CN101567449B - 一种纳米级锂电池正极材料及其制备方法 - Google Patents

一种纳米级锂电池正极材料及其制备方法 Download PDF

Info

Publication number
CN101567449B
CN101567449B CN2009101439053A CN200910143905A CN101567449B CN 101567449 B CN101567449 B CN 101567449B CN 2009101439053 A CN2009101439053 A CN 2009101439053A CN 200910143905 A CN200910143905 A CN 200910143905A CN 101567449 B CN101567449 B CN 101567449B
Authority
CN
China
Prior art keywords
nano
supercharging
powder
ion
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009101439053A
Other languages
English (en)
Other versions
CN101567449A (zh
Inventor
徐瑞松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41283507&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101567449(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to CN2009101439053A priority Critical patent/CN101567449B/zh
Priority to PCT/CN2009/072394 priority patent/WO2010139125A1/zh
Priority to JP2011537823A priority patent/JP5347031B2/ja
Priority to AU2009347499A priority patent/AU2009347499B2/en
Priority to EP09838542.0A priority patent/EP2287944B1/en
Priority to US12/865,357 priority patent/US8470207B2/en
Priority to RU2011126090/07A priority patent/RU2477908C2/ru
Publication of CN101567449A publication Critical patent/CN101567449A/zh
Priority to HK11103875.1A priority patent/HK1150096A1/zh
Publication of CN101567449B publication Critical patent/CN101567449B/zh
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种纳米级锂电池正极材料及其制备方法,该材料以锂铁磷酸盐为基材,还掺有导电掺杂离子和增压掺杂离子,化学通式为:(Lix[M1-x])(Fey[N1-y])PO4,式中:x=0.9~0.96;y=0.93~0.97;M为导电掺杂离子;N为增压掺杂离子。该材料通过固相反应制得:所有原料混合均匀-碎成粉体-压粒-惰性氛围200~400℃恒温烧结2~3小时-冷却-碎成粉体-压粒-惰性氛围500~780℃恒温烧结15~20小时-冷却-碎成粉体-气流粉碎、分级。本方法生产成本低、操作简单、环保、成品率高。通过本固相反应制成的纳米级锂电池正极材料,其导电率优于10-2S/cm,实际放电容量>250mAh/g,可快速大功率充放电,具有低价、高能、安全、环保等特征,适用于小型聚合物、胶体和液体锂离子电池,尤其适用于大功率动力电池。

Description

一种纳米级锂电池正极材料及其制备方法
技术领域
本发明涉及一种纳米级锂电池正极材料及其制备方法,该材料用于聚合物、胶体和液体锂离子电池中,特别适用于制作大功率的动力电池。
背景技术
目前,锂电池中常用的正极材料有三种:钴酸锂、镍钴酸锂和锰酸锂。钴酸锂和镍钴酸锂是六方晶系层状岩盐结构的氧化物,锂离子中的电子在O-Co-O构成的八面体层间隙中移动,具有较高的导电性能和锂离子脱嵌/嵌入的可逆性。锰酸锂是尖晶石三维结构的氧化物,锂离子中的电子在O-Mn-O构成的八面体立方通道中移动,也具有较高的导电性能和锂离子脱嵌/嵌入可逆性。它们都是当前锂电池工业中大量应用的正极材料。但金属钴是地球上稀缺的元素之一,且具有放射性,其氧化物在电池过充和过放时会与电解液发生剧烈反应,放出大量热量而致使电池起火直至爆炸。因此,钴酸锂和镍钴酸锂的制造成本高,安全性差。锰酸锂虽然较便宜和安全,可是电容量小,而且在高温条件下(55℃以上)的循环使用寿命差。即使经过掺杂和表面化学处理,锰酸锂电池的循环使用寿命仍然无法满足实际要求。因此,锂电池工业,特别是大功率锂电池急需一种成本低廉、环保、容量大和安全的正极材料。
为此,美国德州大学教授J.B.Goodenough等(A.K.Padhi,K.S.Najundaswamy,C.Masgueslier,S.Okada and J.B.Goodenough,J.Eletrochem.Soc.144,1609-1613(1997))于1997年在美国电化学杂志上发表文章,公开了一种新的嵌锂化合物:锂铁磷酸盐多晶体LiFePO4。该晶体中的锂离子电子在FeO6八面体和PO4四面体结构中自由移动,具有锂离子的脱嵌/嵌入可逆性。当1摩尔的锂离子从结构中脱嵌出来时,锂铁磷酸盐多晶体的理论放电容量可达170mAh/g。由于锂、铁储量丰富,锂铁磷酸盐的生产成本低廉。该文预测,由于锂铁磷酸盐材料具有价廉、环保、高性能和安全等特征,其在电池工业中可能具有广阔的应用前景。
但是,锂铁磷酸盐在室温下电导率极低(10-9S/cm),在正常放电电流(10-1mA/cm2)条件下,锂铁磷酸盐的实际放电容量仅为理论值(170mAh/g)的10%。因此,限制了其在电池中的应用。为了提高锂铁磷酸盐的电导率,近期有文章报道(Suag-Yoon Chang,JasonT.Bloking and Yetming Chiang,Nature,October 123-128(2002)),在其结构中加入微量添加剂,如Mg、Ti、Nb和Zr等,室温下的电导率有了较大提高。但是,该文中提到的添加剂的加入方法复杂,微量元素的价格高,不适合大规模工业生产。此外,锂铁磷酸盐的室温导电空间较大,但其放电电压较低,从而影响了该材料的能量密度。
发明内容
本发明的目的是提供一种以锂铁磷酸盐为基材,还掺有导电掺杂离子和增压掺杂离子的纳米级锂电池正极材料及其制备方法,以克服现有技术存在的上述缺陷。
本发明提供的纳米级锂电池正极材料,该材料以锂铁磷酸盐为基材,还掺有导电掺杂离子和增压掺杂离子,化学通式为:(Lix[M1-x])(Fey[N1-y])PO4,式中:x=0.9~0.96;y=0.93~0.97;M为导电掺杂离子,选自Mg2+、Ca2+、Sr2+、Ti2+、Al3+、B3+、Ce3+、C4+、Si4+、Ge4+或P5+其中之一或任意两种以上的组合;N为增压掺杂离子,选自Ti2+、V5+、Co3+、Ni3+、Mn2+、Cr3+、Cu2+或Mo4+其中之一或任意两种以上的组合。
上述纳米级锂电池正极材料的颗粒直径为40~80nm。
本发明还提供了纳米级锂电池正极材料的制备方法,该方法采用固相反应,包括以下步骤:
a.将磷酸二氢锂、乙二酸亚铁、葡萄糖及导电掺杂剂和增压掺杂剂混合均匀后,碎成粉体;
b.将步骤a得到的粉体压粒后,在惰性气体环境中,升温到200~400℃恒温烧结2~3小时;
c.冷却至室温,取出后碎成粉体、混合均匀;
d.将步骤c得到的粉体压粒后,在惰性气体环境中,升温到500~780℃恒温烧结15~20小时;
e.冷却至室温,取出后碎成粉体;
f.将步骤e得到的粉体进行超微气流粉碎和分级。
上述纳米级锂电池正极材料的原料配比:
各原料的摩尔比为:磷酸二氢锂∶乙二酸亚铁∶葡萄糖∶导电掺杂剂∶增压掺杂剂=1∶0.98~0.99∶0.069~0.07∶0.04~0.1∶0.029~0.07。
所述导电掺杂剂为Mg2+、Ca2+、Sr2+、Ti2+、Al3+、B3+、Ce3+、C4+、Si4+、Ge4+或P5+的化合物或任意两种以上的组合。
所述导电掺杂剂的加入量为:导电掺杂离子的摩尔数是锂离子摩尔数与导电掺杂离子摩尔数之和的4~10%。
所述增压掺杂剂为Ti2+、V5+、Co3+、Ni3+、Mn2+、Cr3+、Cu2+或Mo4+的氧化物、碳酸盐、硫化物或磷酸盐或任意两种以上的组合。
所述增压掺杂剂的加入量为:增压掺杂离子的摩尔数是铁离子摩尔数与增压掺杂离子摩尔数之和的3~7%。
本发明提供的纳米级锂电池正极材料,添加了原子量较小而极化率极高的正离子作为导电掺杂离子,将锂铁磷酸盐正极材料的电导率从3×10-9S/cm提高到1×10-2S/cm,提高了107倍;同时添加增压掺杂离子改变锂铁磷酸盐正极材料晶体结构的化学势能,提高了放电电压(即工作电压),使其提高了20~25%;另外,该材料的实际放电容量超过250mAh/g;还可以高倍率充、放电,可实现一分钟快速充电,充电寿命超过4000次。该材料不仅可以应用于小容量的锂电池,而且应用在10安以上的大容量、大功率锂电池中更有价值。本发明还提供了上述纳米级锂电池正极材料的制备方法,该方法具有生产成本低、操作方法简单、生产中无污染和成品率高(>99%)的特点。
附图说明
图1:纳米级锂电池正极材料的扫描电镜图,放大倍数:10,000倍;比例尺:2.0μm。该材料的颗粒直径为40~80nm。
图2:由纳米级锂电池正极材料制成的锂电池充、放电特征曲线图。
图3:纳米级锂电池正极材料的x射线衍射图。
具体实施方式
下面通过具体实施例详细描述本发明的技术方案。
实施例1
第一步,取1000g(9.62摩尔)磷酸二氢锂;1410g(9.80摩尔)乙二酸亚铁;120.5g(0.67摩尔)葡萄糖;导电掺杂剂:17g(0.42摩尔)氧化镁;增压掺杂剂:50g(0.20摩尔)磷酸锰、27g(0.23摩尔)碳酸钴、25g(0.26摩尔)钛酸,放入球磨机中,球磨搅拌混合2小时,碎成粉体;
第二步,将第一步制好的粉体压粒后,放入氧化铝陶瓷坩锅中,于氮气炉中升温至200~300℃,恒温烧结3小时;
第三步,冷却至室温后取出,球磨成粉体、混合均匀;
第四步,将第三步得到的粉体压粒后,在氮气炉中升温至500~600℃,恒温烧结18~20小时,生成掺杂锂铁磷酸盐晶体,自然降至室温;
第五步,将晶体颗粒压碎至粉末状;
第六步,将第五步制备的粉末在超微气流粉碎机上进行破碎和分级,制成纳米级锂电池正极材料,颗粒直径为40~80nm。
经测定,普通锂铁磷酸盐正极材料电导率为3×10-9S/cm,室温放电电压为3.2V;而本实施例提供的纳米级锂电池正极材料的室温电导率和室温放电电压分别为1.30×10-2S/cm和4.0V,分别提高了107倍和25%。
实施例2
第一步,取1000g(9.62摩尔)磷酸二氢锂;1400g(9.73摩尔)乙二酸亚铁;120g(0.67摩尔)葡萄糖;导电掺杂剂:20g(0.32摩尔)硼酸、60g(0.19摩尔)磷酸钙、35g(0.45摩尔)氢氧化铝;增压掺杂剂:30g(0.31摩尔)硫化铜,放入ZrO球磨机中,球磨、搅拌混合2~3小时,碎成粉体;
第二步,将第一步制好的粉体压粒后,放入氧化铝陶瓷坩锅中,于氮气炉中升温至300~400℃,恒温烧结1.5~2.5小时;
第三步,冷却至室温后取出,球磨成粉体、搅拌均匀;
第四步,将第三步得到的粉体压粒后,在氮气炉中继续升温至700~800℃,恒温烧结15~16小时,生成掺杂锂铁磷酸盐晶体,自然降温至室温;
第五步,将晶体颗粒压碎至粉末状;
第六步,将第五步制备的粉末在超微气流粉碎机上进行破碎和分级,制成用于锂电池正极的固体粉体,粉体颗粒直径为40~80nm。
经测定,普通锂铁磷酸盐正极材料电导率为3×10-9S/cm,室温放电电压为3.2V;而本实施例提供的纳米级锂电池正极材料的室温电导率和室温放电电压分别为1.35×10-2S/cm和3.85V,分别提高了107倍和20%。
实施例3
第一步,取1000g(9.62摩尔)磷酸二氢锂;1400g(9.73摩尔)乙二酸亚铁;120g(0.67摩尔)葡萄糖;导电掺杂剂:29g(0.30摩尔)偏钛酸、23g(0.38摩尔)二氧化硅;增压掺杂剂:70g(0.15摩尔)碱式碳酸镍、50g(0.35摩尔)氧化钼,放入ZrO球磨机中球磨、搅拌混合2~3小时,碎成粉体;
第二步,将第一步制好的粉体压粒后,放入氧化铝陶瓷坩锅中,于氮气炉中升温至200~300℃,恒温烧结2~3小时;
第三步,冷却至室温后取出,球磨成粉体、搅拌均匀;
第四步,将第三步得到的粉体压粒后,在氮气炉中继续升温至650~750℃,恒温烧结16~17小时,生成掺杂纳米锂铁磷酸盐晶体,自然降温至室温;
第五步,将晶体颗粒压碎至粉末状;
第六步,将第五步制备的粉末在超微气流粉碎机上进行破碎和分级,制成纳米级锂电池正极材料的固体粉体,颗粒直径为40~80nm。
经测定,普通锂铁磷酸盐正极材料电导率为3×10-9S/cm,室温放电电压为3.2V;而本实施例提供的纳米级锂电池正极材料的室温电导率和室温放电电压分别为1.35×10-2S/cm和3.90V,分别提高了107倍和22%。
本发明实施例1、2和3提供的纳米级锂电池正极材料可以1C~9C的速率快速充、放电。
本发明包括但不限于以上实施例。以上所列具体实施方式仅用于理解本发明的实质,根据现有技术对本发明做出的不脱离本发明实质内容的改变,仍属于本发明的保护范围。

Claims (8)

1.一种纳米级锂电池正极材料,其特征在于:该材料以锂铁磷酸盐为基材,还掺有导电掺杂离子和增压掺杂离子,化学通式为:(Lix[M1-x])(Fey[N1-y])PO4,式中:x=0.9~0.96;y=0.93~0.97;M为导电掺杂离子,选自Mg2+、Ca2+、Sr2+、Ti2+、Al3+、B3+、Ce3+、C4+、Si4+、Ge4+或P5+其中之一或任意两种以上的组合;N为增压掺杂离子,选自Ti2+、V5+、Co3+、Ni3+、Mn2+、Cr3+、Cu2+或Mo4+其中之一或任意两种以上的组合。
2.根据权利要求1所述的纳米级锂电池正极材料,其特征在于:该材料的颗粒直径为40~80nm。
3.权利要求1或2所述纳米级锂电池正极材料的制备方法,其特征在于:所述制备方法采用固相反应,包括以下步骤:
a.将磷酸二氢锂、乙二酸亚铁、葡萄糖及导电掺杂剂和增压掺杂剂混合均匀后,碎成粉体,其中,各原料的摩尔比为:磷酸二氢锂∶乙二酸亚铁∶葡萄糖∶导电掺杂剂∶增压掺杂剂=1∶0.98~0.99∶0.069~0.07∶0.04~0.1∶0.029~0.07;或磷酸二氢锂∶乙二酸亚铁∶葡萄糖∶导电掺杂剂∶增压掺杂剂=9.62∶9.80∶0.67∶0.42∶0.69;或磷酸二氢锂∶乙二酸亚铁∶葡萄糖∶导电掺杂剂∶增压掺杂剂=9.62∶9.73∶0.67∶0.96;0.31;或磷酸二氢锂∶乙二酸亚铁∶葡萄糖∶导电掺杂剂∶增压掺杂剂=9.62∶9.73∶0.67∶0.68∶0.50;
b.将步骤a得到的粉体压粒后,在惰性气体环境中,升温到200~400℃恒温烧结2~3小时;
c.冷却至室温,取出后碎成粉体、混合均匀;
d.将步骤c得到的粉体压粒后,在惰性气体环境中,升温到500~780℃恒温烧结15~20小时;
e.冷却至室温,取出后碎成粉体;
f.将步骤e得到的粉体进行超微气流粉碎和分级。
4.根据权利要求3所述纳米级锂电池正极材料的制备方法,其特征在于:步骤a中,所述导电掺杂剂为Mg2+、Ca2+、Sr2+、Ti2+、Al3+、B3+、Ce3+、C4+、Si4+、Ge4+或P5+的化合物或任意两种以上的组合。
5.根据权利要求3所述纳米级锂电池正极材料的制备方法,其特征在于:步骤a中,所述导电掺杂剂的加入量为:导电掺杂离子的摩尔数是锂离子摩尔数与导电掺杂离子摩尔数之和的4~10%。 
6.根据权利要求3所述纳米级锂电池正极材料的制备方法,其特征在于:步骤a中,所述增压掺杂剂为Ti2+、V5+、Co3+、Ni3+、Mn2+、Cr3+、Cu2+或Mo4+的氧化物、碳酸盐、硫化物或磷酸盐或任意两种以上的组合。
7.根据权利要求3所述纳米级锂电池正极材料的制备方法,其特征在于:步骤a中,所述增压掺杂剂的加入量为:增压掺杂离子的摩尔数是铁离子摩尔数与增压掺杂离子摩尔数之和的3~7%。
8.根据权利要求3所述纳米级锂电池正极材料的制备方法,其特征在于:步骤a、c和e中,碎成粉体时,采用ZrO球磨机。 
CN2009101439053A 2009-06-02 2009-06-02 一种纳米级锂电池正极材料及其制备方法 Active CN101567449B (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN2009101439053A CN101567449B (zh) 2009-06-02 2009-06-02 一种纳米级锂电池正极材料及其制备方法
EP09838542.0A EP2287944B1 (en) 2009-06-02 2009-06-23 Nanometer-level positive electrode material for lithium battery and method for making the same
JP2011537823A JP5347031B2 (ja) 2009-06-02 2009-06-23 リチウム電池用ナノ正極材料及びその製造方法
AU2009347499A AU2009347499B2 (en) 2009-06-02 2009-06-23 Nano-Positive Electrode Material Of Lithium Cell And Method For Preparation Thereof
PCT/CN2009/072394 WO2010139125A1 (zh) 2009-06-02 2009-06-23 一种纳米级锂电池正极材料及其制备方法
US12/865,357 US8470207B2 (en) 2009-06-02 2009-06-23 Nano-positive electrode material of lithium cell and method for preparation thereof
RU2011126090/07A RU2477908C2 (ru) 2009-06-02 2009-06-23 Наноматериал положительного электрода литиевого элемента и способ его получения
HK11103875.1A HK1150096A1 (zh) 2009-06-02 2011-04-18 種納米級鋰電池正極材料及其製備方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101439053A CN101567449B (zh) 2009-06-02 2009-06-02 一种纳米级锂电池正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN101567449A CN101567449A (zh) 2009-10-28
CN101567449B true CN101567449B (zh) 2012-06-27

Family

ID=41283507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101439053A Active CN101567449B (zh) 2009-06-02 2009-06-02 一种纳米级锂电池正极材料及其制备方法

Country Status (8)

Country Link
US (1) US8470207B2 (zh)
EP (1) EP2287944B1 (zh)
JP (1) JP5347031B2 (zh)
CN (1) CN101567449B (zh)
AU (1) AU2009347499B2 (zh)
HK (1) HK1150096A1 (zh)
RU (1) RU2477908C2 (zh)
WO (1) WO2010139125A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785564A (zh) * 2017-10-18 2018-03-09 武汉理工大学 VTi2.6O7.7纳米颗粒、制备和应用

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567449B (zh) * 2009-06-02 2012-06-27 徐瑞松 一种纳米级锂电池正极材料及其制备方法
JPWO2011138964A1 (ja) * 2010-05-06 2013-07-22 旭硝子株式会社 ケイ酸−リン酸化合物、二次電池用正極、および二次電池の製造方法
CN101841027A (zh) * 2010-05-13 2010-09-22 湘西自治州矿产与新材料技术创新服务中心 锂离子电池锂位稀土掺杂磷酸氧钒锂正极材料的制备方法
US20120003139A1 (en) * 2010-06-30 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing power storage device
KR101965016B1 (ko) * 2011-07-25 2019-04-02 에이일이삼 시스템즈, 엘엘씨 블렌딩된 캐소드 물질
CN102364734B (zh) * 2011-10-26 2013-02-13 黄景诚 锡、钡活化磷酸铁锂正极材料制备方法
CN102364733B (zh) * 2011-10-26 2013-02-13 黄景诚 锑、钡活化磷酸铁锂正极材料制备方法
CN102569802A (zh) * 2012-02-29 2012-07-11 恒正科技(苏州)有限公司 一种电化学活性材料的制备方法
KR101973052B1 (ko) * 2012-08-10 2019-04-26 삼성에스디아이 주식회사 리튬 금속인산화물의 제조방법
CN105870432B (zh) * 2016-06-28 2018-06-15 中南民族大学 一种采用磷肥产品超声波喷雾制备多位协同掺杂LiFePO4/C的方法
RU2623212C1 (ru) * 2016-07-12 2017-06-23 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Композиционный катодный материал
CN109665508A (zh) * 2017-10-16 2019-04-23 中天新兴材料有限公司 正极材料磷酸铁锂及其制备方法
CN111525100B (zh) * 2019-12-04 2022-06-17 南通鼎鑫电池有限公司 一种表面具有预压应力的多孔碳包覆LiFePO4正极材料的制备方法
CN112088897B (zh) * 2020-09-23 2021-10-22 大连海事大学 一种纳米氧化镁无机抗菌剂及其制备方法
CN116101990B (zh) * 2022-09-07 2024-05-10 浙江华友钴业股份有限公司 磷酸铁和磷酸铁锂及其制备方法、电极及电池
CN115417394B (zh) * 2022-09-20 2023-12-12 上海量孚新能源科技有限公司 一种磷酸铁锂材料及其制备工艺和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457111A (zh) * 2003-03-18 2003-11-19 黄穗阳 锂电池正极材料及其制备方法
CN1684290A (zh) * 2004-04-13 2005-10-19 中国科学院物理研究所 一种用于二次锂电池的正极材料和用途
US7482097B2 (en) * 2002-04-03 2009-01-27 Valence Technology, Inc. Alkali-transition metal phosphates having a +3 valence non-transition element and related electrode active materials
JP2009029670A (ja) * 2007-07-27 2009-02-12 Kanto Denka Kogyo Co Ltd オリビン型リン酸鉄リチウム化合物及びその製造方法、並びにオリビン型リン酸鉄リチウム化合物を使用する正極活物質及び非水電解質電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2278643B1 (en) * 2001-12-21 2018-03-28 Massachusetts Institute of Technology (MIT) Conductive lithium storage electrode
KR100595896B1 (ko) * 2003-07-29 2006-07-03 주식회사 엘지화학 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
TWI290781B (en) * 2004-09-02 2007-12-01 Lg Chemical Ltd Electrode active material with multi-element based oxide layers and preparation method thereof
EP1922781B1 (en) * 2005-09-09 2018-04-18 A123 Systems LLC Lithium secondary cell with high charge and discharge rate capability and low impedance growth
RU2307429C1 (ru) * 2006-04-20 2007-09-27 Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) Способ получения поверхностно-модифицированного катодного материала со слоистой структурой для литиевых и литий-ионных аккумуляторов
CN101567449B (zh) * 2009-06-02 2012-06-27 徐瑞松 一种纳米级锂电池正极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482097B2 (en) * 2002-04-03 2009-01-27 Valence Technology, Inc. Alkali-transition metal phosphates having a +3 valence non-transition element and related electrode active materials
CN1457111A (zh) * 2003-03-18 2003-11-19 黄穗阳 锂电池正极材料及其制备方法
CN1684290A (zh) * 2004-04-13 2005-10-19 中国科学院物理研究所 一种用于二次锂电池的正极材料和用途
JP2009029670A (ja) * 2007-07-27 2009-02-12 Kanto Denka Kogyo Co Ltd オリビン型リン酸鉄リチウム化合物及びその製造方法、並びにオリビン型リン酸鉄リチウム化合物を使用する正極活物質及び非水電解質電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785564A (zh) * 2017-10-18 2018-03-09 武汉理工大学 VTi2.6O7.7纳米颗粒、制备和应用

Also Published As

Publication number Publication date
RU2477908C2 (ru) 2013-03-20
WO2010139125A1 (zh) 2010-12-09
JP5347031B2 (ja) 2013-11-20
US20110114899A1 (en) 2011-05-19
EP2287944B1 (en) 2016-04-06
AU2009347499B2 (en) 2012-07-26
EP2287944A1 (en) 2011-02-23
CN101567449A (zh) 2009-10-28
AU2009347499A1 (en) 2010-12-09
EP2287944A4 (en) 2014-04-23
HK1150096A1 (zh) 2011-10-28
JP2012510140A (ja) 2012-04-26
US8470207B2 (en) 2013-06-25

Similar Documents

Publication Publication Date Title
CN101567449B (zh) 一种纳米级锂电池正极材料及其制备方法
Ni et al. Vanadate‐based Materials for Li‐ion batteries: the search for anodes for practical applications
Rui et al. Li3V2 (PO4) 3 cathode materials for lithium-ion batteries: A review
Liao et al. Recent progress and prospects of layered cathode materials for potassium‐ion batteries
Pitchai et al. Nanostructured cathode materials: a key for better performance in Li-ion batteries
CN100448071C (zh) 锂电池正极材料及其制备方法
CN101145611B (zh) 锂离子电池正极材料磷酸钒锂的制备方法
CN101826617B (zh) 磷酸铁锂的制备方法
CN100491239C (zh) 锂离子电池正极材料磷酸铁锂的制备方法及其产品
Risthaus et al. Synthesis of spinel LiNi0. 5Mn1. 5O4 with secondary plate morphology as cathode material for lithium ion batteries
CN102306791B (zh) 一种碳包覆非化学计量比氧化锂铁磷材料的制备方法
Minakshi et al. Reversible sodiation in maricite NaMn1/3Co1/3Ni1/3PO4 for renewable energy storage
Hu et al. Direct recycling strategy for spent lithium iron phosphate powder: an efficient and wastewater-free process
CN102769131A (zh) 一种制备磷酸锰铁锂/碳复合材料的方法
CN105655586A (zh) 一种锂离子电池正极材料氟磷酸钒锂的低能耗制备方法
CN102386411A (zh) 一种高容量锂离子电池正极材料LiFePO4/C及其制备方法
CN103996852A (zh) 一种新型纳米磷酸钒锂正极材料的制备方法
CN100404413C (zh) 锂离子电池正极材料碳包覆磷酸亚铁锂的制备方法
Liu et al. Constructing hierarchical ZnO@ C composites using discarded Sprite and Fanta drinks for enhanced lithium storage
CN102208624A (zh) 一种低温固相法制备碳包覆磷酸亚铁锂正极材料的方法
CN104201371A (zh) 一种镍钴锰酸锂复合正极材料的制备方法
Zou et al. High-entropy oxides: an emerging anode material for lithium-ion batteries
CN103474653A (zh) 一种磷酸亚铁锂的制备方法
CN103733396B (zh) 掺杂二次电池正极材料及其制备方法
CN102569795A (zh) 一种磷酸亚铁锂合成的综合改性方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20091028

Assignee: Sichuan Nanguang new energy Co. Ltd.

Assignor: Xu Ruisong

Contract record no.: 2012990000601

Denomination of invention: Nano-level lithium cell anodic material and preparation method thereof

Granted publication date: 20120627

License type: Common License

Record date: 20120817

EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20091028

Assignee: Guangdong huayuebao new energy Co. Ltd.

Assignor: Xu Ruisong

Contract record no.: 2013440000446

Denomination of invention: Nano-level lithium cell anodic material and preparation method thereof

Granted publication date: 20120627

License type: Common License

Record date: 20130912

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
EC01 Cancellation of recordation of patent licensing contract

Assignee: Guangdong huayuebao new energy Co. Ltd.

Assignor: Xu Ruisong

Contract record no.: 2013440000446

Date of cancellation: 20140226

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
EC01 Cancellation of recordation of patent licensing contract
EC01 Cancellation of recordation of patent licensing contract

Assignee: Sichuan Nanguang new energy Co. Ltd.

Assignor: Xu Ruisong

Contract record no.: 2012990000601

Date of cancellation: 20180213