WO2010139125A1 - 一种纳米级锂电池正极材料及其制备方法 - Google Patents

一种纳米级锂电池正极材料及其制备方法 Download PDF

Info

Publication number
WO2010139125A1
WO2010139125A1 PCT/CN2009/072394 CN2009072394W WO2010139125A1 WO 2010139125 A1 WO2010139125 A1 WO 2010139125A1 CN 2009072394 W CN2009072394 W CN 2009072394W WO 2010139125 A1 WO2010139125 A1 WO 2010139125A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
positive electrode
lithium battery
electrode material
nano
Prior art date
Application number
PCT/CN2009/072394
Other languages
English (en)
French (fr)
Inventor
徐瑞松
Original Assignee
Xu Ruisong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41283507&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010139125(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Xu Ruisong filed Critical Xu Ruisong
Priority to AU2009347499A priority Critical patent/AU2009347499B2/en
Priority to EP09838542.0A priority patent/EP2287944B1/en
Priority to JP2011537823A priority patent/JP5347031B2/ja
Priority to US12/865,357 priority patent/US8470207B2/en
Priority to RU2011126090/07A priority patent/RU2477908C2/ru
Publication of WO2010139125A1 publication Critical patent/WO2010139125A1/zh
Priority to HK11103875.1A priority patent/HK1150096A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Nano-scale lithium battery cathode material and preparation method thereof are nano-scale lithium battery cathode material and preparation method thereof.
  • the present invention relates to a nano-scale lithium battery positive electrode material and a preparation method thereof for use in a polymer, a colloidal and a liquid lithium ion battery, and is particularly suitable for producing a high-powered power battery.
  • Lithium cobaltate and lithium nickel cobaltate are oxides of a hexagonal layered rock salt structure.
  • the electrons in lithium ions move in the octahedral gap formed by 0-Co-0, which has high conductivity and lithium ion deintercalation. / Embedding reversibility.
  • Lithium manganate is an oxide of three-dimensional structure of spinel. Electrons in lithium ions move in an octahedral cubic channel composed of 0-Mn-0, and also have high electrical conductivity and lithium ion deintercalation/embedded reversibility.
  • lithium cobaltate and lithium nickel cobaltate are expensive to manufacture and have poor safety.
  • lithium manganate is cheaper and safer, it has a small capacitance and a poor cycle life under high temperature conditions (above 55 °C). Even after doping and surface chemical treatment, the cycle life of lithium manganate batteries cannot meet the actual requirements. Therefore, the lithium battery industry, especially high-power lithium batteries, urgently needs a cathode material that is low in cost, environmentally friendly, large in capacity, and safe.
  • lithium iron phosphate polycrystal When 1 mole of lithium ions are deintercalated from the structure, the theoretical discharge capacity of the lithium iron phosphate polycrystal can reach 170 mAh/g. Due to the abundant reserves of lithium and iron, the production cost of lithium iron phosphate is low. This paper predicts that lithium iron phosphate materials may have broad application prospects in the battery industry due to their low cost, environmental protection, high performance and safety. However, very low electrical conductivity of lithium iron phosphate (10- 9 S / cm) at room temperature under normal discharge current (lO ⁇ mA / cm 2) conditions of actual discharge capacity of lithium iron phosphate is only a theoretical value ( 10% of 170 mAh/g). Therefore, its application in the battery is limited.
  • the object of the present invention is to provide a nano-scale lithium battery cathode material with lithium iron phosphate as a base material, which is further doped with conductive doping ions and pressurized doping ions, and a preparation method thereof, to overcome the above-mentioned problems existing in the prior art. defect.
  • the above-mentioned nano-sized lithium battery positive electrode material has a particle diameter of 40 to 80 nm.
  • the invention also provides a preparation method of a nano-scale lithium battery positive electrode material, the method adopting a solid phase reaction, comprising the following steps:
  • a lithium dihydrogen phosphate, ferrous ferrous sulfate, glucose and a conductive dopant and a pressurized dopant are uniformly mixed and then pulverized into powder;
  • the temperature is raised to 200 to 400 ° C in an inert gas atmosphere for 2 to 3 hours;
  • the temperature is raised to 500 to 780 ° C in an inert gas atmosphere for 15 20 hours;
  • step e The powder obtained in step e is subjected to ultrafine gas flow pulverization and classification.
  • the conductive dopant is Mg 2+ , Ca 2+ , Sr 2+ , Ti 2+ , Al 3+ , B 3+ , Ce 3+ , C 4+ , Si 4+ , Ge 4+ or P 5+ A compound or a combination of any two or more.
  • the conductive dopant is added in an amount of:
  • the number of moles of the conductive dopant ions is 4 to 10% of the sum of the number of moles of lithium ions and the number of moles of conductive dopant ions.
  • the pressurized dopant is an oxide, carbonate, sulfide or oxide of Ti 2+ , V 5+ , Co 3+ , Ni 3+ , Mn 2+ , Cr 3+ , Cu 2+ or Mo 4+ Phosphate or a combination of any two or more.
  • the amount of the pressurized dopant added is:
  • the number of moles of the pressurized dopant ions is 3 to 7% of the sum of the number of moles of iron ions and the number of moles of pressurized dopant ions.
  • the nanometer lithium battery positive electrode material provided by the invention adds a positive ion having a small atomic weight and a high polarizability as a conductive doping ion, and the conductivity of the lithium iron phosphate positive electrode material is from 3 l (r 9 S/cm).
  • the present invention also provides a preparation method of the above-mentioned nano-scale lithium battery positive electrode material, which has low production cost, simple operation method, and no production. Characteristics of high pollution and yield ( > 99%).
  • Figure 1 Scanning electron micrograph of the nano-scale lithium battery cathode material, magnification: 10,000 times; scale: 2.0 ⁇ .
  • the material has a particle diameter of 40 to 80 nm.
  • Figure 2 Charging and discharging characteristics of a lithium battery made of a nano-scale lithium battery cathode material.
  • Figure 3 X-ray diffraction pattern of a nano-scale lithium battery cathode material.
  • the powder prepared in the first step is granulated, placed in an alumina ceramic crucible, heated to 200-300 ° C in a nitrogen furnace, and sintered at a constant temperature for 3 hours;
  • the third step after cooling to room temperature, take out, ball-mill into powder, and mix evenly;
  • the temperature is raised to 500 to 600 ° C in a nitrogen furnace, and the temperature is sintered for 18 to 20 hours to form a doped lithium iron phosphate crystal, which naturally falls to room temperature;
  • the crystal particles are crushed into a powder form;
  • the powder prepared in the fifth step is crushed and classified on a superfine jet mill to prepare a nano-scale lithium battery positive electrode material having a particle diameter of 40 to 80 nm.
  • the conductivity of the ordinary lithium iron phosphate positive electrode material is 3 x 10 - 9 S / cm, and the room temperature discharge voltage is 3.2 V; and the room temperature conductivity and the room temperature discharge voltage of the nano-scale lithium battery positive electrode material provided in this embodiment are respectively 1.30 X l (r 2 S/cm and 4.0 V, respectively increased by 10 7 times and 25%.
  • Example 2
  • the powder prepared in the first step is granulated, placed in an alumina ceramic crucible, heated to 300-400 ° C in a nitrogen furnace, and heated at a constant temperature for 1.5-2.5 hours;
  • the third step after cooling to room temperature, take out, ball-mill into powder, and stir evenly;
  • the temperature is further increased to 700-800 ° C in a nitrogen furnace, and the temperature is sintered for 15 16 hours to form a doped lithium iron phosphate crystal, which is naturally cooled to room temperature;
  • the crystal particles are crushed into a powder form
  • the powder prepared in the fifth step is crushed and classified on a superfine jet mill to form a solid powder for the positive electrode of the lithium battery, and the powder particles have a diameter of 40 to 80 nm.
  • the conductivity of the ordinary lithium iron phosphate positive electrode material is 3 x 10 - 9 S / cm, and the room temperature discharge voltage is 3.2 V; and the room temperature conductivity and the room temperature discharge voltage of the nano-scale lithium battery positive electrode material provided in this embodiment are respectively It is 1.75 X 10" 2 S/cm and 3.85V, which is increased by 10 7 times and 20%, respectively.
  • the powder prepared in the first step is granulated, placed in an alumina ceramic crucible, heated to 200-300 ° C in a nitrogen furnace, and sintered at a constant temperature for 2 to 3 hours;
  • the third step after cooling to room temperature, take out, ball-mill into powder, and stir evenly;
  • the fourth step after the powder obtained in the third step is granulated, the temperature is further increased to 650-750 ° C in a nitrogen furnace, and the temperature is sintered for 16 17 hours to form a doped nano lithium iron phosphate crystal, which is naturally cooled to room temperature;
  • the crystal particles are crushed into a powder form
  • the powder prepared in the fifth step is crushed and classified on a superfine jet mill to form a solid powder of a nano-scale lithium battery positive electrode material, and the particle diameter is 40 to 80 nm.
  • the conductivity of the ordinary lithium iron phosphate positive electrode material is 3 x 10 - 9 S / cm, and the room temperature discharge voltage is 3.2 V; and the room temperature conductivity and the room temperature discharge voltage of the nano-scale lithium battery positive electrode material provided in this embodiment are respectively The ratio of 1.35 X 10" 2 S/cm and 3.90 V is increased by 10 7 times and 22%, respectively.
  • the nano-scale lithium battery positive electrode materials provided in Examples 1, 2 and 3 of the present invention can be rapidly charged and discharged at a rate of 1 C 9C.
  • the present invention includes, but is not limited to, the above embodiments. The specific embodiments described above are only for understanding the essence of the present invention, and the modifications made to the present invention according to the prior art without departing from the essence of the present invention are still within the scope of protection of the present invention. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

一种纳米级锂电池正极材料及其制备方法
技术领域 本发明涉及一种纳米级锂电池正极材料及其制备方法, 该材料用于聚合物、 胶体和液 体锂离子电池中, 特别适用于制作大功率的动力电池。
目前, 锂电池中常用的正极材料有三种: 钴酸锂、 镍钴酸锂和锰酸锂。 钴酸锂和镍钴 酸锂是六方晶系层状岩盐结构的氧化物, 锂离子中的电子在 0— Co— 0构成的八面体层间 隙中移动, 具有较高的导电性能和锂离子脱嵌 /嵌入的可逆性。锰酸锂是尖晶石三维结构的 氧化物, 锂离子中的电子在 0— Mn— 0构成的八面体立方通道中移动, 也具有较高的导电 性能和锂离子脱嵌 /嵌入可逆性。 它们都是当前锂电池工业中大量应用的正极材料。 但金属 钴是地球上稀缺的元素之一, 且具有放射性, 其氧化物在电池过充和过放时会与电解液发 生剧烈反应, 放出大量热量而致使电池起火直至爆炸。 因此, 钴酸锂和镍钴酸锂的制造成 本高, 安全性差。 锰酸锂虽然较便宜和安全, 可是电容量小, 而且在高温条件下 (55 °C以 上) 的循环使用寿命差。 即使经过掺杂和表面化学处理, 锰酸锂电池的循环使用寿命仍然 无法满足实际要求。 因此, 锂电池工业, 特别是大功率锂电池急需一种成本低廉、 环保、 容量大和安全的正极材料。
为此, 美国德州大学教授 J.B.Goodenough 等(A.K.Padhi , K.S.Najundaswamy , C.Masgueslier, S.Okada and J.B.Goodenough, J.Eletrochem.Soc.144, 1609—1613 ( 1997 ) ) 于 1997 年在美国电化学杂志上发表文章, 公开了一种新的嵌锂化合物: 锂铁磷酸盐多晶 体 LiFeP04。 该晶体中的锂离子电子在 Fe06八面体和 P04四面体结构中自由移动, 具有锂 离子的脱嵌 /嵌入可逆性。 当 1摩尔的锂离子从结构中脱嵌出来时, 锂铁磷酸盐多晶体的理 论放电容量可达 170mAh/g。 由于锂、 铁储量丰富, 锂铁磷酸盐的生产成本低廉。 该文预 测, 由于锂铁磷酸盐材料具有价廉、 环保、 高性能和安全等特征, 其在电池工业中可能具 有广阔的应用前景。 但是, 锂铁磷酸盐在室温下电导率极低 (10—9S/cm ), 在正常放电电流 (lO^mA/cm2 )条件 下, 锂铁磷酸盐的实际放电容量仅为理论值( 170mAh/g )的 10%。 因此, 限制了其在电池 中的应用。 为了提高锂铁磷酸盐的电导率, 近期有文章报道 ( Suag-Yoon Chang , Jason T.Bloking and Yetming Chiang, Nature, October 123-128(2002) ), 在其结构中加入微量添加 剂, 如 Mg、 Ti、 Nb和 Zr等, 室温下的电导率有了较大提高。 但是, 该文中提到的添加剂 的加入方法复杂, 微量元素的价格高, 不适合大规模工业生产。 此外, 锂铁磷酸盐的室温 导电空间较大, 但其放电电压较低, 从而影响了该材料的能量密度。 发明内容
本发明的目的是提供一种以锂铁磷酸盐为基材, 还掺有导电掺杂离子和增压掺杂离子 的纳米级锂电池正极材料及其制备方法, 以克服现有技术存在的上述缺陷。
本发明提供的纳米级锂电池正极材料, 该材料以锂铁磷酸盐为基材, 还掺有导电掺杂 离子和增压掺杂离子, 化学通式为: (Lix[M1-x] ) ( Fey[N1-y] ) P04 , 式中: x=0.9~0.96; y=0.93~0.97; M为导电掺杂离子, 选自 Mg2+、 Ca2+、 Sr2+、 Ti2+、 Al3+、 B3+、 Ce3+、 C4+、 Si4+、 Ge4+或 P5+其中之一或任意两种以上的组合; N为增压掺杂离子,选自 Ti2+、 V5+、 Co3+、 Ni3+、 Mn2+、 Cr3+、 Cu2+或 Mo4+其中之一或任意两种以上的组合。
上述纳米级锂电池正极材料的颗粒直径为 40~80nm。
本发明还提供了纳米级锂电池正极材料的制备方法, 该方法釆用固相反应, 包括以下 步骤:
a. 将磷酸二氢锂、 乙二酸亚铁、 葡萄糖及导电掺杂剂和增压掺杂剂混合均匀后, 碎 成粉体;
b. 将步骤 a得到的粉体压粒后, 在惰性气体环境中, 升温到 200~400°C恒温烧结 2~3 小时;
c 冷却至室温, 取出后碎成粉体、 混合均匀;
d. 将步骤 c得到的粉体压粒后,在惰性气体环境中,升温到 500~780°C恒温烧结 15 20 小时;
e. 冷却至室温, 取出后碎成粉体;
f. 将步骤 e得到的粉体进行超微气流粉碎和分级。
上述纳米级锂电池正极材料的原料配比:
各原料的摩尔比为: 磷酸二氢锂: 乙二酸亚铁: 葡萄糖: 导电掺杂剂:增压掺杂剂 = 1 : 0.98-0.99: 0.069-0.07: 0.04-0.1 : 0.029-0.07»
所述导电掺杂剂为 Mg2+、 Ca2+、 Sr2+、 Ti2+、 Al3+、 B3+、 Ce3+、 C4+、 Si4+、 Ge4+或 P5+ 的化合物或任意两种以上的组合。
所述导电掺杂剂的加入量为: 导电掺杂离子的摩尔数是锂离子摩尔数与导电掺杂离子 摩尔数之和的 4~10%。 所述增压掺杂剂为 Ti2+、 V5+、 Co3+、 Ni3+、 Mn2+、 Cr3+、 Cu2+或 Mo4+的氧化物、 碳酸 盐、 硫化物或磷酸盐或任意两种以上的组合。
所述增压掺杂剂的加入量为: 增压掺杂离子的摩尔数是铁离子摩尔数与增压掺杂离子 摩尔数之和的 3~7%。 本发明提供的纳米级锂电池正极材料, 添加了原子量较小而极化率极高的正离子作为导电 掺杂离子,将锂铁磷酸盐正极材料的电导率从 3 l(r9S/cm提高到 1 10-2S/cm,提高了 107 倍; 同时添加增压掺杂离子改变锂铁磷酸盐正极材料晶体结构的化学势能, 提高了放电电 压 (即工作电压), 使其提高了 20~25%; 另外, 该材料的实际放电容量超过 250mAh/g; 还可以高倍率充、 放电, 可实现一分钟快速充电, 充电寿命超过 4000 次。 该材料不仅可 以应用于小容量的锂电池, 而且应用在 10 安以上的大容量、 大功率锂电池中更有价值。 本发明还提供了上述纳米级锂电池正极材料的制备方法, 该方法具有生产成本低、 操作方 法简单、 生产中无污染和成品率高 ( > 99% ) 的特点。 附图说明
图 1 : 纳米级锂电池正极材料的扫描电镜图, 放大倍数: 10,000倍; 比例尺: 2.0μηι。
该材料的颗粒直径为 40~80nm。
图 2: 由纳米级锂电池正极材料制成的锂电池充、 放电特征曲线图。
图 3: 纳米级锂电池正极材料的 X射线衍射图。 ^
下面通过具体实施例详细描述本发明的技术方案。 实施例 1
第一步, 取 1000g ( 9.62摩尔)磷酸二氢锂; 1410g ( 9.80摩尔) 乙二酸亚铁; 120.5g ( 0.67摩尔)葡萄糖; 导电掺杂剂: 17g ( 0.42摩尔)氧化镁; 增压掺杂剂: 50g ( 0.20摩 尔)磷酸锰、 27g ( 0.23摩尔)碳酸钴、 25g ( 0.26摩尔)钛酸, 放入球磨机中, 球磨搅拌 混合 2小时, 碎成粉体;
第二步, 将第一步制好的粉体压粒后, 放入氧化铝陶瓷坩锅中, 于氮气炉中升温至 200-300 °C , 恒温烧结 3小时;
第三步, 冷却至室温后取出, 球磨成粉体、 混合均匀;
第四步, 将第三步得到的粉体压粒后, 在氮气炉中升温至 500~600°C , 恒温烧结 18~20 小时, 生成掺杂锂铁磷酸盐晶体, 自然降至室温; 第五步, 将晶体颗粒压碎至粉末状;
第六步, 将第五步制备的粉末在超微气流粉碎机上进行破碎和分级, 制成纳米级锂电 池正极材料, 颗粒直径为 40~80nm。
经测定, 普通锂铁磷酸盐正极材料电导率为 3 x lO—9S/cm, 室温放电电压为 3.2V; 而 本实施例提供的纳米级锂电池正极材料的室温电导率和室温放电电压分别为 1.30 X l(r2S/cm和 4.0V, 分别提高了 107倍和 25%。 实施例 2
第一步, 取 1000g ( 9.62 摩尔)磷酸二氢锂; 1400g ( 9.73 摩尔) 乙二酸亚铁; 120g ( 0.67摩尔)葡萄糖; 导电掺杂剂: 20g ( 0.32摩尔)硼酸、 60g ( 0.19摩尔)磷酸钙、 35g ( 0.45摩尔) 氢氧化铝; 增压掺杂剂: 30g ( 0.31摩尔)硫化铜, 放入 ZrO球磨机中, 球 磨、 搅拌混合 2~3小时, 碎成粉体;
第二步, 将第一步制好的粉体压粒后, 放入氧化铝陶瓷坩锅中, 于氮气炉中升温至 300-400 °C , 恒温烧 i 1.5-2.5小时;
第三步, 冷却至室温后取出, 球磨成粉体、 搅拌均匀;
第四步, 将第三步得到的粉体压粒后, 在氮气炉中继续升温至 700~800°C , 恒温烧结 15 16小时, 生成掺杂锂铁磷酸盐晶体, 自然降温至室温;
第五步, 将晶体颗粒压碎至粉末状;
第六步, 将第五步制备的粉末在超微气流粉碎机上进行破碎和分级, 制成用于锂电池 正极的固体粉体, 粉体颗粒直径为 40~80nm。
经测定, 普通锂铁磷酸盐正极材料电导率为 3 x lO—9S/cm, 室温放电电压为 3.2V; 而 本实施例提供的纳米级锂电池正极材料的室温电导率和室温放电电压分别为 1.35 X 10"2S/cm和 3.85V, 分别提高了 107倍和 20%。 实施例 3
第一步, 取 1000g ( 9.62 摩尔)磷酸二氢锂; 1400g ( 9.73 摩尔) 乙二酸亚铁; 120g ( 0.67摩尔)葡萄糖; 导电掺杂剂: 29g ( 0.30摩尔)偏钛酸、 23g ( 0.38摩尔)二氧化硅; 增压掺杂剂: 70g ( 0.15摩尔)碱式碳酸镍、 50g ( 0.35摩尔)氧化钼, 放入 ZrO球磨机中 球磨、 搅拌混合 2~3小时, 碎成粉体;
第二步, 将第一步制好的粉体压粒后, 放入氧化铝陶瓷坩锅中, 于氮气炉中升温至 200-300 °C , 恒温烧结 2~3小时;
第三步, 冷却至室温后取出, 球磨成粉体、 搅拌均匀; 第四步, 将第三步得到的粉体压粒后, 在氮气炉中继续升温至 650~750°C , 恒温烧结 16 17小时, 生成掺杂纳米锂铁磷酸盐晶体, 自然降温至室温;
第五步, 将晶体颗粒压碎至粉末状;
第六步, 将第五步制备的粉末在超微气流粉碎机上进行破碎和分级, 制成纳米级锂电 池正极材料的固体粉体, 颗粒直径为 40~80nm。
经测定, 普通锂铁磷酸盐正极材料电导率为 3 x lO—9S/cm, 室温放电电压为 3.2V; 而 本实施例提供的纳米级锂电池正极材料的室温电导率和室温放电电压分别为 1.35 X 10"2S/cm和 3.90V, 分别提高了 107倍和 22%。 本发明实施例 1、 2和 3提供的纳米级锂电池正极材料可以 1C 9C的速率快速充、 放 电。 本发明包括但不限于以上实施例。 以上所列具体实施方式仅用于理解本发明的实质, 根据现有技术对本发明做出的不脱离本发明实质内容的改变, 仍属于本发明的保护范围。

Claims

权利要求书
1. 一种纳米级锂电池正极材料, 其特征在于: 该材料以锂铁磷酸盐为基材, 还掺有 导电掺杂离子和增压掺杂离子,化学通式为:(
Figure imgf000008_0001
式中: x=0.9~0.96; y=0.93~0.97; M为导电掺杂离子, 选自 Mg2+、 Ca2+、 Sr2+、 Ti2+、 Al3+、 B3+、 Ce3+、 C4+、 Si4+、 Ge4+或 P5+其中之一或任意两种以上的组合; N为增压掺杂离子,选自 Ti2+、 V5+、 Co3+、 Ni3+、 Mn2+、 Cr3+、 Cu2+或 Mo4+其中之一或任意两种以上的组合。
2. 根据权利要求 1所述的纳米级锂电池正极材料, 其特征在于: 该材料的颗粒直径 为 40~80nm。
3. 权利要求 1或 2所述纳米级锂电池正极材料的制备方法, 其特征在于: 所述制备 方法釆用固相反应, 包括以下步骤:
a. 将磷酸二氢锂、 乙二酸亚铁、 葡萄糖及导电掺杂剂和增压掺杂剂混合均匀后, 碎成粉体;
b. 将步骤 a得到的粉体压粒后, 在惰性气体环境中, 升温到 200~400°C恒温烧结
2-3小时;
C. 冷却至室温, 取出后碎成粉体、 混合均匀;
d. 将步骤 c得到的粉体压粒后, 在惰性气体环境中, 升温到 500~780°C恒温烧结
15-20小时;
e. 冷却至室温, 取出后碎成粉体;
f. 将步骤 e得到的粉体进行超微气流粉碎和分级。
4. 根据权利要求 3所述纳米级锂电池正极材料的制备方法, 其特征在于: 步骤 a中, 各原料的摩尔比为: 磷酸二氢锂: 乙二酸亚铁: 葡萄糖: 导电掺杂剂: 增压掺杂剂 = 1 : 0.98-0.99: 0.069-0.07: 0.04-0.1 : 0.029 0.07。
5. 根据权利要求 3所述纳米级锂电池正极材料的制备方法, 其特征在于: 步骤 a中, 所述导电掺杂剂为 Mg2+、 Ca2+、 Sr2+、 Ti2+、 Al3+、 B3+、 Ce3+、 C4+、 Si4+、 Ge4+或 P5+的化 合物或任意两种以上的组合。
6. 根据权利要求 3所述纳米级锂电池正极材料的制备方法, 其特征在于: 步骤 a中, 所述导电掺杂剂的加入量为: 导电掺杂离子的摩尔数是锂离子摩尔数与导电掺杂离子摩尔 数之和的 4~10%。
7. 根据权利要求 3所述纳米级锂电池正极材料的制备方法, 其特征在于: 步骤 a中, 所述增压掺杂剂为 Ti2+、 V5+、 Co3+、 Ni3+、 Mn2+、 Cr3+、 Cu2+或 Mo4+的氧化物、 碳酸盐、 硫化物或磷酸盐或任意两种以上的组合。
8. 根据权利要求 3所述纳米级锂电池正极材料的制备方法, 其特征在于: 步骤 所述增压掺杂剂的加入量为: 增压掺杂离子的摩尔数是铁离子摩尔数与增压掺杂离子摩 数之和的 3~7%。
9. 根据权利要求 3所述纳米级锂电池正极材料的制备方法, 其特征在于: 步骤 a、 和 e中, 碎成粉体时, 釆用 ZrO球磨机。
PCT/CN2009/072394 2009-06-02 2009-06-23 一种纳米级锂电池正极材料及其制备方法 WO2010139125A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2009347499A AU2009347499B2 (en) 2009-06-02 2009-06-23 Nano-Positive Electrode Material Of Lithium Cell And Method For Preparation Thereof
EP09838542.0A EP2287944B1 (en) 2009-06-02 2009-06-23 Nanometer-level positive electrode material for lithium battery and method for making the same
JP2011537823A JP5347031B2 (ja) 2009-06-02 2009-06-23 リチウム電池用ナノ正極材料及びその製造方法
US12/865,357 US8470207B2 (en) 2009-06-02 2009-06-23 Nano-positive electrode material of lithium cell and method for preparation thereof
RU2011126090/07A RU2477908C2 (ru) 2009-06-02 2009-06-23 Наноматериал положительного электрода литиевого элемента и способ его получения
HK11103875.1A HK1150096A1 (zh) 2009-06-02 2011-04-18 種納米級鋰電池正極材料及其製備方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910143905.3 2009-06-02
CN2009101439053A CN101567449B (zh) 2009-06-02 2009-06-02 一种纳米级锂电池正极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2010139125A1 true WO2010139125A1 (zh) 2010-12-09

Family

ID=41283507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072394 WO2010139125A1 (zh) 2009-06-02 2009-06-23 一种纳米级锂电池正极材料及其制备方法

Country Status (8)

Country Link
US (1) US8470207B2 (zh)
EP (1) EP2287944B1 (zh)
JP (1) JP5347031B2 (zh)
CN (1) CN101567449B (zh)
AU (1) AU2009347499B2 (zh)
HK (1) HK1150096A1 (zh)
RU (1) RU2477908C2 (zh)
WO (1) WO2010139125A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109665508A (zh) * 2017-10-16 2019-04-23 中天新兴材料有限公司 正极材料磷酸铁锂及其制备方法
CN115417394A (zh) * 2022-09-20 2022-12-02 广西自贸区量孚新能源科技有限公司 一种磷酸铁锂材料及其制备工艺和应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567449B (zh) * 2009-06-02 2012-06-27 徐瑞松 一种纳米级锂电池正极材料及其制备方法
JPWO2011138964A1 (ja) * 2010-05-06 2013-07-22 旭硝子株式会社 ケイ酸−リン酸化合物、二次電池用正極、および二次電池の製造方法
CN101841027A (zh) * 2010-05-13 2010-09-22 湘西自治州矿产与新材料技术创新服务中心 锂离子电池锂位稀土掺杂磷酸氧钒锂正极材料的制备方法
US20120003139A1 (en) * 2010-06-30 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing power storage device
KR101965016B1 (ko) * 2011-07-25 2019-04-02 에이일이삼 시스템즈, 엘엘씨 블렌딩된 캐소드 물질
CN102364733B (zh) * 2011-10-26 2013-02-13 黄景诚 锑、钡活化磷酸铁锂正极材料制备方法
CN102364734B (zh) * 2011-10-26 2013-02-13 黄景诚 锡、钡活化磷酸铁锂正极材料制备方法
CN102569802A (zh) * 2012-02-29 2012-07-11 恒正科技(苏州)有限公司 一种电化学活性材料的制备方法
KR101973052B1 (ko) * 2012-08-10 2019-04-26 삼성에스디아이 주식회사 리튬 금속인산화물의 제조방법
CN105870432B (zh) * 2016-06-28 2018-06-15 中南民族大学 一种采用磷肥产品超声波喷雾制备多位协同掺杂LiFePO4/C的方法
RU2623212C1 (ru) * 2016-07-12 2017-06-23 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Композиционный катодный материал
CN107785564B (zh) * 2017-10-18 2020-11-24 武汉理工大学 VTi2.6O7.7纳米颗粒、制备和应用
CN111525100B (zh) * 2019-12-04 2022-06-17 南通鼎鑫电池有限公司 一种表面具有预压应力的多孔碳包覆LiFePO4正极材料的制备方法
CN112088897B (zh) * 2020-09-23 2021-10-22 大连海事大学 一种纳米氧化镁无机抗菌剂及其制备方法
CN116101990B (zh) * 2022-09-07 2024-05-10 浙江华友钴业股份有限公司 磷酸铁和磷酸铁锂及其制备方法、电极及电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457111A (zh) * 2003-03-18 2003-11-19 黄穗阳 锂电池正极材料及其制备方法
CN1684290A (zh) * 2004-04-13 2005-10-19 中国科学院物理研究所 一种用于二次锂电池的正极材料和用途
US7482097B2 (en) * 2002-04-03 2009-01-27 Valence Technology, Inc. Alkali-transition metal phosphates having a +3 valence non-transition element and related electrode active materials
JP2009029670A (ja) * 2007-07-27 2009-02-12 Kanto Denka Kogyo Co Ltd オリビン型リン酸鉄リチウム化合物及びその製造方法、並びにオリビン型リン酸鉄リチウム化合物を使用する正極活物質及び非水電解質電池
CN101567449A (zh) * 2009-06-02 2009-10-28 徐瑞松 一种纳米级锂电池正极材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100414746C (zh) * 2001-12-21 2008-08-27 麻省理工学院 传导性组合物及其制备和应用
KR100595896B1 (ko) * 2003-07-29 2006-07-03 주식회사 엘지화학 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
TWI290781B (en) * 2004-09-02 2007-12-01 Lg Chemical Ltd Electrode active material with multi-element based oxide layers and preparation method thereof
EP1922781B1 (en) * 2005-09-09 2018-04-18 A123 Systems LLC Lithium secondary cell with high charge and discharge rate capability and low impedance growth
RU2307429C1 (ru) * 2006-04-20 2007-09-27 Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) Способ получения поверхностно-модифицированного катодного материала со слоистой структурой для литиевых и литий-ионных аккумуляторов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482097B2 (en) * 2002-04-03 2009-01-27 Valence Technology, Inc. Alkali-transition metal phosphates having a +3 valence non-transition element and related electrode active materials
CN1457111A (zh) * 2003-03-18 2003-11-19 黄穗阳 锂电池正极材料及其制备方法
CN1684290A (zh) * 2004-04-13 2005-10-19 中国科学院物理研究所 一种用于二次锂电池的正极材料和用途
JP2009029670A (ja) * 2007-07-27 2009-02-12 Kanto Denka Kogyo Co Ltd オリビン型リン酸鉄リチウム化合物及びその製造方法、並びにオリビン型リン酸鉄リチウム化合物を使用する正極活物質及び非水電解質電池
CN101567449A (zh) * 2009-06-02 2009-10-28 徐瑞松 一种纳米级锂电池正极材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A.K.PADHI; K.S.NAJUNDASWAMY; C.MASGUESLIER; S.OKADA; J.B.GOODENOUGH, J.ELETROCHEM.SOC., vol. 144, 1997, pages 1609 - 1613
AMERICAN JOURNAL OF ELECTROCHEMISTRY, 1997
See also references of EP2287944A4 *
SUAG-YOON CHANG; JASON T.BLOKING; YETMING CHIANG, NATURE, October 2002 (2002-10-01), pages 123 - 128

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109665508A (zh) * 2017-10-16 2019-04-23 中天新兴材料有限公司 正极材料磷酸铁锂及其制备方法
CN115417394A (zh) * 2022-09-20 2022-12-02 广西自贸区量孚新能源科技有限公司 一种磷酸铁锂材料及其制备工艺和应用
CN115417394B (zh) * 2022-09-20 2023-12-12 上海量孚新能源科技有限公司 一种磷酸铁锂材料及其制备工艺和应用

Also Published As

Publication number Publication date
JP5347031B2 (ja) 2013-11-20
EP2287944A4 (en) 2014-04-23
US8470207B2 (en) 2013-06-25
CN101567449B (zh) 2012-06-27
HK1150096A1 (zh) 2011-10-28
US20110114899A1 (en) 2011-05-19
CN101567449A (zh) 2009-10-28
RU2477908C2 (ru) 2013-03-20
AU2009347499B2 (en) 2012-07-26
EP2287944A1 (en) 2011-02-23
AU2009347499A1 (en) 2010-12-09
JP2012510140A (ja) 2012-04-26
EP2287944B1 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
WO2010139125A1 (zh) 一种纳米级锂电池正极材料及其制备方法
Hou et al. Core–shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries
Gummow et al. Recent progress in the development of Li2MnSiO4 cathode materials
CN108172825B (zh) 一种高电压高压实低成本钴酸锂正极材料及其制备方法
EP2546194A1 (en) Phosphate compound, positive electrode for secondary battery and method for producing secondary battery
CN101597048A (zh) 一种正极材料磷酸铁锂的制备方法
CN105449178B (zh) 一种纳米磷酸锰锂/石墨烯/碳复合材料的制备方法
Jin et al. Synthesis of single-crystalline octahedral LiMn2O4 as high performance cathode for Li-ion battery
CN105047921A (zh) 锂离子电池正极材料复合磷酸铁锂及其制备方法和锂离子电池
JP2011132095A (ja) オリビン型化合物粒子粉末の製造方法、並びに非水電解質二次電池
WO2016031561A1 (ja) ナトリウムイオン二次電池用正極活物質及びその製造方法
El Khalfaouy et al. Solution combustion synthesis and electrochemical properties of yttrium-doped LiMnPO4/C cathode materials for lithium ion batteries
CN100404413C (zh) 锂离子电池正极材料碳包覆磷酸亚铁锂的制备方法
EP2505552A1 (en) Process for production of phosphoric acid compound, and process for production of secondary battery
CN102208624A (zh) 一种低温固相法制备碳包覆磷酸亚铁锂正极材料的方法
Lei et al. Preparation of Mn2SnO4 nanoparticles as the anode material for lithium secondary battery
CN103199236B (zh) 掺杂锰酸锂前驱体、改性锰酸锂正极材料及其制备方法
JP7402711B2 (ja) 全固体リチウムイオン二次電池用正極活物質、全固体リチウムイオン二次電池、及び全固体リチウムイオン二次電池用正極活物質の製造方法
Alonso-Domínguez et al. Lithium-ion full cell battery with spinel-type nanostructured electrodes
Wang et al. Nano-sized over-lithiated oxide by a mechano-chemical activation-assisted microwave technique as cathode material for lithium ion batteries and its electrochemical performance
CN103733396B (zh) 掺杂二次电池正极材料及其制备方法
CN111313011B (zh) 一种低成本高性能磷酸铁锂的制备方法
CN102569795A (zh) 一种磷酸亚铁锂合成的综合改性方法
Zhu Synthesis, characterization and performance of cathodes for lithium ion batteries
CN109473668A (zh) 一种改性预锂化材料及其制备方法和锂电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009838542

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12865357

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838542

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009347499

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009347499

Country of ref document: AU

Date of ref document: 20090623

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011537823

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 4019/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011126090

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE