JP6409377B2 - 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池 - Google Patents

非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池 Download PDF

Info

Publication number
JP6409377B2
JP6409377B2 JP2014142567A JP2014142567A JP6409377B2 JP 6409377 B2 JP6409377 B2 JP 6409377B2 JP 2014142567 A JP2014142567 A JP 2014142567A JP 2014142567 A JP2014142567 A JP 2014142567A JP 6409377 B2 JP6409377 B2 JP 6409377B2
Authority
JP
Japan
Prior art keywords
secondary battery
particles
less
negative electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014142567A
Other languages
English (en)
Other versions
JP2015038862A (ja
Inventor
山田 俊介
俊介 山田
布施 亨
亨 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2014142567A priority Critical patent/JP6409377B2/ja
Publication of JP2015038862A publication Critical patent/JP2015038862A/ja
Application granted granted Critical
Publication of JP6409377B2 publication Critical patent/JP6409377B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水系二次電池に用いる非水系二次電池負極用炭素材と、その炭素材を用いて形成された負極と、その負極を備える非水系二次電池に関するものである。
リチウムイオンを吸蔵・放出できる正極及び負極、並びにLiPFおよびLiBFなどのリチウム塩を溶解させた非水系電解液からなる非水系二次電池が開発され、実用に供されている。
この電池の負極材としては種々のものが提案されているが、高容量であること及び放電電位の平坦性に優れていることなどから、天然黒鉛、コークス等の黒鉛化で得られる人造黒鉛、黒鉛化メソフェーズピッチ、黒鉛化炭素繊維等の黒鉛質の炭素材料が用いられている。
一方、昨今非水系二次電池、とりわけリチウムイオン二次電池の用途展開が図られ、従来のノート型パソコンや、移動通信機器、携帯型カメラ、携帯型ゲーム機等向けに加え、電動工具、電気自動車向け等、従来にも増した急速充放電性を要求されるとともに、高容量であり、かつ、高サイクル特性を併せ持つリチウムイオン二次電池が望まれている。
そこで、極板中の炭素材料の充填率を高め放電容量を向上させるために、固さの異なる黒鉛粒子を混合した炭素材料が用いられている。
例えば、特許文献1には、圧縮密度が1.80〜1.90g/cmの非晶質被覆黒鉛と、圧縮密度が1.45〜1.65g/cmの非晶質被覆黒鉛とからなる負極材を用いることによって、高い容量及び高い充電受け入れ性を負極が有し,且つ不可逆容量が小さ
い非水系二次電池を提供できると報告している。
また、特許文献2には、人造黒鉛、黒鉛質被覆黒鉛、非晶質被覆黒鉛から成る負極材が開示されている。これら硬度、形状の異なる特徴を有する3種の黒鉛粉末を混合することにより、高い電極密度であっても、電解液の浸透性に優れ、充放電による容量損失が少なく、かつサイクル性能の良いリチウム二次電池用の負極及びこれを構成する負極活物質が得られることが報告されている。
また、炭素の理論容量より理論容量の高い金属粒子の負極への適用が検討されてきている。
例えば、特許文献3では、Si化合物の微粉末と黒鉛と炭素質物前駆体であるピッチ等との混合物を焼成しSi複合炭素粒子を製造する方法が提案されている。
また、特許文献4では、Si化合物粒子を炭素材料で被覆してなるSi複合炭素粒子と炭素材料を混合して用いることが提案されている。このことにより、高容量で且つサイクル特性の優れた非水系二次電池が提供できると報告されている。
国際公開第2010/113783号 特開2007−324067号公報 特開2003−223892号公報 特開2003−331832号公報
しかし、本発明者らの検討によると、特許文献1,2に記載の技術は、不可逆容量やサイクル特性は向上するものの、黒鉛のみから構成されているため高容量の電池を得ることができなかった。
特許文献3に記載の技術では、Si化合物粒子と鱗片状黒鉛粒子とコールタールピッチ由来の炭素質物を含有するSi複合炭素粒子において、複合化(焼成)前に十分攪拌混合させることにより、焼成後、Si化合物粒子および鱗片状黒鉛粒子の表面を非晶質炭素で覆われた構造を提案(ラマンR値範囲規定)しているが、複合化の結着性が弱いため、充放電に伴うSi化合物微粉末の体積膨張により、Si複合炭素粒子が崩壊し、導電パス切れによるサイクル劣化等々の問題があり、実用レベルには至ってなかった。
一方、特許文献4に記載の技術は、充放電に伴うSi複合炭素粒子の体積膨張による導電パス切れを、炭素材料を混合させることで改善し、サイクル劣化を抑制できることが記載されている。しかしながら、Si化合物粒子を炭素質物で覆ったSi複合炭素粒子は炭素材料と比較し粒子が固く、電極作成時のプレス時に大きな力が必要となり、その結果、炭素材料の破壊が生じ、不可逆容量やサイクル特性が劣化することが明らかとなった。
本発明は上記従来技術の問題点を解決し、高容量とサイクル特性に優れ、不可逆容量が少ない非水系二次電池負極用炭素材、当該炭素材料を用いて得られる非水系二次電池用負極、及び当該負極を備える非水系二次電池を提供することを目的とする。
本発明者らは、上記課題を解決すべく鋭意検討した結果、珪素元素を含む複合炭素粒子(A)(以下、Si複合炭素粒子(A)と呼ぶことがある)と炭素粒子(B)とを混合した非水系二次電池負極用炭素材であって、炭素粒子(B)としてSi複合炭素粒子(A)よりも柔らかい粒子を適用し、かつ炭素粒子(B)のタップ密度を特定の範囲とすることで、高容量でサイクル特性に優れ、不可逆容量の低下が少ない非水系二次電池負極用炭素材が作成できることを見い出した。
本発明の非水系二次電池負極用炭素材が優れた電池特性を示すメカニズムは明らかとなっていないが、珪素元素を含む固いSi複合炭素粒子(A)を用いることで、負極作成時のプレスにおいて粒子の変形が抑制され、高容量且つ電解液の流路確保が可能となり、さらに柔らかい炭素粒子(B)を加わることで適度に粒子が変形することが可能となり、粒子同士の接触性が向上し、充放電時の導電パス切れ抑制が可能となる。さらに、柔らかい炭素粒子(B)を加えることで電極をより小さな力で圧延することが可能となり、活物質の破壊を抑制できる。加えて、タップ密度が比較的高い炭素粒子(B)を用いることにより、粒子及びそれを含有する電極活物質層の充填密度が高まるため過度な電極の圧延が不要となる。そのため、電極内で十分な連続空隙を確保することができ、充放電時の体積膨張によるSi複合炭素粒子(A)の粒子崩壊を抑制できる。また、空隙に保持された電解液内のリチウムイオンの移動性が確保できる。このため高容量でサイクル特性・急速充放電特性に優れ、不可逆容量の低下が少ない非水系二次電池負極用炭素材を得ることができたと考えられる。
また、上記非水系二次電池負極用炭素材のプレス荷重が特定の範囲であっても上記効果が奏される。
即ち、本発明の要旨は、珪素元素を含む複合炭素粒子(A)、及び炭素粒子(B)を含有する非水系二次電池負極用炭素材であって、該炭素粒子(B)は該複合炭素粒子(A)
よりもプレス荷重の値が小さく、且つタップ密度が0.8g/cm以上、1.8g/cm以下であることを特徴とする非水系二次電池負極用炭素材に存する。
また、本発明の他の要旨は、珪素元素を含む複合炭素粒子(A)、及び炭素粒子(B)を含有する非水系二次電池負極用炭素材であって、該非水系二次電池負極用炭素材のプレス荷重が、230kg/5cm以上1200kg/5cm以下であることを特徴とする非水系二次電池負極用炭素材に存する。
また、本発明の他の要旨は、上記非水系二次電池負極用炭素材を用いて形成されることを特徴とする、非水系二次電池用負極に存する。
また、本発明の他の要旨は、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに、電解質を備えると共に、該負極が上記非水系二次電池用負極であることを特徴とする非水系二次電池に存する。
本発明によれば、安定性に優れ、高容量で、不可逆容量が小さく、サイクル特性に優れた非水系二次電池負極用炭素材、及びそれを用いた非水系二次電池を提供することができる。
以下、本発明の内容を詳細に述べる。なお、以下に記載する発明構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの形態に特定されるものではない。
また、本発明では、粒子硬さの指標として極板作成時のプレス荷重を用いることとしている。硬い粒子を用いて作製された負極は、プレス荷重が大きくなる傾向があり、一方柔らかい粒子を用いて作製された負極はプレス荷重が小さくなる傾向がある。
以下、本発明に用いるSi複合炭素粒子(A)と、炭素粒子(B)について説明する。
[Si複合炭素粒子(A)]
本発明におけるSi複合炭素粒子(A)について以下に説明する。
(Si複合炭素粒子(A)の特性)
本発明のSi複合炭素粒子(A)は少なくとも珪素元素と炭素粒子を含むSi複合炭素粒子であれば特に限定されないが、以下のような特性を持つことが好ましい。
(a)Si複合炭素粒子(A)の体積基準平均粒径(d50)
Si複合炭素粒子(A)の体積基準平均粒径(d50)(以下、平均粒径d50ともいう)は、通常1μm以上、好ましくは4μm以上、より好ましくは7μm以上であり、また、通常50μm以下、好ましくは40μm以下、より好ましくは30μm以下、更に好ましくは25μm以下である。平均粒径d50が上記範囲であれば、総粒子が十分確保されるため高い容量特性が得られる。
なお粒径の測定方法は、界面活性剤であるポリオキシエチレンソルビタンモノラウレートの0.2質量%水溶液10mLに、炭素材0.01gを懸濁させ、市販のレーザー回折/散乱式粒度分布測定装置に導入し、28kHzの超音波を出力60Wで1分間照射した後、測定装置における体積基準のメジアン径として測定したものを、本発明における体積基準平均粒径d50と定義する。
(b)Si複合炭素粒子(A)のアスペクト比
Si複合炭素粒子(A)のアスペクト比は、通常1以上、好ましくは1.3以上、より好ましくは1.4以上、更に好ましくは1.5以上、通常4以下、好ましくは3以下、よ
り好ましくは2.5以下、更に好ましくは2以下である。
アスペクト比がこの範囲であれば、電極とした際に粒子が集電体と平行方向に並ぶことを抑制できるため、電極の厚み方向への膨張収縮に伴う導電パス切れが抑制でき、サイクル維持率が良好となる。アスペクト比の測定方法は、粒子の樹脂包埋物又は極板を平板に対して垂直に研磨して、その断面写真を撮影し、ランダムに50個以上の粒子を抽出して、粒子の最長径(平板に対して平行方向)と最短径(平板に対して垂直方向)を画像解析により測定し、最長径/最短径の平均を取ることによって測定することができる。樹脂包埋又は極板化した粒子は、通常は平板に対して粒子の厚み方向が垂直に並ぶ傾向があることから、上記の方法より、粒子に特徴的な最長径と最短径を得ることが出来る。
(c)Si複合炭素粒子(A)の円形度
Si複合炭素粒子(A)の円形度は、通常0.85以上、好ましくは0.88以上、より好ましくは0.89以上、更に好ましくは0.90以上である。また円形度は通常1以下、好ましくは0.99以下、より好ましくは0.98以下、更に好ましくは0.97以下である。なお、本明細書における球状を上記円形度の範囲にて表現することもできる。
円形度がこの範囲であれば、電極とした際に粒子が集電体と平行方向に並ぶことを抑制できるため、電極の厚み方向への膨張収縮に伴う導電パス切れが抑制でき、サイクル維持率が良好となる。
円形度は下記式(1)で定義され、円形度が1のときに理論的真球となる。
式(1)
円形度
=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)
円形度の値としては、フロー式粒子像分析装置(例えば、シスメックスインダストリアル社製FPIA)を用い、界面活性剤としてポリオキシエチレン(20)モノラウレートを使用し、分散媒としてイオン交換水を使用し、円相当径による円形度の算出を行うことで求められる。円相当径とは、撮影した粒子像と同じ投影面積を持つ円(相当円)の直径であり、円形度とは、相当円の周囲長を分子とし、撮影された粒子投影像の周囲長を分母とした比率である。測定した相当径が10〜40μmの範囲の粒子の円形度を平均し、本発明における円形度を求める。
(d)Si複合炭素粒子(A)のX線パラメーター
X線広角回折法による002面の面間隔(d002)は、通常0.337nm以下、好ましくは0.336nm以下である。d002値が上記範囲内にあると、黒鉛の結晶性が高いため、初期不可逆容量が増加を抑制する傾向にある。ここで、0.335nmは黒鉛の理論値である。
また、Si複合炭素粒子(A)の結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上の範囲である。上記範囲内であると、結晶性が低過ぎない粒子となり、非水系二次電池とした場合に可逆容量が減少し難くなる。なお、Lcの下限は黒鉛の理論値である。
X線パラメーターは、炭素粉末に約15%のX線標準高純度シリコン粉末を加えて混合したものを材料とし、グラファイトモノクロメーターで単色化したCuKα線を線源とし、反射式ディフラクトメーター法で広角X線回折曲線を測定し、学振法を用いて面間隔(d002)及び結晶子の大きさ(Lc)を求めることができる。
(e)Si複合炭素粒子(A)のラマンR値
Si複合炭素粒子(A)のラマンR値は、1580cm−1付近のピークPの強度Iと、1360cm−1付近のピークPの強度Iとを測定し、その強度比R(R=I
/I)を算出して定義する。その値は通常1以下、好ましくは0.8以下、より好ましくは0.6以下、更に好ましくは0.5以下であり、通常0.05以上、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.25以上である。ラマンR値が上記範囲内であれば、粒子表面の結晶性が高くなり、電解液との反応性が低減するため、充放電効率の低下やガス発生を抑制できる。
ラマンスペクトルはラマン分光器で測定できる。具体的には、測定対象粒子を測定セル内へ自然落下させることで試料充填し、測定セル内にアルゴンイオンレーザー光を照射しながら、測定セルをこのレーザー光と垂直な面内で回転させながら測定を行なう。
アルゴンイオンレーザー光の波長 :532nm
試料上のレーザーパワー :25mW
分解能 :4cm−1
測定範囲 :1100cm−1〜1730cm−1
ピーク強度測定、ピーク半値幅測定:バックグラウンド処理、スムージング処理(単純平均によるコンボリューション5ポイント)
(g)Si複合炭素粒子(A)のBET比表面積(SA)
Si複合炭素粒子(A)のBET法で測定した比表面積については、通常0.1m/g以上、好ましくは0.7m/g以上、より好ましくは1m/g以上である。また、通常40m/g以下、好ましくは30m/g以下、より好ましくは20m/g以下、更に好ましくは15m/g以下、特に好ましくは13m/g以下である。
比表面積が上記範囲内であれば、リチウムイオンが出入りする部位が十分確保できるため、高速充放電特性及び出力特性が良好となり、また電解液に対する活性も抑制できることから、初期不可逆容量の増加が抑制できる。
なおBET比表面積の測定方法は、比表面積測定装置を用いて、窒素ガス吸着流通法によりBET1点法にて測定する。
(h)Si複合炭素粒子(A)のタップ密度
Si複合炭素粒子(A)のタップ密度は、通常0.5g/cm以上であり、好ましくは0.6g/cm以上、より好ましくは0.8g/cm以上、更に好ましくは0.85g/cm以上、特に好ましくは0.9g/cm以上、通常1.3g/cm以下であり、好ましくは1.2g/cm以下であり、より好ましくは1.1g/cm以下である。タップ密度が上記範囲内であると、極板化作製時のスジ引きなどの工程性が良好になり高速充放電特性に優れる。また、粒子内炭素密度が上昇し難いため圧延性も良好で、高密度の負極シートを形成する易くなる傾向にある。
本発明において、タップ密度は、粉体密度測定器を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して、試料(Si複合炭素粒子(A))を落下させて、セルに満杯に充填した後、ストローク長10mmのタップを1000回行なって、その時の体積と試料の重量から求めた密度をタップ密度として定義する。
(i)Si複合炭素粒子(A)のプレス荷重(Pa)
Si複合炭素粒子(A)のプレス荷重(Pa)は、通常500kg/5cm以上、好ましくは700kg/5cm以上、より好ましくは800kg/5cm以上、更に好ましくは900kg/5cm以上、特に好ましくは1000kg/5cm以上、最も好ましくは1200kg/5cm以上、また通常4000kg/5cm以下、好ましくは3000kg/5cm以下、より好ましくは2000kg/5cm以下、更に好ましくは1800kg/5cm以下、特に好ましくは1600kg/5cm以下、最も好ましくは1500kg/5cm以下である。
プレス荷重(Pa)が大きすぎる場合、電極のプレスが非常に困難となり目的の密度までプレス出来なくなるだけでなく、プレスによる粒子破壊により電解液との副反応が増大して初期効率が低下したり、プレス時に電極へ大きな残存応力が生じることによって電極熱乾燥時や充放電時に電極が膨張したりする傾向がある。また、小さすぎる場合、負極作成時のプレスにおいて粒子変形を十分に抑制できなくなるため、電解液の流路確保能が低下し、入出力特性の低下を招く傾向がある。本発明のプレス荷重は、集電体上に負極用活物質を、その密度が1.6g/cmになるよう圧延して形成するのに必要な線圧(kg/5cm)と定義する。
プレス荷重の測定方法は、負極用活物質100質量%に対して、バインダとして1.5質量%のスチレン・ブタジエンゴムと、増粘剤として1質量%のカルボキシメチルセルロースナトリウムと、分散媒として102.5質量%の水とを加えてスラリーとし、これを集電体上に塗布、乾燥する。この電極を、活物質層の幅が5cmとなるように調整し(塗布の際に塗布幅を調整しても良い)、ロールプレスし、このプレスした際の応力を計測することで測定することができる。
(j)Si複合炭素粒子(A)中の珪素元素の態様
本発明におけるSi複合炭素粒子(A)中に含有される珪素元素の態様としては、Si,SiOx,SiNx,SiCx、SiZxOy(Z=C、N)などが挙げられ、本発明ではこれらを総称してSi化合物と呼ぶ。中でも好ましくはSi及びSiOxである。この一般式SiOxは、二酸化Si(SiO)と金属Si(Si)とを原料として得られるが、そのxの値は通常0<x<2であり、好ましくは0.2以上、1.8以下、より好ましくは0.4以上、1.6以下、更に好ましくは0.6以上、1.4以下である。上記範囲であれば、高容量であると同時に、Liと酸素との結合による不可逆容量を低減させることが可能となる。
本発明のSi複合炭素粒子(A)中の珪素元素の好ましい態様としてはSi化合物を粒子状にしたSi化合物粒子が好ましい。
また、本発明のSi複合炭素粒子(A)中の珪素元素の含有量としては、Si複合炭素粒子(A)に対して通常0.5質量%以上、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは5質量%以上、特に好ましくは10質量%以上である。また、通常99質量%以下、好ましくは50質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下、特に好ましくは20質量%以下である。上記範囲であると、十分な容量を得ることが可能となる点で好ましい。
なお、Si複合炭素粒子(A)中の珪素元素の含有量の測定方法は、試料をアルカリで完全に溶融した後、水で溶解、定容し、誘導結合プラズマ発光分析装置(堀場製作所 ULTIMA2C)にて測定を行い、検量線から珪素元素量を算出する。その後、珪素元素量をSi複合炭素粒子(A)の重量で割ることで、Si複合炭素粒子(A)の珪素元素の含有量を算出することができる。
(Si複合炭素粒子(A)の態様)
本発明のSi複合炭素粒子(A)の態様としては、珪素元素が含有された炭素材料であれば特に制限されないが、例えば(イ)炭素材料からなる造粒体の中にSi化合物粒子が分散したもの、(ロ)核となる炭素材料の外周にSi化合物粒子が添着又は被覆しているもの、(ハ)球形化処理された炭素材料の内部に少なくともSi化合物粒子が分散したもの、(ニ)核となるSi化合物粒子の外周に炭素質物が添着又は被覆したもの、これらを組み合わせた態様等が挙げられる。Si複合炭素粒子(A)の内部にSi化合物粒子が内包されることにより、Si化合物の充放電に伴う体積膨張による応力を緩和することで粒子破壊、及びそれに伴う導電パス切れを抑制して、高容量、高サイクル特性を示す傾向がある点や、電解液との接触を防いで副反応を抑制することで高初期効率を示す傾向がある点や、粒子硬さを容易に制御できて硬い粒子を製造しやすい点などから、(ハ)球形化処理された炭素材料の内部に少なくともSi化合物粒子が分散したものが好ましい。また、
この時、Si化合物粒子のうち少なくとも1粒子が炭素材料と接触していることが、不可逆容量の増加を抑制できる点から好ましい。
なお本明細書において、添着とは、炭素材料の表面にSi化合物粒子が添着、付着、複合化した状態等を表し、状態を観察するには、例えば、電界放射型走査型電子顕微鏡−エネルギー分散型X線(SEM−EDX)分析、X線光電子分光法(XPS)分析等の手法を用いて粒子断面を観察することにより確認することができる。
<Si複合炭素粒子(A)の製造方法>
(Si複合炭素粒子(A)の原料)
上述したSi複合炭素粒子(A)は、珪素元素と炭素材料が複合化したSi複合炭素粒子であれば、その原料は特に限定されないが、例えば炭素材料、Si化合物粒子、及び炭素質物となる有機化合物を用いて製造することができる。
原料として使用する炭素材料は、特に限定されないが、(イ)や(ハ)のSi複合炭素粒子(A)を製造する場合、天然黒鉛、人造黒鉛等の黒鉛粒子、又は、これらよりもやや結晶性の低い石炭系コークス、石油系コークス、ファーネスブラック、アセチレンブラック及びピッチ系炭素繊維からなる群から選ばれる材料の焼成物等が挙げられる。中でも鱗片状、もしくは鱗状の天然黒鉛や人造黒鉛がSi化合物粒子を均一分散できる傾向にあることからより好ましい。また、(ロ)のSi複合炭素粒子(A)を製造する場合、粒子の核として形を保てる点から例えば鱗片状黒鉛などに機械的応力を加え球形化処理した黒鉛粒子や、黒鉛と炭素質物となる有機化合物を混合し造粒した黒鉛粒子を用いることが好ましい。
なお本発明における原料として使用する炭素材料は以下の物性を示すものが好ましい。
原料として使用する炭素材料の体積基準平均粒径(d50)は、特に制限はないが、通常1〜120μmであり、好ましくは3〜100μm、より好ましくは5〜90μmである。原料として使用する炭素材料の平均粒子径d50が上記範囲内であれば、Si複合炭素粒子(A)の粒径が大きくなり過ぎず、電極作成時の工程性が良好となる。
原料として使用する炭素材料のタップ密度は、通常0.1g/cm以上1.0g/cm以下であり、好ましくは0.13g/cm以上0.8g/cm以下、より好ましくは0.15g/cm以上0.6g/cm以下である。
タップ密度が上記範囲内であると、Si複合炭素粒子(A)内に、微小な空隙が形成されやすくなるため、Si化合物粒子の膨張収縮によるSi複合炭素粒子(A)の破壊を抑制できる。
原料として使用する炭素材料のBET法による比表面積は通常1〜40m/g、2〜35m/gであることが好ましく、3〜30m/gであることがより好ましい。原料として使用する炭素材料の比表面積は、Si複合炭素粒子(A)の比表面積に反映され、40m/g以下とすることで該Si複合炭素粒子(A)の不可逆容量の増加による電池容量の減少を防ぐことができる。
原料として使用する炭素材料のX線広角回折法による002面の面間隔(d002)は通常0.337nm以下である。一方通常、黒鉛の理論値である0.3354nm以上である。また、原料として使用する炭素材料のX線広角回折法によるLcは90nm以上、好ましくは95nm以上である。002面の面間隔(d002)が0.337nm以下であると、原料として使用する炭素材料の結晶性が高いことを示し、高容量のSi複合炭素粒子(A)を得ることができる。また、Lcが90nm以上である場合にも、結晶性が高いことを示し、高容量となるSi複合炭素粒子(A)を得ることができる。
また本発明における原料として使用するSi化合物粒子は以下の物性を示すものが好ま
しい。
原料として使用するSi化合物粒子の体積平均粒子径(d50)は、サイクル寿命の観点から、通常0.005μm以上、好ましくは0.01μm以上、より好ましくは0.02μm以上、更に好ましくは0.03μm以上であり、通常10μm以下、好ましくは9μm以下、より好ましくは8μm以下である。平均粒子径(d50)が上記範囲内であると、充放電に伴う体積膨張が低減され、充放電容量を維持しつつ、良好なサイクル特性を得ることができる。
原料として使用するSi化合物粒子のBET法による比表面積は通常0.5〜120m/g、1〜100m/gであることが好ましい。比表面積が前記範囲内であると、電池の充放電効率および放電容量が高く、高速充放電においてリチウムの出し入れが速く、レート特性に優れるので好ましい。
原料として使用するSi化合物粒子の含有酸素量は、特に制限はないが、通常0.01〜12質量%、0.05〜10質量%であることが好ましい。粒子内の酸素分布状態は、表面近傍に存在、粒子内部に存在、粒子内一様に存在していてもかまわないが、特に表面近傍に存在していることが好ましい。該金属粒子の含有酸素量が前記範囲内であると、SiとOの強い結合により、充放電に伴う体積膨張が抑制され、サイクル特性に優れるので好ましい。
原料として使用するSi化合物粒子の結晶子サイズは、特に制限はないが、通常、XRDより算出される(111)面の結晶子サイズにおいて通常0.05nm以上、好ましくは1nm以上であり、通常100nm以下、50nm以下であることが好ましい。該金属粒子の結晶子サイズが前記範囲内であると、SiとLiイオンの反応が迅速に進み、入出力に優れるので好ましい。
なお、Si複合炭素粒子(A)中のSi化合物粒子は、原料となるSi化合物粒子の物性と同様の性質を持つことが好ましい。
また本発明における原料として使用する炭素質物となる有機化合物は以下の物性を示すものが好ましい。
原料として使用する炭素質物となる有機化合物としては、以下の(a)又は(b)に記載の炭素材が好ましい。
(a)石炭系重質油、直流系重質油、分解系石油重質油、芳香族炭化水素、N環化合物、S環化合物、ポリフェニレン、有機合成高分子、天然高分子、熱可塑性樹脂及び熱硬化性樹脂からなる群より選ばれた炭化可能な有機物
(b)炭化可能な有機物を低分子有機溶媒に溶解させたもの
前記石炭系重質油としては、軟ピッチから硬ピッチまでのコールタールピッチ、乾留液化油等が好ましく、前記直流系重質油としては、常圧残油、減圧残油等が好ましく、前記分解系石油重質油としては、原油、ナフサ等の熱分解時に副生するエチレンタール等が好ましく、前記芳香族炭化水素としては、アセナフチレン、デカシクレン、アントラセン、フェナントレン等が好ましく、前記N環化合物としては、フェナジン、アクリジン等が好ましく、前記S環化合物としては、チオフェン、ビチオフェン等が好ましく、前記ポリフェニレンとしては、ビフェニル、テルフェニル等が好ましく、前記有機合成高分子としては、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、これらのものの不溶化処理品、ポリアクリロニトリル、ポリピロール、ポリアリルアミン、ポリビニルアミン、ポリエチレンイミン、ウレタン樹脂、尿素樹脂等の窒素含有高分子、ポリチオフェン、ポリスチレン、ポリメタクリル酸等が好ましく、前記天然高分子としては、セルロース、リグニン、マンナン、ポリガラクトウロン酸、キトサン、サッカロース等の多糖類等が
好ましく、前記熱可塑性樹脂としては、ポリフェニレンサルファイド、ポリフェニレンオキシド等が好ましく、前記熱硬化性樹脂としては、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂等が好ましい。
また、炭化可能な有機物は、ベンゼン、トルエン、キシレン、キノリン、n−へキサン等の低分子有機溶媒に溶解させた溶液等の炭化物であってもよい。
また、これらは1種を単独で用いても、2種以上を任意の組み合わせで併用してもよい。
なお、Si複合炭素粒子(A)中における炭素質物は以下の物性を示すものが好ましい。
炭素質物の粉末のX線広角回折法による(002)面の面間隔(d002)が通常0.340nm以上、好ましくは0.342nm以上である。また、通常0.380nm未満、好ましくは0.370nm以下、より好ましくは0.360nm以下である。d002値が上記範囲内であれば、電解液との反応性が抑制され、サイクル特性が低下しにくい。
炭素質物の粉末の学振法によるX線回折法で求めた炭素質物の結晶子サイズ(Lc(002))は、通常5nm以上、好ましくは10nm以上、より好ましくは20nm以上である。また通常300nm以下、好ましくは200nm以下、より好ましくは100nm以下である。結晶子サイズが上記範囲内であるということは結晶性が高いことを示し、電解液との反応性が抑制され、サイクル特性が低下しにくい。
(製造方法の種類)
上述したSi複合炭素粒子(A)は、珪素元素と炭素材料が複合化したSi複合炭素粒子であれば、その製造方法は特に限定されないが、例えば以下の手法(i)〜手法(iii)によって製造することができる。
(手法(i))
上述した(イ)炭素材料からなる造粒体の中にSi化合物粒子が分散したSi複合炭素粒子(A)や(ロ)核となる炭素材料の外周にSi化合物粒子が添着又は被覆しているSi複合炭素粒子(A)を製造するには、例えば、炭素材料、Si化合物粒子、炭素質物となる有機化合物を混合し、造粒する手法が挙げられる。
具体的な工程としては、
(1)Si化合物粒子、炭素材料、および炭素質物となる有機化合物を混合する工程
(2)(1)で得られた混合物を焼成する工程、
上記の(1)〜(2)工程を少なくとも含む方法によってSi複合炭素粒子(A)を製造することができる。
(1)Si化合物粒子、炭素材料、および炭素質物となる有機化合物を混合する工程
Si化合物粒子、炭素材料、および炭素質物となる有機化合物を混合し、混合物を得られれば特に原料を仕込む順序に制限はないが、例えば、Si化合物粒子に炭素材料を混合した後に炭素質物となる有機化合物を混合する方法、炭素材料に炭素質物となる有機化合物を混合した後にSi化合物粒子を混合する方法、Si化合物粒子に炭素質物となる有機化合物を混合した後に炭素材料を混合する方法、Si化合物粒子、炭素材料および炭素質物となる有機化合物を一度に混合する方法等の方法が挙げられる。
Si化合物粒子に炭素材料を混合した後に炭素質物となる有機化合物を混合する方法において、炭素材料に、Si化合物粒子を、機械的処理により炭素材料の表面および/または内部に付着させてから炭素質物となる有機化合物を混合してもよい。ここでいう機械的処理は、特に限定されないが、例えば、乾式ボールミル、湿式ビーズミル、遊星式ボールミル、振動ボールミル、メカノフュージョシステム、アグロマスタ(ホソカワミクロン(
株))、ハイブリダイゼーションシステム、マイクロス、ミラーロ((株)奈良機械製作所製)などが挙げられる。
これらの中でも好ましくは、Si化合物粒子に炭素材料を混合した後に炭素質物となる有機化合物を混合する方法が、Si化合物粒子、炭素材料をそれぞれ粉体の状態で混合させるため、分散性が良好であるという点で好ましい。
Si化合物粒子、炭素材料および炭素質物となる有機化合物を混合する方法は、例えば粉末混合法、溶融混合法、溶液混合法等が挙げられる。
混合温度は通常は常温以上300℃以下であり、炭素質物となる有機化合物の種類により適宜決定することができる。また混合時間は、通常10分以上1時間以下である。また、Si化合物粒子、炭素材料および炭素質物となる有機化合物との溶液混合法に用いる溶媒には、該有機化合物を溶解または分散する水又は有機溶媒の中から、適宜選択することができる。異なる2種以上の溶媒を混合して用いてもよい。
Si化合物粒子、炭素材料および炭素質物となる有機化合物との溶液混合法を用いた場合は、通常40℃以上300℃以下の範囲で乾燥させる。乾燥時間は、用いた溶媒の種類に応じて適宜決めることができるが、通常1時間以上24時間以下である。適宜減圧乾燥を選択することができる。
Si化合物粒子、炭素材料および炭素質物となる有機化合物を混合する際、通常は常圧下で行うが、所望ならば、減圧下又は加圧下に行うこともできる。混合は回分方式及び連続方式のいずれで行うこともできる。いずれの場合でも、粗混合に適した装置及び精密混合に適した装置を組合せて用いることにより、混合効率を向上させることができる。
回分方式の混合装置としては、ハイスピードミキサー、ホモジナイザー、超音波ホモジナイザー、2本の枠型が自転しつつ公転する構造の混合機、高速高剪断ミキサーであるディゾルバーや高粘度用のバタフライミキサーの様な、一枚のブレードがタンク内で撹拌・分散を行う構造の装置、半円筒状混合槽の側面に沿ってシグマ型などの撹拌翼が回転する構造を有する、いわゆるニーダー形式の装置、撹拌翼を3軸にしたトリミックスタイプの装置、容器内に回転ディスクと分散媒体を有するいわゆるビーズミル型式の装置などが用いられる。
またシャフトによって回転されるパドルが内装された容器を有し、容器内壁面はパドルの回転の最外線に実質的に沿って、好ましくは長い双胴型に形成され、パドルは互いに対向する側面を摺動可能に咬合するようにシャフトの軸方向に多数対配列された構造の装置(例えば栗本鉄工所製のKRCリアクタ、SCプロセッサ、東芝機械セルマック社製のTEM、日本製鋼所製のTEX−Kなど)、更には内部一本のシャフトとシャフトに固定された複数のすき状又は鋸歯状のパドルが位相を変えて複数配置された容器を有し、その内壁面はパドルの回転の最外線に実質的に沿って、好ましくは円筒型に形成された構造の(外熱式)装置(例えばレーディゲ社製のレディゲミキサー、大平洋機工社製のフローシェアーミキサー、月島機械社製のDTドライヤーなど)を用いることもできる。
連続方式で混合を行うには、パイプラインミキサーや連続式ビーズミルなどを用いればよい。
Si化合物粒子、炭素材料、および炭素質物となる有機化合物の合計に対するSi化合物粒子の混合割合は、通常1質量%以上、好ましくは1.5質量%以上、より好ましくは2質量%以上、更に好ましくは2.5質量%以上である。また、通常50質量%以下、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である。Si化合物粒子が多すぎると、充放電に伴う体積膨張が大きくなり、容量劣化が顕著になる傾向がある。また、Si化合物粒子が少なすぎると、十分な容量が得られない傾向がある。
Si化合物粒子、炭素材料および炭素質物となる有機化合物の合計に対する炭素材料の混合割合は、通常1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上である。また、通常95質量%以下、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である。炭素材料が多すぎると、炭素材料が形成する空隙量が多くなり、電極密度を上げることが困難となる傾向がある。また、炭素材料が少なすぎると、体積膨張を抑制する空隙を形成できず、かつ導電パスを取れにくくなり、サイクル特性を向上させる効果が十分得られない傾向がある。
Si化合物粒子、炭素材料および炭素質物となる有機化合物の合計に対する炭素質物となる有機化合物の混合割合は、炭素材料及びSi化合物粒子の合計質量に対して通常1質量%以上、好ましくは1.5質量%以上、より好ましくは2質量%以上、更に好ましくは2.5質量%以上である。また、通常60質量%以下、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。炭素質物となる有機化合物が多すぎると焼成過程において活物質同士の凝集が生じやすくなる。また、非晶性炭素として残存しやすくなり、非晶性炭素を多く含む該活物質を用いて電池を作製すると充電初期において充放電効率が低下する傾向がある。また、炭素質物となる有機化合物が少なすぎると、還元反応の進行や活物質の凝集抑制において十分な効果が得られない。
(2)(1)で得られた混合物を焼成する工程
本工程ではSi化合物粒子、炭素材料および炭素質物となる有機化合物とを含む混合物を焼成する。
焼成する際の雰囲気は、非酸化性雰囲気下であり、好ましくは窒素、アルゴン、二酸化炭素、アンモニア、水素などを流通させ非酸化性雰囲気にさせる。
その理由として、Si化合物粒子、炭素材料、炭素質物の酸化を防ぐ必要ある、ということが考えられる。
焼成温度は焼成雰囲気及び炭素質物となる有機化合物により異なるが、一例として窒素流通雰囲気下であれば通常は500℃以上、好ましくは800℃以上、より好ましくは850℃以上である。また、通常は高くても3000℃以下、好ましくは2000℃以下であり、1500℃以下がより好ましい。焼成温度が低すぎると炭化が十分に進行せず、充放電初期の不可逆容量低減が増大する虞があり、またSi化合物の還元速度が低下するため、焼成時間をより長くとる必要が生じる。ただし、還元速度については、焼成雰囲気を水素雰囲気などのより強い還元雰囲気にすることで、低温でも速めることが可能である。一方で焼成温度が高すぎると、炭素質物となる有機化合物の炭化物が、混合物中の原料炭素材の結晶構造と同等の結晶構造に達し、被覆の効果が得難くなることや、珪素元素が気化することによる収率の低下、及び製造コストアップとなる傾向がある。
焼成処理条件において、熱履歴温度条件、昇温速度、冷却速度、熱処理時間等は、適宜設定する。また、比較的低温領域で熱処理した後、所定の温度に昇温することもできる。なお、本工程に用いる反応機は回分式でも連続式でも、また一基でも複数基でもよい。焼成に使用する炉は上記要件を満たせば特に、制約はないが、例えば、シャトル炉、トンネル炉、リードハンマー炉、ロータリーキルン、オートクレーブ等の反応槽、コーカー(コークス製造の熱処理槽)、タンマン炉、アチソン炉、加熱方式も、高周波誘導加熱炉、直接式抵抗加熱、間接式抵抗加熱、直接燃焼加熱、輻射熱加熱等を用いることができる。処理時には、必要に応じて攪拌を行なってもよい。
(3)その他の工程
上記工程を経た複合炭素材は、粉砕、解砕、分級処理等の粉体加工し、Si複合炭素粒
子(A)を得る。
粉砕や解砕に用いる装置に特に制限はないが、例えば、粗粉砕機としてはせん断式ミル、ジョークラッシャー、衝撃式クラッシャー、コーンクラッシャー等が挙げられ、中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられ、微粉砕機としてはボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。
分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合は、回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を用いることができ、乾式気流式分級の場合は、重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)を用いることができ、また、湿式篩い分け、機械的湿式分級機、水力分級機、沈降分級機、遠心式湿式分級機等を用いることができる。
上述のような製造方法により、Si複合炭素粒子(A)が製造できる。ただし、Si複合炭素粒子(A)は、上記製造方法に限定されないものである。
(手法(ii))
上述した(ハ)球形化処理された炭素材料の内部に少なくともSi化合物粒子が分散したSi複合炭素粒子(A)を製造するには、例えば、炭素材料とSi化合物粒子を混合し、その後、球形化処理を施すことでSi複合炭素粒子の内側にSi化合物粒子を内包する方法が挙げられる。なお、手法(ii)における原料としての炭素材料、Si化合物粒子及び炭素質物となる有機化合物は、特に限定されるものでなく、手法(i)と同じものを用いて製造することができる。
好ましい製造方法として、以下の工程を含むものが挙げられる。
(1)炭素材料とSi化合物粒子を混合、固定化する工程
(2)(1)で得られたものに対して球形化処理を施す工程
(1)炭素材料とSi化合物粒子を混合、固定化する工程
Si化合物粒子と炭素材料の合計に対するSi化合物粒子の混合割合は、通常1質量%以上、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは7質量%以上、特に好ましくは10質量%以上である。また、通常95質量%以下、好ましくは70質量%以下、より好ましくは60質量%以下、更に好ましくは50質量%以下、特に好ましくは40質量%以下、最も好ましくは35質量%以下である。この範囲であると、十分な容量を得ることが可能となる点で好ましい。
炭素材料とSi化合物粒子の混合、固定化する方法については特に制限はない。例えば、Si化合物粒子を溶媒に分散させたSiスラリーを用いて、湿潤しているSi化合物粒子を乾燥させないように炭素材料と混合させる方法が挙げられる。このようなSiスラリーは、Si化合物粒子の凝集を抑制するので、炭素材料の表面にSi化合物粒子を固定化しやすくなり好ましい。
Si化合物粒子の分散溶媒としては、芳香環を有した非極性化合物や非プロトン性の極性溶媒が挙げられ、芳香環を有した非極性化合物の種類としては特に制限はないが、Si化合物と反応性を持たないものであればより好ましい。例えば、ベンゼン、トルエン、キシレン、クメン、メチルナフタレンなどの常温で液体の芳香族化合物、シクロヘキサン、メチルシクロヘキサン、メチルシクロヘキセン、ビシクロヘキシルのような脂環式炭化水素類、軽油、重質油といった石油化学、石炭化学での残渣油が挙げられる。これらの中でも、キシレンが好ましく、メチルナフタレンがより好ましく、重質油が、沸点が高いという理由で更に好ましい。湿式粉砕では粉砕効率を上げようとすると発熱しやすくなる。沸点が低い溶媒では揮発して高濃度になってしまう恐れがある。一方、非プロトン性の極性溶媒としては、NMP(N―メチルー2―ピロリドン)、GBL(γブチロラクトン)、DMF(NNジメチルホルムアミド)など水だけでなく有機溶媒を溶かすようなものが好
ましく、中でも分解しにくく、沸点が高いという点においてNMP(N―メチルー2―ピロリドン)が好ましい。
Si化合物粒子と分散溶媒の混合割合は、Si化合物粒子に対して通常10質量%以上、好ましくは20質量%以上、通常50質量%以下、好ましくは40質量%以下である。
分散溶媒の混合割合が高すぎるとコスト増になる傾向があり、分散溶媒の混合割合が低すぎるとSi化合物粒子の均一な分散が困難になる傾向がある。
Si化合物粒子は炭素材料の表面に均一に分散させることが好ましく、そのためにSi化合物粒子を湿式粉砕する際に用いた分散溶媒を混合時に過剰に加えてもよい。本明細書では、炭素材料にSi化合物粒子を混合する際にスラリーとして混合する場合、Si化合物粒子の固形分としては、通常10%以上、好ましくは15%以上、より好ましくは20%以上であり、通常90%以下、好ましくは85%以下、より好ましくは80%以下である。この固形分の割合が多すぎるとスラリーの流動性がなくなり、Si化合物粒子が炭素材料に分散しにくい傾向があり、少なすぎると工程上扱いづらくなる傾向がある。
そして、混合した後、エバポレーター、乾燥機等を用いて分散溶媒を蒸発除去・乾燥させることで炭素材料上にSi化合物粒子を固定化することができる。
または、過剰の分散溶媒を加えることなく、そのまま高速撹拌機中で加温しながら分散溶媒を蒸発させながら混合、固定化してもよい。この際、炭素材料にSi化合物粒子を固定化させるために、樹脂やピッチ等の緩衝材を使うことができ、なかでも樹脂を使うことが好ましい。この樹脂は、炭素材料へのSi化合物粒子の固定化の役割を担うだけでなく、球形化工程時に炭素材料からSi化合物粒子が脱離することを防ぐ役割を担うと考えられる。なお、緩衝材を加える場合は、この段階で加えてもよいし、Si化合物粒子の湿式粉砕時に添加してもよい。
なお、本(1)工程の緩衝材として用いることができる樹脂は、特に制限はないが、上述した炭素質物となる有機化合物に含まれる樹脂であっても良く、好ましくはポリスチレン、ポリメタクリル酸、ポリアクリロニトリルが挙げられ、焼成時の残炭量が多く、分解温度が比較的高い点からポリアクリルニトリルが特に好ましく用いることができる。なお、樹脂の分解温度は示差走査熱量分析(DSC)にて不活性ガス雰囲気下で測定することが可能である。樹脂の分解温度は好ましくは50℃以上、より好ましくは75℃以上、更に好ましくは100℃以上である。分解温度が高すぎる際は特に問題ないが、低すぎる場合は以下記載の乾燥工程で分解する可能性がある。
緩衝剤は溶媒に分散した状態、乾燥した状態のどちらで用いても良いが、溶媒を用いる場合は、Si化合物粒子の分散溶媒と同じ溶媒を用いることができる。
混合は通常は常圧下で行うが、所望ならば、減圧下又は加圧下で行うこともできる。混合は回分方式及び連続方式のいずれで行うこともできる。いずれの場合でも、粗混合に適した装置及び精密混合に適した装置を組合せて用いることにより、混合効率を向上させることができる。また、混合・固定化(乾燥)を同時に行う装置を利用しても良い。乾燥は通常は減圧下又は加圧下で行うこともでき、好ましくは減圧にて乾燥させる。
乾燥時間は、通常5分以上、好ましくは10分以上、より好ましくは20分以上、更に好ましくは30分以上であり、通常2時間以下、好ましくは1時間半以下、より好ましくは1時間以下である。時間が長すぎるとコスト増につながり、短すぎると均一な乾燥が困難になる傾向がある。
乾燥温度は、溶媒によって異なるが上記時間を実現できる時間であることが好ましい。また、樹脂が変性しない温度以下であることが好ましい。
回分方式の混合装置としては、2本の枠型が自転しつつ公転する構造の混合機;高速高剪断ミキサーであるディゾルバーや高粘度用のバタフライミキサーの様な、一枚のブレードがタンク内で撹拌・分散を行う構造の装置;半円筒状混合槽の側面に沿ってシグマ型などの撹拌翼が回転する構造を有する、いわゆるニーダー形式の装置;撹拌翼を3軸にしたトリミックスタイプの装置;容器内に回転ディスクと分散溶媒体を有するいわゆるビーズミル型式の装置などが用いられる。
またシャフトによって回転されるパドルが内装された容器を有し、容器内壁面はパドルの回転の最外線に実質的に沿って、好ましくは長い双胴型に形成され、パドルは互いに対向する側面を摺動可能に咬合するようにシャフトの軸方向に多数対配列された構造の装置(例えば栗本鉄工所製のKRCリアクタ、SCプロセッサ、東芝機械セルマック社製のTEM、日本製鋼所製のTEX−Kなど);更には内部一本のシャフトと、シャフトに固定された複数のすき状又は鋸歯状のパドルが位相を変えて複数配置された容器を有し、その内壁面はパドルの回転の最外線に実質的に沿って、好ましくは円筒型に形成された構造の(外熱式)装置(例えばレーディゲ社製のレディゲミキサー、大平洋機工社製のフローシェアーミキサー、月島機械社製のDTドライヤーなど)を用いることもできる。連続方式で混合を行うには、パイプラインミキサーや連続式ビーズミルなどを用いればよい。また、超音波分散等の手段で均質化することも可能である。
(2)(1)で得られたものに対して球形化処理を施す工程
本(2)工程を経ることにより、炭素材料が折り畳まれた構造が観察され、且つ該折り畳まれた構造内の間隙にSi化合物粒子が存在するSi複合炭素粒子(A)を製造することができる。
つまり、Si複合炭素粒子(A)を得るための好ましい製造方法としては、上記(1)工程で得られた折り畳まれる前の炭素材料の表面にSi化合物粒子が固定化された複合体(本明細書では、複合体ともいう)に対し球形化処理を施すことであるが、特に本発明では所定の範囲内のSi化合物粒子を折り畳まれた構造内の間隙に存在させるように、後述するような製造条件を適宜設定することが好ましい。
なお、球形化処理には、基本的には力学的エネルギー(衝撃圧縮、摩擦及びせん断力等の機械的作用)を利用した処理であり、具体的にはハイブリダイゼーションシステムを用いた処理が好ましい。該システムは、衝撃圧縮、摩擦及びせん断力等の機械的作用を加える多数のブレードを有するローターを有し、ローターの回転により、大きな気流が発生し、それにより上記(1)工程で得られた複合体中の炭素材料に大きな遠心力がかかり、上記(1)工程で得られた複合体中の炭素材料同士、および上記(1)工程で得られた複合体中の炭素材料と壁およびブレードに衝突することによって、上記(1)工程で得られた複合体中の炭素材料を綺麗に折りたたむことができる。
球形化処理に用いる装置は、例えばケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された上記(1)工程で得られた複合体中の炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置等を用いることができる。例えば、乾式ボールミル、湿式ビーズミル、遊星式ボールミル、振動ボールミル、メカノフュージョシステム、アグロマスタ(ホソカワミクロン(株))、ハイブリダイゼーションシステム、マイクロス、ミラーロ((株)奈良機械製作所製)、CFミル(宇部興産社製)、シータコンポーザ(徳寿工作所社製)等などといった方法が挙げられるが、好ましい装置として、例えば、乾式ボールミル、湿式ビーズミル、遊星式ボールミル、振動ボールミル、メカノフュージョシステム、アグロマスタ(ホソカワミクロン(株))、ハイブリダイゼーションシステム、マイクロス、ミラーロ((株)奈良機械製作所製)、CFミル(宇部興産社製)、シータコンポーザ(徳寿工作所社製)、パルペライザー等が挙げられる。これらの中で、奈良機械製作所
社製のハイブリダイゼーションシステムが特に好ましい。
なお、球形化処理に付する上記(1)工程で得られた複合体中の炭素材料は、すでに従来法の条件で一定の球形化処理を受けたものであってもよい。また、上記(1)工程で得られた複合体を循環又は本工程を複数回経ることによって機械的作用を繰り返して与えてもよい。
このような装置を使用して球形化処理を行うが、この処理の際には、ローターの回転数を通常2000rpm以上8000rpm以下、好ましくは4000rpm以上7000rpm以下として、1分以上60分以下の範囲で、球形化処理を行う。
なお、ローターの回転数が低すぎると球状になる処理が弱く、タッピング密度が十分に上昇しない可能性があり、一方8000rpmを超えると球状になる処理よりも粉砕される効果が強くなり、粒子が崩壊してタッピング密度が低下してしまう可能性がある。さらに球形化処理が1分未満では粒径を十分に小さくしつつ、かつ高いタッピング密度を達成することができず、一方60分を超えると、上記(1)工程で得られた複合体中の炭素材料が粉々になってしまう可能性がある。
得られたSi複合炭素粒子(A)に対しては分級処理を行っても良い。なお、得られたSi複合炭素粒子(A)が本発明の規定の物性範囲にない場合には、繰り返し(通常2回以上10回以下、好ましくは2回以上5回以下)分級処理することによって、所望の物性範囲にすることができる。分級には、乾式(気力分級、篩)、湿式分級等が挙げられるが、乾式分級、特に気力分級がコストや生産性の面から好ましい。
(3)(2)で得られたSi複合炭素粒子(A)に炭素質物を被覆する工程
上記工程(2)のようにしてSi複合炭素粒子(A)が得られるが、当該Si複合炭素粒子(A)は、炭素質物を含有することが好ましく、より具体的な態様として、炭素質物でその表面の少なくとも一部が被覆することがより好ましい。(以下、炭素質物被覆Si複合炭素粒子(D)ともいう)。なお、本明細書では炭素質物被覆Si複合炭素粒子(D)は、便宜上Si複合炭素粒子(A)と区別して記載しているが、本明細書では炭素質物被覆Si複合炭素粒子(D)もSi複合炭素粒子(A)に含まれて解釈されるものとする。
被覆処理においては、上述したSi複合炭素粒子(A)に対して、炭素質物となる有機化合物を被覆原料として用い、これらを混合、焼成することで、被覆炭素粒子が得られる。
焼成温度を、通常600℃以上、好ましくは700℃以上、より好ましくは900℃以上、通常2000℃以下、好ましくは1500℃以下、より好ましくは1200℃以下とすると炭素質物として非晶質物が得られ、通常2000℃以上、好ましくは2500℃以上、通常3200℃以下で熱処理を行うと炭素質物として黒鉛質物が得られる。前記非晶質物とは結晶性の低い炭素であり、前記黒鉛質物とは結晶性の高い炭素である。
被覆処理においては、上述したSi複合炭素粒子(A)を芯材とし、炭素質物となる有機化合物を被覆原料として用い、これらを混合、焼成することで炭素質物被覆Si複合炭素粒子(D)が得られる。当該被覆層の中に、Si化合物粒子や炭素微粒子が含まれて・BR>燉ヌい。炭素微粒子の形状は特に限定されず、粒状、球状、鎖状、針状、繊維状、板状
、鱗片状等の何れであってもよい。
具体的に、炭素微粒子は特に限定されないが、石炭微粉、気相炭素粉、カーボンブラック、ケッチェンブラック、カーボンナノファイバー等が挙げられる。この中でもカーボンブラックが特に好ましい。カーボンブラックであると、低温下においても入出力特性が高くなり、同時に安価・簡便に入手が可能という利点がある。
炭素微粒子の平均粒子d50は、通常0.01μm以上、10μm以下、好ましくは0.05μm以上、より好ましくは0.07μm以上であり、更に好ましくは0.1μm以上であり、好ましくは8μm以下、より好ましくは5μm以下、更に好ましくは1μm以下である。
炭素微粒子が、1次粒子が集合・凝集した2次構造を有する場合、1次粒径が3nm以上、500nm以下であればその他の物性や種類は特に限定されないが、1次粒径は、好ましくは3nm以上、より好ましくは15nm以上であり、更に好ましくは30nm以上であり、特に好ましくは40nm以上であり、好ましくは500nm以下、より好ましくは200nm以下、更に好ましくは100nm以下、特に好ましくは70nm以下である。炭素微粒子の1次粒子径は、SEM等の電子顕微鏡観察やレーザー回折式粒度分布計などによって測定することができる。
(炭素質物被覆Si複合炭素粒子(D)の物性)
炭素質物被覆Si複合炭素粒子(D)は上述した(A)と同じ物性を示すものであるが、とりわけ被覆処理により変化する炭素質物被覆Si複合炭素粒子(D)の好ましい物性を以下に記載する。
・被覆率
炭素質物被覆Si複合炭素粒子(D)は、非晶質物又は黒鉛質物で被覆されているものであるが、この中でも非晶質炭素質物で被覆されていることがリチウムイオンの受入性の点から好ましく、この被覆率は、通常0.5%以上30%以下、好ましくは1%以上25%以下、より好ましくは2%以上20%以下である。この含有率が大きすぎると負極材の非晶質物部分が多くなり、電池を組んだ際の可逆容量が小さくなる傾向がある。含有率が小さすぎると、核となるSi複合炭素粒子(A)に対して非晶質物が均一にコートされないとともに強固な造粒がなされず、焼成後に粉砕した際、粒径が小さくなりすぎる傾向がある。
なお、最終的に得られる有機化合物由来の非晶質物の含有率(被覆率)は、用いるSi複合炭素粒子(A)の量と、炭素質物となる有機化合物の量及びJIS K 2270に準拠したミクロ法により測定される残炭率により、下記式(3)で算出することができる。
式(3)
有機化合物由来の非晶質物の被覆率(%)
=(炭素質物となる有機化合物の質量×残炭率×100)/{Si複合炭素粒子(A)の
質量+(炭素質物となる有機化合物の質量×残炭率)}
手法(ii)には、前述した炭素質物の被覆工程のほか、粉砕処理工程、粒径の分級処理工程、他の負極活物質との混合工程が含まれてもよい。
(手法(iii))
上述した(ニ)核となるSi化合物粒子の外周に炭素質物が添着又は被覆したSi複合炭素粒子(A)を製造するには、例えば、固相反応、液相反応、スパッタ、化学蒸着などを用いた手法が挙げられる。
ここでは、固相反応を利用した合成方法について説明する。固相反応とは、粉末状等の固体原料を所定の組成となるように秤量、混合した後、加熱処理を行って合成する方法である。本発明に係るSi複合炭素粒子(A)については、例えばSi化合物粒子及び炭素質物となる有機化合物を、高温下で接触させて反応させる方法がこれに該当する。
固相反応工程におけるSi化合物粒子及び炭素質物となる有機化合物の接触は、無酸素(低酸素)環境下、1000℃以上の高温下で行われるものであるため、そのような環境
を設定できる装置、例えば高周波誘導加熱炉、黒鉛炉、電気炉等を用いて行うことができる。固相反応工程における温度条件は特に限定されないが、通常Si化合物粒子の溶融温度以上、好ましくはSi化合物粒子の溶融温度より10℃以上、より好ましくはSi化合物粒子の溶融温度30℃以上である。具体的な温度としては、通常1420℃以上、好ましくは1430℃以上、より好ましくは1450℃以上である。上限値としては通常2000℃以下、好ましくは1900℃以下、より好ましくは1800℃以下である。また、無酸素(低酸素)環境としては、アルゴンなどの不活性雰囲気下、減圧(真空)下で行うことが好ましく、減圧(真空)下で行う場合、通常Pa以下、好ましくは1000Pa以下、より好ましくは500Pa以下である。さらに処理時間は通常0.1時間以上、好ましくは0.5時間以上、より好ましくは1時間以上、また通常3時間以下、好ましくは2.5時間以下、より好ましくは2時間以下である。
手法(iii)には、前述した固相反応工程のほか、粉砕処理工程、粒径の分級処理工程、他の負極活物質との混合工程が含まれてもよい。
粉砕処理工程に使用する粗粉砕機としては、ジョークラッシャー、衝撃式クラッシャー、コ−ンクラッシャー等が挙げられ、中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられ、微粉砕機としてはボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。
この中でも、ボールミル、振動ミル等が、粉砕時間が短く、処理速度の観点から好ましい。
粉砕速度は、装置の種類、大きさによって適宜設定するものであるが、例えば、ボールミルの場合、通常50rpm以上、好ましくは100rpm以上、より好ましくは150rpm以上、更に好ましくは200rpm以上である。また、通常2500以下、好ましくは2300以下、より好ましくは2000以下である。速度が速すぎると、粒径の制御が難しくなる傾向があり、速度が遅すぎると処理速度が遅くなる傾向がある。
粉砕時間は、通常30秒以上、好ましくは1分以上、より好ましくは1分30秒以上、更に好ましくは2分以上である。また、通常3時間以下、好ましくは2.5時間以下、より好ましくは2時間以下である。粉砕時間が短すぎると粒径制御が難しくなる傾向があり、粉砕時間が長すぎると、生産性が低下する傾向がある。
振動ミルの場合、粉砕速度は、通常50rpm以上、好ましくは100rpm以上、より好ましくは150rpm以上、更に好ましくは200rpm以上である。また、通常2500rpm以下、好ましくは2300rpm以下、より好ましくは2000rpm以下である。速度が速すぎると、粒径の制御が難しくなる傾向があり、速度が遅すぎると処理速度が遅くなる傾向がある。
粉砕時間は、通常30秒以上、好ましくは1分以上、より好ましくは1分30秒以上、更に好ましくは2分以上である。また、通常3時間以下、好ましくは2.5時間以下、より好ましくは2時間以下である。粉砕時間が短すぎると粒径制御が難しくなる傾向があり、粉砕時間が長すぎると、生産性が低下する傾向がある。
分級処理工程の分級処理条件としては、上記粒径になるように、目開きが、通常53μm以下、好ましくは45μm以下、より好ましくは38μm以下である。
分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合:回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を用いることができ、乾式気流式分級の場合:重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)等を用いることができ、湿式篩い分けの場合:機械的湿式分級機、水力分級機、沈降分級機、遠心式湿式分級機等を用いることができる。
手法(i)〜(iii)では、珪素元素を球形化処理した黒鉛内部に内包することによ
り、極板の膨れと粒子の破壊を抑制でき、また電解液と珪素元素との反応性を抑制できる点から手法(ii)がより好ましい。
[炭素粒子(B)]
本発明における炭素粒子(B)について以下に説明する。
本発明の炭素粒子(B)はSi複合炭素粒子(A)よりもプレス荷重の値が小さく、タップ密度が0.8g/cm以上、1.8g/cm以下となるようなものを選択すれば特に限定されない。この特性により、Si複合炭素粒子(A)の充放電による膨張を、炭素粒子(B)が緩和させるため、極板全体の膨れを低減させることができ、且つ炭素粒子(B)がSi複合炭素粒子(A)の隙間に入ることにより粒子間のパス切れを抑制することができる。
(炭素粒子(B)の特性)
本発明の炭素粒子(B)は以下のような特性を持つことが好ましい。
(a)炭素粒子(B)のX線パラメータ
炭素粒子(B)の、X線広角回折法による002面の面間隔(d002)は、通常0.337nm以下、好ましくは0.336nm以下である。d002値が上記範囲内にあると、黒鉛の結晶性が高いため、初期不可逆容量が増加を抑制する傾向にある。ここで、0.335nmは黒鉛の理論値である。
また、炭素粒子(B)の結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上の範囲である。上記範囲内であると、結晶性が低過ぎない粒子となり、非水系二次電池とした場合に可逆容量が減少し難くなる。なお、Lcの下限は黒鉛の理論値である。
(b)炭素粒子(B)の体積基準平均粒径(d50)
炭素粒子(B)の平均粒径d50は通常50μm以下、好ましくは40μm以下、より好ましくは30μm以下、更に好ましくは25μm以下であり、通常1μm以上、好ましくは4μm以上、より好ましくは7μm以上である。平均粒径d50が上記範囲であれば、総粒子が十分確保されるため、充放電時のSi複合炭素粒子(A)の膨張収縮による導電パス切れを抑制できる。
(c)炭素粒子(B)のアスペクト比
炭素粒子(B)のアスペクト比は、通常1以上、好ましくは1.3以上、より好ましくは1.4以上、更に好ましくは1.5以上、通常4以下、好ましくは3以下、より好ましくは2.5以下、更に好ましくは2以下である。
アスペクト比がこの範囲であれば、電極とした際に粒子が集電体と平行方向に並ぶことを抑制できるため、電極の厚み方向への膨張収縮に伴う導電パス切れが抑制でき、サイクル維持率が良好となる。
(d)炭素粒子(B)のBET比表面積(SA)
炭素粒子(B)のBET法による比表面積は通常0.5m/g以上、好ましくは1m/g以上、より好ましくは2m/g以上、更に好ましくは3m/g以上である。また、通常15m/g以下、好ましくは12m/g以下、より好ましくは10m/g以下、更に好ましくは8m/g以下、特に好ましくは6m/g以下である。比表面積が上記範囲内であれば、リチウムイオンが出入りする部位が十分確保できるため、高速充放電特性及び出力特性が良好となり、また電解液に対する活性も抑制できることから、初期不可逆容量の増加が抑制できる。
(e)炭素粒子(B)のタップ密度
炭素粒子(B)のタップ密度は、0.8g/cm以上、0.85g/cm以上が好
ましく、0.9g/cm以上がより好ましく、0.95g/cm以上が更に好ましい。また、1.8g/cm以下、1.5g/cm以下が好ましく、1.3g/cm以下がより好ましい。
タップ密度が0.8g/cmより小さいと、電極内で充分な充填ができず、充放電時のSi複合炭素粒子(A)の膨張収縮の抑制効果が低下する。
(f)炭素粒子(B)の円形度
炭素粒子(B)の円形度は、通常0.85以上、好ましくは0.88以上、より好ましくは0.89以上、更に好ましくは0.90以上である。また、円形度は通常1以下、好ましくは0.99以下、より好ましくは0.98以下、更に好ましくは0.97以下である。円形度がこの範囲であれば、電極とした際に粒子が集電体と平行方向に並ぶことを抑制できるため、電極の厚み方向への膨張収縮に伴う導電パス切れが抑制でき、サイクル維持率が良好となる。
(g)炭素粒子(B)のラマンR値
炭素粒子(B)のラマンR値は通常1以下、好ましくは0.8以下、より好ましくは0.6以下、更に好ましくは0.5以下であり、通常0.05以上、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.25以上である。ラマンR値が上記範囲内であれば、粒子表面の結晶性が高くなり、電解液との反応性が低減するため、充放電効率の低下やガス発生を抑制できる。
(h)炭素粒子(B)のプレス荷重(Pb)
炭素粒子(B)のプレス荷重(Pb)は、通常10kg/5cm以上、好ましくは100kg/5cm以上、より好ましくは150kg/5cm以上、更に好ましくは200kg/5cm以上、また通常700kg/5cm以下、好ましくは500kg/5cm以下、より好ましくは400kg/5cm以下、更に好ましくは300kg/5cm以下である。
プレス荷重(Pb)が大きすぎる場合、充放電時の導電パス切れ抑制効果が低くなり、サイクル特性が低下する傾向があり、また小さすぎる場合、過度な粒子変形により電解液の流路が潰れ、入出力特性の低下を招く傾向がある。
<炭素粒子(B)の製造方法>
本発明の炭素粒子(B)としては、Si複合炭素粒子(A)よりもプレス荷重の値が小さく、タップ密度が0.8g/cm以上、1.8g/cm以下となるようなものであれば特に限定されないが、黒鉛、非晶質炭素、黒鉛化度の小さい炭素質物に代表される種々の炭素材料が挙げられ、中でも黒鉛が好ましく用いられる。本発明ではこれらを単独で、又は二種以上を組み合わせて使用することができる。また、これら炭素粒子(B)は非晶質炭素、黒鉛化物、酸化物やSi化合物以外の金属と複合化したものを用いてもよい。
(炭素粒子(B)の原料)
以下、炭素粒子(B)の原料として用いられる好ましい炭素材料について説明する。なお、下記に記載の原料を炭素粒子(B)として用いることもできる。
原料となる黒鉛は、商業的に容易に入手可能であり、理論上372mAh/gの高い充放電容量を有し、さらには他の負極用活物質を用いた場合と比較して、高電流密度での充放電特性の改善効果が大きく見込めるため、好ましい。なかでも黒鉛は不純物の少ないものが好ましく、必要に応じて、公知である種々の精製処理を施して用いることができる。黒鉛の種類としては、天然黒鉛、人造黒鉛等が挙げられるが、天然黒鉛がより好ましい。
前記天然黒鉛としては、鱗状黒鉛、鱗片状黒鉛、土壌黒鉛等が挙げられる。前記鱗状黒
鉛の産地は、主にスリランカであり、前記鱗片状黒鉛の産地は、主にマダガスカル、中国、ブラジル、ウクライナ、カナダ等であり、前記土壌黒鉛の主な産地は、朝鮮半島、中国、メキシコ等である。
これらの天然黒鉛の中で、土壌黒鉛は一般に粒径が小さいうえ、純度が低い。これに対して、鱗片状黒鉛や鱗状黒鉛は、黒鉛化度が高く不純物量が低い等の長所があるため、本発明において好ましく使用することができる。
前記人造黒鉛としては、例えば、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂などの有機物を焼成し、黒鉛化したものが挙げられる。 焼成温度は、2500℃以上、3200℃以下の範囲とすることができ、焼成の際、珪素含有化合物やホウ素含有化合物などを黒鉛化触媒として用いることもできる。
原料となる非晶質炭素としては、例えば、バルクメソフェーズを焼成した粒子や、炭素前駆体を不融化処理し、焼成した粒子が挙げられる。
原料となる黒鉛化度の小さい炭素質物としては、有機物を通常2500℃未満の温度で焼成したものが挙げられる。有機物としては、コールタールピッチ、乾留液化油などの石炭系重質油;常圧残油、減圧残油などの直留系重質油;原油、ナフサなどの熱分解時に副生するエチレンタール等の分解系重質油などの石油系重質油;アセナフチレン、デカシクレン、アントラセンなどの芳香族炭化水素;フェナジンやアクリジンなどの窒素含有環状化合物;チオフェンなどの硫黄含有環状化合物;アダマンタンなどの脂肪族環状化合物;ビフェニル、テルフェニルなどのポリフェニレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルブチラールなどのポリビニルエステル類、ポリビニルアルコールなどの熱可塑性高分子などが挙げられる。
前記炭素質物の黒鉛化度の程度に応じて、焼成温度は通常600℃以上とすることができ、好ましくは900℃以上、より好ましくは950℃以上であり、通常2500℃未満とすることができ、好ましくは2000℃以下、より好ましくは1400℃以下の範囲である。 焼成の際、有機物に燐酸、ホウ酸、塩酸などの酸類、水酸化ナトリウム等のアルカリ類などを混合することもできる。
(炭素粒子(B)の球形化処理)
炭素粒子(B)は、電解液の拡散性が良好で高電流密度での充放電特性に優れる点から、原料炭素材料に対し球形化処理を行ったものを用いることが好ましく、最も好ましくは天然黒鉛に対し球形化処理を行った球形化天然黒鉛を用いることが良い。以下に、球形化処理を行う方法について記載するが、この方法に限定されるものではない。
球形化処理に用いる装置としては、例えば、衝撃力を主体に、黒鉛炭素質物粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装置を用いることができる。
具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。また、黒鉛を循環させることによって機械的作用を繰り返し与える機構を有するものであるのが好ましい。
炭素材料に機械的作用を与える好ましい装置としては、例えば、ハイブリダイゼーションシステム(奈良機械製作所社製)、クリプトロン(アーステクニカ社製)、CFミル(宇部興産社製)、メカノフュージョンシステム(ホソカワミクロン社製)、シータコンポ
ーザ(徳寿工作所社製)等が挙げられる。これらの中で、奈良機械製作所社製のハイブリダイゼーションシステムが好ましい。
前記装置を用いて処理する場合、例えば、回転するローターの周速度は通常30〜100m/秒であり、40〜100m/秒にするのが好ましく、50〜100m/秒にするのがより好ましい。また、炭素材料に機械的作用を与える処理は、単に黒鉛を通過させるだけでも可能であるが、黒鉛を30秒以上装置内を循環又は滞留させて処理するのが好ましく、1分以上装置内を循環又は滞留させて処理するのがより好ましい。
(炭素質物による炭素粒子(B)の被覆)
炭素粒子(B)は、上述のSi複合炭素粒子(A)の項に記載の炭素質物を含有していても良く、より具体的な態様として、炭素質物でその表面の少なくとも一部が被覆されていても良い。
炭素粒子(B)へ炭素質物を被覆する場合は、上述のSi複合炭素粒子(A)に炭素質物を被覆する方法と同様の方法によって被覆することができる。この被覆率は、通常0.5%以上30%以下、好ましくは1%以上25%以下、より好ましくは2%以上20%以下である。この含有率が大きすぎると炭素粒子(B)のプレス荷重(Pb)が大きくなり、負極作成時のプレスにおいて粒子の変形が抑制されてしまう恐れがある。
(Si化合物以外の金属との複合化)
炭素粒子(B)は、原料炭素材料にSi化合物以外の金属粒子、及び金属酸化物粒子等の粒子を任意の組み合わせで適宜混合して用いても良い。また、個々の粒子中に複数の材料が混在するものであってもよい。例えば、黒鉛の表面を黒鉛化度の小さい炭素材で被覆した構造の炭素質粒子や、炭素材を適当な有機物で集合させ再黒鉛化した粒子でも良い。更に、炭素粒子(B)はSn、Al、Biなどの、Liと合金化が可能な金属を含んでいても良いが、炭素粒子(B)はLiと合金化可能な金属を含まないことが、炭素粒子(B)のプレス荷重(Pb)を小さくできる点から好ましい。
炭素粒子(B)がLiと合金化可能な金属を含有する場合、そのLiと合金化可能な金属の含有量としては、特に制限はないが、炭素粒子(B)に対し、通常1質量%以上、好ましくは3質量%以上、より好ましくは5質量%以上である。また、通常50質量%以下、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下である。
[非水系二次電池負極用炭素材]
本発明の非水系二次電池負極用炭素材はSi複合炭素粒子(A)及び炭素粒子(B)を含有し、プレス荷重が通常100kg/5cm以上、好ましくは200kg/5cm以上、より好ましくは230kg/5cm以上、更に好ましくは280kg/5cm以上、特に好ましくは350kg/5cm以上、最も好ましくは400kg/5cm以上、また通常3000kg/5cm以下、好ましくは2000kg/5cm以下、より好ましくは1200kg/5cm以下、更に好ましくは1000kg/5cm以下、特に好ましくは700kg/5cm、最も好ましくは500kg/5cm以下である。
プレス荷重が大きすぎる場合、電極のプレスが非常に困難となり目的の密度までプレス出来なくなるだけでなく、プレスによる粒子破壊により電解液との副反応が増大することによる初期効率の低下や、プレス時に電極へ大きな残存応力が生じることによって電極熱乾燥時や充放電時に電極が膨張する傾向がある。また、小さすぎる場合、負極作成時のプレスにおいて粒子変形を十分に抑制できなくなるため、電解液の流路確保能が低下し、入出力特性の低下を招く傾向がある。
以下に本発明の非水系二次電池負極用炭素材の好ましい特性について記載する。
(a)非水系二次電池負極用炭素材のプレス荷重
本発明の非水系二次電池負極用炭素材のSi複合炭素粒子(A)のプレス荷重(Pa)と炭素粒子(B)のプレス荷重(Pb)の比(Pa/Pb)の値が通常1より大きく30以下である。(Pa/Pb)は好ましくは3以上、より好ましくは5以上、更に好ましくは5.5以上、特に好ましくは5.8以上、最も好ましくは6以上、好ましくは25以下、より好ましくは20以下、更に好ましくは15以下、特に好ましくは10以下、最も好ましくは8以下である。(Pa/Pb)の値を上記範囲とすることによって、適度な粒子変形が可能となり、電解液の流路確保と粒子同士の接触性を両立した負極構造を達成することが可能となり、高容量且つ、不可逆容量が少なく、入出力特性に優れ、サイクル特性に優れ、不可逆容量の低下が少ない傾向がある。
(b)非水系二次電池負極用炭素材のX線パラメータ
本発明の非水系二次電池負極用炭素材の、X線広角回折法による002面の面間隔(d002)は、通常0.337nm以下、好ましくは0.336nm以下である。d002値が上記範囲内にあると、黒鉛の結晶性が高いため、初期不可逆容量が増加を抑制する傾向にある。ここで、0.335nmは黒鉛の理論値である。
また、本発明の非水系二次電池負極用炭素材の結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上の範囲である。上記範囲内であると、結晶性が低過ぎない粒子となり、非水系二次電池とした場合に可逆容量が減少し難くなる。なお、Lcの下限は黒鉛の理論値である。
(c)非水系二次電池負極用炭素材の体積基準平均粒径(d50)
本発明の非水系二次電池負極用炭素材の平均粒径d50は通常50μm以下、好ましくは40μm以下、より好ましくは30μm以下、更に好ましくは25μm以下であり、特に好ましくは22μm以下であり、通常1μm以上、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは15μm、特に好ましくは18μm以上である。平均粒径d50がこの範囲であれば、初期効率の低下が抑制でき、また高い急速充放電特性が得られる。
(d)非水系二次電池負極用炭素材のアスペクト比
本発明の非水系二次電池負極用炭素材のアスペクト比は、通常1以上、好ましくは1.3以上、より好ましくは1.4以上、更に好ましくは1.5以上、通常4以下、好ましくは3以下、より好ましくは2.5以下、更に好ましくは2以下である。
アスペクト比がこの範囲であれば、電極とした際に粒子が集電体と平行方向に並ぶことを抑制できるため、電極の厚み方向への膨張収縮に伴う導電パス切れが抑制でき、サイクル維持率が良好となる。
(e)非水系二次電池負極用炭素材のBET比表面積(SA)
本発明の非水系二次電池負極用炭素材のBET法による比表面積は通常0.5m/g以上、好ましくは1m/g以上、より好ましくは3m/g以上、更に好ましくは5m/g以上、特に好ましくは8m/gである。また、通常30m/g以下、好ましくは20m/g以下、より好ましくは18m/g以下、更に好ましくは16m/g以下、特に好ましくは14m/g以下である。比表面積が上記範囲内であれば、リチウムイオンが出入りする部位が十分確保できるため、高速充放電特性及び出力特性が良好となり、また電解液に対する活性も抑制できることから、初期不可逆容量の増加が抑制できる。
(f)非水系二次電池負極用炭素材の円形度
本発明の非水系二次電池負極用炭素材の円形度は、通常0.85以上、好ましくは0.88以上、より好ましくは0.89以上、更に好ましくは0.90以上である。また、円
形度は通常1以下、好ましくは0.99以下、より好ましくは0.98以下、更に好ましくは0.97以下である。円形度がこの範囲であれば、電極とした際に粒子が集電体と平行方向に並ぶことを抑制できるため、電極の厚み方向への膨張収縮に伴う導電パス切れが抑制でき、サイクル維持率が良好となる。
(g)非水系二次電池負極用炭素材のラマンR値
本発明の非水系二次電池負極用炭素材のラマンR値は通常1以下、好ましくは0.8以下、より好ましくは0.6以下、更に好ましくは0.5以下であり、通常0.05以上、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.25以上である。ラマンR値が上記範囲内であれば、粒子表面の結晶性が高くなり、電解液との反応性が低減するため、充放電効率の低下やガス発生を抑制できる。
(h)非水系二次電池負極用炭素材のタップ密度
本発明の非水系二次電池負極用炭素材は、タップ密度は通常0.6g/cm以上、好ましくは0.7g/cm以上、より好ましくは0.8g/cm以上、更に好ましくは0.9g/cm以上、特に好ましくは1.1g/cm以上であり、一方、通常1.8g/cm以下、好ましくは1.5g/cm以下、より好ましくは1.3g/cm以下であり、更に好ましくは1.2g/cm以下である。
タップ密度が上記範囲内であると、極板化作製時のスジ引きなどの工程性が良好になり高速充放電特性に優れる。また、粒子内炭素密度が上昇し難いため圧延性も良好で、高密度の負極シートを形成する易くなる傾向にある。
<Si複合炭素粒子(A)及び炭素粒子(B)の質量割合>
本発明の非水系二次電池負極用炭素材において、Si複合炭素粒子(A)及び炭素粒子(B)の総量に対するSi複合炭素粒子(A)の質量割合は、特に制限はないが、通常0質量%より大きく、好ましくは1質量%以上、より好ましくは10質量%以上、特に好ましくは20質量%以上であり、通常90質量%以下、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下、特に好ましくは50質量%以下である。
Si複合炭素粒子(A)及び炭素粒子(B)の総量に対するSi複合炭素粒子(A)の割合が多すぎると、Si複合炭素粒子(A)の特に導電パス切れ抑制効果の低減によりサイクル特性の低下を招く傾向がある。また、Si複合炭素粒子(A)の割合が少なすぎると、容量の低下を招く傾向がある。
なお、Si複合炭素粒子(A)及び炭素粒子(B)が均一に混合されれば混合方法は特に制限はないが、例えば、回分方式の混合装置としては、2本の枠型が自転しつつ公転する構造の混合機;高速高剪断ミキサーであるディゾルバーや高粘度用のバタフライミキサーの様な、一枚のブレードがタンク内で撹拌・分散を行う構造の装置;半円筒状混合槽の側面に沿ってシグマ型などの撹拌翼が回転する構造を有する、いわゆるニーダー形式の装置;撹拌翼を3軸にしたトリミックスタイプの装置;容器内に回転ディスクと分散媒体を有するいわゆるビーズミル型式の装置などが用いられる。
またシャフトによって回転されるパドルが内装された容器を有し、容器内壁面はパドルの回転の最外線に実質的に沿って、好ましくは長い双胴型に形成され、パドルは互いに対向する側面を摺動可能に咬合するようにシャフトの軸方向に多数対配列された構造の装置(例えば栗本鉄工所製のKRCリアクタ、SCプロセッサ、東芝機械セルマック社製のTEM、日本製鋼所製のTEX−Kなど);更には内部一本のシャフトと、シャフトに固定された複数のすき状又は鋸歯状のパドルが位相を変えて複数配置された容器を有し、その内壁面はパドルの回転の最外線に実質的に沿って、好ましくは円筒型に形成された構造の(外熱式)装置(例えばレーディゲ社製のレディゲミキサー、大平洋機工社製のフローシ
ェアーミキサー、月島機械社製のDTドライヤーなど)を用いることもできる。連続方式で混合を行うには、パイプラインミキサーや連続式ビーズミルなどを用いればよい。
<他の材料との混合>
本発明の非水系二次電池負極用炭素材は、Si複合炭素粒子(A)及び/又は炭素粒子(B)の何れか一種を単独で、又は二種以上を任意の組成及び組み合わせで併用して、非水系二次電池の負極材として好適に使用することができるが、一種又は二種以上を、他の一種又は二種以上の本発明に該当しないその他の材料と混合し、これを非水系二次電池、好ましくは非水系二次電池の負極材料として用いてもよい。
上述の非水系二次電池負極用炭素材に本発明に該当しないその他炭素材料を混合する場合、非水系二次電池負極用炭素材及び本発明に該当しないその他炭素材料の総量に対する非水系二次電池負極用炭素材の混合割合は、通常10質量%以上、好ましくは20質量%以上、また、通常90質量%以下、好ましくは70質量%以下、より好ましくは50質量%以下、更に好ましくは40質量%以下、特に好ましくは30質量%以下の範囲である。本発明に該当しないその他炭素材料の混合割合が、前記範囲を下回ると、添加した効果が現れ難い傾向がある。一方、前記範囲を上回ると、本発明の非水系二次電池負極用炭素材の特性が現れ難い傾向がある。
本発明に該当しないその他の材料としては、天然黒鉛、人造黒鉛、非晶質被覆黒鉛、非晶質炭素、金属粒子、金属化合物の中から選ばれる材料を用いる。これらの材料は、何れかを一種を単独で用いてもよく、二種以上を任意の組み合わせ及び組成で併用してもよい。
天然黒鉛としては、例えば、高純度化した鱗片状黒鉛質粒子や鱗状黒鉛を用いることができる。天然黒鉛の体積基準平均粒径は、通常8μm以上、好ましくは12μm以上、また、通常60μm以下、好ましくは40μm以下の範囲である。天然黒鉛のBET比表面積は、通常3.5m2/g以上、好ましくは4.5m2/g以上、また、通常8m2/g以
下、好ましくは6m2/g以下の範囲である。
人造黒鉛としては、炭素材料を黒鉛化した粒子等が挙げられ、例えば、単一の黒鉛前駆体粒子を粉状のまま焼成、黒鉛化した粒子などを用いることができる。
非晶質被覆黒鉛としては、例えば、天然黒鉛や人造黒鉛に非晶質前駆対を被覆、焼成した粒子や、天然黒鉛や人造黒鉛に非晶質をCVDにより被覆した粒子を用いることができる。
非晶質炭素としては、例えば、バルクメソフェーズを焼成した粒子や、炭素化可能なピッチ等を不融化処理し、焼成した粒子を用いることができる。
非水系二次電池負極用炭素材とその他炭素材料との混合に用いる装置としては、特に制限はないが、例えば、回転型混合機の場合:円筒型混合機、双子円筒型混合機、二重円錐型混合機、正立方型混合機、鍬形混合機、固定型混合機の場合:螺旋型混合機、リボン型混合機、Muller型混合機、Helical Flight型混合機、Pugmil
l型混合機、流動化型混合機等を用いることができる。
金属粒子としては、例えば、Fe、Co、Sb、Bi、Pb、Ni、Ag、Si、Sn、Al、Zr、Cr、P、S、V、Mn、Nb、Mo、Cu、Zn、Ge、In、Ti等からなる群から選ばれる金属又はその化合物が好ましい。また、2種以上の金属からなる合金を使用しても良く、金属粒子が、2種以上の金属元素により形成された合金粒子であってもよい。これらの中でも、Si、Sn、As、Sb、Al、Zn及びWからなる群から選ばれる金属又はその化合物が好ましい。
金属化合物としては、金属酸化物、金属窒化物、金属炭化物等が挙げられる。また、2種以上の金属からなる合金を使用しても良い。
この中でも、Si化合物好ましい。Si化合物としては、Si複合炭素粒子(A)中のSi化合物と同様のものを用いることができる。
<非水系二次電池用負極>
本発明はまた、本発明の非水系二次電池負極用炭素材を用いて形成される非水系二次電池用負極に関するものであり、例えば、リチウムイオン二次電池用負極が挙げられる。
非水系二次電池用負極の製造方法や非水系二次電池用負極を構成する本発明の非水系二次電池負極用炭素材以外の材料の選択については、特に限定されない。
本発明の非水系二次電池用負極は、集電体と、集電体上に形成された活物質層とを備え、かつ前記活物質層が少なくとも本発明の非水系二次電池負極用炭素材を含有するものである。前記活物質層は、好ましくは、さらにバインダを含有する。
バインダは、特に限定されないが、分子内にオレフィン性不飽和結合を有するものが好ましい。具体例としては、スチレン−ブタジエンゴム、スチレン・イソプレン・スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン・プロピレン・ジエン共重合体などが挙げられる。
このようなオレフィン性不飽和結合を有するバインダを用いることにより、活物質層の電解液に対する膨潤性を低減することができる。中でも入手の容易性から、スチレン−ブタジエンゴムが好ましい。
このような分子内にオレフィン性不飽和結合を有するバインダと、本発明の非水系二次電池負極用炭素材とを組み合わせて用いることにより、負極板の機械的強度を高くすることができる。負極板の機械的強度が高いと、充放電による負極の劣化が抑制され、サイクル寿命を長くすることができる。
分子内にオレフィン性不飽和結合を有するバインダは、分子量が大きいもの及び/又は不飽和結合の割合が大きいものが好ましい。
バインダの分子量としては、重量平均分子量を通常1万以上とすることができ、また、通常100万以下とすることができる。この範囲であれば、機械的強度及び可撓性の両面を良好な範囲に制御できる。重量平均分子量は、好ましくは5万以上であり、また、好ましくは30万以下の範囲である。
バインダの分子内のオレフィン性不飽和結合の割合としては、全バインダ1g当たりのオレフィン性不飽和結合のモル数を通常2.5×10−7モル以上とすることができ、また、通常5×10−6モル以下とすることができる。この範囲であれば、強度向上効果が十分に得られ、可撓性も良好である。モル数は、好ましくは8×10−7モル以上であり、また、好ましくは1×10−6モル以下である。
また、オレフィン性不飽和結合を有するバインダについては、その不飽和度を、通常15%以上、90%以下とすることができる。不飽和度は、好ましくは20%以上、より好ましくは40%以上であり、また、好ましくは80%以下である。本願明細書において、不飽和度とは、ポリマーの繰り返し単位に対する二重結合の割合(%)を表す。
バインダとして、オレフィン性不飽和結合を有さないバインダも、使用することができる。分子内にオレフィン性不飽和結合を有するバインダとオレフィン性不飽和結合を有さないバインダとを併用することによって、塗布性の向上等が期待できる。
オレフィン性不飽和結合を有するバインダを100質量%とした場合、オレフィン性不飽和結合を有さないバインダの混合比率は、活物質層の強度が低下するのを抑制するため、通常150質量%以下とすることができ、好ましくは120質量%以下である。
オレフィン性不飽和結合を有さないバインダの例としては、メチルセルロース、カルボキシメチルセルロース、澱粉、カラギーナン、プルラン、グアーガム、ザンサンガム(キサンタンガム)等の増粘多糖類;ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル類;ポリビニルアルコール、ポリビニルブチラール等のビニルアルコール類;ポリアクリル酸、ポリメタクリル酸等のポリ酸またはこれらの金属塩;ポリフッ化ビニリデン等の含フッ素ポリマー;ポリエチレン、ポリプロピレンなどのアルカン系ポリマーまたはこれらの共重合体などが挙げられる。
活物質層には、負極の導電性を向上させるために、導電助剤を含有させてもよい。導電助剤は、特に限定されず、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック、平均粒径1μm以下のCu、Ni又はこれらの合金からなる微粉末などが挙げられる。
導電助剤の添加量は、本発明の非水系二次電池負極用炭素材に対して、10質量%以下であることが好ましい。
本発明の非水系二次電池用負極は、本発明の非水系二次電池負極用炭素材と場合によりバインダ及び/又は導電助剤とを分散媒に分散させてスラリーとし、これを集電体に塗布、乾燥することにより形成することができる。分散媒としては、アルコールなどの有機溶媒や、水を用いることができる。
スラリーを塗布する集電体としては、特に限定されず、公知のものを用いることができる。具体的には、圧延銅箔、電解銅箔、ステンレス箔等の金属薄膜などが挙げられる。
集電体の厚さは通常4μm以上とすることができ、また、通常30μm以下とすることができる。厚さは、好ましくは6μm以上であり、また、好ましくは20μm以下である。
スラリーを塗布、乾燥して得られる非水系二次電池負極用炭素材層(以下、単に「活物質層」と称することもある。)の厚さは、負極としての実用性及び高密度の電流値に対する十分なリチウムイオンの吸蔵・放出の機能の点から、通常5μm以上とすることができ、また、通常200μm以下とすることができる。好ましくは20μm以上、より好ましくは30μm以上であり、また、好ましくは100μm以下、より好ましくは75μm以下である。
活物質層の厚さは、スラリーの塗布、乾燥後にプレスすることにより、上記範囲の厚さになるように調整してもよい。
活物質層における非水系二次電池負極用炭素材の密度は、用途により異なるものの、例えば車載用途やパワーツール用途などの入出力特性を重視する用途においては、通常1.1g/cm以上、1.65g/cm以下である。
この範囲であれば、密度が低すぎることによる粒子同士の接触抵抗の増大を回避することができ、一方、密度が高すぎることによるレート特性の低下も抑制することができる。
密度は、好ましくは1.2g/cm以上、さらに好ましくは1.25g/cm以上である。
携帯電話やパソコンといった携帯機器用途などの容量を重視する用途では、通常1.45g/cm以上とすることができ、また、通常1.9g/cm以下とすることができる。
この範囲であれば、密度が低すぎることによる単位体積あたりの電池の容量低下を回避することができ、一方、密度が高すぎることによるレート特性の低下も抑制することができる。
密度は、好ましくは1.55g/cm以上、さらに好ましくは1.65g/cm以上、特に好ましくは1.7g/cm以上である。
<非水系二次電池>
本発明に係る非水系二次電池の基本的構成は、例えば、公知のリチウムイオン二次電池と同様とすることができ、通常、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備え、前記負極は上述した本発明に係る非水系二次電池用負極である。
<正極>
正極は、集電体と、集電体上に形成された活物質層とを備えることができる。活物質層は、正極用活物質の他に、好ましくはバインダを含有する。
正極用活物質としては、リチウムイオンなどのアルカリ金属カチオンを充放電時に吸蔵、放出できる金属カルコゲン化合物などが挙げられる。中でもリチウムイオンを吸蔵・放出可能な金属カルコゲン化合物が好ましい。
金属カルコゲン化合物としては、バナジウム酸化物、モリブデン酸化物、マンガン酸化物、クロム酸化物、チタン酸化物、タングステン酸化物などの遷移金属酸化物;バナジウム硫化物、モリブデン硫化物、チタン硫化物、CuSなどの遷移金属硫化物;NiPS、FePS等の遷移金属のリン−硫黄化合物;VSe、NbSeなどの遷移金属のセレン化合物;Fe0.250.75、Na0.1CrSなどの遷移金属の複合酸化物;LiCoS、LiNiSなどの遷移金属の複合硫化物等が挙げられる。
中でも、リチウムイオンの吸蔵・放出の観点から、V、V13、VO、Cr、MnO、TiO、MoV、LiCoO、LiNiO、LiMn、TiS、V、Cr0.250.75、Cr0.50.5などが好ましく、LiCoO、LiNiO、LiMnや、これらの遷移金属の一部を他の金属で置換したリチウム遷移金属複合酸化物が特に好ましい。
これらの正極活物質は、単独で用いても複数を混合して用いてもよい。
正極用のバインダは、特に限定されず、公知のものを任意に選択して用いることができる。例としては、シリケート、水ガラス等の無機化合物や、テフロン(登録商標)、ポリフッ化ビニリデン等の不飽和結合を有さない樹脂などが挙げられる。中でも好ましいのは、酸化反応時に分解しにくいため、不飽和結合を有さない樹脂である。
バインダの重量平均分子量は、通常1万以上とすることができ、また、通常300万以下とすることができる。重量平均分子量は、好ましくは10万以上であり、また、好ましくは100万以下である。
正極活物質層中には、正極の導電性を向上させるために、導電助剤を含有させてもよい。導電助剤は、特に限定されず、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種の金属の繊維、粉末、箔などが挙げられる。
本発明の正極は、上述したような負極の製造方法と同様にして、活物質と、場合によりバインダ及び/又は導電助剤を分散媒に分散させてスラリーとし、これを集電体表面に塗布することにより形成することができる。正極の集電体は、特に限定されず、アルミニウム、ニッケル、ステンレススチール(SUS)などが挙げられる。
<電解質>
電解質(「電解液」と称することもある。)は、特に限定されず、非水系溶媒に電解質としてリチウム塩を溶解させた非水系電解液や、該非水系電解液に有機高分子化合物等を添加することによりゲル状、ゴム状、または固体シート状にしたものなどが挙げられる。
非水系電解液に使用される非水系溶媒は、特に限定されず、公知の非水系溶媒を用いることができる。
例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類;1,2−ジメトキシエタン等の鎖状エーテル類;テトラヒドロフラン、2−メチルテトラヒドロフラン、スルホラン、1,3−ジオキソラン等の環状エーテル類;ギ酸メチル、酢酸メチル、プロピオン酸メチル等の鎖状エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類などが挙げられる。
非水系溶媒は、単独でも、2種以上を併用してもよい。混合溶媒の場合は、環状カーボネートと鎖状カーボネートを含む混合溶媒の組み合わせが導電性と粘度のバランスから好ましく、環状カーボネートが、エチレンカーボネートであることが好ましい。
非水系電解液に使用されるリチウム塩も特に制限されず、公知のリチウム塩を用いることができる。例えば、LiCl、LiBrなどのハロゲン化物;LiClO、LiBrO、LiClOなどの過ハロゲン酸塩;LiPF、LiBF、LiAsFなどの無機フッ化物塩などの無機リチウム塩;LiCFSO、LiCSOなどのパーフルオロアルカンスルホン酸塩;Liトリフルオロメタンスルフォニルイミド((CFSONLi)などのパーフルオロアルカンスルホン酸イミド塩などの含フッ素有機リチウム塩などが挙げられる。中でもLiClO、LiPF、LiBFが好ましい。
リチウム塩は、単独で用いても、2種以上を併用してもよい。非水系電解液中におけるリチウム塩の濃度は、0.5mol/L以上、2.0mol/L以下の範囲とすることができる。
上述の非水系電解液に有機高分子化合物を含ませることで、ゲル状、ゴム状、或いは固体シート状にして使用する場合、有機高分子化合物の具体例としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物;ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビニルブチラールなどのビニルアルコール系高分子化合物;ビニルアルコール系高分子化合物の不溶化物;ポリエピクロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリルなどのビニル系高分子化合物;ポリ(ω−メトキシオリゴオキシエチレンメタクリレート)、ポリ(ω−メトキシオリゴオキシエチレンメタクリレート−co−メチルメタクリレート)、ポリ(ヘキサフルオロプロピレン−フッ化ビニリデン)等のポリマー共重合体などが挙げられる。
上述の非水系電解液は、さらに被膜形成剤を含んでいてもよい。
被膜形成剤の具体例としては、ビニレンカーボネート、ビニルエチルカーボネート、メチルフェニルカーボネートなどのカーボネート化合物;エチレンサルファイド、プロピレンサルファイドなどのアルケンサルファイド;1,3−プロパンスルトン、1,4−ブタンスルトンなどのスルトン化合物;マレイン酸無水物、コハク酸無水物などの酸無水物などが挙げられる。
非水系電解液にはさらに、ジフェニルエーテル、シクロヘキシルベンゼン等の過充電防止剤が添加されていてもよい。
上記各種添加剤を用いる場合、初期不可逆容量の増加や低温特性、レート特性の低下等、他の電池特性に悪影響を及ぼさないようにするために、添加剤の総含有量は非水系電解液全体に対して通常10質量%以下とすることができ、中でも8質量%以下、さらには5質量%以下、特に2質量%以下の範囲が好ましい。
また、電解質として、リチウムイオン等のアルカリ金属カチオンの導電体である高分子固体電解質を用いることもできる。
高分子固体電解質としては、前述のポリエーテル系高分子化合物にLi塩を溶解させたものや、ポリエーテルの末端水酸基がアルコキシドに置換されているポリマーなどが挙げられる。
<その他>
正極と負極との間には、通常、電極間の短絡を防止するために、多孔膜や不織布などの多孔性のセパレータを介在させることができ、非水系電解液は、多孔性のセパレータに含浸させて用いることが便利である。セパレータの材料としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエーテルスルホンなどが用いられ、好ましくはポリオレフィンである。
非水系二次電池の形態は特に限定されず、例えば、シート電極及びセパレータをスパイラル状にしたシリンダータイプ;ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ;ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。また、これらの形態の電池を任意の外装ケースに収めることにより、コイン型、円筒型、角型等の任意の形状及び大きさにして用いることができる。
非水系二次電池を組み立てる手順も特に限定されず、電池の構造に応じて適切な手順で組み立てることができる。例えば、外装ケース上に負極を乗せ、その上に電解液とセパレータを設け、さらに負極と対向するように正極を乗せて、ガスケット、封口板と共にかしめて電池にすることができる。
次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。なお、各物性の測定方法は、上述した測定方法に準じるものとする。
<平均粒径d50の測定方法>
粒径の測定方法は、界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、ツィーン20(登録商標))の0.2質量%水溶液10mLに、炭素材0.01gを懸濁させ、市販のレーザー回折/散乱式粒度分布測定装置「HORIBA製LA−920」に導入し、28kHzの超音波を出力60Wで1分間照射した後、測定装置における体積基準のメジアン径として測定し、本発明における平均粒径d50と定義した。
<BET比表面積(SA)の測定方法>
BET比表面積(SA)の測定方法は、例えば大倉理研社製比表面積測定装置「AMS8000」を用いて、窒素ガス吸着流通法によりBET1点法にて測定した。具体的には、試料(炭素材)0.4gをセルに充填し、350℃に加熱して前処理を行った後、液体窒素温度まで冷却して、窒素30%、He70%のガスを飽和吸着させ、その後室温まで加熱して脱着したガス量を計測し、得られた結果から、通常のBET法により比表面積を算出した。
<タップ密度の測定方法>
タップ密度は、粉体密度測定器を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して、試料(炭素材)を落下させて、セルに満杯に充填した後、ストローク長10mmのタップを1000回行なって、その時の体積と試料の重量から密度を求めた。
<d002の測定方法>
面間隔(d002)は、試料(炭素材)に約15%のX線標準高純度シリコン粉末を加えて混合したものを材料とし、グラファイトモノクロメーターで単色化したCuKα線を線源とし、反射式ディフラクトメーター法で広角X線回折曲線を測定し、学振法を用いて面間隔(d002)を測定した。
<円形度の測定方法>円形度は、フロー式粒子像分析装置(シスメックスインダストリアル社製FPIA)を用い、界面活性剤としてポリオキシエチレン(20)モノラウレートを使用し、分散媒としてイオン交換水を使用し、下記式より円相当径による円形度の算出を行うことで求めた。測定した相当径が10〜40μmの範囲の粒子の円形度を平均し、本発明の円形度を求めた。
円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)
<Si複合炭素粒子(A)中の珪素元素の含有量>
Si複合炭素粒子(A)中の珪素元素の含有量は、試料(Si複合炭素粒子(A))をアルカリで完全に溶融した後、水で溶解、定容し、誘導結合プラズマ発光分析装置(堀場製作所 ULTIMA2C)にて測定を行い、検量線から珪素元素量を算出した。その後、珪素元素量をSi複合炭素粒子(A)重量で割ることで、Si複合炭素粒子(A)の珪素元素の含有量を算出した。
<Si複合炭素粒子(A)の断面構造の観察>
Si複合炭素粒子(A)の断面構造は次のように測定した。まず、電極断面の加工は、クロスセクションポリッシャー(日本電子 IB−09020CP)を用いた。加工した電極断面は、SEM(日立ハイテク SU−70)で観察しながらEDXを用いて黒鉛、Siのマッピングを行った。なお、SEM取得条件は加速電圧3kV、倍率2000倍であり、解像度256dpiにて1粒子が取得できる範囲の像を得た。
<放電容量、初回効率、サイクル特性の測定方法>
後述の方法で作製した非水系二次電池(2016コイン型電池)を用いて、下記の測定方法で電池充放電時の容量を測定した。
0.05Cの電流密度リチウム対極に対して5mVまで充電し、さらに0.005の一定電圧で電圧が5mVになるまで充電し、負極中にリチウムをドープした後、0.1Cの電流密度でリチウム対極に対して1.5Vまで放電を行った。このときの容量を本炭素材の放電容量(mAh/g)とした。ここで得られた1サイクル目の放電容量を充電容量で割り返し、100倍した値を初回効率(%)とした。
さらに、このセルを0.2Cの電流密度リチウム対極に対して5mVまで充電し、さらに0.02の一定電圧で電圧が5mVになるまで充電し、負極中にリチウムをドープした後、0.2Cの電流密度でリチウム対極に対して1.5Vまで放電を行った。この充放電を30サイクル繰り返したときの、一サイクル目の放電容量に対する、30サイクル目の放電容量の割合をサイクル維持率(%)とした。
<不可逆容量の測定方法>
非水系二次電池を用いて、下記の測定方法で電池充放電時の不可逆容量を測定した。
0.16mA/cmの電流密度でリチウム対極に対して5mVまで充電し、更に、5mVの一定電圧で充電容量値が350mAh/gになるまで充電し、負極中にリチウムを
ドープした後、0.33mA/cmの電流密度でリチウム対極に対して1.5Vまで放電を行なった。このときの充電容量(350mAh/g)と放電容量の差を不可逆容量(mAh/g)として算出した。
<電極シートの作製・プレス荷重の測定方法>
実施例又は比較例のSi複合炭素粒子及び/又は炭素粒子を用い、活物質層密度1.6
±0.03g/cmの活物質層を有する極板を作製した。具体的には、負極材50.0
0±0.02gに、1質量%カルボキシメチルセルロースナトリウム塩水溶液を50.0
0±0.02g(固形分換算で0.500g)、及び重量平均分子量27万のスチレン・
ブタジエンゴム水性ディスパージョン1.50±0.05g(固形分換算で0.75g)
を、キーエンス製ハイブリッドミキサーで5分間撹拌し、30秒脱泡してスラリーを得た

このスラリーを、集電体である厚さ10μmの銅箔上に、負極材料が12.00±0.
3mg/cm付着するように、伊藤忠マシニング製小型ダイコーターを用いて幅cm
に塗布し、直径20cmのローラを用いてロールプレスして、活物質層の密度が1.6±
0.03g/cmになるよう調整し電極シートを得た。
この時の荷重をプレス荷重(kg/5cm)とした。
<非水系二次電池(2016コイン型電池)の作製>
上記方法で作製した電極シートを直径12.5mmの円盤状に打ち抜き、リチウム金属箔を直径14mmの円板状に打ち抜き対極とした。両極の間には、エチレンカーボネートとエチルメチルカーボネートの混合溶媒(容積比=3:7)に、LiPFを1mol/Lになるように溶解させた電解液を含浸させたセパレータ(多孔性ポリエチレンフィルム製)を置き、2016コイン型電池をそれぞれ作製した。
<炭素材料>
・Si複合炭素粒子(A)−1:
平均粒径d50が30μmの多結晶Si(Wako社製)を、NMP(N−メチル−2−ピロリドン)とともに、ビーズミル(アシザワファインテック)で粉砕し、平均粒径d50が0.2μmのSiスラリー(I)を作製した。このSiスラリー(I)500g(固形分40%)を、ポリアクリロニトリル60gが均一に溶解したNMP750gに投入し、混合攪拌機で混合した。次いで、平均粒径d50が45μmの鱗片状天然黒鉛1000gを投入、混合し、ポリアクリロニトリル、Si、黒鉛が均一に分散したスラリー(II)を得た。このスラリー(II)からポリアクリロニトリルが変性しないよう、ポリアクリロニトリルの熱分解温度以下である150℃にて3時間減圧下で適度に乾燥を行った。なお、DSC分析よりポリアクリロニトリルの分解温度は270度であった。
得られた塊状物を、ハンマーミル(IKA社製MF10)で回転数6000rpmにて解砕した後、ハイブリダイゼーションシステム(奈良機械製作所製)に投入し、ローター回転数7000rpm、180秒間、装置内を循環または滞留させて球形化処理を施し、Si複合炭素粒子(A0)を得た。
Si複合炭素粒子(A0)に焼成後の被覆率が7.5%になるように炭素質物となる有機化合物としてコールタールピッチを混合し、2軸混練機により混練・分散させた。得られた分散物を、焼成炉に導入し、窒素雰囲気下1000℃、1時間焼成した。焼成物をハンマーミル(IKA社製MF10)で回転数3000rpmにて解砕し、次いで目開き45μmの振動ふるいで分級し、炭素質物として非晶質炭素が被覆された複合炭素粒子(A)−1を得た。
前記測定法で測定した、珪素元素の含有量、平均粒径d50、タップ密度、比表面積はそれぞれ、16.3質量%、21.1μm、1.10g/cm、13.3m/gであった。また、前記測定法で断面構造を観察したところ、Si複合炭素粒子(A)−1は鱗片状天然黒鉛が折り畳まれた構造を有しており、該折り畳まれた構造内の間隙にSi化合物粒子が存在していた。また、Si化合物粒子と鱗片状天然黒鉛が接触している部分があ
ることが観察された。
・炭素粒子(B)−1:
前記測定法で測定した、平均粒径d50、タップ密度、比表面積、d002、円形度がそれぞれ、22.3μm、1.02g/cm、5.6m/g、0.3356nm、0.92である球状天然黒鉛粒子。
・炭素粒子(B)−2:
前記測定法で測定した、平均粒径d50、タップ密度、比表面積、d002、円形度がそれぞれ、15.7μm、1.02g/cm、6.9m/g、0.3356nm、0.93である球状天然黒鉛粒子。
・炭素粒子(B)−3:
前記測定法で測定した、平均粒径d50、タップ密度、比表面積、d002、円形度がそれぞれ、11.0μm、0.94g/cm、8.8m/g、0.3356nm、0.93である球状天然黒鉛粒子。
[実施例1]
Si複合炭素粒子(A)−1及び炭素粒子(B)−1の総量に対するSi複合炭素粒子(A)−1の質量割合が30質量%となるように、Si複合炭素粒子(A)−1と炭素粒子(B)−1を混合してサンプルを得た(混合比がSi複合炭素粒子(A)−1:炭素粒子(B)−1=30:70となる)。このサンプル及びこれを用いて作成した非水系二次電池について、前記測定法でプレス荷重、初回効率、不可逆容量、放電容量、サイクル維持率を測定した。結果を下記表1に示す。
[実施例2]
Si複合炭素粒子(A)−1及び炭素粒子(B)−2の総量に対するSi複合炭素粒子(A)−1の質量割合が30質量%となるように、Si複合炭素粒子(A)−1と炭素粒子(B)−2を混合してサンプルを得た(混合比がSi複合炭素粒子(A)−1:炭素粒子(B)−2=30:70となる)。このサンプル及びこれを用いて作成した非水系二次電池について、前記測定法でプレス荷重、放電容量、不可逆容量、初回効率、サイクル維持率を測定した。結果を下記表1に示す。
[実施例3]
Si複合炭素粒子(A)−1及び炭素粒子(B)−3の総量に対するSi複合炭素粒子(A)−1の質量割合が30質量%となるように、Si複合炭素粒子(A)−1と炭素粒子(B)−3を混合してサンプルを得た(混合比がSi複合炭素粒子(A)−1:炭素粒子(B)−3=30:70となる)。このサンプル及びこれを用いて作成した非水系二次電池について、前記測定法でプレス荷重、放電容量、不可逆容量、初回効率、サイクル維持率を測定した。結果を下記表1に示す。
[比較例1]
Si複合炭素粒子(A)−1をそのまま用いて、実施例1と同様に電池特性の評価を行った。結果を下記表1に示す。
[比較例2]
炭素粒子(B)−1をそのまま用いて、実施例1と同様に電池特性の評価を行った。結果を下記表1に示す。
[比較例3]
炭素粒子(B)−2をそのまま用いて、実施例1と同様に電池特性の評価を行った。結果を下記表1に示す。
[比較例4]
炭素粒子(B)−3をそのまま用いて、実施例1と同様に電池特性の評価を行った。結
果を下記表1に示す。
Figure 0006409377
表1から判るように、Si複合炭素粒子(A)とSi複合炭素粒子(A)よりもプレス荷重の値が小さく、且つタップ密度が0.8g/cm以上炭素粒子(B)を含む非水系二次電池負極用炭素材(実施例1〜3)はSi複合炭素粒子(A)のみからなる非水系二次電池負極用炭素材(比較例1)と比べ、不可逆容量が低く、初回効率、サイクル維持率が優れていることが確認された。また、炭素粒子(B)のみからなる非水系二次電池負極用炭素材(比較例2〜4)と比べ、高い放電容量が確認された。
これらの結果より、珪素元素を含む固いSi複合炭素粒子(A)とタップ密度が高く、柔らかい炭素粒子(B)を混合することで、適度な粒子変形が可能となり、電解液の流路確保と粒子同士の接触性を両立した負極構造を達成することが可能となったため、レート劣化することなく珪素由来の高い放電容量を維持でき、且つ不可逆容量の低減、サイクル維持率の向上が可能となったと考えられる。
これより、本発明の非水系二次電池負極用炭素材を用いることで高容量で、不可逆容量が小さく、サイクル維持率に優れた非水系二次電池負極用炭素材、及びそれを用いた非水系二次電池を提供することができる。

Claims (11)

  1. 珪素元素を含む複合炭素粒子(A)、及び炭素粒子(B)を含有する非水系二次電池負
    極用炭素材であって、
    該炭素粒子(B)は該複合炭素粒子(A)よりも、下記の方法で測定したプレス荷重の
    値が小さく、
    該炭素粒子(B)のタップ密度が0.8g/cm以上、1.8g/cm以下、円形
    度が0.88以上、1以下であり、
    且つ、該非水系二次電池負極用炭素材の下記の方法で測定したプレス荷重が、230k
    g/5cm以上、1200kg/5cm以下
    であることを特徴とする非水系二次電池負極用炭素材。
    <プレス荷重測定方法> 負極用活物質100質量%に対して、バインダとして1.5質
    量%のスチレン・ブタジエンゴムと、増粘剤として1質量%のカルボキシメチルセルロー
    スナトリウムと、分散媒として水とを加えてスラリーとする。これを集電体上に塗布、乾
    燥し、その密度が1.6±0.03g/cm になるように圧延するのに必要な5cmあ
    たりの線圧(kg/5cm)を計測する。
  2. 該複合炭素粒子(A)のプレス荷重(Pa)と、該炭素粒子(B)のプレス荷重(Pb
    )の比(Pa/Pb)が、3以上、15以下であることを特徴とする請求項1に記載の非
    水系二次電池負極用炭素材。
  3. 炭素粒子(B)が球形化天然黒鉛であることを特徴とする請求項1又は2に記載の非
    水系二次電池負極用炭素材。
  4. 珪素元素を含む複合炭素粒子(A)が、Si及びSiOx(0<x<2)の少なくと
    もいずれか一方を含むことを特徴とする、請求項1乃至のいずれか一項に記載の非水系
    二次電池負極用炭素材。
  5. 該珪素元素を含む複合炭素粒子(A)の前記方法で測定したプレス荷重(Pa)が、5
    00kg/5cm以上、4000kg/5cm以下であることを特徴とする、請求項1乃
    至4のいずれか一項に記載の非水系二次電池負極用炭素材。
  6. 該珪素元素を含む複合炭素粒子(A)のタップ密度が、0.5g/cm 以上、1.2
    g/cm 以下であることを特徴とする、請求項1乃至5のいずれか一項に記載の非水系
    二次電池負極用炭素材。
  7. 該炭素粒子(B)の前記方法で測定したプレス荷重(Pb)が、10kg/5cm以上
    、700kg/5cm以下であることを特徴とする、請求項1乃至6のいずれか一項に記
    載の非水系二次電池負極用炭素材。
  8. 該珪素元素を含む複合炭素粒子(A)が、炭素質物でその表面の少なくとも一部が被覆
    されていることを特徴とする、請求項1乃至7のいずれか一項に記載の非水系二次電池負
    極用炭素材。
  9. 珪素元素を含む複合炭素粒子(A)は、鱗片状黒鉛が折り畳まれた構造を有し、該折
    り畳まれた構造内の間隙にSi化合物粒子が存在していることを特徴とする請求項1乃至
    のいずれか一項に記載の非水系二次電池負極用炭素材。
  10. 集電体と、前記集電体上に形成された活物質層とを備える非水系二次電池用負極であっ
    て、前記活物質層が、請求項1乃至のいずれか一項に記載の非水系二次電池負極用炭素
    材を含有することを特徴とする非水系二次電池用負極。
  11. 正極及び負極、並びに、電解質を備える非水系二次電池であって、該負極が、集電体と
    、該集電体上に形成された請求項1乃至のいずれか一項に記載の非水系二次電池負極用
    炭素材を含有する活物質層とを備える非水系二次電池。
JP2014142567A 2013-07-18 2014-07-10 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池 Active JP6409377B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014142567A JP6409377B2 (ja) 2013-07-18 2014-07-10 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013149597 2013-07-18
JP2013149597 2013-07-18
JP2014142567A JP6409377B2 (ja) 2013-07-18 2014-07-10 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池

Publications (2)

Publication Number Publication Date
JP2015038862A JP2015038862A (ja) 2015-02-26
JP6409377B2 true JP6409377B2 (ja) 2018-10-24

Family

ID=52631825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014142567A Active JP6409377B2 (ja) 2013-07-18 2014-07-10 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池

Country Status (1)

Country Link
JP (1) JP6409377B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148185A1 (ja) * 2015-03-19 2016-09-22 Necエナジーデバイス株式会社 非水系二次電池用負極及び該負極を用いた非水系二次電池
JP6977504B2 (ja) * 2016-11-22 2021-12-08 三菱ケミカル株式会社 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP2019067579A (ja) * 2017-09-29 2019-04-25 日立化成株式会社 リチウムイオン二次電池及びリチウムイオン二次電池用負極材料
JP6596476B2 (ja) * 2017-10-27 2019-10-23 三井金属鉱業株式会社 シリコン含有粉末
JP7161523B2 (ja) * 2018-03-30 2022-10-26 パナソニックホールディングス株式会社 非水電解質二次電池用負極及び非水電解質二次電池
WO2019225534A1 (ja) 2018-05-22 2019-11-28 三菱ケミカル株式会社 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
EP4020629A4 (en) * 2019-11-28 2022-09-14 Ningde Amperex Technology Limited NEGATIVE ELECTRODE MATERIAL, AND ELECTROCHEMICAL DEVICE AND ELECTRONIC DEVICE COMPRISING THEM

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623940B2 (ja) * 2003-06-02 2011-02-02 日本電気株式会社 負極材料及びそれを用いた二次電池
EP1775785B1 (en) * 2004-06-30 2013-08-21 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
KR100830612B1 (ko) * 2006-05-23 2008-05-21 강원대학교산학협력단 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
JP5257740B2 (ja) * 2008-01-30 2013-08-07 東海カーボン株式会社 リチウム二次電池の負極材用複合炭素材料及びその製造方法

Also Published As

Publication number Publication date
JP2015038862A (ja) 2015-02-26

Similar Documents

Publication Publication Date Title
US20220407070A1 (en) Carbon material for negative electrode of non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2014046144A1 (ja) 非水系二次電池負極用複合黒鉛粒子、非水系二次電池用負極及び非水系二次電池
JP6409377B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP6476814B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP2015164127A (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP6251968B2 (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
WO2007000982A1 (ja) 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池
JP5994319B2 (ja) 非水系二次電池用複合黒鉛粒子の製造方法及びその製造方法で得られた複合黒鉛粒子、負極並びに非水系二次電池
WO2015147123A1 (ja) 非水系二次電池負極用複合黒鉛粒子、非水系二次電池負極用活物質及び非水系二次電池
JP2012216545A (ja) 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
JP2015026579A (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP6252025B2 (ja) 非水系二次電池負極用複合黒鉛粒子の製造方法、及びその製造方法にて製造された非水系二次電池負極用複合黒鉛粒子、非水系二次電池用負極及び非水系二次電池
JP2017045574A (ja) 炭素材、及び、非水系二次電池
JP2015079621A (ja) 非水系二次電池負極用複合黒鉛粒子、非水系二次電池用負極及び非水系二次電池
JP6098275B2 (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP2014067639A (ja) 非水系二次電池用炭素材料、非水系二次電池用負極及び非水系二次電池
JP2016136517A (ja) 非水系二次電池用炭素材、及び、リチウムイオン二次電池
JP6596807B2 (ja) 非水系二次電池負極用複合黒鉛粒子、及びそれを用いた非水系二次電池
JP2016186914A (ja) 非水系二次電池負極用複合黒鉛粒子、非水系二次電池用負極及び非水系二次電池
JP6422208B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP6596959B2 (ja) 非水系二次電池用複合粒子の製造方法
JP2016184581A (ja) 非水系二次電池用負極材の製造方法
JP6432520B2 (ja) 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP2016189319A (ja) 炭素材、及び、非水系二次電池
JP6609961B2 (ja) 炭素材、及び、非水系二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180910

R151 Written notification of patent or utility model registration

Ref document number: 6409377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151