WO2014064980A1 - リチウム二次電池負極材用黒鉛粉末の製造方法 - Google Patents

リチウム二次電池負極材用黒鉛粉末の製造方法 Download PDF

Info

Publication number
WO2014064980A1
WO2014064980A1 PCT/JP2013/069898 JP2013069898W WO2014064980A1 WO 2014064980 A1 WO2014064980 A1 WO 2014064980A1 JP 2013069898 W JP2013069898 W JP 2013069898W WO 2014064980 A1 WO2014064980 A1 WO 2014064980A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
negative electrode
electrode material
mass
Prior art date
Application number
PCT/JP2013/069898
Other languages
English (en)
French (fr)
Inventor
山本 和弘
真百合 小森谷
基弘 山木
知仁 福川
聡浩 黒柳
Original Assignee
東海カーボン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海カーボン株式会社 filed Critical 東海カーボン株式会社
Priority to KR1020157006641A priority Critical patent/KR102087465B1/ko
Priority to US14/438,097 priority patent/US10308511B2/en
Priority to CN201380055968.8A priority patent/CN104756292B/zh
Priority to EP13849757.3A priority patent/EP2913873B1/en
Publication of WO2014064980A1 publication Critical patent/WO2014064980A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing graphite powder for a negative electrode material for a lithium secondary battery.
  • Lithium secondary batteries are lightweight and have high energy density, and in recent years, they are expected to be used as power sources for power supplies such as power supplies for portable small electronic devices, such as hybrid cars and electric vehicles.
  • lithium metal was used as the negative electrode material for lithium secondary batteries, but during charging, lithium ions precipitated and grew in the form of dendrites (dendrites) on the negative electrode surface. For this reason, graphite materials that do not cause such dendritic precipitation have been proposed.
  • Graphite material has excellent lithium ion doping / undoping (de-insertion), so it has high charging / discharging efficiency. Furthermore, the potential during charging / discharging is almost equal to that of metallic lithium, resulting in a high voltage battery. There are advantages.
  • the present invention provides a method for easily producing graphite powder for a lithium secondary battery negative electrode material having a small specific surface area under high graphitization efficiency while suppressing energy consumption. It is for the purpose.
  • raw coke powder having a cumulative particle size of 50% and a particle size of 5 to 50 ⁇ m in a volume-based cumulative particle size distribution is 600 to 1450 ° C. in a non-oxidizing atmosphere.
  • pressure forming is performed to produce a pressure formed body, and then the pressure formed body is heat-treated in a non-oxidizing atmosphere to perform carbonization and graphitization to obtain a graphitized formed body. It was found that the above problems can be solved by pulverizing the obtained graphitized molded body to produce a graphite powder for a lithium secondary battery negative electrode material, and the present invention has been completed based on this finding. It was.
  • the present invention (1) Coke powder obtained by heat-treating raw coke powder having a cumulative particle size of 50 to 50 ⁇ m in a volume-based cumulative particle size distribution at a temperature of 600 to 1450 ° C. in a non-oxidizing atmosphere, and carbon A precursor binder is melt-mixed with respect to 100 parts by mass of the coke powder so that the fixed carbon amount of the carbon precursor binder is 5 to 15 parts by mass, and then pressure-molded to form a pressure-molded body.
  • the pressure molded body is heat-treated in a non-oxidizing atmosphere to obtain a graphitized molded body by performing carbonization and graphitization,
  • the carbon precursor binder is at least one selected from coal pitch, petroleum pitch, ethylene heavy end tar, anthracene oil, creosote oil, and FCC decant oil.
  • Method for producing graphite powder for battery negative electrode material (4) The lithium secondary according to (2), wherein the carbon precursor binder is at least one selected from coal pitch, petroleum pitch, ethylene heavy end tar, anthracene oil, creosote oil and FCC decant oil.
  • Method for producing graphite powder for battery negative electrode material (5) The obtained graphite powder for the negative electrode of a lithium secondary battery has a sphericity of 1.0 to 2.0, a cumulative particle size in a volume-based cumulative particle size distribution of 50 to 50 ⁇ m, and a volume-based cumulative particle size.
  • the ratio represented by 90% particle size in the cumulative particle size distribution / 10% particle size in the cumulative particle size distribution in the volume-based cumulative particle size distribution is 2 to 16, and the nitrogen adsorption specific surface area is 1.0 to 4.0 m 2 / g.
  • a method for producing a graphite powder for a negative electrode material for a lithium secondary battery according to any one of the above (1) to (4) is provided.
  • the method for producing a graphite powder for a negative electrode material for a lithium secondary battery according to the present invention comprises a raw coke powder having a cumulative particle size of 50 to 50 ⁇ m in a volume-based cumulative particle size distribution of 600 to 1450 ° C. in a non-oxidizing atmosphere.
  • pressure forming is performed to produce a pressure formed body, and then the pressure formed body is heat-treated in a non-oxidizing atmosphere to perform carbonization and graphitization to obtain a graphitized formed body.
  • the obtained graphitized molded body is pulverized.
  • the raw coke constituting the raw coke powder is obtained by pyrolyzing heavy oil or pitch in a coke oven such as a delayed coker, a fluid coker, a flexi coker, or a chamber coke oven. This means coke before calcination to remove volatile components.
  • raw coke specifically, at least one kind of heavy oil such as petroleum-based or coal-based heavy oil, FCC decant oil (FCCODO), ethylene heavy end tar (EHE) is used as a raw material, for example, delayed coker, etc.
  • heavy oil such as petroleum-based or coal-based heavy oil, FCC decant oil (FCCODO), ethylene heavy end tar (EHE)
  • FCCODO FCC decant oil
  • EHE ethylene heavy end tar
  • examples thereof include those prepared by carrying out a thermal decomposition and a polycondensation reaction using a coking equipment, for example, using a coking equipment such as a delayed coker at a maximum temperature of 400 to 550 ° C.
  • mosaic coke having a small anisotropic structure is suitable.
  • the raw coke powder has a 50% particle size (D50) in the cumulative particle size distribution in the volume-based cumulative particle size distribution of 5 to 50 ⁇ m, preferably 5 to 40 ⁇ m. It is more preferably from 30 to 30 ⁇ m, further preferably from 5 to 20 ⁇ m, still more preferably from 5 to 17.5 ⁇ m, still more preferably from 5 to 15 ⁇ m.
  • D50 50% particle size
  • the specific surface area of the obtained graphite powder for the negative electrode material of a lithium secondary battery can be reduced and the constituent material of the negative electrode material when the particle size of 50% in the integrated particle size distribution of the raw coke powder is 5 ⁇ m or more. Self-discharge can be suppressed when used as a negative electrode, and the dispersibility of the graphite powder can be improved when slurried to produce a lithium secondary battery negative electrode material. Moreover, when the particle size of 50% in the integrated particle size distribution of the raw coke powder is 50 ⁇ m or less, it is possible to maintain the capacity retention rate when charging and discharging a large current in the lithium secondary battery.
  • the raw coke powder is represented by 90% particle size (D90) in the cumulative particle size distribution in the volume-based cumulative particle size distribution / 10% particle size (D10) in the cumulative particle size distribution in the volume-based cumulative particle size distribution.
  • the ratio is preferably 2 to 16, more preferably the ratio represented by D90 / D10 is 2 to 12, the more preferably the ratio represented by D90 / D10 is 2 to 8, and D90 / D10.
  • the ratio represented by 2 is more preferably 2 to 6, and the ratio represented by D90 / D10 is more preferably 2 to 4.
  • D10, D50, and D90 of raw coke powder are the integrated particle sizes in the volume-based integrated particle size distribution measured by a laser diffraction particle size distribution measuring device (SALD2000 manufactured by Shimadzu Corporation), respectively. It shall mean 10% particle size ( ⁇ m), 50% particle size ( ⁇ m), 90% particle size ( ⁇ m).
  • the raw coke powder preferably has a sphericity of 1.0 to 2.0, more preferably a sphericity of 1.0 to 1.7, and a sphericity of 1 More preferred is 0.0 to 1.4.
  • the sphericity of the raw coke powder is determined by observing 30 particles with a scanning electron microscope (JSM-6510LV, manufactured by JEOL Ltd.) and analyzing each image. It means an average value when ML / BD is calculated by measuring the diameter (ML) and the maximum width (BD) in the direction perpendicular to ML. When the particle to be measured is a true sphere, the sphericity is 1.
  • the raw coke powder can be produced by pulverizing raw coke as necessary.
  • the raw coke can be pulverized using a known pulverizer.
  • the pulverizer include a roll crusher, a hammer mill, a pin mill, a jet mill, a bevel impactor, and a turbo mill.
  • a raw coke powder having a desired particle diameter may be produced by combining a plurality thereof. What is necessary is just to adjust suitably the grinding
  • coke powder obtained by heat-treating the above raw coke powder under a temperature condition of 600 to 1450 ° C. in a non-oxidizing atmosphere is used.
  • the non-oxidizing atmosphere include a rare gas atmosphere such as a nitrogen atmosphere or an argon atmosphere.
  • the coke powder is obtained by heat-treating the above raw coke powder under a temperature condition of 600 to 1450 ° C., and heat-treating under a temperature condition of 800 to 1450 ° C. It is preferable that the heat treatment is performed at a temperature of 1000 to 1450 ° C., and it is more preferable that the heat treatment is performed at a temperature of 1000 to 1200 ° C.
  • the heat treatment temperature of the raw coke powder is 600 ° C. or higher, the residual amount of volatile matter is reduced and the coke powder has a high true density and a high density of the molded body. A compact can be obtained and graphitization efficiency can be improved.
  • the heat processing temperature of raw coke powder is 1450 degrees C or less, it can be set as coke powder with a high true density under high energy efficiency, without increasing the heat processing cost.
  • the coke powder is preferably obtained by heat-treating the raw coke powder for 60 to 600 minutes, more preferably heat-treated for 60 to 450 minutes, More preferably, the heat treatment is performed for up to 300 minutes.
  • the coke powder obtained by heat-treating the raw coke powder is melt-mixed with the carbon precursor binder.
  • the carbon precursor binder means a material that can bind coke powders by heating and melting, and can be carbonized by further heat treatment.
  • the carbon precursor binder include one or more selected from coal pitch, petroleum pitch, ethylene heavy end tar (EHE), anthracene oil, creosote oil, and FCC decant oil (FCCODO).
  • EHE ethylene heavy end tar
  • FCCODO FCC decant oil
  • a mixture of tar, coal-based pitch and anthracene oil, a mixture of petroleum-based pitch and FCC decant oil, or the like can be suitably used.
  • the viscosity of the carbon precursor binder is preferably 1 to 800 mPa ⁇ s, more preferably 1 to 600 mPa ⁇ s, and further preferably 1 to 400 mPa ⁇ s. .
  • the viscosity of the carbon precursor binder is 800 mPa ⁇ s or less, it becomes easy to uniformly coat the binder on the coke powder, and the handleability of the molded body can be improved even if the amount of the carbon precursor binder is small. it can. Moreover, since the usage-amount of a carbon precursor binder can be suppressed, the increase in a specific surface area can be suppressed at the time of crushing after graphitization. When the viscosity of the carbon precursor binder exceeds 800 mPa ⁇ s, it is difficult to uniformly coat the coke powder, so in order to obtain a good molded body, the carbon precursor binder is necessary for 100 parts by mass of the coke powder. Since the amount may be 15 parts by mass or more in terms of the amount of fixed carbon, the strength of the molded body after graphitization is increased, and a large amount of energy is required during crushing, resulting in an increase in specific surface area. .
  • the carbon precursor binder has a low content of fixed carbon and a low viscosity, such as creosote oil and FCC decant oil (FCCODO), and the content of the fixed carbon.
  • FCCODO creosote oil and FCC decant oil
  • the viscosity of the carbon precursor binder was measured according to JIS K7117 using a Brookfield viscometer (B8L viscometer manufactured by Tokyo Keiki Co., Ltd.).
  • the carbon precursor binder is obtained by melt-mixing the carbon precursor binder with respect to 100 parts by mass of the coke powder so that the carbon content of the carbon precursor binder is 5 to 15 parts by mass.
  • the carbon precursor binder is melt-mixed so that the fixed carbon amount is 5 to 12.5 parts by mass, and the carbon precursor binder is melt-mixed so that the fixed carbon amount is 5 to 10 parts by mass. More preferably.
  • the fixed carbon amount means a value obtained by subtracting the total amount of moisture, volatile matter and ash from the carbon precursor binder amount.
  • the fixed carbon amount is measured by a method according to JIS K 2425, Means a calculated value. That is, when 100 g of carbon precursor binder is heat-treated at 800 ° C. to remove moisture and volatile matter, and ash is further removed from the obtained residue, a residue of x (g) (fixed carbon) is obtained.
  • the absolute amount (g) of fixed carbon is calculated by the following formula.
  • the specific surface area is not required when pulverizing after graphitization.
  • Small graphite powder for a lithium secondary battery negative electrode material can be easily produced.
  • a pressure molded body having high handleability at the time of pressure molding described later is obtained. And graphitization efficiency can be easily improved.
  • the melt mixing of the coke powder and the carbon precursor binder can be performed by a known mixer capable of heating the object to be mixed.
  • a mixer for performing melt mixing a mixer that has a stirring shaft inside and is equipped with a stirring blade attached to the stirring shaft to perform mixing is preferable, specifically, a Henschel mixer (manufactured by Nippon Coke Industries Co., Ltd.), A speed mixer (made by Fukae Powtech Co., Ltd., Redige Mixer (made by Matsubo Co., Ltd.)), etc.
  • a mixer which melt-mixes a kneader and a universal mixer can also be mentioned.
  • the melt mixing of the coke powder and the carbon precursor binder is performed at a temperature not lower than the melting temperature of the carbon precursor binder and lower than the carbonization temperature, preferably at a temperature of 80 to 180 ° C., and at a temperature of 100 to 160 ° C. It is more preferable to carry out with.
  • the melt mixing time is preferably 1 to 20 minutes, more preferably 1 to 15 minutes, and even more preferably 1 to 10 minutes.
  • the melt mixing of the coke powder and the carbon precursor binder is performed, for example, by first charging the coke powder into the mixer, then charging the carbon precursor binder, and stirring and mixing the two while heating and melting them. Can do.
  • the molten mixture obtained by melting and mixing the coke powder and the carbon precursor binder is then appropriately cooled.
  • the cooling of the molten mixture may be natural cooling or forced cooling by air blowing or the like.
  • the above molten mixture is pressure-molded to produce a pressure-molded body.
  • a method for pressure forming the molten mixture a known method can be adopted, and examples thereof include a mold-in molding method, a cold isostatic pressing method, an isotropic pressure forming method, and the like. Is preferably a cold isostatic pressing method.
  • the molding pressure during the pressure molding is preferably 1 to 1000 kgf / cm 2 , more preferably 50 to 1000 kgf / cm 2 , and even more preferably 100 to 1000 kgf / cm 2 .
  • the time for pressure molding the molten mixture is preferably 10 to 180 minutes, more preferably 20 to 150 minutes, and more preferably 30 to 120 minutes.
  • the energy loss at the time of the pulverization process described later can be effectively reduced, and a graphite powder with a suppressed surface area can be obtained.
  • the apparent density (bulk density) of the pressure-molded product obtained by pressure molding is preferably 1.0 to 1.8 g / cm 3 , and preferably 1.1 to 1.7 g / cm 3. More preferably, it is cm 3 , and even more preferably 1.2 to 1.6 g / cm 3 .
  • the bulk density of the press-molded body can be calculated by measuring the volume and mass of the pressure-molded body.
  • the molten mixture is not directly graphitized, but is molded into a pressure-molded body and then carbonized and graphitized as described later, so that the furnace is packed at the time of carbonization and graphitization.
  • a pressure-formed product obtained by the above-mentioned pressure-molding is heat-treated in a non-oxidizing atmosphere, and carbonized and graphitized to obtain a graphitized product.
  • examples of the non-oxidizing atmosphere when carbonizing or graphitizing the pressure molded body include a rare gas atmosphere such as a nitrogen atmosphere and an argon atmosphere, and a gas atmosphere generated from the pressure molded body. be able to.
  • the carbonization treatment of the pressure-molded body can be performed by a known heating device.
  • Carbonization of the pressure-molded body can be achieved by, for example, placing the pressure-molded body in a heat-resistant sagar made of a metal material, graphite material, etc. to adjust the atmosphere, or by embedding it in a carbon powder packing. Can be performed. Also, for example, the carbonization of the pressure-formed body is performed by heat treatment using a known firing furnace such as a tunnel furnace, an electric (electric heater) furnace, an induction heating furnace, an electromagnetic heating furnace, an electric furnace / electromagnetic hybrid furnace, or the like. Can be performed.
  • a known firing furnace such as a tunnel furnace, an electric (electric heater) furnace, an induction heating furnace, an electromagnetic heating furnace, an electric furnace / electromagnetic hybrid furnace, or the like.
  • the graphitization treatment of the pressure-formed body can also be performed by a known heating device.
  • Graphitization of a pressure-molded body is performed by, for example, placing the pressure-molded body in a heat-resistant sagar made of a metal material, a graphite material, etc. to adjust the atmosphere, or by embedding it in a carbon powder packing. Can be performed.
  • the graphitization of the pressure-molded body is performed using a known graphitization furnace such as a direct-current furnace (Length-width graphitization furnace (LWG furnace)) or an Acheson furnace used when manufacturing an artificial graphite electrode. It can be performed by heat treatment or by heat treatment in an induction heating furnace using a graphite crucible as a heater in a state where the pressure-formed body is accommodated in the graphite crucible.
  • Carbonization and graphitization of the pressure-molded body can be performed by heat treatment in a plurality of steps in which treatment temperatures are changed between carbonization and graphitization using a single or a plurality of heating devices.
  • the carbonization and graphitization of the pressure-formed body can be performed by a one-step heat treatment using a single heating device and heating the pressure-formed body from the beginning at a high temperature corresponding to the graphitization temperature. it can.
  • the pressure-molded body is made of carbon.
  • the heat treatment temperature at the time of conversion is preferably 600 to 1200 ° C., more preferably 600 to 1100 ° C., further preferably 700 to 1100 ° C., and further preferably 700 to 1000 ° C.
  • the temperature is 800 to 1000 ° C.
  • the heat treatment time when the pressure-molded body is carbonized is preferably 60 to 600 minutes, more preferably 60 to 450 minutes, and more preferably 60 to 300 minutes. Further preferred.
  • the pressure-molded body is made of graphite.
  • the heat treatment temperature during the conversion is preferably 2000 to 3000 ° C., more preferably 2600 to 3000 ° C., and further preferably 2800 to 3000 ° C.
  • the heat treatment time for graphitizing the pressure-molded body is preferably 60 to 600 minutes, more preferably 60 to 450 minutes, and further preferably 60 to 300 minutes. preferable.
  • the heat treatment temperature for carbonizing and graphitizing the molded body is preferably 2000 to 3000 ° C, more preferably 2600 to 3000 ° C, and further preferably 2800 to 3000 ° C.
  • the heat treatment time for carbonizing and graphitizing the pressure-molded body is preferably 60 to 600 minutes, more preferably 60 to 450 minutes, and more preferably 60 to 300 minutes. More preferably.
  • the graphitized molded body obtained by the heat treatment is pulverized.
  • the pulverization treatment of the graphitized molded body can be performed using a known pulverizer.
  • the pulverizer include a hammer mill, a pin mill, a jet mill, a bevel impactor, a turbo mill, a knife hammer mill, a rotary cutter mill, a roll crusher, and the like. Can be mentioned.
  • the pulverization may be performed by combining a plurality of the above pulverizers.
  • the pulverizing conditions of the pulverizer may be appropriately adjusted so that graphite powder having desired characteristics and the like can be obtained.
  • a graphite powder for a lithium secondary battery negative electrode material having desired properties can be obtained by the pulverization process or by performing a classification process as necessary after the pulverization process.
  • the apparatus used for classification include a rotor classifier, a vibration sieve, and an airflow classifier.
  • the graphite powder for a lithium secondary battery negative electrode material obtained by the production method of the present invention preferably has a sphericity of 1.0 to 2.0, and a sphericity of 1.0 to 1.7. More preferably, the sphericity is 1.0 to 1.5, still more preferably, the sphericity is 1.0 to 1.4, and the sphericity is 1.0 to 1.3. Is even more preferable.
  • the sphericity of the graphite powder for lithium secondary battery negative electrode material is within the above range, when the lithium secondary battery negative electrode material is produced by press molding, the graphite powder is easily oriented and the battery capacity per volume. As a result, a suitable negative electrode material can be obtained.
  • the sphericity exceeds 2.0, when used as a negative electrode material for a lithium secondary battery, the negative electrode material easily expands during charging, and the performance as an electrode is likely to deteriorate.
  • the sphericity of the graphite powder for lithium secondary battery negative electrode materials was observed by scanning 30 electron microscopes (JSM-6510LV, manufactured by JEOL Ltd.), and image analysis was performed for each. Sometimes, it means an average value when ML / BD is calculated by measuring the maximum diameter (ML) of each particle and the maximum (BD) of the widths in the direction orthogonal to ML. When the particle to be measured is a true sphere, the sphericity is 1.
  • the graphite powder for lithium secondary battery negative electrode material obtained by the production method of the present invention preferably has a cumulative particle size of 50% (volume-based median diameter D50) of 5 to 50 ⁇ m in the volume-based cumulative particle size distribution. More preferably, the D50 is 5 to 40 ⁇ m, more preferably the D50 is 5 to 30 ⁇ m, still more preferably the D50 is 5 to 20 ⁇ m, and even more the D50 is 5 to 17.5 ⁇ m. Those having D50 of 5 to 15 ⁇ m are particularly preferable.
  • D50 When D50 is 5 ⁇ m or more, the specific surface area of the graphite powder can be reduced, self-discharge can be suppressed, and when the slurry is slurried for producing a lithium secondary battery negative electrode material, the graphite powder is improved. Can be dispersed. When D50 is 50 ⁇ m or less, it is possible to easily maintain the capacity retention rate when charging and discharging a large current in the lithium secondary battery.
  • the graphite powder for a lithium secondary battery negative electrode material obtained by the production method of the present invention includes an integrated particle size in the volume-based integrated particle size distribution and a particle size of 90% in the integrated particle size distribution (D90) / volume-based integrated particle.
  • the cumulative particle size is preferably a ratio represented by 10% particle size (D10) of 2 to 16, more preferably a ratio represented by D90 / D10 of 2 to 12, and D90 / D10.
  • the ratio represented by 2 to 8 is more preferable, the ratio represented by D90 / D10 is more preferably 2 to 6, and the ratio represented by D90 / D10 is more preferably 2 to 5.
  • the ratio represented by D90 / D10 is particularly preferably 2-4.
  • D90 / D10 When D90 / D10 is within the above range, an increase in specific surface area due to pulverization can be suppressed, and when the obtained graphite powder is used as a negative electrode material for a lithium secondary battery, an increase in irreversible capacity is facilitated. It can suppress, and it can suppress easily the fall of the charging / discharging efficiency accompanying the increase in reactivity. Moreover, the ratio of the large particle size particles of 100 ⁇ m or more can be reduced to suppress a decrease in capacity maintenance rate during large current charge / discharge.
  • D10, D50, and D90 of the graphite powder for lithium secondary battery negative electrode materials are each measured by a laser diffraction particle size distribution measuring apparatus (SALD2000 manufactured by Shimadzu Corporation), and volume-based integration.
  • SALD2000 laser diffraction particle size distribution measuring apparatus manufactured by Shimadzu Corporation
  • the cumulative particle size in the particle size distribution means 10% particle size ( ⁇ m), 50% particle size ( ⁇ m), and 90% particle size ( ⁇ m).
  • the graphite powder for a lithium secondary battery negative electrode material obtained by the production method of the present invention preferably has a nitrogen adsorption specific surface area (N 2 SA) of 1.0 to 4.0 m 2 / g, Those having a molecular weight of ⁇ 3.0 m 2 / g are more preferred, those having a molecular weight of 1.0 to 2.7 m 2 / g are further preferred, and those having a molecular weight of 1.0 to 2.5 m 2 / g are particularly preferred.
  • the graphite powder for a lithium secondary battery negative electrode material obtained by the production method of the present invention has a nitrogen adsorption specific surface area within the above range, so that the irreversible capacity can be easily increased when a lithium secondary battery negative electrode material is produced. The reactivity can be suitably controlled.
  • the nitrogen adsorption specific surface area (N 2 SA) of the graphite powder for lithium secondary battery negative electrode material is obtained by using a surface area meter (a fully automatic surface area measuring device Gemini V manufactured by Shimadzu Corporation).
  • the sample was preliminarily dried at 350 ° C. for 30 minutes under a nitrogen gas flow, and then a nitrogen helium mixed gas that was accurately adjusted so that the relative pressure of the nitrogen gas with respect to the atmospheric pressure was 0.3 was measured by a gas flow method. It shall mean the value measured by the nitrogen adsorption BET 10 point method.
  • Example 1 Manufacture of graphite powder for negative electrode material of lithium secondary battery> Petroleum-based raw coke is roughly pulverized with a roll crusher and then finely pulverized using a turbo mill (Turbo Industry Co., Ltd. turbo mill). The sphericity is 1.4, the volume-based median diameter D50 is 10.8 ⁇ m, and D90 / D10. A raw coke powder having a value of 4.0 was produced. This raw coke powder was heated at 1000 ° C. for 4 hours in a non-oxidizing atmosphere of nitrogen (hereinafter, all nitrogen) to obtain coke powder.
  • nitrogen non-oxidizing atmosphere of nitrogen
  • Coke powder and ethylene heavy end tar (EHE) (fixed carbon amount of 30.0 g per 100 g) are added so that the fixed carbon amount of EHE is 6 parts by mass with respect to 100 parts by mass of coke powder.
  • EHE ethylene heavy end tar
  • the obtained powdered molten mixture was filled into a rubber mold and subjected to pressure molding at 1000 kgf / cm 2 for 90 minutes by a cold isostatic pressing method to obtain a cylindrical pressure molded body (diameter 500 mm, high And a bulk density of 1.34 g / cm 3 ) were produced.
  • the obtained press-molded body was packed in a stainless steel (SUS) sagar together with carbon breathe packing and fired by holding at 1000 ° C. for 4 hours under an inert atmosphere using a lead hammer furnace. It was packed in a graphitization furnace and further graphitized at 3000 ° C. for 4 hours under an inert atmosphere to obtain a columnar graphitized molded body.
  • SUS stainless steel
  • the cylindrical graphitized molded body is crushed by a turbo mill (turbo mill manufactured by Turbo Kogyo Co., Ltd.), and then subjected to classification using a turbo classifier manufactured by Nisshin Flour Milling Co., Ltd.
  • a graphite powder for a negative electrode material of a lithium secondary battery having a reference median diameter D50 of 10.2 ⁇ m, D90 / D10 of 3.8, and a nitrogen adsorption specific surface area (N 2 SA) of 1.9 m 2 / g was obtained.
  • the production conditions of the graphite powder for a negative electrode material for a lithium secondary battery are shown in Table 1.
  • the obtained electrode sheet was rolled with a roller press so that the electrode plate density was 1.5 g / cc, and punched with a punch to produce a negative electrode (working electrode).
  • the obtained lithium secondary battery for evaluation a was subjected to constant current charging at a current density of 0.2 mA / cm 2 and a final voltage of 5 mV, and then held at a constant potential until the lower limit current was 0.02 mA / cm 2 .
  • constant current discharge was performed to a final voltage of 1.5 V at a current density of 0.2 mA / cm 2 , and the discharge capacity after the end of 5 cycles was determined as the rated capacity (reversible capacity (mAh / g)).
  • the results are shown in Table 2.
  • the capacity retention rate (%) when discharged at 10 mA / cm 2 from the fully charged state was obtained by the following formula, and this capacity retention rate was defined as the initial efficiency (%).
  • the results are shown in Table 2.
  • Initial efficiency (%) (first discharge capacity (mAh / g) / first charge capacity (mAh / g)) ⁇ 100
  • Example 2 Manufacture of graphite powder for negative electrode material of lithium secondary battery> Petroleum raw coke is roughly pulverized with a roll crusher and then finely pulverized using a turbo mill (turbo mill manufactured by Turbo Industry Co., Ltd.). The sphericity is 1.3, the volume-based median diameter D50 is 11.2 ⁇ m, and D90 / D10. A raw coke powder having a value of 4.3 was produced. The raw coke powder was heated at 1300 ° C. for 4 hours in a non-oxidizing atmosphere of nitrogen to obtain coke powder.
  • the coke powder and EHE (fixed carbon amount per 100 g of 30.0 g) are 30 parts by mass of EHE with respect to 100 parts by mass of coke powder so that the fixed carbon amount of EHE is 9 parts by mass with respect to 100 parts by mass of coke powder.
  • the obtained powdered molten mixture was filled into a rubber mold and subjected to pressure molding at 1000 kgf / cm 2 for 90 minutes by a cold isostatic pressing method to obtain a cylindrical pressure molded body (diameter 500 mm, high And a bulk density of 1.48 g / cm 3 ) were produced.
  • the obtained press-molded body was packed in a stainless steel (SUS) sagar together with carbon breathe packing and fired by holding at 1000 ° C. for 4 hours under an inert atmosphere using a lead hammer furnace. It was packed in a graphitization furnace, and graphitized at 3000 ° C. for 4 hours under an inert atmosphere to obtain a columnar graphitized molded body.
  • SUS stainless steel
  • Example 3 Manufacture of graphite powder for negative electrode material of lithium secondary battery> Crude oil-based coke is roughly pulverized with a roll crusher and then finely pulverized using a turbo mill (turbo mill manufactured by Turbo Kogyo Co., Ltd.). The sphericity is 1.2, the volume-based median diameter D50 is 10.6 ⁇ m, and D90 / D10. A raw coke powder having a value of 4.1 was produced. The raw coke powder was heated at 850 ° C. for 4 hours under a non-oxidizing nitrogen atmosphere to obtain coke powder.
  • the coke powder and EHE (fixed carbon amount per 100 g of 30.0 g) are 30 parts by mass of EHE with respect to 100 parts by mass of coke powder so that the fixed carbon amount of EHE is 9 parts by mass with respect to 100 parts by mass of coke powder.
  • the obtained powdered molten mixture was filled into a rubber mold and subjected to pressure molding at 1000 kgf / cm 2 for 90 minutes by a cold isostatic pressing method to obtain a cylindrical pressure molded body (diameter 500 mm, high And a bulk density of 1.47 g / cm 3 ) were produced.
  • the obtained press-molded body was packed in a stainless steel (SUS) sagar together with carbon breathe packing and fired by holding at 1000 ° C. for 4 hours under an inert atmosphere using a lead hammer furnace. It was packed in a graphitization furnace, and graphitized at 3000 ° C. for 4 hours under an inert atmosphere to obtain a columnar graphitized molded body.
  • SUS stainless steel
  • the columnar graphitized molded body is crushed by a turbo mill (turbo mill manufactured by Turbo Industry Co., Ltd.) and then classified using a turbo classifier manufactured by Nisshin Flour Milling Co., Ltd., resulting in a sphericity of 1.2, volume.
  • a graphite powder for a lithium secondary battery negative electrode material having a reference median diameter D50 of 10.8 ⁇ m, D90 / D10 of 3.7, and a nitrogen adsorption specific surface area (N 2 SA) of 1.9 m 2 / g was obtained.
  • the production conditions of the graphite powder for a negative electrode material for a lithium secondary battery are shown in Table 1.
  • Example 4 Manufacture of graphite powder for negative electrode material of lithium secondary battery> Petroleum-based raw coke is coarsely pulverized with a roll crusher and then finely pulverized using a turbo mill (Turbo Industries Co., Ltd. turbo mill). The sphericity is 1.4, the volume-based median diameter D50 is 10.3 ⁇ m, and D90 / D10. A raw coke powder having a value of 4.5 was produced. This raw coke powder was heated at 650 ° C. for 4 hours under a non-oxidizing nitrogen atmosphere to obtain coke powder.
  • EHE ethylene heavy end tar
  • the obtained powdered molten mixture was filled into a rubber mold and subjected to pressure molding at 1000 kgf / cm 2 for 90 minutes by a cold isostatic pressing method to obtain a cylindrical pressure molded body (diameter 500 mm, high And a bulk density of 1.37 g / cm 3 ) were produced.
  • the obtained press-molded body was packed in a stainless steel (SUS) sagar together with carbon breathe packing and fired by holding at 1000 ° C. for 4 hours under an inert atmosphere using a lead hammer furnace. It was packed in a graphitization furnace, and graphitized at 3000 ° C. for 4 hours under an inert atmosphere to obtain a columnar graphitized molded body.
  • SUS stainless steel
  • the cylindrical graphitized molded body is crushed by a turbo mill (turbo mill manufactured by Turbo Kogyo Co., Ltd.), and then subjected to classification using a turbo classifier manufactured by Nisshin Flour Milling Co., Ltd.
  • a graphite powder for a lithium secondary battery negative electrode material having a reference median diameter D50 of 10.5 ⁇ m, D90 / D10 of 4.0, and a nitrogen adsorption specific surface area (N 2 SA) of 1.8 m 2 / g was obtained.
  • the production conditions of the graphite powder for a negative electrode material for a lithium secondary battery are shown in Table 1.
  • coke powder, coal-based pitch (fixed carbon amount per 100 g of 60.0 g) and anthracene oil (fixed carbon amount per 100 g of 1.7 g) are fixed carbon amount of coal-based pitch with respect to 100 parts by mass of coke powder.
  • the mixture is charged into a Henschel mixer (manufactured by Nihon Coke Kogyo Co., Ltd.) and melted and mixed by stirring and mixing at a rotating blade speed of 3000 rpm for 10 minutes in a temperature atmosphere of 150 ° C.
  • a mixture was obtained.
  • the obtained powdered molten mixture was filled into a rubber mold and subjected to pressure molding at 1000 kgf / cm 2 for 90 minutes by a cold isostatic pressing method to obtain a cylindrical pressure molded body (diameter 500 mm, high 1000 mm, bulk density 1.32 g / cm 3 ).
  • the obtained press-molded body was packed in a stainless steel (SUS) sagar together with carbon breathe packing and fired by holding at 1000 ° C.
  • SUS stainless steel
  • coke powder, coal-based pitch (fixed carbon amount of 60.0 g per 100 g) and anthracene oil (fixed carbon amount of 2.0 g per 100 g) are fixed carbon content of coal-based pitch to 12 parts by mass of coke powder.
  • the obtained powdered molten mixture was filled into a rubber mold and subjected to pressure molding at 1000 kgf / cm 2 for 90 minutes by a cold isostatic pressing method to obtain a cylindrical pressure molded body (diameter 500 mm, high And a bulk density of 1.39 g / cm 3 ) were produced.
  • the obtained press-molded body was packed in a stainless steel (SUS) sagar together with carbon breathe packing and fired by holding at 1000 ° C. for 4 hours under an inert atmosphere using a lead hammer furnace. It was packed in a graphitization furnace, and graphitized at 3000 ° C. for 4 hours under an inert atmosphere to obtain a columnar graphitized molded body.
  • SUS stainless steel
  • the cylindrical graphitized molded body is crushed by a turbo mill (turbo mill manufactured by Turbo Kogyo Co., Ltd.), and then subjected to classification using a turbo classifier manufactured by Nisshin Flour Milling Co., Ltd.
  • a graphite powder for a negative electrode material of a lithium secondary battery having a reference median diameter D50 of 10.6 ⁇ m, D90 / D10 of 3.8, and a nitrogen adsorption specific surface area (N 2 SA) of 2.3 m 2 / g was obtained.
  • the production conditions of the graphite powder for a negative electrode material for a lithium secondary battery are shown in Table 1.
  • Example 7 ⁇ Manufacture of graphite powder for negative electrode material of lithium secondary battery> Petroleum raw coke is coarsely pulverized with a roll crusher and then finely pulverized using a turbo mill (turbo mill manufactured by Turbo Kogyo Co., Ltd.). The sphericity is 1.2, the volume-based median diameter D50 is 10.8 ⁇ m, and D90 / D10. A raw coke powder having a 3.8 was produced. This raw coke powder was heated at 1000 ° C. for 4 hours under a non-oxidizing atmosphere of nitrogen to obtain coke powder.
  • coke powder and petroleum-based pitch fixed carbon amount per 100 g 60.0 g
  • FCC decant oil fixed carbon amount per 100 g 1.7 g
  • Petroleum pitch 12 parts by mass and FCC decant oil (FCCODO) with respect to 100 parts by mass of coke powder so that the amount of carbon is 7.2 parts by mass and FCCOD is 100 parts by mass with respect to 100 parts by mass of coke powder.
  • the obtained press-molded body was packed in a stainless steel (SUS) sagar together with carbon breathe packing and fired by holding at 1000 ° C. for 4 hours under an inert atmosphere using a lead hammer furnace. It was packed in a graphitization furnace, and graphitized at 3000 ° C. for 4 hours under an inert atmosphere to obtain a columnar graphitized molded body.
  • the columnar graphitized molded body is crushed by a turbo mill (turbo mill manufactured by Turbo Industry Co., Ltd.) and then classified using a turbo classifier manufactured by Nisshin Flour Milling Co., Ltd., resulting in a sphericity of 1.2, volume.
  • a graphite powder for a lithium secondary battery negative electrode material having a reference median diameter D50 of 10.7 ⁇ m, D90 / D10 of 3.7, and a nitrogen adsorption specific surface area (N 2 SA) of 1.7 m 2 / g was obtained.
  • the production conditions of the graphite powder for a negative electrode material for a lithium secondary battery are shown in Table 1.
  • coke powder (fixed carbon amount 60.0 g per 100 g) and FCC decant oil (FCCODO) (fixed carbon amount 2.0 g per 100 g) are fixed to the petroleum pitch with respect to 100 parts by mass of the coke powder.
  • the obtained powdered molten mixture was filled into a rubber mold and subjected to pressure molding at 1000 kgf / cm 2 for 90 minutes by a cold isostatic pressing method to obtain a cylindrical pressure molded body (diameter 500 mm, high And a bulk density of 1.40 g / cm 3 ) were produced.
  • the obtained press-molded body was packed in a stainless steel (SUS) sagar together with carbon breathe packing and fired by holding at 1000 ° C. for 4 hours under an inert atmosphere using a lead hammer furnace. It was packed in a graphitization furnace, and graphitized at 3000 ° C. for 4 hours under an inert atmosphere to obtain a columnar graphitized molded body.
  • SUS stainless steel
  • the cylindrical graphitized molded body is crushed by a turbo mill (turbo mill manufactured by Turbo Kogyo Co., Ltd.), and then subjected to classification using a turbo classifier manufactured by Nisshin Flour Milling Co., Ltd.
  • a graphite powder for a lithium secondary battery negative electrode material having a reference median diameter D50 of 10.2 ⁇ m, D90 / D10 of 3.9, and a nitrogen adsorption specific surface area (N 2 SA) of 2.4 m 2 / g was obtained.
  • the production conditions of the graphite powder for a negative electrode material for a lithium secondary battery are shown in Table 1.
  • Example 9 Manufacture of graphite powder for negative electrode material of lithium secondary battery> Crude oil-based coke is coarsely pulverized with a roll crusher and then finely pulverized using a turbo mill (turbo mill manufactured by Turbo Kogyo Co., Ltd.). The sphericity is 1.5, the volume-based median diameter D50 is 25.6 ⁇ m, and D90 / D10. A raw coke powder having a 5.9 was produced. This raw coke powder was heated at 1000 ° C. for 4 hours under a non-oxidizing atmosphere of nitrogen to obtain coke powder.
  • coke powder (fixed carbon amount of 60.0 g per 100 g) and FCC decant oil (FCCOO) (fixed carbon amount of 2.7 g per 100 g) are fixed carbon of petroleum pitch with respect to 100 parts by mass of coke powder.
  • FCCOO FCC decant oil
  • 100 parts by mass of coke powder 15 parts by mass of petroleum-based pitch and 7.5 parts by mass of FCCDO so that the amount of fixed carbon of FCCO with respect to 9 parts by mass and 100 parts by mass of coke powder is 0.2 parts by mass.
  • the obtained press-molded body was packed in a stainless steel (SUS) sagar together with carbon breathe packing and fired by holding at 1000 ° C. for 4 hours under an inert atmosphere using a lead hammer furnace. It was packed in a graphitization furnace and graphitized at 3000 ° C. for 4 hours under an inert atmosphere.
  • the columnar graphitized compact is crushed by a turbo mill (turbo mill manufactured by Turbo Kogyo Co., Ltd.) and then classified using a turbo classifier manufactured by Nisshin Seifun Co., Ltd.
  • a graphite powder for a lithium secondary battery negative electrode material having a reference median diameter D50 of 25.3 ⁇ m, D90 / D10 of 5.7, and a nitrogen adsorption specific surface area (N 2 SA) of 1.3 m 2 / g was obtained.
  • the production conditions of the graphite powder for a negative electrode material for a lithium secondary battery are shown in Table 1.
  • coke powder (fixed carbon amount of 60.0 g per 100 g) and FCC decant oil (FCCOO) (fixed carbon amount of 2.7 g per 100 g) are fixed to the petroleum pitch with respect to 100 parts by mass of the coke powder.
  • Example 11 Manufacture of graphite powder for negative electrode material of lithium secondary battery> Crude oil raw coke is coarsely pulverized with a roll crusher and then finely pulverized using a turbo mill (turbo mill manufactured by Turbo Industry Co., Ltd.). The sphericity is 1.6, the volume-based median diameter D50 is 32.3 ⁇ m, and D90 / D10. A raw coke powder having a 4.9 was prepared. This raw coke powder was heated at 1000 ° C. for 4 hours under a non-oxidizing atmosphere of nitrogen to obtain coke powder.
  • coke powder (fixed carbon amount of 60.0 g per 100 g) and FCC decant oil (FCCOO) (fixed carbon amount of 2.7 g per 100 g) are fixed to the petroleum pitch with respect to 100 parts by mass of the coke powder.
  • a graphite powder for a lithium secondary battery negative electrode material having a reference median diameter D50 of 30.6 ⁇ m, D90 / D10 of 4.8, and a nitrogen adsorption specific surface area (N 2 SA) of 1.1 m 2 / g was obtained.
  • the production conditions of the graphite powder for a negative electrode material for a lithium secondary battery are shown in Table 1.
  • Example 12 Manufacture of graphite powder for negative electrode material of lithium secondary battery> Petroleum raw coke is coarsely pulverized with a roll crusher and then finely pulverized using a turbo mill (turbo mill manufactured by Turbo Industry Co., Ltd.). The sphericity is 1.7, the volume-based median diameter D50 is 46.8 ⁇ m, and D90 / D10. A raw coke powder having a 4.9 was prepared. This raw coke powder was heated at 1000 ° C. for 4 hours under a non-oxidizing atmosphere of nitrogen to obtain coke powder.
  • coke powder (fixed carbon amount of 60.0 g per 100 g) and FCC decant oil (FCCOO) (fixed carbon amount of 2.7 g per 100 g) are fixed to the petroleum pitch with respect to 100 parts by mass of the coke powder.
  • coke powder (fixed carbon amount of 60.0 g per 100 g) and FCC decant oil (FCCOO) (fixed carbon amount of 2.7 g per 100 g) are fixed to the petroleum pitch with respect to 100 parts by mass of the coke powder.
  • a graphite powder for a negative electrode material of a lithium secondary battery having a reference median diameter D50 of 19.6 ⁇ m, D90 / D10 of 4.8, and a nitrogen adsorption specific surface area (N 2 SA) of 1.2 m 2 / g was obtained.
  • the production conditions of the graphite powder for a negative electrode material for a lithium secondary battery are shown in Table 1.
  • Example 14 ⁇ Manufacture of graphite powder for negative electrode material of lithium secondary battery> Crude oil-based coke is roughly pulverized with a roll crusher and then finely pulverized using a turbo mill (turbo mill manufactured by Turbo Industry Co., Ltd.). The sphericity is 1.3, the volume-based median diameter D50 is 10.5 ⁇ m, and D90 / D10. A raw coke powder having a 4.9 was prepared. This raw coke powder was heated at 1000 ° C. for 4 hours under a non-oxidizing atmosphere of nitrogen to obtain coke powder.
  • coke powder (fixed carbon amount of 60.0 g per 100 g) and FCC decant oil (FCCOO) (fixed carbon amount of 2.7 g per 100 g) are fixed to the petroleum pitch with respect to 100 parts by mass of the coke powder.
  • the coke powder and the coal-based pitch (fixed carbon amount per 100 g of 60.0 g) are added to 100 parts by mass of the coke powder so that the fixed carbon amount of the coal-based pitch with respect to 100 parts by mass of the coke powder becomes 3 parts by mass.
  • a coal-based pitch By charging 5 parts by mass of a coal-based pitch into a Henschel mixer (manufactured by Nihon Coke Kogyo Co., Ltd.), stirring at a rotating blade speed of 3000 rpm for 10 minutes under a temperature atmosphere of 150 ° C., and melt mixing. A powdery molten mixture was obtained.
  • the resulting powdery molten mixture was charged into a rubber mold, by cold isostatic pressing method, by 90 minutes pressed at 1000 kgf / cm 2, a cylindrical pressed compact (diameter 500 mm, height 1000 mm), but sufficient strength could not be imparted and a pressure-molded article could not be produced.
  • the obtained powdered molten mixture was filled into a rubber mold and subjected to pressure molding at 1000 kgf / cm 2 for 90 minutes by a cold isostatic pressing method to obtain a cylindrical pressure molded body (diameter 500 mm, high And a bulk density of 1.53 g / cm 3 ) were produced.
  • the obtained press-molded body was packed in a stainless steel (SUS) sagar together with carbon breathe packing and fired by holding at 1000 ° C. for 4 hours under an inert atmosphere using a lead hammer furnace. It was packed in a graphitization furnace, and graphitized at 3000 ° C. for 4 hours under an inert atmosphere to obtain a columnar graphitized molded body.
  • SUS stainless steel
  • EHE ethylene heavy end tar
  • the obtained powdered molten mixture was filled into a rubber mold and subjected to pressure molding at 1000 kgf / cm 2 for 90 minutes by a cold isostatic pressing method to obtain a cylindrical pressure molded body (diameter 500 mm, high 1000 mm), but sufficient strength could not be imparted and a pressure-molded article could not be produced.
  • the obtained powdered molten mixture was filled into a rubber mold and subjected to pressure molding at 1000 kgf / cm 2 for 90 minutes by a cold isostatic pressing method to obtain a cylindrical pressure molded body (diameter 500 mm, high 1000 mm), but sufficient strength could not be imparted and a pressure-molded article could not be produced.
  • coke powder and petroleum-based pitch (fixed carbon amount per 100 g 60.0 g) and FCC decant oil (FCCODO) (fixed carbon amount per 100 g of 2.0 g) are mixed with petroleum-based pitch fixed carbon with respect to 100 parts by mass of coke powder.
  • Henshell mixer with 30 parts by mass of petroleum-based pitch and 15 parts by mass of FCCDO for 100 parts by mass of coke powder so that the amount of fixed carbon of FCCO is 0.3 parts by mass with respect to 18 parts by mass and 100 parts by mass of coke powder. (Nippon Coke Kogyo Co., Ltd.) was charged and stirred at a rotating blade rotation speed of 3000 rpm for 10 minutes under a temperature atmosphere of 150 ° C.
  • the obtained powdered molten mixture was filled into a rubber mold and subjected to pressure molding at 1000 kgf / cm 2 for 90 minutes by a cold isostatic pressing method to obtain a cylindrical pressure molded body (diameter 500 mm, high And a bulk density of 1.52 g / cm 3 ) were produced.
  • the obtained press-molded body was packed in a stainless steel (SUS) sagar together with carbon breathe packing and fired by holding at 1000 ° C. for 4 hours under an inert atmosphere using a lead hammer furnace. It was packed in a graphitization furnace, and graphitized at 3000 ° C. for 4 hours under an inert atmosphere to obtain a columnar graphitized molded body.
  • SUS stainless steel
  • coke powder and petroleum-based pitch fixed carbon amount per 100 g 60.0 g
  • FCCODO FCC decant oil
  • the petroleum-based pitch is 15 parts by mass and the FCCODO is 7.5 parts by mass with respect to 100 parts by mass of the coke powder so that the fixed carbon amount of the FCCO is 0.2 parts by mass with respect to 9 parts by mass and 100 parts by mass of the coke powder.
  • coke powder and petroleum-based pitch fixed carbon amount per 100 g 60.0 g
  • FCCODO FCC decant oil
  • the petroleum-based pitch is 15 parts by mass and the FCCODO is 7.5 parts by mass with respect to 100 parts by mass of the coke powder so that the fixed carbon amount of the FCCO is 0.2 parts by mass with respect to 9 parts by mass and 100 parts by mass of the coke powder.
  • coke powder fixed carbon amount of 60.0 g per 100 g
  • FCC decant oil FCCOO
  • coke powder fixed carbon amount of 60.0 g per 100 g
  • FCC decant oil FCCOO
  • a graphite powder for a lithium secondary battery negative electrode material having a reference median diameter D50 of 3.3 ⁇ m, D90 / D10 of 4.5, and a nitrogen adsorption specific surface area (N 2 SA) of 4.8 m 2 / g was obtained.
  • the production conditions of the graphite powder for a negative electrode material for a lithium secondary battery are shown in Table 1.
  • raw coke powder having a cumulative particle size of 50% and a particle size of 5 to 50 ⁇ m in a volume-based cumulative particle size distribution is 600 to 1450 ° C. in a non-oxidizing atmosphere.
  • Coke powder obtained by heat treatment under temperature conditions and a carbon precursor binder are melt-mixed so that a fixed carbon amount of the carbon precursor binder is 5 to 15 parts by mass with respect to 100 parts by mass of the coke powder.
  • pressure molding was performed to produce a pressure molded body, and then the pressure molded body was heat-treated in a non-oxidizing atmosphere to perform carbonization and graphitization to obtain a graphitized molded body.
  • the obtained graphitized molded body was pulverized, graphite powder for lithium secondary battery negative electrode material with a small specific surface area was easily manufactured under high graphitization efficiency while suppressing energy consumption.
  • the negative electrode material a lithium secondary battery manufactured using the consisting of graphite powder obtained is found to be excellent in battery characteristics.
  • Comparative Example 6 since the coke powder obtained by heat-treating raw coke powder at a low temperature of 500 ° C. is used, the bulk density of the molded body at the time of pressure molding becomes low, and graphitization. It turns out that efficiency becomes low and productivity is inferior. Further, from Table 2, Comparative Example 7 shows almost the same battery characteristics as Example 6, but as shown in Table 1, the graphite powder obtained in Comparative Example 7 has a high heat treatment temperature of raw coke powder. It can be seen that the energy efficiency during production is inferior to that of Example 6.
  • Comparative Example 9 has a volume-based median diameter D50 of raw coke powder that is too small, as shown in Table 2, a lithium secondary battery was produced using the obtained negative electrode material made of graphite powder. It can be seen that the initial efficiency is lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 エネルギー消費量を抑制しつつ、比表面積の小さなリチウム二次電池負極材用黒鉛粉末を高い黒鉛化効率の下で簡便に製造する方法を提供する。 体積基準積算粒度分布における積算粒度で50%の粒径が5~50μmの生コークス粉を非酸化性雰囲気中600~1450℃の温度条件下で加熱処理してなるコークス粉と、炭素前駆体バインダーとを、コークス粉末100質量部に対して、炭素前駆体バインダーの固定炭素量が5~15質量部となるように、溶融混合した後、加圧成形して加圧成形体を作製し、次いで、前記加圧成形体を非酸化性雰囲気中で加熱処理して、炭素化および黒鉛化を行うことにより黒鉛化成形体を得、得られた黒鉛化成形体を粉砕処理することを特徴とするリチウム二次電池負極材用黒鉛粉末の製造方法である。

Description

リチウム二次電池負極材用黒鉛粉末の製造方法
 本発明は、リチウム二次電池負極材用黒鉛粉末の製造方法に関する。
 リチウム二次電池は軽量でエネルギー密度が高く、携帯用小型電子機器の電源をはじめ近年ではハイブリッドカーや電気自動車などの動力用電源として期待されている。当初、リチウム二次電池の負極材には金属リチウムが用いられていたが、充電時にリチウムイオンが負極面にデンドライト(樹枝)状に析出、成長し、脱落して容量低下をもたらしたり、ショートの原因となるため、このようなデンドライト状の析出を生じない黒鉛材が提案されるようになっている。
 黒鉛材はリチウムイオンのドープ・アンドープ性(脱・挿入性)が優れていることから充放電効率が高く、更に、充放電時の電位も金属リチウムとほぼ等しく、高電圧の電池が得られるなどの利点がある。
 このような黒鉛材からなるリチウム二次電池負極材用黒鉛粉末の製造方法としては、生のピッチコークス100質量部に、バインダーとして60質量部の合成ピッチタールを加えて混練し、900kgf/cmの冷間静水圧でブロック状に成形し、1000℃で熱処理した後さらに2800℃で熱処理して黒鉛化し、得られた黒鉛化ブロックを粉砕・粒度調整する方法が知られている(特許文献1(特開2008-059903号公報)の実施例3参照)。
特開2008-059903号公報
 特許文献1記載の方法においては、炭素質骨材である生のピッチコークスに対して多量のバインダーを混練し、高圧下でブロック状に成形するものであるために、生のピッチコークスの内部にバインダーを含浸させつつ、その表面をも被覆して、充放電時におけるガスの発生を抑制し得るとされている。
 しかしながら、本発明者等が検討したところ、特許文献1記載の方法においては、ガスの発生を抑制し得る黒鉛粉末を製造し得るものの、炭素質骨材である生のピッチコークスに対して多量のバインダーを混練し、高圧下で成形するものであるために、得られるブロック状成形体の強度が高くなり、黒鉛化後に粉砕する際に、多大なエネルギーを必要とするばかりか、得られる黒鉛粉末の比表面積が増大してしまい、リチウム二次電池負極材に使用したときに、自己放電が増加して不可逆容量が増大し、発電容量の低下を招くことが判明した。
 本発明は、このような事情のもとで、エネルギー消費量を抑制しつつ、比表面積の小さなリチウム二次電池負極材用黒鉛粉末を高い黒鉛化効率の下で簡便に製造する方法を提供することを目的とするものである。
 上記目的を達成するために、本発明者等が鋭意検討したところ、体積基準積算粒度分布における積算粒度で50%の粒径が5~50μmの生コークス粉を非酸化性雰囲気中600~1450℃の温度条件下で加熱処理してなるコークス粉と、炭素前駆体バインダーとを、前記コークス粉100質量部に対して、前記炭素前駆体バインダーの固定炭素量が5~15質量部となるように溶融混合した後、加圧成形して加圧成形体を作製し、次いで、前記加圧成形体を非酸化性雰囲気中で加熱処理して、炭素化および黒鉛化を行うことにより黒鉛化成形体を得、得られた黒鉛化成形体を粉砕処理してリチウム二次電池負極材用黒鉛粉末を製造することにより、上記課題を解決し得ることを見出し、本知見に基いて本発明を完成するに至った。
 すなわち、本発明は、
(1)体積基準積算粒度分布における積算粒度で50%の粒径が5~50μmの生コークス粉を非酸化性雰囲気中600~1450℃の温度条件下で加熱処理してなるコークス粉と、炭素前駆体バインダーとを、前記コークス粉100質量部に対して、前記炭素前駆体バインダーの固定炭素量が5~15質量部となるように、溶融混合した後、加圧成形して加圧成形体を作製し、次いで、
 前記加圧成形体を非酸化性雰囲気中で加熱処理して、炭素化および黒鉛化を行うことにより黒鉛化成形体を得、
 得られた黒鉛化成形体を粉砕処理する
ことを特徴とするリチウム二次電池負極材用黒鉛粉末の製造方法、
(2)前記加圧成形時における成形圧が1~1000kgf/cmである上記(1)に記載のリチウム二次電池負極材用黒鉛粉末の製造方法、
(3)前記炭素前駆体バインダーが、石炭系ピッチ、石油系ピッチ、エチレンヘビーエンドタール、アントラセンオイル、クレオソート油およびFCCデカントオイルから選ばれる一種以上である上記(1)に記載のリチウム二次電池負極材用黒鉛粉末の製造方法、
(4)前記炭素前駆体バインダーが、石炭系ピッチ、石油系ピッチ、エチレンヘビーエンドタール、アントラセンオイル、クレオソート油およびFCCデカントオイルから選ばれる一種以上である上記(2)に記載のリチウム二次電池負極材用黒鉛粉末の製造方法、
(5)得られるリチウム二次電池負極材用黒鉛粉末が、球形度が1.0~2.0、体積基準積算粒度分布における積算粒度で50%の粒径が5~50μm、体積基準積算粒度分布における積算粒度で90%の粒径/体積基準積算粒度分布における積算粒度で10%の粒径で表わされる比が2~16、窒素吸着比表面積が1.0~4.0m/gである上記(1)~(4)のいずれかに記載のリチウム二次電池負極材用黒鉛粉末の製造方法
を提供するものである。
 本発明によれば、エネルギー消費量を抑制しつつ、比表面積の小さなリチウム二次電池負極材用黒鉛粉末を高い黒鉛化効率の下で簡便に製造する方法を提供することができる。
本発明の実施例で得られた黒鉛粉末を用いたボタン型リチウム二次電池の構造を説明するための垂直断面図である。
 本発明に係るリチウム二次電池負極材用黒鉛粉末の製造方法は、体積基準積算粒度分布における積算粒度で50%の粒径が5~50μmの生コークス粉を非酸化性雰囲気中600~1450℃の温度条件下で加熱処理してなるコークス粉と、炭素前駆体バインダーとを、前記コークス粉100質量部に対して、前記炭素前駆体バインダーの固定炭素量が5~15質量部となるように溶融混合した後、加圧成形して加圧成形体を作製し、次いで、前記加圧成形体を非酸化性雰囲気中で加熱処理して、炭素化および黒鉛化を行うことにより黒鉛化成形体を得、得られた黒鉛化成形体を粉砕処理することを特徴とするものである。
 本発明の製造方法において、生コークス粉を構成する生コークスとは、重質油やピッチを、ディレードコーカー、フルードコーカー、フレキシコーカー、室炉コークス炉等のコークス炉で熱分解して得られたものであって、揮発分を除去する仮焼を行う前のコークスを意味する。
 生コークスとして、具体的には、石油系または石炭系の重質油、FCCデカントオイル(FCCDO)、エチレンヘビーエンドタール(EHE)等の重質油の少なくとも一種を原料として、例えばディレードコーカー等のコークス化設備を用い、例えばディレードコーカー等のコークス化設備を用いて、最高到達温度400~550℃の温度下で、熱分解、重縮合反応を行うことにより作製したものを挙げることができる。
 本発明の製造方法において、生コークス粉を構成する生コークスとしては、異方性組織が少ないモザイクコークスが好適である。
 本発明の製造方法において、生コークス粉は、体積基準積算粒度分布における積算粒度で50%の粒径(D50)が、5~50μmであるものであり、5~40μmであるものが好ましく、5~30μmであるものがより好ましく、5~20μmであるものがさらに好ましく、5~17.5μmであるものが一層好ましく、5~15μmであるものがより一層好ましい。
 生コークス粉の体積積算粒度分布における積算粒度で50%の粒径が5μm以上であることにより、得られるリチウム二次電池負極材用黒鉛粉末の比表面積を低減し得るとともに、負極材の構成材料として使用したときに自己放電を抑制することができ、また、リチウム二次電池負極材を作製するためにスラリー化したときに、黒鉛粉末の分散性を向上させることができる。
 また、生コークス粉の体積積算粒度分布における積算粒度で50%の粒径が50μm以下であることにより、リチウム二次電池において大電流充放電した際の容量維持率を維持することができる。
 本発明の製造方法において、生コークス粉は、体積基準積算粒度分布における積算粒度で90%の粒径(D90)/体積基準積算粒度分布における積算粒度で10%の粒径(D10)で表わされる比が2~16であるものが好ましく、D90/D10で表わされる比が2~12であるものがより好ましく、D90/D10で表わされる比が2~8であるものがさらに好ましく、D90/D10で表わされる比が2~6であるものが一層好ましく、D90/D10で表わされる比が2~4であるものがより一層好ましい。
 なお、本出願書類において、生コークス粉のD10、D50およびD90は、それぞれ、レーザー回折式粒度分布測定装置(島津製作所(株)製SALD2000)により測定される、体積基準積算粒度分布における積算粒度で10%の粒径(μm)、50%の粒径(μm)、90%の粒径(μm)を意味するものとする。
 本発明の製造方法において、生コークス粉としては、球形度が1.0~2.0であるものが好ましく、球形度が1.0~1.7であるものがより好ましく、球形度が1.0~1.4であるものがさらに好ましい。
 なお、本出願書類において、生コークス粉の球形度は、走査型電子顕微鏡(日本電子(株)製 JSM-6510LV)で30個の粒子を観察し、それぞれ画像解析したときに、各粒子の最大径(ML)と、MLと直交する方向の幅のうち最大のもの(BD)とを測定してそれぞれML/BDを算出したときの平均値を意味する。測定対象となる粒子が真球である場合、球形度は1となる。
 上記生コークス粉は、必要に応じて生コークスを粉砕することにより作製することができる。
 生コークスの粉砕は、公知の粉砕機を用いて行うことができ、粉砕機としては、ロールクラッシャー、ハンマーミル、ピンミル、ジェットミル、ベベルインパクター、ターボミル等を挙げることができ、上記粉砕機を複数組み合わせて所望粒径を有する生コークス粉を作製してもよい。
 粉砕機の粉砕条件は、所望粒径を有する生コークス粉が得られるように適宜調整すればよい。
 本発明の製造方法においては、上記生コークス粉を、非酸化性雰囲気中、600~1450℃の温度条件下で加熱処理してなるコークス粉が用いられる。
 非酸化性雰囲気としては、窒素雰囲気やアルゴン雰囲気等の希ガス雰囲気等を挙げることができる。
 本発明の製造方法において、コークス粉は、上記生コークス粉を、600~1450℃の温度条件下で加熱処理してなるものであり、800~1450℃の温度条件下で加熱処理してなるものであることが好ましく、1000~1450℃の温度条件下で加熱処理してなるものであることがより好ましく、1000~1200℃の温度条件下で加熱処理してなるものであることがさらに好ましい。
 生コークス粉の熱処理温度が600℃以上であることにより、揮発分の残存量が低減され、真密度が高く成形体の密度の高いコークス粉となることから、後述するように嵩密度の高い加圧成形体を得ることができ、黒鉛化効率を向上させることができる。
 また、生コークス粉の熱処理温度が1450℃以下であることにより、熱処理コストを増加させることなく、高いエネルギー効率の下で真密度の高いコークス粉とすることができる。
 本発明の製造方法において、コークス粉は、上記生コークス粉を60~600分間加熱処理してなるものであることが好ましく、60~450分間加熱処理してなるものであることがより好ましく、60~300分間加熱処理してなるものであることがさらに好ましい。
 本発明の製造方法において、上記生コークス粉を加熱処理してなるコークス粉は、炭素前駆体バインダーと溶融混合する。
 本出願書類において、炭素前駆体バインダーは、加熱溶融することによりコークス粉同士を結着し得るとともに、さらに高温で加熱処理することにより炭化し得るものを意味する。
 炭素前駆体バインダーとしては、石炭系ピッチ、石油系ピッチ、エチレンヘビーエンドタール(EHE)、アントラセンオイル、クレオソート油およびFCCデカントオイル(FCCDO)から選ばれる一種以上を挙げることができ、エチレンヘビーエンドタールや石炭系ピッチとアントラセンオイルとの混合物や、石油系ピッチとFCCデカントオイルの混合物などが好適に使用することができる。
 本発明の製造方法において、炭素前駆体バインダーの粘度は、1~800mPa・s以下であることが好ましく、1~600mPa・sであることがより好ましく、1~400mPa・sであることがさらに好ましい。
 炭素前駆体バインダーの粘度が800mPa・s以下であることにより、バインダーをコークス粉に均一にコートすることが容易になり、炭素前駆体バインダー量が少なくても成形体の取扱性を向上させることができる。また、炭素前駆体バインダーの使用量を抑制し得るため、黒鉛化後の解砕時に比表面積の増加を抑制することができる。
 炭素前駆体バインダーの粘度が800mPa・sを超える場合、バインダーがコークス粉に均一にコートされ難いため、良好な成形体を得るためには、コークス粉100質量部に対し、炭素前駆体バインダーの必要量が固定炭素量で15質量部以上になる場合があることから、黒鉛化後の成形体の強度が高くなり、解砕時に多大なエネルギーが必要となり、その結果、比表面積が増大してしまう。
 炭素前駆体バインダーの粘度を調整する方法としては、炭素前駆体バインダーとして、固定炭素分の含有割合が低く粘度が低い、クレオソート油やFCCデカントオイル(FCCDO)等と、固定炭素分の含有割合が多く粘度が高い、石炭系ピッチや石油系ピッチとを所望割合で混合する方法があげられる。
 本出願書類において、炭素前駆体バインダーの粘度は、ブルックフィールド粘度計((株)東京計器製B8L型粘度計)を用い、JIS K7117に準拠して測定を行った。
 本発明の製造方法において、炭素前駆体バインダーは、コークス粉100質量部に対し、炭素前駆体バインダーを、炭素前駆体バインダーの固定炭素量が5~15質量部になるように溶融混合するものであり、炭素前駆体バインダーの固定炭素量が5~12.5質量部になるように溶融混合することが好ましく、炭素前駆体バインダーの固定炭素量が5~10質量部になるように溶融混合することがさらに好ましい。
 固定炭素量とは、炭素前駆体バインダー量から、水分、揮発分および灰分の合計量を差し引いた値を意味し、本出願書類において、固定炭素量は、JIS K 2425に準拠した方法で測定、算出される値を意味する。
 すなわち、100gの炭素前駆体バインダーを800℃で加熱処理して水分および揮発分を除去し、得られた残留物からさらに灰分を除いてx(g)の残分(固定炭素)が得られる場合において、下記式により固定炭素の絶対量(g)が算出される。
 固定炭素量(絶対量)(g)=炭素前駆体バインダー量(g)×(x(g)/100(g))
 次いで、上記固定炭素量(絶対量)(g)を、コークス粉100質量部に対する相対量に換算することにより、目的とする固定炭素量(質量部)を算出することができる。
 炭素前駆体バインダーの固定炭素量が、コークス粉100質量部に対して15質量部以下となるように混合することにより、黒鉛化後に粉砕する際に多大なエネルギーを必要とすることなく、比表面積の小さなリチウム二次電池負極材用黒鉛粉末を容易に作製することができる。また、炭素前駆体バインダーの固定炭素量が、コークス粉100質量部に対して5質量部以上となるように混合することにより、後述する加圧成形時に取り扱い性の高い加圧成形体を得ることができ、黒鉛化効率を容易に向上させることができる。
 コークス粉と炭素前駆体バインダーとの溶融混合は、混合対象を加熱可能な公知の混合機により行うことができる。
 溶融混合を行う混合機としては、内部に撹拌軸を有し該攪拌軸に攪拌翼を取り付けて混合を行うミキサーが好ましく、具体的には、ヘンシェルミキサー(日本コークス工業(株)製)、ハイスピードミキサー(深江パウテック(株)製、レディゲミキサー((株)マツボー製)等を挙げることができる。また、溶融混合を行う混合機としては、ニーダーや万能混合機を挙げることもできる。
 コークス粉と炭素前駆体バインダーとの溶融混合は、炭素前駆体バインダーの溶融温度以上炭化温度未満の温度下で行い、80~180℃の温度下で行うことが好ましく、100~160℃の温度下で行うことがより好ましい。
 溶融混合時間は、1~20分間が好ましく、1~15分間がより好ましく、1~10分間がさらに好ましい。
 コークス粉と炭素前駆体バインダーとの溶融混合は、例えば、混合機内に先ずコークス粉を装入した上で、炭素前駆体バインダーを装入し、両者を加熱溶融しつつ攪拌混合することにより行うことができる。
 コークス粉と炭素前駆体バインダーとを溶融混合して得られた溶融混合物は、その後、適宜冷却する。溶融混合物の冷却は、自然冷却であってもよいし、送風等による強制冷却であってもよい。
 本発明の製造方法においては、上記溶融混合物を加圧成形して加圧成形体を作製する。
 溶融混合物を加圧成形する方法としては、公知の方法を採用することができ、例えば、型込め成形法、冷間静水圧成形法、等方圧成形法等を挙げることができ、具体的には、冷間静水圧成形法が好ましい。
 加圧成形時の成形圧は、1~1000kgf/cmであることが好ましく、50~1000kgf/cmであることがより好ましく、100~1000kgf/cmであることがさらも好ましい。
 溶融混合物を加圧成形する時間は、10~180分間が好ましく、20~150分間がより好ましく、30~120分間がより好ましい。
 加圧成形時の成形圧や加圧成形時間が上記範囲内にあることにより、後述する粉砕処理時におけるエネルギーロスを効果的に低減して、表面積が抑制された黒鉛粉を得ることができる。
 本発明の製造方法において、加圧成形により得られる加圧成形体の見掛け密度(嵩密度)は、1.0~1.8g/cmであることが好ましく、1.1~1.7g/cmであることがより好ましく、1.2~1.6g/cmであることがさらに好ましい。
 加圧成形体の嵩密度が上記範囲内にあることにより、後述する黒鉛化処理を効率的に行うことができ、リチウム二次電池負極材用黒鉛粉末を簡便に製造することができる。
 なお、本出願書類において、加圧成形体の嵩密度は、加圧成形体の体積および質量をそれぞれ測定することにより算出することができる。
 本発明の製造方法においては、溶融混合物を直接黒鉛化処理することなく、加圧成形体に成形した上で後述する炭素化および黒鉛化を行うことにより、炭素化および黒鉛化時における、炉詰めおよび炉出しの作業を容易に行うことができ、このために作業負担を軽減して簡便に目的とする黒鉛粉を製造することができる。
 本発明の製造方法においては、上記加圧成形により得られた加圧成形体を非酸化性雰囲気中で加熱処理して、炭素化および黒鉛化を行うことにより黒鉛化成形体を得る。
 本発明の製造方法において、加圧成形体を炭素化または黒鉛化する際における非酸化性雰囲気としては、窒素雰囲気やアルゴン雰囲気等の希ガス雰囲気や加圧成形体から発生するガス雰囲気等を挙げることができる。
 本発明の製造方法において、加圧成形体の炭素化処理は、公知の加熱装置により行うことができる。
 加圧成形体の炭素化は、例えば、金属材、黒鉛材等からなる耐熱性サガー内に上記加圧成形体を載置して雰囲気を調整したり、炭素粉パッキンに埋め込んで加熱処理することにより行うことができる。
 また、例えば、加圧成形体の炭素化は、トンネル炉、電気(電熱ヒーター)炉、誘導加熱炉、電磁波加熱炉、電気炉・電磁波ハイブリッド炉等の公知の焼成炉を用いて加熱処理することにより行うことができる。
 本発明の製造方法において、加圧成形体の黒鉛化処理も、公知の加熱装置により行うことができる。
 加圧成形体の黒鉛化は、例えば、金属材、黒鉛材等からなる耐熱性サガー内に上記加圧成形体を載置して雰囲気を調整したり、炭素粉パッキンに埋め込んで加熱処理することにより行うことができる。
 また、例えば、加圧成形体の黒鉛化は、人造黒鉛電極を製造する際に用いられる直接通電炉(Length-width graphitization furnace(LWG炉))、アチェソン炉等の公知の黒鉛化炉を用いて加熱処理することにより行ったり、加圧成形体を黒鉛ルツボに収容した状態で、黒鉛ルツボをヒーターとする誘導加熱炉により加熱処理することにより行うことができる。
 加圧成形体の炭素化および黒鉛化は、単一または複数の加熱装置を用い、炭素化時と黒鉛化時で処理温度を変更する複数工程の加熱処理により行うことができる。
 また、加圧成形体の炭素化および黒鉛化は、単一の加熱装置を用い、加圧成形体を当初から黒鉛化温度に相当する高温度で加熱する、一工程の加熱処理により行うことができる。
 加圧成形体の炭素化および黒鉛化を、単一または複数の加熱装置を用い、炭素化時と黒鉛化時で処理温度を変更する複数工程の加熱処理により行う場合、加圧成形体を炭素化する際の加熱処理温度は、600~1200℃であることが好ましく、600~1100℃であることがより好ましく、700~1100℃であることがさらに好ましく、700~1000℃であることが一層好ましく、800~1000℃であることがより一層好ましい。
 また、この場合、加圧成形体を炭素化処理する際の加熱処理時間は、60~600分間であることが好ましく、60~450分間であることがより好ましく、60~300分間であることがさらに好ましい。
 加圧成形体の炭素化および黒鉛化を、単一または複数の加熱装置を用い、炭素化時と黒鉛化時で処理温度を変更する複数工程の加熱処理により行う場合、加圧成形体を黒鉛化する際の加熱処理温度は、2000~3000℃であることが好ましく、2600~3000℃であることがより好ましく、2800~3000℃であることがさらに好ましい。また、この場合、加圧成形体を黒鉛化する際の加熱処理時間は、60~600分間であることが好ましく、60~450分間であることがより好ましく、60~300分間であることがさらに好ましい。
 加圧成形体の炭素化および黒鉛化を、単一の加熱装置を用い、加圧成形体を当初から黒鉛化温度に相当する高温度で加熱する、一工程の加熱処理により行う場合、加圧成形体を炭素化および黒鉛化する際の加熱処理温度は、2000~3000℃であることが好ましく、2600~3000℃であることがより好ましく、2800~3000℃であることがさらに好ましい。また、この場合、加圧成形体を炭素化および黒鉛化する際の加熱処理時間は、60~600分間であることが好ましく、60~450分間であることがより好ましく、60~300分間であることがさらに好ましい。
 本発明の製造方法においては、上記加熱処理することにより得られた黒鉛化成形体を粉砕処理する。
 黒鉛化成形体の粉砕処理は、公知の粉砕機を用いて行うことができ、粉砕機としては、ハンマーミル、ピンミル、ジェットミル、ベベルインパクター、ターボミル、ナイフハンマーミル、ロータリーカッターミル、ロールクラッシャー等を挙げることができる。
 本発明の製造方法においては、上記粉砕機を複数組み合わせて粉砕処理を行ってもよい。
 粉砕機の粉砕条件は、所望特性等を有する黒鉛粉末が得られるように適宜調整すればよい。
 本発明の製造方法においては、上記粉砕処理により、または上記粉砕処理後に必要に応じ分級処理することにより、所望性状を有するリチウム二次電池負極材用黒鉛粉末を得ることができる。
 上記粉砕処理後に分級処理する場合、分級に用いる装置としては、ローター式分級機、振動ふるい、気流式分級機等を挙げることができる。
 本発明の製造方法で得られるリチウム二次電池負極材用黒鉛粉末としては、球形度が1.0~2.0であるものが好ましく、球形度が1.0~1.7であるものがより好ましく、球形度が1.0~1.5であるものがさらに好ましく、球形度が1.0~1.4であるものが一層好ましく、球形度が1.0~1.3であるものがより一層好ましい。
 リチウム二次電池負極材用黒鉛粉末の球形度が上記範囲内にあることにより、プレス成形してリチウム二次電池負極材を作製したときに、黒鉛粉末が容易に配向して体積当たりの電池容量が向上し、好適な負極材を得ることができる。
 上記球形度が2.0を超えると、リチウム二次電池用負極材に使用したときに、充電時に負極材が膨張し易くなり電極としての性能が低下し易くなる。
 なお、本出願書類において、リチウム二次電池負極材用黒鉛粉末の球形度は、走査型電子顕微鏡(日本電子(株) 製 JSM-6510LV)で30個の粉末粒子を観察し、それぞれ画像解析したときに、各粒子の最大径(ML)と、MLと直交する方向の幅のうち最大のもの(BD)とを測定してそれぞれML/BDを算出したときの平均値を意味する。測定対象となる粒子が真球である場合、球形度は1となる。
 本発明の製造方法で得られるリチウム二次電池負極材用黒鉛粉末としては、体積基準積算粒度分布における積算粒度で50%の粒径(体積基準メディアン径D50)が5~50μmであるものが好ましく、D50が5~40μmであるものがより好ましく、D50が5~30μmであるものがさらに好ましく、D50が5~20μmであるものが一層好ましく、D50が5~17.5μmであるものがより一層好ましく、D50が5~15μmであるものが特に好ましい。
 D50が5μm以上であることにより、黒鉛粉末の比表面積が低減し、自己放電を抑制することができるとともに、リチウム二次電池負極材を作製するためにスラリー化したときに、黒鉛粉末を良好に分散させることができる。
 D50が50μm以下であることにより、リチウム二次電池において大電流充放電した際の容量維持率を容易に維持することができる。
 本発明の製造方法で得られるリチウム二次電池負極材用黒鉛粉末としては、体積基準積算粒度分布における積算粒度で体積基準積算粒度分布における積算粒度で90%の粒径(D90)/体積基準積算粒度分布における積算粒度で10%の粒径(D10)で表わされる比が2~16であるものが好ましく、D90/D10で表わされる比が2~12であるものがより好ましく、D90/D10で表わされる比が2~8であるものがさらに好ましく、D90/D10で表わされる比が2~6であるものが一層好ましく、D90/D10で表わされる比が2~5であるものがより一層好ましく、D90/D10で表わされる比が2~4であるものが特に好ましい。
 D90/D10が上記範囲内にあることにより、微粉化による比表面積の増大を抑制することができ、得られる黒鉛粉末をリチウム二次電池負極材に用いたときに、不可逆容量の増大を容易に抑制することができ、反応性の増大に伴う充放電効率の低下を容易に抑制することができる。また、100μm以上の大粒径粒子の存在割合を低減させて、大電流充放電時における容量維持率の低下を抑制することができる。
 なお、本出願書類において、リチウム二次電池負極材用黒鉛粉末のD10、D50およびD90は、それぞれ、レーザー回折式粒度分布測定装置(島津製作所(株)製SALD2000)により測定される、体積基準積算粒度分布における積算粒度で10%の粒径(μm)、50%の粒径(μm)、90%の粒径(μm)を意味する。
 本発明の製造方法で得られるリチウム二次電池負極材用黒鉛粉末としては、窒素吸着比表面積(NSA)が、1.0~4.0m/gであるものが好ましく、1.0~3.0m/gであるものがより好ましく、1.0~2.7m/gであるものがさらに好ましく、1.0~2.5m/gであるものが特に好ましい。
 本発明の製造方法で得られるリチウム二次電池負極材用黒鉛粉末は、窒素吸着比表面積が上記範囲内にあることにより、リチウム二次電池負極材を作製したときに不可逆容量の増大を容易に抑制し反応性を好適に制御することができる。
 なお、本出願書類において、リチウム二次電池負極材用黒鉛粉末の窒素吸着比表面積(NSA)は、表面積計((株)島津製作所製全自動表面積測定装置 ジェミニV)を用い、黒鉛粉末に対して窒素ガス流通下350℃で30分間予備乾燥を施した後、大気圧に対する窒素ガスの相対圧が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET10点法により測定した値を意味するものとする。
 本発明によれば、エネルギー消費量を抑制しつつ、比表面積の小さなリチウム二次電池負極材用黒鉛粉末を高い黒鉛化効率の下で簡便に製造する方法を提供することができる。
 以下、本発明を実施例により更に詳細に説明するが、本発明は、以下の実施例により何ら限定されるものではない。
(実施例1)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.4、体積基準メディアン径D50が10.8μm、D90/D10が4.0である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素(以下すべて窒素)雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉とエチレンヘビーエンドタール(EHE)(100gあたりの固定炭素量30.0g)とを、コークス粉100質量部に対するEHEの固定炭素量が6質量部になるように、コークス粉100質量部に対してEHE20質量部をヘンシェルミキサー(日本コークス工業(株)製)に装入し、120℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.34g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、さらに不活性雰囲気下、3000℃で4時間黒鉛化処理して円柱状の黒鉛化成形体を得た。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.3、体積基準メディアン径D50が10.2μm、D90/D10が3.8、窒素吸着比表面積(NSA)が1.9m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
(負極(作用極)の作製)
 上記リチウム二次電池負極材用黒鉛粉末10gに対し、増粘剤として1質量%のカルボキシメチルセルロース(CMC)水溶液を5L投入して30分間擁拌混合した後、結合剤として40質量%のスチレンーブタジエンゴム(SBR)水溶液を0.25L投入して5分間攪拌混合し、負極合材ペーストを調製した。
 得られた負極合材ペーストを厚さ18μmの銅箔(集電体)上に塗布し、真空中で130℃に加熱して水溶媒を完全に揮発させて電極シートを得た。得られた電極シートを極板密度が1.5g/ccになるようローラープレスで圧延し、ポンチで打ち抜いて負極(作用極)を作製した。
(正極(対極)の作製)
 不活性雰囲気下、リチウム金属箔を、ポンチで打ち抜いた厚さ270μmのニッケルメッシュ(集電体)にめり込ませることにより、正極(対極)を作製した。
(評価用リチウム二次電池aの作製)
 電解液として、1mol/dmのリチウム塩LiPFを溶解したエチレンカーボネート(EC)と、ジエチルカーボネート(DEC)との1:1混合溶液を使用して、不活性雰囲気下、図1に示すように、ケース1中に、上記ニッケルメッシュ(集電体)3にめり込ませた正極(対極)4、セパレータ5、上記負極(作用極)8、スペーサー7を積層させた状態で組付け、スプリング6を介して封口蓋(キャップ)2で封止することにより、図1に示す形態を有するボタン型の評価用リチウム二次電池aを作製した。
 得られた評価用リチウム二次電池aにおいて、電流密度0.2mA/cm、終止電圧5mVで定電流充電を行った後、下限電流0.02mA/cmとなるまで定電位保持した。次いで、電流密度0.2mA/cmにて終止電圧1.5Vまで定電流放電を行い、5サイクル終了後の放電容量を定格容量(可逆容量(mAh/g))として求めた。結果を表2に示す。
 負極材の出力特性は、満充電状態から10mA/cmで放電した際の容量維持率(%)を下記式により求め、この容量維持率を初期効率(%)とした。結果を表2に示す。
 初期効率(%)=(1回目の放電容量(mAh/g)/1回目の充電容量(mAh/g))×100
(評価用リチウム二次電池bの作製)
 評価用リチウム二次電池aにおいて、対極をリチウムコバルト酸化物に変更して、同様にボタン型の評価用リチウム二次電池bを作製した。
 60℃の温度条件下、電流密度0.2mA/cmで4.1V~3.0V間を100回繰り返し充放電を行った後の1サイクル目の放電容量に対する100サイクル目の放電容量の割合をサイクル特性率(%)として評価した。結果を表2に示す。
 サイクル特性率(%)=(100サイクル目の放電容量(mAh/g)/1サイクル目の放電容量(mAh/g))×100
(実施例2)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.3、体積基準メディアン径D50が11.2μm、D90/D10が4.3である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1300℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉とEHE(100gあたりの固定炭素量30.0g)とを、コークス粉100質量部に対するEHEの固定炭素量が9質量部になるように、コークス粉100質量部に対してEHE30質量部をヘンシェルミキサー(日本コークス工業(株)製)に装入し、120℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.48g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理して、円柱状の黒鉛化成形体を得た。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.4、体積基準メディアン径D50が11.0μm、D90/D10が4.2、窒素吸着比表面積(NSA)が1.9m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(実施例3)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.2、体積基準メディアン径D50が10.6μm、D90/D10が4.1である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、850℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉とEHE(100gあたりの固定炭素量30.0g)とを、コークス粉100質量部に対するEHEの固定炭素量が9質量部になるように、コークス粉100質量部に対してEHE30質量部をヘンシェルミキサー(日本コークス工業(株)製)に装入し、120℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.47g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理して、円柱状の黒鉛化成形体を得た。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.2、体積基準メディアン径D50が10.8μm、D90/D10が3.7、窒素吸着比表面積(NSA)が1.9m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(実施例4)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.4、体積基準メディアン径D50が10.3μm、D90/D10が4.5である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、650℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉とエチレンヘビーエンドタール(EHE)(100gあたりの固定炭素量30.0g)とを、コークス粉100質量部に対するEHEの固定炭素量が9質量部となるように、コークス粉100質量部に対してEHE30質量部をヘンシェルミキサー(日本コークス工業(株)製)に装入し、120℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.37g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理して、円柱状の黒鉛化成形体を得た。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.3、体積基準メディアン径D50が10.5μm、D90/D10が4.0、窒素吸着比表面積(NSA)が1.8m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(実施例5)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.4、体積基準メディアン径D50が10.8μm、D90/D10が3.8である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と、石炭系ピッチ(100gあたりの固定炭素量60.0g)およびアントラセン油(100gあたりの固定炭素量1.7g)とを、コークス粉100質量部に対する石炭系ピッチの固定炭素量が7.2質量部、コークス粉100質量部に対するアントラセン油の固定炭素量が0.1質量部になるように、コークス粉100質量部に対して、石炭系ピッチ12質量部と、アントラセン油6質量部とをヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.32g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理して、円柱状の黒鉛化成形体を得た。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.4、体積基準メディアン径D50が10.6μm、D90/D10が3.6、窒素吸着比表面積(NSA)が1.6m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(実施例6)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.2、体積基準メディアン径D50が10.3μm、D90/D10が4.0である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石炭系ピッチ(100gあたりの固定炭素量60.0g)およびアントラセン油(100gあたりの固定炭素量2.0g)とを、コークス粉100質量部に対する石炭系ピッチの固定炭素量が12質量部、コークス粉100質量部に対するアントラセン油の固定炭素量が0.2質量部になるように、コークス粉100質量部に対して、石炭系ピッチ20質量部、アントラセン油10質量部をヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.39g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理して、円柱状の黒鉛化成形体を得た。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.3、体積基準メディアン径D50が10.6μm、D90/D10が3.8、窒素吸着比表面積(NSA)が2.3m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(実施例7)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.2、体積基準メディアン径D50が10.8μm、D90/D10が3.8である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石油系ピッチ(100gあたりの固定炭素量60.0g)およびFCCデカントオイル(FCCDO)(100gあたりの固定炭素量1.7g)とを、コークス粉100質量部に対する石油系ピッチを固定炭素量が7.2質量部、コークス粉100質量部に対するFCCDOが0.1質量部になるように、コークス粉100質量部に対して、石油系ピッチ12質量部と、FCCデカントオイル(FCCDO)6質量部とをヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.32g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理して、円柱状の黒鉛化成形体を得た。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.2、体積基準メディアン径D50が10.7μm、D90/D10が3.7、窒素吸着比表面積(NSA)が1.7m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(実施例8)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.3、体積基準メディアン径D50が10.8μm、D90/D10が3.7である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石油系ピッチ(100gあたりの固定炭素量60.0g)とFCCデカントオイル(FCCDO)(100gあたりの固定炭素量2.0g)とを、コークス粉100質量部に対する石油系ピッチの固定炭素量が12質量部、コークス粉100質量部に対するFCCDOの固定炭素量が0.2質量部になるように、コークス粉100質量部に対し、石油系ピッチ20質量部と、FCCDO10質量部とをヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.40g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理して、円柱状の黒鉛化成形体を得た。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.3、体積基準メディアン径D50が10.2μm、D90/D10が3.9、窒素吸着比表面積(NSA)が2.4m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(実施例9)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.5 、体積基準メディアン径D50が25.6μm、D90/D10が5.9である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石油系ピッチ(100gあたりの固定炭素量60.0g)とFCCデカントオイル(FCCDO)(100gあたりの固定炭素量2.7g)を、コークス粉100質量部に対する石油系ピッチの固定炭素量が9質量部、コークス粉100質量部に対するFCCDOの固定炭素量が0.2質量部になるように、コークス粉100質量部に対し、石油系ピッチ15質量部と、FCCDO7.5質量部とをヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.37g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理した。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.5、体積基準メディアン径D50が25.3μm、D90/D10が5.7、窒素吸着比表面積(NSA)が1.3m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(実施例10)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.4 、体積基準メディアン径D50が6.5μm、D90/D10が3.6である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石油系ピッチ(100gあたりの固定炭素量60.0g)とFCCデカントオイル(FCCDO)(100gあたりの固定炭素量2.7g)とを、コークス粉100質量部に対する石油系ピッチの固定炭素量が9質量部、コークス粉100質量部に対するFCCDOの固定炭素量が0.2質量部になるように、コークス粉100質量部に対し、石油系ピッチ15質量部と、FCCDO7.5質量部とをヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.35g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理した。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.4、体積基準メディアン径D50が5.7μm、D90/D10が3.8、窒素吸着比表面積(NSA)が3.1m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(実施例11)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.6 、体積基準メディアン径D50が32.3μm、D90/D10が4.9である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石油系ピッチ(100gあたりの固定炭素量60.0g)とFCCデカントオイル(FCCDO)(100gあたりの固定炭素量2.7g)とを、コークス粉100質量部に対する石油系ピッチの固定炭素量が9質量部、コークス粉100質量部に対するFCCDOの固定炭素量が0.2質量部になるように、コークス粉100質量部に対し、石油系ピッチ15質量部と、FCCDO7.5質量部とをヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.35g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理した。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.6、体積基準メディアン径D50が30.6μm、D90/D10が4.8、窒素吸着比表面積(NSA)が1.1m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(実施例12)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.7 、体積基準メディアン径D50が46.8μm、D90/D10が4.9である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石油系ピッチ(100gあたりの固定炭素量60.0g)とFCCデカントオイル(FCCDO)(100gあたりの固定炭素量2.7g)とを、コークス粉100質量部に対する石油系ピッチの固定炭素量が9質量部、コークス粉100質量部に対するFCCDOの固定炭素量が0.2質量部になるように、コークス粉100質量部に対し、石油系ピッチ15質量部と、FCCDO7.5質量部とをヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.36g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理した。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.7、体積基準メディアン径D50が45.2μm、D90/D10が3.2、窒素吸着比表面積(NSA)が0.9m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(実施例13)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.5 、体積基準メディアン径D50が20.8μm、D90/D10が4.9である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1450℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石油系ピッチ(100gあたりの固定炭素量60.0g)とFCCデカントオイル(FCCDO)(100gあたりの固定炭素量2.7g)とを、コークス粉100質量部に対する石油系ピッチの固定炭素量が9質量部、コークス粉100質量部に対するFCCDOの固定炭素量が0.2質量部になるように、コークス粉100質量部に対し、石油系ピッチ15質量部と、FCCDO7.5質量部とをヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.50g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理した。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.5、体積基準メディアン径D50が19.6μm、D90/D10が4.8、窒素吸着比表面積(NSA)が1.2m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(実施例14)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.3 、体積基準メディアン径D50が10.5μm、D90/D10が4.9である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石油系ピッチ(100gあたりの固定炭素量60.0g)とFCCデカントオイル(FCCDO)(100gあたりの固定炭素量2.7g)とを、コークス粉100質量部に対する石油系ピッチの固定炭素量が9質量部、コークス粉100質量部に対するFCCDOの固定炭素量が0.2質量部になるように、コークス粉100質量部に対し、石油系ピッチ15質量部と、FCCDO7.5質量部とをヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.34g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理した。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕し、その後分級処理することなく、球形度が1.3、体積基準メディアン径D50が19.8μm、D90/D10が5.6、窒素吸着比表面積(NSA)が1.9m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(比較例1)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.3、体積基準メディアン径D50が11.5μm、D90/D10が4.2である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石炭系ピッチ(100gあたりの固定炭素量60.0g)とを、コークス粉100質量部に対する石炭系ピッチの固定炭素量が3質量部になるように、コークス粉100質量部に対し石炭系ピッチ5質量部をヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm)を作製しようとしたが、十分な強度を付与することができず、加圧成形体を作製することができなかった。
(比較例2)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.3、体積基準メディアン径D50が10.7μm、D90/D10が3.8である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石炭系ピッチ(100gあたりの固定炭素量60.0g)とを、コークス粉100質量部に対する石炭系ピッチの固定炭素量が21質量部となるように、コークス粉100質量部に対し石炭系ピッチ35質量部をヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.53g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理して、円柱状の黒鉛化成形体を得た。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.4、体積基準メディアン径D50が10.5μm、D90/D10が4.5、窒素吸着比表面積(NSA)が5.3m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(比較例3)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.3、体積基準メディアン径D50が11.5μm、D90/D10が4.3である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉とエチレンヘビーエンドタール(EHE)(100gあたりの固定炭素量30.0g)とを、コークス粉100質量部に対するEHEの固定炭素量が3質量部になるように、コークス粉100質量部に対しEHE10質量部をヘンシェルミキサー(日本コークス工業(株)製)に装入し、120℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm)を作製しようとしたが、十分な強度を付与することができず、加圧成形体を作製することができなかった。
(比較例4)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.4、体積基準メディアン径D50が11.3μm、D90/D10が3.8である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石油系ピッチ(100gあたりの固定炭素量60.0g)およびFCCデカントオイル(FCCDO)(100gあたりの固定炭素量0.0g)を、コークス粉100質量部に対する石油系ピッチの固定炭素量が3質量部、コークス粉100質量部に対するFCCDOの固定炭素量が0質量部になるように、コークス粉100質量部に対して、石油系ピッチを5質量部、FCCDO2.5質量部をヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm)を作製しようとしたが、十分な強度を付与することができず、加圧成形体を作製することができなかった。
(比較例5)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.4、体積基準メディアン径D50が10.7μm、D90/D10が4.5である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石油系ピッチ(100gあたりの固定炭素量60.0g)およびFCCデカントオイル(FCCDO)(100gあたりの固定炭素量2.0g)を、コークス粉100質量部に対する石油系ピッチの固定炭素量が18質量部、コークス粉100質量部に対するFCCDOの固定炭素量が0.3質量部になるように、コークス粉100質量部に対して、石油系ピッチ30質量部、FCCDO15質量部をヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.52g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理して、円柱状の黒鉛化成形体を得た。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.4、体積基準メディアン径D50が10.6μm、D90/D10が4.7、窒素吸着比表面積(NSA)が4.5m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(比較例6)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.3、体積基準メディアン径D50が10.5μm、D90/D10が4.3である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、500℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石油系ピッチ(100gあたりの固定炭素量60.0g)およびFCCデカントオイル(FCCDO)(100gあたりの固定炭素量2.0g)を、コークス粉100質量部に対する石油系ピッチの固定炭素量が9質量部、コークス粉100質量部に対するFCCDOの固定炭素量が0.2質量部になるように、コークス粉100質量部に対して、石油系ピッチ15質量部、FCCDO7.5質量部をヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.10g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理して、円柱状の黒鉛化成形体を得た。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.2、体積基準メディアン径D50が11.4μm、D90/D10が4.3、窒素吸着比表面積(NSA)が1.7m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(比較例7)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.3、体積基準メディアン径D50が10.6μm、D90/D10が3.9である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1500℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石油系ピッチ(100gあたりの固定炭素量60.0g)およびFCCデカントオイル(FCCDO)(100gあたりの固定炭素量2.0g)を、コークス粉100質量部に対する石油系ピッチの固定炭素量が9質量部、コークス粉100質量部に対するFCCDOの固定炭素量が0.2質量部になるように、コークス粉100質量部に対して、石油系ピッチ15質量部、FCCDO7.5質量部をヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.38g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理して、円柱状の黒鉛化成形体を得た。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.3、体積基準メディアン径D50が10.8μm、D90/D10が4.2、窒素吸着比表面積(NSA)が1.8m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(比較例8)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.5、体積基準メディアン径D50が52.6μm、D90/D10が7.4である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石油系ピッチ(100gあたりの固定炭素量60.0g)およびFCCデカントオイル(FCCDO)(100gあたりの固定炭素量2.7g)を、コークス粉100質量部に対する石油系ピッチの固定炭素量が9質量部、コークス粉100質量部に対するFCCDOの固定炭素量が0.2質量部になるように、コークス粉100質量部に対して、石油系ピッチ15質量部、FCCDO7.5質量部をヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.37g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理した。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.5、体積基準メディアン径D50が53.6μm、D90/D10が7.2、窒素吸着比表面積(NSA)が1.1m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
(比較例9)
<リチウム二次電池負極材用黒鉛粉末の製造>
 石油系生コークスをロールクラッシャーで粗粉砕した後、ターボミル(ターボ工業(株)製ターボミル)を用いて微粉砕し、球形度が1.3 、体積基準メディアン径D50が3.5μm、D90/D10が4.6である生コークス粉を作製した。この生コークス粉を、非酸化性雰囲気である窒素雰囲気下、1000℃で4時間保持して加熱処理することによりコークス粉を得た。
 上記コークス粉と石油系ピッチ(100gあたりの固定炭素量60.0g)およびFCCデカントオイル(FCCDO)(100gあたりの固定炭素量2.7g)を、コークス粉100質量部に対する石油系ピッチの固定炭素量が9質量部、コークス粉100質量部に対するFCCDOの固定炭素量が0.2質量部になるように、コークス粉100質量部に対して、石油系ピッチ15質量部、FCCDO7.5質量部をヘンシェルミキサー(日本コークス工業(株)製)に装入し、150℃の温度雰囲気下、回転羽根の回転数3000rpmで、10分間攪拌処理して溶融混合することにより、粉末状の溶融混合物を得た。 
 得られた粉末状の溶融混合物を、ゴム型に充填し、冷間静水圧成形法により、1000kgf/cmで90分間加圧成形することにより、円柱状の加圧成形体(直径500mm、高さ1000mm、嵩密度1.32g/cm)を作製した。
 得られた加圧成形体を、ステンレス鋼(SUS)製サガーにカーボンブリーズパッキンとともに詰めて、リードハンマー炉を用いて不活性雰囲気下、1000℃で4時間保持して焼成処理した後、アチェソン式黒鉛化炉に詰め込み、不活性雰囲気下、3000℃で4時間黒鉛化処理した。
 上記円柱状の黒鉛化成形体をターボミル(ターボ工業(株)製ターボミル)により解砕した後、日清製粉(株)製ターボクラシファイアを用いて分級処理することにより、球形度が1.3、体積基準メディアン径D50が3.3μm、D90/D10が4.5、窒素吸着比表面積(NSA)が4.8m/gであるリチウム二次電池負極材用黒鉛粉末を得た。
 上記リチウム二次電池負極材用黒鉛粉末の製造条件を表1に記載する。
<リチウムイオン二次電池の作製>
 得られたリチウム二次電池負極材用黒鉛粉末を用いて、実施例1と同様にして評価用リチウム二次電池aを作製して定格容量(可逆容量)および初期効率(%)を求めるとともに、実施例1と同様にして評価用リチウム二次電池bを作製してサイクル特性率を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
 
 
Figure JPOXMLDOC01-appb-T000002
 表1および表2より、実施例1~実施例14においては、体積基準積算粒度分布における積算粒度で50%の粒径が5~50μmの生コークス粉を非酸化性雰囲気中600~1450℃の温度条件下で加熱処理してなるコークス粉と炭素前駆体バインダーとを、上記コークス粉末100質量部に対して、上記炭素前駆体バインダーの固定炭素量が5~15質量部となるように溶融混合した後、加圧成形して加圧成形体を作製し、次いで、上記加圧成形体を非酸化性雰囲気中で加熱処理して、炭素化および黒鉛化を行うことにより黒鉛化成形体を得た後、得られた黒鉛化成形体を粉砕処理していることから、エネルギー消費量を抑制しつつ、比表面積の小さなリチウム二次電池負極材用黒鉛粉末を高い黒鉛化効率の下で簡便に製造し得ることができ、得られた黒鉛粉末からなる負極材を用いて作製されたリチウム二次電池は、電池特性に優れるものであることが分かる。
 一方、表1および表2より、比較例1、比較例3および比較例4においては、炭素前駆体バインダーの固定炭素量が少ないため、強度が弱く、所望の加圧成形体が得られないために、炭素化および黒鉛化時における取り扱い性が低下して、黒鉛粉末の生産性が低下するものであることが分かる。
 また、表1より、比較例2および比較例5においては、炭素前駆体バインダーの使用量が多すぎるため、黒鉛化後の成形体が必要以上に硬くなり、二次粉砕処理時に多大なエネルギーを必要とし、その衝撃によって粒子表面に微細な凹凸が多数生じてしまうため、得られる黒鉛粉末の比表面積が大きくなる。
 このため、表2に記載しているように、得られた黒鉛粉末からなる負極材を用いてリチウム二次電池を作製した場合に、初期効率が低下してしまうことが分かる。
 表1より、比較例6においては、生コークス粉を500℃と低温度で加熱処理してなるコークス粉を使用していることから、加圧成形時における成形体嵩密度が低くなり、黒鉛化効率が低くなって、生産性に劣ることが分かる。
 また、表2より、比較例7は、実施例6とほぼ同じ電池特性を示すが、表1に示すように、比較例7で得られた黒鉛粉末は、生コークス粉の熱処理温度が高いため、実施例6よりも製造時のエネルギー効率が劣ることが分かる。
 表1より、比較例8は、生コークス粉の体積基準メディアン径D50が大き過ぎるため、表2に示す通り、得られた黒鉛粉末からなる負極材を用いてリチウム二次電池を作製した場合に、サイクル特性が低下してしまうことが分かる。
 表1より、比較例9は、生コークス粉の体積基準メディアン径D50が小さすぎるため、表2に示す通り、得られた黒鉛粉末からなる負極材を用いてリチウム二次電池を作製した場合に、初期効率が低下してしまうことが分かる。
 本発明によれば、エネルギー消費量を抑制しつつ、比表面積の小さなリチウム二次電池負極材用黒鉛粉末を高い黒鉛化効率の下で簡便に製造する方法を提供することができる。
1 ケース
2 封口蓋(キャップ)
3 集電体
4 正極
5 セパレータ
6 スプリング
7 スペーサー
8 負極
9 ガスケット

Claims (5)

  1.  体積基準積算粒度分布における積算粒度で50%の粒径が5~50μmの生コークス粉を非酸化性雰囲気中600~1450℃の温度条件下で加熱処理してなるコークス粉と、炭素前駆体バインダーとを、前記コークス粉100質量部に対して、前記炭素前駆体バインダーの固定炭素量が5~15質量部となるように、溶融混合した後、加圧成形して加圧成形体を作製し、次いで、
     前記加圧成形体を非酸化性雰囲気中で加熱処理して、炭素化および黒鉛化を行うことにより黒鉛化成形体を得、
     得られた黒鉛化成形体を粉砕処理する
    ことを特徴とするリチウム二次電池負極材用黒鉛粉末の製造方法。
  2.  前記加圧成形時における成形圧が1~1000kgf/cmである請求項1に記載のリチウム二次電池負極材用黒鉛粉末の製造方法。
  3.  前記炭素前駆体バインダーが、石炭系ピッチ、石油系ピッチ、エチレンヘビーエンドタール、アントラセンオイル、クレオソート油およびFCCデカントオイルから選ばれる一種以上である請求項1に記載のリチウム二次電池負極材用黒鉛粉末の製造方法。
  4.  前記炭素前駆体バインダーが、石炭系ピッチ、石油系ピッチ、エチレンヘビーエンドタール、アントラセンオイル、クレオソート油およびFCCデカントオイルから選ばれる一種以上である請求項2に記載のリチウム二次電池負極材用黒鉛粉末の製造方法。
  5.  得られるリチウム二次電池負極材用黒鉛粉末が、球形度が1.0~2.0、体積基準積算粒度分布における積算粒度で50%の粒径が5~50μm、体積基準積算粒度分布における積算粒度で90%の粒径/体積基準積算粒度分布における積算粒度で10%の粒径で表わされる比が2~16、窒素吸着比表面積が1.0~4.0m/gである請求項1~請求項4のいずれかに記載のリチウム二次電池負極材用黒鉛粉末の製造方法。
PCT/JP2013/069898 2012-10-24 2013-07-23 リチウム二次電池負極材用黒鉛粉末の製造方法 WO2014064980A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157006641A KR102087465B1 (ko) 2012-10-24 2013-07-23 리튬 이차전지 음극재용 흑연분말의 제조방법
US14/438,097 US10308511B2 (en) 2012-10-24 2013-07-23 Process for manufacturing graphite powder for lithium secondary battery negative electrode material
CN201380055968.8A CN104756292B (zh) 2012-10-24 2013-07-23 锂二次电池负极材料用石墨粉末的制造方法
EP13849757.3A EP2913873B1 (en) 2012-10-24 2013-07-23 Process for manufacturing graphite powder for lithium secondary battery negative electrode material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-235161 2012-10-24
JP2012235161 2012-10-24
JP2013134820A JP6274390B2 (ja) 2012-10-24 2013-06-27 リチウム二次電池負極材用黒鉛粉末の製造方法
JP2013-134820 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014064980A1 true WO2014064980A1 (ja) 2014-05-01

Family

ID=50544361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069898 WO2014064980A1 (ja) 2012-10-24 2013-07-23 リチウム二次電池負極材用黒鉛粉末の製造方法

Country Status (7)

Country Link
US (1) US10308511B2 (ja)
EP (1) EP2913873B1 (ja)
JP (1) JP6274390B2 (ja)
KR (1) KR102087465B1 (ja)
CN (1) CN104756292B (ja)
TW (1) TWI573763B (ja)
WO (1) WO2014064980A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102449847B1 (ko) 2015-10-27 2022-09-29 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
CN107316982B (zh) * 2016-04-27 2022-02-01 上海杉杉科技有限公司 一种锂离子二次电池硅碳负极材料及其制备方法
KR102303443B1 (ko) * 2016-07-11 2021-09-23 오씨아이 주식회사 황-탄소 복합체 및 이의 제조방법
CN108315028B (zh) * 2017-01-16 2020-12-01 中国科学院物理研究所 一种具有纵向孔结构的热解硬碳材料及其制备方法和应用
US11390524B2 (en) 2017-02-08 2022-07-19 National Electrical Carbon Products, Inc. Carbon powders and methods of making same
CN106876675B (zh) * 2017-03-23 2019-11-01 福建翔丰华新能源材料有限公司 一种锂离子电池用钛酸锂石墨复合负极材料的制备方法
KR20190019430A (ko) 2017-08-17 2019-02-27 주식회사 포스코 리튬 이차 전지용 음극 활물질의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN107706387B (zh) * 2017-10-09 2021-11-05 贝特瑞新材料集团股份有限公司 一种复合负极材料、其制备方法及锂离子电池
CN108232282A (zh) * 2017-12-25 2018-06-29 惠州Tcl金能电池有限公司 纽扣电池及其制作方法
CN108328614B (zh) * 2017-12-28 2021-09-03 合肥国轩高科动力能源有限公司 一种用于快充型锂离子电池石墨负极材料及其制备方法
CN109052388A (zh) * 2018-08-15 2018-12-21 深圳市大家帮科技有限公司 一种负极前驱体预成型无坩埚石墨化制备方法
US20220077466A1 (en) * 2018-12-19 2022-03-10 Posco Method for producing negative electrode active material for lithium secondary battery
CN109888244A (zh) * 2019-03-15 2019-06-14 深圳市本征方程石墨烯技术股份有限公司 一种石墨烯包覆石墨化煤炭负极材料、电池及其制备方法
CN112563491B (zh) * 2019-03-21 2023-10-24 宁德新能源科技有限公司 负极材料及包含该负极材料的负极及电化学装置
CN111732096B (zh) * 2019-03-25 2022-02-22 中信国安盟固利动力科技有限公司 一种高功率锂离子电池的负极材料及其制备方法
WO2020204631A1 (ko) * 2019-04-02 2020-10-08 주식회사 엘지화학 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2021019726A1 (ja) * 2019-07-31 2021-02-04 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
KR20220041903A (ko) * 2019-12-03 2022-04-01 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 인조 흑연, 이차 전지, 제조 방법 및 장치
KR102163786B1 (ko) 2020-05-12 2020-10-08 에스아이에스 주식회사 인조흑연 생산 자동화 시스템
KR102163787B1 (ko) 2020-05-12 2020-10-08 에스아이에스 주식회사 인조흑연 생산용 원료의 자동 충진 및 처리장치
CN112010299A (zh) * 2020-08-27 2020-12-01 赣州市瑞富特科技有限公司 一种节能环保的人造石墨负极材料制备方法
CN117836468A (zh) * 2021-10-08 2024-04-05 Sec炭素株式会社 石墨粒子的制造方法
TWI816598B (zh) * 2022-11-03 2023-09-21 台灣中油股份有限公司 負極碳材的製法及其鋰離子二次電池
CN116042247A (zh) * 2022-11-04 2023-05-02 湖南中科星城石墨有限公司 一种改性生焦材料及其制备方法和应用
CN115583835B (zh) * 2022-11-29 2023-04-07 自贡东新电碳有限责任公司 一种低气孔率高机械强度炭石墨材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231974A (ja) * 1996-02-19 1997-09-05 Nippon Carbon Co Ltd リチウム電池負極材料用カーボン
JP2001023638A (ja) * 1999-07-05 2001-01-26 Sumitomo Metal Ind Ltd リチウムイオン二次電池負極用黒鉛粉末の製造方法
JP2003168435A (ja) * 2001-12-04 2003-06-13 Nippon Carbon Co Ltd 高性能リチウムイオン二次電池用負極材の製造方法
JP2003297357A (ja) * 2002-04-02 2003-10-17 Nippon Steel Chem Co Ltd リチウム二次電池負極材料とその製造方法
WO2006025377A1 (ja) * 2004-08-30 2006-03-09 Mitsubishi Chemical Corporation 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池
JP2006294476A (ja) * 2005-04-12 2006-10-26 Jfe Chemical Corp 金属−黒鉛質系粒子およびその製造方法、ならびにリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2008059903A (ja) 2006-08-31 2008-03-13 Toyo Tanso Kk リチウムイオン二次電池負極用炭素材料、低結晶性炭素含浸リチウムイオン二次電池負極用炭素材料、負極電極板、及び、リチウムイオン二次電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135983A (en) * 1970-12-28 1979-01-23 Kureha Kagaku Kogyo Kabushiki Kaisha Method for improving coking property of coal for use in production of cokes
US5413738A (en) * 1985-10-22 1995-05-09 Ucar Carbon Technology Corporation Graphite electrodes and their production
FR2612525B1 (fr) * 1987-03-20 1989-05-19 Huiles Goudrons & Derives Brai d'impregnation a filtrabilite amelioree et son procede de fabrication
AU2002212688A1 (en) * 2000-11-16 2002-05-27 Nippon Steel Chemical Co. Ltd. Amorphous coke for special carbonaceous material and process for producing the same
WO2002056408A1 (fr) * 2001-01-04 2002-07-18 Mitsubishi Chemical Corporation Liquides electrolytiques non aqueux et pile au lithium secondaire faisant intervenir ces liquides
JP3635044B2 (ja) * 2001-06-08 2005-03-30 三井鉱山株式会社 リチウム二次電池用負極材料、その製造方法、及びリチウム二次電池
US7052803B2 (en) * 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery
EP1683219B1 (en) * 2003-10-31 2015-12-23 Showa Denko K.K. Carbon material for battery electrode and production method and use thereof
EP1906472B1 (en) * 2005-06-27 2013-08-21 Mitsubishi Chemical Corporation Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
CN100585921C (zh) 2006-05-19 2010-01-27 湛江市聚鑫新能源有限公司 锂离子电池复合碳负极材料及其制备方法
JP4971700B2 (ja) * 2006-06-26 2012-07-11 住友ゴム工業株式会社 ランフラットタイヤ
US9777221B2 (en) * 2006-06-29 2017-10-03 Graftech International Holdings Inc. Method of producing needle coke for low CTE graphite electrodes
US7658902B2 (en) * 2006-09-12 2010-02-09 Graftech International Holdings Inc. Low CTE highly isotropic graphite
US7970859B2 (en) * 2006-11-09 2011-06-28 Raritan Americas, Inc. Architecture and method for remote platform control management

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231974A (ja) * 1996-02-19 1997-09-05 Nippon Carbon Co Ltd リチウム電池負極材料用カーボン
JP2001023638A (ja) * 1999-07-05 2001-01-26 Sumitomo Metal Ind Ltd リチウムイオン二次電池負極用黒鉛粉末の製造方法
JP2003168435A (ja) * 2001-12-04 2003-06-13 Nippon Carbon Co Ltd 高性能リチウムイオン二次電池用負極材の製造方法
JP2003297357A (ja) * 2002-04-02 2003-10-17 Nippon Steel Chem Co Ltd リチウム二次電池負極材料とその製造方法
WO2006025377A1 (ja) * 2004-08-30 2006-03-09 Mitsubishi Chemical Corporation 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池
JP2006294476A (ja) * 2005-04-12 2006-10-26 Jfe Chemical Corp 金属−黒鉛質系粒子およびその製造方法、ならびにリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2008059903A (ja) 2006-08-31 2008-03-13 Toyo Tanso Kk リチウムイオン二次電池負極用炭素材料、低結晶性炭素含浸リチウムイオン二次電池負極用炭素材料、負極電極板、及び、リチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2913873A4

Also Published As

Publication number Publication date
TW201416322A (zh) 2014-05-01
JP2014103095A (ja) 2014-06-05
CN104756292A (zh) 2015-07-01
JP6274390B2 (ja) 2018-02-07
EP2913873A1 (en) 2015-09-02
EP2913873A4 (en) 2016-06-29
TWI573763B (zh) 2017-03-11
KR102087465B1 (ko) 2020-03-10
EP2913873B1 (en) 2024-04-10
US20150251911A1 (en) 2015-09-10
KR20150073951A (ko) 2015-07-01
CN104756292B (zh) 2017-05-24
US10308511B2 (en) 2019-06-04
EP2913873C0 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
JP6274390B2 (ja) リチウム二次電池負極材用黒鉛粉末の製造方法
KR101618386B1 (ko) 비수계 2 차 전지용 복합 흑연 입자, 그것을 함유하는 부극 재료, 부극 및 비수계 2 차 전지
CN111225888A (zh) 负极活性材料的制备方法及包含它的锂二次电池
WO2015125784A1 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
KR102240777B1 (ko) 리튬 이차전지용 음극 활물질의 제조방법
CN112661148B (zh) 复合石墨负极材料及其制备方法和应用、锂离子电池
CN113226986B (zh) 锂二次电池负极活性材料的制备方法
KR20090094818A (ko) 비수계 2차전지용 복합 흑연 입자, 그것을 함유하는 부극 재료, 부극 및 비수계 2차전지
JP2008305661A (ja) リチウムイオン二次電池用負極材とその製造方法
JP6617403B2 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
WO2010139125A1 (zh) 一种纳米级锂电池正极材料及其制备方法
JP2007179879A (ja) リチウムイオン二次電池用負極材の製造方法
KR102176343B1 (ko) 리튬 이차전지용 음극 활물질의 제조방법
KR20190054045A (ko) 리튬 이차 전지용 음극 활물질의 제조 방법, 및 이를 포함하는 리튬 이차 전지
JP6592156B2 (ja) リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極並びにリチウムイオン二次電池
JP6739142B2 (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP2017112057A (ja) シリコン系粒子およびそれを含むリチウムイオン二次電池用負極活物質並びにそれらの製造方法
JP6428941B2 (ja) リチウムイオン二次電池用負極材、その製造方法及びリチウムイオン二次電池
JP6403540B2 (ja) リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極並びにリチウムイオン二次電池
JP2014086237A (ja) リチウム二次電池負極材用黒鉛粉末の製造方法
WO2010084709A1 (ja) 非水電解質二次電池用負極材料の製造方法
KR20240019114A (ko) 부극 활물질, 부극 및 리튬 이온 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006641

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013849757

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14438097

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE