WO2006025377A1 - 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池 - Google Patents

非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池 Download PDF

Info

Publication number
WO2006025377A1
WO2006025377A1 PCT/JP2005/015755 JP2005015755W WO2006025377A1 WO 2006025377 A1 WO2006025377 A1 WO 2006025377A1 JP 2005015755 W JP2005015755 W JP 2005015755W WO 2006025377 A1 WO2006025377 A1 WO 2006025377A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode material
electrode plate
secondary battery
weight
Prior art date
Application number
PCT/JP2005/015755
Other languages
English (en)
French (fr)
Inventor
Nobuyuki Onishi
Hideharu Satoh
Keita Yamaguchi
Original Assignee
Mitsubishi Chemical Corporation
Tokai Carbon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation, Tokai Carbon Co., Ltd. filed Critical Mitsubishi Chemical Corporation
Priority to EP05776633A priority Critical patent/EP1798790A4/en
Priority to US11/574,423 priority patent/US20090214954A1/en
Priority to JP2006532715A priority patent/JP4992426B2/ja
Publication of WO2006025377A1 publication Critical patent/WO2006025377A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material used for a non-aqueous secondary battery, a negative electrode using the negative electrode material, and a non-aqueous secondary battery including the negative electrode.
  • the graphite granulated particles described in this patent document do not necessarily have sufficient performance as a negative electrode material for lithium ion secondary batteries, in particular, reduced irreversible capacity and improved cycle characteristics. There is no problem. The cause of this problem is not clear, but the graphite agglomerated particles described in the above patent document are too weak in the binding force between the graphite particles with few amorphous parts. This is thought to be because the electrode plate surface is in a state without gaps during pressing. If the graphite granulated particles are advanced too much, the characteristics at the time of producing a lithium ion secondary battery, in particular, the immersion property tends to be insufficient. [0006] In addition, when there are many amorphous parts, there is a problem that it is difficult to press, and when pressing and crushing forcibly, the mouth becomes large and it is difficult to obtain a high-capacity battery.
  • An object of the present invention is to provide a negative electrode material made of graphite particles with improved performance, a negative electrode made of this material, and a non-aqueous secondary battery including the negative electrode.
  • the negative electrode material for a non-aqueous secondary battery according to the present invention is mainly composed of graphite particles formed by combining a plurality of graphite particles.
  • the median diameter of the particles in the volume-based particle size distribution measured by z-scattering particle size distribution measurement is 5 ⁇ m or more and 40 ⁇ m or less.
  • the tap density of the material is 0.7 g / cm 3 or more, and the specific surface area force by the BET method is 0.2 m 2 Zg or more and 8 m 2 Zg or less.
  • an electrode plate is manufactured by the following electrode plate manufacturing method, and the surface roughness curve when the surface of the manufactured electrode plate is measured with a laser type shape measuring microscope is defined by JIS B 060 1
  • the skewness (Rsk) is -1.7 or more and 0 or less.
  • predetermined electrode plate manufacturing method this method may be referred to as “predetermined electrode plate manufacturing method”.
  • the electrode plate manufactured by this predetermined electrode plate manufacturing method may be referred to as “the predetermined electrode plate of the present invention”. .
  • the negative electrode material for a non-aqueous secondary battery of the present invention (hereinafter sometimes referred to as "the negative electrode material of the present invention") is used, rapid charge / discharge characteristics with small charge / discharge irreversible capacity during the initial cycle are obtained. A non-aqueous secondary battery with excellent cycle characteristics is provided.
  • FIG. 1 An illustration of skewness (Rsk), showing the relationship between the surface roughness curve and the probability density function, where A is the surface where the valley is wider than the peaks B represents a roughness curve, and B represents a surface roughness curve, with the peaks being wider than the valleys.
  • the negative electrode material of the present invention contains graphite particles as the main component.
  • the graphite particles are preferably carbonaceous particles bonded and / or covered by a heat-treated noinda capable of black lead! //!
  • Examples of the carbonaceous particles constituting the graphite particles include carbonaceous particles that can be graphitized by firing, such as natural graphite, artificial graphite, coatas powder, two-dollar coatus powder, and carbide powder of rosin. . In the present invention, it is particularly preferable to use natural graphite or needle coat powder among these.
  • noinder petroleum-based and coal-based condensed polycyclic aromatics having a soft pitch force up to a hard pitch, as long as they are carbonaceous capable of being graphitic, are preferably used.
  • the carbonaceous particles as the primary particles are made of carbonaceous carbonaceous particles derived from the binder so that the crystallographic direction forms a randomly oriented microstructure.
  • the alignment planes are non-parallel to each other.
  • the median diameter of the graphite particles by volume reference particle size distribution by laser diffraction z-scattering particle size distribution measurement of the negative electrode material of the present invention is 5 ⁇ m or more, preferably 8 ⁇ m or more, more preferably 10 / zm. That's it. If the median diameter is too small, the specific surface area becomes large, and the strength when the electrode plate is formed tends to be weak. In addition, when pulverizing to such a diameter, the time required for the pulverization becomes longer, which is not economical.
  • the median diameter of the graphite particles is 40 ⁇ m or less, preferably 35 ⁇ m or less, and more preferably 30 m or less. When the median diameter exceeds this upper limit, when used as a negative electrode material, irregularities occur on the surface of the electrode, and the separator used in the battery tends to be damaged.
  • the volume reference particle size distribution by laser diffraction Z scattering type particle size distribution measurement is measured by the following method.
  • the tap density of the negative electrode material of the present invention is 0.7 gZcm 3 or more.
  • the tap density is 0.75 g / cm 3 or more, more preferably 0.8 g / cm 3 or more, particularly 0.9 g / cm 3 or more.
  • the tap density is preferably 1.2 gZcm 3 or less.
  • the tap density is too low, it is necessary to reduce the concentration of the slurry of the negative electrode material applied to the current collector during the production of the negative electrode, and the density of the coating film becomes small and the graphite particles break down when pressed. Battery performance is likely to deteriorate. On the contrary, a high tap density is preferable in terms of battery performance, but further steps are required to adjust the shape and particle size distribution of the graphite particles, resulting in a decrease in yield and an increase in cost.
  • the tap density is measured by the following method.
  • the negative electrode material was dropped through a 20 cm 3 cylindrical tap cell through a 300 m sieve. After filling the cell, tap 1000mm with a stroke length of 10mm and measure the tap density at that time.
  • the specific surface area measured by the BET method of the negative electrode material of the present invention is 0.2 m 2 Zg or more, preferably 0.3 m 2 Zg or more, 8 m 2 Zg or less, preferably 6 m 2 Zg or less, particularly preferably 4 m. 2Zg or less.
  • Value of specific surface area S Below this range, output characteristics when used as a negative electrode material tend to deteriorate. If the specific surface area exceeds this range, the initial irreversible capacity increases and the cycle characteristics tend to be poor.
  • the specific surface area is measured, for example, by the following method.
  • the BET 1-point method is measured by the nitrogen gas adsorption flow method. Specifically, about 0.4 g of sample (negative electrode material) was filled in a cell, heated to 350 ° C and pretreated, then cooled to liquid nitrogen temperature, and 30% nitrogen and 70% He gas were added. The amount of gas desorbed by saturation adsorption and then heated to room temperature is measured, and the resulting surface force is calculated using the usual BET method.
  • the surface of the produced polar plate (hereinafter sometimes referred to as “predetermined polar plate of the present invention”).
  • the skewness (Rsk) specified by JIS B 0601 is ⁇ 1.7 or higher, preferably —1.5 or higher, particularly preferably —1 .3 or more, 0 or less, preferably 0.3 or less.
  • Skewness indicates the asymmetry of the surface roughness curve. An example is described below with reference to FIG.
  • the probability density function is distributed toward the valley as shown in Fig. 1A.
  • the probability density function shown in Fig. 1B has a distribution that is biased toward the peak, and the skewness has a large value toward the negative side.
  • the skewness value in this case represents the difficulty of collapsing the negative electrode material in the electrode plate.
  • a large skewness on the plus side indicates that the surface shape of the electrode plate after pressing is maintained, and that the negative electrode material is not easily crushed.
  • a large skewness on the negative side means that the negative electrode material is easily crushed! / ⁇ ! /
  • the negative electrode material on the electrode plate is appropriately crushed or immediately crushed so that the diffusion path of lithium ions and the like is not crushed, so that rate characteristics and the like are excellent.
  • the graphite crystal orientation ratio on the electrode plate I 110 ZI 004 measured by the following method is preferable. ⁇ , 0.02 or more, especially 0.03 or more, and ⁇ or 0.04 or more, and preferably ⁇ , 0.20 or less, especially 0.18 or less, and further 0.16 or less.
  • Orientation ratio I ⁇ ⁇ is above
  • the on-plate graphite crystal orientation ratio I 110 ⁇ 004 is an index representing the degree of orientation of the graphite crystal hexagonal network surface with respect to the thickness direction of the electrode.
  • a chart of the (110) plane and (004) plane of graphite on the electrode plate is measured by X-ray diffraction, and the asymmetric phase VII is used as a profile function for the measured chart.
  • the peak separation is performed by fitting the peaks, and the integrated intensity of the peaks on the (110) plane and the (004) plane is calculated. From the obtained integrated intensity, a ratio represented by (110) area intensity ⁇ (004) area intensity is calculated and defined as the graphite crystal orientation ratio on the electrode plate.
  • the X-ray diffraction measurement conditions here are as follows. “20” represents a diffraction angle.
  • Sample preparation A predetermined electrode plate is fixed to a glass plate with double-sided tape 0.1 mm
  • the press load when the predetermined electrode plate of the present invention is manufactured by the above-described predetermined electrode plate manufacturing method is preferably 350 kgf or more, particularly 4 OOkgf or more, in terms of length per 5 cm. In particular, it is 450 kgf or more, and preferably 1800 kgf or less, particularly 150 Okgf or less, especially 1200 kgf or less.
  • the negative electrode material When the press load is below this range, the negative electrode material may be crushed or the immersion rate may be poor when the electrode is made difficult to control the electrode plate density. Furthermore, the negative electrode material may be crushed and block the lithium ion path, which may reduce the rate characteristics. If the pressing load exceeds this upper limit, the peeling of the electrode plate force tends to increase, and a pressing device with a higher capacity is required, which is not preferable in production.
  • the immersion speed measured by the following method is preferably 10 seconds or more, preferably 400 Second Z ⁇ 1 or less, more preferably 200 seconds ⁇ ⁇ 1 or less.
  • the electrolyte vanishing point is the point at which the boundary between the electrolyte contact surface and the non-contact surface cannot be visually determined.
  • the negative electrode material of the present invention is obtained by using the predetermined electrode plate of the present invention manufactured by the aforementioned predetermined electrode plate manufacturing method.
  • a non-aqueous secondary battery was produced by the following non-aqueous secondary battery production method, and the capacity retention rate after 200 cycles of charge and discharge was measured for the produced non-aqueous secondary battery by the following measurement method. It is preferably 70% or more, particularly 80% or more, more preferably 85% or more, and particularly preferably 90% or more.
  • a negative electrode is arranged through a film separator to form a laminate.
  • the laminate and electrolyte solution are enclosed in a laminate film to produce a laminate film-enclosed non-aqueous secondary battery.
  • the laminated film-encapsulated non-aqueous secondary battery was allowed to stand for 24 hours, and then charged at a current density of 49 mAZcm 2 until the potential difference between the electrodes reached 4.2 V. After that, the potential difference reached 3.0 V.
  • the operation of discharging at 70 mAZcm 2 was repeated as one cycle until the above, and the 100-minute ratio (capacity maintenance ratio%) of the value obtained by dividing the discharge capacity at 206th cycle by the discharge capacity at 6th cycle was determined.
  • the capacity retention rate in the same way, and use the average value as the cycle capacity retention ratio after 200 cycles of charge and discharge.
  • the negative electrode material of the present invention has a total number force of particles obtained when measuring the number-based circle equivalent diameter distribution by flow particle image analysis as described above, preferably 30 X 10 6 pieces or less, particularly 25 X 10 6 pieces. Zg or less is preferred.
  • a large total number generally means a large amount of fine particles, and the initial charge / discharge irreversible capacity, battery cycle characteristics, etc. are likely to deteriorate. The smaller the total number, the better. However, from the viewpoint of cost and workability, it is preferably 1 ⁇ 10 6 pieces / g or more.
  • the negative electrode material of the present invention is based on particle volume based on the particle size by laser diffraction / scattering particle size measurement.
  • the cumulative volume fraction is 90 for the particle size (d) when the cumulative volume fraction is 10%.
  • the ratio (d / ⁇ ) of the particle size (d) in% is preferably 5 or less.
  • d / ⁇ represents the spread of the particle size distribution, and the smaller the ratio, the narrower the particle size distribution.
  • d / ⁇ is preferably 4 or less.
  • Fine particles adsorbed on the electrode plate forming binder added when manufacturing the negative electrode are filled in the voids between the particles, and the communication holes, which are the diffusion paths of lithium ions, are closed, and the rapid charge / discharge characteristics deteriorate.
  • d / ⁇ is preferably from the viewpoint of the operation for adjusting the particle size distribution and the yield.
  • the strength of the negative electrode can be improved.
  • the number of coarse particles is small, it is possible to avoid the problem that unevenness occurs on the surface of the electrode plate and the separator used in the battery is easily damaged in the process of manufacturing the negative electrode by applying the slurry of the negative electrode material to the current collector. .
  • the negative electrode material of the present invention has an average frequency ( ⁇ ) in the range of 20 + ⁇ —5% in terms of the cumulative frequency even though the equivalent circle diameter is small in the measurement of the equivalent circle diameter distribution by the flow particle image analysis described above. It is preferable that the ratio ( ⁇ ⁇ ) of the average frequency ( ⁇ ) in the range of 80 + ⁇ – 5% in terms of the cumulative frequency from those with a small equivalent circle diameter to be 1.2 to 8.0.
  • the particles in the small particle size portion have an initial charge with little influence on the cumulative volume distribution based on the above particle size. It has been found that this affects the irreversible discharge capacity, rapid charge / discharge characteristics, and cycle characteristics.
  • the ratio ( ⁇ ) in the above flow-type particle image analysis is an index representing the characteristics of the small particle size portion, and is an index based on the number of particles, so that the characteristics of the small particle size portion can be well expressed.
  • The force with a small equivalent circle diameter is the ratio of the frequency at the 20% and 80% cumulative frequency, and increases with the ratio of fine particles with a small particle size.
  • the value of AZB is not particularly limited, but a smaller value is preferable from the viewpoint of battery performance. However, from the viewpoint of cost and yield of particle size preparation in producing graphite particles, it is preferably 1. 2 or more, more preferably 1.3 or more, more preferably 1.4 or more, still more preferably 1.5 or more, particularly preferably 1.6 or more, preferably 8.0 or less, more preferably 7 0 or less, more preferably 6.0 or less.
  • the graphite particles present on the surface of the negative electrode plate are broken during the pressing process, which is one of the processes for processing the graphite particles into a non-aqueous secondary battery negative electrode. It is presumed that the communication hole, which is a diffusion path, is blocked, resulting in a decrease in rapid charge / discharge characteristics and a decrease in cycle characteristics.
  • the number-based circle equivalent diameter distribution for obtaining AZB is measured by the flow-type particle image analysis described above.
  • the surface roughness (Ra) of the predetermined electrode plate of the present invention produced by the above-mentioned predetermined electrode plate production method using the negative electrode material of the present invention is preferably 0.1 or more, more preferably 0.2 or more. Preferably, it is 1.2 or less, more preferably 1 or less.
  • the electrode plate may be too flat and the immersion property may be reduced. If the surface roughness is above this range, the active material density in the battery cannot be increased. Is likely to drop.
  • the surface roughness can be measured in the same manner as the skewness described above. [0053] d (002) and Lc (002)
  • the negative electrode material of the present invention has a value of d (002) of 0.3359 nm or less, preferably 0.3356 nm or less by X-ray diffraction analysis, and is 0.3354 nm or more, which is the value of highly crystalline graphite. Is desirable.
  • d (002) is too large, the crystallinity as graphite is insufficient, the charge / discharge capacity as the negative electrode material is reduced, and the strength of the graphite particles is too high.
  • the formed active material layer is press-molded to a predetermined bulk density, a high pressure is required and it may be difficult to increase the density.
  • the negative electrode material of the present invention desirably has a value of Lc (002), which is a crystal thickness by X-ray diffraction analysis, of 80 nm or more, and preferably 10 nm or more. Even when Lc (002) is less than 80 nm, the crystallinity as graphite is insufficient, the charge / discharge capacity as the negative electrode material is reduced, and the strength of the graphite particles is too high.
  • Lc (002) is a crystal thickness by X-ray diffraction analysis
  • the negative electrode material of the present invention comprising graphite particles as a main component is mixed with carbonaceous particles, solder, etc. as raw materials, and molded, devolatilized, fired, graphitized, pulverized, and classified as necessary. It is manufactured by this.
  • the negative electrode material of the present invention satisfying the above-mentioned physical properties, it is preferable to use -dolcotus or natural graphite as the main component of the carbonaceous particles.
  • a binder In the process of mixing carbonaceous particles and a binder to graphitize, optimize the type and amount of the catalyst during graphitization (for example, in the case of SiC, which is commonly used as a graphite catalyst) Further, it is preferable to maintain an appropriate amorphous amount by a method such that the addition amount is 30 parts or less with respect to 100 parts of the base material.
  • the carbonaceous particles and the binder are mixed while heating.
  • a graphitization catalyst may be added if desired.
  • Suitable carbonaceous particles, noinders and graphite soot catalysts are as follows:
  • a raw coatas containing a volatile component (Volatile Matter: hereinafter sometimes referred to as “VM”) is used.
  • VM Volatile Matter
  • carbonaceous particles containing 2 to 10 wt% of volatile components that volatilize during heat treatment it is preferable to use carbonaceous particles containing 2 to 10 wt% of volatile components that volatilize during heat treatment.
  • natural graphite may be used in combination with natural graphite.
  • the median diameter of the volume-based particle size distribution measured by the Z-scattering particle size distribution measurement is not particularly limited, but is 5 ⁇ m or more, especially 6 ⁇ m or more, especially 8 ⁇ m or more. Also, it is preferably 40 ⁇ m or less, particularly preferably 35 ⁇ m or less, particularly preferably 30 ⁇ m or less.
  • the median diameter of the carbonaceous particles is below this lower limit, the cost required for pulverizing the carbonaceous particles increases, and if the upper limit is exceeded, the initial irreversible capacity of the graphite particles tends to increase.
  • the median diameter of the carbonaceous particles can be measured in the same manner as the median diameter of the negative electrode material described above.
  • the average particle diameter of the carbonaceous particles is preferably smaller than the average particle diameter of the target graphite particles.
  • the average particle size of the carbonaceous particles is preferably not more than twice the average particle size of the intended graphite particles, more preferably not more than the same size, preferably 1 Z10 or more of the average particle size, more preferably Is more than 1Z5.
  • the average circularity of the carbonaceous particles is preferably 0.82 or more, more preferably 0.90 or more, preferably 1.00 or less, more preferably 0.96 or less.
  • the average circularity of the carbonaceous particles is below this range, the orientation tends to decrease or immediately above the cost, and the cost tends to increase.
  • the average circularity of the carbonaceous particles can be measured in the same manner as the average circularity of the negative electrode material described above.
  • Noinda include impregnated pitch, coal tar pitch, coal-based heavy oil such as coal liquefied oil, straight-run heavy oil such as Fasuarten, ethylene heavy end tar, etc. And heavy petroleum oils such as cracked heavy oils.
  • the quinoline-insoluble component contained in the noinda is usually 0 to: LOwt%, but the smaller the amount, the better the hardness of the graphite particles and the capacity of the battery. If the content of the quinoline-insoluble component in the binder is too high, the resulting graphite particles are hardened even if the active material layer applied to the current collector is pressed. There is a tendency to become difficult, and the capacity also tends to decrease.
  • the ratio of the binder derived from the binder to the graphite particles obtained through the carbonization treatment obtained by carbonization / graphite is preferably 5 wt% or more, more preferably 10 wt% or more. And preferably 60 wt% or less, more preferably 40 wt% or less, and even more preferably 3 Owt% or less.
  • the amount of the binder is too large, the amorphous part derived from the binder is increased in the final product, so that the battery capacity when used as a battery may be reduced.
  • the obtained graphite particles are hardened, when the active material layer applied to the current collector is pressed, the aggregate particles themselves are more likely to break at the node portion.
  • the amount of the binder in the negative electrode material is controlled by the amount of the binder added in the stage before the combination. For example, when the residual carbon ratio of the binder obtained by the method described in JIS K2270 is X%, a desired amount of the binder is added 100ZX times.
  • a device for adding a binder such as pitch and tar it is preferable to uniformly disperse as much as possible at a low temperature and in a short time in order to reduce the initial irreversible capacity and the press load.
  • stirring In order to disperse at a low temperature for a short time, stirring should be strengthened to such an extent that the carbonaceous particles are not broken.
  • Graphitization catalyst In order to increase the charge / discharge capacity and improve the pressability, it is preferable to add a graphite soot catalyst when mixing the carbonaceous particles and the binder.
  • the graphite catalyst include metals such as iron, nickel, titanium, silicon and boron, and compounds such as carbides, oxides and nitrides thereof. Of these, silicon carbide is preferable among the key compounds, and silicon iron is particularly preferable among the iron compounds.
  • the carbon carbide produced by heating is thermally decomposed at a temperature of 2800 ° C or higher to grow graphite with extremely good crystallinity.
  • the charge transfer reaction and diffusion of lithium ions inside the particles can be promoted, and the battery performance can be improved.
  • iron or a compound thereof is used as the graphite soot catalyst, graphite having good crystallinity can be grown by the mechanism of dissolution and precipitation of carbon in the catalyst, and the same effect as that of silicon can be exhibited.
  • the amount of these graphite soot catalysts added is preferably 30 wt% or less, more preferably 20 wt% or less, still more preferably 10 wt% or less, particularly preferably 5 wt% with respect to the carbonaceous primary particles as a raw material. It is as follows. If there are too many graphitization catalysts, the graphite will progress too much, causing problems such as insufficient lithium immersion battery characteristics, particularly immersion. At the same time, the strength of the particles is reduced because of the generation of pores in the graphite particles. As a result, the surface is smoothened during the pressing process during electrode plate production, and the movement of ions is inhibited. There is also.
  • the raw materials such as the carbonaceous particles, the noder, and the optionally added graphite catalyst are first combined under heating.
  • the liquid binder is attached to the carbonaceous particles and the raw material that does not melt at the compounding temperature.
  • all the raw materials may be charged into the compounding machine, and the compounding and temperature rising may be performed simultaneously, or components other than the binder may be charged into the compounding machine and heated in a stirring state, and the temperature rises to the compounding temperature.
  • a binder at room temperature or in a vulcanized molten state may be charged later.
  • the heating temperature is equal to or higher than the softening point of the binder. If the heating temperature is too low, the viscosity of the binder becomes high and uniform combination becomes difficult. It is carried out at a temperature, preferably 20 ° C higher than the soft saddle point. If the heating temperature is too high, the viscosity of the combined system becomes too high due to the volatilization and polycondensation of the binder, so it is usually 300 ° C or less, preferably 250 ° C or less.
  • a general-purpose machine having a stirring blade is preferred as the compounding machine.
  • a general type such as a Z type or a gussetar type can be used.
  • the amount of the raw material charged into the compounding machine is usually 10 vol% or more, preferably 15 vol% or more, and 50 vol% or less, preferably 30 vol% or less of the compounding machine volume.
  • the mixing time is 5 minutes or more, and it takes up to a maximum viscosity change due to volatilization of the volatile matter, usually 30 to 120 minutes. It is preferable to preheat the compounding machine to the compounding temperature prior to the compounding.
  • the obtained compound may be used as it is in the de-VM firing process for the purpose of removing volatile components (VM) and carbonizing, but after being molded for easy handling, it is used in the de-VM firing process. It is preferable.
  • the molding method is not particularly limited as long as the shape can be maintained, and extrusion molding, mold molding, isostatic pressing, and the like can be employed.
  • the particles are easily oriented in the molded body, and the extrusion is easy, and the operation is relatively easy compared to the hydrostatic pressure molding in which the orientation of the particles is kept at random but the productivity is not easily increased. Mold molding that can obtain a molded body without destroying the oriented structure is preferred.
  • the molding temperature may be room temperature (cold) or under heating (hot, temperature above the soft softening point of the binder).
  • cold forming it is desirable to preliminarily crush the compound that has been cooled after compounding to a maximum dimension of 1 mm or less in order to improve moldability and obtain uniformity of the compact.
  • the shape and size of the molded product are not particularly limited. However, in hot forming, if the molded product is too large, there is a problem that it takes time to perform uniform preheating prior to molding, so the maximum size is preferably 150 cm. The size is less than or equal to.
  • the molding pressure is preferably 3tfZcm 2 (294MPa) or less, and more preferable properly 500kgfZcm 2 (49MPa) or less, further preferably 10kgfZcm 2 (0. 98MPa) hereinafter.
  • the lower limit pressure is not particularly limited, but is preferably set to such a degree that the shape of the molded body can be maintained in the VM removal process.
  • the resulting molded body is de-VM fired to remove carbonaceous particles and volatile components (VM) of the binder, and to prevent contamination of the filler during black lead conversion and adhesion of the filler to the molded body.
  • the VM calcination is usually carried out at a temperature of 500 ° C or higher, preferably 600 ° C or higher, preferably 1700 ° C or lower, more preferably 1400 ° C or lower, preferably for 0.1 to 10 hours.
  • the heating is usually performed in a non-acidic atmosphere in which an inert gas such as nitrogen or argon is circulated, or a granular carbon material such as a breath or packing coatus is filled in the gap.
  • Equipment used for VM removal firing is not particularly limited as long as firing is possible in a non-oxidizing atmosphere, such as an electric furnace, a gas furnace, and a lead hammer furnace for electrode materials! It is desirable that the heating rate during heating is low in order to remove the volatile matter. Normally, around 200 ° C, where the low-boiling point begins to volatilize. Raise the temperature at ⁇ 100 ° CZhr.
  • the carbide molded body obtained by removing the VM is heated at a high temperature to be graphitized.
  • the lower the heating temperature during graphitization the lower the AZB of the obtained negative electrode material, and the smaller the AZB of the obtained negative electrode material, the harder the graphite particles become, and the active material layer applied to the current collector has a predetermined volume.
  • Heating is preferably performed at 2900 ° C or higher, more preferably 3000 ° C or higher, because high pressure is required when press-molding to density and it tends to be difficult to increase the density. Further, if the heating temperature is too high, the sublimation of graphite becomes remarkable, so the heating temperature is preferably 3300 ° C or lower.
  • the heating time may be performed until the binder and the carbonaceous particles become graphite, and is preferably 1 to 24 hours.
  • the atmosphere during graphitization is a non-acidic atmosphere in which an inert gas such as nitrogen or argon flows or a granular carbon material such as please or knocking coat is filled in the gap to prevent oxidation. To do.
  • an inert gas such as nitrogen or argon flows or a granular carbon material such as please or knocking coat is filled in the gap to prevent oxidation.
  • the equipment used for graphitization is the above-mentioned purpose such as an electric furnace, a gas furnace, an electrode material Atchison furnace, etc.
  • the temperature rise rate, cooling rate, heat treatment time, etc. can be arbitrarily set within the allowable range of the equipment used.
  • the graphitized product thus obtained usually does not have the particle size distribution defined in the present invention as it is, and is adjusted to a desired particle size distribution by pulverization and sieving.
  • the pulverizing means is mechanically pulverizing means such as ball mill, hammer mill, CF mill, atomizer mill, pulverizer.
  • a pulverizing means using wind power such as a jet mill, is exemplified.
  • a pulverization method using impact force such as a jaw crusher, a hammer mill, or a roller mill may be used.
  • the timing of pulverization may be before or after graphitization.
  • the latter is preferred because it does not require crucible filling and can be manufactured at low cost.
  • the volume-based particle size distribution by laser diffraction / scattering particle size measurement is 3% or less of the total particle size of 100 m or more and 1 ⁇ m or less of the particle size. It is desirable to adjust the size so that the product is 1% or less of the total.
  • a screen fixing type There are a screen fixing type, an in-plane motion type, a rotary sieving type, etc. for sieving for removing large-diameter granular materials.
  • a screen-fixing blow-through type sieve is used. Is particularly preferred.
  • the size of the sieve mesh to be used is 80 m or less and 30 m or more, and it can be used. It is appropriately selected and used according to the distribution and average particle size adjustment requirements. When the size exceeds 80 m, the removal of the particulate matter becomes insufficient. When the size is less than 30 m, it leads to excessive removal of the granulated product, resulting in a lot of product loss and difficulty in adjusting the particle size distribution. This is not preferable.
  • sieves with a mesh size of 45 m and 38 m which are sold as general-purpose sizes, can be preferably used.
  • Classification can be carried out by methods such as wind classification, wet classification, and specific gravity classification, and is not particularly limited for removing particulates of 100 ⁇ m or more.
  • an air classifier such as a swirl classifier.
  • the air volume and the wind speed it is possible to adjust the removal of the granular material and the particle size distribution and average particle size of the granulated material in the same way as adjusting the size of the mesh opening. it can.
  • the negative electrode material of the present invention can be suitably used as a negative electrode active material for non-aqueous secondary batteries, particularly lithium secondary batteries.
  • the negative electrode constituting the non-aqueous secondary battery is formed by forming, on a current collector, an active material layer containing a negative electrode active material, an electrode plate-forming binder, a thickener, and, if necessary, a conductive material.
  • an active material layer a slurry containing a negative electrode active material, a binder for forming an electrode plate, a thickener, and a conductive material and a solvent as necessary is generally prepared, and this is applied, dried, and pressed onto an electric body. Can be obtained.
  • the negative electrode active material in addition to the negative electrode material of the present invention, a material usually used as a negative electrode active material may be used in combination.
  • any material can be used as long as it is a material that is stable with respect to a solvent and an electrolytic solution used during electrode production.
  • examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene acrylic acid copolymer, and ethylene-methacrylic acid copolymer.
  • the weight ratio of the active material Z electrode plate forming binder in the electrode plate forming binder is preferably 90Z10 or more, more preferably 95Z5 or more, and preferably 99.9 / 0.1 or less, preferably 99.
  • the range is 5 / 0.5 or less.
  • the thickener examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polybutyl alcohol, oxidized starch, phosphate starch, and casein.
  • Examples of the conductive material include carbon materials such as graphite and carbon black; metal materials such as copper and nickel.
  • Examples of the material of the current collector include copper, nickel, and stainless steel. Of these, copper foil is preferred because it is easy to process into a thin film, and has the advantage of cost and cost.
  • the density of the active material layer is preferably 1.
  • the density is too low, the battery capacity per unit volume is not always sufficient. In addition, if the density is too high, the rate characteristics deteriorate, so 1.9 gZcm 3 or less is preferable.
  • the active material layer is a mixture layer composed of an active material on a current collector, an electrode plate forming binder, a thickener, a conductive material, and the like.
  • the bulk density is a mixture layer composed of an active material on a current collector, an electrode plate forming binder, a thickener, a conductive material, and the like.
  • the negative electrode for a nonaqueous secondary battery of the present invention produced using the negative electrode material of the present invention is extremely useful as a negative electrode for a nonaqueous secondary battery such as a lithium secondary battery.
  • the non-aqueous secondary battery of the present invention usually comprises the above-described negative electrode, positive electrode and electrolyte of the present invention.
  • the positive electrode is formed by forming an active material layer containing a positive electrode active material, a conductive agent and an electrode plate forming binder on a positive electrode current collector.
  • the active material layer is usually obtained by preparing a slurry containing a positive electrode active material, a conductive agent, and an electrode plate forming binder, and applying and drying the slurry on a current collector.
  • Examples of the positive electrode active material include lithium cobalt oxide, lithium nickel oxide, lithium Lithium transition metal composite oxide materials such as thidium manganate; transition metal oxide materials such as manganese dioxide; and materials that can occlude and release lithium such as carbonaceous materials such as fluorinated graphite can do.
  • lithium cobalt oxide lithium nickel oxide
  • lithium Lithium transition metal composite oxide materials such as thidium manganate
  • transition metal oxide materials such as manganese dioxide
  • materials that can occlude and release lithium such as carbonaceous materials such as fluorinated graphite can do.
  • the positive electrode current collector it is preferable to use a metal or an alloy thereof that forms a passive film on the surface by anodic oxidation in an electrolytic solution.
  • a metal or an alloy thereof that forms a passive film on the surface by anodic oxidation in an electrolytic solution.
  • Ilia, IVa, Va group (3B, 4B, 5B Examples thereof include metals belonging to (Group) and alloys thereof.
  • Al, Ti, Zr, Hf, Nb, Ta and alloys containing these metals can be exemplified, and Al, Ti, Ta and alloys containing these metals can be preferably used.
  • A1 and its alloys are desirable because of their light weight and high energy density.
  • Examples of the electrolyte include an electrolytic solution, a solid electrolyte, a gel electrolyte, and the like. Among these, an electrolytic solution, particularly a non-aqueous electrolytic solution is preferable.
  • a non-aqueous electrolytic solution a solution in which a solute is dissolved in a non-aqueous solvent can be used.
  • an alkali metal salt, a quaternary ammonium salt, or the like can be used as the solute.
  • LiN (CF SO) (C F SO), LiC (CF SO)
  • C F SO LiN (CF SO)
  • non-aqueous solvent examples include cyclic carbonates such as ethylene carbonate, butylene carbonate, and bilen carbonate, cyclic ester compounds such as ⁇ petit ratatone; chain ethers such as 1,2 dimethoxyethane; crown ethers Cyclic etherol such as 2-methyltetrahydrofuran, 1,2 dimethyltetrahydrofuran, 1,3 dioxolane, tetrahydrofuran, etc .; chain carbonates such as jetinole carbonate, ethylmethyl carbonate, dimethylenocarbonate, etc.
  • One kind of solute and one solvent may be selected and used, or two or more kinds may be mixed and used. Among these, those containing non-aqueous solvent power cyclic carbonate and chain carbonate are preferable.
  • the content of these solutes in the electrolyte solution is 0.2 mol / l or more, particularly 0.5 mol / l or more.
  • the non-aqueous secondary battery prepared by combining the negative electrode according to the present invention, a metal chalcogenide positive electrode for a commonly used lithium ion battery, and an organic electrolyte mainly composed of a carbonate solvent is provided. , Irreversible capacity is observed in the initial cycle with large capacity, rapid charge / discharge capacity is small (rate characteristics are good), cycle characteristics are excellent, and battery storage and reliability in high temperature storage It has excellent high discharge efficiency and low temperature discharge characteristics.
  • the nonaqueous electrolytic solution may contain a film-forming agent.
  • film forming agents include carbonate compounds such as vinylene carbonate, vinylenoretinocarbonate and methylphenolate carbonate, alkensulfides such as ethylene sulfide and propylene sulfide, 1,3 propane sultone, and 1,4 butane sultone. Examples thereof include acid anhydrides such as sultone compounds, maleic anhydride, and succinic anhydride.
  • the content of the film forming agent is usually 10% by weight or less, preferably 8% by weight or less, more preferably 5% by weight or less, and most preferably 2% by weight or less. If the content of the film forming agent is too large, other battery characteristics such as an increase in initial irreversible capacity, low temperature characteristics, and deterioration in rate characteristics may be adversely affected.
  • a separator is usually provided between the positive electrode and the negative electrode so that the positive electrode and the negative electrode are not in physical contact.
  • the separator preferably has a high ion permeability and a low electric resistance.
  • the material and shape of the separator are not particularly limited, but those that are stable with respect to the electrolyte and excellent in liquid retention are preferable.
  • a porous sheet or a nonwoven fabric made of polyolefin such as polyethylene and polypropylene can be used.
  • the shape of the non-aqueous secondary battery of the present invention is not particularly limited, and a cylinder type in which a sheet electrode and a separator are spiral, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a pellet electrode and a separator are provided. Examples include stacked coin types.
  • Example 1 Amorphous carbon material (needle coatus) is coarsely pulverized and further pulverized by a fine pulverizer (“Sample Mill” manufactured by Hosokawa Micron Co., Ltd.). Carbonaceous particles having 2 / ⁇ ⁇ , maximum / J ⁇ particle size of 1.5 / ⁇ ⁇ , maximum particle size of 68 m, and average circularity of 0.80 were obtained.
  • the obtained molded body was stored in a metal sagar as a heat-resistant container, and the gap was filled with graphite please.
  • the temperature was raised from room temperature to 1000 ° C in an electric furnace over 48 hours, held at 1000 ° C for 3 hours, and de-VM firing was performed.
  • the compact was stored in a graphite crucible, and the gap was filled with a graphite please.
  • Graphite was fired by heating to 3000 ° C for 4 hours in an Atchison furnace.
  • the obtained graphite compact was roughly crushed with a jaw crusher, then finely pulverized with a sample mill, coarse particles were removed with a sieve having a mesh opening of 45 / zm, and air classification (Japan-Eumatic Industrial Co., Ltd.).
  • the particles were sized to obtain graphite particles having a median diameter of 21.1 ⁇ m.
  • the predetermined electrode plate of the present invention is manufactured by the above-described predetermined electrode plate manufacturing method, and the skewness (Rsk), surface roughness Ra, graphite crystal orientation ratio (I ZI) on the electrode plate, press
  • a separator made of porous polyethylene film impregnated with an electrolytic solution dissolved so as to be 1 was placed, and a 2016 coin-type battery was produced.
  • the manufactured 2016 coin-type battery has a current density of 0.16 mAZcm 2 and a potential difference between both electrodes. Until OV and charges, then 1. The discharge capacity when discharged at 7. OmAZcm 2 until 5V, 100 percentage of the value obtained by dividing the discharge capacity when discharged at 0. 7mAZcm 2 (rate Characteristic). For each of the three coin-type batteries, the rate characteristics were determined and the average value was determined.
  • the obtained graphite particles have a tap density of 0.79 gZcm 3 , a BET specific surface area of 2.9 m 2 Zg, a total number of 21.
  • a coin-type battery was produced in the same manner as in Example 1, and the initial charge / discharge capacity, initial charge reversible capacity, and rate characteristics were determined.
  • a predetermined electrode plate of the present invention was prepared, and after skewness (Rsk), surface roughness Ra, graphite crystal orientation ratio on electrode plate (I / 1), press load, immersion speed, 200 cycles of charge / discharge Capacity maintenance rate measurement
  • the fully mixed compound is filled in a mold of a mold press machine preheated to 108 ° C in advance, and left for 5 minutes.
  • the plunger is pushed, and 5kgf / c Molding was performed by applying a pressure of m 2 (0.20 MPa). After maintaining this pressure for 1 minute, the driving was stopped, and after the pressure drop had subsided, the molded body was taken out.
  • the obtained molded body was stored in a metal sagar as a heat-resistant container, and the gap was filled with graphite.
  • the temperature was raised from room temperature to 1300 ° C in an electric furnace over 48 hours, held at 1300 ° C for 3 hours, and de-VM firing was performed.
  • the compact was stored in a graphite crucible, and the gap was filled with a graphite please.
  • Graphite was fired by heating to 3000 ° C for 4 hours in an Atchison furnace.
  • the obtained graphite compact was coarsely crushed with a jaw crusher, then finely pulverized with a high-speed rotary mill, and the coarse particles were removed with a 45-m sieve and the median diameter was 15.8 m. Got.
  • Natural graphite with a median diameter of 21.7 / ⁇ ⁇ , maximum / J, particle size of 7.7 / ⁇ ⁇ , maximum particle size of 77. is used as the starting material, and the weight with a softer point of 88 ° C noder pitch
  • Graphite particles having a median diameter of 22. O / zm were obtained by mixing, forming, removing VM, graphitizing, crushing, and sizing with a binder in the same manner as in Example 3 except that the ratio was set to 100: 40. Got.
  • Graphite particles having a median diameter of 16.7 m were obtained in the same manner as in Example 2 except that the added graphite catalyst was carbon carbide and the addition amount was 50 parts with respect to 100 parts by weight of the carbonaceous particles.
  • a coin-type battery was produced in the same manner as in Example 1, and the initial charge / discharge capacity, initial charge reversible capacity, and rate characteristics were determined.
  • a predetermined electrode plate of the present invention was prepared, and after skewness (Rsk), surface roughness Ra, graphite crystal orientation ratio on electrode plate (I / 1), press load, immersion speed, 200 cycles of charge / discharge Capacity maintenance rate measurement
  • Example 1 0 21.1 0.79 2.3 23.3 3.8 1.6
  • Example 2 30 20.5 0.79 2.9 21.0 4.0 0.8
  • Example 3 0 15.8 1.16 1.9 3.6 2.5 0.7
  • Example 4 0 22.0 1.05 3.7 26.7 3.0 1.1
  • Comparative Example 1 50 16.7 0.77 4.7 18.5 3.0 1.2
  • Ra Capacity maintenance rate Rsk (kgf / 5cm) (sec / ju l) (mAh / g) (mAh / g) (%)
  • the negative electrode material of the present invention By using the negative electrode material of the present invention, the charge / discharge irreversible capacity observed in the initial cycle when making a non-aqueous secondary battery is small. Since the negative electrode and the non-aqueous secondary battery can be stably and efficiently manufactured, the present invention is very useful industrially in the field of various non-aqueous secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

 初期サイクル時の充放電不可逆容量が小さく、急速充放電特性とサイクル特性に優れ、更には電析の問題がない非水系二次電池を実現し得る非水系二次電池用負極材料が提供される。この材料は、黒鉛質粒子を主成分とする。レーザー回折/散乱式粒径分布測定による体積基準粒径分布における黒鉛質粒子のメジアン径が5μm以上、40μm以下であり、負極材料のタップ密度が、0.7g/cm3以上であり、BET法による比表面積が、0.2m2/g以上、8m2/g以下である。該負極材料により所定の極板作製方法で極板を作製し、作製された極板の表面をレーザー式の形状測定顕微鏡で測定した際の表面粗さ曲線において、JIS B 0601で規定されるスキューネス(Rsk)が、-1.7以上、0以下である。

Description

非水系二次電池用負極材料、非水系二次電池用負極、および非水系二 次電池
発明の分野
[0001] 本発明は、非水系二次電池に用いる負極材料と、この負極材料を用いた負極と、こ の負極を備える非水系二次電池に関する。
発明の背景
[0002] 近年、電子機器の小型化に伴い、高容量の二次電池に対する需要が高まってきて いる。特に、ニッケル 'カドミウム電池や、ニッケル '水素電池に比べ、よりエネルギー 密度の高 、非水系二次電池が注目されてきて 、る。非水系二次電池の負極活物質 としては、これまで金属や黒鉛などが検討されてきた。しかし、金属電極は、充放電を 繰り返すと電極上にリチウムがデンドライト状に析出し、最終的には両極を短絡させ てしまうという問題があった。そのため、充放電過程において、リチウム金属が析出し ない炭素材料、特に黒鉛が注目されている。
[0003] ところが、黒鉛は扁平な結晶であるため、電極内で集電体と平行に配向しやすぐ そのため急速充放電特性が低下しやす!/ヽ;充放電サイクルにおける電極の膨張が顕 著であるため、サイクル特性が低下しやす!/ヽ;と!、つた問題がある。
[0004] 特開平 10— 188959号公報には、複数の黒鉛質粒子を配向面が相互に非平行と なるように結合させた黒鉛質造粒粒子を用いることにより、電極の厚さ方向への膨張 を抑え、急速充放電特性とサイクル特性を向上させることが提案されて 、る。
[0005] し力しながら、この特許文献に記載の黒鉛質造粒粒子は、リチウムイオン二次電池 の負極材料としての性能、特に、不可逆容量の低減、サイクル特性の向上が必ずし も十分ではないという問題がある。この問題の原因は明らかではないが、上記特許文 献に記載される黒鉛質造粒粒子は、非晶質部分が少なぐ黒鉛質粒子同士の結着 力が弱すぎ、極板作成工程でのプレス時に極板表面がすき間のな 、状態になってし まうためと考えられる。黒鉛質造粒粒子の黒鉛ィ匕が進みすぎているとリチウムイオン 二次電池製造時の特性、特に浸液性が充分でない傾向がある。 [0006] また、非晶質部分が多いとプレスしにくい問題があり、無理にプレスしてつぶすと口 スが大きくなり高容量電池が得られにくい。
[0007] このように、従来にお!ヽては、低不可逆容量、高サイクル特性、高浸液性のすべて を満たす黒船質造粒粒子よりなる負極材料は実現されていなカゝつた。 発明の概要
[0008] 本発明はこれらの性能が改善された黒鉛質粒子カゝらなる負極材料と、この材料より なる負極と、この負極を備えた非水系二次電池を提供することを目的とする。
[0009] 本発明の非水系二次電池用負極材料は、複数の黒鉛質粒子が結合してなる黒鉛 質粒子を主成分とする。
レーザー回折 z散乱式粒径分布測定による体積基準粒径分布における該粒子の メジアン径が 5 μ m以上、 40 μ m以下である。該材料のタップ密度が、 0. 7g/cm3 以上であり、 BET法による比表面積力 0. 2m2Zg以上、 8m2Zg以下である。
該負極材料により下記の極板作製方法で極板を作製し、作製された極板の表面を レーザー式の形状測定顕微鏡で測定した際の表面粗さ曲線において、 JIS B 060 1で規定されるスキューネス (Rsk)が、 - 1. 7以上、 0以下である。
[極板作製方法]
上記負極材料 100重量部に、スチレン'ブタジエンゴムの水性デイスパージヨンを固 形分として 1重量部、カルボキシメチルセルロース(分子量 25万〜 30万)水溶液を固 形分として 1重量部加えてスラリーとし、このスラリーを厚さ 18 mの銅箔よりなる集電 体上に上記負極材料が乾燥後重量として 10±0. lmgZcm2付着するようにドクタ 一ブレードを用いて塗布して乾燥させた後に、ロールプレス (カレンダー)を用いて、 極板密度 (銅箔を除く)が 1. 63 ±0. 03gZcm3になるようにプレス荷重を調整し、 1 回のプレスで圧密する。
以下この方法を「所定極板作製方法」と称す場合がある。また、この所定極板作製 方法で作製された極板を「本発明の所定極板」と称す場合がある。。
[0010] 本発明の非水系二次電池用負極材料 (以下、「本発明の負極材料」と称す場合が ある。)を用いると、初期サイクル時の充放電不可逆容量が小さぐ急速充放電特性と サイクル特性に優れた非水系二次電池が提供される。 図面の簡単な説明
[0011] [図 1]スキューネス (Rsk)の説明図であって、表面粗さ曲線と確率密度関数との関係 を示す図であり、 Aは山の部分よりも谷の部分の方が広い表面粗さ曲線を表し、 Bは 谷の部分よりも山の部分の方が広 、表面粗さ曲線を表す。
発明の好ましレ、形態の詳細な説明
[0012] 以下に本発明の好ましい形態を詳細に説明する力 以下の説明は、本発明の一例 であり、本発明はこれらの内容に限定はされない。
[0013] [1]非水系二次電池用負極材料
(1)負極材料中の黒鉛質粒子
本発明の負極材料は、黒鉛質粒子を主成分とする。この黒鉛質粒子とは、通常黒 鉛ィ匕可能なノインダが熱処理されたものにより炭素質粒子が結合および Zまたは被 覆されて!/、ることが好まし!/、。
[0014] 黒鉛質粒子を構成する炭素質粒子としては、天然黒鉛、人造黒鉛、コータス粉、二 一ドルコータス粉、および榭脂の炭化物粉等、焼成によって黒鉛化可能な炭素質の 粒子が挙げられる。本発明においては、これらのうち、特に、天然黒鉛、ニードルコー タス粉を用いることが好まし 、。
[0015] ノインダとしては、黒鉛ィ匕が可能な炭素質であればよぐ軟ピッチ力も硬ピッチまで の石油系および石炭系の縮合多環芳香族類が好ましく用いられる。
[0016] 黒鉛質造粒粒子である場合は、一次粒子である炭素質粒子が、その結晶方向が、 ランダムに配向したミクロ構造を成すように、バインダ由来の黒鉛ィ匕した炭素質によつ て結合されているので、配向面が相互に非平行であるということを特徴とする。
[0017] 黒鉛質粒子を後述する製造方法に従って作製する過程においては、通常は、バイ ンダによる複数の黒鉛質粒子の結合、すなわち造粒が完全には進まな!/、ことから、 炭素質粒子一粒子が単にバインダにより被覆されたにすぎない層構造粒子や、炭素 質粒子を含まずにバインダそのものが炭化 ·黒鉛ィ匕したに過ぎな 、粒子のような黒鉛 質粒子以外の粒子も生成する。
[0018] (2)負極材料の物性
メジアン径 本発明の負極材料の、レーザー回折 z散乱式粒径分布測定による体積基準粒径 分布による黒鉛質粒子のメジアン径は 5 μ m以上、好ましくは 8 μ m以上、更に好まし くは 10 /z m以上である。メジアン径が小さすぎると、比表面積が大きくなり、極板にし た時の強度が弱くなりやすい。また、このような径に粉砕する場合、粉砕に要する時 間が長くなり、経済的でない。
[0019] 黒鉛質粒子のメジアン径は 40 μ m以下、好ましくは 35 μ m以下、更に好ましくは 3 0 m以下である。メジアン径カこの上限を上回ると、負極材料として用いた場合、電 極表面に凹凸が発生し、電池に用いられるセパレータを傷つけやすくなる。
[0020] 本発明にお ヽてレーザー回折 Z散乱式粒径分布測定による体積基準粒径分布は 、下記の方法で測定する。
〈体積基準粒径分布測定方法〉
界面活'性剤(ポリオキシエチレンソルビタンモノラウレート、例としてツイーン 20 (登 録商標))の 0. 2wt%水溶液 10mlに、負極材料を懸濁させ、市販のレーザー回折 Z散乱式粒度分布測定装置に導入し、 28kHzの超音波を出力 60Wで 1分間照射し た後測定する。
[0021] タップ密度
本発明の負極材料のタップ密度は、 0. 7gZcm3以上である。好ましくは、タップ密 度は 0. 75g/cm3以上、更には 0. 8g/cm3以上、特に 0. 9g/cm3以上である。タ ップ密度は、好ましくは 1. 2gZcm3以下である。
[0022] タップ密度が低すぎると、負極の製造に際して集電体に塗布する負極材料のスラリ 一の濃度を低下させる必要があり、塗膜の密度が小さくなり、プレスしたとき黒鉛質粒 子が破壊されやすく電池性能が低下する。逆に、タップ密度が高いことは、電池性能 上は好ましいが、黒鉛質粒子の形状と粒径分布の調整に更なる工程が必要で、収率 が低下し、かつコストが上昇する。
[0023] 本発明にお 、て、タップ密度は下記の方法で測定される。
〈タップ密度測定方法〉
粉体密度測定器 ( (株)セイシン企業社製「タップデンサ一 KYT— 4000」)を用い、 20cm3の円筒状タップセルに目開き 300 mの篩を通して、負極材料を落下させて セル満杯に充填した後、ストローク長 10mmのタップを 1000回行って、その時のタツ プ密度を測定する。
[0024] BET法による比表面積
本発明の負極材料の、 BET法で測定した比表面積は、 0. 2m2Zg以上、好ましく は 0. 3m2Zg以上であり、 8m2Zg以下、好ましくは 6m2Zg以下、特に好ましくは 4m 2Zg以下である。比表面積の値力 Sこの範囲を下回ると、負極材料として用いた場合 の出力特性が低下しやすい。比表面積がこの範囲を上回ると初期不可逆容量が大 きくなり、サイクル特性が悪ィ匕しやすい。
[0025] 本発明にお 、て、比表面積は例えば次の方法で測定される。
〈比表面積測定方法〉
大倉理研社製比表面積測定装置「AMS8000」を用いて、窒素ガス吸着流通法に より BET1点法にて測定する。具体的には、試料 (負極材料)約 0. 4gをセルに充填 し 350°Cに加熱して前処理を行った後、液体窒素温度まで冷却して窒素 30%、 He7 0%のガスを飽和吸着させ、その後室温まで加熱して脱着したガス量を計測し、得ら れた結果力も通常の BET法により比表面積を算出する。
[0026] スキューネス
本発明の負極材料を用いて、前述の所定極板作製方法で極板を作製したとき、作 製された極板 (以下、「本発明の所定極板」と称す場合がある。)の表面をレーザー式 の形状測定顕微鏡で測定した際の表面粗さ曲線において、 JIS B 0601で規定さ れるスキューネス (Rsk)が、 - 1. 7以上、好ましくは— 1. 5以上、特に好ましくは— 1 . 3以上であり、 0以下、好ましくは 0. 3以下である。
[0027] スキューネス (Rsk)とは、表面粗さ曲線の非対称性を示すものである。以下にその 例を図 1を参照して説明する。
[0028] 山の部分よりも谷の部分の方が広い粗さ曲線では、確率密度関数は、図 1の Aに示 す如ぐ谷の方へ偏った分布形となる。この傾向が大きいほど、スキューネスは、ブラ ス側へ大きな値を示す。逆に、谷の部分よりも山の部分が広い粗さ曲線では、図 1の Bに示す如ぐ確率密度関数は、山の方へ偏った分布形となり、スキューネスはマイ ナス側へ大きな値を示す。 [0029] 極板の表面粗さ曲線にっ 、ての場合、スキューネスの値は、極板における負極材 料のつぶれにくさを表している。つまり、スキューネスがプラス側に大きいということは 、プレス後の極板の表面形状が維持されていることを示しており、負極材料がつぶれ にくいということを表す。逆に、スキューネスがマイナス側に大きいということは、負極 材料がつぶれやす!/ヽと 、うことを表して!/、る。
[0030] スキューネスが本発明の規定範囲にあれば、極板における負極材料が適度につぶ れやすぐかつつぶれすぎてリチウムイオン等の拡散経路をつぶすこともないため、 レート特性などが優れる。
[0031] 極板上黒鉛結晶配向比
本発明の負極材料を用いて、前述の所定極板作製方法により作製された本発明の 所定極板について、下記の方法で測定した極板上黒鉛結晶配向比 I 110 ZI 004は、好 ましく ίま、 0. 02以上、中でも 0. 03以上、更に ίま 0. 04以上、また、好ましく ίま、 0. 20 以下、中でも 0. 18以下、更には 0. 16以下の範囲にある。配向比 I ΖΙ が上記
110 004 範囲を下回ると、電池を作製したときの電池充電時の電極膨張が大きくなり、電極の 単位体積当たりの電池容量を大きくし 1 、更にはサイクル試験中に膨張収縮により 活物質の脱落等によりサイクル特性が低下しやすい。一方、配向比 I 110 Ζι 004が上記 範囲を上回ると、プレス後の電極の充填密度を上げ難くなる。
[0032] ここで、極板上黒鉛結晶配向比 I 110 ΖΙ 004とは、電極の厚み方向に対する、黒鉛結 晶六角網面の配向の程度を表す指標である。配向比 I 110 Ζι 004が大きいほど、粒子 の黒鉛結晶六角網面の方向が揃っていない状態を表す。
[0033] 〈極板上黒鉛結晶配向比測定方法〉
本発明の所定極板にっ 、て、 X線回折により極板上の黒鉛の(110)面と (004)面 とのチャートを測定し、測定したチャートについて、プロファイル関数として非対称ピ ァソン VIIを用いてフィッティングすることによりピーク分離を行な 、、 (110)面と(004 )面のピークの積分強度を算出する。得られた積分強度から、(110)面積分強度 Ζ( 004)面積分強度で表わされる比率を算出し、極板上黒鉛結晶配向比と定義する。 ここでの X線回折測定条件は次の通りである。なお、「2 0」は回折角を示す。
ターゲット: Cu (Κ α線)グラフアイトモノクロメーター スリット:発散スリット = 1度、受光スリット =0. lmm、散乱スリット = 1度 測定範囲、および、ステップ角度 Z計測時間:
(110)面: 76. 5度≤2 0≤78. 5度 0. 01度 Z3秒
(004)面: 53. 5度≤2 0≤56. 0度 0. 01度 Z3秒
試料調製:ガラス板に 0. 1mm厚さの両面テープで所定極板を固定
[0034] プレス荷重
本発明の負極材料は、前述の所定極板作製方法により本発明の所定極板を作製 する際のプレス荷重が、長さ 5cmあたりに換算して、好ましくは、 350kgf以上、特に 4 OOkgf以上、とりわけ 450kgf以上であり、また、好ましくは、 1800kgf以下、特に 150 Okgf以下、とりわけ 1200kgf以下である。
[0035] プレス荷重がこの範囲を下回るものでは、その負極材料はつぶれやすぐ極板密 度を制御しにくぐ電極にした際に浸液性が悪ぐ浸液速度が小さくなる虞がある。更 に、負極材料がつぶれてリチウムイオンのパスを塞ぐ虞があり、レート特性が低下す る虞がある。プレス荷重がこの上限を上回ると、極板力 の剥離が大きくなる傾向があ り、更に高い能力のプレス装置が必要であり、製造上好ましくない。
[0036] 浸液速度
本発明の負極材料を用いて前述の所定極板作製方法により作製した本発明の所 定極板について、以下の方法で測定された浸液速度は、好ましくは 10秒 以上 であり、好ましくは 400秒 Z μ 1以下、さらに好ましくは 200秒 Ζ μ 1以下である。
浸液速度がこの上限を上回ると、電池製造の際の生産性が低下しやす 、。
[0037] 〈浸液速度測定方法〉
容量 5 μ 1のマイクロシリンジを用いて 1 μ 1の下記の電解液 Αを極板上に高さ 5mm より滴下させ、滴下力 電解液が消失するまでの時間を測定する。電解液消失点は 目視で電解液接触面と非接触面の境界が判別できなくなる点とする。
電解液 A組成:エチレンカーボネート = 30wt%、ェチルメチルカーボネート = 70w t%の混合溶媒に対し、 LiPFを 1. 0モル Z1溶力したもの
6
[0038] 200サイクル充放電後の容量維持率
本発明の負極材料は、前述の所定極板作製方法で作製した本発明の所定極板を 負極として用いて下記の非水系二次電池作製方法で非水系二次電池を作製し、作 製された非水系二次電池について下記の測定方法で測定した 200サイクル充放電 後の容量維持率が 70%以上、中でも 80%以上、更には 85%以上、特に 90%以上 であることが好ましい。
[0039] 〈非水系二次電池作製方法〉
両面に LiCoOがコートされた縦 40mm、横 30mm、厚さ 15 μ mのアルミ箔を正極
2
とし、本発明の所定極板を縦 42mm、横 32mmの長方形に切り出し、電解液として、 エチレンカーボネートとェチルメチルカーボネートの混合溶媒 (容量比 = 1: 1)に LiP Fを lmol/1になるように溶解させたものを用い、正極の両面に多孔性ポリエチレン
6
フィルム製セパレータを介して負極を配して積層体とする。ラミネートフィルム中にこ の積層体と電解液を封入し、ラミネートフィルム封入型非水系二次電池を作製する。
[0040] 〈200サイクル充放電後の容量維持率測定方法〉
作製したラミネートフィルム封入型非水系二次電池を、 24時間放置した後、電流密 度 49mAZcm2で両電極間の電位差が 4. 2Vになるまで充電を行い、その後、この 電位差が 3. 0Vになるまで 70mAZcm2で放電を行う操作を 1サイクルとして繰り返し 、 206サイクル目の放電容量を 6サイクル目の放電容量で割った値の 100分率 (容量 維持率%)を求めた。ラミネートフィルム封入型非水系二次電池 3個についてそれぞ れ同様に容量維持率を求め、平均値を 200サイクル充放電後のサイクル容量維持 率とする。
[0041] 総個数
本発明の負極材料は、前述のフロー式粒子像分析による個数基準円相当径分布 を測定した際に求められる粒子の総個数力 好ましくは 30 X 106個 Zg以下、特に 2 5 X 106個 Zg以下であることが好ましい。この総個数が多いことは一般に微粒子の量 が多いことを意味し、初期充放電不可逆容量、電池サイクル特性などが悪くなりやす い。総個数は少なければ少ないほうがよいが、コストや作業性の点から、好ましくは 1 X 106個/ g以上である。
[0042] d /ά
90 10
本発明の負極材料は、レーザー回折 Ζ散乱式粒径測定による粒径基準の体積分 布において、累積体積分率が 10%における粒径 (d )に対する累積体積分率が 90
10
%における粒径 (d )の比(d /ά )は、 5以下であることが好ましい。
90 90 10
[0043] d /ά は、粒径分布の広がりを表し、この比が小さいほど粒径分布は狭くなる。本
90 10
発明においては、 d /ά は、好ましくは 4以下である。黒鉛質粒子を主成分とする
90 10
負極材料において、 d /ά が大きいことは、粒径分布が広がっていることを示し、
90 10
微粒子および粗粒子が多いこと、特に微粒子が多いことを示す。微粒子が多いと、 0 比表面積の増加により、初期充放電不可逆容量が大きい、
ii) 負極を製造する際に添加する極板成形用バインダに吸着した微粒子が粒子間 の空隙に充填されて、リチウムイオンの拡散パスである連通孔を閉塞させるため急速 充放電特性が低下する、
iii) 比表面積の増加および連通孔の閉鎖は更にサイクル特性を低下させる、という 問題を生ずる。 d /ά は、粒度分布を調整する操作や収率の点からして好ましくは
90 10
2以上である。
[0044] d /ά が上述の範囲であれば、極板成形用バインダの効果を有効に発揮でき、
90 10
負極の強度を向上させることができるといった利点もある。粗粒子が少ないと、負極 材料のスラリーを集電体に塗布して負極を製造する工程において、極板表面に凹凸 が発生し、電池に用いられるセパレータを傷つけやすくなるといった問題点を回避で きる。
[0045] Α/Β
本発明の負極材料は、前述のフロー式粒子像分析による円相当径分布の測定に おいて、円相当径が小さいもの力もの累積頻度で 20 + Ζ— 5%の範囲における平均 頻度 (Α)に対する、円相当径が小さいものからの累積頻度で 80 + Ζ— 5%の範囲に おける平均頻度(Β)の比 (ΑΖΒ)が 1. 2〜8. 0であることが好ましい。
[0046] 本発明者らの検討によれば、黒鉛質粒子を主成分とする負極材料では、上記の粒 径基準の累積体積分布に殆ど影響しな 、小粒径部分の粒子が、初期充放電不可逆 容量や急速充放電特性、サイクル特性などに影響していることが判明した。上記のフ ロー式粒子像分析における比 (ΑΖΒ)はこの小粒径部分の特徴を表わす指標であり 、粒子数に基づく指標であるので、小粒径部分の特徴をよく表現できる。 ΑΖΒは、 円相当径が小さいもの力も累積頻度で 20%の点と 80%の点での頻度の比を取った ものであり、小粒径の微粒子の比率が多いと大きくなる。
[0047] AZBの値については特に制限は無いが、小さいほうが電池性能の点からは好まし いが、黒鉛質粒子を製造するに際しての粒度調製のコストと収率の点から、好ましく は 1. 2以上、より好ましくは 1. 3以上、より好ましくは 1. 4以上、更に好ましくは 1. 5 以上、特に好ましくは 1. 6以上であり、好ましくは 8. 0以下であり、より好ましくは 7. 0 以下、更に好ましくは 6. 0以下である。
[0048] AZBが大き 、と不可逆容量が増加し、また、電池の急速充放電特性とサイクル特 性の低下をきたす。 AZBが上記の範囲にあると電池の急速充放電特性とサイクル 特性が良好になる理由については明確ではないが、 AZBが上記範囲を上回るとい うことは黒鉛質粒子が多量の微粒子を含有して ヽるカゝ、又は黒鉛質粒子同志の結着 が弱ぐ測定に際しての超音波照射により粒子が破壊されているということが推測され る。前者の場合であれば、多量の微粒子の存在そのものが初期不可逆容量を増加さ せ、かつ、電池の急速充放電特性とサイクル特性の低下をもたらすと考えられる。ま た、後者の場合であれば、黒鉛質粒子を非水系二次電池負極に加工する工程の一 つであるプレス工程で、負極板の表面に存在する黒鉛質粒子が壊れて、リチウムィォ ンの拡散パスである連通孔を閉塞させ、そのため急速充放電特性の低下とサイクル 特性の低下をもたらすものと推測される。
[0049] AZBを得るための個数基準円相当径の分布は、前述したフロー式粒子像分析に より測定する。
[0050] Ra
本発明の負極材料を用いて前述の所定極板作製方法により作製された本発明の 所定極板の表面粗さ (Ra)は、好ましくは 0. 1以上、より好ましくは 0. 2以上であり、 好ましくは 1. 2以下、より好ましくは 1以下である。
[0051] 表面粗さがこの範囲を下回ると、極板が平らすぎて、浸液性が低下する虞があり、こ の範囲を上回ると電池内での活物質密度を上げられないため電池容量が低下しや すい。
[0052] 表面粗さについては、前述のスキューネスと同様に測定することができる。 [0053] d (002)および Lc (002)
本発明の負極材料は、 X線回折分析による d (002)の値力 0. 3359nm以下、好 ましくは 0. 3356nm以下であり、高結晶性黒鉛の値である 0. 3354nm以上であるこ とが望ましい。 d (002)が大きすぎると、黒鉛としての結晶性が不十分であり、負極材 料としての充放電容量が低下し、かつ、黒鉛質粒子の強度が高すぎるために、集電 体に塗布された活物質層を所定の嵩密度にプレス成形するときに高圧力を必要とし 高密度化するのが困難となる虞がある。
[0054] また、本発明の負極材料は、 X線回折分析による結晶厚さである Lc (002)の値が、 80nm以上、好ましくは lOOnm以上であることが望ましい。 Lc (002)が 80nm未満の 場合も、黒鉛としての結晶性が不十分であり、負極材料としての充放電容量が低下し 、かつ、黒鉛質粒子の強度が高すぎるために、集電体に塗布された活物質層を所定 の嵩密度にプレス成形するときに高圧力を必要とし高密度化するのが困難となる虞 がある。
[0055] (3)負極材料の製造方法
黒鉛質粒子を主成分とする本発明の負極材料は、原料である炭素質粒子、ノ^ン ダなどを混合し、必要に応じて成形、脱揮発成分焼成、黒鉛化、粉砕、分級を行うこ とにより製造される。
[0056] 前述の物性を満足する本発明の負極材料を製造するには、好ましくは、炭素質粒 子の主成分として-一ドルコータスや天然黒鉛を用いる。炭素質粒子とバインダを混 練して黒鉛ィ匕する工程にぉ 、て、黒鉛化の際の触媒の種類や量を最適化する (例え ば黒鉛ィ匕触媒として一般的に用いられる SiCの場合、添加量を母材 100部に対し 30 部以下とするなどの方法により適度な非晶質量を維持することが好ましい。
[0057] ノ インダであるピッチなどの種類や量を最適化することが好ましぐ黒鉛化容易なも のを母材 100部に対し 20〜50部使用することが望ましい。
黒鉛ィ匕を行う温度を最適化することが好ましぐ 2800〜3100°Cとすることが望まし い。
捏合時間を最適化することが好ましぐ 2時間以内とすることが望ましい。
[0058] 以下に本発明の負極材料の好適な製造方法につ!、て詳細に説明する。 [0059] まず、炭素質粒子およびバインダを加熱しながら混合する。この際、所望により黒鉛 化触媒を加えてもよい。好適な炭素質粒子、ノ インダ、黒鉛ィ匕触媒は次の通りである
[0060] 炭素質粒子
原料としての一次粒子である炭素質粒子の主成分として、好ましくは-一ドルコーク スゃ熱処理時に揮発する揮発成分 (Volatile Matter:以下「VM」と称す場合がある。 )を含有する生コータスを用いる。生コータスとしては熱処理時に揮発する揮発成分 を 2〜10wt%含有する炭素質粒子を用いるのが好ましい。また、天然黒鉛を併用し ても良ぐ天然黒鉛であってもよい。
[0061] 炭素質粒子のレーザー回折 Z散乱式粒径分布測定による体積基準粒径分布のメ ジアン径は、特に制限はないが、 5 μ m以上、中でも 6 μ m以上、特に 8 μ m以上、ま た 40 μ m以下、中でも 35 μ m以下、特に 30 μ m以下が好ましい。
[0062] 炭素質粒子のメジアン径がこの下限を下回ると、炭素質粒子粉砕に要するコストが 増え経済的でなぐ上限を上回ると黒鉛質粒子の初期不可逆容量が上昇しやすい。 炭素質粒子のメジアン径は、前述の負極材料のメジアン径と同様にして測定すること ができる。
[0063] 炭素質粒子の平均粒径は、目的とする黒鉛質粒子の平均粒径より小さ!ヽものを用 いるのが好ましい。この炭素質粒子の平均粒径は、好ましくは、目的とする黒鉛質粒 子の平均粒径の 2倍以下、より好ましくは等倍以下であり、好ましくは、平均粒径の 1 Z10以上、より好ましくは 1Z5以上である。
[0064] 炭素質粒子の平均円形度は、好ましくは 0. 82以上、より好ましくは 0. 90以上であ り、好ましくは 1. 00以下、より好ましくは 0. 96以下である。
[0065] 炭素質粒子の平均円形度がこの範囲を下回ると、配向度が下がりやすぐ上回ると コストアップとなりやすい。炭素質粒子の平均円形度は、前述の負極材料の平均円 形度と同様にして測定することができる。
[0066] バインダ
ノインダとしては、具体的には、含浸ピッチ、コールタールピッチ、石炭液化油等の 石炭系重質油、ァスフアルテン等の直留系重質油、エチレンヘビーエンドタールなど の分解系重質油等の石油系重質油等が挙げられる。
[0067] ノインダ中に含まれるキノリン不溶成分は通常 0〜: LOwt%であるが少なければ少 な 、ほど黒鉛質粒子の固さや電池にした時の容量の点で好ま 、。バインダのキノリ ン不溶成分の含有量が多すぎると、得られる黒鉛質粒子が固ぐ集電体に塗布され た活物質層をプレスしても粒子の変形が起こりにくぐ高密度化するのが困難となる 傾向があり、また、容量も低下する傾向がある。
[0068] ノ インダは、炭化 ·黒鉛ィ匕により得られる黒鉛ィ匕処理を経た黒鉛質粒子に占めるバ インダ由来のものの比率は、好ましくは 5wt%以上、より好ましくは 10wt%以上とな るように、且つ好ましくは 60wt%以下、より好ましくは 40wt%以下、更に好ましくは 3 Owt%以下である。バインダ量が多すぎると、バインダ由来の非晶質部分が最終生 成物中で多くなるため、電池にしたときの電池容量が低下する虞がある。また、得ら れる黒鉛質粒子が固くなるため、集電体に塗布された活物質層をプレスした際、ノ ィ ンダ部分ではなぐ骨材粒子そのものの破壊が起きやすくなる。
[0069] 一方、バインダ量は少な 、方が電池特性は良好である力 少なすぎると、捏合後の 成形が困難となり、製造コストアップにつながる。また、黒鉛質造粒粒子である場合、 それを構成する黒鉛質粒子同士の結着が弱ぐ黒鉛質造粒粒子を主成分とする負 極材料を負極用極板に加工する工程の一つであるプレス工程で、極板の表面に存 在する黒鉛質造粒粒子が壊れやす ヽために、リチウムイオンの拡散ノ スである連通 孔を閉塞させ急速充放電特性が低下し、これらの理由のために急速充電特性、ひい てはサイクル特性が不十分となりやす 、。また塗布液の調製などのハンドリング時に も黒鉛質造粒粒子の微粒子化が起こりやす ヽ。
[0070] 負極材料中のバインダ量は捏合以前の段階で添加するバインダの量によってコン トロールする。例え ¾JIS K2270記載の方法で求めたバインダの残炭率が X%であ る場合には所望の量の 100ZX倍のバインダを添加することとなる。
[0071] ピッチ、タール等のバインダ添加の際の工夫としては、極力、低温、短時間で均一 に分散させることが初期不可逆容量低減、プレス荷重低減のために好ましい。分散 を低温、短時間で行うためには炭素質粒子が壊れない程度に攪拌を強めればよい。
[0072] 黒鉛化触媒 充放電容量の増加とプレス性の改良のために、炭素質粒子とバインダの混合に際 し、黒鉛ィ匕触媒を添加するのが好ましい。黒鉛ィ匕触媒としては、鉄、ニッケル、チタン 、ケィ素、ホウ素等の金属およびこれらの炭化物、酸化物、窒化物等の化合物が挙 げられる。なかでも、ケィ素、ケィ素化合物、鉄、鉄化合物が好ましぐケィ素化合物 のなかでは炭化珪素、鉄化合物のなかでは酸ィ匕鉄が特に好まし 、。
[0073] 黒鉛化触媒としてケィ素やケィ素化合物を用いた場合、加熱により生成する炭化ケ ィ素が 2800°C以上の温度ですベて熱分解して結晶性の極めて良好な黒鉛を成長 させ、かつケィ素が揮散する時に黒鉛結晶間に細孔が形成されるので、粒子内部の リチウムイオンの電荷移動反応と拡散とを助長し電池性能を向上させることができる。 また、黒鉛ィ匕触媒として鉄またはその化合物を用いた場合、炭素の触媒への溶解、 析出の機構により結晶性の良好な黒鉛を成長させ、ケィ素と同様な効果を発現する ことができる。
[0074] これらの黒鉛ィ匕触媒の添加量は、原料としての炭素質一次粒子に対して好ましくは 30wt%以下、より好ましくは 20wt%以下、さらに好ましくは 10wt%以下、特に好ま しくは 5wt%以下である。黒鉛化触媒が多すぎると、黒鉛ィ匕が進みすぎ、リチウムィォ ン二次電池製造時の特性、特に浸液性が充分でないといった問題が生じる。同時に 、黒鉛質粒子内に細孔を生成させるためか、粒子の強度が低下し、その結果極板作 製時のプレス工程にぉ 、て表面が平滑ィ匕し、イオンの移動を阻害する虡もある。
[0075] 一方、黒鉛化触媒が少なすぎると、黒鉛化が不十分で非水系二次電池にした時の 充放電容量の低下の問題があり、また、極板作製時のプレス工程において高圧力を 必要とし高密度化するのが困難となる虞もある。
[0076] 捏合 (混合)
炭素質粒子、ノ インダ、および所望により添加された黒鉛ィ匕触媒などの原料は、ま ず、加熱下で捏合される。これにより、炭素質粒子および捏合温度では溶融しない原 料に液状のバインダが添着された状態となる。
[0077] この場合、捏合機に全原料を仕込んで捏合と昇温を同時に行っても良いし、捏合 機にバインダ以外の成分を仕込んで攪拌状態で加熱し、捏合温度まで温度が上が つた後に常温または加硫溶融状態のバインダを仕込んでも良い。 [0078] 加熱温度は、バインダの軟化点以上であり、加熱温度が低すぎると、バインダの粘 度が高くなり、均一な捏合が困難となるので、通常軟ィ匕点より 10°C以上高い温度、好 ましくは軟ィ匕点より 20°C以上高い温度で行われる。加熱温度が高すぎるとバインダ の揮発と重縮合によって捏合系の粘度が高くなりすぎるので、通常 300°C以下、好ま しくは 250°C以下である。
[0079] 捏合機は撹拌翼をもつ機種が好ましぐ撹拌翼は Z型、マチスケータ型といった汎 用的なものを用いることができる。捏合機に投入する原料の量は、通常捏合機容積 の 10vol%以上、好ましくは 15vol%以上で、 50vol%以下、好ましくは 30vol%以下 である。捏合時間は 5分以上必要であり、最長でも揮発分の揮散による大きな粘性の 変化を来たす時間までで、通常は 30〜120分である。捏合機は捏合に先立ち捏合 温度まで予熱しておくことが好ま 、。
[0080] 成形
得られた捏合物は、そのまま、揮発成分 (VM)の除去と炭化を目的とする脱 VM焼 成工程に供してもよいが、ハンドリングしやすいように、成形してから脱 VM焼成工程 に供することが好ましい。
[0081] 成形方法は形状を保持することが可能であれば特に制限はなぐ押し出し成形、金 型成形、静水圧成形などを採用することができる。このうち、成形体内で粒子が配向 し易 、押し出し成形や、粒子の配向はランダムに保たれるが生産性の上がりにくい静 水圧成形より、比較的操作が容易であり、また、捏合でランダムな配向となった構造 を破壊せずに成形体を得ることができる金型成形が好ましい。
[0082] 成形温度は、室温 (冷間)、加熱下 (熱間、バインダの軟ィ匕点以上の温度)のどちら でもよい。冷間で成形する場合は、成形性の向上と成形体の均一性を得るために、 捏合後冷却された捏合物を予め最大寸法が lmm以下に粗砕することが望ましい。 成形体の形状、大きさは特に制限は無いが、熱間成形では、成形体が大きすぎると 成形に先立つ均一な予熱を行うのに時間が力かる問題があるので、好ましくは最大 寸法で 150cm程度以下の大きさとする。
[0083] 成形圧力は、圧力が高すぎると成形体の細孔を通しての脱揮発成分除去 (脱 VM) が困難となり、かつ真円ではない炭素質粒子が配向し、後工程における粉砕が難し くなる問題があるので、成形圧力は、好ましくは 3tfZcm2(294MPa)以下、より好ま しくは 500kgfZcm2(49MPa)以下、更に好ましくは 10kgfZcm2 (0. 98MPa)以 下である。下限の圧力は特に制限はないが、脱 VMの工程で成形体の形状を保持 できる程度に設定することが好ましい。
[0084] 脱 VM焼成
得られた成形体は、炭素質粒子およびバインダの揮発成分 (VM)を除去して、黒 鉛化時の充填物の汚染、充填物の成形体への固着を防ぐために、脱 VM焼成を行う 。脱 VM焼成は、通常 500°C以上、好ましくは 600°C以上で、また、好ましくは 1700 °C以下、より好ましくは 1400°C以下の温度で、好ましくは 0. 1〜10時間行う。加熱は 、酸ィ匕を防止するために、通常、窒素、アルゴンなど不活性ガスの流通下又はブリー ズ、パッキングコータス等の粒状炭素材料を間隙に充填した非酸ィ匕性雰囲気で行う。
[0085] 脱 VM焼成に用いる設備は、電気炉やガス炉、電極材用リードハンマー炉など、非 酸化性雰囲気で焼成可能であれば特に限定されな!、。加熱時の昇温速度は揮発分 の除去のために低速であることが望ましぐ通常、低沸分の揮発が始まる 200°C付近 力も水素の発生のみとなる 700°C近傍までを、 3〜100°CZhrで昇温する。
[0086] 黒鉛化
脱 VM焼成により得られた炭化物成形体は、次いで、高温で加熱して黒鉛化する。 黒鉛化時の加熱温度は低くなるほど、黒鉛ィ匕が進行しないので、得られる負極材料 の AZBが小さくなる一方で黒鉛質粒子が固くなり、集電体に塗布された活物質層を 所定の嵩密度にプレス成形するときに高圧力を必要とし高密度化するのが困難とな る傾向があるため、好ましくは 2900°C以上、より好ましくは 3000°C以上で加熱する。 また、加熱温度が高過ぎると、黒鉛の昇華が顕著となるので、加熱温度は 3300°C以 下が好ましい。加熱時間は、バインダおよび炭素質粒子が黒鉛となるまで行えばよく 、好ましくは 1〜24時間である。
[0087] 黒鉛化時の雰囲気は、酸化を防止するため、窒素、アルゴン等の不活性ガスの流 通下又はプリーズ、ノ ッキングコータス等の粒状炭素材料を間隙に充填した非酸ィ匕 性雰囲気下で行う。
[0088] 黒鉛化に用いる設備は、電気炉やガス炉、電極材用アチソン炉など、上記の目的 に沿うものであれば特に限定されず、昇温速度、冷却速度、熱処理時間などは使用 する設備の許容範囲で任意に設定することができる。
[0089] 粉砕
このようにして得られた黒鉛化処理物は、通常はこのままでは本発明で規定する粒 径分布を有していないので、粉砕および篩分け等により、所望の粒径分布に調整す る。
[0090] 黒鉛ィ匕処理物の粉砕方法は特に制限はないが、粉砕手段としては、機械的に摩砕 する手段、例えば、ボールミル、ハンマーミル、 CFミル、アトマイザ一ミル、パルべライ ザ一など、風力を利用した粉砕手段、例えば、ジェットミルなどが例示される。粗粉砕 、中粉砕については、ジョークラッシャ、ハンマーミル、ローラーミルなどの衝撃力によ る粉砕方式を用いてもよい。
[0091] ここで、粉砕のタイミングは、黒鉛ィ匕前であっても黒鉛ィ匕後であってもよ 、。後者の 方がルツボ詰め等の作業が不要で安価に製造できるので、より好まし 、。
[0092] 分級
d /ά および、 ΑΖΒが前述の範囲となるように、得られた粉砕物から大径粒状物
90 10
と小径粒状物 (微紛)を除去する。また、大径粒状物を除去することにより短絡の発生 を防止し、塗布時のむらをなくすことができる。大径粒状物および微紛の除去により、 レーザー回折 Ζ散乱式粒径測定による体積基準粒径分布において、粒径 100 m 以上のものが全体の 3%以下、かつ、粒径 1 μ m以下のものが全体の 1%以下となる ように整粒することが望ま 、。
[0093] 大径粒状物、小径粒状物を除去する方法としては、種々あるが、篩分け又は分級 により除去することが、機器の簡易性、操作性およびコスト面で好ましい。更に、篩分 け又は分級は、造粒体の粒度分布および平均粒径が、その後の黒鉛化および該粒 状物の除去により変化するのを必要に応じ再調整できるという利点がある。
[0094] 大径粒状物除去のための篩分けには、網面固定式、面内運動式、回転ふるい式 等があるが、処理能力の点から、網面固定式のブロースルー型の篩いが特に好まし い。使用する篩い目の目開きのサイズは、 80 m以下、 30 m以上のものであれば 使用可能であり、除去する粒状物の生成状況 (特に量および粒径)と、造粒体の粒度 分布および平均粒径の調整要求に合わせ適宜選択し使用する。該サイズが 80 m を越えると、該粒状物の除去が不充分となり、 30 m未満の場合、造粒体を過剰に 除去することにつながり、製品ロスが多く生じるとともに、粒度分布の調整も困難にな り好ましくない。なお、汎用のサイズとして巿販されている目開きが 45 m、 38 mの 篩い目が好ましく使用できる。
[0095] 分級は、風力分級、湿式分級、比重分級等の方法で行うことができ、 100 μ m以上 の粒状物を除去するには特に限定されないが、造粒体の性状への影響および造粒 体の粒度分布および平均粒径も調整することを考慮すると、旋回流分級機等の風力 分級機の使用が好ましい。この場合、風量と風速を制御することで、上記篩い目の目 開きのサイズを調整するのと同様に、該粒状物の除去と造粒体の粒度分布および平 均粒径を調整することができる。
[0096] [2]非水系二次電池用負極
本発明の負極材料は、非水系二次電池、特にリチウム二次電池の負極活物質とし て好適に用いることができる。
[0097] 非水系二次電池を構成する負極は、負極活物質、極板成形用バインダ、増粘剤、 必要に応じ導電材を含有する活物質層を集電体上に形成してなる。活物質層は通 常、負極活物質、極板成形用バインダ、増粘剤、必要に応じ導電材、および溶媒を 含有するスラリーを調製し、これ ^^電体上に塗布、乾燥、プレスすることにより得ら れる。
[0098] 負極活物質としては、本発明の負極材料の他にも通常負極活物質として用いられ る物質を併用しても良い。
[0099] 極板成形用バインダとしては、電極製造時に使用する溶媒や電解液に対して安定 な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビ-リデン、 ポリテトラフノレォロエチレン、ポリエチレン、ポリプロピレン、スチレン 'ブタジエンゴム、 イソプレンゴム、ブタジエンゴム、エチレン アクリル酸共重合体およびエチレンーメ タクリル酸共重合体等が挙げられる。極板成形用バインダにおける、活物質 Z極板 成形用バインダの重量比は、好ましくは 90Z10以上、より好ましくは 95Z5以上であ り、且つ好ましくは 99. 9/0. 1以下、好ましくは 99. 5/0. 5以下の範囲である。 [0100] 増粘剤としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチ ルセルロース、ェチルセルロース、ポリビュルアルコール、酸化スターチ、リン酸ィ匕ス ターチおよびガゼイン等が挙げられる。
[0101] 導電材としては、グラフアイトまたはカーボンブラック等の炭素材料;銅または-ッケ ル等の金属材料などが挙げられる。
[0102] 集電体の材質としては、銅、ニッケルまたはステンレス等が挙げられる。これらのうち 、薄膜に加工しやす 、と 、う点およびコストの点力 銅箔が好ま 、。
[0103] 活物質層の密度は、用途により異なる力 容量を重視する用途では、好ましくは 1.
55g/cm3以上、とりわけ 1. 60g/cm3以上、更に 1. 65g/cm3以上、特に 1. 70g Zcm3以上が好ましい。密度が低すぎると、単位体積あたりの電池の容量が必ずしも 充分ではない。また、密度が高すぎるとレート特性が低下するので、 1. 9gZcm3以 下が好ましい。
[0104] ここで活物質層とは集電体上の活物質、極板成形用バインダ、増粘剤、導電材な どよりなる合剤層を 、 、、その密度とは電池に組立てる時点での嵩密度を 、う。
[0105] [3]非水系二次電池
本発明の負極材料を用いて製造された本発明の非水系二次電池用負極は、特に リチウム二次電池などの非水系二次電池の負極として極めて有用である。
[0106] このような非水系二次電池を構成する正極、電解液等の電池構成上必要な部材の 選択については特に制限されない。以下において、非水系二次電池を構成する部 材の材料等を例示する力 使用し得る材料はこれらの具体例に限定されるものでは ない。
[0107] 本発明の非水系二次電池は、通常、上記の本発明の負極、正極および電解質とか らなる。
[0108] 正極は、正極集電体上に正極活物質、導電剤および極板成形用バインダを含有 する活物質層を形成してなる。活物質層は通常正極活物質、導電剤および極板成 形用バインダを含有するスラリーを調製し、これを集電体上に塗布、乾燥することによ り得られる。
[0109] 正極活物質としては、例えば、リチウムコバルト酸ィ匕物、リチウムニッケル酸ィ匕物、リ チウムマンガン酸ィ匕物等のリチウム遷移金属複合酸ィ匕物材料;二酸化マンガン等の 遷移金属酸ィ匕物材料;フッ化黒鉛等の炭素質材料などのリチウムを吸蔵'放出可能 な材料を使用することができる。具体的には、 LiFeO、 LiCoO、 LiNiO、 LiMn O
2 2 2 2 およびこれらの非定比化合物、 MnO、 TiS、 FeS、 Nb S、 Mo S、 CoS、 V O
4 2 2 2 3 4 3 4 2 2 5
、 P O、 CrO、 V O、 TeO、 GeO等を用いることができる。
2 5 3 3 3 2 2
[0110] 正極集電体としては、電解液中での陽極酸化によって表面に不動態皮膜を形成す る金属またはその合金を用いるのが好ましぐ Ilia, IVa、 Va族(3B、 4B、 5B族)に属 する金属およびこれらの合金を例示することができる。具体的には、 Al、 Ti、 Zr、 Hf、 Nb、 Taおよびこれらの金属を含む合金などを例示することができ、 Al、 Ti、 Taおよ びこれらの金属を含む合金を好ましく使用することができる。特に A1およびその合金 は軽量であるためエネルギー密度が高くて望ましい。
[0111] 電解質としては、電解液、固体電解質、ゲル状電解質などが挙げられるが、なかで も電解液、特に非水系電解液が好ましい。非水系電解液は、非水系溶媒に溶質を 溶解したものを用いることができる。
[0112] 溶質としては、アルカリ金属塩や 4級アンモ-ゥム塩などを用いることができる。具体 的には、 LiCIO、 LiPF、 LiBF、 LiCF SO、 LiN (CF SO ) 、 LiN (CF CF SO
4 6 4 3 3 3 2 2 3 2 2
) 、 LiN (CF SO ) (C F SO )、 LiC (CF SO ) 力 なる群から選択される 1以上の
2 3 2 4 9 2 3 2 3
化合物を用いるのが好まし 、。
[0113] 非水系溶媒としては、エチレンカーボネート、ブチレンカーボネート、ビ-レンカー ボネート等の環状カーボネート、 γ プチ口ラタトンなどの環状エステルイ匕合物; 1, 2 ジメトキシェタン等の鎖状エーテル;クラウンエーテル、 2—メチルテトラヒドロフラン 、 1, 2 ジメチルテトラヒドロフラン、 1, 3 ジォキソラン、テトラヒドロフラン等の環状 エーテノレ;ジェチノレカーボネート、ェチルメチルカーボネート、ジメチノレカーボネート 等の鎖状カーボネートなどを用いることができる。溶質および溶媒はそれぞれ 1種類 を選択して使用してもよいし、 2種以上を混合して使用してもよい。これらの中でも非 水系溶媒力 環状カーボネートと鎖状カーボネートを含有するものが好ましい。
[0114] 電解液中のこれらの溶質の含有量は、 0. 2mol/l以上、特に 0. 5mol/l以上で、
2molZl以下、特に 1. 5molZl以下であることが好ましい。 [0115] これらのなかでも本発明に係る負極、通常使用されるリチウムイオン電池用の金属 カルコゲナイド系正極およびカーボネート系溶媒を主体とする有機電解液を組み合 わせて作成した非水系二次電池は、容量が大きぐ初期サイクルに認められる不可 逆容量が小さぐ急速充放電容量が高く(レート特性が良好)、またサイクル特性が優 れ、高温下での放置における電池の保存性および信頼性も高ぐ高効率放電特性 および低温における放電特性に極めて優れたものである。
[0116] 非水系電解液は、皮膜形成剤を含んでいても良い。皮膜形成剤としては、ビ-レン カーボネート、ビニノレエチノレカーボネート、メチルフエ二ノレカーボネートなどのカーボ ネート化合物、エチレンサルファイド、プロピレンサルファイドなどのアルケンサルファ イド、 1, 3 プロパンスルトン、 1, 4 ブタンスルトンなどのスルトン化合物、マレイン 酸無水物、コハク酸無水物などの酸無水物などが挙げられる。皮膜形成剤の含有量 は、通常 10重量%以下、好ましくは 8重量%以下、更に好ましくは 5重量%以下、最 も好ましくは 2重量%以下である。皮膜形成剤の含有量が多すぎると初期不可逆容 量の増加や低温特性、レート特性の低下等、他の電池特性に悪影響を及ぼすおそ れがある。
[0117] 正極と負極の間には、通常正極と負極が物理的に接触しないようにするためにセ パレータが設けられる。セパレータはイオン透過性が高ぐ電気抵抗が低いものであ るのが好ましい。セパレータの材質および形状は、特に限定されないが、電解液に対 して安定で、保液性が優れたものが好ましい。具体的には、ポリエチレン、ポリプロピ レン等のポリオレフインを原料とする多孔性シートまたは不織布が挙げられる。
[0118] 本発明の非水系二次電池の形状は特に制限されず、シート電極およびセパレータ をスパイラル状にしたシリンダータイプ、ペレット電極およびセパレータを組み合わせ たインサイドアウト構造のシリンダータイプ、ペレット電極およびセパレータを積層した コインタイプ等が挙げられる。
実施例
[0119] 次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれら の例によって限定されるものではない。
[0120] [実施例 1] 非晶質炭素材料 (ニードルコータス)を粗粉砕し、更に微粉砕機 (ホソカワミクロン社 製「サンプルミル」)で粉砕した後、 45 m目開きの篩!ヽで粗粒子を除き、メジアン径 12. 2 /ζ πι、最 /Jヽ粒径 1. 5 /ζ πι、最大粒径 68 m、平均円形度 0. 80の炭素質粒子 を得た。
[0121] これと軟化点 88°Cのバインダーピッチとを 100 : 34の重量比で混合し、予め 128°C に加熱されたマチスケータ型撹拌翼を持つ-一ダ一に投入して 20分間捏合した。
[0122] 十分に捏合された捏合物を、予め 108°Cに予熱されたモールドプレス機の金型に 充填し、 5分間放置し捏合物の温度が安定したところでプランジャーを押し、 2kgf/c m2 (0. 20MPa)の圧力を加えて成形した。 1分間この圧力を保持した後、駆動を止 め、圧力低下が収まった後、直径 6cm、長さ 9cm成形体を取り出した。
[0123] 得られた成形体を耐熱容器である金属製サガーに収納し、間隙に黒鉛質プリーズ を充填した。電気炉で室温から 1000°Cまで 48時間かけて昇温し、 1000°Cで 3時間 保持し、脱 VM焼成を行った。次に、成形体を黒鉛ルツボに収納し、間隙に黒鉛質 プリーズを充填した。アチソン炉で 3000°Cに 4時間加熱して黒鉛ィ匕を行った。
[0124] 得られた黒鉛質の成形体をジョークラッシャで粗砕した後、サンプルミルで微粉砕し 、目開き 45 /z mの篩いで粗粒子を除き、更に風力分級(日本-ユーマチック工業社 製「NPK—MC— MDS— 2」使用、スぺーサ—厚み 4mm、フィーダ一回転数 500rp m、エアを適量フィードしながら 540mmH Oの減圧で排気)で微粒子 5%を除いて
2
整粒し、メジアン径が 21. 1 μ mの黒鉛質粒子を得た。
[0125] 得られた黒鉛質粒子は、タップ密度 0. 79gZcm3、 BET比表面積 2. 3m2Zg、総 個数 23. 3 X 106個 Zg、 d /ά = 3. 8、 Α,Β= 1. 6、 d (002) =0. 3359nm、 L
90 10
c (002) = 132nmであった。
[0126] この黒鉛質粒子を負極材料として用い、下記の方法でコイン型電池を作製し、初期 充放電容量、初期充電可逆容量およびレート特性を求めた。また、前述の所定極板 作製方法により、本発明の所定極板を作製し、前述の方法でスキューネス (Rsk)、表 面粗さ Ra、極板上黒鉛結晶配向比 (I ZI )、プレス
110 004 荷重、浸液速度を測定した。 また、この所定極板を用いて、前述の非水系二次電池作製方法によりラミネートフィ ルム封入型電池を作製し、前述の方法で 200サイクル充放電後の容量維持率を測 定した。
[0127] なお、スキューネスの測定においては、カラーレーザー顕微鏡 (キーエンス社製「型 式 VK— 9500」)を用いて、極板試料表面近傍の深さ方向の形態を観察し、得られ た情報から、スキューネス (Rsk)を算出した。カットオフは無しとし、測定視野は、縦 2 80 m、横 210 /z m、深さ 17 mとした。ここで、深さとは極板表面層からの距離とし た。
[0128] これらの結果を表 1に示した。
[0129] 〈コイン型電池の作製〉
負極材料 10g、カルボキシメチルセルロース水溶液を固形分換算で 0. lg、および スチレン 'ブタジエンゴム水性ディスパージヨンを固形分換算で 0. lgをキーエンス製 ノ、イブリツドミキサーで 3分間撹拌して、スラリーを得た。このスラリー^^電体である 銅箔上に、負極材料が 10±0. lmgZcm2付着するように、ドクターブレード法で塗 布し、室温で風乾を行った。更に 110°Cで 12時間乾燥後、プレスして電極密度を 1. 6±0. 03gZcm3に調整し、負極シートとした。
[0130] 作成した負極シートを直径 12. 5mmの円盤状に打ち抜き負極とし、リチウム金属箔 を直径 12. 5mmの円板状に打ち抜き正極とした。負極と正極の間には、エチレン力 ーボネートとェチルメチルカーボネートの混合溶媒(容量比 = 1: 1)に LiPFを lmol
6
/1になるように溶解させた電解液を含浸させたセパレータ(多孔性ポリエチレンフィ ルム製)を置き、 2016コイン型電池を作製した。
[0131] 〈初期充放電容量、初期充電不可逆容量〉
作製した 2016コイン型電池を、 24時間放置した後、電流密度 0. 16mAZcm2で 両電極間の電位差が OVになるまで充電を行い、その後 1. 5Vになるまで 0. 33mA Zcm2で放電を行った。基準充放電試験を実施し、 1サイクル目の放電容量の平均 値を初期充放電容量とした。また、 1サイクル目で発生する不可逆容量 (初回充電容 量 初回放電容量)を初期充電不可逆容量とした。コイン型電池 3個について、それ ぞれ初期放電容量および初期充電不可逆容量を測定し、平均値を求めた。
[0132] 〈レート特性〉
作製した 2016コイン型電池を、電流密度 0. 16mAZcm2で両電極間の電位差が OVになるまで充電を行い、その後 1. 5Vになるまで 7. OmAZcm2で放電したときの 放電容量を、 0. 7mAZcm2で放電したときの放電容量で割った値の 100分率(レー ト特性)を求めた。コイン型電池 3個について、それぞれレート特性を求め、平均値を 求めた。
[0133] [実施例 2]
揮発成分の含有量が 0. lwt%未満である非晶質炭素材料を粗粉砕し、更に微粉 砕機 (ホソカワミクロン社製「サンプルミル」)で粉砕した後、 45 m目開きの篩!ヽで粗 粒子を除き、メジアン径 9. O ^ m,最小粒径 0. 6 /ζ πι、最大粒径 51. 5 /ζ πι、平均円 形度 0. 80の炭素質粒子を得た。
[0134] これと軟化点 88°Cのバインダーピッチとを 100 : 34の重量比で混合し、混合物 100 重量部に対して黒鉛化触媒 (Fe O ) 30重量部を添加し、予め 128°Cに加熱された
2 3
マチスケータ型撹拌翼を持つニーダ一に投入して 20分間混合した後、実施例 1と同 様にして成形、脱 VM、黒鉛化、粉砕、整粒を行って、メジアン径が 20. 5 mの黒鉛 質粒子を得た。
[0135] 得られた黒鉛質粒子は、タップ密度 0. 79gZcm3、 BET比表面積 2. 9m2Zg、総 個数 21. O X 106個 Zg、 d /ά =4. 0、 A/B=0. 8、 d (002) =0. 3357nm、 L
90 10
c (002) = 187nmであった。
[0136] この黒鉛質粒子を負極材料として用い、実施例 1と同様にしてコイン型電池を作製 し、初期充放電容量、初期充電可逆容量およびレート特性を求めた。また、同様に 本発明の所定極板を作製し、スキューネス (Rsk)、表面粗さ Ra、極板上黒鉛結晶配 向比 (I /1 ) ,プレス荷重、浸液速度、 200サイクル充放電後の容量維持率の測
110 004
定を行い、結果を表 1, 2に示した。
[0137] [実施例 3]
メジアン径 13. Ί μ ΐΆ,最 /J、粒径 5. l ^ m,最大粒径 51. 5 mの天然黒 |&と軟ィ匕 点 88°Cのバインダーピッチとを 100 : 30の重量比で混合し、予め 128°Cに加熱され たマチスケータ型撹拌翼を持つ-一ダ一に投入して 20分間捏合した。
[0138] 十分に捏合された捏合物を、予め 108°Cに予熱されたモールドプレス機の金型に 充填し、 5分間放置し捏合物の温度が安定したところでプランジャーを押し、 5kgf/c m2 (0. 20MPa)の圧力を加えて成形した。 1分間この圧力を保持した後、駆動を止 め、圧力低下が収まった後、成形体を取り出した。
[0139] 得られた成形体を耐熱容器である金属製サガーに収納し、間隙に黒鉛質プリーズ を充填した。電気炉で室温から 1300°Cまで 48時間かけて昇温し、 1300°Cで 3時間 保持し、脱 VM焼成を行った。次に、成形体を黒鉛ルツボに収納し、間隙に黒鉛質 プリーズを充填した。アチソン炉で 3000°Cに 4時間加熱して黒鉛ィ匕を行った。
[0140] 得られた黒鉛質の成形体をジョークラッシャで粗砕した後、高速回転ミルで微粉砕 し、 45 m目開きの篩いで粗粒子を除きメジアン径が 15. 8 mの黒鉛質粒子を得 た。
[0141] 得られた黒鉛質粒子は、タップ密度 1. 16gZcm3、 BET比表面積 1. 9m g,総 個数 3. 6 X 106個 d90/dlO = 2. 5, A/B = 0. 7、d(002) =0. 3354nm、 Lc (002) > lOOOnmであった。
[0142] この黒鉛質粒子を負極材料として用い、実施例 1と同様にしてコイン型電池を作製 し、初期充放電容量、初期充電可逆容量およびレート特性を求めた。また、同様に 本発明の所定極板を作製し、スキューネス (Rsk)、表面粗さ Ra、極板上黒鉛結晶配 向比 (Π 10ΖΙ004)、プレス荷重、浸液速度、 200サイクル充放電後の容量維持率 の測定を行い、結果を表 1, 2に示した。
[0143] [実施例 4]
出発原料としてメジアン径 21. 7 /ζ πι、最 /J、粒径 7. 7 /ζ πι、最大粒径 77. の 天然黒鉛を用い、軟ィ匕点 88°Cのノ インダーピッチとの重量比を 100 :40とした以外 は実施例 3と同様にして、バインダとの混合、成形、脱 VM、黒鉛化、粉砕、整粒を行 つて、メジアン径が 22. O /z mの黒鉛質粒子を得た。
[0144] 得られた黒鉛質粒子は、タップ密度 1. 05g/cm3、 BET比表面積 3. 7m2/g、総 個数 26. 7 X 106個 Zg、 d /ά = 3. 0、 Α,Β= 1. 1、 d (002) =0. 3354nm、 L
90 10
c (002) > lOOOnmであった。
[0145] この黒鉛質粒子を負極材料として用い、実施例 1と同様にしてコイン型電池を作製 し、初期充放電容量、初期充電可逆容量およびレート特性を求めた。また、同様に 本発明の所定極板を作製し、スキューネス (Rsk)、表面粗さ Ra、極板上黒鉛結晶配 向比 (I /\ )、プレス荷重、浸液速度、 200サイクル充放電後の容量維持率の測
110 004
定を行い、結果を表 1, 2に示した。
[0146] [比較例 1]
添加した黒鉛ィ匕触媒を炭化ケィ素とし、添加量を炭素質粒子 100重量部に対し 50 部とした以外は実施例 2と同様にしてメジアン径 16. 7 mの黒鉛質粒子を得た。こ の黒鉛質粒子は、タップ密度 0. 77gZcm3、 BET比表面積 4. 7m g,総個数 18 . 5 X 106{@/g, d /ά = 3. 0、AZB= 1. 2、d (002) =0. 3356nm、 Lc (002)
90 10
= 217nmであった。
[0147] この黒鉛質粒子を負極材料として用い、実施例 1と同様にしてコイン型電池を作製 し、初期充放電容量、初期充電可逆容量およびレート特性を求めた。また、同様に 本発明の所定極板を作製し、スキューネス (Rsk)、表面粗さ Ra、極板上黒鉛結晶配 向比 (I /1 ) ,プレス荷重、浸液速度、 200サイクル充放電後の容量維持率の測
110 004
定を行い、結果を表 1, 2に示した。
[0148] [表 1]
触媒量 負極材料
崁素質粒子 BET
メジアン径 タップ密度 総個数
に対しての 比表面積 10 Α/Β
( jL/ m) α90
重量 ¾ (g/cm J) ( > 106個 )
(m2/g)
実施例 1 0 21.1 0.79 2.3 23.3 3.8 1.6 実施例 2 30 20.5 0.79 2.9 21.0 4.0 0.8 実施例 3 0 15.8 1.16 1.9 3.6 2.5 0.7 実施例 4 0 22.0 1.05 3.7 26.7 3.0 1.1 比較例 1 50 16.7 0.77 4.7 18.5 3.0 1.2
ラミネートフィルム 極板評価 コイン型電池
封入型電池 表面粗さ 200サイクル スキューネス 結晶配向比プレス荷重 浸液速度 放電容量不可逆容量 レート特性
Ra 容量維持率 Rsk (kgf/5cm) (秒/ ju l) (mAh/g) (mAh/g) (%)
( jW m) (%) 実施例 1 -0.46 0.77 0.02 1 170 37 345 34 82 81 実施例 2 -0.93 0.92 0.02 450 282 348 33 80 75 実施例 3 -1.18 0.70 0.07 790 1 15 359 32 82 83 実施例 4 -1.45 0.65 0.06 540 142 358 32 85 81 比較例 1 -1.82 0.46 0.06 300 565 350 32 78 69
[0150] 表 1, 2より、本発明の負極材料を用いた電池は、初期サイクル時の充放電不可逆 容量が小さぐ急速充放電特性とサイクル特性に優れることが明らかである。
産業上の利用可能性
[0151] 本願発明の負極材料を用いることで、非水系二次電池にした時の初期サイクルに 認められる充放電不可逆容量が小さぐ急速充放電特性、サイクル特性に優れた非 水系二次電池用負極および非水系二次電池を安定的に効率良く製造することがで きるため、本発明は各種非水系二次電池の分野において、工業上非常に有用であ る。
[0152] 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、 2004年 8月 30日付で出願された日本特許出願 (特願 2004— 2 50415)に基づいており、その全体が引用により援用される。

Claims

請求の範囲
[1] 黒鉛質粒子を主成分とする非水系二次電池用負極材料であって、
レーザー回折 Z散乱式粒径分布測定による体積基準粒径分布における該粒子の メジアン径が 5 μ m以上、 40 μ m以下であり、
タップ密度が、 0. 7gZcm3以上であり、
BET法による比表面積力 0. 2m2Zg以上、 8m2Zg以下であり、
該負極材料により下記の極板作製方法で極板を作製し、作製された極板の表面を レーザー式の形状測定顕微鏡で測定した際の表面粗さ曲線において、 JIS B 060
1で規定されるスキューネス (Rsk)が、 1. 7以上、 0以下である
ことを特徴とする非水系二次電池用負極材料。
[極板作製方法]
上記負極材料 100重量部に、スチレン'ブタジエンゴムの水性デイスパージヨンを固 形分として 1重量部、カルボキシメチルセルロース(分子量 25万〜 30万)水溶液を固 形分として 1重量部加えてスラリーとし、このスラリーを厚さ 18 mの銅箔よりなる集電 体上に上記負極材料が乾燥後重量として 10±0. lmgZcm2付着するようにドクタ 一ブレードを用いて塗布して乾燥させた後に、ロールプレス (カレンダー)を用いて、 極板密度 (銅箔を除く)が 1. 63 ±0. 03gZcm3になるようにプレス荷重を調整し、 1 回のプレスで圧密する。
[2] 複数の炭素質粒子が結合してなる黒鉛質造粒粒子を主成分とする請求項 1記載の 非水系二次電池用負極材料。
[3] 上記負極材料により下記の極板作製方法で極板を作製した時の、長さ 5cmあたり のプレス荷重が 350kgf以上、 1800kgf以下であることを特徴とする請求項 1に記載 の非水系二次電池用負極材料。
[極板作製方法]
上記負極材料 100重量部に、スチレン'ブタジエンゴムの水性デイスパージヨンを固 形分として 1重量部、カルボキシメチルセルロース(分子量 25万〜 30万)水溶液を固 形分として 1重量部加えてスラリーとし、このスラリーを厚さ 18 mの銅箔よりなる集電 体上に上記負極材料が乾燥後重量として 10±0. lmgZcm2付着するようにドクタ 一ブレードを用いて塗布して乾燥させた後に、ロールプレス (カレンダー)を用いて、 極板密度 (銅箔を除く)が 1. 63 ±0. 03gZcm3になるようにプレス荷重を調整し、 1 回のプレスで圧密する。
[4] 上記負極材料により下記の極板作製方法で極板を作製し、作製された極板につい て、下記方法によって測定した浸液速度力 00秒 Z 1以下であることを特徴とする 請求項 1に記載の非水系二次電池用負極材料。
[極板作製方法]
上記負極材料 100重量部に、スチレン'ブタジエンゴムの水性デイスパージヨンを固 形分として 1重量部、カルボキシメチルセルロース(分子量 25万〜 30万)水溶液を固 形分として 1重量部加えて固形分濃度 50%のスラリーとし、このスラリーを厚さ 18 m の銅箔よりなる集電体上に上記負極材料が乾燥後重量として 10±0. lmgZcm2付 着するようにドクターブレードを用いて塗布して乾燥させた後に、ロールプレス (カレ ンダ一)を用いて、極板密度 (銅箔を除く)が 1. 63±0. 03gZcm3になるようにプレ ス荷重を調整し、 1回のプレスで圧密する。
[浸液速度測定方法]
容量 5 μ 1のマイクロシリンジを用いて 1 μ 1の下記の電解液 Αを極板上に高さ 5mm より滴下させ、滴下力 電解液が消失するまでの時間を測定する。電解液消失点は 目視で電解液接触面と非接触面の境界が判別できなくなる点とする。
電解液 A組成:エチレンカーボネート = 30wt%、ェチルメチルカーボネート = 70w t%の混合溶媒に対し、 LiPFを 1. 0モル Z1溶力したもの
6
[5] 上記負極材料により下記の極板作製方法で極板を作製し、作製された極板を負極 として用いて下記の非水系二次電池作製方法で非水系二次電池を作製し、作製さ れた非水系二次電池について下記の測定方法で測定した 200サイクル充放電後の 容量維持率が 70%以上であることを特徴とする請求項 1に記載の非水系二次電池 用負極材料。
[極板作製方法]
上記負極材料 100重量部に、スチレン'ブタジエンゴムの水性デイスパージヨンを固 形分として 1重量部、カルボキシメチルセルロース(分子量 25万〜 30万)水溶液を固 形分として 1重量部加えて固形分濃度 50%のスラリーとし、このスラリーを厚さ 18 m の銅箔よりなる集電体上に上記負極材料が乾燥後重量として 10±0. lmgZcm2付 着するようにドクターブレードを用いて塗布して乾燥させた後に、ロールプレス (カレ ンダ一)を用いて、極板密度 (銅箔を除く)が 1. 63±0. 03gZcm3になるようにプレ ス荷重を調整し、 1回のプレスで圧密する。
[非水系二次電池作製方法]
両面に LiCoOがコートされた縦 40mm、横 30mm、厚さ 15 μ mのアルミ箔を正極
2
とし、負極用極板を縦 42mm、横 32mmの長方形に切り出し、電解液として、ェチレ ンカーボネートとェチルメチルカーボネートの混合溶媒 (容量比 = 1: 1)に LiPFを 1
6 molZlになるように溶解させたものを用い、正極の両面に多孔性ポリエチレンフィル ム製セパレータを介して負極を配して積層体とする。ラミネートフィルム中にこの積層 体と電解液を封入し、ラミネートフィルム封入型非水系二次電池を作製する。
[200サイクル充放電後の容量維持率測定方法]
作製したラミネートフィルム封入型非水系二次電池を、 24時間放置した後、電流密 度 49mAZcm2で両電極間の電位差が 4. 2Vになるまで充電を行い、その後、この 電位差が 3. 0Vになるまで 70mAZcm2で放電を行う操作を 1サイクルとして繰り返し 、 206サイクル目の放電容量を 6サイクル目の放電容量で割った値の 100分率 (容量 維持率%)を求めた。ラミネートフィルム封入型非水系二次電池 3個についてそれぞ れ同様に容量維持率を求め、平均値を 200サイクル充放電後のサイクル容量維持 率とする。
[6] 請求項 1に記載の負極材料を活物質として含有する負極活物質層を集電体上に 形成してなることを特徴とする非水系二次電池用負極。
[7] リチウムイオンを吸蔵,放出可能な正極と、リチウムイオンを吸蔵,放出可能な負極と 、電解質とを備えた非水系二次電池において、負極として、請求項 6に記載の非水 系二次電池用負極を用いたことを特徴とする非水系二次電池。
PCT/JP2005/015755 2004-08-30 2005-08-30 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池 WO2006025377A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05776633A EP1798790A4 (en) 2004-08-30 2005-08-30 NEGATIVE ELECTRODE MATERIAL FOR NONAQUEOUS SECONDARY CELLS, NEGATIVE ELECTRODE FOR NONAQUEOUS SECONDARY CELLS, AND NONAQUEOUS SECONDARY CELL
US11/574,423 US20090214954A1 (en) 2004-08-30 2005-08-30 Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
JP2006532715A JP4992426B2 (ja) 2004-08-30 2005-08-30 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004250415 2004-08-30
JP2004-250415 2004-08-30

Publications (1)

Publication Number Publication Date
WO2006025377A1 true WO2006025377A1 (ja) 2006-03-09

Family

ID=36000028

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/015755 WO2006025377A1 (ja) 2004-08-30 2005-08-30 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池
PCT/JP2005/015754 WO2006025376A1 (ja) 2004-08-30 2005-08-30 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015754 WO2006025376A1 (ja) 2004-08-30 2005-08-30 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池

Country Status (6)

Country Link
US (2) US8404383B2 (ja)
EP (2) EP1801903B1 (ja)
JP (3) JP4992425B2 (ja)
KR (2) KR20070072512A (ja)
CN (2) CN100524911C (ja)
WO (2) WO2006025377A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914764A1 (en) * 2006-10-20 2008-04-23 Fuji Jukogyo Kabushiki Kaisha Lithium-ion Capacitor
JP2009209035A (ja) * 2008-02-04 2009-09-17 Mitsubishi Chemicals Corp 複層構造炭素質物及びその製造方法並びにそれを用いた非水系二次電池
US20100116195A1 (en) * 2007-05-30 2010-05-13 Shin-Etsu Handotai Co., Ltd. Method for growing silicon single crystal
WO2014064980A1 (ja) * 2012-10-24 2014-05-01 東海カーボン株式会社 リチウム二次電池負極材用黒鉛粉末の製造方法
WO2014157419A1 (ja) * 2013-03-26 2014-10-02 日産自動車株式会社 非水電解質二次電池
JPWO2013118757A1 (ja) * 2012-02-06 2015-05-11 株式会社クレハ 非水電解質二次電池用炭素質材料
JP2017073328A (ja) * 2015-10-09 2017-04-13 日立マクセル株式会社 非水電解液二次電池
JP2020532058A (ja) * 2017-08-17 2020-11-05 ポスコPosco リチウム二次電池用負極活物質の製造方法、およびそれを含むリチウム二次電池
WO2022029558A1 (ja) * 2020-08-07 2022-02-10 株式会社半導体エネルギー研究所 二次電池の作製方法、及び、二次電池の製造装置

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084675A1 (ja) * 2006-12-26 2008-07-17 Mitsubishi Chemical Corporation 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP5095253B2 (ja) * 2007-03-30 2012-12-12 富士通株式会社 半導体エピタキシャル基板、化合物半導体装置、およびそれらの製造方法
JP2009231234A (ja) * 2008-03-25 2009-10-08 Fuji Heavy Ind Ltd 負極用炭素材料、蓄電デバイス、及び蓄電デバイス搭載品
KR101002539B1 (ko) * 2008-04-29 2010-12-17 삼성에스디아이 주식회사 리튬이차전지용 음극활물질 및 이를 포함하는 리튬이차전지
CN105140522A (zh) * 2008-11-26 2015-12-09 日本制纸株式会社 非水电解质二次电池的电极用羧甲基纤维素或其盐、及其水溶液
EP2554515A4 (en) * 2010-03-31 2016-01-20 Nippon Steel & Sumitomo Metal Corp MODIFIED NATURAL GRAPHITE PARTICLE AND PRODUCTION METHOD THEREOF
WO2011145178A1 (ja) * 2010-05-18 2011-11-24 トヨタ自動車株式会社 負極活物質
JPWO2012001845A1 (ja) * 2010-06-30 2013-08-22 パナソニック株式会社 非水電解質二次電池用負極およびその製造方法
US20120135312A1 (en) * 2010-06-30 2012-05-31 Keiichi Takahashi Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
KR101181841B1 (ko) * 2010-07-02 2012-09-11 삼성에스디아이 주식회사 고전압 리튬 이차 전지용 양극 및 이를 포함하는 고전압 리튬 이차 전지
JP5612428B2 (ja) * 2010-10-08 2014-10-22 Jx日鉱日石エネルギー株式会社 格子歪を有するリチウムイオン二次電池負極用黒鉛材料及びリチウムイオン二次電池
JP2012114201A (ja) * 2010-11-24 2012-06-14 Nec Tokin Corp 蓄電デバイス
US8765297B2 (en) 2011-01-04 2014-07-01 Exide Technologies Advanced graphite additive for enhanced cycle-life of lead-acid batteries
CN102593434B (zh) * 2011-01-11 2015-11-25 上海杉杉科技有限公司 锂二次电池用复合石墨颗粒及其制备方法
CN102148355A (zh) * 2011-03-03 2011-08-10 江西正拓新能源科技有限公司 一种锂离子动力电池用负极材料及其制备方法
CN103443977B (zh) * 2011-03-30 2016-08-17 三菱化学株式会社 非水系二次电池用石墨粒子及其制造方法、负极以及非水系二次电池
JP5937438B2 (ja) 2012-06-29 2016-06-22 トヨタ自動車株式会社 非水電解質二次電池の製造方法
CN103794765B (zh) * 2012-10-30 2018-01-19 上海杉杉科技有限公司 一种锂离子电池石墨负极材料及其制备方法
US10014520B2 (en) 2012-10-31 2018-07-03 Exide Technologies Gmbh Composition that enhances deep cycle performance of valve-regulated lead-acid batteries filled with gel electrolyte
US20160064737A1 (en) * 2013-03-26 2016-03-03 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery
CN104425823B (zh) * 2013-09-11 2019-04-19 宁波杉杉新材料科技有限公司 一种锂离子电池人造石墨负极材料及其制备方法
WO2015046304A1 (ja) * 2013-09-26 2015-04-02 宇部興産株式会社 蓄電デバイス用ポリイミドバインダー、それを用いた電極シート及び蓄電デバイス
KR101838316B1 (ko) 2013-12-18 2018-03-13 주식회사 엘지화학 리튬 이온 이차 전지용 음극
US9735430B2 (en) 2014-01-23 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, and electronic device
CN110078065B (zh) 2014-07-07 2022-11-15 三菱化学株式会社 碳材料、碳材料的制造方法、以及使用了碳材料的非水系二次电池
WO2016104024A1 (ja) * 2014-12-26 2016-06-30 日立化成株式会社 リチウムイオン電池
CN107112536B (zh) * 2015-01-16 2021-11-16 三菱化学株式会社 碳材料及使用了碳材料的非水系二次电池
EP3306734B1 (en) 2016-03-30 2019-02-27 LG Chem, Ltd. Lithium secondary battery production method
EP3361548B1 (en) 2016-03-30 2020-07-29 LG Chem, Ltd. Lithium secondary battery production method
JP6394645B2 (ja) * 2016-06-22 2018-09-26 トヨタ自動車株式会社 負極板の製造方法
CN106252662A (zh) * 2016-08-26 2016-12-21 上海杉杉科技有限公司 一种低膨胀石墨的制备方法
CN106395811B (zh) * 2016-08-26 2022-12-13 宁波杉杉新材料科技有限公司 一种低膨胀长循环天然石墨的制备方法
CN107871866A (zh) * 2016-09-27 2018-04-03 宁波杉杉新材料科技有限公司 一种高倍率天然石墨负极材料的制备方法
KR102484406B1 (ko) 2016-11-01 2023-01-02 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR102417267B1 (ko) 2016-11-02 2022-07-04 삼성에스디아이 주식회사 리튬 이차 전지
CN114883558A (zh) * 2016-11-14 2022-08-09 昭和电工材料株式会社 锂离子二次电池用负极材、锂离子二次电池用负极和锂离子二次电池
CN110168787B (zh) * 2017-01-06 2022-05-03 昭和电工材料株式会社 锂离子二次电池用负极材、锂离子二次电池用负极和锂离子二次电池
WO2018207333A1 (ja) * 2017-05-11 2018-11-15 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
CN110870115B (zh) * 2017-11-28 2022-11-22 株式会社Lg新能源 负极活性材料、包含其的负极和锂二次电池
JP7098919B2 (ja) * 2017-11-29 2022-07-12 住友金属鉱山株式会社 酸化ニッケル微粉末の製造方法
WO2019186830A1 (ja) * 2018-03-28 2019-10-03 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
EP3780182A4 (en) * 2018-03-28 2021-03-17 Hitachi Chemical Company, Ltd. NEGATIVE ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY, METHOD FOR PRODUCING THE NEGATIVE ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY, NEGATIVELEKTRODENMATERIALSCHLÄMME FOR LITHIUM-ION SECONDARY BATTERY, NEGATIVE ELECTRODE FOR LITHIUM-ION SEKUNDÄBATTERIE AND LITHIUM-ION SECONDARY BATTERY
WO2019186831A1 (ja) * 2018-03-28 2019-10-03 日立化成株式会社 リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
US20210159539A1 (en) * 2018-04-16 2021-05-27 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous-electrolyte secondary cell
KR102417774B1 (ko) 2018-04-20 2022-07-05 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR102417773B1 (ko) 2018-04-27 2022-07-05 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
CN109962236B (zh) * 2018-04-28 2020-07-17 宁德时代新能源科技股份有限公司 二次电池
CN108807848B (zh) * 2018-05-11 2019-10-08 宁德时代新能源科技股份有限公司 负极极片及含有它的二次电池
JP7471303B2 (ja) * 2018-12-19 2024-04-19 ポスコホールディングス インコーポレーティッド リチウム二次電池用負極活物質、及びその製造方法
WO2020204631A1 (ko) * 2019-04-02 2020-10-08 주식회사 엘지화학 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
CN110707322B (zh) * 2019-10-18 2020-12-11 泰州纳新新能源科技有限公司 一种天然石墨浆料的制备方法
KR20210060241A (ko) * 2019-11-18 2021-05-26 주식회사 엘지에너지솔루션 음극의 제조방법, 이로부터 제조된 음극, 및 이를 포함하는 이차전지
CN113195405A (zh) * 2020-01-28 2021-07-30 杰富意化学株式会社 碳质材料、碳质材料的制造方法、锂离子二次电池用负极及锂离子二次电池
EP4099442A4 (en) * 2020-01-30 2023-03-22 Showa Denko Materials Co., Ltd. NEGATIVE ELECTRODE FOR LITHIUM-ION SECONDARY CELL, METHOD FOR MAKING IT, NEGATIVE ELECTRODE FOR LITHIUM-ION SECONDARY CELL AND LITHIUM-ION SECONDARY CELL
EP4246613A4 (en) * 2020-11-10 2024-02-07 Ningde Amperex Technology Limited ACTIVE MATERIAL OF NEGATIVE ELECTRODE, ELECTROCHEMICAL APPARATUS USING SAME AND ELECTRONIC DEVICE
CN114122329A (zh) * 2021-11-11 2022-03-01 珠海冠宇电池股份有限公司 一种负极片和包括该负极片的锂离子电池
JP2024503172A (ja) * 2021-12-24 2024-01-25 寧徳時代新能源科技股▲分▼有限公司 人造黒鉛及びその製造方法、及び前記人造黒鉛を含む二次電池と電力消費装置
WO2024090974A1 (ko) * 2022-10-25 2024-05-02 에스케이온 주식회사 이차전지용 전극 슬러리의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330107A (ja) * 1997-05-30 1998-12-15 Mitsubishi Chem Corp 高充填性炭素質粉末の製造方法
EP1265301A2 (en) 2001-06-08 2002-12-11 Mitsui Mining Co., Ltd. Anode material for lithium secondary battery, process for production thereof, and lithium secondary battery
JP2004127913A (ja) * 2002-07-31 2004-04-22 Matsushita Electric Ind Co Ltd リチウム二次電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567952B2 (ja) 1989-09-05 1996-12-25 株式会社日立製作所 Lsi補修配線方法
JP3091944B2 (ja) 1994-05-09 2000-09-25 旭有機材工業株式会社 リチウムイオン二次電池負極用カーボン粒子の製造方法
JP3213575B2 (ja) * 1996-10-30 2001-10-02 日立化成工業株式会社 リチウム二次電池用負極及びその製造法並びにリチウム二次電池
JP4168492B2 (ja) 1997-09-19 2008-10-22 松下電器産業株式会社 非水電解質二次電池用負極およびそれを用いた電池
DE69812017T2 (de) * 1997-09-19 2003-12-11 Matsushita Electric Ind Co Ltd Nichtwässrige Sekundär Batterie und ihre Anode
JP3787030B2 (ja) 1998-03-18 2006-06-21 関西熱化学株式会社 鱗片状天然黒鉛改質粒子、その製造法、および二次電池
JP3945928B2 (ja) * 1998-11-27 2007-07-18 三菱化学株式会社 リチウムイオン二次電池負極用炭素材料の製造方法
JP4448279B2 (ja) * 2001-01-25 2010-04-07 日立化成工業株式会社 人造黒鉛質粒子及びその製造方法、非水電解液二次電池負極及びその製造方法、並びにリチウム二次電池
JP4945029B2 (ja) * 2001-03-06 2012-06-06 新日鐵化学株式会社 リチウム二次電池負極用材料とその製造方法およびリチウム二次電池
JP2003036884A (ja) * 2001-07-19 2003-02-07 Sony Corp 非水電解質及び非水電解質電池
KR100567112B1 (ko) 2002-07-08 2006-03-31 마쯔시다덴기산교 가부시키가이샤 음극 및 그것을 사용한 리튬이온이차전지
US7052803B2 (en) * 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery
JP4252847B2 (ja) * 2003-06-09 2009-04-08 パナソニック株式会社 リチウムイオン二次電池
CN100464448C (zh) * 2003-10-31 2009-02-25 昭和电工株式会社 电池电极用的碳材料及其制造方法和用途
US8637187B2 (en) * 2004-06-30 2014-01-28 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330107A (ja) * 1997-05-30 1998-12-15 Mitsubishi Chem Corp 高充填性炭素質粉末の製造方法
EP1265301A2 (en) 2001-06-08 2002-12-11 Mitsui Mining Co., Ltd. Anode material for lithium secondary battery, process for production thereof, and lithium secondary battery
JP2004127913A (ja) * 2002-07-31 2004-04-22 Matsushita Electric Ind Co Ltd リチウム二次電池

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914764A1 (en) * 2006-10-20 2008-04-23 Fuji Jukogyo Kabushiki Kaisha Lithium-ion Capacitor
US20100116195A1 (en) * 2007-05-30 2010-05-13 Shin-Etsu Handotai Co., Ltd. Method for growing silicon single crystal
JP2009209035A (ja) * 2008-02-04 2009-09-17 Mitsubishi Chemicals Corp 複層構造炭素質物及びその製造方法並びにそれを用いた非水系二次電池
JPWO2013118757A1 (ja) * 2012-02-06 2015-05-11 株式会社クレハ 非水電解質二次電池用炭素質材料
WO2014064980A1 (ja) * 2012-10-24 2014-05-01 東海カーボン株式会社 リチウム二次電池負極材用黒鉛粉末の製造方法
US10308511B2 (en) 2012-10-24 2019-06-04 Tokai Carbon Co., Ltd. Process for manufacturing graphite powder for lithium secondary battery negative electrode material
EP2980885A4 (en) * 2013-03-26 2016-02-17 Nissan Motor NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JPWO2014157419A1 (ja) * 2013-03-26 2017-02-16 日産自動車株式会社 非水電解質二次電池
US9966605B2 (en) 2013-03-26 2018-05-08 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery
WO2014157419A1 (ja) * 2013-03-26 2014-10-02 日産自動車株式会社 非水電解質二次電池
JP2017073328A (ja) * 2015-10-09 2017-04-13 日立マクセル株式会社 非水電解液二次電池
JP2020532058A (ja) * 2017-08-17 2020-11-05 ポスコPosco リチウム二次電池用負極活物質の製造方法、およびそれを含むリチウム二次電池
WO2022029558A1 (ja) * 2020-08-07 2022-02-10 株式会社半導体エネルギー研究所 二次電池の作製方法、及び、二次電池の製造装置

Also Published As

Publication number Publication date
US20090214954A1 (en) 2009-08-27
CN100524911C (zh) 2009-08-05
EP1798790A1 (en) 2007-06-20
JP5556755B2 (ja) 2014-07-23
JP4992425B2 (ja) 2012-08-08
JPWO2006025377A1 (ja) 2008-05-08
WO2006025376A1 (ja) 2006-03-09
KR20070072512A (ko) 2007-07-04
JPWO2006025376A1 (ja) 2008-05-08
JP2011238622A (ja) 2011-11-24
US8404383B2 (en) 2013-03-26
JP4992426B2 (ja) 2012-08-08
KR20070065875A (ko) 2007-06-25
CN101053098A (zh) 2007-10-10
CN101053099A (zh) 2007-10-10
EP1798790A4 (en) 2009-07-15
KR101106966B1 (ko) 2012-01-20
EP1801903A1 (en) 2007-06-27
EP1801903B1 (en) 2012-09-26
CN100527488C (zh) 2009-08-12
US20080199777A1 (en) 2008-08-21
EP1801903A4 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP4992426B2 (ja) 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池
JP5476411B2 (ja) 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池
JP5458689B2 (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
KR101970023B1 (ko) 비수계 이차 전지용 탄소재, 그 탄소재를 사용한 부극 및 비수계 이차 전지
JP5064728B2 (ja) 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池
JP5407196B2 (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP2008181870A (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP5994319B2 (ja) 非水系二次電池用複合黒鉛粒子の製造方法及びその製造方法で得られた複合黒鉛粒子、負極並びに非水系二次電池
JP2012033375A (ja) 非水系二次電池用炭素材料
JP2013229343A (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
TW201943131A (zh) 鋰離子二次電池用負極材料、鋰離子二次電池用負極材料的製造方法、鋰離子二次電池用負極材料漿料、鋰離子二次電池用負極及鋰離子二次電池
JP2005154242A (ja) 粒子状人造黒鉛負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池
JP2013179101A (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP5885919B2 (ja) リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP2020113425A (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2010010082A (ja) 非水系二次電池用負極、非水系二次電池用負極材料及び非水系二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006532715

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005776633

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077007475

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580037522.8

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005776633

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11574423

Country of ref document: US