WO2007000982A1 - 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池 - Google Patents

非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池 Download PDF

Info

Publication number
WO2007000982A1
WO2007000982A1 PCT/JP2006/312758 JP2006312758W WO2007000982A1 WO 2007000982 A1 WO2007000982 A1 WO 2007000982A1 JP 2006312758 W JP2006312758 W JP 2006312758W WO 2007000982 A1 WO2007000982 A1 WO 2007000982A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
graphite
secondary battery
active material
aqueous secondary
Prior art date
Application number
PCT/JP2006/312758
Other languages
English (en)
French (fr)
Inventor
Hitoshi Matsumoto
Hideharu Satoh
Original Assignee
Mitsubishi Chemical Corporation
Tokai Carbon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation, Tokai Carbon Co., Ltd. filed Critical Mitsubishi Chemical Corporation
Priority to CN2006800231141A priority Critical patent/CN101208819B/zh
Priority to US11/993,902 priority patent/US7897283B2/en
Priority to EP06767375.6A priority patent/EP1906472B1/en
Publication of WO2007000982A1 publication Critical patent/WO2007000982A1/ja
Priority to KR1020077030623A priority patent/KR101341695B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a graphite composite particle used in a non-aqueous secondary battery, a negative electrode active material containing the graphite composite particle, a negative electrode formed using the negative electrode active material, and the negative electrode More particularly, the present invention relates to a graphite composite particle, a negative electrode active material, a negative electrode, and a non-aqueous secondary battery that have a high capacity and can achieve a small charge / discharge irreversible capacity. is there.
  • Graphite is often used as a negative electrode active material for non-aqueous secondary batteries in terms of cost, durability, and capacity.
  • the active material layer containing the negative electrode active material on the electrode plate is made dense for high capacity, there is a problem that the charge / discharge irreversible capacity during the initial cycle increases.
  • Patent Document 1 natural graphite and a binder are combined to obtain a composite, and the binder is carbonized by primary heating at 700 to 1500 ° C, and then secondary heating at 2400 to 3000 ° C. Describes a method for producing a carbon composite material in which pure graphite of natural graphite and graphite of a carbonized binder are simultaneously produced.
  • Patent Document 1 scaly or scaly natural graphite is assumed as a starting material, and the density of the active material layer and the reduction of charge / discharge irreversible capacity were insufficient.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-086343
  • the present invention has been made in view of strong background technology, and the problem is to increase the capacity. Accordingly, it is an object of the present invention to provide a non-aqueous secondary battery having a sufficiently small charge / discharge irreversible capacity during an initial cycle even when the density of an active material layer having a negative electrode active material on a current collector is increased. Means for solving the problem
  • the present invention provides the following requirements (1) and (2)
  • the present invention also includes the above-described graphite composite particles for non-aqueous secondary batteries (A) and, if necessary, natural graphite, artificial graphite, amorphous-coated graphite, resin-coated graphite and amorphous carbon.
  • the present invention provides a negative electrode active material for a non-aqueous secondary battery characterized by containing one or more carbonaceous active material particles (B) selected.
  • the present invention provides a negative electrode having a current collector and an active material layer formed thereon, wherein the active material layer uses at least the negative electrode active material for a non-aqueous secondary battery. Formation The present invention provides a negative electrode for a non-aqueous secondary battery.
  • a non-aqueous secondary battery having a positive electrode and a negative electrode capable of occluding and releasing lithium ions, and an electrolyte, wherein the negative electrode is a negative electrode for a non-aqueous secondary battery.
  • An aqueous secondary battery is provided.
  • the charge / discharge irreversible capacity during the initial cycle is small even when the active material layer on the current collector of the negative electrode is densified.
  • a high-capacity non-aqueous secondary battery can be provided.
  • the portion where the carbonaceous particles are fired may be referred to as graphite particles.
  • the carbonaceous composite particles of the present invention and, if necessary, the carbonaceous active material particles are defined as negative electrode active material.
  • An active material layer is obtained by using at least a negative electrode active material and a binder, and a material having at least an active material layer on a negative electrode current collector is defined as an electrode plate or a negative electrode.
  • a non-aqueous secondary battery is configured with an electrolyte.
  • the negative electrode active material of the present invention contains the graphite composite particles of the present invention as a main component.
  • the graphite composite particles of the present invention include, for example, a carbonaceous particle and a graphite-capable binder (hereinafter, sometimes simply referred to as “binder”), and the composite compact is pulverized into graphite. It is obtained by pulverizing after slag or graphite. That is, in this case, the structure of the formed graphite composite particles is such that at least a part (part or all) of the graphite particles obtained by firing the carbonaceous particles is obtained by firing the noinder (this is also graphitic). Have a bonded structure.
  • the graphite composite particles of the present invention are those in which a binder is fired. Therefore, it also includes those in which graphite particles are bonded to each other at a certain ratio (hereinafter, these are also referred to as “graphite composite particles of the present invention”).
  • the carbonaceous particles that are the raw material of the graphite composite particles of the present invention are not particularly limited as long as they are carbon particles that can be graphitized by firing, but natural graphite, artificial graphite, spheroidized black lead. , Coatus powder, needle coatus powder, carbide powder of rosin and the like. Out of these
  • the binder capable of graphitization is not particularly limited as long as it is carbonaceous that can be graphitized by firing, petroleum-based and coal-based condensed polycyclic aromatics up to hard pitch and soft pitch force. Is preferably used. Specifically, petroleum heavy oil such as impregnated pitch, coal tar pitch, coal heavy oil such as coal liquefied oil, straight-run heavy oil such as Fasuart, and cracked heavy oil such as ethylene heavy-end tar. Quality oil and the like.
  • the graphite composite particles of the present invention satisfy at least the following requirements (1) and (2).
  • volume-based median diameter determined by laser scattering particle size distribution measurement 0.2 mL of 0.2% by weight aqueous solution of surfactant polyoxyethylene sorbitan monolaurate (Tween 20 (registered trademark) as an example) Suspended graphite composite particles lOmg and introduced into a commercially available laser diffraction Z-scattering particle size distribution analyzer (for example, LA-9-20 manufactured by Horiba, Ltd.), and irradiated with 28kHz ultrasonic waves at 60W output for 1 minute After that, the volume-based median diameter in the present invention is measured as the volume-based median diameter in the present invention.
  • surfactant polyoxyethylene sorbitan monolaurate Teween 20 (registered trademark) as an example
  • the outline overlaps the outline of other particles! /, !, 100 graphite composite particles are selected, and from each measurement area S, 2 X (S / 3. 14 )
  • the average value of the 100 particles was determined, and the average value in the present invention was calculated. It is defined as the equivalent circular particle diameter Dm.
  • the particle outline overlaps the other particle outline.
  • two or more carbonaceous particles are combined and calcined together with a graphite-capable noinder to form one graphite composite particle.
  • the above 100 particles are obtained by firing one carbonaceous particle together with a binder. The selection of 100 such graphite composite particles is made randomly.
  • the measurement area S is the area of the part surrounded by the outline of the particles when the graphite composite particles such as those just above in SEM observation are observed.
  • the upper limit of D ZD is 2 or less. Preferably 1.
  • the lower limit of D / D must be greater than 1. Preferably 1.15 or more, especially preferred
  • the irreversible capacity may increase.
  • D / ⁇ is the ratio of the particle sizes obtained by two different methods, and the particle shape
  • D is a graphitic composite particle containing one graphite particle each. In general, it will be larger than D.
  • D two or more graphite particles are bonded.
  • the coupling ratio can be specified.
  • D is not limited as long as D / ⁇ is in the above range, but is usually 5 ⁇ m or more, preferably
  • the negative electrode active material It is 10 ⁇ m or more, more preferably 13 ⁇ m or more. Further, it is usually 40 ⁇ m or less, preferably 30 / z m or less, more preferably 25 m or less. If D is too large, the negative electrode active material
  • the irreversible capacity may increase.
  • D is not limited as long as D / ⁇ is in the above range, but is usually 5 ⁇ m or more, preferably
  • the negative electrode active material It is 10 ⁇ m or more, more preferably 13 ⁇ m or more. Further, it is usually 40 ⁇ m or less, preferably 3 O / z m or less, more preferably 20 m or less. If D is too large, the negative electrode active material
  • the irreversible capacity may increase.
  • Raman measurement is performed using a Raman spectrometer (for example, a Raman spectrometer manufactured by JASCO Corporation), and the sample particle is naturally dropped into the measurement cell to fill the sample, and the measurement cell is irradiated with argon ion laser light. While irradiating, the measurement cell is rotated in a plane perpendicular to the laser beam and measurement is performed.
  • the measurement conditions are as follows.
  • Argon ion laser light wavelength 514.5 nm
  • Peak intensity measurement, peak half-width measurement background processing, smoothing processing
  • Maximum peak of 1580 cm _ 1 around is a peak derived from a graphite crystalline structure, the maximum peak around 1360 cm- 1 is a peak derived from reduced carbon atoms symmetry by structural defects.
  • the Raman R value must be 0.14 or less. Preferably 0.13 or less, Particularly preferred is 0.12 or less. If the Raman R value exceeds this upper limit, the charge / discharge irreversible capacity in the initial cycle may increase.
  • the Raman R value must be 0.04 or higher. In terms of performance, it is preferable that the Raman R value is low. However, if a Raman R value of less than 0.04 is obtained, the yield may deteriorate and the productivity may be significantly deteriorated.
  • the Raman half-value width of the maximum peak in the vicinity 1580 cm _1 in graphite composite particle of the present invention is not particularly limited, usually 18cm _1 or more, preferably 19cm _ 1 or more, usually 23cm _1, preferably is in the range of 21cm _ 1 below. If the Raman half-value width is below this range, the crystallinity of the particle surface becomes too high, and when the density is increased, the crystals are likely to be oriented in a direction parallel to the current collector surface, leading to a decrease in load characteristics. There is. On the other hand, exceeding this range, the crystal on the particle surface is disturbed, the reactivity with the electrolytic solution is increased, and if the efficiency is lowered, the gas generation may be increased.
  • the graphite composite particles of the present invention have a requirement (1) greater than or equal to D ZD force ⁇ of 2 or less, and the requirement (
  • the Raman R-value it is essential that the Raman R-value satisfy 0.04 or more and 0.14 or less.
  • the force that can easily reduce D / ⁇ to 2 or less if excessive grinding is performed after firing is 0
  • the charge / discharge irreversible capacity may increase, and in this case, the effects of the present invention may not be obtained.
  • the production method of graphite composite particles satisfying 14 or less is not particularly limited as long as the requirements (1) and (2) are satisfied as a result! / ⁇ .
  • the method for producing the graphite composite particles of the present invention satisfying the requirements (1) and (2) will be described in detail later in the section of the production method.
  • graphite composite particles that are appropriately bound at a specific number ratio can be obtained, and the requirements (1) and (2) can be satisfied.
  • a method for producing the graphite composite particles exhibiting the above-mentioned powder physical properties there is a method of combining a specific spherical shape natural graphite with a binder (pitch), molding, firing, and graphitizing. .
  • Average circularity circumference of a circle with the same area as the projected particle area Perimeter of Z projected image [0032] (mouth) range
  • the average circularity is not particularly limited, but is preferably 0.8 or more, particularly preferably 0.85 or more, and further preferably 0.9 or more. Further, it is preferably 0.98 or less, particularly preferably 0.95 or less.
  • the average circularity is below this range, the voids between the particles are reduced, and the load characteristics may be deteriorated.
  • the spheroidizing process that repeatedly gives mechanical effects such as compression, friction, shearing force, etc., including the interaction of the particles, mainly the impact force, to the particles It may be necessary to remove the fine powder that is produced as a by-product during the spherical shape, and the manufacturing cost may increase.
  • the tap density is measured on a cylindrical tap cell having a diameter of 1.6 cm and a volume capacity of 20 cm 3 using a powder density measuring device (“Tap Densator KYT-4000” manufactured by Seishin Enterprise Co., Ltd.). This is defined as the value obtained by dropping the graphite composite particles through a 300 m sieve and filling the cell to the full, and then performing 1000 taps with a stroke length of 10 mm and measuring the tap density at that time.
  • a powder density measuring device (“Tap Densator KYT-4000” manufactured by Seishin Enterprise Co., Ltd.).
  • the tap density of the graphite composite particle of the present invention is not particularly limited, 0. 7gZcm 3 or preferably instrument 0. 75gZcm 3 or more and particularly preferably instrument 0. 8gZcm 3 or more preferably tool more especially 0. 9 gZcm 3 or more is more preferable. In addition, 1.5 gZcm 3 or less is preferable, and 1.3 gZcm 3 or less is particularly preferable. If the tap density is too low, the current collector will be It is necessary to reduce the slurry concentration of the negative electrode active material applied to the body, and the density of the coating film becomes small, and when pressed, the graphite composite particles may be destroyed and the battery performance may deteriorate immediately. On the other hand, if the tap density is too high, the coatability deteriorates and further steps are required to adjust the shape and particle size distribution of the graphite composite particles, resulting in a decrease in yield and an increase in cost. May rise.
  • the specific surface area measured by the BET method of the graphite composite particles of the present invention is not particularly limited, but is usually 0.2 m 2 Zg or more, preferably 0.3 m 2 Zg or more. Also, usually 8m 2 Zg hereinafter, preferably 6 m 2 Zg less, particularly preferably 4m 2 Zg below. If the specific surface area is less than this range, the output characteristics may deteriorate. On the other hand, if the specific surface area force exceeds this range, the initial irreversible capacity increases and the cycle characteristics may deteriorate.
  • the specific surface area is measured and defined by the following method. That is, using a specific surface area measuring device “AMS8000” manufactured by Okura Riken Co., Ltd., the BET one-point method is measured by the nitrogen gas adsorption flow method. Specifically, 0.4 g of sample (graphite composite particles) was filled in a cell, heated to 350 ° C and pretreated, then cooled to liquid nitrogen temperature, 30% nitrogen, 70% He Saturate adsorption of the gas, then heat to room temperature, measure the amount of desorbed gas, and calculate the specific surface area by the usual BET method from the obtained results.
  • AMS8000 manufactured by Okura Riken Co., Ltd.
  • the graphite crystal orientation ratio I ZI on the electrode plate measured by the following method:
  • the graphite crystal orientation ratio I ZI on the electrode plate refers to the graphite crystal orientation relative to the thickness direction of the electrode. It is an index representing the degree of orientation of the crystal hexagonal network plane. The larger the orientation ratio I Zi, the
  • Electrode plate preparation method A [0039] Electrode plate preparation method A
  • aqueous dispersion of styrene-butadiene rubber to 100 parts by weight of graphite composite particles and 1 part by weight of aqueous solution of carboxymethylcellulose (weight average molecular weight 250,000 to 300,000) as solids.
  • the slurry is applied on a current collector made of copper foil with a thickness of 18 m and dried using a doctor blade so that the weight is 10 ⁇ 0. LmgZcm 2 and dried. Adjust the press load so that the active material layer is 1.73 ⁇ 0.03 g / cm 3 using , and then press the material into a single press.
  • the chart of the (110) plane and (004) plane of graphite on the electrode plate was measured by X-ray diffraction, and the measured chart was asymmetric as a profile function.
  • peak separation is performed by fitting, and the integrated intensity of the peaks on the (110) plane and the (004) plane is calculated. From the obtained integrated intensity, a ratio represented by “(110) area intensity Z (004) area intensity” is calculated and defined as the graphite crystal orientation ratio on the electrode plate.
  • the X-ray diffraction measurement conditions here are as follows. “2 ⁇ ” indicates a diffraction angle.
  • Sample preparation A fixed plate is fixed to a glass plate with double-sided tape with a thickness of 0.1 mm.
  • the length is not particularly limited. Converted per 5 cm, preferably 200 kgfZ5 cm or more, particularly preferably 250 kgfZ5 Graphite composite particles having a size of cm or more, more preferably 300 kgfZ5 cm or more, and usually 1200 kgfZ5 cm or less, preferably 1000 kgfZ5 cm or less, particularly preferably 850 kgfZ5 cm or less are desirable. That is, by adjusting the pressing load within the above range, the graphite composite particles capable of producing an electrode plate having an active material layer density of 1.73 ⁇ 0.03 gZcm 3 are the graphite composite particles of the present invention. As preferred.
  • the graphite composite particles In the case of graphite composite particles in which the press load is below this lower limit, the graphite composite particles have a poor immersion property when they are crushed or immediately formed into an electrode that makes it difficult to control the density of the active material layer of the electrode plate. The immersion speed may be reduced. Furthermore, the negative electrode material may collapse and block the lithium ion path, and the rate characteristics may deteriorate. On the other hand, graphite composite particles whose press load exceeds the upper limit tend to increase the exfoliation of the active material layer as much as possible.
  • the method for producing the graphite composite particles having a press load in the above range is not particularly limited, but can be obtained by devising the carbonaceous particle type, the binder amount, the graphite degree, and the like.
  • graphite composite particles (A) alone are used as negative electrode active material for non-aqueous secondary batteries.
  • One or more types of carbonaceous active material particles selected from the group consisting of natural graphite, artificial graphite, amorphous coated graphite, rosin coated graphite, and amorphous carbon (hereinafter referred to as “carbonaceous material”). It is also preferable to further contain active material particles (abbreviated as “B”) to form a negative electrode active material for a non-aqueous secondary battery.
  • the lower limit of the amount when mixing the carbonaceous active material particles (B) is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass with respect to the whole negative electrode active material.
  • the upper limit is 80% by mass or less, preferably 50% by mass or less, more preferably 40% by mass or less. Below this range, the effect of improving conductivity may be difficult to obtain. On the other hand, an increase in initial irreversible capacity may be caused.
  • the carbonaceous active material particles (B) as natural graphite, for example, highly purified scale-like Graphite or spherical graphite can be used.
  • the volume-based average particle size of natural graphite is usually in the range of 8 ⁇ m or more, preferably ⁇ to 12 ⁇ m or more, and usually 60 ⁇ m or less, preferably ⁇ to 40 ⁇ m or less.
  • the BET specific surface area of natural graphite is usually 4 m 2 Zg or more, preferably 4.5 m 2 Zg or more, usually 7 m 2 Zg or less, preferably 5.5 m 2 Zg or less.
  • artificial graphite for example, particles obtained by compounding coatas powder or natural graphite with a binder, particles obtained by firing a single graphite precursor particle while it is powdered, and the like can be used.
  • amorphous coated graphite for example, natural graphite or artificial graphite coated with an amorphous precursor and baked, or natural graphite or artificial graphite coated with amorphous by CVD are used. That's right.
  • the resin-coated graphite for example, particles obtained by coating a polymer material on natural graphite or artificial graphite and drying can be used.
  • the amorphous carbon for example, bulk mesophase is used. Baked particles and particles obtained by infusibilizing and calcining a carbon precursor can be used.
  • the mixing ratio of the carbonaceous active material particles (B) is preferably 5% by mass or more, particularly preferably 15% or more, and usually 95% by mass or less, preferably 80% by mass or less.
  • the mixing ratio of the carbonaceous active material particles (B) is less than the above range, the above effect of adding the carbonaceous active material particles (B) may be difficult to appear.
  • it exceeds the above range the characteristics of the graphite composite particles (A) may be difficult to obtain.
  • the negative electrode active material of the present invention is preferably not less than 200kgfZ5cm and more preferably not less than 250kgfZ5cm in terms of a press load force of 5cm measured in the same manner as described in the physical properties of the carbonaceous active material particles. Particularly preferred is 300 kgfZ 5 cm or more. Further, it is usually 1200 kgfZ5 cm or less, preferably 1000 kgfZ5 cm or less, particularly preferably 850 kgfZ5 cm or less.
  • 100 parts by weight of the negative electrode active material and a solid dispersion of styrene-butadiene rubber are solidified.
  • this aqueous slurry on a copper foil with a thickness of 18 / zm
  • the method for preparing the negative electrode active material having a press load in the above range is not particularly limited, but for the graphite composite particles (A), the carbonaceous particle type, the amount of binder, the degree of graphitization, etc. are used.
  • the mixing ratio of the graphite composite particles (A) and the carbonaceous active material particles (B) is obtained by optimizing according to the difference in softness between the particles (A) and (B). be able to
  • the graphite composite particles of the present invention are produced by mixing raw carbon particles, a binder, and the like, and performing molding, devolatilizing component firing, graphitization, pulverization, and classification as necessary. In order to produce the graphite composite particles of the present invention satisfying the aforementioned physical properties, it is important to combine the following ingenuity.
  • the carbonaceous particles and the binder are combined while heating. At this time, a black lead catalyst may be added if desired.
  • Suitable carbonaceous particles, binder and graphitization catalyst are as follows.
  • Spherical natural graphite which has a high sphericity, is preferred as the main component of carbonaceous particles, which are primary particles as raw materials, from the viewpoint of obtaining a high tap density in order to improve coatability. Particularly preferred.
  • the spacing (d) of (002) plane by X-ray wide angle diffraction method is 0.
  • An example is one using natural graphite having a high crystallinity of 340 nm or less as a raw material. Specifically, natural graphite or those obtained by adding a mechanically pulverized product to these to improve the circularity, and Z or those obtained by heat treatment at 1000 ° C. or higher are preferred.
  • the median diameter of the volume-based particle size distribution measured by the Z-scattering particle size distribution measurement is not particularly limited, but is 5 ⁇ m or more, especially 6 ⁇ m or more, especially 8 ⁇ m or more. 40 ⁇ m or less, in particular 35 ⁇ m or less, particularly preferably 30 ⁇ m or less. If the median diameter of the carbonaceous particles is below this lower limit, the cost will increase, and if the upper limit is exceeded immediately, defects in coating are likely to occur.
  • the median diameter of the carbonaceous particles can be measured in the same manner as the median diameter of the negative electrode material described above.
  • the average particle size of the carbonaceous particles is smaller than the average particle size of the target graphite composite particles! It is preferable to use the average particle size of the target graphite composite particles.
  • the average particle size of the target graphite composite particles is 2Z3 or more, preferably 3Z4 or more.
  • the carbonaceous particles as the raw material of the graphite composite particles of the present invention are particularly preferably those that have undergone a spherical soot treatment.
  • a device used for the spherical shape treatment for example, a device that repeatedly gives mechanical action such as compression, friction, shearing force, etc. including the interaction of particles mainly with impact force to the particles can be used. Specifically, it has a rotor with a large number of blades installed inside the casing, and the rotor rotates at high speed, so that mechanical action such as impact compression, friction, shearing force, etc. is applied to the carbon material introduced inside. And a device for performing surface treatment is preferable.
  • Preferred devices include, for example, High Pre-Disease System (Nara Machinery Co., Ltd.), Kryptron (Earth Tech-Riki Co., Ltd.), CF Mill (Ube Industries Co., Ltd.), Mechano-Fusion System (Hosokawa Micron Corp.), Theta Composer ( For example, Tokuju Kogakusho Co., Ltd.).
  • a hybridization system manufactured by Nara Machinery Co., Ltd. is preferable.
  • LOOmZ seconds is more preferable 50-: LOOmZ seconds. Is more preferable.
  • the average circularity of the carbonaceous particles is usually 0.85 or more, preferably 0.9 or more, and usually 1.
  • the average circularity of the carbonaceous particles is 0 or less, preferably 0.96 or less. If the average circularity of the carbonaceous particles is below this lower limit, the degree of orientation will decrease, and if it exceeds the upper limit, the cost tends to increase.
  • the average circularity of the carbonaceous particles is the same as the average circularity of the negative electrode material described above.
  • the tap density of the carbonaceous particles is usually 0.8 gZcm 3 or more, preferably 0.9 gZcm 3 or more, more preferably 0.95 gZcm 3 or more, and usually 1.35 gZcm 3 or less, preferably 1.2 g Zcm.
  • the range is 3 or less. If the tap density of the carbonaceous particles is below this range, a high-capacity battery that does not easily increase the packing density when used as an active material may not be obtained. On the other hand, it may be difficult to obtain carbonaceous particles exceeding this range with a good yield, which may lead to an increase in cost.
  • the method for measuring the tap density is the same as that described for the graphite composite particles for secondary batteries.
  • binders include impregnated pitch, binder pitch, coal tar pitch, coal-based heavy oil such as coal liquefied oil, straight-run heavy oil such as Asphalten, and cracking systems such as ethylene-to-end tar.
  • examples include petroleum heavy oils such as heavy oils.
  • the quinoline-insoluble component contained in the Noinda is usually 0 to: a force that is LO mass% is small as much as possible! /, Which is preferable in terms of hardness and capacity when formed into a battery. Binder quinoline insoluble If the component content is too high, the strength of the resulting graphite composite particles will increase, and even if the active material layer applied to the current collector is pressed, the particles will not be deformed, making it difficult to increase the density. The capacity may also decrease.
  • the ratio of those derived from the binder in the graphite composite particles obtained by the carbonization treatment obtained from carbonized graphite is usually 5% by mass or more, preferably 10% by mass or more. Used for.
  • the upper limit is an amount such that this ratio is usually 60% by mass or less, preferably 40% by mass or less, and more preferably 30% by mass or less. If the amount of the binder is too large, the binder-derived amorphous part increases in the final product, and thus the battery capacity when used in a battery may be reduced.
  • the obtained graphite composite particles are hardened, when the active material layer applied to the current collector is pressed, the graphite particles derived from the carbonaceous particles, which are not part of the binder-derived portion, tend to be destroyed.
  • the smaller the amount of the binder the better the battery characteristics. However, if the amount is too small, molding after the combination becomes difficult, which may increase the manufacturing cost.
  • the amount of the binder in the graphite composite particles is controlled by the amount of the binder added in the stage before the combination. For example, in the case where the residual carbon ratio of the binder obtained by the method described in JIS K2270 is p%, a desired amount of ⁇ ⁇ ⁇ times as much noder is added.
  • a graphite catalyst may be added when mixing the carbonaceous particles and the binder.
  • the graphitization catalyst include metals such as iron, nickel, titanium, silicon and boron, and compounds such as carbides, oxides and nitrides thereof. Of these, silicon carbide is preferred among the key compounds, and silicon iron is particularly preferred among the iron compounds.
  • the carbonized key generated by heating is used.
  • the silicon is pyrolyzed at a temperature of 2800 ° C or higher to grow graphite with extremely good crystallinity, and pores are formed between the graphite crystals when the silicon is volatilized, the lithium inside the particles Battery performance can be improved by promoting the charge transfer reaction and diffusion of ions.
  • iron or a compound thereof is used as a graphitization catalyst, graphite having good crystallinity can be grown by the mechanism of dissolution and deposition of carbon in the catalyst, and the same effect as that of silicon can be exhibited.
  • the addition amount of these graphitization catalysts is usually 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass with respect to the carbonaceous primary particles as a raw material. % Or less.
  • graphitization catalysts When there are too many graphitization catalysts, graphitization progresses too much, and the problem at the time of manufacture of a lithium-ion secondary battery, especially that the immersion property may be sufficient may arise. At the same time, it may be because pores are generated in the graphite composite particles, or the strength of the particles decreases, and as a result, the surface becomes smooth during the pressing process at the time of electrode plate preparation and ion migration is inhibited. There is also.
  • the graphitization catalyst is too little, there is a problem that the graphitization is insufficient and the charge / discharge capacity is reduced when a non-aqueous secondary battery is used, and a high pressure is applied in the pressing process during electrode plate production. In some cases, it is difficult to increase the density. Furthermore, since there is no appropriate amount of pores in the graphite composite particles, the strength and strength of the particles become too high, and a high pressure is applied when the active material layer applied to the current collector is pressed to a predetermined bulk density. It may be difficult to increase the density of the negative electrode active material layer.
  • the raw materials such as carbonaceous particles, noinder, and optionally added graphite catalyst are first combined under heating.
  • the liquid binder is attached to the carbonaceous particles and the raw material that does not melt at the compounding temperature.
  • all raw materials may be charged into the compounding machine and the mixing and heating may be performed at the same time, or components other than the binder may be charged into the compounding machine and heated in a stirred state, and after the temperature has risen to the compounding temperature, A vulcanized and melted binder may be charged.
  • the heating temperature is equal to or higher than the softening point of the binder, and if the heating temperature is too low, the viscosity of the binder increases and mixing becomes difficult. In other words, it is performed at a temperature 20 ° C or more higher than the soft spot. If the heating temperature is too high, the viscosity of the mixed system becomes too high due to the volatilization and polycondensation of the binder, so it is usually 300 ° C or less, preferably 250 ° C or less.
  • a general-purpose machine having a stirring blade is preferred as the compounding machine.
  • a general type such as a Z type or a gussetar type can be used.
  • the amount of raw material charged into the compounding machine is usually 10% by volume or more, preferably 15% by volume or more, and 50% by volume or less, preferably 30% by volume or less of the mixer volume.
  • the mixing time is 5 minutes or more, and it takes up to a maximum viscosity change due to volatilization of the volatile matter, usually 30 to 120 minutes. It is preferable to preheat the compounding machine to the compounding temperature prior to compounding.
  • the obtained compound may be used as it is in a de-VM firing process for the purpose of removing volatile components (hereinafter abbreviated as “VM”) and carbonizing, but it may be molded to be easy to handle. It is preferable to use it for the VM removal process.
  • VM volatile components
  • Extrusion molding, mold molding, hydrostatic pressure molding, or the like is not particularly limited as long as the shape can be maintained.
  • the extrusion is easy to orient the particles in the molded body
  • the hydrostatic pressure molding which maintains the random orientation of the particles but has a problem in productivity, is relatively easy to operate, and is a random combination.
  • Mold molding capable of obtaining a molded body without destroying the oriented structure is preferred.
  • the molding temperature may be room temperature (cold) or under heating (hot, temperature above the softening point of the binder).
  • cold forming it is desirable to preliminarily crush the mixture that has been cooled after the combination so that the maximum dimension is 1 mm or less in order to improve the formability and obtain the uniformity of the formed body.
  • the shape and size of the molded body are not particularly limited, but in hot forming, if the molded body is too large, there is a problem that it takes time to perform uniform preheating prior to molding. The following sizes are preferable.
  • the upper limit of the molding pressure is usually 3tfZcm 2 (294MPa) or less, preferably 500kgfZcm 2 (49MPa) or less, more preferably 10kgfZcm 2 (0.998MPa) or less. It is.
  • the lower limit pressure is not particularly limited, but is preferably set to such an extent that the shape of the molded body can be maintained in the process of removing VM.
  • the obtained molded body is de-VM fired in order to remove carbonaceous particles and volatile components (VM) of the binder and prevent contamination of the filler during black lead conversion and sticking of the filler to the molded body.
  • the VM calcination is usually carried out at a temperature of 600 ° C or higher, preferably 650 ° C or higher, usually 1300 ° C or lower, preferably 1100 ° C or lower, usually for 0.1 hour to 10 hours.
  • the heating is usually performed in a non-acidic atmosphere in which an inert gas such as nitrogen or argon is circulated or a granular carbon material such as a please or packing coatus is filled in the gap.
  • the equipment used for the VM removal firing is not particularly limited as long as it can be fired in a non-oxidizing atmosphere, such as an electric furnace, a gas furnace, or a lead hammer furnace for electrode materials. It is desirable that the heating rate during heating is low to remove volatiles. Normally, from around 200 ° C where low boiling point volatilization starts to around 700 ° C where only hydrogen is generated, The temperature is raised at 3 to 100 ° C Zhr.
  • the carbide molded body obtained by removing the VM is heated at a high temperature to be graphitized.
  • the heating temperature at the time of graphite is usually 2600 ° C or higher, preferably 2800 ° C or higher. Further, if the heating temperature is too high, the sublimation of graphite becomes noticeable, so 3300 ° C or less is preferable.
  • the heating time is usually 1 to 24 hours, which is sufficient until the binder and carbonaceous particles become graphite.
  • the atmosphere during graphitization is a non-acidic atmosphere in which an inert gas such as nitrogen or argon flows or a granular carbon material such as please or knocking coat is filled in the gap to prevent oxidation.
  • an inert gas such as nitrogen or argon flows or a granular carbon material such as please or knocking coat is filled in the gap to prevent oxidation.
  • the equipment used for the graphite furnace is not particularly limited as long as it meets the above-mentioned purpose such as an electric furnace, a gas furnace, an electrode material Atchison furnace, etc.
  • the heating rate, cooling rate, heat treatment time, etc. can be set arbitrarily within the allowable range.
  • the method for pulverizing the graphite cake is not particularly limited, but the pulverizing means is mechanically pulverized.
  • the pulverizing means include a ball mill, a hammer mill, a CF mill, an atomizer mill, a pulverizer, and the like, and a pulverizing means using wind power, such as a jet mill.
  • a pulverization method using impact force such as a jaw crusher, hammer mill, or roller mill may be used.
  • the timing of pulverization may be before or after the graphitization. The latter is preferable because it does not require crucible filling and can be manufactured at low cost.
  • Large sized granular materials and small sized granular materials may be removed from the obtained pulverized material as necessary. By removing large-diameter granular material, D / ⁇ is reduced, and small-diameter granular material is removed
  • the volume-based particle size distribution by laser diffraction Z-scattering particle size measurement has a particle size of 100 ⁇ m or more and 3% or less of the total particle size. It is desirable to adjust the size so that the size of 1 ⁇ m or less is 1% or less of the total.
  • the sieve is particularly preferred. If the mesh size of the sieve mesh to be used is 80 ⁇ m or less and 30 ⁇ m or more, it can be used, and the production status (particularly the amount and particle size) of the particulate matter to be removed and the graphite composite particles The particle size distribution and the average particle size are appropriately selected and used according to the requirements for adjustment. When the size exceeds 80 m, the removal of the particulate matter becomes insufficient.
  • a sieve having a mesh size of 45 m or 38 m which is commercially available as a general-purpose size, can be preferably used.
  • Classification can be performed by methods such as wind classification, wet classification, and specific gravity classification, and is not particularly limited for removing particulates of 100 ⁇ m or more, but has an effect on the properties of the graphite composite particles.
  • an air classifier such as a swirling flow classifier.
  • the air volume and the wind speed it is possible to adjust the removal of the particulate matter and the particle size distribution and average particle size of the graphite composite particles in the same manner as adjusting the size of the mesh openings. it can.
  • the graphite composite particles of the present invention can be suitably used as a negative electrode active material for non-aqueous secondary batteries, particularly lithium secondary batteries. Further, as described above, a mixture of the graphite composite particles (A) and the carbonaceous active material particles (B) of the present invention can be suitably used as the negative electrode active material.
  • the apparatus used for mixing the graphite composite particles (A) and the carbonaceous active material particles (B) is not particularly limited.
  • a cylindrical mixer, a twin cylinder type, etc. Mixers, double cone type mixers, regular cubic type mixers, vertical type mixers, etc. include fixed type mixers, spiral type mixers, ribbon type mixers, Muller type mixers, Helical Flight type Examples include mixers, Pugmill type mixers, and fluidized type mixers.
  • the negative electrode constituting the nonaqueous secondary battery is formed by forming an active material layer containing a negative electrode active material, an electrode plate-forming binder, a thickener, and a conductive material on a current collector.
  • the active material layer is usually prepared by preparing a slurry containing a negative electrode active material, an electrode plate forming binder, a thickener, a conductive material and a solvent, and applying, drying and pressing the slurry on a current collector. Is obtained.
  • any material can be used as long as it is a material that is stable with respect to the solvent and electrolyte used in the production of the electrode.
  • examples thereof include poly (vinylidene fluoride), polytetrafluoroethylene, polyethylene, polypropylene, styrene butadiene rubber, isoprene rubber, butadiene rubber, ethylene acrylic acid copolymer, and ethylene / methacrylic acid copolymer.
  • the binder for electrode plate forming is a weight ratio of the negative electrode active material Z electrode plate forming binder, usually 90Z10 or more, preferably 95Z5 or more, usually 99.9 / 0.1. In the following, it is preferably used in the range of 99.5 / 0.5 or less.
  • Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polybutyl alcohol, oxidized starch, phosphate starch, and casein.
  • Examples of the conductive material include metal materials such as copper or nickel; carbon materials such as graphite or carbon black.
  • Examples of the material of the current collector include copper, nickel, and stainless steel. Of these, copper foil is preferred because it is easy to process into a thin film!
  • the density of the active material layer varies depending on the application. In applications where importance is placed on the capacity, a force that is usually 1.55 g Zcm 3 or more is preferred. 1. 60 gZcm 3 or more is more preferred 1.65 gZcm 3 or more, especially 1. 70 gZcm 3 or more is preferable. If the density is too low, the battery capacity per unit volume may not always be sufficient. Further, if the density is too high, the rate characteristics deteriorate, so 1.9 gZcm 3 or less is preferable.
  • the active material layer means a mixture layer made of an active material on a current collector, a binder for forming an electrode plate, a thickener, a conductive material, etc., and its density means the active material at the time of assembling the battery. It refers to the bulk density of the material layer.
  • the negative electrode for nonaqueous secondary batteries of the present invention produced using the graphite composite particles of the present invention and the negative electrode active material of the present invention is particularly used as a negative electrode for nonaqueous secondary batteries such as lithium secondary batteries. Very useful.
  • Selection of members necessary for the battery configuration such as the positive electrode and the electrolytic solution constituting such a non-aqueous secondary battery is not particularly limited.
  • the force that exemplifies the material of the components constituting the non-aqueous secondary battery, etc., the materials that can be used are not limited to these specific examples.
  • the nonaqueous secondary battery of the present invention usually has at least the above-described negative electrode, positive electrode and electrolyte of the present invention.
  • the positive electrode is formed by forming an active material layer containing a positive electrode active material, a conductive agent, and an electrode plate forming binder on a positive electrode current collector.
  • the active material layer is usually prepared by preparing a slurry containing a positive electrode active material, a conductive agent and a binder for forming an electrode plate, and applying and drying this on a current collector. Can be obtained.
  • Examples of the positive electrode active material include lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide and lithium manganate; transition metals such as manganese dioxide Materials that can absorb and release lithium, such as carbonaceous materials such as fluorinated graphite, can be used.
  • lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide and lithium manganate
  • transition metals such as manganese dioxide Materials that can absorb and release lithium, such as carbonaceous materials such as fluorinated graphite, can be used.
  • LiNiO, LiMn O and their non-stoichiometric compounds MnO, TiS, FeS, Nb S, Mo
  • the positive electrode current collector it is preferable to use a metal or an alloy thereof that forms a passive film on the surface by anodic oxidation in an electrolytic solution.
  • Ilia, IVa, Va group (3B, 4B, 5B Examples thereof include metals belonging to the group) and alloys thereof.
  • Al, Ti, Zr, Hf, Nb, Ta, and alloys containing these metals can be exemplified.
  • Al, Ti, Ta, and alloys containing these metals are preferably used.
  • A1 and its alloys are light weight, so high energy density is desirable U.
  • Examples of the electrolyte include an electrolytic solution, a solid electrolyte, a gel electrolyte, and the like, and among them, an electrolytic solution, particularly a non-aqueous electrolytic solution is preferable.
  • an electrolytic solution particularly a non-aqueous electrolytic solution is preferable.
  • a non-aqueous electrolyte a solution obtained by dissolving a solute in a non-aqueous solvent can be used.
  • an alkali metal salt, a quaternary ammonium salt, or the like can be used as the solute.
  • an alkali metal salt, a quaternary ammonium salt, or the like can be used.
  • Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate and butylene carbonate, cyclic ester compounds such as ⁇ -petit-mouth rataton; chain ethers such as 1,2-dimethoxyethane; crown ethers Cyclic ethers such as 2-methyltetrahydrofuran, 1,2-dimethyltetrahydrofuran, 1,3-dioxolane, tetrahydrofuran, etc .; chain carbonates such as diethyl carbonate, ethylmethyl carbonate, dimethyl carbonate, and the like can be used.
  • cyclic carbonates such as ethylene carbonate and butylene carbonate
  • cyclic ester compounds such as ⁇ -petit-mouth rataton
  • chain ethers such as 1,2-dimethoxyethane
  • crown ethers Cyclic ethers such as 2-methyltetrahydrofuran, 1,2-dimethyltetrahydrofuran, 1,3-di
  • the non-aqueous solvent preferably contains a cyclic carbonate and a chain carbonate.
  • Biren Carbonate It is also possible to add compounds such as butyl ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone, and jetyl sulfone.
  • the content of these solutes in the electrolytic solution is preferably 0.2 mol / L or more, particularly 0.5 mol / L or more, and 2 molZL or less, particularly preferably 1.5 molZL or less.
  • the non-aqueous secondary battery prepared by combining the negative electrode of the present invention, the metal chalcogenide-based positive electrode, and the organic electrolyte mainly composed of a carbonate-based solvent has an initial cycle with a large capacity.
  • Low irreversible capacity, high rapid charge / discharge capacity (good rate characteristics), excellent cycle characteristics, high battery storage and reliability when left at high temperature, high efficiency discharge characteristics and low temperature It has extremely excellent discharge characteristics.
  • a separator is usually provided between the positive electrode and the negative electrode so that the positive electrode and the negative electrode are not in physical contact.
  • the separator preferably has a high ion permeability and a low electric resistance.
  • the material and shape of the separator are not particularly limited, but those that are stable with respect to the electrolyte and excellent in liquid retention are preferable.
  • a porous sheet or non-woven fabric made of polyolefin such as polyethylene and polypropylene can be used.
  • the shape of the non-aqueous secondary battery of the present invention is not particularly limited, and a cylinder type in which a sheet electrode and a separator are spiral, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a pellet electrode, and For example, a coin type with stacked separators.
  • Graphite properties with an average particle size of 61 ⁇ m were subjected to spheroidization treatment for 5 minutes at a rotor peripheral speed of 70 m / s using NHS type Noblerization System NHS 3 manufactured by Nara Machinery Co., Ltd. Obtained spheroidized graphite with.
  • This spheroidized graphite is mixed with a binder pitch with a softening point of 88 ° C as a graphitizable binder at a weight ratio of 100: 30, and has a gusset type stirring blade preheated to 128 ° C- It was put together and mixed for 20 minutes.
  • the obtained molded body was housed in a metal sagar as a heat-resistant container, and the gap was filled with graphite.
  • the temperature was raised from room temperature to 1000 ° C in an electric furnace over 48 hours, held at 1000 ° C for 3 hours, and de-VM firing was performed.
  • the compact was stored in a graphite crucible, and the gap was filled with a graphite please.
  • Graphite was fired by heating to 3000 ° C for 4 hours in an Atchison furnace.
  • Table 2 shows the results of measurement of average circularity and tap density.
  • an electrode plate having an active material layer with a density of 1.73 ⁇ 0.03 gZcm 3 was produced by the method described above. Specifically, 10 g of the above negative electrode active material, 0.1 lg of carboxymethyl cellulose aqueous solution in terms of solid content, and 0.2 g of styrene butadiene rubber aqueous dispersion with a weight average molecular weight of 270,000 in terms of solid content are hybrids made by Keyence. The mixture was stirred for 3 minutes with a mixer to obtain a slurry.
  • the slurry active material is applied to a width of 5 cm by the doctor blade method so that the negative electrode active material material adheres to 10 ⁇ 0.lmg Zcm 2 on the 18 m thick copper foil, which is a slurry powder, and air-dried at room temperature. went . Further, after drying at 110 ° C. for 30 minutes, roll pressing was performed using a roller having a diameter of 20 cm to adjust the density of the active material layer to 1.73 ⁇ 0.03 gZcm 3 to obtain a negative electrode sheet. At this time, the press load during the roll press was measured. The results are also shown in Table 2.
  • the negative electrode sheet produced by the above method was punched into a disk shape with a diameter of 12.5 mm to make a negative electrode, and the lithium metal foil was punched into a disk shape with a diameter of 12.5 mm to make a counter electrode.
  • the 2016 coin-type battery made by the above method is left for 24 hours, it is charged with a current density of 0.1 6 mAZcm 2 until the potential difference between both electrodes becomes OV, and then until it reaches 1.5 V. 0 Discharge was performed at 33 mAZcm 2 .
  • a standard charge / discharge test was performed, and the average value of the discharge capacity at the first cycle was defined as the initial charge / discharge capacity.
  • the irreversible capacity (initial charge capacity, initial discharge capacity) generated in the first cycle was defined as the initial charge / discharge irreversible capacity.
  • the initial charge / discharge irreversible capacity was measured and the average value was obtained.
  • Graphite with an average particle size of 61 ⁇ m was spheroidized for 3 minutes at a rotor peripheral speed of 60 m / sec using the Noblerization System NHS 3 manufactured by Nara Machinery Co., Ltd.
  • the obtained spheroidized graphite was obtained.
  • a binder pitch with a soft melting point of 88 ° C was used as a binder capable of graphitization, and the amount of binder and the rotation speed of the grinding blade during grinding were changed as shown in Table 1. Except for the above, graphite composite particles were obtained in the same manner as in Example 1, and the above physical properties were measured.
  • the present invention is very useful industrially in the field of various non-aqueous secondary batteries.

Abstract

 高容量化のために集電体上の負極活物質材料を有する活物質層を高密度化しても、初期サイクル時の充放電不可逆容量の十分小さい非水系二次電池を提供すること。  要件(1)及び(2) (1)レーザー回折/散乱式粒度分布測定装置で測定した体積基準メジアン径をDLμmとし、SEMにおいて、輪郭が他の粒子の輪郭と重なっていない粒子の測定面積Sから求めた平均円相当粒子径をDSとしたとき、DL/DSが、1より大きく、2以下、 (2)ラマンスペクトルにおいて、1580cm-1付近の最大ピークの強度IAと、1360cm-1付近の最大ピークの強度IBの強度比IB/IAをラマンR値としたとき、ラマンR値が、0.04以上、0.14以下、 を満たすことを特徴とする非水系二次電池用黒鉛質複合粒子により課題を解決した。

Description

明 細 書
非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、 負極及び非水系二次電池
技術分野
[0001] 本発明は、非水系二次電池に用いる黒鉛質複合粒子と、その黒鉛質複合粒子を 含有する負極活物質材料と、その負極活物質材料を用いて形成された負極と、その 負極を有する非水系二次電池に関するものであり、更に詳しくは、高容量であり、小 さい充放電不可逆容量を達成できる黒鉛質複合粒子、負極活物質材料、負極及び 非水系二次電池に関するものである。
背景技術
[0002] 近年、電子機器の小型化に伴い、高容量の二次電池に対する需要が高まってきて いる。特に、ニッケル 'カドミウム電池や、ニッケル '水素電池に比べ、よりエネルギー 密度の高 、非水系二次電池が注目されてきて 、る。
[0003] 非水系二次電池の負極活物質材料としては、コスト、耐久性、容量の点で、黒鉛が 使用されることが多い。し力しながら、高容量ィ匕のために極板上の負極活物質材料を 含む活物質層を高密度化すると、初期サイクル時の充放電不可逆容量が増えるとい つた問題点があった。
[0004] 特許文献 1には天然黒鉛及びバインダーを捏合して捏合物を得、 700〜1500°C で一次加熱して該バインダーを炭素化し、次いで、 2400〜3000°Cで二次加熱する ことにより、天然黒鉛の純ィ匕及び炭素化されたバインダーの黒鉛ィ匕を同時に行う炭 素複合材料の製造方法が記載されている。し力しながら、特許文献 1においては、出 発原料として鱗状又は鱗片状天然黒鉛を想定しているものであり、活物質層の高密 度化、充放電不可逆容量低減は不十分であった。
特許文献 1:特開 2000— 086343号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、力かる背景技術に鑑みてなされたものであり、その課題は、高容量化の ために集電体上の負極活物質材料を有する活物質層を高密度化しても、初期サイク ル時の充放電不可逆容量の十分小さい非水系二次電池を提供することにある。 課題を解決するための手段
[0006] 発明者は、前記課題を解決すべく鋭意検討を行った結果、黒鉛質複合粒子の核と なる炭素質粒子が、最終黒鉛質複合粒子中で、ある特定の割合で結合しているもの 、すなわち、レーザー散乱式粒度分布測定より求めたメジアン径と走査型電子顕微 鏡観察により求めた平均円相当粒子径の比が特定の数値範囲にあるものであって、 ラマン R値が特定範囲にある黒鉛質複合粒子を用いることによって、上記課題を解決 した非水系二次電池が得られることを見い出し本発明に到達した。
[0007] すなわち本発明は、次の要件(1)及び (2)
(1)ポリオキシエチレンソルビタンモノラウレートの 0. 2質量0 /0水溶液 10mLに粒子 1 Omgを懸濁させ、市販のレーザー回折 Z散乱式粒度分布測定装置に導入し、 28k Hzの超音波を出力 60Wで 1分間照射した後に測定した体積基準メジアン径を D μ
し mとし、走査型電子顕微鏡観察において、輪郭が他の粒子の輪郭と重なっていない 粒子を 100個選択し、そのそれぞれの測定面積 Sから、 2 X (S/3. 14) · 5により求 めた円相当粒子径について、該 100個の粒子の平均値を求め、それを平均円相当 粒子径 D mとしたとき、 D ZD 1S 1より大きぐ 2以下、
S L S
(2)ラマンスペクトルにおいて、 1580cm_1付近の最大ピークの強度 I と、 1360cm—
A
1付近の最大ピークの強度 I
Bの強度比 I
B Λ Aをラマン R値としたとき、ラマン R値力 0
. 04以上、 0. 14以下、
を満たすことを特徴とする非水系二次電池用黒鉛質複合粒子を提供するものである
[0008] また本発明は、上記非水系二次電池用黒鉛質複合粒子 (A)、及び要すれば、天 然黒鉛、人造黒鉛、非晶質被覆黒鉛、樹脂被覆黒鉛及び非晶質炭素よりなる群カゝら 選ばれる 1種以上の炭素質活物質粒子 (B)を含有することを特徴とする非水系二次 電池用負極活物質材料を提供するものである。
[0009] 更にまた本発明は、集電体及びその上に形成された活物質層を有する負極であつ て、該活物質層が、少なくとも上記非水系二次電池用負極活物質材料を用いて形成 されていることを特徴とする非水系二次電池用負極を提供するものである。
[0010] また、リチウムイオンを吸蔵'放出可能な正極及び負極、並びに電解質を有する非 水系二次電池であって、該負極が、上記非水系二次電池用負極であることを特徴と する非水系二次電池を提供するものである。
発明の効果
[0011] 本発明の非水系二次電池用黒鉛質複合粒子を用いると、負極の集電体上の活物 質層を高密度化した場合においても、初期サイクル時の充放電不可逆容量が小さく 、高容量の非水系二次電池を提供することができる。
発明を実施するための最良の形態
[0012] 以下に本発明を実施するための最良の形態を詳細に説明するが、以下に記載す る発明構成要件の説明は、本発明の実施態様の一例 (代表例)であり、本発明はそ の要旨を超えな 、限り、これらの形態に特定されるものではな 、。
[0013] 本発明において、用語は以下のように定義、使用する。すなわち、本発明の黒鉛質 複合粒子において、炭素質粒子が焼成された部分を黒鉛質粒子ということがある。本 発明の炭素質複合粒子、それに要すれば炭素質活物質粒子が混合されてなるもの をも含めて負極活物質材料と定義する。少なくとも負極活物質材料と結着剤を用い て活物質層を得、負極用の集電体上に少なくとも活物質層を有しているものを極板 又は負極と定義し、少なくとも負極と正極と電解質を有して非水系二次電池が構成さ れる。
[0014] [1]非水系二次電池用負極活物質材料
(A)黒鉛質複合粒子の構成
本発明の負極活物質材料は、本発明の黒鉛質複合粒子を主成分とする。そして本 発明の黒鉛質複合粒子は、例えば、炭素質粒子と黒鉛ィ匕可能なバインダー (以下単 に、「バインダー」ということがある)とを捏合し、捏合物の成形体を、粉砕後に黒鉛ィ匕 又は黒鉛ィ匕後に粉砕することにより得られる。すなわち、この場合、形成された黒鉛 質複合粒子の構成は、炭素質粒子が焼成された黒鉛質粒子の少なくとも一部 (一部 又は全て)に、ノインダ一が焼成されたもの(これも黒鉛質である)が結合した構造を 有するものである。また、本発明の黒鉛質複合粒子は、バインダーが焼成されたもの により、黒鉛質粒子同士がある程度の割合で結合しているものも含む(以下これらも 含めて、「本発明の黒鉛質複合粒子」という)。
[0015] 本発明の黒鉛質複合粒子の原料である炭素質粒子としては、焼成によって黒鉛ィ匕 が可能な炭素の粒子であれば特に限定はないが、天然黒鉛、人造黒鉛、球形化黒 鉛、コータス粉、ニードルコータス粉、榭脂の炭化物粉等が挙げられる。これらのうち
、活物質層作成時に活物質層の密度を上げ易いという点から、天然黒鉛を用いるこ とが好ま 、。中でも黒鉛を球形ィ匕処理した球形ィ匕黒鉛が特に好ま 、。
[0016] 黒鉛ィ匕可能なバインダーとしては、焼成によって黒鉛ィ匕が可能な炭素質であれば 特に限定はなぐタール、軟ピッチ力 硬ピッチまでの石油系及び石炭系の縮合多 環芳香族類が好ましく用いられる。具体的には、含浸ピッチ、コールタールピッチ、石 炭液化油等の石炭系重質油、ァスフアルテン等の直留系重質油、エチレンヘビーェ ンドタール等の分解系重質油等の石油系重質油等が挙げられる。
[0017] (B)黒鉛質複合粒子の物性
本発明の黒鉛質複合粒子は、少なくとも以下の要件(1)及び要件 (2)を満たすもの である。
(a)要件 (1)
(ィ)レーザー散乱式粒度分布測定により求めた体積基準メジアン径の定義 界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、ツイーン 2 0 (登録商標))の 0. 2質量%水溶液 10mLに、黒鉛質複合粒子 lOmgを懸濁させ、 市販のレーザー回折 Z散乱式粒度分布測定装置 (例として、ホリバ製作所製 LA— 9 20)に導入し、 28kHzの超音波を出力 60Wで 1分間照射した後、測定装置における 体積基準メジアン径として測定したものを、本発明における体積基準メジアン径 D μ
L
mと定義する。
[0018] (口)走査型電子顕微鏡 (以下、「SEM」と略記する)観察により求めた平均円相当 粒子径の定義
SEM観察にぉ 、て、輪郭が他の粒子の輪郭と重なって!/、な!/、黒鉛質複合粒子を 100個選択し、そのそれぞれの測定面積 Sから、 2 X (S/3. 14) °· 5により求めた円 相当粒子径について、該 100個の粒子の平均値を求め、それを本発明における平 均円相当粒子径 D mと定義する。粒子の輪郭が他の粒子の輪郭と重なっているも
S
のの中には、 2個以上の炭素質粒子が結合して黒鉛ィ匕可能なノインダーと共に焼成 され、 1個の黒鉛質複合粒子を形成している場合もあるので、それらは上記 100個と して選択されない。すなわち、上記 100個は全て 1個の炭素質粒子がバインダーと共 に焼成されたものである。このような黒鉛質複合粒子 100個の選択は無作為に行わ れる。また、測定面積 Sは、 SEM観察において真上カゝら黒鉛質複合粒子を観察した 時の粒子の輪郭で囲まれた部分の面積である。
[0019] (ハ)範囲
本発明においては、 D ZDの上限は 2以下であることが必須である。好ましくは 1.
し S
5以下、特に好ましくは 1. 4以下、更に好ましくは 1. 3以下である。 D /Ό力この上
し S 限を上回ると、負極活物質材料として用いた場合、活物質層塗工時に、すじひきが 発生しやすくなり、負極作成時の歩留まりが悪くなる場合がある。
[0020] D /Όの下限は 1より大きいことが必須である。好ましくは 1. 15以上、特に好まし
し S
くは 1. 2以上である。 D ZD力 の下限を下回ると、初期サイクルにおける充放電
し S
不可逆容量が大きくなる場合がある。
[0021] ここで、 D /Όは、二つの異なる方法により得られた粒子径の比であり、粒子の形
L S
状に関係する数値である。この数値が 1 < D ZD ≤ 2を満たすことが必須であるとい
し S
うことは、核となる粒子である炭素質粒子由来の黒鉛質粒子が、ある特定の割合で最 終黒鉛質複合粒子中で結合していることを意味する。すなわち、炭素質粒子由来の 黒鉛質粒子が 2個以上結合してバインダーと共に焼成されて黒鉛質複合粒子を形成 している場合の Dは、黒鉛質粒子 1個ずつを含んでいる黒鉛質複合粒子の Dより一 し し 般に大きくなる。一方、 Dについては、上記した通り、黒鉛質粒子が 2個以上結合し
S
た黒鉛質複合粒子は測定される 100個の粒子として選択されない。従って、 D ZD
し S の数値範囲で、その結合割合を規定することができる。
[0022] Dは、 D /Όが上記範囲である限り限定されないが、通常 5 μ m以上、好ましくは
L L S
10 μ m以上、より好ましくは 13 μ m以上である。また、通常 40 μ m以下、好ましくは 3 0 /z m以下、より好ましくは 25 m以下である。 Dが大きすぎると、負極活物質材料と
して用いた場合、活物質層塗工時にすじひきが発生しやすくなり、負極作成時の歩 留まりが悪くなる場合がある。一方、 D力 、さすぎると、初期サイクルにおける充放電
不可逆容量が大きくなる場合がある。
[0023] Dは、 D /Όが上記範囲である限り限定されないが、通常 5 μ m以上、好ましくは
S L S
10 μ m以上、より好ましくは 13 μ m以上である。また、通常 40 μ m以下、好ましくは 3 O /z m以下、より好ましくは 20 m以下である。 Dが大きすぎると、負極活物質材料と
S
して用いた場合、活物質層塗工時にすじひきが発生しやすくなり、負極作成時の歩 留まりが悪くなる場合がある。一方、 D力 、さすぎると、初期サイクルにおける充放電
S
不可逆容量が大きくなる場合がある。
[0024] (b)要件(2)
(ィ)ラマン R値の定義
後述するようなラマン測定において得られたラマンスペクトルにおいて、 1580cm_ 1 付近の最大ピークの強度 I と、 1360cm_ 1付近の最大ピークの強度 Iの強度比 I /\
A B B
をラマン R値と定義する。
A
[0025] ラマン測定は、ラマン分光器 (例えば、 日本分光社製ラマン分光器)を用い、測定 対象粒子を測定セル内へ自然落下させることで試料充填し、測定セル内にアルゴン イオンレーザー光を照射しながら、測定セルをこのレーザー光と垂直な面内で回転さ せながら測定を行なう。測定条件は以下の通りである。
アルゴンイオンレーザー光の波長 :514. 5nm
試料上のレーザーパワー :15〜25mW
分解能 :4cm_ 1
測定範囲 :1100cm―1〜 1730cm_ 1
ピーク強度測定、ピーク半値幅測定:バックグラウンド処理、スムージング処理
(単純平均、コンボリューシヨン 5ポイント)
[0026] 1580cm_ 1付近の最大ピークは、黒鉛結晶質構造に由来するピークであり、 1360 cm—1付近の最大ピークは、構造欠陥により対称性の低下した炭素原子に由来する ピークである。
[0027] (口)範囲
本発明においては、ラマン R値は 0. 14以下が必須である。好ましくは 0. 13以下、 特に好ましくは 0. 12以下である。ラマン R値がこの上限を上回ると、初期サイクルに おける充放電不可逆容量が大きくなる場合がある。また、ラマン R値は 0. 04以上が 必須である。性能上は、ラマン R値は低い方が好ましいが、ラマン R値 0. 04未満のも のを得ようとすると歩留まりが悪ィ匕し、著しく生産性が悪くなる場合がある。
[0028] また、本発明の黒鉛質複合粒子における 1580cm_1付近の最大ピークのラマン半 値幅は特に制限されないが、通常 18cm_1以上、好ましくは 19cm_ 1以上、また、通 常 23cm_1以下、好ましくは 21cm_ 1以下の範囲である。ラマン半値幅がこの範囲を 下回ると、粒子表面の結晶性が高くなり過ぎて、高密度化した場合に集電体の面と 平行方向に結晶が配向し易くなり、負荷特性の低下を招く場合がある。一方、この範 囲を上回ると、粒子表面の結晶が乱れ、電解液との反応性が増し、効率の低下ゃガ ス発生の増加を招く場合がある。
[0029] 本発明の黒鉛質複合粒子は、要件(1) D ZD力^より大きぐ 2以下、かつ、要件(
し S
2)ラマン R値が 0. 04以上 0. 14以下、を満たすことが必須である。黒鉛質粒子が 2 個以上結合した黒鉛質複合粒子の割合を減少させるために、焼成後の粉砕を過度 に行えば、 D /Όを容易に 2以下にすることはできる力 それによつてラマン R値が 0
し S
. 14以上になった場合には、充放電不可逆容量が大きくなつてしまう場合があり、そ の場合には本発明の効果が得られ難いこともある。
[0030] 要件(1) D ZD力^より大きぐ 2以下、かつ、要件(2)ラマン R値が 0. 04以上 0.
し S
14以下を満たした黒鉛質複合粒子の製造方法は、要件(1)と要件 (2)を結果として 満たして!/ヽれば特に限定はな!/ヽ。要件(1)と要件 (2)を満たす本発明の黒鉛質複合 粒子の製造方法については、後の製造方法の項で詳述するが、原料である炭素質 粒子についての工夫、炭素質粒子とバインダーを混練 (捏合)する際の工夫等で、特 定の個数割合で適度に結着した黒鉛質複合粒子を得ることができ、要件(1)と要件( 2)を満たすことができる。例えば、上記粉体物性を示す黒鉛質複合粒子を製造する 方法の一例として、特定の球形ィ匕天然黒鉛をバインダー (ピッチ)と捏合、成形し、焼 成、黒鉛ィヒする方法等が挙げられる。
[0031] (c)平均円形度
(ィ)平均円形度の定義 平均円形度は、測定対象 (黒鉛質複合粒子) 0. 2gを界面活性剤であるポリオキシ エチレン(20)ソルビタンモノラウレートの 0. 2体積0 /0水溶液 50mLに混合し、フロー 式粒子像分析装置 (例えば、シスメッタスインダストリアル社製「FPIA— 2000」 )を用 い、 28kHzの超音波を出力 60Wで 1分間照射した後、検出範囲を 0. 6 μ m~400 μ mに指定し、粒径 10 μ m〜40 μ mの範囲の粒子について測定した下記式で与え られる値として定義される。
平均円形度 =粒子投影面積と同じ面積の円の周長 Z粒子投影像の周長 [0032] (口)範囲
本発明においては、平均円形度は特に制限されないが、好ましくは 0. 8以上、特に 好ましくは 0. 85以上、更に好ましくは 0. 9以上である。また、好ましくは 0. 98以下、 特に好ましくは 0. 95以下である。平均円形度がこの範囲を下回ると、粒子間の空隙 が小さくなり、負荷特性が低下する場合がある。一方、平均円形度がこの範囲を上回 る値とするためには、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、剪断力 等の機械的作用を繰り返し粒子に与える球形化処理を強く又は長時間行なう必要性 があり、球形ィ匕時に副生する微粉を多く取り除かなければならず、製造コストが高くな る場合ちある。
[0033] (d)タップ密度
(ィ)タップ密度の定義
本発明において、タップ密度は、粉体密度測定器((株)セイシン企業社製「タップ デンサ一 KYT— 4000」)を用い、直径 1. 6cm、体積容量 20cm3の円筒状タップセ ルに、目開き 300 mの篩を通して、黒鉛質複合粒子を落下させて、セルに満杯に 充填した後、ストローク長 10mmのタップを 1000回行って、その時のタップ密度を測 定した値として定義される。
[0034] (口)範囲
本発明の黒鉛質複合粒子のタップ密度は特に限定はないが、 0. 7gZcm3以上が 好ましぐ 0. 75gZcm3以上が特に好ましぐ 0. 8gZcm3以上が更に好ましぐ更に 特に 0. 9gZcm3以上であればより好ましい。また、 1. 5gZcm3以下が好ましぐ 1. 3gZcm3以下が特に好ましい。タップ密度が低すぎると、負極の製造に際して集電 体に塗布する負極活物質材料のスラリー濃度を低下させる必要があり、塗膜の密度 が小さくなり、プレスしたとき黒鉛質複合粒子が破壊されやすぐ電池性能が低下す る場合がある。逆に、タップ密度が高すぎると、塗工性が悪ィ匕するため黒鉛質複合粒 子の形状と粒径分布の調整に更なる工程が必要で、収率が低下し、かつコストが上 昇する場合がある。
[0035] (e)比表面積
本発明の黒鉛質複合粒子の BET法で測定した比表面積については特に限定はな いが、通常 0. 2m2Zg以上、好ましくは 0. 3m2Zg以上である。また、通常 8m2Zg以 下、好ましくは 6m2Zg以下、特に好ましくは 4m2Zg以下である。比表面積がこの範 囲を下回ると、出力特性が低下する場合がある。一方、比表面積力この範囲を上回 ると、初期不可逆容量が大きくなり、サイクル特性が悪ィ匕する場合がある。
[0036] なお、本発明にお 、て、比表面積は次の方法で測定され定義される。すなわち、大 倉理研社製比表面積測定装置「AMS8000」を用いて、窒素ガス吸着流通法により BET1点法にて測定する。具体的には、試料 (黒鉛質複合粒子) 0. 4gをセルに充填 し、 350°Cに加熱して前処理を行った後、液体窒素温度まで冷却して、窒素 30%、 He70%のガスを飽和吸着させ、その後室温まで加熱して脱着したガス量を計測し、 得られた結果から、通常の BET法により比表面積を算出する。
[0037] (f)極板上黒鉛結晶配向比
本発明の黒鉛質複合粒子を用いて、下記の極板作製方法 Aにより作製された所定 極板について、下記の方法で測定した極板上黒鉛結晶配向比 I ZI については
110 004 特に限定はないが、通常 0. 08以上、好ましくは 0. 09以上、特に好ましくは 0. 10以 上、また、通常 0. 20以下、好ましくは 0. 18以下、特に好ましくは 0. 16以下である。 配向比 I ZI
110 004が上記範囲を下回ると、電池を作製したときの電池充電時の電極膨 張が大きくなり、電極の単位体積当たりの電池容量を大きくし難ぐ更にはサイクル試 験中に膨張収縮により活物質の脱落等によりサイクル特性が低下しやすい。一方、 配向比 I Zi
110 004が上記範囲を上回ると、プレス後の電極の充填密度を上げ難くなる 場合もある。
[0038] ここで、極板上黒鉛結晶配向比 I ZI とは、電極の厚み方向に対する、黒鉛結 晶六角網面の配向の程度を表す指標である。配向比 I Zi が大きいほど、粒子
110 004
の黒鉛結晶六角網面の方向が揃っていない状態を表す。
[0039] [極板作製方法 A]
黒鉛質複合粒子 100重量部に、スチレンブタジエンゴムの水性ディスパージヨンを 固形分として 2重量部、カルボキシメチルセルロース(重量平均分子量 25万〜 30万) 水溶液を固形分として 1重量部加えてスラリーとし、このスラリーを厚さ 18 mの銅箔 よりなる集電体上に乾燥後重量として 10±0. lmgZcm2付着するようにドクターブレ ードを用いて塗布して乾燥させた後に、ロールプレス (カレンダー)を用いて、活物質 層が 1. 73±0. 03g/cm3になるようにプレス荷重を調整し、 1回のプレスで圧密す る。
[0040] [極板上黒鉛結晶配向比の測定方法]
上記極板作製方法 Aで調製した極板について、 X線回折により極板上の黒鉛の(1 10)面と(004)面とのチャートを測定し、測定したチャートについて、プロファイル関 数として非対称ピアソン VIIを用いて、フィッティングすることによりピーク分離を行ない 、(110)面と (004)面のピークの積分強度を算出する。得られた積分強度から、「(1 10)面積分強度 Z (004)面積分強度」で表わされる比率を算出し、極板上黒鉛結晶 配向比と定義する。
[0041] ここでの X線回折測定条件は次の通りである。なお、「2 Θ」は回折角を示す。
ターゲット: Cu (Κ α線)グラフアイトモノクロメーター
スリット :発散スリット = 1度、受光スリット =0. 1mm、散乱スリット = 1度
測定範囲及びステップ角度 Z計測時間:
(110)面: 76. 5度≤2 0≤78. 5度 0. 01度 Z3秒
(004)面: 53. 5度≤2 0≤56. 0度 0. 01度 Z3秒
試料調製 :ガラス板に 0. 1mm厚さの両面テープで所定極板を固定
[0042] (g)プレス荷重
前記の極板作製方法 Aにより、活物質層の密度が 1. 73±0. 03gZcm3である極 板を作製する際に必要とされるプレス荷重の範囲については特に限定はないが、長 さ 5cmあたりに換算して、好ましくは 200kgfZ5cm以上、特に好ましくは 250kgfZ5 cm以上、更に好ましくは 300kgfZ5cm以上であり、また、通常 1200kgfZ5cm以 下、好ましくは 1000kgfZ5cm以下、特に好ましくは 850kgfZ5cm以下であるよう な黒鉛質複合粒子が望ましい。すなわち、上記範囲のプレス荷重に調整することに より、活物質層の密度が 1. 73±0. 03gZcm3の極板を作製できるような黒鉛質複 合粒子が、本発明の黒鉛質複合粒子として好ましい。
[0043] プレス荷重がこの下限を下回るような黒鉛質複合粒子では、その黒鉛質複合粒子 はつぶれやすぐ極板の活物質層の密度を制御しにくぐ電極にした際に浸液性が 悪ぐ浸液速度が小さくなる場合がある。更に、負極材料がつぶれてリチウムイオンの パスを塞ぐ場合があり、レート特性が低下する場合がある。一方、プレス荷重がこの上 限を上回るような黒鉛質複合粒子では、活物質層の極板力もの剥離が大きくなる傾 向がある。
[0044] 上記範囲のプレス荷重を有する黒鉛質複合粒子の製造方法は特に限定はないが 、炭素質粒子種、バインダー量、黒鉛ィ匕度等を工夫することによって得ることができる
[0045] 上記本発明の非水系二次電池用黒鉛質複合粒子 (以下、「黒鉛質複合粒子 (A)」 と略記する場合がある)は、単独で非水系二次電池用負極活物質材料とすることもで きるが、天然黒鉛、人造黒鉛、非晶質被覆黒鉛、榭脂被覆黒鉛及び非晶質炭素より なる群から選ばれる 1種以上の炭素質活物質粒子 (以下、「炭素質活物質粒子 (B)」 と略記する)を更に含有させて非水系二次電池用負極活物質材料とすることも好まし い。
[0046] 炭素質活物質粒子 (B)を適宜選択して混合することによって、導電性の向上による サイクル特性の向上や充電受入性の向上、不可逆容量の低減、また、プレス性の向 上が可能となる。炭素質活物質粒子 (B)を混合する場合の量の下限は、負極活物質 材料全体に対して、 0. 1質量%以上、好ましくは 0. 5質量%以上、より好ましくは 0. 6質量%以上であり、上限は 80質量%以下、好ましくは 50質量%以下、より好ましく は 40質量%以下の範囲である。この範囲を下回ると、導電性向上の効果が得にくい 場合がある。また上回ると、初期不可逆容量の増大を招く場合がある。
[0047] 炭素質活物質粒子 (B)のうちで、天然黒鉛としては、例えば、高純度化した鱗片状 黒鉛や球形ィ匕した黒鉛を用いることができる。天然黒鉛の体積基準平均粒径は、通 常 8 μ m以上、好ましく ίま 12 μ m以上、また、通常 60 μ m以下、好ましく ίま 40 μ m以 下の範囲である。天然黒鉛の BET比表面積は、通常 4m2Zg以上、好ましくは 4. 5 m2Zg以上、通常 7m2Zg以下、好ましくは 5. 5m2Zg以下の範囲である。
[0048] 人造黒鉛としては、例えば、コータス粉や天然黒鉛をバインダーで複合ィ匕した粒子 、単一の黒鉛前駆体粒子を粉状のまま焼成、黒鉛ィ匕した粒子等を用いることができる
[0049] 非晶質被覆黒鉛としては、例えば、天然黒鉛や人造黒鉛に非晶質前駆体を被覆、 焼成した粒子や、天然黒鉛や人造黒鉛に非晶質を CVDにより被覆した粒子を用い ることがでさる。
[0050] 榭脂被覆黒鉛としては、例えば、天然黒鉛や人造黒鉛に高分子材料を被覆、乾燥 して得た粒子等を用いることができ、非晶質炭素としては、例えば、バルクメソフエ一 ズを焼成した粒子や、炭素前駆体を不融化処理し焼成した粒子を用いることができる
[0051] このうち、本発明の黒鉛質複合粒子に、炭素質活物質粒子 (B)として配合して用い る場合、特に天然黒鉛が、高容量が維持されるので好ましい。
[0052] 黒鉛質複合粒子 (A)に炭素質活物質粒子 (B)を混合して負極活物質材料とする 場合、炭素質活物質粒子 (B)の混合割合は、負極活物質材料全体に対して、好まし くは 5質量%以上、特に好ましくは 15%以上、また、通常 95質量%以下、好ましくは 80質量%以下の範囲である。炭素質活物質粒子 (B)の混合割合が前記範囲を下回 ると、炭素質活物質粒子 (B)を添加した上記の効果が現れ難い場合もある。一方、 前記範囲を上回ると、黒鉛質複合粒子 (A)の特性が得られ難 、場合もある。
[0053] 本発明の負極活物質材料は、上記炭素質活物質粒子の物性の項で記載したもの と同様に測定したプレス荷重力 5cmあたりに換算して、 200kgfZ5cm以上が好ま しぐ 250kgfZ5cm以上が特に好ましぐ 300kgfZ5cm以上が更に好ましい。また 、通常 1200kgfZ5cm以下、好ましくは 1000kgfZ5cm以下、特に好ましくは 850k gfZ5cm以下である。
[0054] すなわち、負極活物質材料を 100重量部、スチレンブタジエンゴムの水分散液を固 形分として 2重量部及び重量平均分子量 25万〜 30万のカルボキシメチルセルロー スの水溶液を固形分として 1重量部を配合して水系スラリーとし、この水系スラリーを 厚さ 18 /z mの銅箔上に、乾燥膜厚 10±0. lmgZcm2となるようドクターブレードを 用いて塗布して乾燥させた後に、直径 20cmのローラを有するロールプレスを用いて 、金属製のローラ 2つの間に挟んで 1回のプレスで、密度 1. 73 ±0. 03gZcm3とな るようプレス荷重を調整して幅 5cmの活物質層を形成させるときの該プレス荷重が、 上記範囲となることが好まし 、。
[0055] プレス荷重がこの下限を下回るような負極活物質材料では、粒子がつぶれやすぐ 極板の活物質層の密度を制御しにくぐ電極にした際に浸液性が悪ぐ浸液速度が 小さくなる場合がある。更に、つぶれてリチウムイオンのパスを塞ぐ場合があり、レート 特性が低下する場合がある。一方、プレス荷重がこの上限を上回るような負極活物質 材料では、活物質層の極板力もの剥離が大きくなる傾向があり、更に高い能力のプ レス装置が必要となる場合がある。
[0056] 上記範囲のプレス荷重を有する負極活物質材料の調製方法は特に限定はないが 、黒鉛質複合粒子 (A)については、炭素質粒子種、バインダー量、黒鉛化度等をェ 夫すること〖こよって、また、黒鉛質複合粒子 (A)と炭素質活物質粒子 (B)の混合比を 、 (A) (B)両粒子の柔らかさの違いに応じて最適化することによって得ることができる
[0057] 以下に製造方法について説明する。本発明の黒鉛質複合粒子は、原料である炭 素質粒子、バインダー等を混合し、必要に応じて成形、脱揮発成分焼成、黒鉛化、 粉砕、分級を行うことにより製造される。前述の物性を満足する本発明の黒鉛質複合 粒子を製造するためには、以下の工夫点を組み合わせることが重要である。
[0058] 原料についての工夫点として、例えば、炭素質粒子の主成分として平均円形度の 高 ヽ球形化黒鉛を選択することが挙げられる。
[0059] また、炭素質粒子とバインダーを捏合するに際し、バインダーであるピッチ等の種類 や量を最適化すると 、つた工夫や粉砕時の強度を最適化する、粉砕時に過度の衝 撃を与えない等といった工夫で適度に部分的に結着した黒鉛質複合粒子を得ること が出来る。 [0060] 以下、本発明の黒鉛質複合粒子等の好適な製造方法について詳細に説明する。
[0061] まず、炭素質粒子及びバインダーを加熱しながら捏合する。この際、所望により黒 鉛ィ匕触媒を加えてもよい。好適な炭素質粒子、バインダー及び黒鉛化触媒は次の通 りである。
[0062] [炭素質粒子]
原料としての一次粒子である炭素質粒子の主成分としては、塗工性を上げるためタ ップ密度の高いものを得るという観点から、球形度の高いものが好ましぐ球形化天 然黒鉛が特に好ましい。通常、 X線広角回折法による(002)面の面間隔 (d )が 0.
002
340nm以下を示すような結晶性の高い天然黒鉛を原料とするものが例に挙げられる 。具体的には天然黒鉛若しくはこれらに機械的粉砕品を加えて円形度を向上させた もの、及び Z又はこれらを 1000°C以上で熱処理したものが好ましい。
[0063] 炭素質粒子のレーザー回折 Z散乱式粒径分布測定による体積基準粒径分布のメ ジアン径は、特に制限はないが、 5 μ m以上、中でも 6 μ m以上、特に 8 μ m以上、 4 0 μ m以下、中でも 35 μ m以下、特に 30 μ m以下が好ましい。炭素質粒子のメジァ ン径カこの下限を下回ると、コストアップとなりやすぐ上限を上回ると塗工時の不良 発生の原因となりやすい。炭素質粒子のメジアン径は、前述の負極材料のメジアン径 と同様にして測定することができる。
[0064] 炭素質粒子の平均粒径は、目的とする黒鉛質複合粒子の平均粒径より小さ!、もの を用いるのが好ましぐ通常目的とする黒鉛質複合粒子の等倍以下、下限としては目 的とする黒鉛質複合粒子の平均粒径の 2Z3以上、好ましくは 3Z4以上のものが用 いられる。
[0065] 本発明の黒鉛質複合粒子の原料としての炭素質粒子は、球形ィ匕処理を経たものが 特に好ましい。球形ィ匕処理に用いる装置としては、例えば、衝撃力を主体に粒子の 相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装 置を用いることができる。具体的には、ケーシング内部に多数のブレードを設置した ローターを有し、そのローターが高速回転することによって、内部に導入された炭素 材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう 装置が好ましい。また、炭素材料を循環させることによって機械的作用を繰り返して 与える機構を有するものであるのが好ましい。好ましい装置として、例えば、ハイプリ ダイゼーシヨンシステム (奈良機械製作所社製)、クリプトロン (アーステク-力社製)、 CFミル (宇部興産社製)、メカノフュージョンシステム(ホソカワミクロン社製)、シータコ ンポーザ (徳寿工作所社製)等が挙げられる。これらの中で、奈良機械製作所社製の ハイブリダィゼーシヨンシステムが好ましい。この装置を用いて処理する場合は、回転 するローターの周速度を 30〜100mZ秒にするのが好ましぐ 40〜: LOOmZ秒にす るのがより好ましぐ 50〜: LOOmZ秒にするのが更に好ましい。また、処理は、単に炭 素質物を通過させるだけでも可能であるが、 30秒以上装置内を循環又は滞留させて 処理するのが好ましぐ 1分以上装置内を循環又は滞留させて処理するのがより好ま しい。
[0066] 炭素質粒子の平均円形度は、通常 0. 85以上、好ましくは 0. 9以上、また、通常 1.
0以下、好ましくは 0. 96以下の範囲である。炭素質粒子の平均円形度がこの下限を 下回ると、配向度が下がりやすぐ上限を上回るとコストアップとなりやすい。炭素質 粒子の平均円形度は、前述の負極材料の平均円形度と同様にして測定したものを 用いる。
[0067] 炭素質粒子のタップ密度は、通常 0. 8gZcm3以上、好ましくは 0. 9gZcm3以上、 更に好ましくは 0. 95gZcm3以上、また、通常 1. 35gZcm3以下、好ましくは 1. 2g Zcm3以下の範囲である。炭素質粒子のタップ密度がこの範囲を下回ると、活物質と した場合の充填密度が上がり難ぐ高容量の電池が得られない場合がある。一方、こ の範囲を上回る炭素質粒子を歩留まりよく得るのが困難となり、コストアップにつなが る場合がある。なお、タップ密度の測定方法は二次電池用黒鉛質複合粒子の記載と 同様である。
[0068] [バインダー]
バインダーとしては、具体的には、含浸ピッチ、バインダーピッチ、コールタールピッ チ、石炭液化油等の石炭系重質油、ァスフアルテン等の直留系重質油、エチレンへ ビーエンドタール等の分解系重質油等の石油系重質油等が挙げられる。
[0069] ノインダ一中に含まれるキノリン不溶成分は通常 0〜: LO質量%である力 少なけれ ば少な!/、ほど固さや電池にした時の容量の点で好まし 、。バインダーのキノリン不溶 成分の含有量が多すぎると、得られる黒鉛質複合粒子の強度が高くなり、集電体に 塗布された活物質層をプレスしても粒子が変形せず、高密度化するのが困難となる 傾向があり、また、容量も低下する場合がある。
[0070] ノインダ一は、炭化 ·黒鉛ィ匕により得られる黒鉛ィ匕処理を経た黒鉛質複合粒子に占 めるバインダー由来のものの比率が通常 5質量%以上、好ましくは 10質量%以上と なるように用いる。その上限としては、この比率が通常 60質量%以下、好ましくは 40 質量%以下、更に好ましくは 30質量%以下となる量である。バインダー量が多すぎる と、バインダー由来の非晶質部分が最終生成物中で多くなるため、電池にしたときの 電池容量が低下する場合がある。また、得られる黒鉛質複合粒子が堅くなるため、集 電体に塗布された活物質層をプレスした際、バインダー由来部分ではなぐ炭素質 粒子由来の黒鉛質粒子そのものの破壊が起きやすくなる。一方、バインダー量は少 ない方が電池特性は良好であるが、少なすぎると、捏合後の成形が困難となり、製造 コストアップにつながる場合がある。
[0071] 黒鉛質複合粒子中のバインダー量は、捏合以前の段階で添加するバインダーの量 によってコントロールする。例え «JIS K2270記載の方法で求めたバインダーの残 炭率が p%である場合には所望の量の ΙΟθΖρ倍のノインダーを添加することとなる
[0072] なお、ピッチ、タール等のバインダー添加の際の工夫としては、極力、低温、短時間 で均一に分散させることが初期不可逆容量低減、プレス荷重低減のために好まし!/ヽ 。分散を低温、短時間で行うためには炭素質粒子が壊れない程度に攪拌を強めれ ばよい。
[0073] [黒鉛化触媒]
充放電容量の増加とプレス性の改良のために、炭素質粒子とバインダーの混合に 際し、黒鉛ィ匕触媒を添加しても良い。黒鉛化触媒としては、鉄、ニッケル、チタン、ケ ィ素、ホウ素等の金属及びこれらの炭化物、酸化物、窒化物等の化合物が挙げられ る。なかでも、ケィ素、ケィ素化合物、鉄、鉄化合物が好ましぐケィ素化合物のなか では炭化珪素、鉄化合物のなかでは酸ィ匕鉄が特に好ま 、。
[0074] 黒鉛化触媒としてケィ素やケィ素化合物を用いた場合、加熱により生成する炭化ケ ィ素が 2800°C以上の温度ですベて熱分解して結晶性の極めて良好な黒鉛を成長 させ、かつケィ素が揮散する時に黒鉛結晶間に細孔が形成されるので、粒子内部の リチウムイオンの電荷移動反応と拡散とを助長し電池性能を向上させることができる。 また、黒鉛化触媒として鉄又はその化合物を用いた場合、炭素の触媒への溶解、析 出の機構により結晶性の良好な黒鉛を成長させ、ケィ素と同様な効果を発現すること ができる。
[0075] これらの黒鉛化触媒の添加量は、原料としての炭素質一次粒子に対して通常 30質 量%以下、好ましくは 20質量%以下、さらに好ましくは 10質量%以下、特に好ましく は 5質量%以下である。黒鉛化触媒が多すぎると、黒鉛化が進みすぎ、リチウムィォ ン二次電池製造時の特性、特に浸液性が充分でな 、と 、つた問題が生じる場合があ る。同時に、黒鉛質複合粒子内に細孔を生成させるためか、粒子の強度が低下し、 その結果極板作製時のプレス工程にぉ 、て表面が平滑ィ匕し、イオンの移動を阻害 する場合もある。
[0076] 一方、黒鉛化触媒が少なすぎると、黒鉛化が不十分で非水系二次電池にした時の 充放電容量の低下の問題があり、また、極板作製時のプレス工程において高圧力を 必要とし高密度化するのが困難となる場合もある。更に、黒鉛質複合粒子内に適量 の細孔が存在しないため力、粒子の強度が高くなりすぎ、集電体に塗布された活物 質層を所定の嵩密度にプレス成形するときに高圧力を必要とし、負極活物質層を高 密度化するのが困難となる場合がある。
[0077] [捏合 (混合) ]
炭素質粒子、ノインダー及び所望により添加された黒鉛ィ匕触媒等の原料は、まず、 加熱下で捏合される。これにより、炭素質粒子及び捏合温度では溶融しない原料に 液状のバインダーが添着された状態となる。この場合、捏合機に全原料を仕込んで 捏合と昇温を同時に行っても良いし、捏合機にバインダー以外の成分を仕込んで攪 拌状態で加熱し、捏合温度まで温度が上がった後に常温又は加硫溶融状態のバイ ンダーを仕込んでも良い。
[0078] 加熱温度は、バインダーの軟化点以上であり、加熱温度が低すぎると、バインダー の粘度が高くなり、混合が困難となるので、通常軟ィ匕点より 10°C以上高い温度、好ま しくは軟ィ匕点より 20°C以上高 、温度で行われる。加熱温度が高すぎるとバインダー の揮発と重縮合によって混合系の粘度が高くなりすぎるので、通常 300°C以下、好ま しくは 250°C以下である。
[0079] 捏合機は撹拌翼をもつ機種が好ましぐ撹拌翼は Z型、マチスケータ型といった汎 用的なものを用いることができる。捏合機に投入する原料の量は、通常混合機容積 の 10体積%以上、好ましくは 15体積%以上で、 50体積%以下、好ましくは 30体積 %以下である。捏合時間は 5分以上必要であり、最長でも揮発分の揮散による大きな 粘性の変化を来たす時間までで、通常は 30〜120分である。捏合機は捏合に先立 ち捏合温度まで予熱しておくことが好ま U、。
[0080] [成形]
得られた捏合物は、そのまま、揮発成分 (以下、「VM」と略記する)の除去と炭化を 目的とする脱 VM焼成工程に供してもよいが、ハンドリングしやすいように、成形して 力も脱 VM焼成工程に供することが好ま 、。
[0081] 成形方法は形状を保持することが可能であれば特に制限はなぐ押し出し成形、金 型成形、静水圧成形等を採用することができる。このうち、成形体内で粒子が配向し 易い押し出し成形や、粒子の配向はランダムに保たれるが生産性に問題がある静水 圧成形より、比較的操作が容易であり、また、捏合でランダムな配向となった構造を 破壊せずに成形体を得ることができる金型成形が好ましい。
[0082] 成形温度は、室温 (冷間)、加熱下 (熱間、バインダーの軟ィヒ点以上の温度)のどち らでもよい。冷間で成形する場合は、成形性の向上と成形体の均一性を得るために、 捏合後冷却された混合物を予め最大寸法が lmm以下に粗砕することが望ましい。 成形体の形状、大きさは特に制限は無いが、熱間成形では、成形体が大きすぎると 成形に先立つ均一な予熱を行うのに時間が力かる問題があるので、通常最大寸法 で 150cm程度以下の大きさとすることが好ましい。
[0083] 成形圧力は、圧力が高すぎると成形体の細孔を通しての脱揮発成分除去 (脱 VM) が困難となり、かつ真円ではない炭素質粒子が配向し、後工程における粉砕が難し くなる場合があるので、成形圧力の上限は、通常 3tfZcm2 (294MPa)以下、好まし くは 500kgfZcm2 (49MPa)以下、更に好ましくは 10kgfZcm2 (0. 98MPa)以下 である。下限の圧力は特に制限はないが、脱 VMの工程で成形体の形状を保持でき る程度に設定することが好ましい。
[0084] [脱 VM焼成]
得られた成形体は、炭素質粒子及びバインダーの揮発成分 (VM)を除去して、黒 鉛化時の充填物の汚染、充填物の成形体への固着を防ぐために、脱 VM焼成を行う 。脱 VM焼成は、通常 600°C以上、好ましくは 650°C以上で、通常 1300°C以下、好 ましくは 1100°C以下の温度で、通常 0. 1時間〜 10時間行う。加熱は、酸化を防止 するために、通常、窒素、アルゴン等不活性ガスの流通下又はプリーズ、パッキング コータス等の粒状炭素材料を間隙に充填した非酸ィ匕性雰囲気で行う。
[0085] 脱 VM焼成に用いる設備は、電気炉やガス炉、電極材用リードハンマー炉等、非酸 化性雰囲気で焼成可能であれば特に限定されな 、。加熱時の昇温速度は揮発分の 除去のために低速であることが望ましぐ通常、低沸分の揮発が始まる 200°C付近か ら水素の発生のみとなる 700°C近傍までを、 3〜100°CZhrで昇温する。
[0086] [黒鉛化]
脱 VM焼成により得られた炭化物成形体は、次いで、高温で加熱して黒鉛化する。 黒鉛ィ匕時の加熱温度は、通常 2600°C以上、好ましくは 2800°C以上で加熱する。ま た、加熱温度が高過ぎると、黒鉛の昇華が顕著となるので、 3300°C以下が好ましい 。加熱時間は、バインダー及び炭素質粒子が黒鉛となるまで行えばよぐ通常 1〜24 時間である。
[0087] 黒鉛化時の雰囲気は、酸化を防止するため、窒素、アルゴン等の不活性ガスの流 通下又はプリーズ、ノ ッキングコータス等の粒状炭素材料を間隙に充填した非酸ィ匕 性雰囲気下で行う。黒鉛ィ匕に用いる設備は、電気炉やガス炉、電極材用アチソン炉 等、上記の目的に添うものであれば特に限定されず、昇温速度、冷却速度、熱処理 時間等は使用する設備の許容範囲で任意に設定することができる。
[0088] [粉砕]
このようにして得られた黒鉛ィ匕処理物は、通常はこのままでは本発明の要件(1)を 満たさな!/ヽので、粉砕及び Z又は大径粒状物 ·小径粒状物除去を行う。
[0089] 黒鉛ィ匕処理物の粉砕方法は特に制限はないが、粉砕手段としては、機械的に摩砕 する手段、例えば、ボールミル、ハンマーミル、 CFミル、アトマイザ一ミル、パルべライ ザ一等、風力を利用した粉砕手段、例えば、ジェットミル等が例示される。粗粉砕、中 粉砕については、ジョークラッシャ、ハンマーミル、ローラミル等の衝撃力による粉砕 方式を用いてもよい。ここで、粉砕のタイミングは、黒鉛ィ匕前であっても黒鉛ィ匕後であ つてもよい。後者の方がルツボ詰め等の作業が不要で安価に製造できるので、より好 ましい。
[0090] 粉砕が過度のときは、 D /Ό力 以下となり、粉砕が不足のときは、 D /Ό力 ¾よ
し S し S り大きくなる場合がある。
[0091] [分級]
得られた粉砕物から必要に応じ大径粒状物 ·小径粒状物 (微紛)除去を行っても良 い。大径粒状物を除去することにより、 D /Όが下がり、小径粒状物を除去すること
し S
により、 D /Όが上がる。
し S
[0092] 大径粒状物を除去することにより短絡の発生や、塗布時のむらが減少することがあ る。また小径粒状物 (微紛)を除去することにより、初期不可逆容量が減少することが ある。また、大径粒状物や微紛の除去により、レーザー回折 Z散乱式粒径測定によ る体積基準粒径分布において、粒径 100 μ m以上のものが全体の 3%以下、かつ、 粒径 1 μ m以下のものが全体の 1%以下となるように整粒することが望ましい。
[0093] 大径粒状物'小径粒状物を除去する方法としては、種々あるが、篩分け又は分級に より除去することが、機器の簡易性、操作性及びコスト面で好ましい。更に、篩分け又 は分級は、黒鉛質複合粒子の粒度分布及び平均粒径が、黒鉛化及び該粒状物の 除去により変化するのを必要に応じ再調整できるという利点がある。
[0094] 大径粒状物除去のための篩分けには、網面固定式、面内運動式、回転ふるい式 等があるが、処理能力の点から、網面固定式の中のブロースルー型の篩が特に好ま しい。使用する篩い目の目開きのサイズは、 80 μ m以下、 30 μ m以上のものであれ ば使用可能であり、除去する粒状物の生成状況 (特に量及び粒径)と、黒鉛質複合 粒子の粒度分布及び平均粒径の調整要求に合わせ適宜選択し使用する。該サイズ が 80 mを越えると、該粒状物の除去が不充分となり、 30 m未満の場合、黒鉛質 複合粒子を過剰に除去することにつながり、製品ロスが多く生じるとともに、粒度分布 の調整も困難になる場合がある。なお、汎用のサイズとして市販されている目開きが 4 5 m、 38 mの篩 、目が好ましく使用できる。
[0095] 分級は、風力分級、湿式分級、比重分級等の方法で行うことができ、 100 μ m以上 の粒状物を除去するには特に限定されないが、黒鉛質複合粒子の性状への影響及 び黒鉛質複合粒子の粒度分布及び平均粒径も調整することを考慮すると、旋回流 分級機等の風力分級機の使用が好ましい。この場合、風量と風速を制御することで、 上記篩い目の目開きのサイズを調整するのと同様に、該粒状物の除去と黒鉛質複合 粒子の粒度分布及び平均粒径を調整することができる。
[0096] [非水系二次電池用負極]
本発明の黒鉛質複合粒子は、非水系二次電池、特にリチウム二次電池の負極活 物質材料として好適に用いることができる。また前記したように、本発明の黒鉛質複 合粒子 (A)と炭素質活物質粒子 (B)とを配合したものも、負極活物質材料として好 適に用いることができる。
[0097] 黒鉛質複合粒子 (A)と炭素質活物質粒子 (B)との混合に用いる装置としては特に 制限はないが、例えば、回転型混合機としては、円筒型混合機、双子円筒型混合機 、二重円錐型混合機、正立方型混合機、鍬型混合機等が挙げられ、固定型混合機 としては、らせん型混合機、リボン型混合機、 Muller型混合機、 Helical Flight型 混合機、 Pugmill型混合機、流動化型混合機等が挙げられる。
[0098] 非水系二次電池を構成する負極は、負極活物質材料、極板成形用結着剤、増粘 剤、導電材を含有する活物質層を集電体上に形成してなる。活物質層は通常、負極 活物質材料、極板成形用結着剤、増粘剤、導電材及び溶媒を含有するスラリーを調 製し、これを集電体上に塗布、乾燥、プレスすることにより得られる。
[0099] 極板成形用結着剤としては、電極製造時に使用する溶媒や電解液に対して安定な 材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビ-リデン、ポ リテトラフノレォロエチレン、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム、イソ プレンゴム、ブタジエンゴム、エチレン アクリル酸共重合体及びエチレン メタタリ ル酸共重合体等が挙げられる。極板成形用結着剤は、負極活物質材料 Z極板成形 用結着剤の重量比で、通常 90Z10以上、好ましくは 95Z5以上、通常 99. 9/0. 1 以下、好ましくは 99. 5/0. 5以下の範囲で用いられる。
[0100] 増粘剤としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチ ルセルロース、ェチルセルロース、ポリビュルアルコール、酸化スターチ、リン酸ィ匕ス ターチ及びガゼイン等が挙げられる。
[0101] 導電材としては、銅又はニッケル等の金属材料;グラフアイト又はカーボンブラック 等の炭素材料等が挙げられる。
[0102] 集電体の材質としては、銅、ニッケル又はステンレス等が挙げられる。これらのうち、 薄膜に加工しやす!/、と 、う点及びコストの点から銅箔が好ま 、。
[0103] 活物質層の密度は、用途により異なる力 容量を重視する用途では、通常 1. 55g Zcm3以上である力 1. 60gZcm3以上が好ましぐ更に 1. 65gZcm3以上、特に 1 . 70gZcm3以上が好ましい。密度が低すぎると、単位体積あたりの電池の容量が必 ずしも充分ではない場合がある。また、密度が高すぎるとレート特性が低下するので 、 1. 9gZcm3以下が好ましい。なお、ここで活物質層とは集電体上の活物質、極板 成形用バインダー、増粘剤、導電材等よりなる合剤層をいい、その密度とは電池に組 立てる時点での活物質層の嵩密度をいう。
[0104] [非水系二次電池]
本発明の黒鉛質複合粒子、本発明の負極活物質材料を用いて製造された本発明 の非水系二次電池用負極は、特にリチウム二次電池等の非水系二次電池の負極と して極めて有用である。
[0105] このような非水系二次電池を構成する正極、電解液等の電池構成上必要な部材の 選択については特に制限されない。以下において、非水系二次電池を構成する部 材の材料等を例示する力 使用し得る材料はこれらの具体例に限定されるものでは ない。
[0106] 本発明の非水系二次電池は、通常少なくとも、上記の本発明の負極、正極及び電 解質を有する。
[0107] 正極は、正極集電体上に正極活物質、導電剤及び極板成形用バインダーを含有 する活物質層を形成してなる。活物質層は通常正極活物質、導電剤及び極板成形 用バインダーを含有するスラリーを調製し、これを集電体上に塗布、乾燥することによ り得られる。
[0108] 正極活物質としては、例えば、リチウムコバルト酸ィ匕物、リチウムニッケル酸ィ匕物、リ チウムマンガン酸ィ匕物等のリチウム遷移金属複合酸ィ匕物材料;二酸化マンガン等の 遷移金属酸ィ匕物材料;フッ化黒鉛等の炭素質材料等のリチウムを吸蔵'放出可能な 材料を使用することができる。具体的には、例えば、 LiFePO、 LiFeO、 LiCoO、
4 2 2
LiNiO、 LiMn O及びこれらの非定比化合物、 MnO、 TiS、 FeS、 Nb S、 Mo
2 2 4 2 2 2 3 4 3
S、 CoS、 V O、 P O、 CrO、 V O、 TeO、 GeO等を用いることができる。
4 2 2 5 2 5 3 3 3 2 2
[0109] 正極集電体としては、電解液中での陽極酸化によって表面に不動態皮膜を形成す る金属又はその合金を用いるのが好ましぐ Ilia, IVa、 Va族(3B、 4B、 5B族)に属す る金属及びこれらの合金を例示することができる。具体的には、例えば、 Al、 Ti、 Zr、 Hf、 Nb、 Ta及びこれらの金属を含む合金等を例示することができ、 Al、 Ti、 Ta及び これらの金属を含む合金を好ましく使用することができる。特に A1及びその合金は軽 量であるためエネルギー密度が高くて望ま U、。
[0110] 電解質としては、電解液、固体電解質、ゲル状電解質等が挙げられるが、なかでも 電解液、特に非水系電解液が好ましい。非水系電解液は、非水系溶媒に溶質を溶 解したものを用いることができる。
[0111] 溶質としては、アルカリ金属塩や 4級アンモ-ゥム塩等を用いることができる。具体 的には、例えば、 LiCIO、 LiPF、 LiBF、 LiCF SO、 LiN (CF SO ) 、 LiN (CF
4 6 4 3 3 3 2 2 3
CF SO ) 、 LiN (CF SO ) (C F SO )、 LiC (CF SO ) 力 なる群から選択される
2 2 2 3 2 4 9 2 3 2 3
1以上の化合物を用いるのが好まし!/、。
[0112] 非水系溶媒としては、例えば、エチレンカーボネート、ブチレンカーボネート等の環 状カーボネート、 γ —プチ口ラタトン等の環状エステルイ匕合物; 1, 2—ジメトキシエタ ン等の鎖状エーテル;クラウンエーテル、 2—メチルテトラヒドロフラン、 1, 2—ジメチ ルテトラヒドロフラン、 1, 3—ジォキソラン、テトラヒドロフラン等の環状エーテル;ジェ チルカーボネート、ェチルメチルカーボネート、ジメチルカーボネート等の鎖状カー ボネート等を用いることができる。溶質及び溶媒はそれぞれ 1種類を選択して使用し てもよいし、 2種以上を混合して使用してもよい。これらの中でも非水系溶媒が、環状 カーボネートと鎖状カーボネートを含有するものが好まし 、。またビ-レンカーボネー ト、ビュルエチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン、 ジェチルスルホン等の化合物が添加されて 、ても良 、。
[0113] 電解液中のこれらの溶質の含有量は、 0. 2mol/L以上、特に 0. 5mol/L以上で 、 2molZL以下、特に 1. 5molZL以下であることが好ましい。
[0114] これらのなかでも本発明の負極と、金属カルコゲナイド系正極と、カーボネート系溶 媒を主体とする有機電解液とを組み合わせて作成した非水系二次電池は、容量が 大きぐ初期サイクルに認められる不可逆容量が小さぐ急速充放電容量が高く(レー ト特性が良好)、またサイクル特性が優れ、高温下での放置における電池の保存性 及び信頼性も高く、高効率放電特性及び低温における放電特性に極めて優れたも のである。
[0115] 正極と負極の間には、通常正極と負極が物理的に接触しないようにするためにセ パレータが設けられる。セパレータはイオン透過性が高ぐ電気抵抗が低いものであ るのが好ましい。セパレータの材質及び形状は、特に限定されないが、電解液に対し て安定で、保液性が優れたものが好ましい。具体的には、ポリエチレン、ポリプロピレ ン等のポリオレフインを原料とする多孔性シート又は不織布が挙げられる。
[0116] 本発明の非水系二次電池の形状は特に制限されず、シート電極及びセパレータを スパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたィ ンサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコイン タイプ等が挙げられる。 実施例
[0117] 次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれら の例によって限定されるものではない。
[0118] 実施例 1
平均粒径 61 μ mの黒鉛を奈良機械製作所製ノヽイブリダィゼーシヨンシステム NHS 3型を用いてロータ周速度 70m/秒で 5分間の球形化処理を行ヽ、表 1に示す粉 体物性を持つ球形化黒鉛を得た。この球形化黒鉛と、黒鉛ィ匕可能なバインダーとし て軟化点 88°Cのバインダーピッチとを、 100 : 30の重量比で混合し、予め 128°Cに 加熱されたマチスケータ型撹拌翼を持つ-一ダ一に投入して 20分間捏合した。 [0119] 十分に捏合された混合物を、予め 108°Cに予熱されたモールドプレス機の金型に 充填し、 5分間放置し混合物の温度が安定したところでプランジャーを押し、 2kgf/c m2 (0. 20MPa)の圧力を加えて成形した。 1分間この圧力を保持した後、駆動を止 め、圧力低下が収まった後、成形体を取り出した。
[0120] 得られた成形体を耐熱容器である金属製サガーに収納し、間隙に黒鉛質プリーズ を充填した。電気炉で室温から 1000°Cまで 48時間かけて昇温し、 1000°Cで 3時間 保持し、脱 VM焼成を行った。次に、成形体を黒鉛ルツボに収納し、間隙に黒鉛質 プリーズを充填した。アチソン炉で 3000°Cに 4時間加熱して黒鉛ィ匕を行った。
[0121] 得られた黒鉛質の成形体をジョークラッシャで粗砕した後、表 1に記載したように粉 砕羽根回転数を 2000回転 Z分に設定したミルにて微粉砕し、 45 m篩いで粗粒子 を除き、黒鉛質複合粒子を得た。この黒鉛質複合粒子について、 D 、 D 、ラマン R値
し S
、平均円形度、タップ密度を測定した結果を表 2に示す。
[0122] [極板 (負極シート)の作製方法及びプレス荷重の測定]
この黒鉛質複合粒子を負極活物質材料として用い、前述の方法により、密度 1. 73 ±0. 03gZcm3の活物質層を有する極板を作製した。すなわち具体的には、上記 負極活物質材料 10g、カルボキシメチルセルロース水溶液を固形分換算で 0. lg、 及び重量平均分子量 27万のスチレンブタジエンゴム水性ディスパージヨンを固形分 換算で 0. 2gをキーエンス製ハイブリッドミキサーで 3分間撹拌してスラリーを得た。こ のスラリー魏電体である厚さ 18 mの銅箔上に、負極活物質材料が 10±0. lmg Zcm2付着するように、ドクターブレード法で、幅 5cmに塗布し、室温で風乾を行った 。更に 110°Cで 30分乾燥後、直径 20cmのローラを用いてロールプレスして、活物質 層の密度を 1. 73±0. 03gZcm3になるよう調整し負極シートを得た。この時、ロー ルプレスをする際のプレス荷重を測定した。結果を表 2に併せて示す。
[0123] [非水系二次電池の作製方法]
上記方法で作製した負極シートを直径 12. 5mmの円盤状に打ち抜き負極とし、リ チウム金属箔を直径 12. 5mmの円板状に打ち抜き対極とした。負極と正極の間に は、エチレンカーボネートとェチルメチルカーボネートの混合溶媒 (容量比 = 1: 1)に 、 LiPFを ImolZLになるように溶解させた電解液を含浸させたセパレータ(多孔性 ポリエチレンフィルム製)を置き、 2016コイン型電池を作製した。
[0124] 上記非水系二次電池を用いて、下記の測定方法で、初期充放電不可逆容量を測 定した。結果を表 3に示す。
[0125] [初期充放電不可逆容量の測定方法]
上記した方法で作製した 2016コイン型電池を、 24時間放置した後、電流密度 0. 1 6mAZcm2で、両電極間の電位差が OVになるまで充電を行い、その後 1. 5Vにな るまで 0. 33mAZcm2で放電を行った。基準充放電試験を実施し、 1サイクル目の 放電容量の平均値を初期充放電容量とした。また、 1サイクル目で発生する不可逆 容量 (初回充電容量 初回放電容量)を初期充放電不可逆容量とした。コイン型電 池 3個について、それぞれ初期充放電不可逆容量を測定し平均値を求めた。
[0126] 実施例 2
平均粒径 61 μ mの黒鉛を奈良機械製作所製ノヽイブリダィゼーシヨンシステム NHS 3型を用いてロータ周速度 65m/秒で 4分間球形化処理を行 ヽ、表 1に示す粉体 物性を持つ球形化黒鉛を得た。この球形ィ匕黒鉛を用い、黒鉛ィ匕可能なバインダーと して軟ィ匕点 88°Cのバインダーピッチを用い、バインダー量、粉砕時の粉砕羽根回転 数を表 1に示したように代えた以外は実施例 1と同様にして黒鉛質複合粒子を得、上 記物性を測定し、次いで実施例 1と同様にして、極板 (負極シート)、非水系二次電 池を作製し、プレス荷重、初期充放電不可逆容量を測定した。結果を表 2及び表 3に 示す。
[0127] 実施例 3
平均粒径 61 μ mの黒鉛を奈良機械製作所製ノヽイブリダィゼーシヨンシステム NHS 3型を用いてロータ周速度 60m/秒で 3分間球形化処理を行 ヽ、表 1に示す粉体 物性を持つ球形化黒鉛を得た。この球形ィ匕黒鉛を用い、黒鉛ィ匕可能なバインダーと して軟ィ匕点 88°Cのバインダーピッチを用い、バインダー量、粉砕時の粉砕羽根回転 数を表 1に示したように代えた以外は実施例 1と同様にして黒鉛質複合粒子を得、上 記物性を測定し、次いで実施例 1と同様にして、極板 (負極シート)、非水系二次電 池を作製し、プレス荷重、初期充放電不可逆容量を測定した。結果を表 2及び表 3に 示す。 [0128] 比較例 1
平均粒径 61 μ mの黒鉛を奈良機械製作所製ノヽイブリダィゼーシヨンシステム NHS 3型を用いてロータ周速度 65m/秒で 5分間球形化処理を行 ヽ、表 1に示す粉体 物性を持つ球形化黒鉛を得た。この球形ィ匕黒鉛を用い、黒鉛ィ匕可能なバインダーと して軟ィ匕点 88°Cのバインダーピッチを用い、バインダー量、粉砕時の粉砕羽根回転 数を表 1に示したように代えた以外は実施例 1と同様にして黒鉛質複合粒子を得、上 記物性を測定し、次いで実施例 1と同様にして、極板 (負極シート)、非水系二次電 池を作製し、プレス荷重、初期充放電不可逆容量を測定した。結果を表 2及び表 3に 示す。
[0129] 比較例 2
原料である炭素質粒子として、表 1に示す粉体物性を持つリン片黒鉛を用い、黒鉛 化可能なノ インダ一として軟ィ匕点 88°Cのノ インダーピッチを用い、バインダー量、粉 砕時の粉碎羽根回転数を表 1に示したように代えた以外は実施例 1と同様にして黒 鉛質複合粒子を得、上記物性を測定し、次いで実施例 1と同様にして、極板 (負極シ ート)、非水系二次電池を作製し、プレス荷重、初期充放電不可逆容量を測定した。 結果を表 2及び表 3に示す。
[0130] 実施例 4
実施例 1記載の方法によって得られた黒鉛質複合粒子 60部と、平均粒径 61 μ mの 黒鉛を奈良機械製作所製ノヽイブリダィゼーシヨンシステム NHS - 3型を用いてロータ 周速度 60m/秒で 3分間球形化処理を行って得られた球形化黒鉛 40部とを混合し、 表 1に示す粉体物性を持つ球形化黒鉛を得た。次いで実施例 1と同様にして、極板( 負極シート)、非水系二次電池を作製し、プレス荷重、初期充放電不可逆容量を測 定した。結果を表 2及び表 3に示す。なお、表 2において実施例 4の負極活物質のラ マン R値は 0. 18である力 黒鉛質複合粒子のラマン R値は 0. 12であり、本発明の 範囲を満たす。
[0131] [表 1] 原 料 の 炭 素 質 粒 子 ,、'インタ 調製法
N O . メシ"アン径 タツフ'密度 平均 炭素質粒子量 ハ'インタ' -量 粉砕羽根回転数
( m) (g/cm3) 円形度 (重量部) 1. r p m) 実施例 1 13. 7 0.97 0. 93 100 30 2000 実施例 2 17. 1 1.05 0. 94 100 30 2500 実施例 3 21. 1 1.02 0. 91 100 35 4000 実施例 4 13. 7 0.97 0. 93 100 30 2000 比較例 1 14. 0 0. 96 0.93 100 50 5500 比較例 2 6. 5 0. 43 0.81 100 34 4000
[0132] [表 2]
Figure imgf000029_0001
[0133] [表 3]
Figure imgf000029_0002
[0134] 表 3の結果から明らかな通り、実施例 1〜4では、初回サイクルにおける充放電不可 逆容量が小さ力つた力 比較例 1〜2では明らかに初回サイクルにおける充放電不可 逆容量が大き力つた。
[0135] 本発明を特定の態様を用いて詳細に説明した力 本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。 なお、本出願は、 2005年 6月 27日付で出願された日本特許出願 (特願 2005— 1 86597)に基づいており、その全体が引用により援用される。
産業上の利用可能性
本発明の黒鉛質複合粒子をもちいることで、非水系二次電池にしたときの初期サイ クルにおける不可逆充放電容量が少ない優れた非水系二次電池用負極及び非水 系二次電池を安定的に効率よく製造することができるため、本発明は各種非水系二 次電池の分野において、工業上非常に有用である。

Claims

請求の範囲 [1] 要件(1)及び (2)
(1)ポリオキシエチレンソルビタンモノラウレートの 0. 2質量0 /0水溶液 10mLに粒子 1 Omgを懸濁させ、市販のレーザー回折 Z散乱式粒度分布測定装置に導入し、 28k Hzの超音波を出力 60Wで 1分間照射した後に測定した体積基準メジアン径を D μ
し mとし、走査型電子顕微鏡観察において、輪郭が他の粒子の輪郭と重なっていない 粒子を 100個選択し、そのそれぞれの測定面積 Sから、 2 X (S/3. 14) 5により求 めた円相当粒子径について、該 100個の粒子の平均値を求め、それを平均円相当 粒子径 D mとしたとき、 D ZD 1S 1より大きぐ 2以下、
S L S
(2)ラマンスペクトルにおいて、 1580cm_1付近の最大ピークの強度 I と、 1360cm—
A
1付近の最大ピークの強度 I
Bの強度比 I
B Λ Aをラマン R値としたとき、ラマン R値力 0
. 04以上、 0. 14以下、
を満たすことを特徴とする非水系二次電池用黒鉛質複合粒子。
[2] 平均円形度が、 0. 8以上、 0. 95以下のものである請求項 1記載の非水系二次電 池用黒鉛質複合粒子。
[3] タップ密度が、 0. 7gZcm3以上、 1. 5gZcm3以下のものである請求項 1又は請求 項 2記載の非水系二次電池用黒鉛質複合粒子。
[4] 黒鉛質複合粒子が、炭素質粒子が焼成された黒鉛質粒子の少なくとも一部に、バ インダ一が焼成されたものが結合した構造を有するものである請求項 1ないし請求項
3の何れかの請求項記載の非水系二次電池用黒鉛質複合粒子。
[5] 炭素質粒子が、球形化黒鉛である請求項 4記載の非水系二次電池用黒鉛質複合 粒子。
[6] 請求項 1ないし請求項 5の何れかの請求項記載の非水系二次電池用黒鉛質複合 粒子を含有することを特徴とする非水系二次電池用負極活物質材料。
[7] 更に、天然黒鉛、人造黒鉛、非晶質被覆黒鉛、榭脂被覆黒鉛及び非晶質炭素より なる群力 選ばれる 1種以上の炭素質活物質粒子を含有する請求項 6記載の非水 系二次電池用負極活物質材料。
[8] 負極活物質材料を 100重量部、スチレンブタジエンゴムの水分散液を固形分として 2重量部及び重量平均分子量 25万〜 30万のカルボキシメチルセルロースの水溶液 を固形分として 1重量部を配合して水系スラリーとし、この水系スラリーを厚さ 18 /z m の銅箔上に、乾燥膜厚 10±0. lmgZcm2となるようドクターブレードを用いて塗布し て乾燥させた後に、直径 20cmのローラを有するロールプレスを用いて、 1回のプレス で、密度 1. 73 ±0. 03g/cm3となるようプレス荷重を調整して幅 5cmの活物質層を 形成させるときの該プレス荷重力 200kgfZ5cm以上、 1200kgfZ5cm以下である 請求項 6又は請求項 7記載の非水系二次電池用負極活物質材料。
[9] 集電体及びその上に形成された活物質層を有する負極であって、該活物質層が、 少なくとも請求項 6ないし請求項 8の何れかの請求項記載の非水系二次電池用負極 活物質材料を用いて形成されていることを特徴とする非水系二次電池用負極。
[10] リチウムイオンを吸蔵 ·放出可能な正極及び負極、並びに電解質を有する非水系 二次電池であって、該負極が、請求項 9記載の非水系二次電池用負極であることを 特徴とする非水系二次電池。
PCT/JP2006/312758 2005-06-27 2006-06-26 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池 WO2007000982A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800231141A CN101208819B (zh) 2005-06-27 2006-06-26 非水性二次电池用石墨质复合颗粒、含有该石墨质复合颗粒的负极活性物质材料、负极和非水性二次电池
US11/993,902 US7897283B2 (en) 2005-06-27 2006-06-26 Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing IT, cathode and non-aqueous secondary battery
EP06767375.6A EP1906472B1 (en) 2005-06-27 2006-06-26 Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
KR1020077030623A KR101341695B1 (ko) 2005-06-27 2007-12-27 비수계 2 차 전지용 흑연질 복합 입자, 그것을 함유하는 음극 활성 재료, 음극 및 비수계 2 차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005186597 2005-06-27
JP2005-186597 2005-06-27

Publications (1)

Publication Number Publication Date
WO2007000982A1 true WO2007000982A1 (ja) 2007-01-04

Family

ID=37595232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312758 WO2007000982A1 (ja) 2005-06-27 2006-06-26 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池

Country Status (6)

Country Link
US (1) US7897283B2 (ja)
EP (1) EP1906472B1 (ja)
JP (1) JP5476411B2 (ja)
KR (1) KR101341695B1 (ja)
CN (1) CN101208819B (ja)
WO (1) WO2007000982A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067363A (zh) * 2008-06-25 2011-05-18 三菱化学株式会社 非水系二次电池用复合石墨粒子、含有其的负极材料、负极及非水系二次电池
US20120037845A1 (en) * 2008-07-17 2012-02-16 Chuo Denki Kogyo Co., Ltd. Mixed carbon material and negative electrode for a nonaqueous secondary battery
WO2019026265A1 (ja) * 2017-08-03 2019-02-07 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2020196111A1 (ja) * 2019-03-28 2020-10-01 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物、非水系二次電池用負極および非水系二次電池

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101589492B (zh) * 2006-12-26 2012-06-13 三菱化学株式会社 非水系二次电池用复合石墨颗粒、含有它的负极材料、负极和非水系二次电池
KR20090111129A (ko) * 2008-04-21 2009-10-26 엘에스엠트론 주식회사 2차 전지용 음극 활물질, 이를 포함하는 2차 전지용 전극,2차 전지 및 그 제조 방법
EP2352192B1 (en) 2008-10-31 2016-06-01 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary battery
JP2011034675A (ja) * 2009-07-29 2011-02-17 Sony Corp 二次電池用正極および二次電池
WO2011027503A1 (ja) * 2009-09-01 2011-03-10 日立ビークルエナジー株式会社 非水電解質二次電池
KR101137375B1 (ko) * 2010-02-09 2012-04-20 삼성에스디아이 주식회사 2차 입자 및 이를 구비한 리튬 전지
JP5765332B2 (ja) * 2010-03-16 2015-08-19 コニカミノルタ株式会社 超音波診断装置
WO2011125577A1 (ja) * 2010-03-31 2011-10-13 住友金属工業株式会社 改質天然黒鉛粒子およびその製造方法
JP5612428B2 (ja) * 2010-10-08 2014-10-22 Jx日鉱日石エネルギー株式会社 格子歪を有するリチウムイオン二次電池負極用黒鉛材料及びリチウムイオン二次電池
US9059436B2 (en) * 2010-10-27 2015-06-16 Toyota Jidosha Kabushiki Kaisha Method for producing lithium ion secondary battery with tap density and electrode density
CN102593434B (zh) * 2011-01-11 2015-11-25 上海杉杉科技有限公司 锂二次电池用复合石墨颗粒及其制备方法
WO2012133699A1 (ja) * 2011-03-29 2012-10-04 三菱化学株式会社 非水系二次電池用負極炭素材、及び負極並びに、非水系二次電池
US20140093781A1 (en) * 2011-04-08 2014-04-03 Chuo Denki Kogyo Co., Ltd. Modified Natural Graphite Particles
US20140227522A1 (en) * 2011-09-09 2014-08-14 Sumitomo Bakelite Company Limited Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery and lithium ion secondary battery
JP5207006B2 (ja) * 2011-10-04 2013-06-12 戸田工業株式会社 球形炭素材及び球形炭素材の製造方法
KR20130037091A (ko) * 2011-10-05 2013-04-15 삼성에스디아이 주식회사 음극 활물질 및 이를 채용한 리튬 전지
CN103165869B (zh) * 2011-12-13 2016-01-06 上海杉杉科技有限公司 改性中间相负极材料、锂离子二次电池及制备方法和应用
WO2013122115A1 (ja) * 2012-02-14 2013-08-22 三菱化学株式会社 非水系二次電池負極用活物質並びにそれを用いた負極及び非水系二次電池
JP5896218B2 (ja) * 2012-02-23 2016-03-30 トヨタ自動車株式会社 密閉型非水電解質二次電池
KR101607794B1 (ko) * 2012-03-22 2016-03-30 쥬오 덴끼 고교 가부시키가이샤 복합 흑연질 입자 및 그 제조 방법
KR20140045880A (ko) * 2012-10-09 2014-04-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치
JP6274390B2 (ja) * 2012-10-24 2018-02-07 東海カーボン株式会社 リチウム二次電池負極材用黒鉛粉末の製造方法
CN103794790A (zh) * 2012-10-30 2014-05-14 上海杉杉科技有限公司 一种锂离子电池复合石墨负极材料及其制备方法
KR101582718B1 (ko) * 2013-02-04 2016-01-06 주식회사 엘지화학 구형 천연 흑연을 포함하는 음극 및 이를 포함하는 리튬 이차 전지
CN104300148B (zh) * 2013-05-28 2017-12-26 上海杉杉科技有限公司 一种锂离子电池石墨负极材料及其制备方法
CN104425823B (zh) * 2013-09-11 2019-04-19 宁波杉杉新材料科技有限公司 一种锂离子电池人造石墨负极材料及其制备方法
KR102469839B1 (ko) * 2013-11-27 2022-11-22 미쯔비시 케미컬 주식회사 비수계 2 차 전지 부극용 탄소재, 비수계 2 차 전지용 부극 및 비수계 2 차 전지
KR101790400B1 (ko) 2013-12-20 2017-10-25 주식회사 엘지화학 음극 활물질 및 이를 포함하는 리튬 이차전지
EP3131143B1 (en) 2014-03-25 2019-03-20 Hitachi Chemical Company, Ltd. Negative electrode material for lithium-ion secondary battery, method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP5963012B2 (ja) 2014-04-21 2016-08-03 トヨタ自動車株式会社 非水電解質二次電池
AU2015271619B2 (en) 2014-06-06 2019-05-09 Nanoxplore Inc. Large scale production of thinned graphite, graphene, and graphite-graphene composites
KR20230134615A (ko) * 2014-07-07 2023-09-21 미쯔비시 케미컬 주식회사 탄소재, 탄소재의 제조 방법 및 탄소재를 사용한 비수계 2 차 전지
EP3230386B1 (en) 2014-12-09 2024-02-21 NanoXplore Inc. Large scale production of oxidized graphene
WO2017010476A1 (ja) * 2015-07-16 2017-01-19 昭和電工株式会社 二次電池用黒鉛含有炭素粉の製造方法及び電池電極用炭素材料
KR20170035569A (ko) * 2015-09-23 2017-03-31 주식회사 엘지화학 두께 팽창이 감소된 리튬 이차전지용 음극 및 그 제조방법
JP6288340B1 (ja) * 2017-03-24 2018-03-07 住友大阪セメント株式会社 リチウムイオン二次電池用電極材料、及びリチウムイオン二次電池
CN108129148A (zh) * 2018-01-18 2018-06-08 天津锦美碳材科技发展有限公司 一种低膨胀石墨材料的制备方法
CN108807848B (zh) * 2018-05-11 2019-10-08 宁德时代新能源科技股份有限公司 负极极片及含有它的二次电池
CN108807849B (zh) * 2018-05-16 2019-11-15 宁德时代新能源科技股份有限公司 负极极片及含有它的二次电池
US11876215B2 (en) 2018-11-22 2024-01-16 Sk On Co., Ltd. Method for manufacturing anode, and secondary battery with improved rapid charging performance, having anode according thereto
WO2020106106A1 (ko) * 2018-11-22 2020-05-28 에스케이이노베이션 주식회사 음극의 제조방법 및 이에 따른 음극을 포함하는 급속충전 성능이 개선된 이차전지
CN112424118A (zh) * 2019-06-13 2021-02-26 杰富意化学株式会社 整体中间相石墨化物的制造方法
CN112310340A (zh) * 2019-07-29 2021-02-02 通用汽车环球科技运作有限责任公司 用于固态电极的具有增强离子导电性的微米级二次颗粒
US20220384811A1 (en) * 2019-10-07 2022-12-01 Imertech Sas Graphite compositions and uses in battery technology
CN113372119B (zh) * 2020-04-28 2022-12-30 吉林炭素有限公司 一种石墨电极本体配方中干料粒级组成的设计方法
CN114242932B (zh) * 2021-12-13 2024-01-30 蜂巢能源科技股份有限公司 一种锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330107A (ja) * 1997-05-30 1998-12-15 Mitsubishi Chem Corp 高充填性炭素質粉末の製造方法
JPH10334915A (ja) * 1997-05-30 1998-12-18 Mitsubishi Chem Corp 非水系二次電池用電極
JPH1111919A (ja) * 1997-06-25 1999-01-19 Hitachi Chem Co Ltd 複合炭素粒子の製造法、該製造法で得られた複合炭素粒子、複合炭素粒子を用いた炭素ペースト、リチウム二次電池用負極及びリチウム二次電池
JP2004210634A (ja) * 2002-12-19 2004-07-29 Jfe Chemical Corp 複合黒鉛粒子、その製造方法、リチウムイオン二次電池負極材、リチウムイオン二次電池負極およびリチウムイオン二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ID21480A (id) 1997-05-30 1999-06-17 Matsushita Electric Ind Co Ltd Sel sekunder elektrolit bukan-air
KR100269310B1 (ko) 1997-09-29 2000-10-16 윤종용 도전성확산장벽층을사용하는반도체장치제조방법
JP2000086343A (ja) 1998-09-09 2000-03-28 Sec Corp 炭素複合材料及びその製造方法
JP3482424B2 (ja) * 1998-10-02 2003-12-22 シャープ株式会社 非水系二次電池用正極活物質の製造方法及び非水系二次電池
US6391495B1 (en) * 1998-11-25 2002-05-21 Samsung Display Devices Co., Ltd. Negative active material for lithium secondary battery, method of preparing the same and lithium secondary battery comprising the same
US6632569B1 (en) * 1998-11-27 2003-10-14 Mitsubishi Chemical Corporation Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP2000182617A (ja) 1998-12-16 2000-06-30 Nkk Corp リチウム二次電池電極用炭素材料およびその製造方法およびリチウム二次電池
WO2002056408A1 (fr) * 2001-01-04 2002-07-18 Mitsubishi Chemical Corporation Liquides electrolytiques non aqueux et pile au lithium secondaire faisant intervenir ces liquides
JP3635044B2 (ja) 2001-06-08 2005-03-30 三井鉱山株式会社 リチウム二次電池用負極材料、その製造方法、及びリチウム二次電池
JP4252846B2 (ja) * 2002-07-31 2009-04-08 パナソニック株式会社 リチウム二次電池
JP2004196609A (ja) * 2002-12-19 2004-07-15 Jfe Chemical Corp 複合黒鉛質粒子の製造方法、複合黒鉛質粒子、リチウムイオン二次電池負極材及びリチウムイオン二次電池
CN1259740C (zh) * 2003-05-20 2006-06-14 比亚迪股份有限公司 一种锂离子二次电池
US20060238958A1 (en) 2005-04-25 2006-10-26 Power Systems Co., Ltd. Positive electrode for electric double layer capacitors and method for the production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330107A (ja) * 1997-05-30 1998-12-15 Mitsubishi Chem Corp 高充填性炭素質粉末の製造方法
JPH10334915A (ja) * 1997-05-30 1998-12-18 Mitsubishi Chem Corp 非水系二次電池用電極
JPH1111919A (ja) * 1997-06-25 1999-01-19 Hitachi Chem Co Ltd 複合炭素粒子の製造法、該製造法で得られた複合炭素粒子、複合炭素粒子を用いた炭素ペースト、リチウム二次電池用負極及びリチウム二次電池
JP2004210634A (ja) * 2002-12-19 2004-07-29 Jfe Chemical Corp 複合黒鉛粒子、その製造方法、リチウムイオン二次電池負極材、リチウムイオン二次電池負極およびリチウムイオン二次電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067363A (zh) * 2008-06-25 2011-05-18 三菱化学株式会社 非水系二次电池用复合石墨粒子、含有其的负极材料、负极及非水系二次电池
US8974968B2 (en) 2008-06-25 2015-03-10 Mitsubishi Chemical Corporation Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
US20120037845A1 (en) * 2008-07-17 2012-02-16 Chuo Denki Kogyo Co., Ltd. Mixed carbon material and negative electrode for a nonaqueous secondary battery
US8501047B2 (en) * 2008-07-17 2013-08-06 Chuo Denki Kogyo Co., Ltd. Mixed carbon material and negative electrode for a nonaqueous secondary battery
WO2019026265A1 (ja) * 2017-08-03 2019-02-07 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2020196111A1 (ja) * 2019-03-28 2020-10-01 日本ゼオン株式会社 非水系二次電池負極用スラリー組成物、非水系二次電池用負極および非水系二次電池

Also Published As

Publication number Publication date
US20090130561A1 (en) 2009-05-21
US7897283B2 (en) 2011-03-01
CN101208819B (zh) 2010-11-24
EP1906472A4 (en) 2009-06-17
JP2012146676A (ja) 2012-08-02
KR101341695B1 (ko) 2013-12-16
KR20080022132A (ko) 2008-03-10
CN101208819A (zh) 2008-06-25
JP5476411B2 (ja) 2014-04-23
EP1906472B1 (en) 2013-08-21
EP1906472A1 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP5476411B2 (ja) 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池
JP6528826B2 (ja) 非水系二次電池用炭素材並びにそれを用いた負極及びリチウムイオン二次電池
JP5268018B2 (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP5458689B2 (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP5064728B2 (ja) 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池
JP5407196B2 (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP4992426B2 (ja) 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池
WO2012133788A1 (ja) 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
JP5994319B2 (ja) 非水系二次電池用複合黒鉛粒子の製造方法及びその製造方法で得られた複合黒鉛粒子、負極並びに非水系二次電池
JP2012033375A (ja) 非水系二次電池用炭素材料
JP6409377B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP2014067680A (ja) 非水系二次電池用黒鉛粒子及び、それを用いた非水系二次電池用負極並びに非水系二次電池
JP2013229343A (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP6422208B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP2013179101A (ja) 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP7077721B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP2014191924A (ja) 非水系二次電池用炭素材の製造方法及びその製造方法によって得られた炭素材
JP2014067642A (ja) 非水系二次電池用複合炭素材及びその製造方法、負極並びに非水系二次電池
JP2010010082A (ja) 非水系二次電池用負極、非水系二次電池用負極材料及び非水系二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680023114.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006767375

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077030623

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11993902

Country of ref document: US