WO2006064848A1 - 粒界改質したNd-Fe-B系磁石及びその製造方法 - Google Patents

粒界改質したNd-Fe-B系磁石及びその製造方法 Download PDF

Info

Publication number
WO2006064848A1
WO2006064848A1 PCT/JP2005/022963 JP2005022963W WO2006064848A1 WO 2006064848 A1 WO2006064848 A1 WO 2006064848A1 JP 2005022963 W JP2005022963 W JP 2005022963W WO 2006064848 A1 WO2006064848 A1 WO 2006064848A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
metal
grain boundary
sample
magnets
Prior art date
Application number
PCT/JP2005/022963
Other languages
English (en)
French (fr)
Inventor
Kenichi Machida
Shunji Suzuki
Original Assignee
Japan Science And Technology Agency
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Osaka University filed Critical Japan Science And Technology Agency
Priority to EP05816642A priority Critical patent/EP1843360A4/en
Priority to US11/793,272 priority patent/US7824506B2/en
Priority to CN2005800425299A priority patent/CN101076870B/zh
Priority to JP2006548887A priority patent/JP4548673B2/ja
Publication of WO2006064848A1 publication Critical patent/WO2006064848A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Definitions

  • the present invention relates to a high-performance magnet excellent in mass productivity, in which Dy or Tb element is diffused and infiltrated into the crystal grain boundary phase of an NdFeB-based magnet from the magnet surface, and excellent in mass productivity. Concerning.
  • Rare earth element ferrous boron-based magnets are widely used in voice coil motors (VCM) of hard disk drives and magnetic circuits of magnetic tomography (MRI), and in recent years, drive motors for electric vehicles.
  • VCM voice coil motors
  • MRI magnetic tomography
  • the range of applications is expanding.
  • heat resistance is required for automobile applications, and a magnet having a high coercive force is required to avoid high temperature demagnetization at an environmental temperature of 150 to 200 ° C.
  • the Nd-Fe B compound main phase is taken by the Nd-rich grain boundary phase.
  • a high coercive force is achieved by including about several to 10% by mass of Dy and Tb in the magnet alloy.
  • the saturation magnetic field increases as the Dy and Tb content increases.
  • Patent Documents 1 and 2 Producing coercive force by making gold separately and mixing and sintering each powder in the proper ratio Methods for improving this are known (Patent Documents 1 and 2, Non-Patent Document 1).
  • the method of processing the obtained sintered body includes the surface and grain boundaries of the fine Nd Fe B-based sintered magnet compact. Magnetic properties are restored by introducing rare earth metal into the phase (Patent Documents 3 and 4), or Dy or Tb metal is deposited on the surface of a small-sized magnet by sputtering, and Dy or Tb is deposited by high-temperature heat treatment. A method of diffusing inside a magnet has been reported (Non-Patent Documents 2 and 3).
  • Non-patent Document 4 As a method of diffusing Dy into the grain boundaries of the NdFeB-based sintered magnet, a method of heating the sputtered film (Patent Document 5), after applying a fine powder of Dy oxide or fluoride to the magnet, A method of performing surface diffusion treatment and aging treatment has been reported (Non-patent Document 4).
  • Patent Document 1 Japanese Patent Laid-Open No. 61-207546
  • Patent Document 2 Japanese Patent Laid-Open No. 05-0221218
  • Patent Document 3 Japanese Patent Laid-Open No. 62 74048
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-296973
  • Patent Document 5 Japanese Patent Laid-Open No. 01-117303
  • Non-patent literature l M. Kusunoki et al. 3rd IUMRS Int. Conf. On Advanced Materials, p. 1013 (1993)
  • Non-Patent Document 2 K.T.Park et al. Proc. 16th Workshop on RareEarth Magnets and Their Application, Sendai, p.257 (2000)
  • Non-Patent Document 3 Machida et al. Summary of Spring Meeting 2004, p. 20 (2004)
  • Non-Patent Literature 4 Gen Nakamura IEEJ Journal, Vol.l24, No.11, pp.699-702 (2004)
  • the inventors of the present invention first, after quantitative deposition of Dy or Tb metal on the surface of the magnet by sputtering or the like, selectively passes the grain boundary phase by heat treatment to bring the Dy or Tb metal to the inside of the magnet. It was found that the coercive force can be effectively improved by diffusion and penetration, and a patent application was filed for an invention related to this method (Japanese Patent Application No. 2003-174003; Japanese Patent Application No. 2005-11973, Japanese Patent Application No. 2003-411880). ; JP 2005-175138 A).
  • Dy metal or the like is selectively present in the grain boundary portion of the sintered magnet to improve the coercive force, but physical formation using a vacuum chamber such as sputtering is performed. Due to the membrane method, there was a difficulty in mass productivity when processing a large amount of magnets. In addition, there is a problem with magnet costs in that it is necessary to use expensive and high-purity Dy metal as a film-forming material.
  • Dy is contained in the grain boundary phase surrounding the Nd Fe B main phase.
  • High coercive force can be obtained by the presence of high concentrations of Tb and Tb, that is, grain boundary modification.
  • the inventors have disclosed inventions relating to the principle and method of effectively increasing the coercive force without lowering the residual magnetic flux density in each of the Japanese patent application 2003-174003 and Japanese Patent Application 2003-411880. .
  • this principle is applied, and metal components such as Dy and Tb, which have a larger magnetic anisotropy than Nd, are reduced and deposited on the surface of the Nd-Fe-B magnets at the same time. It diffuses and penetrates into the grain boundary.
  • components such as Dy and Tb may remain as a film on the magnet surface after diffusion and penetration, but the purpose is to improve or improve the magnetic properties of the magnet. Unlike conventional methods of forming corrosion-resistant films such as coating, it is important to diffuse and infiltrate components such as Dy and Tb from the magnet surface to the internal grain boundaries.
  • Nd Fe B The inside of a general Nd—Fe—B based sintered magnet is Nd Fe B, which is about 3 to 10 microns in size.
  • the crystal structure is surrounded by a grain boundary phase (approximately 10 ⁇ : LOO nanometer thick, mainly composed of Nd, Fe, O and called Nd rich phase).
  • a grain boundary phase approximately 10 ⁇ : LOO nanometer thick, mainly composed of Nd, Fe, O and called Nd rich phase.
  • the current situation is that it is not possible to obtain a magnet with a high energy product due to the remarkable decrease in the temperature.
  • M metal element such as Dy reduced and deposited on the surface of the magnet by chemical reduction or molten salt electrolytic reduction of a metal compound diffuses and penetrates into the magnet during the reduction treatment. Selective for grain boundary phase with little substitution for Nd in Nd Fe B main crystal
  • the Nd—Fe— B magnet is covered only with DyO powder, and the calorie is heated at a high temperature of about 800 to 1000 ° C.
  • the Dy component can also be diffused and penetrated into the magnet by heat treatment. However, in this case, since the reducing agent is not used, DyO is at a high temperature and the surface of the Nd—Fe—B magnet
  • the diffusion depth of the M metal element varies depending on the heating temperature and time of the reduction treatment, and the surface force is about 20 microns to 1000 microns.
  • the structure of the grain boundary phase after diffusion and penetration is M-N d-Fe-O based on the analysis results of EPMA (Electron Probe Micro-Analyzer). It is confirmed that the grain boundary phase thickness is estimated to be about 10 to 200 nanometers.
  • M metal element is present more in the surface portion than in the magnet, and Nd Fe B main
  • the structure in which the M metal element is selectively enriched in the grain boundary phase rather than in the main crystal suppresses the occurrence of reverse magnetic domains, thereby reducing the original Nd-Fe -Evidence that the coercivity of the B magnet is improved!
  • an oxide such as Dy or Tb or a compound such as fluoride is heated at a high temperature using a Ca reducing agent or electrolysis to reduce a metal such as Dy or Tb, and at the same time, Selective diffusion and penetration of metal components into the grain boundary phase inside the magnet can be easily achieved with a single processing step.
  • the melting point of Nd-rich grain boundary phase is higher than that of Nd Fe B phase (over 1000 ° C)
  • a metal such as Dy and Tb is reduced and deposited on the surface of the rare earth magnet and diffused and penetrated into the inside of the magnet. Improvement can be achieved, and demagnetization at high temperatures can be greatly improved. Therefore, it can greatly contribute to the production of rare earth magnets suitable for car drive motors that require heat resistance. Moreover, even with a small content of Dy, Tb, etc., the coercive force equivalent to that of a conventional sintered magnet can be obtained, which contributes to the solution of rare resource problems.
  • the magnet targeted in the present invention is a sintered magnet.
  • Nd Fe— B sintered magnet is Nd Fe B
  • the main phase crystal has a crystal structure surrounded by a grain boundary phase rich in Nd, and in order to show a typical nucleation type coercive force mechanism, the magnet of the present invention has an effect of increasing the coercive force. big ,.
  • the sintered magnet is formed by pulverizing and sintering a raw material alloy to several microns.
  • Nd is a practical Nd composition.
  • Pr and Y are included as impurities or for cost reduction. Therefore, even if the total amount of rare earth elements is about 28 to 35% by mass, the magnetic characteristics of the present invention can be improved. . If it exceeds 35%, the proportion of grain boundary phase becomes excessive. Thus, the coercive force is sufficiently large, but the proportion of the Nd Fe B main phase that carries the magnetic flux density is relatively reduced.
  • the method of the present invention is a magnet having a crystal structure surrounding a NdFeB main phase crystal with a grain boundary phase.
  • Nd-Fe-B forming components In addition to Nd-Fe-B forming components, other additional components such as Co for improving temperature characteristics, A1 and Cu for forming fine and uniform crystal structures are added. It does not matter.
  • the method of the present invention is essentially unaffected by the magnetic properties of the original magnet and the amount of rare earth elements other than Nd added, so that the M metal element is added to the sintering material in advance for sintering.
  • the coercive force can be effectively improved even for high-performance sintered magnets that contain M metal elements in the main phase and grain boundary phase in a total amount of about 0.2 mass% to 10 mass%. it can.
  • the element that is supplied to the magnet surface and diffuses and penetrates inside the magnet is an Nd-rich phase that has a larger magnetic anisotropy than Nd constituting the Nd-Fe-B magnet and surrounds the main phase inside the magnet.
  • Nd-rich phase that has a larger magnetic anisotropy than Nd constituting the Nd-Fe-B magnet and surrounds the main phase inside the magnet.
  • rare earth elements selected from Pr, Dy, Tb, and Ho hereinafter referred to as “M metal” as appropriate
  • M metal rare earth elements selected from Pr, Dy, Tb, and Ho
  • the anisotropic magnetic field of the 2 14 2 e B compound is approximately 2 and 3 times that of Nd Fe B, respectively.
  • Dy and Tb elements have a great effect of increasing the coercive force.
  • the rare earth metal oxide, rare earth metal chloride, or rare earth metal fluoride separated and purified from the raw ore is reduced by molten salt electrolysis or a chemical reducing agent.
  • molten salt electrolysis or a chemical reducing agent it is possible to apply the method of refining rare earth metals.
  • the chemical reducing agent Ca metal, Mg metal or their hydrides are suitable. If this chemical reduction or molten salt electrolytic reduction is not used, it is not preferable because a part of the surface layer of the Nd-Fe-B magnet may change in quality and impair magnetism as described above.
  • the present invention is characterized in that the reduction of M metal from the M metal compound and the diffusion of M metal into the magnet are basically performed in the same process. In addition, it is possible to further improve the coercive force by adding an aging treatment at 500 to 600 ° C as it is after this process or by adding an aging treatment using another heating furnace.
  • the present invention does not use expensive M metal, and M gold obtained in the purification process of various rare earth metals.
  • M metal and M gold obtained in the purification process of various rare earth metals.
  • One kind or two or more kinds of oxides, fluorides and salts of genus elements can be used. Of these, the oxides and fluorides are stable and can be easily handled in the air, and after Ca reduction, the surface force of the magnet body can be easily separated as CaO and CaF compounds, respectively.
  • chlorides may react with the magnet and generate chlorine gas when the conditions for the reduction reaction are not properly performed.
  • Nd-Fe-B magnet body processed into a desired shape is embedded in, for example, a mixed powder of DyO, which is an example of various compounds of M metal elements, and CaH, which is a chemical reducing agent.
  • the heat-resistant container is set in an atmosphere furnace in which Ar gas is circulated, and cooled by holding at a temperature of 800 to L at 100 ° C for 10 minutes to 8 hours.
  • the oxygen concentration in the atmosphere is preferably several to several tens of ppm, which is used to produce Nd-Fe-B sintered magnets, because it can suppress the oxidation of the magnet body. It takes a long time to reach an extremely low oxygen concentration.
  • the reaction temperature should be 800-1100 ° C, more preferably 850-1000 ° C.
  • Dy metal is reduced and deposited on the magnet surface, and at the same time, Dy metal selectively diffuses and penetrates into the grain boundary phase inside the magnet. A Dy metal layer that cannot be diffused and stays on the surface is formed on the magnet surface.
  • the magnet body is taken out of the heat-resistant container, washed with pure water and dried to remove the CaO powder on the surface of the magnet body, and the clean magnet covered with the Dy metal layer remaining on the surface.
  • a surface can be obtained.
  • an aging treatment at 400 to 650 ° C for 30 minutes to 2 hours after the completion of the above reaction, it is possible to promote uniform formation of Nd-rich phases at the grain boundaries and further improve the coercive force. it can.
  • the Nd-rich phase generation temperature range is 500 to 600 ° C, so the effect is hardly achieved at less than 400 ° C. When the temperature exceeds 650 ° C, the phase grows excessively, leading to a decrease in coercive force.
  • the temperature range should be 400-650 ° C.
  • the Dy metal component diffuses and penetrates from the magnet surface to the inside, and the Dy element is enriched in the grain boundary phase. It has become a structure.
  • This surface layer is more stable in air than Nd Fe B because it is a Dy-rich layer in which Nd and Fe in the Dy metal or magnet are incorporated by a partial reaction.
  • DyF powder and LiF powder as an example of M metal compound and chemical reducing agent
  • a mixture of Ca metal particles is loaded into a heat-resistant container such as a graphite crucible, and an Nd Fe-B magnet body is buried in the container.
  • a heat-resistant container such as a graphite crucible
  • an Nd Fe-B magnet body is buried in the container.
  • LiF which acts as a melting point depressant for chloride, is used to advance the reaction in the liquid phase while forming a melt.
  • the salts used to lower the melting point include ka and Na borates, carbonates, nitrates, and hydroxides.
  • Dy metal reduction occurs in the same way as the reaction in the first method, and Dy metal reduction precipitation on the magnet surface and diffusion into the magnet occur simultaneously. A Dy metal layer that cannot diffuse and remains on the surface of the magnet is formed.
  • the magnet body is taken out, washed with pure water while applying ultrasonic waves, and dried to obtain a magnet surface coated with the Dy metal layer from which CaF has been removed and remained on the surface. But
  • the Dy metal component diffuses and penetrates from the magnet surface to the inside, as in the first method.
  • the structure is enriched with elements.
  • TbF powder and LiF powder and Ba that lowers the melting point to about 1000 ° C or less.
  • a cathode made of stainless steel is used for the cathode, a magnet is placed in the cathode, and a metal or alloy rod such as graphite, insoluble Ti, or Mo is used for the anode, and the cathode and anode are embedded in a heat-resistant container.
  • a metal or alloy rod such as graphite, insoluble Ti, or Mo is used for the anode, and the cathode and anode are embedded in a heat-resistant container.
  • Set the heat-resistant container in an atmosphere furnace in which Ar gas is circulated, and generate a melt at 800 to 1000 ° C, with a current density of 1 to about LOV and about 0.03 to 0.5 A / cm 2 Conduct electrolysis for about 5 minutes to 1 hour, stop electrolysis and cool.
  • M metal may be used as the soluble anode instead of the insoluble metal Z alloy.
  • the M metal that is reduced and deposited on the surface of the magnet is a combination of the metal that has been reduced from the oxide or fluoride raw material and that that has been electrolytically deposited by dissolving the anode component.
  • the temperature of the melt varies, but after melting, the stainless steel net is quickly moved forward and backward, Make it possible to reduce and diffuse Tb metal evenly into the magnet body.
  • the reduction reaction is such that Tb ions reach the magnet body serving as the cathode in the electrolysis process, and receive the electrons on the spot to generate metal Tb. Is spread. A Tb metal layer that cannot diffuse and remains on the surface of the magnet is formed.
  • the repulsive magnet body is taken out, washed with pure water and dried to obtain a magnet body on which the Tb metal layer remaining on the surface is formed. Similar to the first and second methods, the magnet thus obtained has a Tb metal component that diffuses and penetrates from the surface of the magnet to the inside as described in the principle of the grain boundary modification treatment.
  • the interface phase is enriched with Tb elements.
  • the amount of M metal reduced and deposited on the magnet surface can be easily adjusted by changing the temperature and the treatment time in the first to third methods.
  • the M metal that is reduced and deposited on the surface of the magnet body due to the use of the high temperature reduction reaction at the same time, partly diffuses and penetrates into the magnet, and the thickness of only the M metal on the surface. It is difficult to clearly determine the length.
  • FIG. 1 is a model diagram of the crystal structure of a cross section (a) of a conventional sintered magnet and a cross section (b) of the sintered magnet of the present invention. From Fig. 1 (a), the conventional sintered magnets have Nd Fe B crystal grains and Nd rich grains.
  • Dy element is also Nd Fe B
  • the crystal grains and the Nd-rich grain boundary phase are distributed separately, and there is no difference in the structure of the structure between the inside and the surface of the magnet.
  • the Dy element that diffuses and penetrates the magnet surface penetrates into a small part of the Nd Fe B crystal in the surface layer.
  • the structure As most of them enter and go deeper inside the magnet surface, the structure has a concentration gradient that is slightly thinner.
  • Fig. 2 shows the distribution of Dy element in the EPMA image of a representative sample (4) of the present invention.
  • Nd Fe B crystal grains one or two layers on the outermost surface of the magnet are M metal elements.
  • the Dy metal layer exists at a depth of about 3 to 6 m from the surface of the magnet body to the inside, and a depth of about 40 to 50 ⁇ m from directly below the Dy metal layer. D y A metal diffusion layer is observed.
  • the M metal element penetrates into several layers of Nd Fe B main phase crystals on the outermost surface of the magnet.
  • the coercive force of the magnet is affected by the structure having a concentration gradient of M metal element in the depth direction of the magnet cross section as shown in Fig. 2 after the grain boundary modification treatment, and the depth of the diffusion layer is reduced.
  • the larger the value the greater the coercive force.
  • the thickness (width) of the grain boundary phase increases by several tens of percent, but the thickness of the grain boundary phase in the diffusion layer portion is thick and the depth of the diffusion layer is deep.
  • the inclusion of a large amount of M metal component leads to a decrease in residual magnetic flux density. Therefore, in order to achieve a significant increase in coercive force while suppressing the decrease in residual magnetic flux density, the amount of M metal element compound used and the reaction temperature and time should be set appropriately so that the M metal element does not become excessive. It is important to control.
  • the total M metal component including the amount diffused in the magnet body and the amount that cannot be diffused and remains on the surface as a metal layer is occupied by the total mass of the magnet. It is necessary for the ratio to be 0.1 to: LO mass%, and 0.2 to 5 mass% is suitable for obtaining high-performance magnetic characteristics.
  • M metal element As another method of realizing effective coercive force improvement using M metal element, a relatively large amount of M metal element is supplied to the magnet surface, and reduction diffusion treatment is performed for a long time. After the M metal element is infiltrated to the depth of the magnet so that the ratio of the M metal element to the total mass of the magnet is about 2 to 4% by mass, the M magnetic element is excessive and the residual magnetic flux density is reduced. It is also possible to remove the face layer. When the surface is cut by about 0.05 mm or less after reductive diffusion, the coercive force is hardly reduced by cutting, and the residual magnetic flux density does not change even if it is cut.
  • a method for removing the magnet surface layer a surface grinding method using a flat or cylindrical grinder can be used.
  • a surface grinding method using a flat or cylindrical grinder can be used.
  • the magnet is further cut to produce a plurality of magnets having a predetermined shape and size.
  • Cutting is done by using a disk-shaped cutting blade with diamonds or GC (green corundum) barrels fixed to the outer periphery of the cutting blade, fixing the magnet pieces, and then cutting each magnet one by one or more
  • a plurality of blades may be cut simultaneously by a cutting machine (multi-saw) equipped with a blade.
  • An alloy ingot of Nd Fe B composition is about 0.2 mm thick by strip casting.
  • mm alloy flakes were produced.
  • this thin piece is filled into a container, and hydrogen gas of 300 kPa is occluded at room temperature and then discharged to obtain an amorphous powder having a size of 0.1 to 0.2 mm.
  • a fine powder of about 3 m was produced.
  • This fine powder was filled in a mold, molded by applying lOOMPa pressure while applying a magnetic field of 800 kAZm, loaded in a vacuum furnace, and sintered at 1080 ° C for 1 hour.
  • This sintered body was cut to produce a plurality of plate samples having anisotropy in the thickness direction of 5 mm ⁇ 5 mm ⁇ 3 mm, and one of them was used as a comparative sample (1) as it was.
  • the plate-shaped sample was embedded and set in an atmosphere furnace in which Ar gas was circulated. Furnace By controlling the temperature, the maximum temperature in the crucible is 700, 800, 900, 1000, 1100, 1150. C, and holding time of 1 hour each, Dy metal was subjected to solid phase reduction and diffusion permeation treatment and cooled.
  • the oxygen concentration in the atmosphere furnace measured by the monitor was 0.05 to 0.2% by volume from the start to the end of the reaction. Remove each sample from the crucible and remove the CaO powder on the surface of the magnet body with a brush, then wash with pure water while applying ultrasonic waves, replace the moisture with alcohol, dry, and heat treatment temperature 700-1150 ° According to the order of C, the present invention samples (1) to (6) were obtained.
  • each sample was pulverized and analyzed by ICPdnductively Coupled Plasma), and the amount of Dy contained in each sample was measured.
  • Table 1 shows the magnetic property values and the amount of Dy for each sample. Note that if the amount of precipitation is calculated by the film thickness assuming that the Dy metal is deposited and diffused as a film, the sample of the present invention (1) is 0.3 microns and the sample of the present invention (6 ) Is equivalent to 3.4 microns.
  • Fig. 3 shows the coercivity and residual magnetic flux density of each sample, and Fig. 4 shows a graph of the Dy amount of each sample.
  • the samples (1) to (6) of the present invention showed almost no decrease in residual magnetic flux density (Br) compared to the untreated comparative sample (1).
  • An increase in coercive force (Hcj) was observed.
  • the sample (1) of the present invention since the treatment temperature is 700 ° C, the Dy reduction reaction does not proceed sufficiently, and the amount of Dy incorporated into the magnet is less than 0.1% by mass. The increase in coercive force was slight. By increasing the processing time to 1 hour or more, In addition, an increase in coercive force can be expected.
  • Fig. 4 shows that the amount of Dy metal deposited by Ca reduction and the amount of diffusion into the magnet increased as the treatment temperature increased.
  • Example 2 Each of the same plate-like samples used in Example 1 was coated and dried. On the other hand, as a comparative example, only Dy 2 O powder lg was similarly made into a slurry and similarly dried after application. This
  • the magnet sample after the treatment was dried after removing CaO powder on the surface, washing with pure water and alcohol.
  • the former mixed powder was used as the sample of the present invention (7) to (8), and the latter Dy
  • Table 2 shows the magnetic property value and the Dy amount of each sample.
  • the comparative sample (1) described in Example 1 was republished.
  • FIG. 5 shows the demagnetization curves of the comparative samples (1) to (3)
  • FIG. 6 shows the demagnetization curves of the comparative sample (1) and the inventive samples (7) to (8).
  • the sample (2) Compared with the untreated comparative sample (1), the sample (2) has a slight increase in coercive force due to the small Dy element content, while the maximum energy product ((BH) max) is Declined.
  • the comparative sample (3) which was heat-treated at 100 ° C, had a significant increase in coercive force, but a significant reduction in the maximum energy product.
  • the demagnetization curve is a smooth curve with good squareness, and if a reducing agent is used, the Nd Fe B magnet body may be damaged.
  • the magnetic properties such as coercive force were improved.
  • the plate-like magnet sample used in Example 1 was embedded in the powder. Subsequently, it was set in an Ar gas atmosphere furnace, and the furnace temperature was controlled, and the melt was subjected to a melt phase reduction reaction and diffusion permeation treatment for 5 to 60 minutes at a maximum temperature in the crucible of 900 ° C and cooled.
  • the CaF powder was dissolved and removed with dilute hydrochloric acid, followed by washing with pure water and alcohol and drying.
  • the obtained samples were sampled of the present invention (9) to (14) in the order of treatment time of 5 to 60 minutes, and the magnetic properties were measured in the same manner as in Example 1. Assuming that Dy metal is deposited as a film and is not diffused, the amount of deposition is calculated by the film thickness.
  • the sample of the present invention (9) is 0.2 microns, and the sample of the present invention (14) is 3. Equivalent to 0 micron.
  • the samples (9) to (14) of the present invention have a substantially reduced coercive force with almost no decrease in residual magnetic flux density compared to the untreated comparative sample (1). An increase was observed.
  • the sample of the present invention (14) that was heat-treated at 900 ° C. for 60 minutes showed a coercive force almost equal to the sample of the present invention (13) that was heat-treated at the same temperature for 45 minutes. In the present example, it was found that the processing time of 45 minutes was sufficient for the precipitation by Dy reduction and the diffusion into the magnet.
  • the demagnetization factor of the sample (13) of the present invention is about 1Z5 of the sample (1) of the comparative example, and the change of the demagnetization factor up to 1000 hours is small, so that the demagnetization at high temperature can be greatly improved. It was revealed.
  • both the sample (16) of the present invention from which the surface layer was removed and the sample (17) of the present invention from which the central portion of the sample was cut out showed almost no decrease in coercive force, and the residual magnetic flux density was Nearly equal to the value, the maximum energy product was improved further than before. Accordingly, it is possible to obtain a magnet having desired magnetic characteristics by appropriately selecting the reduction diffusion process depending on the size of the magnet sample, or by selecting a process such as cutting after the process.
  • a plate sample is placed in a stainless steel mesh cage to serve as a cathode, and Mo metal is used as an anode and embedded in a crucible. Then, the crucible is set in an Ar gas atmosphere furnace, and the furnace temperature is controlled so that At a high temperature of 920 ° C, the cathode and anode were connected to an external power supply, and the electrolytic voltage was 5V and the current density was 80 mA / cm 2. And cooled. [0079] Thereafter, the magnet body was taken out from the mesh cage, washed with pure water and dried, washed with pure water while applying ultrasonic waves, and dried by substituting water with alcohol.
  • the samples of the present invention (18) to (21) were used in the order of treatment times 5, 10, 20, and 30 minutes. Assuming that Dy metal is deposited as a film and has not diffused, the amount of deposition calculated by the film thickness is 1.2 micron for the present invention sample (18), and the present sample (20) is Corresponds to 6 microns.
  • Table 4 shows the magnetic property values and Tb amounts of the respective samples. As a result of analysis, it was found that 0.3% by mass or less of fluorine was incorporated in each sample obtained by the molten salt electrolytic reduction method. Table 4 shows that the coercivity increases significantly with increasing processing time, while the decrease in residual magnetic flux density is relatively small.
  • FIG. 1 is a model diagram of a crystal structure of a cross section (a) of a conventional sintered magnet and a cross section (b) of the sintered magnet of the present invention.
  • FIG. 3 The heating temperature of the reduction diffusion treatment in the inventive samples (1) to (6) and the comparative sample (1) It is a figure showing the relationship between a residual magnetic flux density and a coercive force.
  • FIG. 5 is a diagram showing demagnetization curves of comparative sample samples (1) to (3).
  • FIG. 7 is a graph showing the relationship between the residual magnetic flux density and the coercive force with respect to the heating time of the reduction diffusion treatment in the inventive samples (9) to (14) and the comparative sample (2).
  • ⁇ 8] of the demagnetization factor and elapsed time obtained by dividing the amount of magnetic flux of the sample of the present invention (13) and the comparative sample (1) after holding at 120 ° C for a predetermined time by the initial amount of magnetic flux at room temperature. It is a diagram showing the relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

従来の方法では、Dy金属などを焼結磁石の結晶粒界部に選択的に存在させて保磁力の向上を実現しているが、スパッタリングなどの真空槽を用いた物理的な成膜法によるため大量の磁石処理を行う場合の量産性に難点があった。また、成膜原料として高価で高純度のDy金属などを用いる必要性がある等の面で、磁石コストに問題がある。 M金属元素(但し、Mは、Pr,Dy,Tb,又はHo)のフッ化物、酸化物、又は塩化物を還元処理することにより、Nd2Fe14B主結晶の周囲を取り囲むNdリッチ結晶粒界相を有するNd-Fe-B系焼結磁石体表面から該粒界相に該M金属成分を拡散浸透させることを特徴とするNd-Fe-B系磁石の粒界改質方法。

Description

粒界改質した Nd -Fe- B系磁石及びその製造方法
技術分野
[0001] 本発明は、 Nd Fe B系磁石の結晶粒界相にDy又はTb元素などを磁石表面か ら拡散浸透させて粒界改質した、量産性に優れた高性能磁石とその製造方法に関 する。
背景技術
[0002] 希土類元素一鉄 ホウ素系磁石は、ハードデスクドライブのボイスコイルモータ (V CM)や磁気断層撮影装置 (MRI)の磁気回路などに広く使用されており、近年は電 気自動車の駆動モータにも応用範囲が拡大している。特に、自動車用途には耐熱性 が要求され、 150〜200°Cの環境温度における高温減磁を避けるために高い保磁 力を有する磁石が求められている。
[0003] Nd Fe B系の焼結磁石は、 Nd Fe B化合物主相を Ndリッチな粒界相が取り
2 14
囲んだ微細構造カゝら成り、これら主相及び粒界相の成分組成やサイズなどが磁石の 保磁力の発現に重要な役割を担っている。一般的な焼結磁石においては、 Nd Fe
2 14
B化合物より異方性磁界の大きな Dy Fe B又は Tb Fe B化合物の磁気的性質を
2 14 2 14
利用して、磁石合金中に Dyや Tbを数質量%〜十質量%程度含有させることによつ て高い保磁力を実現している力 Dyや Tbの含有量の増加につれて飽和磁ィ匕の急 激な減少を招 ヽて最大エネルギー積((BH) )と残留磁束密度 (Br)を低下させる max
問題があった。また、 Dyや Tbは希少資源であり、且つ Ndと比較して数倍の高価な 金属であるために、その使用量を節減する必要があった。
[0004] Nd Fe B系の焼結磁石の残留磁束密度の低下を抑制しつつ保磁力を向上さ せるには、逆磁区の発生源となりやすい結晶粒界や磁石表面層を清浄ィ匕して磁気 的に強化することが望ましぐ Dyや Tb等を Nd Fe B主相内ではなく粒界相に優先
2 14
的に存在させるのが有効であることが知られている。
[0005] 例えば、焼結磁石を製作する際に Nd Fe Bを主とする合金と、 Dy等を多く含む合
2 14
金を別々に製作し、各粉末を適正比率で混合して成形焼結することにより保磁力を 向上させる方法が知られている (特許文献 1、 2、非特許文献 1)。
[0006] また、焼結磁石の製造工程中の工夫によらず、得られた焼結体の処理による方法と しては、微小微細な Nd Fe B系焼結磁石成形体の表面及び粒界相に希土類金 属を導入して磁気特性を回復する方法 (特許文献 3、 4)や、小型に加工された磁石 表面にスパッタにより Dy又は Tb金属を被着させて高温熱処理により Dy又は Tbを磁 石内部に拡散する方法 (非特許文献 2, 3)が報告されている。さらに、 Dyを Nd Fe B系焼結磁石の粒界に拡散させる方法として、スパッタ膜を加熱する方法 (特許文 献 5)、 Dyの酸化物又はフッ化物の微粉末を磁石に塗布してから表面拡散処理と時 効処理を施す方法が報告されて!ヽる (非特許文献 4)。
[0007] 特許文献 1:特開昭 61— 207546号公報
特許文献 2 :特開平 05— 021218号公報
特許文献 3:特開昭 62 74048号公報
特許文献 4:特開 2004— 296973号公報
特許文献 5:特開平 01 - 117303号公報
非特許文献 l : M.Kusunoki et al.3rd IUMRS Int.Conf.On Advanced Materials, p.1013 (1993)
非特許文献 2 : K.T.Park et al.Proc.16th Workshop on RareEarth Magnets and Their Application,Sendai,p.257(2000)
非特許文献 3 :町田 他 粉体粉末冶金協会平成 16年度春季大会講演概要集、 p.2 02(2004)
非特許文献 4 :中村 元 IEEJ Journal,Vol.l24,No.11, pp.699- 702(2004)
発明の開示
発明が解決しょうとする課題
[0008] 上記の特許文献 1、 2には、 2つの合金を出発原料として Nd Fe B主相よりもそれ
2 14
を取り囲む Ndリッチ粒界相により多くの Dy元素等を分布させ、その結果として残留 磁束密度の低下を抑制しつつ保磁力の向上が得られた焼結磁石の例が示されてい る。しかし、 Dy等を多く含む合金製作に別途工数力 Sかかること、 Dy等を多く含む合 金は Nd Fe B組成合金より格段に酸ィ匕しやすいために一層の酸ィ匕防止が必要で あること、及び 2つの合金の焼結と熱処理反応を厳密に制御する必要があることなど 、製造面で多くの課題がある。さらに、この方法によって得られる磁石においては、な お数〜 10質量%前後の Dvが磁石中に含有され、かつその多くが Nd Fe B主相中
2 14 に含有されるため、残留磁束密度が低 、ものとなって!/、る。
[0009] 本発明者らは、先に、磁石表面に Dy又は Tb金属をスパッタリングなどによって所 定量成膜後、熱処理によって粒界相を選択的に経由して Dy又は Tb金属を磁石内 部まで拡散浸透させることで保磁力を効果的に向上させ得ることを見出し、この方法 に係わる発明につ ヽて特許出願した (特願 2003 - 174003;特開 2005— 11973 号公報、特願 2003— 411880 ;特開 2005— 175138号公報)。
[0010] これらの方法では、 Dy金属などを焼結磁石の結晶粒界部に選択的に存在させて 保磁力の向上を実現しているが、スパッタリングなどの真空槽を用いた物理的な成膜 法によるため大量の磁石処理を行う場合の量産性に難点があった。また、成膜原料 として高価で高純度の Dy金属などを用いる必要性がある等の面で、磁石コストに問 題がある。
課題を解決するための手段
[0011] 本発明者らは、先の各発明の知見に基づき、高価な Dyや Tb金属を成膜原料とし て使用せずに、より安価で資源的に入手し易いそれらの酸ィ匕物やフッ化物などの化 合物を用い、複雑な真空槽を用いることなく一度に大量の磁石製品の粒界改質処理 が可能な量産に適した製造方法の開発に成功した。
[0012] Nd— Fe— B系焼結磁石において、 Nd Fe B主相を取り囲む結晶粒界相中に Dy
2 14
や Tbなどを高濃度に存在させること、すなわち粒界改質により高い保磁力が得られ る。本発明者らは、残留磁束密度を低下させずに保磁力を効果的に増加させる原理 と手法に関する発明を、特願 2003— 174003、特願 2003— 411880の各明糸田書に 開示している。本発明においてもこの原理が応用され、 Ndより磁気異方性が大きい Dyや Tbなどの金属成分をその化合物力 Nd— Fe— B系磁石表面に還元析出させ ると同時に磁石表面から内部の結晶粒界に拡散浸透させるものである。
[0013] この方法では、拡散浸透後に磁石表面に Dyや Tbなどの成分が皮膜として残存す ることもあるが、磁石の磁気特性を改善又は向上させることを目的とし、 Niや A1コー ティングなどの耐食性皮膜を形成する従来の方法とは異なり、 Dyや Tbなどの成分を 磁石表面から内部の結晶粒界に拡散浸透させることが重要である。
[0014] この拡散浸透処理による磁気特性向上のメカニズムは、以下のように説明される。
一般の Nd— Fe— B系焼結磁石の内部は、大きさ約 3〜10ミクロンの Nd Fe B主結
2 14 晶の周囲を粒界相(およそ 10〜: LOOナノメートルの厚さで、主に Nd, Fe, Oか ら構成されて Ndリッチ相と呼称されている)が取り囲んだ構造をしている。この磁石の 保磁力を増加させる最も一般的な方法として、原料合金中に、例えば、 5質量%程度 の Dyを添加して焼結すると、 Dyは主結晶にも粒界相にも均等に分散して保磁力は 増加するが、反面、 Dyが Nd Fe B主結晶の Ndの 20質量%程度を置換して残留磁
2 14
化の著し 、低下を伴うために、高 、エネルギー積の磁石を得ることができな 、現状で ある。
[0015] 本発明の方法では、金属化合物の化学的還元又は溶融塩電解還元によって磁石 表面に還元析出させた Dy等の M金属元素が、還元処理中に磁石内部まで拡散浸 透する過程で、 Nd Fe B主結晶の Ndとほとんど置換せずに結晶粒界相に選択的
2 14
に富化した構造を形成すること、すなわち粒界が改質されることが確認されている。こ の化学的還元又は溶融塩電解還元を利用する方法では、例えば、 Dy Oの
2 3 酸化物 は Ca成分と反応するか又は電解によって電子を供与されて還元した Dyが生成する 原理のために、磁石を構成する Nd— Fe— B成分とは還元反応をほとんど生じないた めに磁石に損傷を与えることがな 、。
[0016] 一方、 Dy O粉末のみで Nd—Fe— B磁石を覆い 800〜1000°C位の高温度でカロ
2 3
熱処理を行うことによつても、 Dy成分を磁石内に拡散浸透させることができる。しかし 、この場合は還元剤を用いないために、 Dy Oが高温度で Nd— Fe— B磁石表面の
2 3
Nd成分と徐々に反応することによって Dyが Ndと結合することにより還元されることに なり、磁石表面層の一部が Nd欠損状態となって保磁力を損なう軟磁性の α— Feや DyFe相などが副生する問題があり、製造方法として好ましくない。
2
[0017] M金属元素が拡散する深さは、還元処理の加熱温度や時間によって変わり、表面 力も 20ミクロン〜 1000ミクロン位である。また、拡散浸透後の粒界相の構成は M—N d— Fe— O系であることが EPMA(Electron Probe Micro- Analvzer)の分析結果より 確認され、粒界相の厚さは 10〜200ナノメートル位と見積られる。
[0018] このように、 M金属元素が磁石の内部よりも表面部に多く存在し、且つ Nd Fe B主
2 14 結晶の Ndは M金属元素によりほとんど置換されないので、主結晶内よりも粒界相に 選択的に M金属元素が富化した構造により、逆磁区の発生が抑制されて元の Nd— Fe - B系磁石の保磁力が向上する証拠となって!/、る。
[0019] 本発明では、 Dyや Tbなどの酸化物やフッ化物などの化合物を、 Ca還元剤又は電 解を用いて高温度で加熱して Dyや Tbなどの金属を還元させると同時に、該金属成 分を磁石内部の粒界相に選択的に拡散浸透させることが単一の処理工程で容易に 実現できる。 Ndリッチ粒界相の融点は Nd Fe B相の融点(1000°C以上)と比較して
2 14
低いために、選択的に拡散しやすい。
発明の効果
[0020] 本発明によれば、 Dy, Tbなどの安価な化合物原料を用いて、希土類磁石表面に Dy, Tbなどの金属を還元析出して磁石内部に拡散浸透することによって、保磁力の 大幅な向上を果たすことができ、高温度での減磁を大幅に改善できる。従って、耐熱 性を必要とする車駆動用モータなどに適した希土類磁石の製造に大いに貢献できる 。また、 Dy, Tbなどのわずかな含有量においても従来の焼結磁石並みの保磁力を 得ることができ、希少な資源問題の解決に寄与するものである。
発明を実施するための最良の形態
[0021] 以下、本発明の Nd— Fe— B系磁石、及びその製造方法を更に詳しく説明する。本 発明で対象とする磁石は、焼結磁石である。 Nd Fe— B系焼結磁石は、 Nd Fe B
2 14 主相結晶を Ndリッチな結晶粒界相が取り囲んだ結晶組織を有し、典型的な核発生 型の保磁力機構を示すために本発明磁石にぉ 、ては保磁力増加の効果が大き 、。
[0022] 焼結磁石は、原料合金を数ミクロンに粉砕して成形、焼結して形成される。 Nd Fe
B系焼結磁石では、 Nd量を Nd Fe B組成( = 27.5質量%Nd)より多くすると粒界
2 14
相が形成される力 さらに焼結過程での酸ィ匕なども考慮すれば 29〜30質量%Ndが 実用的な Nd組成である。一般的な焼結磁石では、 Prや Yなどが不純物としてあるい はコスト低減のために含まれるので、全希土類元素量は 28〜35質量%程度におい ても本願発明の磁気特性向上効果がある。 35%を超えると粒界相の割合が過剰とな り、保磁力は充分大きくなるが、磁束密度を担う Nd Fe B主相の割合が相対的に減
2 14
少して、実用的な残留磁束密度や最大エネルギー積が得られなくなる。
[0023] 本発明の方法は、 Nd Fe B主相結晶を粒界相で取り囲む結晶組織をもつ磁石す
2 14
ベてに適用され、 Nd— Fe— B形成成分のみならず、その他の付加的成分、例えば、 温度特性の改善用の Co、微細で均一な結晶組織を形成するための A1や Cuなどが 添加されていても構わない。また、本発明の方法は、元とする磁石の磁気特性や、 N d以外の他の希土類元素添加量には本質的に影響されないので、予め M金属元素 を焼結原料に加えて焼結することにより主相及び粒界相に M金属元素を合計で 0. 2 質量%以上 10質量%以下程度含有している高性能焼結磁石に対しても保磁力の 効果的な向上をもたらすことができる。
[0024] 磁石表面に供給して磁石内部に拡散浸透する元素は、 Nd— Fe— B系磁石を構成 する Ndよりも磁気異方性が大きぐ且つ磁石内部の主相を取り囲む Ndリッチ相等に 容易に拡散浸透することを目的とするため、 Pr, Dy, Tb, Hoから選ばれる希土類元 素(以下、適宜「M金属」という)を単独又は複合して用いる。特に、 Dy Fe Bと Tb F
2 14 2 e B化合物の異方性磁界は、 Nd Fe Bのそれと比較してそれぞれおよそ 2倍と 3倍
14 2 14
であることから、 Dyと Tb元素は保磁力増加の効果が大き 、。
[0025] 磁石表面へ上記元素を安定的に供給するには、原鉱石から分離精製した希土類 金属酸化物、希土類金属塩化物、又は希土類金属フッ化物を溶融塩電解又は化学 的還元剤によって還元するという、希土類金属の精鍊法を応用することが原理的に 可能である。化学的還元剤としては Ca金属又は Mg金属又はそれらの水素化物が 適する。この化学的還元又は溶融塩電解還元を用いない場合は、既述の通り Nd— Fe— B磁石表面層の一部が変質して磁性を損なう可能性があるために好ましくない
[0026] 本発明においては、 M金属化合物からの M金属の還元及び磁石内部への M金属 の拡散を、基本的に同一工程で行うことが特徴である。なお、この工程に引き続きそ のまま 500〜600°Cでの時効処理を追加して、あるいは他の加熱炉を用いた時効処 理を追加して、さらなる保磁力の向上を図ることもできる。
[0027] 本発明では高価な M金属を用いず、各種希土類金属の精製過程で得られる M金 属元素の酸化物、フッ化物、塩ィ匕物の一種又は 2種以上を用いることができる。このう ち、酸ィ匕物とフッ化物は安定なために空気中で容易に取り扱いができ、 Ca還元後は それぞれ CaOや CaF化合物となって磁石体の表面力も容易に分離が可能である。
2
一方、塩化物は還元反応の条件が適切に行われない場合に磁石と反応して塩素ガ スを発生する場合があり注意が必要であるが、基本的に本発明において利用できる
[0028] M金属化合物力 M金属を還元するには多様な方法がある力 以下 3種類の代表 的製法の 、ずれかを採用することが好ま 、。
[0029] <第一の方法 >固相還元法
所望の形状に加工した Nd— Fe— B系磁石体を、例えば、 M金属元素の各種化合 物の一例としての Dy Oと化学的還元剤である CaHの混合粉末の中に埋設し、場
2 3 2
合により軽く押し固めて、黒鉛、 BN、又はステンレス鋼製のルツボなどの耐熱容器内 に装填する。下記の反応式に従って Dy O 1モルに対して CaH還元剤は 3モル必
2 3 2
要となる力 Dv Oを完全に還元するためには 3モル相当量の 10〜20%を増量する
2 3
ことが好ま 、。還元反応は以下の基本式によって行われる。
Dy O + 3CaH→2Dy+ 3CaO + 3H
2 3 2 2
[0030] 次に、この耐熱容器を Arガスが流通する雰囲気炉にセットし、 800〜: L 100°Cの温 度で 10分〜 8時間保持して冷却する。雰囲気中の酸素濃度は、 Nd— Fe— B焼結磁 石を製作するような数〜数十 ppmの方が磁石体の酸ィ匕を抑制できるために好まし ヽ 力 反応装置に真空排気系を付加する必要があり、極低酸素濃度に到達するのに 長時間を要する。
[0031] このため、種々の酸素濃度条件下で磁石体の表面酸化状態と磁気特性を実験的 に調査した結果、酸素濃度が 1容積%までは外観上表面状態の差異はなぐまた、 酸素濃度 1%の雰囲気中で処理した場合は、酸素濃度 5ppmの雰囲気中で処理し た場合と比べて保磁力などの磁気特性の変動はおよそ 2%低下する程度であること から、酸素濃度が 1容積%以下の雰囲気下で行うことは差し支えない。なお、 1容積 %を超えると処理中での磁石表面の酸ィ匕が大きくなつて、保磁力の低下も大きくなる [0032] 上記の雰囲気及び温度条件においては、磁石体及び各化合物粉末ともに溶融す ることなく固相で反応が行える。 800°C未満では上記式の反応を終了するのに数十 〜百時間を要するために適切でなぐ 1100°Cを超える場合には磁石の結晶粒径が 粗大化して保磁力が低下する。従って、反応温度は 800〜1100°Cとするのが必要 であり、より好ましくは 850〜1000°Cが良い。
[0033] この反応により、 Dy金属は還元されて磁石表面に析出し、同時に Dy金属は磁石 内部の結晶粒界相に選択的に拡散浸透する。磁石表面には拡散できずに表面に留 まった Dy金属層が形成される。
[0034] 反応後は、磁石体を耐熱容器内から取り出して純水洗浄して乾燥することにより、 磁石体表面の CaO粉末が除去されて表面に留まった Dy金属層が被覆された清浄 な磁石表面を得ることができる。なお、上記反応終了後に 400〜650°Cで 30分〜 2 時間程度の時効処理を追加することにより、粒界の Ndリッチ相の均一な生成を助長 して保磁力のさらなる向上を図ることもできる。 Ndリッチ相の生成温度領域は 500〜 600°Cであるため、 400°C未満では効果がほとんどなぐ 650°Cを超えると該相が過 大に成長して却って保磁力の低下を招くために、時効処理を追加する場合の温度範 囲は 400〜650°Cとするのが良い。
[0035] こうして得られた磁石は、上記の粒界改質処理の原理で記述したように、 Dy金属成 分が磁石表面から内部に拡散浸透して、結晶粒界相に Dy元素が富化した構造とな つている。この表面層は、 Dy金属又は磁石中の Ndと Feがー部反応によって取り込 まれた Dyリッチな層となっているために、 Nd Fe Bより空気中でより安定であるため
2 14
、数十 °Cで且つ比較的低湿度環境下で使用する場合にはニッケルメツキや榭脂塗 装などの防鲭皮膜を省略することも可能である。
[0036] <第二の方法 >液相還元法
例えば、 M金属化合物の一例としての DyF粉末と LiF粉末と化学的還元剤である
3
Ca金属粒を混合したものを黒鉛のルツボなどの耐熱容器内に装填し、その中に Nd Fe— B系磁石体を埋没させる。この耐熱容器を上記第一の方法と同様の雰囲気 炉にセットし、 850〜: L 100°Cの温度で 5分〜 1時間程度保持して冷却する。
[0037] この条件においては、 Ca金属を溶融させ、且つ M金属元素のフッ化物、酸化物、 又は塩化物の融点降下剤の役目を果たす LiFを利用して溶融体を形成しながら液 相で反応を進ませる。 LiF同様に融点を降下させて用いられる塩類としては、 Kaや N aのホウ酸塩、炭酸塩、硝酸塩、水酸ィ匕物などが使用できる。これにより、第一の方法 における反応と同じく Dy金属の還元が起こり、磁石表面への Dy金属の還元析出と 磁石内部への拡散が同時に行われる。磁石表面には拡散できずに表面に留まった Dy金属層が形成される。
[0038] この場合の基本的な還元反応は以下の式により行われ、 LiFは直接的には Dyの 還元反応には関与して 、な 、。
2DyF + 3Ca→2Dy+ 3CaF
3 2
[0039] 反応後は、磁石体を取り出して超音波を加えながら純水洗浄して乾燥することによ り、 CaFが除去されて表面に留まった Dy金属層が被覆された磁石表面を得ることが
2
できる。こうして得られた磁石は、第一の方法と同様に、上記の粒界改質処理の原理 で記述したように、 Dy金属成分が磁石表面から内部に拡散浸透して、結晶粒界相に Dy元素が富化した構造となっている。
[0040] <第三の方法 >溶融塩電解還元法
例えば、 TbF粉末と LiF粉末、及び融点を約 1000°C以下に降下させる Baなどの
3
金属塩類などをルツボなどの耐熱容器内に装填する。陰極にはステンレス鋼製の籠 を使用し、その中に磁石体を入れ、陽極に黒鉛、不溶性の Ti、 Moなどの金属又は 合金棒などを使用し、陰極及び陽極を耐熱容器内に埋設させ、耐熱容器を Arガス が流通する雰囲気炉にセットし、 800〜1000°Cで溶融物を生成させて、 1〜: LOV程 度、 0. 03〜0. 5A/cm2程度の電流密度で、 5分〜 1時間程度電解を行い、電解を 停止して冷却する。
[0041] 陽極として、不溶性の金属 Z合金の代わりに、 M金属を可溶性陽極として使用して もよい。その場合には、磁石表面に還元析出する M金属は、酸化物やフッ化物原料 から還元されたものと、陽極成分が溶解して電解析出したものとの合成したものにな る。
[0042] 用いる Li金属又は Ba金属又はそれらの塩類の種類と量によって、溶融物の生成温 度が異なるが、溶融した後は速やかにステンレス鋼製の網を前後進や回転させて、 磁石体への Tb金属の還元拡散をむらなく行えるようにする。この場合の還元反応は 、電解工程において Tbイオンが陰極となる磁石体に到達し、その場で電子を受け取 ることによって金属 Tbを生成し、磁石体表面への Tb金属の還元析出と磁石内部へ の拡散が行われる。磁石表面には拡散できずに表面に留まつた Tb金属層が形成さ れる。
[0043] 反応後は、網籠力 磁石体を取り出して純水洗浄して乾燥し、表面に留まった Tb 金属層が形成された磁石体を得ることができる。こうして得られた磁石は、第一、第二 の方法と同様に、上記の粒界改質処理の原理で記述したように、 Tb金属成分が磁 石表面から内部に拡散浸透して、結晶粒界相に Tb元素が富化した構造となってい る。
[0044] 磁石表面に還元析出する M金属の量については、上記第一〜第三の方法におい て温度と処理時間を変更することによって容易に調整できる。本発明の方法におい ては、高温還元反応を用いるために磁石体表面に還元析出する M金属は、析出す ると同時に一部は磁石内部に拡散浸透していき、表面の M金属のみの厚さを明確に 判定することが困難である。
[0045] 図 1は、従来の焼結磁石の断面 (a)と本発明の焼結磁石の断面 (b)の、結晶組織 のモデル図である。図 1 (a)より、従来の焼結磁石は Nd Fe B結晶粒を Ndリッチ粒
2 14
界相が取り囲んだ組織をもち、 Dy元素を少量含有する場合も Dy元素は Nd Fe B
2 14 結晶粒と Ndリッチ粒界相それぞれに分配されて存在し、また磁石内部と表面による 組織構造に差異はない。しかし、本発明の焼結磁石の断面 (b)によれば、磁石表面 力 拡散して侵入する Dy元素は、表面層のごく一部の Nd Fe B結晶内に侵入する
2 14
が内部のほとんどの Nd Fe B結晶内には侵入せず、一方、 Ndリッチ粒界相にその
2 14
多くが侵入して磁石表面側に濃ぐ内部に行くに従ってやや薄く存在する濃度勾配 をもつ組織構造となる。
[0046] 図 2は、代表的な本発明試料 (4)の EPMA画像における Dy元素の分布状況を示 している。 Nd Fe B結晶粒の中には磁石最表面の 1層又は 2層において M金属元
2 14
素が浸透しているに過ぎず、磁石体の表面から内部に向力つて約 3〜6 mの深さま で存在する Dy金属層と、 Dy金属層の直下から約 40〜50 μ mの深さまで存在する D y金属の拡散層が認められる。このように、本発明の還元拡散法では、磁石最表面の 数層の Nd Fe B主相結晶内へは M金属元素が侵入するが、大部分の主相結晶に
2 14
は実質的に新たな M金属元素は導入されないために、残留磁束密度の低下が抑制 され、 M金属元素が結晶粒界に選択的に浸透するために保磁力の向上が果たされ る。
[0047] 磁石の保磁力は、粒界改質処理後の図 2に示すような磁石断面の深さ方向に M金 属元素の濃度勾配をもつ組織構造によって影響され、拡散層の深さが大きいほど大 きな保磁力が得られる。一方、 M金属元素を拡散浸透させると、粒界相の厚さ(幅)は 数十%程度広がるが、この拡散層部分の粒界相の厚さが厚く且つ拡散層の深さが深 くなるほど M金属成分を多量に含むことになつて残留磁束密度の低下をもたらす。従 つて、残留磁束密度の低下を抑制しつつ保磁力の大幅な増加を達成するには、 M 金属元素が過剰とならないように、使用する M金属元素化合物の量や反応温度と時 間を適正に制御することが重要である。
[0048] 一般に、このような条件を満たすには、磁石体に拡散した分及び拡散できずに表面 に金属層として留まっている分を合わせた全 M金属成分が磁石の全質量に対して占 める割合が 0. 1〜: LO質量%であることが必要であり、 0. 2〜5質量%が高性能な磁 気特性を得るのに好適である。
[0049] 磁石の全質量に対して占める割合が 1質量%位の少量の Dyを短時間拡散浸透さ せた場合は、保磁力が数十%増力!]しても残留磁束密度の低下が無視できる程度の ために、最大エネルギー積 (BHmax)は処理前に比べて同等かやや増加し、減磁曲 線の角型性 (squareness)もやや向上する。また、 2〜3質量%位の Dy含有量におい ては残留磁束密度がやや低下するものの、粒界相への Dy浸透が充分に行われるた めに減磁曲線の角型性が向上する結果、上述同様に最大エネルギー積は処理前に 比べて同等かやや増加する。
[0050] さらに、 M金属元素を利用して効果的な保磁力向上を実現する別の方法として、比 較的多量の M金属元素を磁石表面に供給して還元拡散処理を長時間行うことにより 、磁石内の深部まで M金属元素を磁石の全質量に対して占める割合が 2〜4質量% 位になるように浸透させた後、 M金属元素が過剰で残留磁束密度が低下した磁石表 面層を除去することも可能である。還元拡散後表面を 0. 05mm程度以下削った場 合には、削ったことによる保磁力の目減りはほとんどなぐまた、残留磁束密度は削つ ても変わらない。
[0051] 磁石表面層の除去法としては、平面又は円筒研削盤による表面研削方法などを用 いることができる。また、酸を用いて表面層を溶解除去することも可能であるが、その 場合には充分にアルカリ中和や洗浄を行うことが必要となる。
[0052] また、その後、さらに該磁石を裁断して所定の形状寸法をした磁石を複数個作製す る方法を採用することもできる。裁断は、切断刃の外周部にダイヤ又は GC (グリーン コランダム)砲粒を固着させた円盤状の切断刃を用いて、磁石片を固定してから一枚 一枚磁石を切断するか、又は複数枚の刃を取り付けた切断機 (マルチソー)によって 、同時に複数個を裁断してもよい。
[0053] 例えば、厚さが lmm以下の磁石に粒界改質処理を行う場合には、少量の M金属 元素を利用した短時間処理で所望の磁気特性を得ることが容易であるが、厚さが 5 力も 10mm程度の磁石においては M金属元素を磁石深くまで充分に浸透させて、磁 石全体をほぼ均質な組織状態にすることが必要である。その後に裁断を行うことによ り、磁石製造工程におけるプレス成形回数を節減することも好適な方法である。 実施例 1
[0054] 以下、本発明を実施例にしたがって詳細に説明する。
Nd Fe B組成の合金インゴットから、ストリップキャスト法によって厚さ約 0. 2
12. 5 79. 5 8
mmの合金薄片を製作した。次に、この薄片を容器内に充填して 300kPaの水素ガ スを室温で吸蔵させた後に放出させることにより、大きさ 0. 1〜0. 2mmの不定形粉 末を得て、引き続きジェットミル粉砕をして約 3 mの微粉末を製作した。この微粉末 を金型に充填し、 800kAZmの磁界を印加しながら lOOMPaの圧力を加えて成形 し、真空炉に装填して 1080°Cで 1時間焼結をした。この焼結体を切断加工して、 5m m X 5mm X 3mmの厚さ方向に異方性をもつ板状試料を複数個製作し、その一つを そのまま比較例試料(1)とした。
[0055] 次に、 Dy O粉末 2gと CaH粉末 0. 7gを混合したものをステンレス鋼製のルツボ
2 3 2
に装填し、上記の板状試料を埋設させ、 Arガスを流通する雰囲気炉にセットした。炉 温を制御してルツボ内の最高温度を 700、 800, 900, 1000, 1100, 1150。Cとし、 保持時間を各 1時間として Dy金属の固相還元と拡散浸透処理を行って冷却した。
[0056] モニター計測した雰囲気炉内の酸素濃度は、反応開始から終了までの間 0. 05〜 0. 2容積%であった。各試料をルツボカゝら取り出して磁石体表面の CaO粉末をブラ シで除去した後、超音波を加えながら純水洗浄を行い、アルコールで水分を置換し て乾燥し、加熱処理温度 700〜1150°Cの順に従って本発明試料(1)〜(6)とした。
[0057] 各試料の磁気特性は、板厚 3mmの方向に 4. 8MAZmのパルス着磁をした後、 振動試料型磁力計 (VSM;Vibrating Sample Magnetometer)を用いて測定した。ま た、測定後は各試料を粉砕して ICPdnductively Coupled Plasma)分析をして、各試 料中に含まれる Dy量を測定した。表 1に、各試料の磁気特性値と Dy量を示す。なお 、 Dy金属が膜として析出して拡散して 、な 、場合を仮に想定して析出量を膜厚で計 算すると、本発明試料(1)は、 0. 3ミクロン、本発明試料 (6)は、 3. 4ミクロンに相当 する。また、図 3に、各試料の保磁力と残留磁束密度を、図 4に、各試料の Dy量をグ ラフ化して示す。
[0058] [表 1]
Figure imgf000015_0001
図 3から明らかなように、本発明試料(1)〜(6)は、いずれも未処理の比較例試料( 1)と比較して、残留磁束密度 (Br)の低下がほとんど見られずに、著 、保磁力(Hcj )の増加が認められた。本発明試料(1)は、処理温度が 700°Cであるために Dyの還 元反応が充分に進まず、磁石中に取り込まれた Dy量は 0. 1質量%未満であつたた めに保磁力の増加はわずかであった力 処理時間を 1時間以上とすることによってさ らに保磁力の増加を見込むことができる。
[0060] また、本発明試料(6)は、図 2からわ力るように試料中の Dy量が増加しているが、 高温度の処理のために Nd Fe B結晶粒が粗大に成長して、残留磁束密度と保磁
2 14
力の値がともにやや低下する傾向がある。また、図 4から、処理温度の上昇に従って Ca還元による Dy金属の析出と磁石中への拡散量が増加していることがわかる。
[0061] さら〖こ、 1000°Cで処理した本発明試料 (4)と同等の保磁力を、通常の Nd— Dy— Fe— B系焼結磁石で実現した際の Dy含有量を、図 4中に黒丸印で挿入した。これよ り、本発明の方法によれば、従来の焼結磁石のほぼ半分の Dy含有量で所望の保磁 力を達成できることが明らかとなり、従って、希少資源である Dy元素を節減できる効 果がある。
実施例 2
[0062] Dy O粉末 lgと CaH粉末 0. 3gを混合したものに少量のメタノールを添カ卩してスラ
2 3 2
リーとし、実施例 1で用いたものと同じ各板状試料に塗布後乾燥させた。他方、比較 例として、 Dy O粉末 lgのみを同様にスラリーとし、同様に塗布後乾燥させた。これ
2 3
らを、それぞれステンレス鋼製のルツボに装填し、 Arガス雰囲気中、 920°Cと 1000 °Cで各 2時間の加熱処理により固相還元と拡散浸透を行なった。
[0063] 処理後の磁石試料は、表面の CaO粉末を除去し、純水とアルコール洗浄をした後 に乾燥した。前者の混合粉末を用いたものを本発明試料 (7)〜 (8)とし、後者の Dy
2
O単独粉末を用いたものを比較例試料 (2)〜(3)とした。
3
[0064] 表 2に、各試料の磁気特性値と Dy量を示す。なお、表中に、実施例 1で記載した比 較例試料(1)を再掲載した。また、図 5に、比較例試料(1)〜(3)の減磁曲線を、図 6 に、比較例試料(1)と本発明試料 (7)〜(8)の減磁曲線を示す。
[0065] [表 2] 処理温度 Hcj B r ( Β Η) max D y 試料
CO ( A/m) (T) ( k Jノ m 3 ) (質量%) 比較例 ( 1 ) 0. 93 1. 1 362 0 比較例 (2 ) 920 1. 05 1. 40 334 0. 02 比較例 (3 ) 1000 1. 48 1. 39 298 0. 29 本発明 (7 ) 920 1. 36 1. 39 365 0. 27 本発明 (8 ) 1000 1. 60 1. 0 381 0. 38
[0066] 表 2から明らかなように、 Dy O粉末のみを用いて 920°Cで熱処理を行った比較例
2 3
試料(2)は、未処理の比較例試料(1)と比較して、 Dy元素の含有量がわずかなため に保磁力の増加がわずかで、一方、最大エネルギー積((BH) max)は低下した。 10 00°Cで加熱処理を行った比較例試料 (3)は、保磁力が大幅に増カ卩した反面、最大 エネルギー積が著しく低下した。
[0067] この理由は、図 5に見られるとおり、減磁曲線に大きな段差が現れたためであり、磁 石試料表面を X線回折した結果、 NdFe及び a—Fe相が生成していることがわかつ
2
た。すなわち、これらの相が生成した原因は Dy Oが高温加熱される過程で Nd F
2 3
e B磁石本体と反応して還元されたためであり、その結果、磁石本体の特性が大き く低下したためと推察される。
[0068] 一方、 CaH粉末を還元剤として用いた本発明試料 (7)及び (8)は、比較例試料(1
2
)と比較して保磁力の大幅な増加とエネルギー積の向上が認められた。また、図 6に 示したように減磁曲線は 、ずれも角型性が良好でなだらかな曲線を描 、ており、還 元剤を用いた場合には Nd Fe B磁石本体に損傷を与えることなぐ保磁力などの 磁気特性の向上を図ることができた。
実施例 3
[0069] DyF粉末 3gと、金属 Ca粒 0. 9g、及び LiF粉末 5gを混合して黒鉛ルツボ内に装
3
填し、実施例 1で用いた板状の磁石試料をその粉末の中に埋設した。続いて Arガス 雰囲気炉にセットし、炉温を制御してルツボ内の最高温度 900°Cで 5〜60分間の溶 融液相還元反応及び拡散浸透処理を行って冷却した。
[0070] 各試料をルツボカ 取り出して磁石体表面の反応残渣をブラシで除去した後、希 塩酸で CaF粉末を溶解させて除去し、さらに純水とアルコール洗浄をして乾燥した。 得られた試料は、処理時間 5〜60分の順に従って本発明試料(9)〜(14)とし、実施 例 1と同様に磁気特性を測定した。なお、 Dy金属が膜として析出して拡散していない 場合を仮に想定して析出量を膜厚で計算すると、本発明試料 (9)は、 0. 2ミクロン、 本発明試料(14)は、 3. 0ミクロンに相当する。
[0071] 図 7から明らかなように、本発明試料(9)〜( 14)は未処理の比較例試料(1)と比較 して、残留磁束密度はほとんど低下せず、保磁力の大幅な増加が認められた。なお 、 900°Cで 60分間の加熱処理をした本発明試料(14)は、同温度で 45分間の加熱 処理をした本発明試料(13)とほぼ同等の保磁力を示していることから、本実施例に おいては、 Dyの還元による析出と磁石内部への拡散は、 45分の処理時間で充分で あることがわかった。
[0072] さらに、保磁力の増加が磁石の耐熱性に及ぼす影響を知るために、本発明試料(1 3)と比較例試料(1)を着磁してそれらの表面磁束を測定した後、 120°Cのオーブン に装填した。そして所定時間ごとにオーブン力も各試料を取り出して室温に冷却し、 減磁率の変化を 1000時間まで調べた。減磁率は、 120°Cで所定時間保持した後の 磁束量を、室温での初期磁束量で割り算して求めた。図 8に、各試料の減磁率と経 過時間の関係を示す。本発明試料(13)の減磁率は、比較例試料(1)の約 1Z5にな り、また 1000時間までの減磁率の変化も小さぐ従って高温度での減磁を大幅に改 善できることが明らかになった。
実施例 4
[0073] Nd— Pr-Fe-B系焼結磁石から、寸法が 6mm X 6mmX 10mmの磁石片を 2個切 り出して一方をそのまま比較例試料 (4)とした。他方を、実施例 3と同様に DyF粉末
3
3gと、金属 Ca粒 0. 9g、及び LiF粉末 5gを混合した粉末中に埋設し、 Ar雰囲気中で 950°C、 6時間の溶融液相還元反応及び拡散浸透処理を行って冷却した。
[0074] この試料表面を洗浄後乾燥して、これを本発明試料(15)とした。次に、振動試料 型磁力計を用いて磁気特性を測定した後に、さらにこの試料全面を平面研削盤によ つて各 40ミクロン研削し、表面層を除去したものを本発明試料(16)とし、同様に磁気 測定を行った。最後に、この厚さ 10mmの試料の中央部分の厚さ 2mmを切り出して 、寸法が約 6mm X 6mm X 2mmの磁石試料を得て本発明試料(17)とし、磁気測定 を行った。
[0075] [表 3]
Figure imgf000019_0001
[0076] 表 3から明らかなように、溶融液相還元処理を行ったままの本発明試料(15)は、比 較例試料 (4)と比較して保磁力が大幅に増加した。しかし、残留磁束密度と最大工 ネルギ一積は処理前よりやや低下した。この原因は高温長時間処理によって Dy成 分が試料の深部まで浸透した反面、表面部ではやや Dy成分が過剰となったためで ある。
[0077] 一方、表面層を除去した本発明試料(16)、及び試料の中央部を切り出した本発明 試料(17)は、共に保磁力がほとんど低下せずに、残留磁束密度は処理前の値とほ ぼ同等に、最大エネルギー積は処理前よりさらに向上した。従って、磁石試料の大き さによって還元拡散処理を実施したまま、あるいは処理後に切り出し等の加工をカロえ るなど、適宜選択して所望の磁気特性を有する磁石を得ることが可能である。
実施例 5
[0078] Nd Dy Fe Co B組成の合金インゴットから、実施例 1と同様に粉砕、成形、
10. 5 2 78. 5 1 8
焼結、切断工程を経て、 6mm X 30mm X 2mmの厚さ方向に異方性をもつ板状試 料を複数個製作し、その一つをそのまま比較例試料 (5)とした。次に、 TbF粉末 3g
3 と LiF粉末 3g、及び Na B O粉末 2gを混合したものを BN製ルツボに装填した。ステ
2 4 7
ンレス鋼製網籠の中に板状試料を入れて陰極とし、 Mo金属を陽極としてルツボ内に 埋設させ、続いてルツボを Arガス雰囲気炉にセットし、炉温を制御してルツボ内の最 高温度 920°Cとし、陰極及び陽極を外部電源に接続して電解電圧 5V、電流密度 80 mA/cm2で、それぞれ 5, 10, 20, 30分間溶融塩電解を行った後、電解を停止して 冷却した。 [0079] その後、網籠から磁石体を取り出して純水洗浄して乾燥し、超音波を加えながら純 水洗浄を行い、アルコールで水分を置換して乾燥した。処理時間 5, 10, 20, 30分 間の順に従って、本発明試料(18)〜(21)とした。なお、 Dy金属が膜として析出して 拡散していない場合を仮に想定して析出量を膜厚で計算すると、本発明試料(18) は、 1. 2ミクロン、本発明試料(20)は、 6ミクロンに相当する。
[0080] 表 4に、各試料の磁気特性値と Tb量を示す。なお、溶融塩電解還元法で得られた 各試料中には分析の結果 0. 3質量%以下のフッ素が取り込まれていることが明らか になった。表 4から、処理時間が増加するに従って保磁力が著しく増加し、一方残留 磁束密度の低下は比較的小さいことが明らかになった。
[0081] [表 4]
Figure imgf000020_0001
産業上の利用可能性
[0082] 本発明の Nd— Fe— B系焼結磁石の粒界改質方法によれば、 Dyや Tb金属成分が 主相内にほとんど取り込まれずに粒界相に選択的に存在した組織構造により、著しく 保磁力を増加させることが可能となる。さらには、従来は磁石合金中の Nd Fe B
2 14 主 相内に取り込まれて残留磁束密度低下の要因となっていた Dyや Tb成分の量を 1/2 力も 1/3程度に大幅に減らすことができ、希少資源の節減と磁石コストの低減効果が ある。
図面の簡単な説明
[0083] [図 1]従来の焼結磁石の断面 (a)と本発明の焼結磁石の断面 (b)の、結晶組織のモ デル図である。
[図 2]本発明試料 (4)の EPMA画像における Dy元素の分布状況である。
[図 3]本発明試料(1)〜(6)と比較例試料(1)における、還元拡散処理の加熱温度と 残留磁束密度、保磁力の関係を表す図である。
圆 4]本発明試料(1)〜(6)と比較例試料(1)における、還元拡散処理の加熱温度と Dy含有量を表す図である。
[図 5]比較例試料(1)〜(3)の、減磁曲線を表す図である。
圆 6]本発明試料 (7)及び (8)と、比較例試料(1)の、減磁曲線を表す図である。 圆 7]本発明試料 (9)〜(14)と比較例試料 (2)における、還元拡散処理の加熱時間 に対する残留磁束密度と保磁力の関係を表す図である。
圆 8]本発明試料(13)と比較例試料(1)の、 120°Cで所定時間保持した後の磁束量 を、室温での初期磁束量で割り算して求めた減磁率と経過時間の関係を表す図であ る。

Claims

請求の範囲
[I] M金属元素(但し、 Mは、 Pr, Dy, Tb,又は Ho)のフッ化物、酸化物、又は塩化物を 還元処理することにより、 Nd Fe B主結晶の周囲を取り囲む Ndリッチ結晶粒界相を
2 14
有する Nd— Fe— B系焼結磁石体表面力 該粒界相に該 M金属元素を拡散浸透さ せることを特徴とする Nd— Fe— B系磁石の粒界改質方法。
[2] 化学的還元剤を用いて還元処理することを特徴とする請求項 1記載の Nd— Fe— B 系磁石の粒界改質方法。
[3] 請求項 2記載の方法にお 、て、化学的還元剤が Ca金属又は Mg金属、又はそれら の水素化物であることを特徴とする Nd— Fe— B系磁石の粒界改質方法。
[4] 請求項 3記載の方法において、化学的還元剤として Ca金属又は Mg金属を用い、 M 金属元素のフッ化物、酸化物、又は塩ィヒ物の融点降下剤をカ卩えて液相で還元処理 することを特徴とする Nd— Fe— B系磁石の粒界改質方法。
[5] M金属元素のフッ化物、酸化物、又は塩化物と、 Li金属又は Ba金属、又はそれらの 塩類とを加熱溶融し、磁石体を陰極とし、金属又は合金、又は黒鉛を不溶性陽極とし て溶融塩電解により還元処理することを特徴とする請求項 1記載の Nd— Fe— B系磁 石の粒界改質方法。
[6] 請求項 5記載の方法にお 、て、不溶性陽極に代えて、 M金属元素の金属 Z合金を 可溶性陽極とし用いることを特徴とする Nd— Fe— B系磁石の粒界改質方法。
[7] 請求項 1記載の改質方法において、還元処理を、酸素濃度が 1容積%以下の低酸 素雰囲気下で行うことを特徴とする Nd— Fe— B系磁石の粒界改質方法。
[8] 請求項 1記載の方法において、還元処理後引き続き時効処理することを特徴とする
Nd— Fe— B系磁石の製造方法。
[9] 請求項 1記載の方法により得られた磁石の表面層を除去することを特徴とする Nd—
Fe— B系磁石の製造方法。
[10] 請求項 1記載の方法により得られた磁石を複数個の磁石に裁断することを特徴とする
Nd— Fe— B系磁石の製造方法。
[II] 請求項 1記載の改質方法により粒界改質された Nd— Fe— B系磁石。
PCT/JP2005/022963 2004-12-16 2005-12-14 粒界改質したNd-Fe-B系磁石及びその製造方法 WO2006064848A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05816642A EP1843360A4 (en) 2004-12-16 2005-12-14 ND-FE-B-MAGNET WITH MODIFIED GRAIN LIMIT AND MANUFACTURING PROCESS THEREFOR
US11/793,272 US7824506B2 (en) 2004-12-16 2005-12-14 Nd-Fe-B magnet with modified grain boundary and process for producing the same
CN2005800425299A CN101076870B (zh) 2004-12-16 2005-12-14 已晶间改质的Nd-Fe-B系磁铁和它的制造方法
JP2006548887A JP4548673B2 (ja) 2004-12-16 2005-12-14 Nd−Fe−B系磁石の粒界改質方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004365088 2004-12-16
JP2004-365088 2004-12-16

Publications (1)

Publication Number Publication Date
WO2006064848A1 true WO2006064848A1 (ja) 2006-06-22

Family

ID=36587903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022963 WO2006064848A1 (ja) 2004-12-16 2005-12-14 粒界改質したNd-Fe-B系磁石及びその製造方法

Country Status (7)

Country Link
US (1) US7824506B2 (ja)
EP (1) EP1843360A4 (ja)
JP (1) JP4548673B2 (ja)
KR (1) KR100863809B1 (ja)
CN (1) CN101076870B (ja)
TW (1) TWI302712B (ja)
WO (1) WO2006064848A1 (ja)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303433A (ja) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd 希土類永久磁石
JP2006303434A (ja) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd 傾斜機能性希土類永久磁石
JP2006303436A (ja) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd 希土類永久磁石
JP2006303435A (ja) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd 傾斜機能性希土類永久磁石
JP2007288021A (ja) * 2006-04-19 2007-11-01 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石の製造方法
JP2007287874A (ja) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd 希土類永久磁石材料の製造方法
JP2008061333A (ja) * 2006-08-30 2008-03-13 Shin Etsu Chem Co Ltd 永久磁石回転機
WO2008123251A1 (ja) * 2007-03-27 2008-10-16 Hitachi Metals, Ltd. 永久磁石式回転機およびその製造方法
JP2008263179A (ja) * 2007-03-16 2008-10-30 Shin Etsu Chem Co Ltd 希土類永久磁石及びその製造方法
JP2009043813A (ja) * 2007-08-07 2009-02-26 Ulvac Japan Ltd 永久磁石及び永久磁石の製造方法
JP2009165349A (ja) * 2009-04-03 2009-07-23 Shin Etsu Chem Co Ltd 永久磁石回転機及び永久磁石回転機用永久磁石セグメントの製造方法
EP2141710A1 (en) 2008-07-04 2010-01-06 Daido Tokushuko Kabushiki Kaisha Rare earth magnet and production process thereof
JPWO2008032426A1 (ja) * 2006-09-15 2010-01-21 インターメタリックス株式会社 NdFeB焼結磁石の製造方法
EP2270822A1 (en) 2009-07-01 2011-01-05 Shin-Etsu Chemical Co., Ltd. Rare earth magnet and its preparation
WO2011004894A1 (ja) * 2009-07-10 2011-01-13 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法
JP2011019401A (ja) * 2010-10-28 2011-01-27 Shin-Etsu Chemical Co Ltd 永久磁石回転機用永久磁石セグメントの製造方法
JP2011211041A (ja) * 2010-03-30 2011-10-20 Tdk Corp 希土類焼結磁石及びその製造方法、並びにモータ及び自動車
WO2011136223A1 (ja) * 2010-04-27 2011-11-03 インターメタリックス株式会社 粒界拡散処理用塗布装置
US20120086531A1 (en) * 2006-08-23 2012-04-12 Hiroshi Nagata Permanent magnet and a manufacturing method thereof
EP2447960A1 (en) 2010-10-29 2012-05-02 Shin-Etsu Chemical Co., Ltd. Anisotropic rare earth sintered magnet and making method
WO2012099186A1 (ja) * 2011-01-19 2012-07-26 日立金属株式会社 R-t-b系焼結磁石の製造方法
EP2650887A2 (en) 2012-04-11 2013-10-16 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method
US8562756B2 (en) 2008-01-11 2013-10-22 Intermetallics Co., Ltd. NdFeB sintered magnet and method for producing the same
JP2014017480A (ja) * 2012-06-15 2014-01-30 Nissan Motor Co Ltd Nd−Fe−B系磁石の粒界改質方法
JP2014063996A (ja) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法
JP2014063998A (ja) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法
JP2014063997A (ja) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法
CN104164646A (zh) * 2014-08-01 2014-11-26 浙江英洛华磁业有限公司 一种钕铁硼表面渗镝方法和一种钕铁硼表面渗铽方法
JP2015154051A (ja) * 2014-02-19 2015-08-24 信越化学工業株式会社 希土類永久磁石の製造方法
WO2015163397A1 (ja) * 2014-04-25 2015-10-29 日立金属株式会社 R-t-b系焼結磁石の製造方法
JP2016122863A (ja) * 2015-08-28 2016-07-07 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド 磁石の保磁力を向上させる方法
JP2016129249A (ja) * 2015-08-28 2016-07-14 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド 永久磁石材料の製造方法
WO2017077830A1 (ja) * 2015-11-02 2017-05-11 日産自動車株式会社 Nd-Fe-B系磁石の粒界改質方法、および当該方法により処理された粒界改質体
JP2018098430A (ja) * 2016-12-16 2018-06-21 日立金属株式会社 R−t−b系焼結磁石の製造方法
WO2018138841A1 (ja) * 2017-01-26 2018-08-02 日産自動車株式会社 焼結磁石の製造方法
CN110211797A (zh) * 2019-06-17 2019-09-06 江西理工大学 一种提升烧结钕铁硼磁体磁性能的方法
US10614952B2 (en) 2011-05-02 2020-04-07 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnets and their preparation
CN112201466A (zh) * 2020-11-06 2021-01-08 亚星智联(厦门)科技有限公司 一种用于晶界扩散渗金属的钕铁硼磁铁改性装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY142088A (en) * 2005-03-23 2010-09-15 Shinetsu Chemical Co Rare earth permanent magnet
TWI417906B (zh) * 2005-03-23 2013-12-01 Shinetsu Chemical Co 機能分級式稀土族永久磁鐵
TWI364765B (en) * 2005-03-23 2012-05-21 Shinetsu Chemical Co Rare earth permanent magnet
US7806991B2 (en) * 2005-12-22 2010-10-05 Hitachi, Ltd. Low loss magnet and magnetic circuit using the same
MY149353A (en) * 2007-03-16 2013-08-30 Shinetsu Chemical Co Rare earth permanent magnet and its preparations
EP2366187A1 (en) * 2008-12-01 2011-09-21 Zhejiang University Sintered nd-fe-b permanent magnet with high coercivity for high temperature applications
JP4961454B2 (ja) * 2009-05-12 2012-06-27 株式会社日立製作所 希土類磁石及びこれを用いたモータ
CN101707107B (zh) * 2009-11-23 2012-05-23 烟台首钢磁性材料股份有限公司 一种高剩磁高矫顽力稀土永磁材料的制造方法
KR101710714B1 (ko) 2009-12-31 2017-02-27 삼성전자주식회사 테라헤르츠 발진기용 멤스 소자 및 그 제조 방법
KR101201021B1 (ko) * 2010-03-31 2012-11-14 닛토덴코 가부시키가이샤 영구 자석 및 영구 자석의 제조 방법
CN102601367B (zh) * 2011-01-24 2016-02-03 北京中科三环高技术股份有限公司 一种辐射或多极取向磁环的热处理方法
CN102181820A (zh) * 2011-06-16 2011-09-14 安徽大地熊新材料股份有限公司 一种提高钕铁硼磁体材料矫顽力的方法
CN102280240B (zh) * 2011-08-23 2012-07-25 南京理工大学 一种低镝含量高性能烧结钕铁硼的制备方法
CN102568806A (zh) * 2011-12-29 2012-07-11 包头天和磁材技术有限责任公司 一种通过渗透法制备稀土永磁体的方法及方法中使用的石墨盒
CN104321838B (zh) 2012-02-23 2018-04-06 吉坤日矿日石金属株式会社 钕基稀土类永久磁铁及其制造方法
CN102930975B (zh) * 2012-10-24 2016-04-13 烟台正海磁性材料股份有限公司 一种R-Fe-B系烧结磁体的制备方法
DE102013224108A1 (de) * 2013-11-26 2015-06-11 Siemens Aktiengesellschaft Dauermagnet mit erhöhter Koerzitivfeldstärke
CN105632748B (zh) * 2015-12-25 2019-01-11 宁波韵升股份有限公司 一种提高烧结钕铁硼薄片磁体磁性能的方法
KR102317748B1 (ko) * 2017-11-10 2021-10-25 주식회사 엘지화학 자성 물질 및 이의 세정 방법
EP3713047A4 (en) * 2017-11-24 2021-01-13 Anhui Meizhi Precision Manufacturing Co., Ltd. PERMANENT MAGNET FOR MOTOR, ROTOR ARRANGEMENT WITH IT, MOTOR AND COMPRESSOR
CN108242336B (zh) * 2017-12-25 2019-12-03 江苏大学 一种高性能低成本复合磁体的制备方法
CN108389712A (zh) * 2018-01-16 2018-08-10 宁波招宝磁业有限公司 一种电泳还原制备高性能钕铁硼磁体的方法
CN108417374A (zh) * 2018-02-05 2018-08-17 宁波松科磁材有限公司 一种钕铁硼磁体的制备方法
CN109712797B (zh) * 2019-01-03 2021-06-18 浙江东阳东磁稀土有限公司 一种改善钕铁硼磁体晶界扩散磁性能一致性的方法
CN110373591A (zh) * 2019-08-01 2019-10-25 苏州航大新材料科技有限公司 一种磁性材料用钐钴铁铜锆合金及其制备方法
CN114496541B (zh) * 2022-01-17 2023-04-07 中南大学 一种高性能r-t-b永磁材料、及其扩散方法和扩散源

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054406A (ja) * 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd 耐酸化性のすぐれた永久磁石
JPS6274048A (ja) * 1985-09-27 1987-04-04 Sumitomo Special Metals Co Ltd 永久磁石材料及びその製造方法
JP2002105503A (ja) * 2000-07-24 2002-04-10 Kinya Adachi 磁性材料の製造方法、防錆層付き磁性材料粉末及びそれを用いたボンド磁石

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207546A (ja) 1985-03-12 1986-09-13 Tohoku Metal Ind Ltd 希土類磁石の製造方法
JPS63219548A (ja) 1987-03-10 1988-09-13 Namiki Precision Jewel Co Ltd 永久磁石の製造方法
JPH01117303A (ja) 1987-10-30 1989-05-10 Taiyo Yuden Co Ltd 永久磁石
JP3143156B2 (ja) 1991-07-12 2001-03-07 信越化学工業株式会社 希土類永久磁石の製造方法
JP3471876B2 (ja) * 1992-12-26 2003-12-02 住友特殊金属株式会社 耐食性のすぐれた希土類磁石及びその製造方法
US6237009B1 (en) * 1996-10-11 2001-05-22 Sun Microsystems, Inc. Lease renewal service
US20110307364A2 (en) * 1999-07-07 2011-12-15 TI Funding Group, L.L.C. Financing of tenant improvements
KR100771676B1 (ko) * 2000-10-04 2007-10-31 가부시키가이샤 네오맥스 희토류 소결자석 및 그 제조방법
US7058629B1 (en) * 2001-02-28 2006-06-06 Oracle International Corporation System and method for detecting termination of an application instance using locks
JP4122292B2 (ja) * 2001-10-26 2008-07-23 政信 西巻 有価証券リース取引サーバ
AU2002359001A1 (en) * 2001-12-28 2003-07-24 Access Co., Ltd. Usage period management system for applications
US7392302B2 (en) * 2002-02-21 2008-06-24 Bea Systems, Inc. Systems and methods for automated service migration
US20040199440A1 (en) * 2003-03-17 2004-10-07 Mcdaniel James Mark System and method for the sale and lease-back of governmental assets to private entities
JP2004296973A (ja) 2003-03-28 2004-10-21 Kenichi Machida 金属蒸気収着による高性能希土類磁石の製造
JP2005011973A (ja) * 2003-06-18 2005-01-13 Japan Science & Technology Agency 希土類−鉄−ホウ素系磁石及びその製造方法
US7454502B2 (en) * 2003-12-04 2008-11-18 International Business Machines Corporation System for transferring standby resource entitlement
JP4349253B2 (ja) * 2004-02-17 2009-10-21 株式会社デンソー 貸借支援システム、通信装置、サーバ
JP4490745B2 (ja) * 2004-06-29 2010-06-30 株式会社日立製作所 ホットスタンバイシステム
JP4639676B2 (ja) * 2004-07-21 2011-02-23 株式会社日立製作所 レンタルサーバシステム
CN1898757B (zh) 2004-10-19 2010-05-05 信越化学工业株式会社 稀土永磁材料的制备方法
US7464165B2 (en) * 2004-12-02 2008-12-09 International Business Machines Corporation System and method for allocating resources on a network
CA2550712A1 (en) * 2006-02-14 2007-08-14 Manderson M & F Consulting Method of determining parameters of a long-term lease
US20070244779A1 (en) * 2006-03-28 2007-10-18 Ran Wolff Business to business financial transactions
US20080091806A1 (en) * 2006-10-11 2008-04-17 Jinmei Shen Dynamic On-Demand Clustering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054406A (ja) * 1983-09-03 1985-03-28 Sumitomo Special Metals Co Ltd 耐酸化性のすぐれた永久磁石
JPS6274048A (ja) * 1985-09-27 1987-04-04 Sumitomo Special Metals Co Ltd 永久磁石材料及びその製造方法
JP2002105503A (ja) * 2000-07-24 2002-04-10 Kinya Adachi 磁性材料の製造方法、防錆層付き磁性材料粉末及びそれを用いたボンド磁石

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303434A (ja) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd 傾斜機能性希土類永久磁石
JP2006303436A (ja) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd 希土類永久磁石
JP2006303435A (ja) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd 傾斜機能性希土類永久磁石
JP2006303433A (ja) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd 希土類永久磁石
JP2007287874A (ja) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd 希土類永久磁石材料の製造方法
JP2007288021A (ja) * 2006-04-19 2007-11-01 Hitachi Metals Ltd R−Fe−B系希土類焼結磁石の製造方法
US20120086531A1 (en) * 2006-08-23 2012-04-12 Hiroshi Nagata Permanent magnet and a manufacturing method thereof
JP2008061333A (ja) * 2006-08-30 2008-03-13 Shin Etsu Chem Co Ltd 永久磁石回転機
JP5226520B2 (ja) * 2006-09-15 2013-07-03 インターメタリックス株式会社 NdFeB焼結磁石の製造方法
JPWO2008032426A1 (ja) * 2006-09-15 2010-01-21 インターメタリックス株式会社 NdFeB焼結磁石の製造方法
JP2008263179A (ja) * 2007-03-16 2008-10-30 Shin Etsu Chem Co Ltd 希土類永久磁石及びその製造方法
JP5310544B2 (ja) * 2007-03-27 2013-10-09 日立金属株式会社 永久磁石式回転機およびその製造方法
EP2131474A1 (en) * 2007-03-27 2009-12-09 Hitachi Metals, Ltd. Permanent magnet type rotator and process for producing the same
EP2131474A4 (en) * 2007-03-27 2017-03-29 Hitachi Metals, Ltd. Permanent magnet type rotator and process for producing the same
JPWO2008123251A1 (ja) * 2007-03-27 2010-07-15 日立金属株式会社 永久磁石式回転機およびその製造方法
WO2008123251A1 (ja) * 2007-03-27 2008-10-16 Hitachi Metals, Ltd. 永久磁石式回転機およびその製造方法
JP2009043813A (ja) * 2007-08-07 2009-02-26 Ulvac Japan Ltd 永久磁石及び永久磁石の製造方法
US8562756B2 (en) 2008-01-11 2013-10-22 Intermetallics Co., Ltd. NdFeB sintered magnet and method for producing the same
US10854380B2 (en) 2008-01-11 2020-12-01 Daido Steel Co., Ltd. NdFeB sintered magnet and method for producing the same
EP2141710A1 (en) 2008-07-04 2010-01-06 Daido Tokushuko Kabushiki Kaisha Rare earth magnet and production process thereof
JP2009165349A (ja) * 2009-04-03 2009-07-23 Shin Etsu Chem Co Ltd 永久磁石回転機及び永久磁石回転機用永久磁石セグメントの製造方法
US10160037B2 (en) 2009-07-01 2018-12-25 Shin-Etsu Chemical Co., Ltd. Rare earth magnet and its preparation
US9044810B2 (en) 2009-07-01 2015-06-02 Shin-Etsu Chemical Co., Ltd. Rare earth magnet and its preparation
KR20110002441A (ko) 2009-07-01 2011-01-07 신에쓰 가가꾸 고교 가부시끼가이샤 희토류 자석의 제조 방법 및 희토류 자석
EP2270822A1 (en) 2009-07-01 2011-01-05 Shin-Etsu Chemical Co., Ltd. Rare earth magnet and its preparation
US9589714B2 (en) 2009-07-10 2017-03-07 Intermetallics Co., Ltd. Sintered NdFeB magnet and method for manufacturing the same
JP5687621B2 (ja) * 2009-07-10 2015-03-18 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法
JPWO2011004894A1 (ja) * 2009-07-10 2012-12-20 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法
WO2011004894A1 (ja) * 2009-07-10 2011-01-13 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法
JP2015122517A (ja) * 2009-07-10 2015-07-02 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法
JP2011211041A (ja) * 2010-03-30 2011-10-20 Tdk Corp 希土類焼結磁石及びその製造方法、並びにモータ及び自動車
KR101375974B1 (ko) 2010-04-27 2014-03-18 인터메탈릭스 가부시키가이샤 입계확산처리용 도포장치
JP2011233663A (ja) * 2010-04-27 2011-11-17 Intermetallics Co Ltd 粒界拡散処理用塗布装置
WO2011136223A1 (ja) * 2010-04-27 2011-11-03 インターメタリックス株式会社 粒界拡散処理用塗布装置
US9884368B2 (en) 2010-04-27 2018-02-06 Intermetallics Co., Ltd. Applicator for grain boundary diffusion process
JP2011019401A (ja) * 2010-10-28 2011-01-27 Shin-Etsu Chemical Co Ltd 永久磁石回転機用永久磁石セグメントの製造方法
US8388766B2 (en) 2010-10-29 2013-03-05 Shin-Etsu Chemical Co., Ltd. Anisotropic rare earth sintered magnet and making method
EP2447960A1 (en) 2010-10-29 2012-05-02 Shin-Etsu Chemical Co., Ltd. Anisotropic rare earth sintered magnet and making method
JP5880448B2 (ja) * 2011-01-19 2016-03-09 日立金属株式会社 R−t−b系焼結磁石の製造方法
JPWO2012099186A1 (ja) * 2011-01-19 2014-06-30 日立金属株式会社 R−t−b系焼結磁石の製造方法
WO2012099186A1 (ja) * 2011-01-19 2012-07-26 日立金属株式会社 R-t-b系焼結磁石の製造方法
US11482377B2 (en) 2011-05-02 2022-10-25 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnets and their preparation
US11791093B2 (en) 2011-05-02 2023-10-17 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnets and their preparation
US10614952B2 (en) 2011-05-02 2020-04-07 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnets and their preparation
EP2650887A2 (en) 2012-04-11 2013-10-16 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method
JP2014017480A (ja) * 2012-06-15 2014-01-30 Nissan Motor Co Ltd Nd−Fe−B系磁石の粒界改質方法
JP2014063997A (ja) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法
JP2014063998A (ja) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法
JP2014063996A (ja) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法
JP2015154051A (ja) * 2014-02-19 2015-08-24 信越化学工業株式会社 希土類永久磁石の製造方法
JP5884957B1 (ja) * 2014-04-25 2016-03-15 日立金属株式会社 R−t−b系焼結磁石の製造方法
WO2015163397A1 (ja) * 2014-04-25 2015-10-29 日立金属株式会社 R-t-b系焼結磁石の製造方法
CN104164646A (zh) * 2014-08-01 2014-11-26 浙江英洛华磁业有限公司 一种钕铁硼表面渗镝方法和一种钕铁硼表面渗铽方法
JP2016129249A (ja) * 2015-08-28 2016-07-14 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド 永久磁石材料の製造方法
JP2016122863A (ja) * 2015-08-28 2016-07-07 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド 磁石の保磁力を向上させる方法
US10589355B2 (en) 2015-11-02 2020-03-17 Nissan Motor Co., Ltd. Method for modifying grain boundary of Nd—Fe—B base magnet, and body with modified grain boundary treated by the method
WO2017077830A1 (ja) * 2015-11-02 2017-05-11 日産自動車株式会社 Nd-Fe-B系磁石の粒界改質方法、および当該方法により処理された粒界改質体
JPWO2017077830A1 (ja) * 2015-11-02 2018-10-04 日産自動車株式会社 Nd−Fe−B系磁石の粒界改質方法、および当該方法により処理された粒界改質体
JP2018098430A (ja) * 2016-12-16 2018-06-21 日立金属株式会社 R−t−b系焼結磁石の製造方法
JPWO2018138841A1 (ja) * 2017-01-26 2019-11-21 日産自動車株式会社 焼結磁石の製造方法
WO2018138841A1 (ja) * 2017-01-26 2018-08-02 日産自動車株式会社 焼結磁石の製造方法
CN110211797A (zh) * 2019-06-17 2019-09-06 江西理工大学 一种提升烧结钕铁硼磁体磁性能的方法
CN112201466A (zh) * 2020-11-06 2021-01-08 亚星智联(厦门)科技有限公司 一种用于晶界扩散渗金属的钕铁硼磁铁改性装置
CN112201466B (zh) * 2020-11-06 2024-05-28 亚星智联(厦门)科技有限公司 一种用于晶界扩散渗金属的钕铁硼磁铁改性装置

Also Published As

Publication number Publication date
CN101076870B (zh) 2011-03-30
US7824506B2 (en) 2010-11-02
EP1843360A1 (en) 2007-10-10
US20080006345A1 (en) 2008-01-10
CN101076870A (zh) 2007-11-21
TW200623160A (en) 2006-07-01
KR100863809B1 (ko) 2008-10-16
JPWO2006064848A1 (ja) 2008-06-12
EP1843360A4 (en) 2010-05-05
KR20070074593A (ko) 2007-07-12
JP4548673B2 (ja) 2010-09-22
TWI302712B (en) 2008-11-01

Similar Documents

Publication Publication Date Title
JP4548673B2 (ja) Nd−Fe−B系磁石の粒界改質方法
JP3897724B2 (ja) 超小型製品用の微小、高性能焼結希土類磁石の製造方法
JP5206834B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
JP5509850B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
JP2005011973A (ja) 希土類−鉄−ホウ素系磁石及びその製造方法
JP4765747B2 (ja) R−Fe−B系希土類焼結磁石の製造方法
JP4702549B2 (ja) 希土類永久磁石
JP5348124B2 (ja) R−Fe−B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石
JP4702547B2 (ja) 傾斜機能性希土類永久磁石
WO2007102391A1 (ja) R-Fe-B系希土類焼結磁石およびその製造方法
JP2006303433A (ja) 希土類永久磁石
WO2006112403A1 (ja) 希土類焼結磁石とその製造方法
JP2008061333A (ja) 永久磁石回転機
JP2005175138A (ja) 耐熱性希土類磁石及びその製造方法
JP4702548B2 (ja) 傾斜機能性希土類永久磁石
JP2014017480A (ja) Nd−Fe−B系磁石の粒界改質方法
JP6107545B2 (ja) 希土類永久磁石の製造方法
JP2015154051A (ja) 希土類永久磁石の製造方法
JP4700578B2 (ja) 高抵抗希土類系永久磁石の製造方法
JP4179973B2 (ja) 焼結磁石の製造方法
JP2009165349A (ja) 永久磁石回転機及び永久磁石回転機用永久磁石セグメントの製造方法
JP2006179963A (ja) Nd−Fe−B系磁石
JP5036207B2 (ja) 磁石部材
JP2006156853A (ja) 希土類磁石

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006548887

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077009967

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580042529.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11793272

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005816642

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005816642

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11793272

Country of ref document: US