 is open, and supply of nitrogen gas into the reaction vessel 302 is shut off when the valve 324 is closed.
  • the gas supply pipe 322 can be disconnected in front of the valve 324 (nitrogen gas cylinder 130 side). This makes it possible to work by moving the reaction vessel 302 into the glove box.
  • the pressure regulator 328 is provided in the middle of the gas supply pipe 322 and near the nitrogen gas cylinder 130 and is used to adjust the pressure of nitrogen gas supplied into the reaction vessel 302.
  • the pressure gauge 326 is provided in the middle of the gas supply pipe 322 and between the valve 324 and the reaction vessel 302, and is used for monitoring the pressure of nitrogen gas supplied into the reaction vessel 302. It is done.
  • the melt holding container 304 is submerged in the melt 308 in the fixing auxiliary container 314. As a result, the melt holding container 304 is filled with the melt 308 (see FIG. 11A).
  • the fixing auxiliary container 314 is housed in a predetermined position in the reaction container 302 together with the melt holding container 304.
  • a columnar GaN crystal having a c-axis length of about 5 mm is attached to the seed crystal holder 312 as the seed crystal 310.
  • (11) Energize the heater 306 and raise the temperature of the melt 308 from room temperature (27 ° C) to the crystal growth temperature (800 ° C) over about 1 hour.
  • the pressure in the sealed reaction vessel 302 increases as the temperature rises, and the total pressure in the reaction vessel 302 when the crystal growth temperature (800 ° C.) is reached is 5 MPa.
  • the pressure of the pressure regulator 328 is set to 5 MPa, and the valve 324 is opened.
  • the nitrogen concentration in the melt 308 increases with time.
  • the nitrogen concentration in the melt 308 reaches a predetermined value.
  • nucleation occurs, and the nitrogen concentration in the melt 308 is stabilized.
  • FIG. 11B miscellaneous crystal nuclei are formed on the inner wall of the fixed auxiliary vessel 314, and thereafter, the nitrogen concentration in the melt 308 becomes substantially constant. That is, the nitrogen concentration in the melt 308 is saturated and stabilized.
  • nuclei generated on the inner wall of the fixed auxiliary vessel 314 grow and become miscellaneous crystals 330. At this time, almost no miscellaneous crystals are deposited on the inner wall of the melt holding container 304.
  • the holding time here is a value measured in advance by experiments as the time required for the nitrogen concentration in the melt 308 to stabilize.
  • the seed crystal 310 was observed to grow to a length of about 10 mm in the c-axis direction, as in the tenth embodiment.
  • the container holder 315 and the seed crystal holder 312 constitute an immersion mechanism
  • a gas supply pipe 322, a valve 324, and a pressure gauge 326 And the pressure regulator 328 constitute a supply mechanism.
  • the melt holding container 304 is submerged in the fixing auxiliary container 314 filled with the melt 308, and the nitrogen concentration in the melt 308 is stabilized. Then, the melt holding container 304 is pulled up from the fixing auxiliary container 314, and the seed crystal is brought into contact with or immersed in the melt 308 in the melt holding container 304.
  • the growth of miscellaneous crystals on the inner wall of the melt holding container 304 during immersion of the seed crystal 310 can be suppressed, and most of the raw material can be used for crystal growth of the seed crystal 310. That is, growth of miscellaneous crystals can be suppressed, and seed crystals can be grown with high quality and in a shorter time than in the past.
  • FIG. 13 shows a schematic configuration of a GaN crystal manufacturing apparatus 300 B as a group III nitride crystal manufacturing apparatus according to an eleventh embodiment of the present invention.
  • the same reference numerals are used for the same or equivalent components as those of the tenth embodiment described above, and the description thereof will be simplified or omitted.
  • the manufacturing apparatus 300B shown in FIG. 13 includes a reaction vessel 302, a melt holding vessel 304 (second volume). ), Movable auxiliary container 316 (first container), heater 306 as heating means, seed crystal holder 312 for holding seed crystal 310, container holder 317 (driving mechanism) for moving movable auxiliary container 316 up and down, gas supply pipe 322, valve 324, pressure gauge 326, pressure regulator 328, and the like.
  • the movable auxiliary container 316 is made of P-BN and has a shape obtained by reducing the melt holding container 304.
  • the movable auxiliary container 316 can be divided into two parts (316a, 316b).
  • the container holder 317 can move the movable auxiliary container 316 up and down without opening the reaction container 302.
  • the heater 306 is provided adjacent to the outside of the reaction vessel 302, as in the tenth embodiment.
  • the melt holding container 304 is taken out from the reaction container 302, and the movable auxiliary container 316 is accommodated in the melt holding container 304.
  • a melt 308 containing raw material Ga and flux Na is placed in the movable auxiliary vessel 316 (see FIG. 14A).
  • the melt holding container 304 is housed in a predetermined position in the reaction container 302 together with the movable auxiliary container 316.
  • a columnar GaN crystal having a c-axis length of about 5 mm is attached to the seed crystal holder 312 as the seed crystal 310.
  • (11) Energize the heater 306 and raise the temperature of the melt 308 from room temperature (27 ° C) to the crystal growth temperature (800 ° C) over about 1 hour.
  • the pressure in the sealed reaction vessel 302 increases as the temperature rises, and the total pressure in the reaction vessel 302 when the crystal growth temperature (800 ° C.) is reached is 5 MPa.
  • the pressure of the pressure regulator 328 is set to 5 MPa, and the valve 324 is opened.
  • the seed crystal 310 is lowered by operating the seed crystal holder 312, and the seed crystal 310 is brought into contact with or immersed in the melt 308 in the melt holding container 104. Thereby, the crystal growth of the seed crystal 310 is started.
  • the container holder 317 constitutes an extraction means
  • the seed crystal holder 312 constitutes an immersion mechanism
  • the gas supply pipe 322 and The valve 324, the pressure gauge 326, and the pressure regulator 328 constitute a nitrogen gas supply mechanism.
  • the movable auxiliary container 316 filled with the melt 308 is inserted into the melt holding container 304, and the nitrogen concentration in the melt 308 is stabilized. Then, the melt 308 in the movable auxiliary container 316 is transferred to the melt holding container 304, and the movable auxiliary container 316 is taken out from the melt holding container 304. Then, the seed crystal is contacted or immersed in the melt 308 in the melt holding container 304 from which the movable auxiliary container 316 has been taken out.
  • miscellaneous crystals on the inner wall of the melt holding container 304 during contact or immersion of the seed crystal 310 with the melt 308 is suppressed, and most of the raw material is used for crystal growth of the seed crystal 310.
  • growth of miscellaneous crystals can be suppressed, and seed crystals can be grown with high quality and larger in a shorter time than before.
  • the movable auxiliary container 316 is divided into two has been described.
  • the present invention is not limited to this. In short, it may be stored in the melt holding container 304 and can be taken out. In this case, it is sufficient if there is a tilting mechanism that tilts the movable auxiliary container in order to transfer the melt in the movable auxiliary container to the melt holding container 304.
  • FIG. 15 shows a schematic configuration of a GaN crystal manufacturing apparatus 300 C as a group III nitride crystal manufacturing apparatus according to the twelfth embodiment of the present invention.
  • the same reference numerals are used for the same or equivalent components as those in the tenth embodiment described above, and the description thereof will be simplified or omitted.
  • the production apparatus 300C shown in Fig. 15 includes a reaction vessel 302, a melt holding vessel 304, a blade member 318 as a removing means, a heater 306 as a heating means, a seed crystal holder 312 holding a seed crystal 310, a gas It includes a supply pipe 322, a valve 324, a pressure gauge 326, a pressure regulator 328, and the like.
  • the blade member 318 includes a blade and a blade holding rod for moving the blade up and down. It is configured.
  • the blade has substantially the same shape as the lower part of the melt holding container 304, and the blade edge comes into contact with the inner wall of the melt holding container 304.
  • the blade member 318 is movable up and down without opening the reaction vessel 302.
  • the heater 306 is provided adjacent to the outside of the reaction vessel 302, as in the tenth embodiment.
  • the melt holding container 304 is taken out from the reaction container 302 and a blade member 318 is disposed in the melt holding container 304.
  • the blade member 318 is disposed so that the blade is in contact with the bottom of the melt holding container 304.
  • a melt 308 containing raw material Ga and flux Na is placed in the melt holding container 304.
  • the melt holding container 304 is stored in a predetermined position in the reaction container 302 together with the blade member 318.
  • a columnar GaN crystal having a c-axis length of about 5 mm is attached to the seed crystal holder 312 as the seed crystal 310.
  • the seed crystal holder 312 is operated to lower the seed crystal 310, and the seed crystal 310 is brought into contact with or immersed in the melt 308 (see FIG. 16 (d)). Thereby, crystal growth of the seed crystal 310 is started.
  • the seed crystal holder 312 is operated to pull up the seed crystal 310 grown from the melt 308.
  • the seed crystal holder 312 constitutes an immersion mechanism, and a gas supply pipe 322, a valve 324, a pressure gauge 326, and a pressure regulator 328
  • a nitrogen gas supply mechanism is configured.
  • the microcrystals precipitated on the inner wall of the melt holding container 304 are bladed.
  • the seed crystal is contacted or immersed in the melt 308 in the melt holding container 304 from which the microcrystals have been scraped off by the member 318. That is, the microcrystals deposited on the inner wall of the melt holding container 304 are mechanically removed, and the seed crystal is contacted or immersed in the melt 308 in the melt holding container 304 from which the microcrystals have been mechanically removed. .
  • contact of the seed crystal 310 with the melt 308 occurs.
  • miscellaneous crystals during touching or dipping can be suppressed, and most of the raw material can be used for crystal growth of the seed crystal 310. That is, the growth of miscellaneous crystals can be suppressed, and the seed crystals can be grown with higher quality in a shorter time than in the past.
  • the force described in the case where the blade member 318 is used as the removing means is not limited to this. In short, it is sufficient that fine crystals deposited on the inner wall of the melt holding container 304 can be scraped off.
  • FIG. 17 shows a group III nitride crystal production apparatus according to the thirteenth embodiment of the present invention.
  • a schematic configuration of a GaN crystal manufacturing apparatus 300D is shown.
  • the same reference numerals are used for the same or equivalent components as in the first embodiment described above.
  • the manufacturing apparatus 300D shown in Fig. 17 includes a reaction vessel 302, a melt holding vessel 304, a mesh member 319 as a growth inhibiting member, a heater 306 as a heating means, a seed crystal holder 312 holding a seed crystal 310, It includes a gas supply pipe 322, a nozzle 324, a pressure gauge 326, a pressure regulator 328, and the like.
  • the mesh member 319 is a tungsten bowl-shaped member in which miscellaneous crystals are difficult to grow, and is arranged in the vicinity of the inner wall of the melt holding container 304 !.
  • the heater 306 is provided adjacent to the outside of the reaction vessel 302, as in the tenth embodiment.
  • melt 308 containing Ga as a raw material and Na as a flux is placed in the melt holding container 304 (see FIG. 18A).
  • the melt holding container 304 is placed at a predetermined position in the reaction container 302 together with the mesh member 319.
  • a columnar GaN crystal having a c-axis length of about 5 mm is attached to the seed crystal holder 312 as the seed crystal 310.
  • (11) Energize the heater 306 and raise the temperature of the melt 308 from room temperature (27 ° C) to the crystal growth temperature (800 ° C) over about 1 hour.
  • the pressure in the sealed reaction vessel 302 increases as the temperature rises, and the total pressure in the reaction vessel 302 when the crystal growth temperature (800 ° C.) is reached is 5 MPa.
  • the pressure of the pressure regulator 328 is set to 5 MPa, and the valve 324 is opened.
  • the seed crystal holder 312 is operated to lower the seed crystal 310, and the seed crystal 310 is contacted or immersed in the melt 308 (see FIG. 18C). Thereby, crystal growth of the seed crystal 310 is started. At this time, crystal growth of the miscellaneous crystal 330 is hindered by the mesh member 319.
  • the seed crystal holder 312 is operated to pull up the seed crystal 310 grown from the melt 308. (16) Stop energizing the heater 306.
  • an immersion mechanism is configured by the seed crystal holder 312.
  • the gas supply pipe 322, the valve 324, the pressure gauge 326, and the pressure regulator 328 A supply mechanism is constituted by the above.
  • the mesh member that prevents crystal growth of miscellaneous crystals is disposed in the vicinity of the inner wall of the melt holding container 304. Crystal growth of miscellaneous crystals deposited on the inner wall of the melt holding vessel 304 is hindered by the mesh member 319. As a result, most of the raw material can be used for crystal growth of the seed crystal 310. That is, the growth of miscellaneous crystals can be suppressed, and the seed crystals can be grown with high quality and in a shorter time than before.
  • the present invention is not limited to this.
  • the growth preventing member is not limited to the mesh member 319. In short, it is sufficient if the crystal growth of the microcrystals deposited on the inner wall of the melt holding vessel 304 can be prevented! ,.
  • FIG. 19 is a schematic diagram showing the configuration of the manufacturing apparatus according to the fourteenth embodiment.
  • the manufacturing apparatus 400A according to the fourteenth embodiment is obtained by adding a pipe 114, a thermocouple 115, a temperature controller 116, a gas supply pipe 117, a flow meter 118, and a gas cylinder 1 19 to the manufacturing apparatus 100A shown in FIG. Others are the same as the manufacturing apparatus 100A.
  • the pipe 114 and the thermocouple 115 are inserted into the seed crystal holder 112.
  • the gas supply pipe 117 has one end connected to the pipe 114 and the other end connected to the gas cylinder 119 via the flow meter 118.
  • the flow meter 118 is attached to the gas supply pipe 117 in the vicinity of the gas cylinder 119.
  • the gas cylinder 119 is connected to the gas supply pipe 117.
  • the pipe 114 cools the seed crystal 110 by releasing the nitrogen gas supplied from the gas supply pipe 117 also into the seed crystal holder 112 with one end force.
  • the thermocouple 115 detects the temperature T1 of the seed crystal 110. The detected temperature T1 is output to the temperature controller 116.
  • the gas supply pipe 117 supplies nitrogen gas supplied from the gas cylinder 119 via the flow meter 118 to the pipe 114.
  • the flow meter 118 adjusts the flow rate of the nitrogen gas supplied from the gas cylinder 119 in accordance with the control signal CTL1 from the temperature control device 116, and supplies it to the gas supply pipe 117.
  • the gas cylinder 119 holds nitrogen gas.
  • seed crystal holder 112 includes a cylindrical member 1121 and fixing members 1122 and 1123.
  • the cylindrical member 1121 has a substantially circular cross-sectional shape.
  • the fixing member 1122 has a substantially L-shaped cross section, and is fixed to the outer end surface 1121A and the bottom surface 1121B of the one end 1121C of the cylindrical member 1121.
  • the fixing member 1123 has a substantially L-shaped cross-sectional shape, and the outer peripheral surface 1121A and the bottom surface of the cylindrical member 1121 are arranged symmetrically with the fixing member 1122 on one end 1121C side of the cylindrical member 1121. Fixed to 1121B. As a result, a space 1124 is formed in a region surrounded by the cylindrical member 1121 and the fixing members 1122 and 1123.
  • the pipe 114 has a substantially circular cross-sectional shape, and is disposed inside the cylindrical member 1121.
  • the bottom surface 114A of the pipe 114 is arranged to face the bottom surface 1121B of the cylindrical member 1121.
  • a plurality of holes 1141 are formed in the bottom surface 114A of the pipe 114. Nitrogen gas supplied into the pipe 114 is blown to the bottom surface 1121B of the cylindrical member 1121 through the plurality of holes 1141.
  • Thermocouple 115 is arranged inside cylindrical member 1121 such that one end 115A is in contact with bottom surface 1121B of cylindrical member 1121.
  • the seed crystal 110 has a shape that fits into the space 1124, and is supported by the seed crystal holder 112 by fitting into the space 1124. In this case, the seed crystal 110 is in contact with the bottom surface 1121B of the cylindrical member 1121 (see FIG. 21).
  • the thermal conductivity between the seed crystal 110 and the cylindrical member 1121 is increased.
  • the temperature of the seed crystal 110 can be detected by the thermocouple 115, and the seed crystal 110 can be easily cooled by the nitrogen gas blown from the pipe 114 to the bottom surface 1121B of the cylindrical member 1121. wear.
  • FIG. 22 is a temperature timing chart of reaction vessel 102 and melt holding vessel 104 shown in FIG.
  • FIG. 23 is a graph showing the relationship between the temperature of seed crystal 110 shown in FIG. 19 and the flow rate of nitrogen gas.
  • a straight line kl indicates the temperature of the reaction vessel 102 and the melt holding vessel 104
  • a curve k2 and a straight line k3 indicate the temperature of the seed crystal 110.
  • heater 106 heats reaction vessel 102 and melt holding vessel 104 so that the temperature rises according to straight line kl and is maintained at 800 ° C.
  • the heater 106 starts to heat the reaction vessel 102 and the melt holding vessel 104
  • the temperature of the reaction vessel 102 and the melt holding vessel 104 starts to rise and reaches 800 ° C. at timing tl.
  • the seed crystal 110 is heated by the heater 180 after the timing tl, and the temperature of the seed crystal 110 reaches 810 ° C at the timing t2. Then, after timing t2, the heater 180 is stopped, and the temperature of the seed crystal 110 decreases to 800 ° C. at timing t3.
  • the nitrogen gas that has entered the melt holding vessel 104 from the space in the reaction vessel 102 is mediated by metal Na. And taken into the melt 108.
  • the nitrogen concentration or Ga N (x, y are real numbers) concentration in the melt 108 is the highest in the vicinity of the gas-liquid interface between the space in the melt holding container 104 and the melt 108! Therefore, the GaN crystal starts to grow from the seed crystal 110 in contact with the gas-liquid interface.
  • Ga N is referred to as “Group III nitride” and the Ga N concentration is referred to as “Group III nitride concentration”.
  • the temperature T1 of the seed crystal 110 is 800 ° C, which is the same as the temperature of the melt 108.
  • the melt near the seed crystal 110 1 nitrogen gas is supplied into piping 114 to cool seed crystal 110, and temperature T1 of seed crystal 110 is calculated from the temperature of melt 108. Also set it low.
  • the temperature T1 of the seed crystal 110 is 800 according to the curve k2 after the timing t3. Temperature Tsl lower than ° C is set. This temperature Tsl is, for example, 790 ° C. A method for setting the temperature T1 of the seed crystal 110 to the temperature Tsl will be described.
  • the temperature of the heater 106 Since the temperature of the heater 106 has a predetermined temperature difference from the temperature of the reaction vessel 102 and the melt holding vessel 104, the temperature of the reaction vessel 102 and the melt holding vessel 104 is set to 800 ° C. The temperature of the heater 106 is 800+ a ° C. Therefore, the temperature control device 116 sets the temperature T1 of the seed crystal 110 to the temperature Tsl when the temperature sensor (not shown) installed near the heater 106 reaches 800 + a ° C. A control signal CTL 1 for flowing nitrogen gas, which is also powerful, is generated and output to the flow meter 118.
  • the flow meter 118 causes nitrogen gas having a flow rate to set the temperature T1 to the temperature Tsl to flow into the pipe 114 from the gas cylinder 119 through the gas supply pipe 117 according to the control signal CTL1.
  • the temperature T1 of the seed crystal 110 decreases from 800 ° C according to the flow rate of nitrogen gas, and when the flow rate of nitrogen gas reaches the flow rate frl (sccm), the temperature T1 of the seed crystal 110 is set to the temperature Tsl. (See Figure 23).
  • the flow meter 118 allows nitrogen gas having a flow rate frl to flow into the pipe 114.
  • the nitrogen gas supplied into the pipe 114 is a cylindrical member from the plurality of holes 1141 in the pipe 114.
  • the seed crystal 110 is cooled through the bottom surface 1121B of the cylindrical member 1121, and the temperature T1 of the seed crystal 110 is decreased to the temperature Tsl at the timing t4, and then the temperature Tsl until the timing t5. Retained.
  • the temperature control device 116 receives from the temperature sensor when the temperature T1 of the seed crystal 110 begins to drop by 800 ° C. Heater 106 so that the temperature of melted heater 106 is set to 800 ° C.
  • the temperature T1 of the seed crystal 110 is controlled to decrease according to the straight line k3 after the timing t3. That is, the temperature T1 of the seed crystal 110 is lowered to the 800 ° C. force temperature Ts2 ((Tsl) between the timing t3 and the timing t5.
  • the flow meter 118 increases the flow rate of nitrogen gas flowing from 0 to the flow rate fr2 according to the straight line k4 based on the control signal CTL1 from the temperature control device 116. Add.
  • the temperature T1 of the seed crystal 110 is set to a temperature Ts2 that is lower than the temperature Tsl.
  • the temperature Ts2 is, for example, 750 ° C.
  • the first reason is that GaN crystals adhere to the seed crystal 110 as the crystal growth of the GaN crystal progresses. This is because it is difficult to set the temperature of the grown GaN crystal to a temperature lower than the temperature of the melt 108.
  • the temperature of the seed crystal 110 is gradually decreased, so that the supersaturation degree of nitrogen or group III nitride in the melt 108 near the seed crystal 110 is at least reduced.
  • the crystal growth of the GaN crystal can be continued. As a result, the size of the GaN crystal can be increased.
  • the melt holding container 104 is taken out from the reaction vessel 102, and the melt 108 containing raw material Ga and flux Na is put into the melt holding vessel 104.
  • the melt holding container 104 is accommodated in a predetermined position in the reaction container 102.
  • a columnar GaN crystal having a c-axis length of about 5 mm is attached to the seed crystal holder 112 as the seed crystal 110. (5) Close the lid of the reaction vessel 102.
  • the pressure regulator 128 sets the pressure of the nitrogen gas to 2.5 MPa.
  • This pressure is a pressure at which the pressure in the reaction vessel 102 becomes 5 MPa when the melt 108 reaches the crystal growth temperature.
  • the crystal growth temperature is 800 ° C.
  • the seed crystal holder 112 is operated to lower the seed crystal 110, and the seed crystal 110 is brought into contact with or immersed in the melt 108.
  • the nitrogen concentration in the melt 108 increases with time. After about 20 hours, the nitrogen concentration in the melt 108 reaches a concentration suitable for crystal growth.
  • the retention time is a value measured in advance as an experiment as the time required for the nitrogen concentration in the melt 108 to be a concentration suitable for crystal growth.
  • the heater 180 is turned off, and nitrogen gas is allowed to flow from the gas cylinder 119 through the flowmeter 118 and the gas supply pipe 117 to the pipe 114 at a predetermined flow rate (fr 1), and the temperature of the seed crystal 110 is set to Set temperature Tsl lower than ° C.
  • the temperature of the seed crystal 110 is lower than the temperature of the melt 108 and is set to the temperature Tsl, the degree of supersaturation near the seed crystal 110 increases. Since the environment of the seed crystal 110 is in a state suitable for the crystal growth conditions, the crystal growth of the GaN crystal is started from the seed crystal 110.
  • the seed crystal holder 112 is operated to pull up the seed crystal 110 that has grown from the melt 108.
  • FIG. 24 is another schematic diagram showing the configuration of the manufacturing apparatus according to the fourteenth embodiment.
  • FIGS. 25 to 30 are still other schematic diagrams showing the configuration of the manufacturing apparatus according to the fourteenth embodiment.
  • the manufacturing apparatus according to the fourteenth embodiment may be manufacturing apparatuses 400 B, 400 C, 400 D, 400 E, 400 F, 400 G, and 400 H shown in FIGS. 24 to 30, respectively.
  • Manufacturing apparatus 400B shown in FIG. 24 is obtained by adding piping 114, thermocouple 115, temperature controller 116, gas supply pipe 117, flow meter 118, and gas cylinder 119 to manufacturing apparatus 100B shown in FIG. Others are the same as the manufacturing apparatus 100B.
  • the manufacturing apparatus 400C shown in FIG. 25 is obtained by adding a pipe 114, a thermocouple 115, a temperature controller 116, a gas supply pipe 117, a flow meter 118, and a gas cylinder 119 to the manufacturing apparatus 200A shown in FIG. Others are the same as the manufacturing apparatus 200A.
  • the manufacturing apparatus 400D shown in FIG. 26 is obtained by adding a pipe 114, a thermocouple 115, a temperature controller 116, a gas supply pipe 117, a flow meter 118, and a gas cylinder 11 9 to the manufacturing apparatus 200C shown in FIG. Others are the same as the manufacturing apparatus 200C.
  • the manufacturing apparatus 400E shown in FIG. 27 is obtained by adding a pipe 114, a thermocouple 115, a temperature controller 116, a gas supply pipe 117, a flow meter 118, and a gas cylinder 11 9 to the manufacturing apparatus 300A shown in FIG. Others are the same as the manufacturing apparatus 300A.
  • the manufacturing apparatus 400F shown in FIG. 28 is obtained by adding a pipe 114, a thermocouple 115, a temperature controller 116, a gas supply pipe 117, a flow meter 118, and a gas cylinder 11 9 to the manufacturing apparatus 300B shown in FIG. Others are the same as the manufacturing apparatus 300B.
  • thermocouple 115 a temperature control device 116, a gas supply pipe 117, a flow meter 118, and a gas cylinder 119 are added, and the others are the same as the manufacturing apparatus 300C.
  • the manufacturing apparatus 400H shown in FIG. 30 is obtained by adding a pipe 114, a thermocouple 115, a temperature controller 116, a gas supply pipe 117, a flow meter 118, and a gas cylinder 11 9 to the manufacturing apparatus 300D shown in FIG. Others are the same as the manufacturing apparatus 300D.
  • manufacturing equipment 400B, 400C, 400D, 400E, 400F, 400G, 400H [Oh !, piping 114, thermocouple 115, temperature controller 116, gas supply pipe 117, flow meter 118, and gasbon
  • manufacturing apparatus 400A manufacturing equipment 400B, 400C, 400D, 400E, 400F, 400G, 400H [Oh !, piping 114, thermocouple 115, temperature controller 116, gas supply pipe 117, flow meter 118, and gasbon
  • the manufacturing equipment 400B, 400C, 400D, 400E, 400F, 400G, 400H [where the seed crystal 110 is set lower than the temperature of the melt 108, 208, 308 and the seed crystal 110 is set.
  • GaN crystal can be manufactured from
  • FIG. 31 is a diagram showing the relationship between the nitrogen gas pressure and the crystal growth temperature when growing a GaN crystal.
  • the horizontal axis represents the crystal growth temperature (the reciprocal of the absolute temperature is also shown), and the vertical axis represents the nitrogen gas pressure.
  • region REG1 is a region where GaN crystals are dissolved
  • region REG2 is a nucleus at the interface between the holding vessel holding the melt containing Ga, Na, and nitrogen and the melt.
  • This is a region where GaN crystal grows from the seed crystal 110 with the generation suppressed, and in the region REG3, spontaneous nuclei are generated at the interface between the holding vessel holding the melt containing Ga, Na and nitrogen and the melt. It is an area to be born.
  • the temperature of the seed crystal 110 is set to a temperature that is not suitable for crystal growth of a GaN crystal, and then the temperature of the seed crystal 110 is set to a GaN crystal.
  • a GaN crystal was grown from the seed crystal 110 by setting the temperature at a temperature suitable for crystal growth.
  • the GaN crystal was grown from the seed crystal 110 by setting the temperature to a temperature lower than the temperature of 08).
  • the nitrogen gas pressure in the space in contact with the melt 108 is changed to the pressure included in the region REG1, while keeping the temperatures of the melt holding container 104 and the melt 108 constant. After that, the nitrogen gas pressure in the space in contact with the melt 108 is set to the pressure included in the region REG2, and a GaN crystal is grown from the seed crystal 110.
  • the nitrogen gas pressure in the space in contact with the melt 108 is set to a pressure that is not suitable for crystal growth of GaN crystals, and then the nitrogen gas in the space in contact with the melt 108 is used.
  • the GaN crystal is grown from the seed crystal 110 by setting the pressure to a pressure suitable for crystal growth of the GaN crystal.
  • a GaN crystal is grown from the seed crystal 110 using the manufacturing apparatus 100A shown in FIG.
  • the pressure regulator 128 sets the nitrogen gas pressure in the space in contact with the melt 108 to a pressure not suitable for crystal growth of the GaN crystal and a pressure suitable for crystal growth of the GaN crystal.
  • the nitrogen gas pressure in the space in contact with the melt 108 is set to a pressure suitable for crystal growth of the GaN crystal, and then the nitrogen gas pressure in the space in contact with the melt 108 is set to the crystal growth of the GaN crystal. It is also possible to grow a GaN crystal from the seed crystal 110 by setting a pressure suitable for the above.
  • the manufacturing apparatuses 100B, 200A, 200B, 20OC, 300A, 300B, 300C, 300D, 400A, 400B, 400C, 400D, 400E, 400F, 400G, 400H described above are used.
  • the empty honey gas pressure in contact with the melt 208, 308 is suitable for crystal growth of GaN crystals! /, Pressure and pressure suitable for crystal growth of GaN crystals Set to GaN crystal growth from the seed crystal 110.
  • the environment of the seed crystal 110 is set to an environment that is not suitable for the growth of GaN crystals, Thereafter, by setting the environment of the seed crystal 108 to an environment suitable for crystal growth of the GaN crystal, when the GaN crystal is grown from the seed crystal 110, the temperature of the seed crystal 110 in the region REG2 is It does not have to be lower than the temperature of the melt 108, 208, 308. It may be higher than the temperature of the melt 108, 208, 308! For example, if the melt 108, 208, 308 has a temperature force of 800 ° C, a GaN crystal can be grown from the seed crystal 110 in the region REG2 even if the temperature of the seed crystal 110 is set to 820 ° C. Can do.
  • the nitrogen concentration in the melts 108, 208, and 308 is moved to a region lower than the nitrogen concentration at the boundary between regions REG1 and REG2 shown in FIG. Is set to an environment that is not suitable for crystal growth of GaN crystals, and the nitrogen concentration in the melt 108, 208, 3 08 is set higher than the nitrogen concentration at the boundary between region REG1 and region REG2 shown in Fig. 31.
  • the environment of the seed crystal 110 is set to an environment suitable for crystal growth of the GaN crystal.
  • Alkali metals other than Na may be used as the flux!
  • the seed crystal is held in the melt.
  • the growth of low-quality crystals can be suppressed, and high-quality crystals of large Group III nitrides can be produced in a short time.
  • a large group II I nitride crystal can be grown in a shorter time than in the past, and the larger in a shorter time than in the past, the larger It is possible to grow a crystal of a group III nitride.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 III属金属とアルカリ金属と窒素とを含む融液が保持された保持容器内で種結晶上に結晶成長をさせるIII属窒化物結晶の製造方法は、前記種結晶を前記融液に接触させる工程と、前記融液に接触した状態で前記種結晶の環境を結晶成長の条件から外れた第1の状態に設定する工程と、前記融液中の窒素濃度を増加させる工程と、前記融液の窒素濃度が、前記種結晶を結晶成長させるのに適した濃度に達すると、前記種結晶の環境を結晶成長の条件に適した第2の状態に設定する工程と、を含む。

Description

明 細 書
III族窒化物結晶の製造方法及び製造装置
技術分野
[0001] 本発明は、 in族窒化物結晶の製造方法及び in族窒化物結晶の製造装置に係り、 更に詳しくは、フラックス法による in族窒化物結晶の製造方法及び該製造方法の実 施に好適な製造装置に関する。
背景技術
[0002] 現在、紫外、紫〜青〜緑色光源として用いられて!/ヽる InGaAIN (III族窒化物半導 体)系デバイスは、その殆どがサファイアやシリコンカーバイド (SiC)を基板とし、その 基板上に、 MO— CVD法 (有機金属化学気相成長法)や MBE法 (分子線結晶成長 法)等を用いて作製されている。この場合には、熱膨張係数及び格子定数が基板と II I族窒化物半導体とでそれぞれ大きく異なっているため、 ΠΙ族窒化物半導体内に多く の結晶欠陥が含まれることとなる。この結晶欠陥は、デバイス特性を低下させ、例え ば発光デバイスでは寿命が短い、動作電力が大きい、などといった欠点に直接関係 している。
発明の開示
発明が解決しょうとする課題
[0003] また、サファイア基板は絶縁体であるため、従来の発光デバイスのように基板側から 電極を取り出すことが不可能であった。これにより、 III族窒化物半導体側力 電極を 取り出すことが必要となる。その結果、デバイスの面積が大きくなり、高コスト化を招く という不都合があった。なお、デバイスの面積が大きくなると、サファイア基板と ΠΙ族 窒化物半導体という異種材料の組み合わせに伴う基板の反りという新たな問題が発 生する。
[0004] さらに、サファイア基板上に作製された III族窒化物半導体デバイスは、劈開による チップ分離が困難であり、レーザダイオード (LD)で必要とされる共振器端面を得るこ とは容易ではない。このため、現在はドライエッチングや、サファイア基板を厚さ 100 μ m以下まで研磨した後に劈開に近い形で分離し、共振器端面の形成を行っている 。従って、従来の LDのように、共振器端面の形成とチップ分離とを単一工程で行うこ とが困難であり、工程の複雑ィ匕によるコスト高を招!、て 、た。
[0005] これらの問題を解決するため、サファイア基板上に III族窒化物半導体を選択的に 横方向に成長させるなどの工夫をし、結晶欠陥を低減させることが提案された。これ により、結晶欠陥を低減させることが可能となったが、サファイア基板の絶縁性及び 劈開の困難性に関する前述の問題は依然として残されている。
[0006] こうした問題を解決するためには、基板上に結晶成長する材料と同一である GaN 基板が最も適切である。そのため気相成長、融液成長等によりバルタ GaNの結晶成 長の研究がなされている。しかし、未だ高品質で且つ実用的な大きさを有する GaN 基板は実現されていない。
[0007] GaN基板を実現する一つの手法として、 Chemistry of Materials Vol.9 (1997) 413- 416では、 Naをフラックスとして用いた GaN結晶成長方法が提案されている。この方 法はアジ化ナトリウム (NaN 3 )と金属 Gaを原料として、ステンレス製の反応容器 (容器 内寸法;内径 = 7. 5mm,長さ = 100mm)に窒素雰囲気で封入し、その反応容器を 600〜800°Cの温度で 24〜: L00時間保持することにより、 GaN結晶が成長するもの である。
[0008] この従来技術の場合には 600〜800°Cと比較的低温での結晶成長が可能であり、 容器内圧力も高々 lOOkgZcm2程度と比較的圧力が低ぐ実用的な成長条件である ことが特徴である。
[0009] し力しながら、この方法では、アジィ匕ナトリウム (NaN 3 )と金属 Ga原料を容器に密閉 して結晶成長するので、原料の枯渴によって、結晶の大型化は困難であった。
[0010] これまで本発明者らは、この方法の問題点を解決する発明を行い、結晶の大型化 を果たしてきた。
[ooii] 特許文献 1には、 m族窒化物結晶の大型化のために、 m族窒化物結晶の結晶成 長時に、 m族金属を追加補充する方法が開示されている。
[0012] この方法では、反応容器 101内に成長容器 102と III族金属供給管 103を設け、 III 族金属供給管に外部から圧力をかけ、フラックスの収容された反応容器 102に III族 金属 104を追加補給することを特徴としている。 [0013] 一方、結晶の大型化を阻害する問題として、雑結晶の発生がある。融液保持容器 内壁に結晶核が発生し、雑結晶として成長すると、原料が雑結晶の成長にも消費さ れてしまう。所望の結晶を大きくするためには、所望の結晶を成長するのに必要とさ れる量以上の原料を要し、また、原料の供給効率が低くなるため、所望の結晶の大 型化には長時間を要すことになる。
[0014] 特許文献 2には、種結晶を局部的に加熱して結晶成長する方法が開示されている
[0015] この方法では、種結晶とその近傍のみの融液を結晶成長可能な温度に加熱し、そ れ以外の融液は結晶成長しない温度に保持することによって、坩堝内壁への多数の 自然核成長を抑制し、種結晶のみを効率良く結晶成長することができる。
[0016] し力しながら、気相からの窒素の溶け込みは、温度と気液界面の面積に依存するこ とから、この方法のように局所加熱によって高温領域が少ない場合には、窒素の溶け 込み量が少な!/、ため、窒素欠損の多!、低品質の結晶が成長しかねな ヽと 、う問題も めつに。
[0017] 融液全体を加熱し、気相から融液中に窒素を溶かして種結晶成長を行う場合、種 結晶をはじめから融液中に保持しておくと、融液中の窒素濃度が高品質な結晶が成 長するのに十分な濃度に達する前に、結晶成長が開始されるため、成長初期に低品 質の結晶が成長することがある。これを避けるため、窒素濃度を十分増加させた後に 、種結晶を融液に接して種結晶成長を開始させると、条件によっては、反応容器の 内壁にも結晶核が発生し、雑結晶が成長する。
[0018] 従来本発明の発明者は、結晶成長条件を適切に選択することで、融液保持容器内 壁への雑結晶の成長を抑制し、品質の良い大きな結晶の成長に成功していた。
[0019] しかしながら、成長条件の自由度を広げることで、さらなる結晶の高品質ィ匕が期待 できるのは言うまでもない。
[0020] 本発明は、力かる事情の下になされたもので、その目的は、種結晶を融液中に保 持した状態で種結晶成長を行う場合に、低品質結晶の成長を抑制し、大きな III族窒 化物の高品質結晶を短時間で製造することができる製造方法を提供することにある。
[0021] 本発明は、力かる事情の下になされたもので、その目的は、種結晶を高品質に、従 来よりも短時間で大きく結晶成長させることができる m族窒化物の製造方法及び製 造装置を提供することにある。
特許文献 1 :特開 2001— 058900号公報
特許文献 2 :特開 2002— 068896号公報
課題を解決するための手段
[0022] 本発明は第 1の側面において、
III属金属とアルカリ金属と窒素とを含む融液が保持された保持容器内で種結晶を 成長させる III属窒化物結晶の製造方法であって、
前記種結晶を前記融液に接触させる工程と、
前記融液に接触された状態で前記種結晶の環境を結晶成長の条件から外れた第 1の状態に設定する工程と、
前記融液中の窒素濃度を増加させる工程と、
前記融液の窒素濃度が、前記種結晶を結晶成長させるのに適した濃度に達すると 、前記種結晶の環境を結晶成長の条件に適した第 2の状態に設定する工程と、 を含む III族窒化物結晶の製造方法を提供する。
[0023] 本発明では、 III属金属とアルカリ金属と窒素とを含む融液が保持された保持容器 内で種結晶を成長させる際に、種結晶は融液に接触され、この状態で前記種結晶の 環境が結晶成長の条件力 外れた第 1の状態とされる。そして、融液中の窒素濃度 が増加し、融液の窒素濃度が、種結晶を結晶成長させるのに適した濃度に達すると 、種結晶の環境は結晶成長の条件に適した第 2の状態とされる。このときの融液中の 窒素濃度は、多核発生するまでには増加していないので、保持容器の内壁での微 結晶の析出が抑制される。その結果、原料が浪費されるのを防止でき、 ΠΙ族窒化物 のバルタ結晶を効率的に製造することが可能となる。すなわち、種結晶を融液中に保 持した状態で種結晶成長を行う場合に、低品質結晶の成長を抑制し、大きな III族窒 化物の高品質結晶を従来よりも短時間で製造することができる。
[0024] 本発明は第 2の側面において、
III属金属とアルカリ金属と窒素とを含む融液が保持された保持容器内で ΠΙ属窒化 物結晶を製造する方法であって、 前記保持容器の温度を前記融液の温度以上に保持する工程を含む m族窒化物 結晶の製造方法を提供する。
[0025] 本発明では、 III属金属とアルカリ金属と窒素とを含む融液が保持された保持容器 内で ΠΙ属窒化物結晶を製造する際に、保持容器の温度が融液の温度以上に保持さ れる。これにより、結晶核発生時の生成熱が保持容器の内壁から放熱されることがな いので、保持容器の内壁での不要な微結晶の析出が抑制される。従って、原料が浪 費されるのを防止でき、従来よりも短時間で、大きな m族窒化物の結晶を結晶成長さ せることが可能となる。
[0026] 本発明は第 3の側面において、
III属金属とアルカリ金属と窒素とを含む融液が保持される保持容器と、 前記保持容器を直接加熱する加熱手段と、
前記融液に窒素を供給する供給機構と、
前記保持容器内の前記融液に種結晶を接触させる浸漬機構と、
を備えた III族窒化物結晶の製造装置を提供する。
[0027] 本発明では、保持容器が加熱手段により直接加熱されるため、保持容器の温度を 融液の温度以上に保つことができ、結晶核発生時の生成熱が保持容器の内壁から 放熱されることがないので、保持容器の内壁での雑結晶の析出が抑制される。従つ て、原料が浪費されるのを防止でき、種結晶を高品質に、従来よりも短時間で、大きく 結晶成長させることが可能となる。
[0028] 本発明は第 4の側面において、
III属金属とアルカリ金属と窒素とを含む融液が保持される保持容器と、 前記保持容器がその中に収容される補助容器と、
前記補助容器を加熱する加熱手段と、
前記融液に窒素を供給する供給機構と、
を備えた III族窒化物結晶の製造装置を提供する。
[0029] 本発明では、融液を保持する保持容器が、補助容器の中に収容され、補助容器の 外部に配置されたヒータにより加熱される。すなわち、補助容器→保持容器→融液、 の順で熱が伝わることとなる。この場合には、融液よりも保持容器の方が、温度が高 いため、結晶核発生時の生成熱が保持容器の内壁カゝら放熱されることがなぐ保持 容器の内壁での雑結晶の析出が抑制される。従って、原料が浪費されるのを防止で き、従来よりも短時間で、大きな ΠΙ族窒化物の結晶を結晶成長させることが可能とな る。
[0030] 本発明は第 5の側面において、
III属金属とアルカリ金属と窒素とを含む融液が保持された保持容器内で ΠΙ属窒化 物結晶を製造する方法であって、
前記融液中の窒素濃度が安定化すると、種結晶を前記融液に接触させる工程と、 前記種結晶を成長させる工程と、
を含む III族窒化物結晶の製造方法を提供する。
[0031] 本発明では、 III属金属とアルカリ金属と窒素とを含む融液が保持された保持容器 内で ΠΙ属窒化物結晶を製造する際に、融液中の窒素濃度が安定すると、種結晶が 融液に接触される。融液中の窒素濃度が安定した状態では、核生成よりも結晶成長 が進行するため、種結晶に新たな結晶核がつき多結晶体となることがなぐ種結晶を 成長させることができる。すなわち、種結晶を高品質に従来よりも短時間で大きく結晶 成長させることが可能となる。
[0032] 本発明は第 6の側面において、
III属金属とアルカリ金属と窒素とを含む融液が保持される保持容器と、 前記保持容器を加熱する加熱手段と、
前記融液に窒素を供給する供給機構と、
前記保持容器内の前記融液に種結晶を接触させる浸漬機構と、
前記保持容器の内壁に近接して配置され、前記保持容器の内壁に析出した微結 晶の結晶成長を阻止する成長阻止部材と、
を備えた III族窒化物結晶の製造装置を提供する。
[0033] 本発明によれば、成長阻止部材により保持容器の内壁に析出した微結晶の結晶成 長が阻止される。すなわち、雑結晶の成長は抑制される。その結果、種結晶を高品 質に、従来よりも短時間で大きく結晶成長させることが可能となる。
[0034] 本発明は第 7の側面において、 III属金属とアルカリ金属と窒素とを含む融液が保持される固定補助容器と、 前記固定補助容器内に収容され、前記固定補助容器内の前記融液中にその全体 が浸潰される保持容器と、
前記固定補助容器を加熱する加熱手段と、
前記融液に窒素を供給する供給機構と、
前記保持容器を前記固定補助容器内から引き上げ、前記保持容器内の前記融液 に種結晶を接触させる浸漬機構と、
を備えた III族窒化物結晶の製造装置を提供する。
[0035] 本発明によれば、雑結晶の成長による原料の浪費を抑制でき、原料の大部分を種 結晶の結晶成長に利用することができる。すなわち、種結晶を高品質に、従来よりも 短時間で大きく結晶成長させることができる。
[0036] 本発明は第 8の側面において、
III属金属とアルカリ金属と窒素とを含む融液が保持される可動補助容器と、 前記可動補助容器がその中に収容される保持容器と、
前記保持容器を加熱する加熱手段と、
前記融液に窒素を供給する供給機構と、
前記可動補助容器を前記保持容器から取り出すとともに、
前記可動補助容器内の前記融液を前記保持容器に移す取出手段と、 前記保持容器内に移された前記融液に種結晶を接触させる浸漬機構と、 を備えた III族窒化物結晶の製造装置を提供する。
[0037] 本発明では、雑結晶の成長による原料の浪費を抑制でき、原料の大部分を種結晶 の結晶成長に利用することができる。すなわち、種結晶を高品質に、従来よりも短時 間で大きく結晶成長させることができる。
[0038] 本発明は第 9の側面において、
III属金属とアルカリ金属と窒素とを含む融液が保持される保持容器と、 前記保持容器を加熱する加熱手段と、
前記融液に窒素を供給する供給機構と、
前記保持容器内の前記融液に種結晶を接触させる浸漬機構と、 前記保持容器の内壁に析出した微結晶を機械的に除去する除去手段と、 を備えた III族窒化物結晶の製造装置を提供する。
[0039] 本発明によれば、雑結晶の成長による原料の浪費を抑制でき、原料の大部分を種 結晶の結晶成長に利用することができる。すなわち、種結晶を高品質に、従来よりも 短時間で大きく結晶成長させることができる。
発明の効果
[0040] 本発明の III族窒化物結晶の製造方法によれば、種結晶を融液中に保持した状態 で種結晶成長を行う場合に、低品質結晶の成長を抑制し、大きな III族窒化物の高 品質結晶を短時間で製造することができる。
[0041] また本発明の III族窒化物結晶の製造方法によれば、従来よりも短時間で、大きな II I族窒化物の結晶を結晶成長させることができ、従来よりも短時間で、大きな ΠΙ族窒 化物の結晶を結晶成長させることができる。
[0042] また本発明によれば、種結晶を高品質に、従来よりも短時間で大きく結晶成長させ ることがでさる。
図面の簡単な説明
[0043] [図 1]本発明の第 1の実施形態に係る GaN結晶の製造方法の実施に用いられる製造 装置の概略構成を説明するための図である。
[図 2]図 1の製造装置を用いた GaN結晶の製造方法を説明するための図である。
[図 3]本発明の第 3の実施形態に係る GaN結晶の製造方法の実施に用いられる製造 装置の概略構成を説明するための図である。
[図 4A]図 3の製造装置を用いた GaN結晶の製造方法を説明するための図(その 1) である。
[図 4B]図 3の製造装置を用いた GaN結晶の製造方法を説明するための図(その 2) である。
[図 5]本発明の第 4の実施形態に係る GaN結晶の製造装置の概略構成を説明する ための図である。
[図 6]本発明の第 5〜第 8の実施形態に係る GaN結晶の製造装置の概略構成を説 明するための図である。 圆 7]図 6の製造装置による製造方法を説明するための図である。
圆 8]本発明の第 9の実施形態に係る GaN結晶の製造装置の概略構成を説明する ための図である。
圆 9]図 8の製造装置による製造方法を説明するための図である。
圆 10]本発明の第 10の実施形態に係る GaN結晶の製造装置の概略構成を説明す るための図である。
[図 11A]図 10の製造装置による製造方法を説明するための図(その 1)である。
[図 11B]図 10の製造装置による製造方法を説明するための図(その 2)である。
[図 11C]図 10の製造装置による製造方法を説明するための図(その 3)である。 圆 12]図 10の製造装置による製造方法を説明するための図である。
圆 13]本発明の第 11の実施形態に係る GaN結晶の製造装置の概略構成を説明す るための図である。
[図 14A]図 13の製造装置による製造方法を説明するための図(その 1)である。
[図 14B]図 13の製造装置による製造方法を説明するための図(その 2)である。
[図 14C]図 13の製造装置による製造方法を説明するための図(その 3)である。
[図 14D]図 13の製造装置による製造方法を説明するための図(その 4)である。 圆 15]本発明の第 12の実施形態に係る GaN結晶の製造装置の概略構成を説明す るための図である。
[図 16A]図 15の製造装置による製造方法を説明するための図(その 1)である。
[図 16B]図 15の製造装置による製造方法を説明するための図(その 2)である。
[図 16C]図 15の製造装置による製造方法を説明するための図(その 3)である。
[図 16D]図 15の製造装置による製造方法を説明するための図(その 4)である。 圆 17]本発明の第 13の実施形態に係る GaN結晶の製造装置の概略構成を説明す るための図である。
[図 18A]図 17の製造装置による製造方法を説明するための図(その 1)である。
[図 18B]図 17の製造装置による製造方法を説明するための図(その 2)である。
[図 18C]図 17の製造装置による製造方法を説明するための図(その 3)である。 圆 19]第 14の実施形態による製造装置の構成を示す概略図である。 [図 20]図 19に示す種結晶ホルダ、配管および熱電対の第 1の拡大図である。
[図 21]図 19に示す種結晶ホルダ、配管および熱電対の第 2の拡大図である。
[図 22]図 19に示す反応容器および融液保持容器の温度のタイミングチャートである
[図 23]図 19に示す種結晶の温度と窒素ガスの流量との関係を示す図である。 圆 24]第 14の実施形態による製造装置の構成を示す他の概略図である。
圆 25]第 14の実施形態による製造装置の構成を示すさらに他の概略図である。 圆 26]第 14の実施形態による製造装置の構成を示すさらに他の概略図である。 圆 27]第 14の実施形態による製造装置の構成を示すさらに他の概略図である。 圆 28]第 14の実施形態による製造装置の構成を示すさらに他の概略図である。 圆 29]第 14の実施形態による製造装置の構成を示すさらに他の概略図である。 圆 30]第 14の実施形態による製造装置の構成を示すさらに他の概略図である。
[図 31]GaN結晶を成長させる場合の窒素ガス圧と結晶成長温度との関係を示す図 である。
符号の説明
102, 202, 302· ··反応容器、
104, 204, 304· '·融液保持容器 (保持容器)ゝ
106, 206, 306· '七ータ、
108, 208, 308· 融液、
110, 210, 310· "種結曰曰、
112, 212, 312· ··種結晶ホルダ、
180, 280, 380· '七ータ、
214, 314· "補助容器、
315· ··容器ホルダ (浸漬機構の一部)、
316…可動補助容器、
317· ··容器ホルダ (取出手段)、
318· ··ブレード部材 (除去手段)、
319· · 'メッシュ部材 (成長阻止部材)。 発明を実施するための最良の形態
[0045] 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、 図中、先に説明した部分と同一部分には同一の参照符号を付し、その説明を省略す る。
[第 1の実施形態]
以下、本発明の第 1の実施形態を図 1に基づいて説明する。
[0046] 図 1は、本発明の第 1の実施形態に係る ΠΙ族窒化物結晶の製造方法の実施に用 いられる製造装置 100Aの概略構成を示す。
[0047] 図 1を参照するに、製造装置 100Aは、フラックス法によりバルタ GaNを製造する装 置であり、反応容器 102、融液保持容器 104、ヒータ 106、ヒータ 180、種結晶 110を 保持する種結晶ホルダ 112、ガス供給管 122、バルブ 124、圧力計 126、圧力調整 器 128およびガスボンベ 130などを含んで構成されている。
[0048] 前記反応容器 102は、ステンレス製の閉じた形状の容器である。この反応容器 102 の中には、融液保持容器 104が保持されている。
[0049] 前記種結晶ホルダ 112は、反応容器 102を開けることなぐ種結晶 110を上下に移 動させることができる。
[0050] 前記融液保持容器 104は P— BN (パイオリティックボロンナイトライド)よりなり、反応 容器 102から取り出すことができる。融液保持容器 104の中には、アルカリ金属として のナトリウム (Na)と III族金属としての金属ガリウム(Ga)を含む融液 108が入れられ る。
[0051] 前記ヒータ 106は、反応容器 102の外に隣接して設けられている。すなわち、融液 保持容器 104は、反応容器 102を介して加熱される。
[0052] 前記ヒータ 180は、種結晶ホルダ 112の種結晶 110が保持される部分の近傍に取 り付けられ、反応容器 102を開けることなぐ種結晶 110を加熱することができる。
[0053] 前記ガス供給管 122は、反応容器 102内に窒素 (N )ガスを供給するための配管
2
であり、反応容器 102と窒素ガスボンベ 130との間に設けられている。
[0054] 前記ノ レブ 124は、ガス供給管 122の途中であって、反応容器 102に近いところに 設けられている。バルブ 124が開状態のときには、反応容器 102内へ窒素ガスが供 給され、閉状態のときには、反応容器 102内へ窒素ガスの供給が遮断される。なお、 ガス供給管 122はバルブ 124の前方(窒素ガスボンベ 130側)で切り離すことができ るようになっている。これにより、反応容器 102をグローブボックスの中に移動させて 作業することが可能となる。
[0055] 前記圧力調整器 128は、ガス供給管 122の途中であって、窒素のガスボンベ 130 に近いところに設けられ、反応容器 102内に供給する窒素ガスの圧力を調整するの に用いられる。
[0056] 前記圧力計 126は、ガス供給管 122の途中であって、バルブ 124と反応容器 102 の間に設けられ、反応容器 102内に供給される窒素ガスの圧力をモニタするのに用 いられる。
[0057] 次に、上記のように構成される製造装置 100Aによる GaN結晶の製造方法につい て説明する。
[0058] (1)ガス供給管 122をバルブ 124の前方で切り離し、反応容器 102をアルゴン (Ar )雰囲気のグローブボックス内に入れる。
(2)反応容器 102から融液保持容器 104を取り出し、融液保持容器 104内に、原料 の Gaとフラックスの Naとを含む融液 108を入れる。ここでは、一例として融液 108中 の Naの比率は NaZ(Na + Ga) = 0. 4とした。
(3)融液保持容器 104を反応容器 102内の所定位置に収容する。
(4)種結晶 110として、 c軸の長さが約 5mmの柱状の GaN結晶を種結晶ホルダ 112 に取りつける。
(5)反応容器 102のふたを閉じる。
(6)バルブ 124を閉状態とし、反応容器 102内部を外部と遮断する。
(7)反応容器 102をグローブボックスから出し、バルブ 124の前方でガス供給管 122 を接続する。
(8)バルブ 124を開状態とし、反応容器 102内に窒素ガスを供給する。このとき、圧 力調整器 128で窒素ガスの圧力を 2.5MPaとする。この圧力は、融液 108が結晶成 長温度に達したときに、反応容器 102内の圧力が 5MPaとなる圧力である。なお、こ こでは、 800°Cを結晶成長温度とする。 (9)バルブ 124を閉状態とする。これにより、反応容器 124は密閉状態となる。
(10)ヒータ 106に通電し、融液 108の温度を室温(27°C)から結晶成長温度(800°C )まで約 1時間かけて昇温する。昇温に伴って密閉された反応容器 102内の圧力は 上昇し、結晶成長温度(800°C)に達した時の反応容器 102内の全圧は 5MPaとなる 。その後、圧力調整器 128の圧力を 5MPaに設定し、バルブ 124を開状態とする。
(11)ヒータ 180に通電し、種結晶 110を融液 108の温度を超える 810°Cに加熱する
(12)種結晶ホルダ 112を操作して種結晶 110を下降させ、種結晶 110を融液 108 に接触ないし浸漬させる。
(13)この状態で約 20時間保持する。ここでは、種結晶 110の温度が融液 108の温 度よりも高ぐ種結晶 110の環境は結晶成長の条件力も外れた状態であるため結晶 成長はほとんど起こらない。そして、一例として図 2に示されるように、時間とともに融 液 108中の窒素濃度が増加する。約 20時間が経過すると、融液 108中の窒素濃度 が結晶成長に適した濃度に達する。なお、ここでの保持時間は融液 108中の窒素濃 度が結晶成長に適した濃度となるのに要する時間として予め実験により計測された 値である。
(14)ヒータ 180の通電を停止する。これにより、種結晶ホルダ 112を介した放熱が生 じる場合は、種結晶 110の温度は、融液 108の温度よりも低下し、種結晶ホルダ 112 を介した放熱が生じない場合は、種結晶 110の温度は、融液 108の温度と同じにな る。すなわち、ヒータ 180の通電を停止することにより、種結晶 110の温度は、融液 10 8の温度以下に低下する。そして、種結晶 110の温度が融液 108の温度以下になる と、種結晶 110近傍の過飽和度が増加して、種結晶 110の環境は結晶成長の条件 に適した状態となるため、種結晶 110から GaN結晶の結晶成長が開始される。
(15)約 300時間保持する。
(16)約 300時間が経過後、種結晶ホルダ 112を操作して結晶成長した種結晶 110 を融液 108から引き上げる。
(17)ヒータ 106の通電を停止する。
冷却後、反応容器 102を開けると、融液保持容器 104の内壁にはほとんど雑結晶 が析出しておらず、種結晶 110は、 c軸方向の長さが約 10mmに結晶成長していた。
[0060] 以上説明したように、本第 1の実施形態によると、一例として図 2に示されるように、 融液 108中での種結晶 110の温度を融液 108の温度よりも高くし、融液 108中の窒 素濃度が多核発生前の、品質の良い結晶が成長するのに適した濃度に達するタイミ ング(図 2の矢印 A)で、種結晶 110の温度を下げている。これにより、融液 108中の 窒素濃度は、多核発生するまでには増加せずに一定となり、融液保持容器 104の内 壁における雑結晶の析出が抑制され、原料の大部分を種結晶 110からの GaN結晶 の結晶成長に利用することができる。そして、その結果として、 III族窒化物である Ga Nのバルタ結晶を効率的に製造することが可能となる。すなわち、種結晶を融液中に 保持した状態で種結晶成長を行う場合に、低品質結晶の成長が抑制され、大きな G aNの高品質結晶を従来よりも短時間で製造することができる。
[第 2の実施形態]
次に、本発明の第 2の実施形態を説明する。
[0061] この第 2の実施形態は、前述した第 1の実施形態における温度と圧力が異なる点に 特徴を有する。従って、製造装置は、第 1の実施形態における製造装置 100Aと同じ である。そこで、以下においては、第 1の実施形態との相違点を中心に説明するとと もに、前述した第 1の実施形態と同一若しくは同等の構成部分については同一の符 号を用い、その説明を簡略ィ匕し若しくは省略するものとする。
(1)ガス供給管 122をバルブ 124の前方で切り離し、反応容器 102をアルゴン (Ar) 雰囲気のグローブボックス内に入れる。
(2)反応容器 102から融液保持容器 104を取り出し、融液保持容器 104内に、原料 の Gaとフラックスの Naとを含む融液 108を入れる。ここでは、一例として融液 108中 の Naの比率は NaZ(Na + Ga) = 0. 4とした。
(3)融液保持容器 104を反応容器 102内の所定位置に収容する。
(4)種結晶 110として、 c軸の長さが約 5mmの柱状の GaN結晶を種結晶ホルダ 112 に取りつける。
(5)反応容器 102のふたを閉じる。
(6)バルブ 124を閉状態とし、反応容器 102内部を外部と遮断する。 (7)反応容器 102をグローブボックスから出し、バルブ 124の前方でガス供給管 122 を接続する。
(8)バルブ 124を開状態とし、反応容器 102内に窒素ガスを供給する。このとき、圧 力調整器 128で窒素ガスの圧力を 3MPaとする。この圧力は、融液 108が結晶成長 温度に達したときに、反応容器 102内の圧力が 7MPaとなる圧力とする。なお、ここで は、上記第 1の実施形態よりも結晶成長温度を高く設定し、 850°Cとする。
(9)バルブ 124を閉状態とする。これにより、反応容器 124は密閉状態となる。
(10)ヒータ 106に通電し、融液 108の温度を室温(27°C)から結晶成長温度(850°C )まで約 1時間かけて昇温する。昇温に追随して密閉された反応容器 102内の圧力 は上昇し、結晶成長温度(850°C)に達した時の反応容器 102内の全圧は 7MPaと なる。その後、圧力調整器 128の圧力を 7MPaに設定し、バルブ 124を開状態とする
(11)ヒータ 180に通電し、種結晶 110を融液 108の温度よりも高い 860°Cに加熱す る。
(12)種結晶ホルダ 112を操作して種結晶 110を下降させ、種結晶 110を融液 108 に接触ないし浸漬させる。
(13)この状態で約 10時間保持する。ここでは、種結晶 110の温度が融液 108よりも 高いため、結晶成長は起こらない。そして、時間とともに融液 108中の窒素濃度が増 加する。なお、ここでの保持時間は融液 108中の窒素濃度が結晶成長に適した濃度 となるのに要する時間として予め実験により計測された値である。上記第 1の実施形 態よりも結晶成長温度が高いので、上記第 1の実施形態よりも保持時間は短い。
(14)ヒータ 180の通電を停止する。これにより、種結晶 110の温度は低下する。そし て、種結晶 110の温度が融液 108の温度とほぼ等しくなると、種結晶 110からの GaN 結晶の結晶成長が開始される。
(15)約 50時間保持する。上記第 1の実施形態よりも結晶成長温度が高いので保持 時間は短くしている。
(16)約 150時間が経過後、種結晶ホルダ 112を操作して結晶成長した種結晶 110 を融液 108から引き上げる。 (17)ヒータ 106の通電を停止する。
冷却後、反応容器 102を開けると、融液保持容器 104の内壁にはほとんど雑結晶が 析出しておらず、種結晶 110は、 c軸方向の長さが約 10mmに結晶成長していた。
[0062] 以上説明したように、本実施形態によると、第 1の実施形態よりも短時間で、第 1の 実施形態と同様な GaN結晶を得ることができる。すなわち、種結晶を融液中に保持 した状態で種結晶成長を行う場合に、低品質結晶の成長が抑制され、大きな GaNの 高品質結晶を従来よりも短時間で製造することができる。
[第 3の実施形態]
次に、本発明の第 3の実施形態を図 3を参照しながら説明する。
[0063] 図 3は、本発明の第 3の実施形態に係る III族窒化物結晶の製造方法の実施に用 V、られる GaN結晶の製造装置 100Bの概略構成を示す。
[0064] 図 3を参照するに、前記製造装置 100Bは、第 1の実施形態におけるヒータ 180を 除いた構成を有している。そこで以下の説明においては、第 1の実施形態との相違 点を中心に説明するとともに、前述した第 1の実施形態と同一若しくは同等の構成部 分については同一の符号を用い、その説明を簡略ィ匕し若しくは省略するものとする。
[0065] 次に、上記のように構成される製造装置 100Bによる GaN結晶の製造方法につい て図 4A及び図 4Bを参照しながら説明する。
(1)ガス供給管 122をバルブ 124の前方で切り離し、反応容器 102をアルゴン (Ar) 雰囲気のグローブボックス内に入れる。
(2)反応容器 102から融液保持容器 104を取り出し、融液保持容器 104内に原料の Gaとフラックスの Naとを含む融液 108を入れる。ここでは、一例として融液 108中の Naの比率は NaZ(Na + Ga) = 0. 4とした。
(3)融液保持容器 104を反応容器 102内の所定位置に収容する。
(4)種結晶 110として、 c軸の長さが約 5mmの柱状の GaN結晶を種結晶ホルダ 112 に取りつける。
(5)一例として図 4Aに示されるように、種結晶ホルダ 112を操作して種結晶 110を下 降させ、種結晶 110を融液 108の下部に保持する。窒素は、融液 108表面力も溶解 するため、融液 108下部の窒素濃度は低い。すなわち、種結晶 110を窒素濃度が低 い領域に保持する。ここでは、種結晶 110の環境は結晶成長の条件力 外れた状態 であるため結晶成長はほとんど起こらない。
(6)反応容器 102のふたを閉じる。
(7)バルブ 124を閉状態とし、反応容器 102内部を外部と遮断する。
(8)反応容器 102をグローブボックスから出し、バルブ 124の前方でガス供給管 122 を接続する。
(9)バルブ 124を開状態とし、反応容器 102内に窒素ガスを供給する。このとき、圧 力調整器 128で窒素ガスの圧力を 2. 5MPaとする。この圧力は、融液 108が結晶成 長温度に達したときに、反応容器 102内の圧力が 5MPaとなる圧力である。なお、こ こでは、 800°Cを結晶成長温度とする。
(10)バルブ 124を閉状態とする。これにより、反応容器 124は密閉状態となる。
(11)ヒータ 106に通電し、融液 108の温度を室温(27°C)から結晶成長温度(800°C )まで約 1時間かけて昇温する。昇温に伴って密閉された反応容器 102内の圧力は 上昇し、結晶成長温度(800°C)に達した時の反応容器 102内の全圧は 5MPaとなる 。その後、圧力調整器 128の圧力を 5MPaに設定し、バルブ 124を開状態とする。
(12)この状態で約 20時間保持する。これにより、時間とともに融液 108中の窒素濃 度が増加する。なお、ここでの保持時間は融液 108の上部融液での窒素濃度が品 質の良い結晶が成長するのに適した濃度となるのに要する時間として予め実験によ り計測された値である。
(13)—例として図 4Bに示されるように、種結晶ホルダ 112を操作して種結晶 110を 上昇させ、種結晶 110を融液 108の上部に移動する。すなわち、種結晶 110を窒素 濃度が高い領域に移動する。ここでは、種結晶 110の環境は品質の良い結晶が成 長するのに適した状態となるため、種結晶 110からの GaN結晶の結晶成長が開始さ れる。
(14)図 4Bの状態を約 300時間保持する。
(15)前記約 300時間が経過後、種結晶ホルダ 112を操作して結晶成長した種結晶 110を融液 108から引き上げる。
(16)ヒータ 106の通電を停止する。 [0066] 冷却後、反応容器 102を開けると、上記第 1の実施形態と同様に、種結晶 110は、 c軸方向の長さが約 10mmに結晶成長していた。
[0067] 以上説明したように、本第 3の実施形態によると、融液 108中の窒素濃度が結晶成 長に適した濃度よりも低いときには、種結晶 110を融液 108の下部に保持しておき、 融液 108の上部での窒素濃度が結晶成長に適した濃度に達するタイミングで、種結 晶 110を融液 108の上部に移動させる。これにより、融液 108中の窒素濃度は、多核 発生するまでには増加せず、一定となり、融液保持容器 104の内壁における雑結晶 の析出が抑制され、原料の大部分を種結晶 110からの GaN結晶の結晶成長に利用 することができる。その結果、 III族窒化物である GaNのバルタ結晶を効率的に製造 することが可能となる。すなわち、種結晶を融液中に保持した状態で種結晶成長を 行う場合に、低品質結晶の成長が抑制され、大きな GaNの高品質結晶を従来よりも 短時間で製造することができる。
[0068] また、上記各実施形態によると、融液 108の窒素濃度は、融液 108と気液界面で接 する雰囲気中の窒素圧力と融液 108の温度とによって制御されている。
[0069] なお、上記各実施形態では、 ΠΙ族窒化物結晶の製造装置として、 GaN結晶の製 造装置の場合について説明した力 これに限らず、 Ga以外の III族金属の窒化物結 晶であっても良い。
[0070] また、フラックスとして、 Na以外のアルカリ金属を用いても良!、。
[第 4の実施形態]
以下、本発明の第 4の実施形態を図 5に基づいて説明する。図 5には、本発明の第 4の実施形態に係る III族窒化物結晶の製造装置としての GaN結晶の製造装置 200 Aの概略構成が示されて 、る。
[0071] この図 5に示される製造装置 200Aは、フラックス法によりバルタ GaNを製造する装 置であり、反応容器 202、保持容器としての融液保持容器 204、加熱手段としてのヒ ータ 206、種結晶 210を保持する種結晶ホルダ 212、ガス供給管 222、バルブ 224、 圧力計 226及び圧力調整器 228などを含んで構成されている。
[0072] 前記反応容器 202は、ステンレス製の閉じた形状の容器である。この反応容器 202 の中には、融液保持容器 204がヒータ 206とともに収容されて 、る。 [0073] 前記種結晶ホルダ 212は、反応容器 202を開けることなぐ種結晶 210を上下に移 動させることができる。
[0074] 前記融液保持容器 204は、材質が P— BN (パイオリティックボロンナイトライド)であ り、反応容器 202から取り出すことができる。融液保持容器 204の中には、アルカリ金 属としてのナトリウム (Na)と III族金属としての金属ガリウム(Ga)を含む融液 208が入 れられる。
[0075] 前記ヒータ 206は、円筒状の形状を有し、その中に融液保持容器 204を収容できる ようになつている。このように、融液保持容器 204の壁全体が、ヒータ 206によって直 接加熱される構造になって ヽるので、融液保持容器 204の壁を介した放熱を防止で きる。従って、融液保持容器 204の壁の温度 (T2とする)と融液 208の温度 (T3とする )との関係は常に T2≥T3である。種結晶 210の温度 (T1とする)は、融液 208に接触 ないし浸漬されていないときは、融液 208の温度よりも低い。そして、種結晶 210は、 融液 208に接触ないし浸漬されると融液 208からの熱によって温度が上昇するが、 種結晶ホルダ 212に熱が伝わるため、 GaNの結晶成長中は常に Τ2≥Τ3≥Τ1となる
[0076] 前記ガス供給管 222は、反応容器 202内に窒素 (Ν )ガスを供給するための配管
2
であり、反応容器 202と窒素のガスボンベ 130との間に設けられている。
[0077] 前記ノ レブ 224は、ガス供給管 222の途中であって、反応容器 202に近いところに 設けられている。バルブ 224が開状態のときには、反応容器 202内へ窒素ガスが供 給され、閉状態のときには、反応容器 202内へ窒素ガスの供給が遮断される。なお、 ガス供給管 222はバルブ 224の前方(窒素のガスボンベ 130側)で切り離すことがで きるようになつている。これにより、反応容器 202をグローブボックスの中に移動させて 作業することが可能となる。
[0078] 前記圧力調整器 228は、ガス供給管 222の途中であって、窒素のガスボンベ 130 に近いところに設けられ、反応容器 202内に供給する窒素ガスの圧力を調整するの に用いられる。
[0079] 前記圧力計 226は、ガス供給管 222の途中であって、バルブ 224と反応容器 202 の間に設けられ、反応容器 202内に供給される窒素ガスの圧力をモニタするのに用 いられる。
次に、上記のように構成される製造装置 200Aによる GaN結晶の製造方法につい て説明する。
(1)ガス供給管 222をバルブ 224の前方で切り離し、反応容器 202をアルゴン (Ar) 雰囲気のグローブボックス内に入れる。
(2)反応容器 202から融液保持容器 204を取り出し、融液保持容器 204内に、原料 の Gaとフラックスの Naとを含む融液 208を入れる。ここでは、一例として融液 208中 の Naの比率は NaZ(Na + Ga) = 0. 4とした。
(3)融液保持容器 204を反応容器 202内に配置されて ヽるヒータ 206の中に収容す る。
(4)種結晶 210として、 c軸の長さが約 5mmの柱状の GaN結晶を種結晶ホルダ 212 に取りつける。
(5)反応容器 202のふたを閉じる。
(6)バルブ 224を閉状態とし、反応容器 202内部を外部と遮断する。
(7)反応容器 202をグローブボックスから出し、バルブ 224の前方でガス供給管 222 を接続する。
(8)バルブ 224を開状態とし、反応容器 202内に窒素ガスを供給する。このとき、圧 力調整器 228で窒素ガスの圧力を 2. 5MPaとする。この圧力は、融液 208が結晶成 長温度に達したときに、反応容器 202内の圧力が 5MPaとなる圧力である。なお、こ こでは、一例として 800°Cを結晶成長温度とする。
(9)バルブ 224を閉状態とする。これにより、反応容器 224は密閉状態となる。
(10)ヒータ 206に通電し、融液 208の温度を室温(27°C)から結晶成長温度(800°C )まで約 1時間かけて昇温する。密閉された反応容器 202内の圧力は昇温に伴って 上昇し、結晶成長温度(800°C)に達した時の反応容器 202内の全圧は 5MPaとなる 。その後、圧力調整器 228の圧力を 5MPaに設定し、バルブ 224を開状態とする。
(11)この状態で約 10時間保持し、窒素を気相から融液中に溶解させ、融液中の窒 素濃度を結晶成長に適した濃度に増加させる。なお、この時間は、あら力じめ実験に より計測された値である。 (12)種結晶ホルダ 212を操作して種結晶 210を下降させ、種結晶 210を融液 208 に接触ないし浸漬 (いわゆる種づけ)する。これにより、種結晶 210の結晶成長が開 始される。
[0081] (13)約 300時間保持する。この期間中、融液保持容器 204の壁の温度は融液 20 8の温度以上である。
(14)前記約 300時間が経過すると、種結晶ホルダ 212を操作して結晶成長した種 結晶 210を融液 208から引き上げる。
(15)ヒータ 206の通電を停止する。
[0082] 冷却後、反応容器 202を開けると、融液保持容器 204の内壁での雑結晶の析出は ほとんどみられず、種結晶 210は、 c軸方向の長さが約 10mmに結晶成長していた。
[0083] 以上の説明から明らかなように、本実施形態に係る製造装置 200Aでは、種結晶ホ ルダ 212によって種結晶浸漬機構が構成され、ガス供給管 222とバルブ 224と圧力 計 226と圧力調整器 228とによって窒素ガス供給機構が構成されている。
[0084] 以上説明したように、本第 4の実施形態によると、融液保持容器 204の温度を融液 208の温度以上に加熱し、融液 208の温度よりも低い温度の種結晶 210を融液 208 に接触ないし浸漬させて結晶成長を行う。ここでは、結晶核発生時の生成熱が融液 保持容器 204の内壁カゝら放熱されることがな 、ので、融液保持容器 204の内壁での 雑結晶の核発生が抑制される。従って、原料の大部分を種結晶 210が成長するのに 利用することが可能となり、従来よりも短時間で、種結晶を高品質に、大きく結晶成長 させることがでさる。
[0085] なお、種結晶 210の接触ないし浸漬時間は 300時間に限定するものではなぐ必 要とする GaNのバルタ結晶の大きさに応じて変更しても良い。
[第 5の実施形態]
次に、本発明の第 5の実施形態を図 6及び図 7に基づいて説明する。
[0086] 図 6には、本発明の第 5の実施形態に係る III族窒化物結晶の製造装置としての Ga
N結晶の製造装置 100Bの概略構成が示されている。以下においては、前述した第
4の実施形態と同一若しくは同等の構成部分については同一の符号を用い、その説 明を簡略ィ匕し若しくは省略するものとする。 [0087] 図 6に示される製造装置 200Bは、フラックス法によりバルタ GaNを製造する装置で あり、反応容器 202、保持容器としての融液保持容器 204、加熱手段としてのヒータ 206、補助容器 214、ガス供給管 222、バルブ 224、圧力計 226及び圧力調整器 22 8などを含んで構成されて 、る。
[0088] 前記補助容器 214は、材質が P— BNであり、反応容器 202の中に収容される。こ の補助容器 214は反応容器 202から取り出すことができる。
[0089] 前記融液保持容器 204は、材質が P— BNであり、補助容器 214の中に収容される 。この融液保持容器 204は、補助容器 214から取り出すことができる。融液保持容器 204の中には、アルカリ金属としてのナトリウム(Na)と III族金属としての金属ガリウム (Ga)を含む融液 208が入れられる。
[0090] 前記ヒータ 206は、反応容器 202の外に隣接して設けられて 、る。すなわち、融液 保持容器 204は、反応容器 202と補助容器 214とを介して加熱されることとなる。
[0091] 次に、上記のように構成される製造装置 200Bによる GaN結晶の製造方法につい て説明する。ここでは、結晶成長温度を 800°Cとする。
(1)ガス供給管 222をバルブ 124の前方で切り離し、反応容器 202をアルゴン (Ar) 雰囲気のグローブボックス内に入れる。
(2)反応容器 202から補助容器 214及び融液保持容器 204を取り出す。
(3)融液保持容器 204内に原料の Gaとフラックスの Naとを含む融液 208を入れる。 ここでは、一例として融液 108中の Naの比率は NaZ(Na + Ga) = 0. 4とした。
(4)補助容器 214内にアルカリ金属としてのインジウムを入れる。
(5)補助容器 214内に融液保持容器 204を入れる。
(6)融液保持容器 204とともに補助容器 214を反応容器 202内の所定位置に収容 する。
(7)反応容器 202のふたを閉じる。
(8)バルブ 224を閉状態とし、反応容器 202内部を外部と遮断する。
(9)反応容器 202をグローブボックスから出し、バルブ 224の前方でガス供給管 222 を接続する。
(10)バルブ 224を開状態とし、反応容器 202内に窒素ガスを供給する。このとき、圧 力調整器 228で窒素ガスの圧力を 2. 5MPaとする。この圧力は、融液 208が結晶成 長温度に達したときに、反応容器 202内の圧力が 5MPaとなる圧力である。なお、こ こでは、一例として 800°Cを結晶成長温度とする。
(11)バルブ 224を閉状態とする。これにより、反応容器 224は密閉状態となる。
( 12)ヒータ 206に通電し、融液 208の温度を室温(27°C)から結晶成長温度(800°C )まで約 1時間かけて昇温する。昇温に伴って密閉された反応容器 202内の圧力は 上昇し、結晶成長温度(800°C)に達した時の反応容器 202内の全圧は 5MPaとなる 。その後、圧力調整器 228の圧力を 5MPaに設定し、バルブ 224を開状態とする。
(13)この状態で約 300時間保持する。
(14)約 300時間経過後、ヒータ 206への通電を停止し、反応容器 202を冷却する。 冷却後、反応容器 202を開けると、融液保持容器 204の内壁にはほとんど雑結晶が 析出しておらず、一例として図 7に示されるように、融液保持容器 204の底に、 c軸方 向の長さが約 5mmの GaN結晶 250が形成されているのがみられた。
[0092] 以上の説明から明らかなように、本実施形態に係る製造装置 200Bでは、ガス供給 管 222とバルブ 224と圧力計 226と圧力調整器 228とによって窒素ガス供給機構が 構成されている。
[0093] 以上説明したように、本実施形態によると、一例として図 7に示されるように、インジ ゥムが入っている補助容器 214内に融液保持容器 204を収容している。そして、融 液 208は、補助容器 214、インジウム、融液保持容器 204を介して加熱される。これ により、融液 208よりも融液保持容器 204の方が、温度が高く保持され、結晶核発生 時の生成熱が融液保持容器 204の内壁カゝら放熱されることがないので、融液保持容 器 204の内壁での不要な雑結晶(微結晶)の析出が抑制される。従って、原料の大 部分を所望の結晶が成長するのに利用することが可能となり、従来よりも短時間で、 大きな GaN結晶を結晶成長させることが可能となる。
[第 6の実施形態]
次に、本発明の第 6の実施形態を説明する。
[0094] 本実施形態は、前述した第 5の実施形態におけるインジウムに代えてガリウムを用 いる点に特徴を有する。従って、製造装置は、第 5の実施形態における製造装置 20 OBと同じである。そこで、以下においては、第 5の実施形態との相違点を中心に説明 するとともに、前述した第 5の実施形態と同一若しくは同等の構成部分については同 一の符号を用い、その説明を簡略ィ匕し若しくは省略するものとする。
(1)ガス供給管 222をバルブ 224の前方で切り離し、反応容器 202をアルゴン (Ar) 雰囲気のグローブボックス内に入れる。
(2)反応容器 202から補助容器 214及び融液保持容器 204を取り出す。
(3)融液保持容器 204内に原料の Gaとフラックスの Naとを含む融液 208を入れる。 ここでは、一例として融液 208中の Naの比率は NaZ(Na + Ga) = 0. 4とした。
(4)補助容器 214内にガリゥムを入れる。
(5)補助容器 214内に融液保持容器 204を収容する。
(6)融液保持容器 204とともに補助容器 214を反応容器 202内の所定位置に配置 する。
(7)反応容器 202のふたを閉じる。
(8)バルブ 224を閉状態とし、反応容器 202内部を外部と遮断する。
9)反応容器 202をグローブボックスから出し、バルブ 224の前方でガス供給管 222を 接続する。
(10)バルブ 224を開状態とし、反応容器 202内に窒素ガスを供給する。このとき、圧 力調整器 228で窒素ガスの圧力を 2.5MPaとする。この圧力は、融液 208が結晶成 長温度に達したときに、反応容器 202内の圧力が 5MPaとなる圧力である。なお、こ こでは、一例として 800°Cを結晶成長温度とする。
(11)バルブ 224を閉状態とする。これにより、反応容器 224は密閉状態となる。
( 12)ヒータ 206に通電し、融液 208の温度を室温(27°C)から結晶成長温度(800°C )まで約 1時間かけて昇温する。昇温に追随して密閉された反応容器 202内の圧力 は上昇し、結晶成長温度(800°C)に達した時の反応容器 202内の全圧は 5MPaと なる。その後、圧力調整器 228の圧力を 5MPaに設定し、バルブ 224を開状態とする
(13)この状態で約 300時間保持する。
(14)約 300時間経過後、ヒータ 206への通電を停止し、反応容器 202を冷却する。 冷却後、反応容器 202を開けると、融液保持容器 204の内壁にはほとんど雑結晶が 結晶成長しておらず、融液保持容器 204の底に、 c軸方向の長さが約 5mmの GaN 結晶 250が成長しているのがみられた。
[0095] 以上説明したように、本実施形態によると、先の第 5の実施形態と同様な GaN結晶 を得ることができる。
[第 7の実施形態]
次に、本発明の第 7の実施形態を説明する。
[0096] この第 7の実施形態は、前述した第 5の実施形態におけるインジウムに代えてナトリ ゥムを用いる点に特徴を有する。従って、製造装置は、第 5の実施形態における製造 装置 200Bと同じである。そこで、以下においては、第 5の実施形態との相違点を中 心に説明するとともに、前述した第 5の実施形態と同一若しくは同等の構成部分につ いては同一の符号を用い、その説明を簡略ィ匕し若しくは省略するものとする。
(1)ガス供給管 222をバルブ 224の前方で切り離し、反応容器 202をアルゴン (Ar) 雰囲気のグローブボックス内に入れる。
(2)反応容器 202から補助容器 214及び融液保持容器 204を取り出す。
(3)融液保持容器 204内に原料の Gaとフラックスの Naとを含む融液 208を入れる。 ここでは、一例として融液 208中の Naの比率は NaZ(Na + Ga) = 0. 4とした。
(4)補助容器 214内にナトリゥムを入れる。
(5)補助容器 214内に融液保持容器 204を収容する。
(6)融液保持容器 204とともに補助容器 214を反応容器 202内の所定位置に配置 する。
(7)反応容器 202のふたを閉じる。
(8)バルブ 224を閉状態とし、反応容器 202内部を外部と遮断する。
(9)反応容器 202をグローブボックスから出し、バルブ 224の前方でガス供給管 222 を接続する。
(10)バルブ 224を開状態とし、反応容器 202内に窒素ガスを供給する。このとき、圧 力調整器 228で窒素ガスの圧力を 2. 5MPaとする。この圧力は、融液 208が結晶成 長温度に達したときに、反応容器 202内の圧力が 5MPaとなる圧力である。なお、こ こでは、一例として 800°Cを結晶成長温度とする。
(11)バルブ 224を閉状態とする。これにより、反応容器 224は密閉状態となる。
( 12)ヒータ 206に通電し、融液 208の温度を室温(27°C)から結晶成長温度(800°C )まで約 1時間かけて昇温する。昇温に追随して密閉された反応容器 202内の圧力 は上昇し、結晶成長温度(800°C)に達した時の反応容器 202内の全圧は 5MPaと なる。その後、圧力調整器 228の圧力を 5MPaに設定し、バルブ 224を開状態とする
(13)この状態を約 300時間保持する。
(14)約 300時間経過後、ヒータ 206への通電を停止し、反応容器 202を冷却する。
[0097] 冷却後、反応容器 202を開けると、融液保持容器 204の内壁にはほとんど雑結晶 が結晶成長しておらず、融液保持容器 204の底に、 c軸方向の長さが約 6mmの Ga N結晶 250が成長しているのがみられた。なお、融液 208中に残留しているナトリウム 量は、第 5の実施形態及び第 6の実施形態のいずれよりも多かった。
[0098] 以上説明したように、本実施形態によると、第 5の実施形態と第 6の実施形態と同様 に、融液保持容器 204の内壁での不要な雑結晶(微結晶)の析出が抑制される。従 つて、原料の大部分を種結晶 210の結晶成長に利用することができる。また、補助容 器 214内の液体がアルカリ金属であるので、融液保持容器 204内に保持されたアル カリ金属の蒸発を低減することができるので、融液保持容器 204内のアルカリ金属量 を安定にして結晶成長することができる。従って、第 5の実施形態及び第 6の実施形 態よりも大きい GaN結晶を得ることができる。
[第 8の実施形態]
次に、本発明の第 8の実施形態を説明する。
[0099] この第 8の実施形態は、前述した第 5の実施形態における融液保持容器 204の材 質を、 P— BNよりも熱伝導率が低い窒化珪素としている点に特徴を有する。そして、 その他の構成は第 2の実施形態と同じである。そこで、以下においては、第 5の実施 形態との相違点を中心に説明するとともに、前述した第 5の実施形態と同一若しくは 同等の構成部分については同一の符号を用い、その説明を簡略ィ匕し若しくは省略 するものとする。 (1)ガス供給管 222をバルブ 224の前方で切り離し、反応容器 202をアルゴン (Ar) 雰囲気のグローブボックス内に入れる。
(2)反応容器 202から補助容器 214及び融液保持容器 204を取り出す。
(3)融液保持容器 204内に原料の Gaとフラックスの Naとを含む融液 208を入れる。 ここでは、一例として融液 208中の Naの比率は NaZ(Na + Ga) = 0. 4とした。
(4)補助容器 214内にナトリゥムを入れる。
(5)補助容器 214内に融液保持容器 204を収容する。
(6)融液保持容器 204とともに補助容器 214を反応容器 202内の所定位置に配置 する。
(7)反応容器 202のふたを閉じる。
(8)バルブ 224を閉状態とし、反応容器 202内部を外部と遮断する。
(9)反応容器 202をグローブボックスから出し、バルブ 224の前方でガス供給管 222 を接続する。
(10)バルブ 224を開状態とし、反応容器 202内に窒素ガスを供給する。このとき、圧 力調整器 228で窒素ガスの圧力を 2.5MPaとする。この圧力は、融液 208が結晶成 長温度に達したときに、反応容器 202内の圧力が 5MPaとなる圧力である。なお、こ こで、一例として 800°Cを結晶成長温度とする。
(11)バルブ 224を閉状態とする。これにより、反応容器 224は密閉状態となる。
( 12)ヒータ 206に通電し、融液 208の温度を室温(27°C)から結晶成長温度(800°C )まで約 1時間かけて昇温する。昇温に追随して密閉された反応容器 202内の圧力 は上昇し、結晶成長温度(800°C)に達した時の反応容器 202内の全圧は 5MPaと なる。その後、圧力調整器 228の圧力を 5MPaに設定し、バルブ 224を開状態とする
(13)この状態で約 300時間保持する。
(14)約 300時間経過後、ヒータ 206への通電を停止し、反応容器 202を冷却する。 冷却後、反応容器 202を開けると、融液保持容器 204の内壁にはほとんど雑結晶 が結晶成長しておらず、融液保持容器 204の底に、 c軸方向の長さが約 7mmの Ga N結晶 250がみられた。 [0101] 以上説明したように、本実施形態によると、融液保持容器 204の熱伝導率が第 5〜 第 7の実施形態の場合よりも低いので、核発生時の生成熱が融液保持容器 204の内 壁に放熱されるのが第 5〜第 7の実施形態よりも小さぐ発生した結晶核の再融解が 第 5〜第 7の実施形態より効果的に行われ、融液保持容器 204の内壁での雑結晶の 析出が抑制される。その結果、第 5〜第 7の実施形態よりも大きい GaN結晶を得るこ とがでさる。
[第 9の実施形態]
次に、本発明の第 9の実施形態を図 8及び図 9に基づいて説明する。図 8には、本 発明の第 9の実施形態に係る ΠΙ族窒化物結晶の製造装置としての GaN結晶の製造 装置 200Cの概略構成が示されて!/、る。
[0102] この製造装置 200Cは、前述した第 5の実施形態における製造装置 200Bに種結 晶 210を保持する種結晶保持機構 212を付加した点に特徴を有する。その他の構 成は第 5の実施形態と同じである。そこで、以下においては、第 5の実施形態との相 違点を中心に説明するとともに、前述した第 5の実施形態と同一若しくは同等の構成 部分については同一の符号を用い、その説明を簡略ィ匕し若しくは省略するものとす る。種結晶保持機構 212は、反応容器 202を開けることなぐ種結晶 210を上下に移 動させることができる。
[0103] 次に、上記のように構成される製造装置 200Cによる GaN結晶の製造方法につい て説明する。
(1)ガス供給管 222をバルブ 224の前方で切り離し、反応容器 202をアルゴン (Ar) 雰囲気のグローブボックス内に入れる。
(2)反応容器 202から補助容器 214及び融液保持容器 204を取り出す。
(3)融液保持容器 204内に原料の Gaとフラックスの Naとを含む融液 208を入れる。 ここでは、一例として融液 208中の Naの比率は NaZ(Na + Ga) = 0. 4とした。
(4)補助容器 214内にナトリゥムを入れる。
(5)補助容器 214内に融液保持容器 204を入れる。
(6)融液保持容器 204とともに補助容器 214を反応容器 202内の所定位置に収容 する。 (7)種結晶 210として、 c軸の長さが約 5mmの柱状の GaN結晶を種結晶保持機構 2 12〖こ取りつける。
(8)反応容器 202のふたを閉じる。
(9)バルブ 224を閉状態とし、反応容器 202内部を外部と遮断する。
(10)反応容器 202をグローブボックスから出し、バルブ 224の前方でガス供給管 22 2を接続する。
(11)バルブ 224を開状態とし、反応容器 202内に窒素ガスを供給する。このとき、圧 力調整器 228で窒素ガスの圧力を 2.5MPaとする。この圧力は、融液 208が結晶成 長温度に達したときに、反応容器 202内の圧力が 5MPaとなる圧力である。なお、こ こでは、一例として 800°Cを結晶成長温度とする。
(12)バルブ 224を閉状態とする。これにより、反応容器 224は密閉状態となる。
(13)ヒータ 206に通電し、融液 208の温度を室温(27°C)から結晶成長温度(800°C )まで約 1時間かけて昇温する。昇温に追随して密閉された反応容器 202内の圧力 は上昇し、結晶成長温度(800°C)に達した時の反応容器 202内の全圧は 5MPaと なる。その後、圧力調整器 228の圧力を 5MPaに設定し、バルブ 224を開状態とする
(14)この状態を約 10時間保持する。
(15)種結晶保持機構 212を操作して種結晶 210を下降させ、一例として図 9に示さ れるように、種結晶 210を融液 208に接触ないし浸漬 (いわゆる種づけ)する。これに より、種結晶 210の結晶成長が開始される。
(16)この状態を約 300時間保持する。この期間中、融液保持容器 204の壁の温度 は融液 208の温度以上である。
(17)約 300時間が経過後、種結晶保持機構 212を操作して結晶成長した種結晶 2 10を融液 208から引き上げる。
(18)ヒータ 206の通電を停止する。
冷却後、反応容器 202を開けると、融液保持容器 204の内壁にはほとんど雑結晶 が結晶成長しておらず、種結晶 210は、 c軸方向の長さが約 11mmに結晶成長して [0105] 以上の説明から明らかなように、本実施形態に係る製造装置 200Cでは、種結晶ホ ルダ 212によって浸漬機構が構成され、ガス供給管 222とバルブ 224と圧力計 226と 圧力調整器 228とによって窒素ガス供給機構が構成されている。
[0106] 以上説明したように、本実施形態によると、融液 208よりも融液保持容器 204の方 が高温なので、核発生に伴う生成熱が融液保持容器 204の内壁力も放熱されないた め、核発生が抑制される。その結果、融液保持容器 204の内壁での不要な微結晶の 析出が抑制される。従って、原料の大部分を種結晶 210の結晶成長に利用すること ができる。すなわち、従来よりも短時間で、種結晶を高品質に、大きく結晶成長させる ことができる。
[0107] なお、上記各実施形態では、 III族窒化物結晶の製造装置として、 GaN結晶の製 造装置の場合について説明した力 これに限らず、 Ga以外の III族金属の窒化物結 晶であっても良い。
[0108] また、フラックスとして、 Na以外のアルカリ金属を用いても良 、。
[第 10の実施形態]
次に、本発明の第 10の実施形態を図 10〜図 12に基づいて説明する。図 10には、 本発明の第 10の実施形態に係る III族窒化物結晶の製造装置としての GaN結晶の 製造装置 300Aの概略構成が示されて 、る。
[0109] この図 10に示される製造装置 300Aは、反応容器 302、保持容器としての融液保 持容器 304、固定補助容器 314、加熱手段としてのヒータ 306、種結晶 310を保持 する種結晶ホルダ 312、融液保持容器 304を上下させる容器ホルダ 315、ガス供給 管 322、バルブ 324、圧力計 326及び圧力調整器 328などを含んで構成されている
[0110] 前記反応容器 302は、ステンレス製の閉じた形状の容器である。この反応容器 302 の中には、融液保持容器 304が収容されている。
[0111] 前記種結晶ホルダ 312は、反応容器 302を開けることなぐ種結晶 310を上下に移 動させることができる。
[0112] 前記融液保持容器 304は、材質が P— BN (パイオリティック ボロンナイトライド)で あり、反応容器 302から取り出すことができる。融液保持容器 304の中には、アルカリ 金属としてのナトリウム (Na)と ΠΙ族金属としての金属ガリウム(Ga)を含む融液 308が 入れられる。
[0113] 前記固定補助容器 314は、材質が P— BNであり、その中に融液保持容器 304を 入れることができる大きさを有している。この固定補助容器 314は、反応容器 302内 に収容される。
[0114] 前記容器ホルダ 315は、反応容器 302を開けることなぐ融液保持容器 304を上下 に移動させることができる。
[0115] ヒータ 306は、反応容器 302の外に隣接して設けられている。すなわち、融液保持 容器 304は、反応容器 302と固定補助容器 314とを介して加熱されることとなる。
[0116] 前記ガス供給管 322は、反応容器 302内に窒素 (N )ガスを供給するための配管
2
であり、反応容器 302と窒素のガスボンベ 130との間に設けられている。
[0117] 前記ノ レブ 324は、ガス供給管 322の途中であって、反応容器 302に近いところに 設けられている。バルブ 324が開状態のときには、反応容器 302内へ窒素ガスが供 給され、閉状態のときには、反応容器 302内へ窒素ガスの供給が遮断される。なお、 ガス供給管 322はバルブ 324の前方(窒素のガスボンベ 130側)で切り離すことがで きるようになつている。これにより、反応容器 302をグローブボックスの中に移動させて 作業することが可能となる。
[0118] 前記圧力調整器 328は、ガス供給管 322の途中であって、窒素のガスボンベ 130 に近いところに設けられ、反応容器 302内に供給する窒素ガスの圧力を調整するの に用いられる。
[0119] 前記圧力計 326は、ガス供給管 322の途中であって、バルブ 324と反応容器 302 の間に設けられ、反応容器 302内に供給される窒素ガスの圧力をモニタするのに用 いられる。
[0120] 次に、上記のように構成される製造装置 300Aによる GaN結晶の製造方法につい て図 11A〜図 11Cを参照しながら説明する。
(1)ガス供給管 322をバルブ 324の前方で切り離し、反応容器 302をアルゴン (Ar) 雰囲気のグローブボックス内に入れる。
(2)反応容器 302から固定補助容器 314及び融液保持容器 304を取り出し、固定補 助容器 314内に原料の Gaとフラックスの Naとを含む融液 308を入れる。ここでは、一 例として融液 308中の Naの比率は NaZ(Na + Ga) = 0. 4とした。
(3)固定補助容器 314内の融液 308中に融液保持容器 304を沈める。これにより、 融液保持容器 304内は融液 308で満たされることとなる(図 11 A参照)。
(4)融液保持容器 304とともに固定補助容器 314を反応容器 302内の所定位置に 収容する。
(5)種結晶 310として、 c軸の長さが約 5mmの柱状の GaN結晶を種結晶ホルダ 312 に取りつける。
(6)反応容器 302のふたを閉じる。
(7)バルブ 324を閉状態とし、反応容器 302内部を外部と遮断する。
(8)反応容器 302をグローブボックスから出し、バルブ 324の前方でガス供給管 322 を接続する。
(9)バルブ 324を開状態とし、反応容器 302内に窒素ガスを供給する。このとき、圧 力調整器 328で窒素ガスの圧力を 2.5MPaとする。この圧力は、融液 308が結晶成 長温度に達したときに、反応容器 302内の圧力が 5MPaとなる圧力である。なお、こ こでは、一例として 800°Cを結晶成長温度とする。
(10)バルブ 324を閉状態とする。これにより、反応容器 324は密閉状態となる。
(11)ヒータ 306に通電し、融液 308の温度を室温(27°C)から結晶成長温度(800°C )まで約 1時間かけて昇温する。密閉された反応容器 302内の圧力は昇温に伴って 上昇し、結晶成長温度(800°C)に達した時の反応容器 302内の全圧は 5MPaとなる 。その後、圧力調整器 328の圧力を 5MPaに設定し、バルブ 324を開状態とする。
(12)この状態で約 50時間保持する。これにより、一例として図 12に示されるように、 時間とともに融液 308中の窒素濃度が増加する。そして、窒素濃度が所定値に達す ると、核生成が起こり、融液 308中の窒素濃度が安定ィ匕する。一例として図 11Bに示 されるように、固定補助容器 314の内壁に雑結晶の核が生成され、その後、融液 30 8中の窒素濃度はほぼ一定となる。すなわち、融液 308中の窒素濃度は飽和し安定 化する。その後、固定補助容器 314の内壁で生成した核は成長し、雑結晶 330とな る。なお、このときには、融液保持容器 304の内壁にはほとんど雑結晶は析出しない 。また、ここでの保持時間は融液 308中の窒素濃度が安定ィ匕するのに要する時間と して予め実験により計測された値である。
(13)容器ホルダ 315を用 ヽて融液保持容器 304を引き上げ、種結晶 310を融液保 持容器 304内の融液 308に接触ないし浸漬させる(図 11C参照)。これにより、種結 晶 310の結晶成長が開始される。
(14)図 11Cの状態を約 300時間保持する。
(15)約 300時間が経過後、容器ホルダ 315を用 ヽて融液保持容器 304を固定補助 容器 314内に戻す。
(16)ヒータ 306の通電を停止する。
[0121] 冷却後、反応容器 302を開けると、上記第 10の実施形態と同様に、種結晶 310は 、 c軸方向の長さが約 10mmに結晶成長しているのが見られた。
[0122] 以上の説明から明らかなように、本実施形態に係る製造装置 300Aでは、容器ホル ダ 315と種結晶ホルダ 312とによって浸漬機構が構成され、ガス供給管 322とバルブ 324と圧力計 326と圧力調整器 328とによって供給機構が構成されている。
[0123] 以上説明したように、本実施形態によると、融液 308で満たされた固定補助容器 31 4内に、融液保持容器 304を沈め、融液 308中の窒素濃度が安定ィ匕されると、融液 保持容器 304を固定補助容器 314から引き上げて、融液保持容器 304中の融液 30 8に種結晶を接触ないし浸漬させている。これにより、種結晶 310の浸漬中における 融液保持容器 304の内壁での雑結晶の成長を抑制し、原料の大部分を種結晶 310 の結晶成長に利用することができる。すなわち、雑結晶の成長を抑制し、種結晶を高 品質に、従来よりも短時間で大きく結晶成長させることができる。
[第 11の実施形態]
次に、本発明の第 2の実施形態を図 13を参照しながら説明する。
[0124] 図 13には、本発明の第 11の実施形態に係る III族窒化物結晶の製造装置としての GaN結晶の製造装置 300Bの概略構成が示されている。なお、以下においては、前 述した第 10の実施形態と同一若しくは同等の構成部分については同一の符号を用 い、その説明を簡略ィ匕し若しくは省略するものとする。
[0125] 図 13に示される製造装置 300Bは、反応容器 302、融液保持容器 304 (第 2の容 器)、可動補助容器 316 (第 1の容器)、加熱手段としてのヒータ 306、種結晶 310を 保持する種結晶ホルダ 312、可動補助容器 316を上下させる容器ホルダ 317 (駆動 機構)、ガス供給管 322、バルブ 324、圧力計 326及び圧力調整器 328などを含ん で構成されている。
[0126] 可動補助容器 316は、材質が P— BNであり、融液保持容器 304を縮小した形状を 有している。この可動補助容器 316は、 2つの部分(316a、 316b)に分割できるよう になっている。
[0127] 容器ホルダ 317は、反応容器 302を開けることなぐ可動補助容器 316を上下に移 動させることができる。
[0128] ヒータ 306は、第 10の実施形態と同様に、反応容器 302の外に隣接して設けられ ている。
[0129] 次に、上記のように構成される製造装置 300Bによる GaN結晶の製造方法につい て図 14A〜14Dを参照しながら説明する。
(1)ガス供給管 322をバルブ 324の前方で切り離し、反応容器 302をアルゴン (Ar) 雰囲気のグローブボックス内に入れる。
(2)反応容器 302から融液保持容器 304を取り出し、融液保持容器 304内に可動補 助容器 316を収容する。
(3)可動補助容器 316内に、原料の Gaとフラックスの Naとを含む融液 308を入れる ( 図 14A参照)。ここでは、一例として融液 308中の Naの比率は NaZ(Na + Ga) = 0. 4とした。
(4)可動補助容器 316とともに融液保持容器 304を反応容器 302内の所定位置に 収容する。
(5)種結晶 310として、 c軸の長さが約 5mmの柱状の GaN結晶を種結晶ホルダ 312 に取りつける。
(6)反応容器 302のふたを閉じる。
(7)バルブ 324を閉状態とし、反応容器 302内部を外部と遮断する。
(8)反応容器 302をグローブボックスから出し、バルブ 324の前方でガス供給管 322 を接続する。 (9)バルブ 324を開状態とし、反応容器 302内に窒素ガスを供給する。このとき、圧 力調整器 328で窒素ガスの圧力を 2.5MPaとする。この圧力は、融液 308が結晶成 長温度に達したときに、反応容器 302内の圧力が 5MPaとなる圧力である。なお、こ こでは、一例として 800°Cを結晶成長温度とする。
(10)バルブ 324を閉状態とする。これにより、反応容器 324は密閉状態となる。
(11)ヒータ 306に通電し、融液 308の温度を室温(27°C)から結晶成長温度(800°C )まで約 1時間かけて昇温する。密閉された反応容器 302内の圧力は昇温に伴って 上昇し、結晶成長温度(800°C)に達した時の反応容器 302内の全圧は 5MPaとなる 。その後、圧力調整器 328の圧力を 5MPaに設定し、バルブ 324を開状態とする。
(12)この状態で約 50時間保持する。これにより、時間とともに融液 308中の窒素濃 度が増加する。そして、窒素濃度が所定値に達すると、一例として図 14Bに示される ように、可動補助容器 316の内壁に多数の雑結晶 330が析出し、融液 308中の窒素 濃度が安定化する。
(13)容器ホルダ 317を用 ヽて可動補助容器 316を融液保持容器 304内で分割する (図 14 (c)参照)。これにより、可動補助容器 316内の融液 308は、融液保持容器 30 4内に移されることとなる。
(14)容器ホルダ 317を用 、て可動補助容器 316を融液保持容器 304から Iき上げ る(図 14D参照)。
(15)種結晶ホルダ 312を操作して種結晶 310を下降させ、種結晶 310を融液保持 容器 104内の融液 308に接触ないし浸漬させる。これにより、種結晶 310の結晶成 長が開始される。
(16)この状態を約 300時間保持する。
( 17)約 300時間が経過後、種結晶ホルダ 312を操作して結晶成長した種結晶 310 を融液 308から引き上げる。
(18)ヒータ 306の通電を停止する。
冷却後、反応容器 302を開けると、融液保持容器 304の内壁にはほとんど雑結晶 が成長しておらず、種結晶 310は、 c軸方向の長さが約 10mmに結晶成長しているの が見られた。 [0131] 以上の説明から明らかなように、本実施形態に係る製造装置 300Bでは、容器ホル ダ 317によって取出手段が構成され、種結晶ホルダ 312によって浸漬機構が構成さ れ、ガス供給管 322とバルブ 324と圧力計 326と圧力調整器 328とによって窒素ガス 供給機構が構成されている。
[0132] 以上説明したように、本実施形態によると、融液 308で満たされた可動補助容器 31 6を融液保持容器 304内に挿入し、融液 308中の窒素濃度が安定ィ匕されると、可動 補助容器 316内の融液 308を融液保持容器 304に移し、可動補助容器 316を融液 保持容器 304から取り出している。そして、可動補助容器 316が取り出された融液保 持容器 304内の融液 308に種結晶を接触ないし浸漬させている。これにより、種結晶 310の融液 308への接触ないし浸漬中における融液保持容器 304の内壁での雑結 晶の成長を抑制し、原料の大部分を種結晶 310の結晶成長に利用することができる 。すなわち、雑結晶の成長を抑制し、種結晶を高品質に、従来よりも短時間で大きく 結晶成長させることができる。
[0133] なお、上記第 11の実施形態では、可動補助容器 316が 2つに分割される場合につ いて説明したが、これに限定されるものではない。要するに、融液保持容器 304内に 収容され、取り出し可能であれば良い。この場合には、可動補助容器内の融液を融 液保持容器 304に移すために可動補助容器を傾斜させる傾斜機構があれば良!ヽ。
[第 12の実施形態]
次に、本発明の第 12の実施形態を図 15を参照しながら説明する。
[0134] 図 15には、本発明の第 12の実施形態に係る III族窒化物結晶の製造装置としての GaN結晶の製造装置 300Cの概略構成が示されている。なお、以下においては、前 述した第 10の実施形態と同一若しくは同等の構成部分については同一の符号を用 い、その説明を簡略ィ匕し若しくは省略するものとする。
[0135] 図 15に示される製造装置 300Cは、反応容器 302、融液保持容器 304、除去手段 としてのブレード部材 318、加熱手段としてのヒータ 306、種結晶 310を保持する種 結晶ホルダ 312、ガス供給管 322、バルブ 324、圧力計 326及び圧力調整器 328な どを含んで構成されている。
[0136] ブレード部材 318は、ブレードと該ブレードを上下するためのブレード保持棒とから 構成されている。ブレードは融液保持容器 304の低部とほぼ同じ形状であり、ブレー ドのエッジは融液保持容器 304の内壁に当接するようになつている。ブレード部材 31 8は、反応容器 302を開けることなぐ上下に移動可能となっている。
[0137] ヒータ 306は、第 10の実施形態と同様に、反応容器 302の外に隣接して設けられ ている。
[0138] 次に、上記のように構成される製造装置 300Cによる GaN結晶の製造方法につい て図 16 A〜 16Dを参照しながら説明する。
(1)ガス供給管 322をバルブ 324の前方で切り離し、反応容器 302をアルゴン (Ar) 雰囲気のグローブボックス内に入れる。
(2)反応容器 302から融液保持容器 304を取り出し、融液保持容器 304内にブレー ド部材 318を配置する。ここでは、図 16Aに示されるように、ブレード部材 318のブレ 一ドが融液保持容器 304の底に接するように配置する。
(3)融液保持容器 304に、原料の Gaとフラックスの Naとを含む融液 308を入れる。こ こでは、一例として融液 308中の Naの比率は NaZ(Na + Ga) = 0. 4とした。
(4)ブレード部材 318とともに融液保持容器 304を反応容器 302内の所定位置に収 容する。
(5)種結晶 310として、 c軸の長さが約 5mmの柱状の GaN結晶を種結晶ホルダ 312 に取りつける。
(6)反応容器 302のふたを閉じる。
(7)バルブ 324を閉状態とし、反応容器 302内部を外部と遮断する。
(8)反応容器 302をグローブボックスから出し、バルブ 324の前方でガス供給管 322 を接続する。
(9)バルブ 324を開状態とし、反応容器 302内に窒素ガスを供給する。このとき、圧 力調整器 328で窒素ガスの圧力を 2.5MPaとする。この圧力は、融液 308が結晶成 長温度に達したときに、反応容器 302内の圧力が 5MPaとなる圧力である。なお、こ こでは、一例として 800°Cを結晶成長温度とする。
(10)バルブ 324を閉状態とする。これにより、反応容器 324は密閉状態となる。
(11)ヒータ 306に通電し、融液 308の温度を室温(27°C)から結晶成長温度(800°C )まで約 1時間かけて昇温する。密閉された反応容器 302内の圧力は昇温に伴って 上昇し、結晶成長温度(800°C)に達した時の反応容器 302内の全圧は 5MPaとなる 。その後、圧力調整器 328の圧力を 5MPaに設定し、バルブ 324を開状態とする。
(12)この状態で約 50時間保持する。これにより、時間とともに融液 308中の窒素濃 度が増加する。そして、窒素濃度が所定値に達すると、一例として図 16Bに示される ように、融液保持容器 304の内壁に多数の雑結晶 330が析出し、融液 308中の窒素 濃度が安定化する。
(13)ブレード部材 318を引き上げる。これにより、融液保持容器 304の内壁に析出 した雑結晶は、ブレードのエッジで搔き取られる(図 16C参照)。
(14)種結晶ホルダ 312を操作して種結晶 310を下降させ、種結晶 310を融液 308 に接触ないし浸漬させる(図 16 (d)参照)。これにより、種結晶 310の結晶成長が開 始される。
(15)図 16Dの状態を約 300時間保持する。
(16)約 300時間が経過後、種結晶ホルダ 312を操作して結晶成長した種結晶 310 を融液 308から引き上げる。
(17)ヒータ 306の通電を停止する。
[0139] 冷却後、反応容器 302を開けると、融液保持容器 304の内壁にはほとんど雑結晶 はみられず、種結晶 310は、 c軸方向の長さが約 10mmに結晶成長しているのが見 られた。
[0140] 以上の説明から明らかなように、本実施形態に係る製造装置 300Cでは、種結晶ホ ルダ 312によって浸漬機構が構成され、ガス供給管 322とバルブ 324と圧力計 326と 圧力調整器 328とによって窒素ガス供給機構が構成されている。
[0141] 以上説明したように、本実施形態に係る製造装置 300Cによると、融液 308中の窒 素濃度が安定ィ匕されると、融液保持容器 304の内壁に析出した微結晶をブレード部 材 318で搔き取り、微結晶が搔き取られた融液保持容器 304内の融液 308に種結晶 を接触ないし浸漬している。すなわち、融液保持容器 304の内壁に析出した微結晶 を機械的に除去し、微結晶が機械的に除去された融液保持容器 304内の融液 308 に種結晶を接触ないし浸漬している。これにより、種結晶 310の融液 308に対する接 触ないし浸漬中における雑結晶の成長を抑制し、原料の大部分を種結晶 310の結 晶成長に利用することができる。すなわち、雑結晶の成長を抑制し、種結晶を高品質 に、従来よりも短時間で大きく結晶成長させることができる。
[0142] なお、上記第 12の実施形態では、除去手段としてブレード部材 318を用いる場合 について説明した力 これに限定されるものではない。要するに、融液保持容器 304 の内壁に析出した微結晶を搔き取ることができれば良い。
[第 13の実施形態]
次に、本発明の第 13の実施形態を、図 17を参照しながら説明する。
[0143] 図 17には、本発明の第 13の実施形態に係る III族窒化物結晶の製造装置としての
GaN結晶の製造装置 300Dの概略構成が示されている。なお、以下においては、前 述した第 1の実施形態と同一若しくは同等の構成部分については同一の符号を用い
、その説明を簡略ィ匕し若しくは省略するものとする。
[0144] 図 17に示される製造装置 300Dは、反応容器 302、融液保持容器 304、成長阻止 部材としてのメッシュ部材 319、加熱手段としてのヒータ 306、種結晶 310を保持する 種結晶ホルダ 312、ガス供給管 322、ノ レブ 324、圧力計 326及び圧力調整器 328 などを含んで構成されて 、る。
[0145] メッシュ部材 319は、雑結晶が成長しにくいタングステン製の籠状の部材であり、融 液保持容器 304の内壁に近接して配置されて!、る。
[0146] ヒータ 306は、第 10の実施形態と同様に、反応容器 302の外に隣接して設けられ ている。
[0147] 次に、上記のように構成される製造装置 300Dによる GaN結晶の製造方法につい て図 18A〜図 18Cを参照しながら説明する。
(1)ガス供給管 322をバルブ 124の前方で切り離し、反応容器 302をアルゴン (Ar) 雰囲気のグローブボックス内に入れる。
(2)反応容器 302から融液保持容器 304を取り出し、融液保持容器 304内にメッシュ 部材 319を配置する。
(3)融液保持容器 304に、原料の Gaとフラックスの Naとを含む融液 308を入れる(図 18A参照)。ここでは、一例として融液 308中の Naの比率は NaZ(Na + Ga) = 0. 4 とした。
(4)メッシュ部材 319とともに融液保持容器 304を反応容器 302内の所定位置に配 置する。
(5)種結晶 310として、 c軸の長さが約 5mmの柱状の GaN結晶を種結晶ホルダ 312 に取りつける。
(6)反応容器 302のふたを閉じる。
(7)バルブ 324を閉状態とし、反応容器 302内部を外部と遮断する。
(8)反応容器 302をグローブボックスから出し、バルブ 324の前方でガス供給管 222 を接続する。
(9)バルブ 324を開状態とし、反応容器 302内に窒素ガスを供給する。このとき、圧 力調整器 328で窒素ガスの圧力を 2.5MPaとする。この圧力は、融液 308が結晶成 長温度に達したときに、反応容器 302内の圧力が 5MPaとなる圧力である。なお、こ こでは、一例として 800°Cを結晶成長温度とする。
(10)バルブ 324を閉状態とする。これにより、反応容器 324は密閉状態となる。
(11)ヒータ 306に通電し、融液 308の温度を室温(27°C)から結晶成長温度(800°C )まで約 1時間かけて昇温する。密閉された反応容器 302内の圧力は昇温に伴って 上昇し、結晶成長温度(800°C)に達した時の反応容器 302内の全圧は 5MPaとなる 。その後、圧力調整器 328の圧力を 5MPaに設定し、バルブ 324を開状態とする。
(12)この状態で約 50時間保持する。これにより、時間とともに融液 308中の窒素濃 度が増加する。そして、窒素濃度が所定値に達すると、一例として図 18Bに示される ように、融液保持容器 304の内壁に多数の雑結晶の核が生成し、融液 308中の窒素 濃度が安定化する。
(13)種結晶ホルダ 312を操作して種結晶 310を下降させ、種結晶 310を融液 308 に接触ないし浸漬させる(図 18C参照)。これにより、種結晶 310の結晶成長が開始 される。このとき、雑結晶 330の結晶成長はメッシュ部材 319によって妨げられる。
(14)約 300時間保持する。
(15)約 300時間が経過後、種結晶ホルダ 312を操作して結晶成長した種結晶 310 を融液 308から引き上げる。 (16)ヒータ 306の通電を停止する。
[0148] 冷却後、反応容器 302を開けると、融液保持容器 304の内壁力もの雑結晶の結晶 成長はメッシュ部材 319で止まっており、種結晶 310は、 c軸方向の長さが約 10mm に結晶成長していた。
[0149] 以上の説明から明らかなように、本実施形態に係る製造装置 300Dでは、種結晶ホ ルダ 312によって浸漬機構が構成され、ガス供給管 322とバルブ 324と圧力計 326と 圧力調整器 328とによって供給機構が構成されている。
[0150] 以上説明したように、本実施形態に係る製造装置 300Dによると、融液保持容器 30 4の内壁に近接して雑結晶の結晶成長を阻止するメッシュ部材が配置されているた め、融液保持容器 304の内壁に析出した雑結晶の結晶成長はメッシュ部材 319によ つて妨げられる。これにより、原料の大部分を種結晶 310の結晶成長に利用すること ができる。すなわち、雑結晶の成長を抑制し、種結晶を高品質に、従来よりも短時間 で大きく結晶成長させることができる。
[0151] なお、上記第 13の実施形態では、メッシュ部材 319の材質がタングステンの場合に ついて説明したが、これに限定されるものではない。また、成長阻止部材としてメッシ ュ部材 319に限定されるものではない。要するに、融液保持容器 304の内壁に析出 した微結晶の結晶成長を阻止できれば良!、。
[第 14の実施形態]
図 19は、第 14の実施形態による製造装置の構成を示す概略図である。
[0152] 第 14の実施形態による製造装置 400Aは、図 1に示す製造装置 100Aに配管 114 、熱電対 115、温度制御装置 116、ガス供給管 117、流量計 118およびガスボンベ 1 19を追加したものであり、その他は、製造装置 100Aと同じである。
[0153] 配管 114および熱電対 115は、種結晶ホルダ 112の内部に挿入される。ガス供給 管 117は、一方端が配管 114に連結され、他方端が流量計 118を介してガスボンベ 119に連結される。流量計 118は、ガスボンベ 119の近傍でガス供給管 117に装着 される。ガスボンベ 119は、ガス供給管 117に連結される。
[0154] 配管 114は、ガス供給管 117から供給された窒素ガスを一方端力も種結晶ホルダ 1 12内へ放出して種結晶 110を冷却する。熱電対 115は、種結晶 110の温度 T1を検 出し、その検出した温度 T1を温度制御装置 116へ出力する。
[0155] ガス供給管 117は、ガスボンベ 119から流量計 118を介して供給された窒素ガスを 配管 114へ供給する。流量計 118は、温度制御装置 116からの制御信号 CTL1に 応じて、ガスボンベ 119から供給された窒素ガスの流量を調整してガス供給管 117へ 供給する。ガスボンベ 119は、窒素ガスを保持する。
[0156] 図 20および図 21は、それぞれ、図 19に示す種結晶ホルダ 112、配管 114および 熱電対 115の第 1および第 2の拡大図である。図 20を参照して、種結晶ホルダ 112 は、筒状部材 1121と、固定部材 1122, 1123とを含む。筒状部材 1121は、略円形 の断面形状を有する。固定部材 1122は、略 L字形状の断面形状を有し、筒状部材 1 121の一方端 1121C則【こお!ヽて筒状咅材 1121の外周面 1121Aおよび底面 1121 Bに固定される。また、固定部材 1123は、略 L字形状の断面形状を有し、筒状部材 1 121の一方端 1121C側において固定部材 1122と対称に配置されるように筒状部材 1121の外周面 1121Aおよび底面 1121Bに固定される。その結果、筒状部材 1121 および固定部材 1122, 1123によって囲まれた領域には、空間部 1124が形成され る。
[0157] 配管 114は、略円形の断面形状を有し、筒状部材 1121の内部に配置される。この 場合、配管 114の底面 114Aは、筒状部材 1121の底面 1121Bに対向するように配 置される。そして、配管 114の底面 114Aには、複数の空孔 1141が形成される。配 管 114内へ供給された窒素ガスは、複数の空孔 1141を介して筒状部材 1121の底 面 1121Bに吹き付けられる。
[0158] 熱電対 115は、一方端 115Aが筒状部材 1121の底面 1121Bに接するように筒状 部材 1121の内部に配置される。
[0159] そして、種結晶 110は、空間部 1124に嵌合する形状を有し、空間部 1124に嵌合 することにより種結晶ホルダ 112によって支持される。この場合、種結晶 110は、筒状 部材 1121の底面 1121Bに接する(図 21参照)。
[0160] したがって、種結晶 110と筒状部材 1121との間の熱伝導率が高くなる。その結果、 熱電対 115によって種結晶 110の温度を検出できるとともに、配管 114から筒状部材 1121の底面 1121Bに吹き付けられた窒素ガスによって種結晶 110を容易に冷却で きる。
[0161] 図 22は、図 19に示す反応容器 102および融液保持容器 104の温度のタイミング チャートである。また、図 23は、図 19に示す種結晶 110の温度と窒素ガスの流量との 関係を示す図である。
[0162] なお、図 22において、直線 klは、反応容器 102および融液保持容器 104の温度 を示し、曲線 k2および直線 k3は、種結晶 110の温度を示す。
[0163] 図 22を参照して、ヒータ 106は、直線 klに従って温度が上昇し、かつ、 800°Cに保 持されるように反応容器 102および融液保持容器 104を加熱する。ヒータ 106が反応 容器 102および融液保持容器 104を加熱し始めると、反応容器 102および融液保持 容器 104の温度は、上昇し始め、タイミング tlで 800°Cに達する。
[0164] そうすると、融液保持容器 104内に保持された Gaおよび Naは溶け、融液 108にな る。
[0165] また、種結晶 110は、タイミング tl以降、ヒータ 180によって加熱され、種結晶 110 の温度は、タイミング t2で 810°Cに達する。そして、タイミング t2以降、ヒータ 180は、 停止され、種結晶 110の温度は、タイミング t3で 800°Cに低下する。
[0166] そして、反応容器 102および融液保持容器 104の温度上昇の過程にぉ 、て、反応 容器 102内の空間から融液保持容器 104内へ入った窒素ガスは、金属 Naを媒介と して融液 108中に取り込まれる。この場合、融液 108中の窒素濃度または Ga N (x, yは、実数)濃度は、融液保持容器 104内の空間と融液 108との気液界面付近にお V、て最も高!、ため、 GaN結晶が気液界面に接して 、る種結晶 110から成長し始める 。なお、この発明においては、 Ga Nを「III族窒化物」と称し、 Ga N濃度を「III族窒 化物濃度」と称する。
[0167] 窒素ガスを配管 114内へ供給しない場合、種結晶 110の温度 T1は、融液 108の 温度と同じ 800°Cである力 第 14の実施形態においては、種結晶 110付近の融液 1 08中の窒素および Zまたは ΠΙ族窒化物の過飽和度を上げるために、配管 114内へ 窒素ガスを供給して種結晶 110を冷却し、種結晶 110の温度 T1を融液 108の温度 よりも低く設定する。
[0168] より具体的には、種結晶 110の温度 T1は、タイミング t3以降、曲線 k2に従って 800 °Cよりも低い温度 Tslに設定される。この温度 Tslは、例えば、 790°Cである。種結晶 110の温度 T1を温度 Tslに設定する方法について説明する。
[0169] ヒータ 106の温度は、反応容器 102および融液保持容器 104の温度と所定の温度 差を有するため、反応容器 102および融液保持容器 104の温度が 800°Cに設定さ れたとき、ヒータ 106の温度は、 800+ a °Cになる。したがって、温度制御装置 116 は、ヒータ 106の近傍に設置された温度センサー(図示せず)力も受けた温度が 800 + a °Cに達すると、種結晶 110の温度 T1を温度 Tslに設定する流量力もなる窒素 ガスを流すための制御信号 CTL 1を生成して流量計 118へ出力する。
[0170] そうすると、流量計 118は、制御信号 CTL1に応じて、温度 T1を温度 Tslに設定す る流量力もなる窒素ガスをガスボンベ 119からガス供給管 117を介して配管 114内へ 流す。種結晶 110の温度 T1は、窒素ガスの流量に応じて 800°Cから低下し、窒素ガ スの流量が流量 frl (sccm)になると、種結晶 110の温度 T1は、温度 Tslに設定され る(図 23参照)。
[0171] したがって、流量計 118は、流量 frlからなる窒素ガスを配管 114内へ流す。そして
、配管 114内へ供給された窒素ガスは、配管 114の複数の空孔 1141から筒状部材
1121の底面 1121Bに吹き付けられる。
[0172] これによつて、種結晶 110は、筒状部材 1121の底面 1121Bを介して冷却され、種 結晶 110の温度 T1は、タイミング t4で温度 Tslに低下し、その後、タイミング t5まで 温度 Tslに保持される。
[0173] ヒータ 106の温度は、融液 108の温度と所定の温度差を有するため、温度制御装 置 116は、種結晶 110の温度 T1が 800°C力 低下し始めると、温度センサーから受 けたヒータ 106の温度が融液 108の温度を 800°Cに設定する温度になるようにヒータ
106を制御する。
[0174] なお、第 14の実施形態においては、好ましくは、種結晶 110の温度 T1は、タイミン グ t3以降、直線 k3に従って低下するように制御される。すなわち、種結晶 110の温 度 T1は、タイミング t3からタイミング t5までの間で 800°C力 温度 Ts2 (く Tsl)まで低 下される。この場合、流量計 118は、温度制御装置 116からの制御信号 CTL1に基 づ 、て、直線 k4に従って配管 114内へ流す窒素ガスの流量を 0から流量 fr2まで増 加する。窒素ガスの流量が流量 fr2になると、種結晶 110の温度 T1は、温度 Tslより も低い温度 Ts2に設定される。そして、温度 Ts2は、たとえば、 750°Cである。
[0175] このように、融液 108の温度( = 800°C)と種結晶 110の温度 T1との差を徐々に大 きくするのは、次の 2つの理由による。
[0176] 1つ目の理由は、 GaN結晶の結晶成長の進行とともに、種結晶 110には、 GaN結 晶が付着するので、種結晶 110の温度を徐々に低下させないと、種結晶 110から結 晶成長した GaN結晶の温度を融液 108の温度よりも低い温度に設定し難くなるから である。
[0177] 2つ目の理由は、 GaN結晶の結晶成長の進行とともに、融液 108中の Gaが消費さ れ、 γ =NaZ (Na + Ga)が大きくなり、融液 108中の窒素濃度または III族窒化物濃 度が過飽和よりも低くなる、または窒素濃度または III族窒化物濃度の過飽和度が小 さくなり過ぎるので、種結晶 110の温度を徐々に低下させないと、融液 108中の窒素 濃度または ΠΙ族窒化物濃度を GaN結晶の結晶成長に適切な過飽和度に保持し難 くなるからである。
[0178] したがって、 GaN結晶の結晶成長の進行とともに、種結晶 110の温度を徐々に低 下させることによって、種結晶 110付近の融液 108中の窒素または III族窒化物の過 飽和度を少なくとも保持することができ、 GaN結晶の結晶成長を継続することが可能 となる。その結果、 GaN結晶のサイズを拡大できる。
[0179] 次に、図 19に示す製造装置 400Aによる GaN結晶の製造方法について説明する
(1)ガス供給管 122をバルブ 124の前方で切り離し、反応容器 102をアルゴン (Ar) 雰囲気のグローブボックス内に入れる。
(2)反応容器 102から融液保持容器 104を取り出し、融液保持容器 104内に、原料 の Gaとフラックスの Naとを含む融液 108を入れる。ここでは、一例として融液 108中 の Naの比率は NaZ(Na + Ga) = 0. 4とした。
(3)融液保持容器 104を反応容器 102内の所定位置に収容する。
(4)種結晶 110として、 c軸の長さが約 5mmの柱状の GaN結晶を種結晶ホルダ 112 に取りつける。 (5)反応容器 102のふたを閉じる。
(6)バルブ 124を閉状態とし、反応容器 102内部を外部と遮断する。
(7)反応容器 102をグローブボックスから出し、バルブ 124の前方でガス供給管 122 を接続する。
(8)バルブ 124を開状態とし、反応容器 102内に窒素ガスを供給する。このとき、圧 力調整器 128で窒素ガスの圧力を 2.5MPaとする。この圧力は、融液 108が結晶成 長温度に達したときに、反応容器 102内の圧力が 5MPaとなる圧力である。なお、こ こでは、 800°Cを結晶成長温度とする。
(9)バルブ 124を閉状態とする。これにより、反応容器 124は密閉状態となる。
(10)ヒータ 106に通電し、融液 108の温度を室温(27°C)から結晶成長温度(800°C )まで約 1時間かけて昇温する。昇温に伴って密閉された反応容器 102内の圧力は 上昇し、結晶成長温度(800°C)に達した時の反応容器 102内の全圧は 5MPaとなる 。その後、圧力調整器 128の圧力を 5MPaに設定し、バルブ 124を開状態とする。
(11)ヒータ 180に通電し、種結晶 110を融液 108の温度を超える 810°Cに加熱する
(12)種結晶ホルダ 112を操作して種結晶 110を下降させ、種結晶 110を融液 108 に接触ないし浸漬させる。
(13)この状態で約 20時間保持する。ここでは、種結晶 110の温度が融液 108の温 度よりも高ぐ種結晶 110の環境は結晶成長の条件力も外れた状態であるため結晶 成長はほとんど起こらない。そして、一例として図 2に示されるように、時間とともに融 液 108中の窒素濃度が増加する。約 20時間が経過すると、融液 108中の窒素濃度 が結晶成長に適した濃度に達する。なお、ここでの保持時間は融液 108中の窒素濃 度が結晶成長に適した濃度となるのに要する時間として予め実験により計測された 値である。
(14)その後、ヒータ 180の通電を停止し、ガスボンベ 119から流量計 118およびガス 供給管 117を介して配管 114に窒素ガスを所定の流量 (fr 1)だけ流し、種結晶 110 の温度を 800°Cよりも低い温度 Tslに設定する。そして、種結晶 110の温度が融液 1 08の温度よりも低 、温度 Tslに設定されると、種結晶 110近傍の過飽和度が増加し て、種結晶 110の環境は結晶成長の条件に適した状態となるため、種結晶 110から GaN結晶の結晶成長が開始される。
(15)約 300時間保持する。
(16)約 300時間が経過後、種結晶ホルダ 112を操作して結晶成長した種結晶 110 を融液 108から引き上げる。
(17)ヒータ 106の通電を停止する。
[0180] 上述した製造方法によって大きなサイズの GaNが製造される。
[0181] 図 24は、第 14の実施形態による製造装置の構成を示す他の概略図である。また 図 25から図 30は、第 14の実施形態による製造装置の構成を示すさらに他の概略図 である。
[0182] 第 14の実施形態による製造装置は、図 24から図 30にそれぞれ示す製造装置 400 B, 400C, 400D, 400E, 400F, 400G, 400Hであってもよい。
[0183] 図 24に示す製造装置 400Bは、図 3に示す製造装置 100Bに配管 114、熱電対 11 5、温度制御装置 116、ガス供給管 117、流量計 118およびガスボンベ 119を追カロし たものであり、その他は、製造装置 100Bと同じである。
[0184] また、図 25に示す製造装置 400Cは、図 5に示す製造装置 200Aに配管 114、熱 電対 115、温度制御装置 116、ガス供給管 117、流量計 118およびガスボンベ 119 を追加したものであり、その他は、製造装置 200Aと同じである。
[0185] さらに、図 26に示す製造装置 400Dは、図 8に示す製造装置 200Cに配管 114、 熱電対 115、温度制御装置 116、ガス供給管 117、流量計 118およびガスボンベ 11 9を追加したものであり、その他は、製造装置 200Cと同じである。
[0186] さらに、図 27に示す製造装置 400Eは、図 10に示す製造装置 300Aに配管 114、 熱電対 115、温度制御装置 116、ガス供給管 117、流量計 118およびガスボンベ 11 9を追加したものであり、その他は、製造装置 300Aと同じである。
[0187] さらに、図 28に示す製造装置 400Fは、図 13に示す製造装置 300Bに配管 114、 熱電対 115、温度制御装置 116、ガス供給管 117、流量計 118およびガスボンベ 11 9を追加したものであり、その他は、製造装置 300Bと同じである。
[0188] さらに、図 29に示す製造装置 400Gは、図 15に示す製造装置 300Cに配管 114、 熱電対 115、温度制御装置 116、ガス供給管 117、流量計 118およびガスボンベ 11 9を追加したものであり、その他は、製造装置 300Cと同じである。
[0189] さらに、図 30に示す製造装置 400Hは、図 17に示す製造装置 300Dに配管 114、 熱電対 115、温度制御装置 116、ガス供給管 117、流量計 118およびガスボンベ 11 9を追加したものであり、その他は、製造装置 300Dと同じである。
[0190] そして、製造装置 400B, 400C, 400D, 400E, 400F, 400G, 400H【こお!ヽて、 配管 114、熱電対 115、温度制御装置 116、ガス供給管 117、流量計 118およびガ スボンべ 119の各々は、製造装置 400Aにおいて説明した機能と同じ機能を果たす
[0191] これ【こよって、製造装置 400B, 400C, 400D, 400E, 400F, 400G, 400H【こお いて、種結晶 110を融液 108, 208, 308の温度よりも低く設定して種結晶 110から GaN結晶を製造できる。
[第 15の実施形態]
図 31は、 GaN結晶を成長させる場合の窒素ガス圧と結晶成長温度との関係を示 す図である。図 31において、横軸は、結晶成長温度 (絶対温度の逆数も併せて示す )を表し、縦軸は、窒素ガス圧を表す。
[0192] 図 31を参照して、領域 REG1は、 GaN結晶が溶解する領域であり、領域 REG2は 、Gaと Naと窒素とを含む融液を保持する保持容器と融液との界面における核発生を 抑制して種結晶 110から GaN結晶が結晶成長する領域であり、領域 REG3は、 Gaと Naと窒素とを含む融液を保持する保持容器と融液との界面において、自発核が発 生する領域である。
[0193] 上述した第 1の実施形態から第 14の実施形態においては、種結晶 110の温度を G aN結晶の結晶成長に適しない温度に設定し、その後、種結晶 110の温度を GaN結 晶の結晶成長に適した温度に設定することによって、種結晶 110から GaN結晶を結 晶成長させた。
[0194] すなわち、図 31において、融液保持容器 104内の窒素ガス圧を一定に保持したま ま、種結晶 110の温度を領域 REG1に含まれる温度( =融液 108の温度よりも高 ヽ 温度)に設定し、その後、種結晶 110の温度を領域 REG2に含まれる温度(=融液 1 08の温度以下の温度)に設定することによって、種結晶 110から GaN結晶を結晶成 長させた。
[0195] この第 15の実施形態においては、融液保持容器 104および融液 108の温度を一 定に保持したまま、融液 108に接する空間の窒素ガス圧を領域 REG1に含まれる圧 力に設定し、その後、融液 108に接する空間の窒素ガス圧を領域 REG2に含まれる 圧力に設定して種結晶 110から GaN結晶を結晶成長させる。
[0196] すなわち、第 15の実施形態においては、融液 108に接する空間の窒素ガス圧を G aN結晶の結晶成長に適しない圧力に設定し、その後、融液 108に接する空間の窒 素ガス圧を GaN結晶の結晶成長に適した圧力に設定することによって、種結晶 110 から GaN結晶を結晶成長させる。
[0197] 第 15の実施形態においては、例えば、図 1に示す製造装置 100Aを用いて種結晶 110から GaN結晶を結晶成長させる。この場合、圧力調整器 128によって、融液 10 8に接する空間の窒素ガス圧を GaN結晶の結晶成長に適しない圧力と、 GaN結晶 の結晶成長に適した圧力とに設定する。
[0198] このように、融液 108に接する空間の窒素ガス圧を GaN結晶の結晶成長に適しな い圧力に設定し、その後、融液 108に接する空間の窒素ガス圧を GaN結晶の結晶 成長に適した圧力に設定することによつても、種結晶 110から GaN結晶を結晶成長 させることがでさる。
[0199] なお、第 15の実施形態においては、上述した製造装置 100B, 200A, 200B, 20 OC, 300A, 300B, 300C, 300D, 400A, 400B, 400C, 400D, 400E, 400F, 400G, 400Hの!ヽずれ力にお!/ヽて、融液 208, 308に接する空 の蜜素ガス圧を G aN結晶の結晶成長に適しな!/、圧力と、 GaN結晶の結晶成長に適した圧力とに設定 して種結晶 110から GaN結晶を結晶成長させるようにしてもょ 、。
[0200] そして、この発明は、一般的には、図 31において、種結晶 110の環境 (温度および Zまたは圧力)を領域 REG1 (= GaN結晶の結晶成長に適しない環境)に設定し、そ の後、種結晶 108の環境を領域 REG2 ( = GaN結晶の結晶成長に適した環境)に設 定することによって、種結晶 110から GaN結晶を結晶成長させるものであればよい。
[0201] このように、種結晶 110の環境を GaN結晶の結晶成長に適しない環境に設定し、 その後、種結晶 108の環境を GaN結晶の結晶成長に適した環境に設定することによ つて、種結晶 110から GaN結晶を結晶成長させる場合において、領域 REG2におけ る種結晶 110の温度は、融液 108, 208, 308の温度以下でなくてもよぐ融液 108, 208, 308の温度よりも高くてもよ!/、。たとえば、、融液 108, 208, 308の温度力 800 °Cである場合、種結晶 110の温度を 820°Cに設定しても、領域 REG2において、種 結晶 110から GaN結晶を結晶成長させることができる。
[0202] なお、この発明においては、融液 108, 208, 308中の窒素濃度を図 31に示す領 域 REG1と領域 REG2との境界における窒素濃度よりも低い領域に移動させて種結 晶 110の環境を GaN結晶の結晶成長に適しない環境に設定し、融液 108, 208, 3 08中の窒素濃度を図 31に示す領域 REG1と領域 REG2との境界における窒素濃 度よりも高い領域に移動させて種結晶 110の環境を GaN結晶の結晶成長に適した 環境に設定する。
[0203] 上記各実施形態では、 III族窒化物結晶の製造装置として、 GaN結晶の製造装置 の場合について説明したが、これに限らず、 Ga以外の III族金属の窒化物結晶であ つても良い。
[0204] 以上、本発明を好ましい実施形態について説明したが、本発明は力かる特定の実 施形態に限定されるものではなく、特許請求の範囲に記載した要旨内にお 、て様々 な変形 '変更が可能である。
[0205] また、フラックスとして、 Na以外のアルカリ金属を用いても良!、。
[0206] 以上、本発明を好ましい実施形態について説明したが、本発明は力かる特定の実 施形態に限定されるものではなく、特許請求の範囲に記載した要旨内にお 、て様々 な変形 '変更が可能である。
[0207] 本発明は優先権主張の基礎となる 2005年 3月 14日出願の特願 2005— 070833
,同じく 2005年 3月 14曰出願の特願 2005— 70859,同じく 2005年 3月 14曰出願 の特願 2005— 70889、および 2006年 3月 10日出願の特願 2006— 66574の全内 容を含むものである。
産業上の利用可能性
[0208] 本発明の III族窒化物結晶の製造方法によれば、種結晶を融液中に保持した状態 で種結晶成長を行う場合に、低品質結晶の成長を抑制し、大きな III族窒化物の高 品質結晶を短時間で製造することができる。
[0209] また本発明の III族窒化物結晶の製造方法によれば、従来よりも短時間で、大きな II I族窒化物の結晶を結晶成長させることができ、従来よりも短時間で、大きな ΠΙ族窒 化物の結晶を結晶成長させることができる。
[0210] また本発明によれば、種結晶を高品質に、従来よりも短時間で大きく結晶成長させ ることがでさる。

Claims

請求の範囲
[l] m属金属とアルカリ金属と窒素とを含む融液が保持された保持容器内で種結晶上 に結晶成長をさせる m属窒化物結晶の製造方法であって、
前記種結晶を前記融液に接触させる工程と、
前記融液に接触した状態で前記種結晶の環境を結晶成長の条件から外れた第 1 の状態に設定する工程と、
前記融液中の窒素濃度を増加させる工程と、
前記融液の窒素濃度が、前記種結晶を結晶成長させるのに適した濃度に達すると 、前記種結晶の環境を結晶成長の条件に適した第 2の状態に設定する工程と、 を含む m族窒化物結晶の製造方法。
[2] 前記第 1の状態とする工程では、前記種結晶の温度を前記融液の温度よりも高く設 定し、前記第 2の状態とする工程では、前記種結晶の温度を前記融液の温度以下に 設定することを特徴とする請求項 1記載の m属窒化物結晶の製造方法。
[3] 前記第 1の状態に設定する工程は、前記種結晶を前記融液中の窒素濃度が低い 領域に移動させる工程を含み、前記第 2の状態とする工程では、前記種結晶を前記 融液中の窒素濃度が高い領域に移動させる工程を含む請求項 1記載の m属窒化物 結晶の製造方法。
[4] 前記融液の窒素濃度は、前記融液と気液界面で接する雰囲気中の窒素圧力と前 記融液の温度とで制御されることを特徴とする請求項 1記載の m属窒化物結晶の製 造方法。
[5] m属金属とアルカリ金属と窒素とを含む融液が保持された保持容器内で in属窒化 物結晶を製造する方法であって、
前記保持容器の温度を前記融液の温度以上に保持する工程を含む m族窒化物 結晶の製造方法。
[6] 前記保持容器内において前記融液に種結晶が接触され、前記保持容器の温度を 保持する工程では、更に前記種結晶の温度が前記融液の温度以下に保持される請 求項 5記載の m族窒化物結晶の製造方法。
[7] 前記保持容器の温度を保持する工程は、前記保持容器を直接加熱する工程を含 む請求項 5記載の ΠΙ族窒化物結晶の製造方法。
[8] 前記保持容器の温度を保持する工程は、前記保持容器を該保持容器よりも大きな 補助容器内に収容し、前記保持容器と前記補助容器との間に液体を入れ、前記補 助容器を加熱する工程を含む請求項 5記載の III族窒化物結晶の製造方法。
[9] 前記液体は、前記 III属金属よりなることを特徴とする請求項 8記載の III族窒化物結 晶の製造方法。
[10] 前記液体は、前記アルカリ金属よりなることを特徴とする請求項 8記載の III族窒化 物結晶の製造方法。
[11] III属金属とアルカリ金属と窒素とを含む融液が保持される保持容器と、
前記保持容器を直接加熱する加熱部と、
前記融液に窒素を供給する供給機構と、
前記保持容器内の前記融液に種結晶を接触させる浸漬機構と、
を備えた ΠΙ族窒化物結晶の製造装置。
[12] 前記加熱部は、円筒状の形状を有し、その中に前記保持容器が収容されることを 特徴とする請求項 11に記載の ΠΙ族窒化物結晶の製造装置。
[13] III属金属とアルカリ金属と窒素とを含む融液が保持される保持容器と、
前記保持容器がその中に収容される補助容器と、
前記補助容器を加熱する加熱部と、
前記融液に窒素を供給する供給機構と、
を備えた ΠΙ族窒化物結晶の製造装置。
[14] 前記保持容器内の前記融液に種結晶を接触させる浸漬機構を更に備えることを特 徴とする請求項 13に記載の III族窒化物結晶の製造装置。
[15] 前記保持容器は、前記補助容器よりも熱伝導率が低いことを特徴とする請求項 13 記載の ΠΙ族窒化物結晶の製造装置。
[16] 前記補助容器と前記保持容器との間は、 II環金属で満たされていることを特徴と する請求項 13記載の ΠΙ族窒化物結晶の製造装置。
[17] 前記補助容器と前記保持容器との間は、アルカリ金属で満たされていることを特徴 とする請求項 13記載の III族窒化物結晶の製造装置。 [is] m属金属とアルカリ金属と窒素とを含む融液が保持された保持容器内で in属窒化 物結晶を製造する方法であって、
前記融液中の窒素濃度が安定化すると、種結晶を前記融液に接触させる工程と、 前記種結晶を成長させる工程と、
を含む m族窒化物結晶の製造方法。
[19] 前記融液中の窒素濃度は、該窒素濃度を核が発生する濃度まで増加させて、核を 発生させることにより安定化される請求項 18記載の in族窒化物結晶の製造方法。
[20] 前記種結晶を融液に接触させる工程に先立って、前記核が成長した微結晶を前記 融液から除去する工程を更に含む請求項 19記載の ΠΙ族窒化物結晶の製造方法。
[21] 前記除去する工程は、前記融液で満たされた固定補助容器内に、前記保持容器 を沈める工程と、前記融液中の窒素濃度が安定化されると、前記保持容器を前記固 定補助容器カゝら引き上げる工程と、を含み、前記種結晶を融液に接触させる工程で は、前記引き上げられた前記保持容器中の前記融液に前記種結晶を接触させる請 求項 20記載の m族窒化物結晶の製造方法。
[22] 前記除去する工程は、前記融液で満たされた可動補助容器を前記保持容器内に 挿入する工程と、前記融液中の窒素濃度が安定化されると、前記可動補助容器内の 前記融液を前記保持容器に移し、前記可動補助容器を前記保持容器から取り出す 工程と、を含み、前記種結晶を融液に接触させる工程では、前記可動補助容器が取 り出された前記保持容器内の前記融液に前記種結晶を接触させることを特徴とする 請求項 20記載の m族窒化物結晶の製造方法。
[23] 前記除去する工程は、前記保持容器の内壁に析出した微結晶を機械的に除去す る工程を含み、前記種結晶を融液に接触させる工程は、前記微結晶が除去された前 記保持容器内の前記融液に前記種結晶を接触させる工程を含むことを特徴とする請 求項 20記載の m族窒化物結晶の製造方法。
[24] 前記種結晶を融液に接触させる工程に先立って、前記保持容器の内壁に近接して 前記核が成長した微結晶の結晶成長を阻止する成長阻止部材を配置する工程を更 に含む請求項 19記載の m族窒化物結晶の製造方法。
[25] III属金属とアルカリ金属と窒素とを含む融液が保持される保持容器と、 前記保持容器を加熱する加熱部と、
前記融液に窒素を供給する供給機構と、
前記保持容器内の前記融液に種結晶を接触させる浸漬機構と、
前記保持容器の内壁に近接して配置され、前記保持容器の内壁に析出した微結 晶の結晶成長を阻止する成長阻止部材と、
を備えた ΠΙ族窒化物結晶の製造装置。
[26] III属金属とアルカリ金属と窒素とを含む融液が保持される固定補助容器と、
前記固定補助容器内に収容され、前記固定補助容器内の前記融液中にその全体 が浸潰される保持容器と、
前記固定補助容器を加熱する加熱部と、
前記融液に窒素を供給する供給機構と、
前記保持容器を前記固定補助容器内から引き上げ、前記保持容器内の前記融液 に種結晶を接触させる浸漬機構と、
を備えた ΠΙ族窒化物結晶の製造装置。
[27] III属金属とアルカリ金属と窒素とを含む融液が保持される可動補助容器と、
前記可動補助容器がその中に収容される保持容器と、
前記保持容器を加熱する加熱部と、
前記融液に窒素を供給する供給機構と、
前記可動補助容器を前記保持容器から取り出すとともに、前記可動補助容器内の 前記融液を前記保持容器に移す取出手段と、
前記保持容器内に移された前記融液に種結晶を接触させる浸漬機構と、 を備えた ΠΙ族窒化物結晶の製造装置。
[28] III属金属とアルカリ金属と窒素とを含む融液が保持される保持容器と、
前記保持容器を加熱する加熱部と、
前記融液に窒素を供給する供給機構と、
前記保持容器内の前記融液に種結晶を接触させる浸漬機構と、
前記保持容器の内壁に析出した微結晶を機械的に除去する除去手段と、 を備えた ΠΙ族窒化物結晶の製造装置。
PCT/JP2006/304934 2005-03-14 2006-03-13 Iii族窒化物結晶の製造方法及び製造装置 WO2006098288A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06728999.1A EP1860213B8 (en) 2005-03-14 2006-03-13 Method for producing group iii nitride crystal
CN2006800002301A CN1954101B (zh) 2005-03-14 2006-03-13 Ⅲ族氮化物结晶的制造方法以及制造装置
US11/596,250 US8337617B2 (en) 2005-03-14 2006-03-13 Manufacturing method and manufacturing apparatus of a group III nitride crystal
US13/679,499 US9376763B2 (en) 2005-03-14 2012-11-16 Manufacturing method and manufacturing apparatus of a group III nitride crystal, utilizing a melt containing a group III metal, an alkali metal, and nitrogen

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005-070833 2005-03-14
JP2005070833 2005-03-14
JP2005-070889 2005-03-14
JP2005-070859 2005-03-14
JP2005070889 2005-03-14
JP2005070859 2005-03-14
JP2006066574A JP4603498B2 (ja) 2005-03-14 2006-03-10 Iii族窒化物結晶の製造方法及び製造装置
JP2006-066574 2006-03-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/596,250 A-371-Of-International US8337617B2 (en) 2005-03-14 2006-03-13 Manufacturing method and manufacturing apparatus of a group III nitride crystal
US13/679,499 Division US9376763B2 (en) 2005-03-14 2012-11-16 Manufacturing method and manufacturing apparatus of a group III nitride crystal, utilizing a melt containing a group III metal, an alkali metal, and nitrogen

Publications (1)

Publication Number Publication Date
WO2006098288A1 true WO2006098288A1 (ja) 2006-09-21

Family

ID=36991631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304934 WO2006098288A1 (ja) 2005-03-14 2006-03-13 Iii族窒化物結晶の製造方法及び製造装置

Country Status (6)

Country Link
US (2) US8337617B2 (ja)
EP (1) EP1860213B8 (ja)
JP (1) JP4603498B2 (ja)
CN (1) CN1954101B (ja)
TW (1) TW200710293A (ja)
WO (1) WO2006098288A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094672A (ja) * 2006-10-13 2008-04-24 Ricoh Co Ltd 結晶製造装置
JP2009161398A (ja) * 2008-01-07 2009-07-23 Ngk Insulators Ltd 窒化物単結晶の製造方法
JP7363412B2 (ja) 2019-11-26 2023-10-18 株式会社レゾナック 単結晶製造装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775356A3 (en) 2005-10-14 2009-12-16 Ricoh Company, Ltd. Crystal growth apparatus and manufacturing method of group III nitride crystal
CN101370971A (zh) * 2006-02-13 2009-02-18 日本碍子株式会社 从助熔剂中回收钠金属的方法
JP4968707B2 (ja) * 2006-03-06 2012-07-04 日本碍子株式会社 Iii族窒化物単結晶の育成方法
US7718002B2 (en) * 2007-03-07 2010-05-18 Ricoh Company, Ltd. Crystal manufacturing apparatus
JP4880500B2 (ja) * 2007-03-08 2012-02-22 株式会社リコー 結晶製造装置
JP4880499B2 (ja) * 2007-03-08 2012-02-22 株式会社リコー 結晶製造装置
JP5310534B2 (ja) 2009-12-25 2013-10-09 豊田合成株式会社 Iii族窒化物半導体の製造方法
JP2012012259A (ja) 2010-07-01 2012-01-19 Ricoh Co Ltd 窒化物結晶およびその製造方法
JP5729182B2 (ja) 2010-08-31 2015-06-03 株式会社リコー n型III族窒化物単結晶の製造方法、n型III族窒化物単結晶および結晶基板
EP2732462A4 (en) * 2011-07-13 2015-04-01 Univ California BREEDING GROUP III NITRIDE VOLUME CRYSTALS
JP5953684B2 (ja) 2011-09-14 2016-07-20 株式会社リコー 13族窒化物結晶の製造方法
JP5953683B2 (ja) 2011-09-14 2016-07-20 株式会社リコー 13族窒化物結晶、及び13族窒化物結晶基板
JP5842490B2 (ja) 2011-09-14 2016-01-13 株式会社リコー 13族窒化物結晶、及び13族窒化物結晶基板
JP6098028B2 (ja) 2011-09-14 2017-03-22 株式会社リコー 窒化ガリウム結晶、13族窒化物結晶、13族窒化物結晶基板および製造方法
US9834859B2 (en) 2012-01-11 2017-12-05 Osaka University Method for producing group III nitride crystal, group III nitride crystal, and semiconductor device
CN103243389B (zh) * 2012-02-08 2016-06-08 丰田合成株式会社 制造第III族氮化物半导体单晶的方法及制造GaN衬底的方法
JP5999443B2 (ja) 2013-06-07 2016-09-28 豊田合成株式会社 III 族窒化物半導体結晶の製造方法およびGaN基板の製造方法
JP6015566B2 (ja) 2013-06-11 2016-10-26 豊田合成株式会社 III 族窒化物半導体のエッチング方法およびIII 族窒化物半導体結晶の製造方法およびGaN基板の製造方法
CN105256372B (zh) * 2015-11-27 2018-09-07 北京大学东莞光电研究院 一种GaN单晶装置
CN109680334A (zh) * 2019-03-07 2019-04-26 中国电子科技集团公司第四十六研究所 一种钠助熔剂法氮化镓单晶的生长装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286098A (ja) * 2002-03-28 2003-10-07 Ricoh Co Ltd Iii族窒化物結晶成長方法およびiii族窒化物結晶成長装置
JP2004168650A (ja) * 2002-11-08 2004-06-17 Ricoh Co Ltd Iii族窒化物結晶およびiii族窒化物の結晶成長方法および結晶成長装置および半導体デバイスおよびシステム
JP2004189549A (ja) * 2002-12-12 2004-07-08 Sumitomo Metal Mining Co Ltd 窒化アルミニウム単結晶の製造方法
JP2004224600A (ja) * 2003-01-20 2004-08-12 Matsushita Electric Ind Co Ltd Iii族窒化物基板の製造方法および半導体装置
JP2004244307A (ja) * 2003-01-20 2004-09-02 Matsushita Electric Ind Co Ltd Iii族窒化物基板の製造方法および半導体装置
JP2004533391A (ja) * 2001-06-06 2004-11-04 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン ガリウム含有窒化物の単結晶の製造法及び装置
JP2006008416A (ja) * 2003-05-29 2006-01-12 Matsushita Electric Ind Co Ltd Iii族窒化物基板として使用可能なiii族窒化物結晶およびその製造方法並びにそれを用いた半導体素子

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954874A (en) * 1996-10-17 1999-09-21 Hunter; Charles Eric Growth of bulk single crystals of aluminum nitride from a melt
US6270569B1 (en) * 1997-06-11 2001-08-07 Hitachi Cable Ltd. Method of fabricating nitride crystal, mixture, liquid phase growth method, nitride crystal, nitride crystal powders, and vapor phase growth method
US6562124B1 (en) * 1999-06-02 2003-05-13 Technologies And Devices International, Inc. Method of manufacturing GaN ingots
JP4056664B2 (ja) 1999-10-18 2008-03-05 株式会社リコー Iii族窒化物結晶の製造方法
JP4011828B2 (ja) 1999-06-09 2007-11-21 株式会社リコー Iii族窒化物結晶の結晶成長方法及びiii族窒化物結晶の製造方法
JP3929657B2 (ja) 1999-09-29 2007-06-13 株式会社リコー 結晶成長方法およびiii族窒化物結晶の製造方法
JP4094780B2 (ja) 1999-08-24 2008-06-04 株式会社リコー 結晶成長方法および結晶成長装置並びにiii族窒化物結晶の製造方法および結晶製造装置
US6592663B1 (en) * 1999-06-09 2003-07-15 Ricoh Company Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed on a GaN bulk crystal substrate
JP3868156B2 (ja) 1999-08-24 2007-01-17 株式会社リコー 結晶成長方法および結晶成長装置およびiii族窒化物結晶
JP2002068896A (ja) 2000-08-30 2002-03-08 Kobe Steel Ltd 窒化物単結晶製造方法及び製造装置
JP3966682B2 (ja) 2000-10-19 2007-08-29 株式会社リコー 結晶成長方法、結晶成長装置、結晶製造装置および結晶の製造方法
JP4055110B2 (ja) 2000-10-24 2008-03-05 株式会社リコー Iii族窒化物結晶の製造方法
JP2003160398A (ja) 2001-11-21 2003-06-03 Ricoh Co Ltd Iii族窒化物結晶成長方法およびiii族窒化物結晶成長装置
JP4551026B2 (ja) 2001-05-17 2010-09-22 株式会社リコー Iii族窒化物結晶成長装置およびiii族窒化物結晶成長方法
JP4381638B2 (ja) 2001-11-26 2009-12-09 株式会社リコー Iii族窒化物結晶の結晶製造方法
JP4245822B2 (ja) 2001-05-01 2009-04-02 株式会社リコー Iii族窒化物結晶の製造方法
US7001457B2 (en) * 2001-05-01 2006-02-21 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group-III nitride semiconductor device
JP4640899B2 (ja) 2001-06-28 2011-03-02 株式会社リコー Iii族窒化物結晶成長装置
JP4048476B2 (ja) 2001-05-22 2008-02-20 株式会社リコー 観察機能付iii族窒化物結晶製造装置および窒化物結晶製造方法
JP2003238296A (ja) 2001-12-05 2003-08-27 Ricoh Co Ltd Iii族窒化物結晶成長方法およびiii族窒化物結晶成長装置
JP2003313099A (ja) 2002-04-22 2003-11-06 Ricoh Co Ltd Iii族窒化物結晶成長装置
JP4278330B2 (ja) 2002-01-10 2009-06-10 株式会社リコー Iii族窒化物結晶製造方法およびiii族窒化物結晶製造装置
US7097707B2 (en) * 2001-12-31 2006-08-29 Cree, Inc. GaN boule grown from liquid melt using GaN seed wafers
JP4014411B2 (ja) 2002-01-18 2007-11-28 株式会社リコー Iii族窒化物の結晶製造方法
JP4801315B2 (ja) 2002-01-29 2011-10-26 株式会社リコー Iii族窒化物結晶の製造方法
JP4077643B2 (ja) 2002-03-28 2008-04-16 株式会社リコー Iii族窒化物結晶成長装置およびiii族窒化物結晶成長方法
JP4094878B2 (ja) 2002-04-04 2008-06-04 株式会社リコー Iii族窒化物結晶製造方法およびiii族窒化物結晶製造装置
JP4053336B2 (ja) 2002-04-08 2008-02-27 株式会社リコー Iii族窒化物結晶製造方法およびiii族窒化物結晶製造装置
JP4056785B2 (ja) 2002-04-22 2008-03-05 株式会社リコー Iii族窒化物結晶の製造方法およびiii族窒化物結晶の製造装置
JP4271408B2 (ja) 2002-04-22 2009-06-03 株式会社リコー Iii族窒化物結晶製造方法
US7220311B2 (en) * 2002-11-08 2007-05-22 Ricoh Company, Ltd. Group III nitride crystal, crystal growth process and crystal growth apparatus of group III nitride
JP4508613B2 (ja) 2002-11-26 2010-07-21 株式会社リコー Iii族窒化物の結晶製造方法
US7221037B2 (en) * 2003-01-20 2007-05-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing group III nitride substrate and semiconductor device
US7524691B2 (en) 2003-01-20 2009-04-28 Panasonic Corporation Method of manufacturing group III nitride substrate
JP4248276B2 (ja) 2003-03-17 2009-04-02 株式会社リコー Iii族窒化物の結晶製造方法
JP4216612B2 (ja) 2003-01-29 2009-01-28 株式会社リコー Iii族窒化物結晶の製造方法
JP4414241B2 (ja) 2003-03-25 2010-02-10 株式会社リコー Iii族窒化物の結晶製造方法
US7309534B2 (en) * 2003-05-29 2007-12-18 Matsushita Electric Industrial Co., Ltd. Group III nitride crystals usable as group III nitride substrate, method of manufacturing the same, and semiconductor device including the same
WO2005095682A1 (ja) 2004-03-31 2005-10-13 Ngk Insulators, Ltd. 窒化ガリウム単結晶の育成方法および窒化ガリウム単結晶
WO2006095536A1 (ja) 2005-03-04 2006-09-14 Ngk Insulators, Ltd. 単結晶を育成する方法および単結晶育成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533391A (ja) * 2001-06-06 2004-11-04 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン ガリウム含有窒化物の単結晶の製造法及び装置
JP2003286098A (ja) * 2002-03-28 2003-10-07 Ricoh Co Ltd Iii族窒化物結晶成長方法およびiii族窒化物結晶成長装置
JP2004168650A (ja) * 2002-11-08 2004-06-17 Ricoh Co Ltd Iii族窒化物結晶およびiii族窒化物の結晶成長方法および結晶成長装置および半導体デバイスおよびシステム
JP2004189549A (ja) * 2002-12-12 2004-07-08 Sumitomo Metal Mining Co Ltd 窒化アルミニウム単結晶の製造方法
JP2004224600A (ja) * 2003-01-20 2004-08-12 Matsushita Electric Ind Co Ltd Iii族窒化物基板の製造方法および半導体装置
JP2004244307A (ja) * 2003-01-20 2004-09-02 Matsushita Electric Ind Co Ltd Iii族窒化物基板の製造方法および半導体装置
JP2006008416A (ja) * 2003-05-29 2006-01-12 Matsushita Electric Ind Co Ltd Iii族窒化物基板として使用可能なiii族窒化物結晶およびその製造方法並びにそれを用いた半導体素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1860213A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094672A (ja) * 2006-10-13 2008-04-24 Ricoh Co Ltd 結晶製造装置
JP2009161398A (ja) * 2008-01-07 2009-07-23 Ngk Insulators Ltd 窒化物単結晶の製造方法
JP7363412B2 (ja) 2019-11-26 2023-10-18 株式会社レゾナック 単結晶製造装置

Also Published As

Publication number Publication date
TWI351452B (ja) 2011-11-01
JP4603498B2 (ja) 2010-12-22
TW200710293A (en) 2007-03-16
EP1860213B8 (en) 2014-08-27
CN1954101B (zh) 2010-05-19
JP2006290730A (ja) 2006-10-26
US20080264331A1 (en) 2008-10-30
EP1860213B1 (en) 2014-04-30
CN1954101A (zh) 2007-04-25
US20130074762A1 (en) 2013-03-28
EP1860213A1 (en) 2007-11-28
US9376763B2 (en) 2016-06-28
US8337617B2 (en) 2012-12-25
EP1860213A4 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
WO2006098288A1 (ja) Iii族窒化物結晶の製造方法及び製造装置
JP5338672B2 (ja) Iii族元素窒化物の単結晶の製造方法および製造装置
EP2071062B1 (en) Process for producing group iii element nitride crystal
JP2001064098A (ja) 結晶成長方法および結晶成長装置およびiii族窒化物結晶
JP5651481B2 (ja) 3b族窒化物結晶
KR100892329B1 (ko) Iii족 질화물 결정의 제조 방법 및 제조 장치
JP4513749B2 (ja) 単結晶の製造方法
JP4077643B2 (ja) Iii族窒化物結晶成長装置およびiii族窒化物結晶成長方法
JP4631071B2 (ja) 窒化ガリウム結晶の結晶成長装置および窒化ガリウム結晶の製造方法
JP4248276B2 (ja) Iii族窒化物の結晶製造方法
JP5205630B2 (ja) 結晶製造方法および結晶製造装置
JP2003286098A (ja) Iii族窒化物結晶成長方法およびiii族窒化物結晶成長装置
JP4426251B2 (ja) Iii族窒化物の結晶製造方法
JP4426238B2 (ja) Iii族窒化物の結晶製造方法
JP5651480B2 (ja) 3b族窒化物結晶の製法
JP2009007207A (ja) 結晶成長方法、および結晶成長装置
JP4399631B2 (ja) 化合物半導体単結晶の製造方法、及びその製造装置
JP4271408B2 (ja) Iii族窒化物結晶製造方法
JPH06157185A (ja) 化合物半導体単結晶の成長方法
JPH11189499A (ja) 化合物半導体単結晶の製造方法
JP2009190914A (ja) 半導体結晶製造方法
JP2010285331A (ja) 結晶成長方法
JPH0952789A (ja) 単結晶の製造方法
JP2018127385A (ja) Iii族窒化物半導体の製造方法
JP2009067620A (ja) 化合物半導体単結晶の製造方法及びその製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067023831

Country of ref document: KR

Ref document number: 200680000230.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006728999

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067023831

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006728999

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11596250

Country of ref document: US