WO2005115770A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2005115770A1
WO2005115770A1 PCT/JP2005/009792 JP2005009792W WO2005115770A1 WO 2005115770 A1 WO2005115770 A1 WO 2005115770A1 JP 2005009792 W JP2005009792 W JP 2005009792W WO 2005115770 A1 WO2005115770 A1 WO 2005115770A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
tire
tread
lateral
circumferential
Prior art date
Application number
PCT/JP2005/009792
Other languages
English (en)
French (fr)
Inventor
Takayuki Fukunaga
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to DE602005020773T priority Critical patent/DE602005020773D1/de
Priority to EP05743297A priority patent/EP1752314B1/en
Priority to US11/597,742 priority patent/US7849895B2/en
Priority to JP2006513963A priority patent/JP4580387B2/ja
Publication of WO2005115770A1 publication Critical patent/WO2005115770A1/ja
Priority to US12/941,343 priority patent/US20110048601A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1369Tie bars for linking block elements and bridging the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • B60C11/0309Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C11/125Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern arranged at the groove bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0367Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth
    • B60C2011/0369Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by depth with varying depth of the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S152/00Resilient tires and wheels
    • Y10S152/03Slits in threads

Definitions

  • the present invention relates to a pneumatic tire, and more particularly to a pneumatic tire capable of obtaining high wet drainage without sacrificing other performances.
  • Patent Document 1 JP-A-57-194106 (FIG. 2)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 3-10911 (Figs. 1 and 2)
  • Patent Document 3 JP-A-11 189011 (FIG. 1)
  • Patent Document 4 JP 2001-225611 A
  • Patent Document 5 JP-A-10-100615
  • Patent Document 6 JP-A-2003-320814
  • Patent Document 7 JP-A-63-061606
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to obtain high wet drainage performance without sacrificing other performances (eg, steering stability, pattern noise, abrasion resistance, etc.).
  • the purpose is to provide a pneumatic tire that can be used.
  • the invention according to claim 1 is characterized in that at least one circumferentially wide main groove provided in a center region of the tread in the tire width direction and extending in the circumferential direction of the tire is provided on the tread from an end of the tread to the circumferential direction.
  • a plurality of lateral grooves extending toward the tire circumferential direction with a force directed to the wide main groove; and a plurality of lateral grooves disposed outside the circumferential wide main groove in the tire axial direction, extending in the tire circumferential direction, and being wider than the circumferential wide main groove.
  • a narrow circumferential sub-groove having a narrow groove width wherein the tread has a plurality of blocks partitioned by the circumferentially wide main groove, the lateral grooves, and the narrow circumferential sub-groove, and has a load.
  • the pneumatic tire according to claim 1 has a directional pattern, so that water can efficiently flow into the circumferentially wide main groove, the narrow circumferential sub-groove, and the lateral groove when traveling on a wet road surface.
  • the kick-out side force of the block at the time of load rolling is directed toward the stepping side to reduce the width and depth thereof. Therefore, the rigidity of the block on the stepping side of the blocks on both sides of the narrow circumferential sub-groove is increased, and the traction performance, the braking performance, and the cornering performance are improved.
  • the "center region of the tread in the tire width direction" is a central region when the tread is divided into three equal parts in the tire axial direction.
  • the invention according to claim 2 is the pneumatic tire according to claim 1, wherein at least two of the narrow circumferential sub-grooves are provided outside the circumferentially wide main groove in the tire axial direction.
  • the lateral groove extends from the tread end, intersects with the narrow peripheral sub groove, and is connected to the circumferentially wide main groove.
  • the lateral groove is disposed between the first lateral grooves, and the tread end force is extended to extend the narrow peripheral groove.
  • a third lateral groove force terminating between the width-peripheral sub-grooves is constituted, and is characterized in that:
  • a first lateral groove which extends to the tread and intersects with the narrow circumferential sub-groove and is connected to the circumferentially wide main groove, and a tread end force extending and narrow circumferential sub-groove disposed between the first lateral grooves. Between the first and second lateral grooves, which intersect with the second lateral groove that terminates without being connected to the circumferentially wide main groove.
  • the length of the block defined by each groove in the tire circumferential direction from the tire equatorial plane side to the tread end is Direction can be reduced to 1/2 in sequence, increasing the block rigidity in the center area of the tread, improving traction, braking and cornering performance, and improving wet drainage on both sides of the tread.
  • the invention according to claim 3 is the pneumatic tire according to claim 2, wherein the end positions of the second lateral groove and the third lateral groove on the tire equatorial plane side are in the central region in the tire axial direction of the block. Is characterized by the fact that
  • the "central region of the block in the tire axial direction" is a central region when the block is divided into three equal parts in the tire axial direction.
  • the invention according to claim 4 is the pneumatic tire according to claim 2 or 3, wherein the width of the first lateral groove is W2, the width of the second lateral groove is W3, and the width of the second lateral groove is W3.
  • W3 is set to be 60% or more and 110% or less of W2, and W4 is set to be 20% or more and 60% or less of W2.
  • the groove width of the first lateral groove is W2
  • the groove width of the second lateral groove is W3
  • the groove width of the third lateral groove is W4
  • W3 is 60% or more and 110% or less of W2
  • W4 is 20% of W2.
  • the groove width W3 of the second lateral groove By setting the groove width W3 of the second lateral groove to 60% or more and 110% or less of the groove width W2 of the first lateral groove, the groove width W3 of the second lateral groove can be made substantially equal to the groove width W2 of the first lateral groove. Therefore, high wet drainage property is secured.
  • the groove width W4 of the third lateral groove exceeds 60% of the groove width W2 of the first lateral groove, the block rigidity of the region surrounded by the first lateral groove and the second lateral groove decreases, which is not preferable. .
  • the invention according to claim 5 is the pneumatic tire according to claim 1, wherein at least two of the narrow circumferential sub-grooves are provided outside the circumferentially wide main groove in the tire axial direction.
  • the lateral groove extends from the end of the tread and intersects with the narrow peripheral sub-groove and is connected to the circumferentially wide main groove.
  • the lateral groove is disposed between the first lateral grooves and extends in the tread end force to extend in the tire axial direction.
  • a second lateral groove that intersects with the outer narrow circumferential sub-groove but does not intersect with the innermost narrow circumferential sub-groove in the tire axial direction and terminates without being connected to the circumferential wide main groove.
  • the first lateral groove has a raised portion on the side of the circumferentially wide main groove, and the raised bottom portion has a starting point force on the outer side in the tire axial direction toward the circumferentially wide main groove.
  • the feature is that the groove depth is gradually reduced.
  • the first lateral groove has a raised bottom on the side of the circumferentially wide main groove, and a starting point force on the outer side in the tire axial direction is grooved toward the circumferentially wide main groove.
  • the raised bottom portion makes it possible to suppress the occurrence of turbulent flow of water flowing in the circumferentially wide main groove, thereby improving wet drainage.
  • the raised portion reinforces the blocks on both sides of the raised portion, the block rigidity in the central region of the tread is increased, and the traction performance, the braking performance, and the cornering performance are improved.
  • the first lateral groove is connected to the circumferentially wide main groove means that the first lateral groove has a depth of 10% or less of the groove depth of the first lateral groove itself (not including the groove depth Omm). ), Or when the groove depth at the circumferentially wide main groove side opening of the first lateral groove is Omm, the tire axial width in the region where the groove depth is Omm is Means 3 mm or less.
  • the invention according to claim 6 is the pneumatic tire according to claim 5, wherein the bottom raised portion has a tire axial dimension in a range of 60 to 200% of a groove width dimension of the circumferentially wide main groove.
  • the tire axial dimension of the raised portion within the range of 60 to 200% of the groove width dimension of the circumferential wide main groove, the amount of water flowing into the circumferential wide main groove and the water flowing into the first lateral groove are increased.
  • the amount of water can be optimally balanced, and wet drainage can be reliably improved.
  • the invention according to claim 7 is the pneumatic tire according to claim 5 or 6, wherein the depth of the top of the raised bottom portion is determined by measuring a tread surface force of the tread. 1 It is characterized in that it is set to 10% or less of the groove depth dimension of the lateral groove.
  • the depth of the top of the raised bottom is also larger than 10% of the groove depth of the first lateral groove by measuring the tread force of the tread (that is, the groove depth of the first raised groove at the raised bottom). Is greater than 10% of the groove depth of the part other than the bottom raised part), turbulence occurs in the water flowing in the circumferentially wide main groove, and the wet drainage property is reduced, and the block rigidity in the center area of the tread is also reduced. Is reduced (because the effect of reinforcing the block by the raised portion is reduced), traction performance and braking performance Performance and cornering performance cannot be improved.
  • the invention according to claim 8 is the pneumatic tire according to any one of claims 5 to 7, wherein the groove width of the second lateral groove is equal to the groove width of the first lateral groove. It is set within the range of 10% to 80% of the above.
  • the groove width of the second lateral groove within the range of 10 to 80% of the groove width of the first lateral groove, it is possible to achieve both the drainage of the jet and the block rigidity of the outer region of the tread in the tire axial direction. can do.
  • the groove width of the second horizontal groove is less than 10% of the groove width of the first horizontal groove, the groove volume of the second horizontal groove is insufficient, and the wet drainage property is reduced.
  • the invention according to claim 9 is the pneumatic tire according to any one of claims 2 to 8, wherein the narrow circumferential sub-groove disposed on the outermost side in the tire axial direction is formed by: During load rolling, the tire is gradually inclined from the equatorial plane side of the tire toward the tread edge in a direction in contact with the road surface.
  • the narrow circumferential sub-groove arranged on the outer side in the tire axial direction is inclined from the tire equatorial plane side toward the tread end in the direction in contact with the road surface during load rolling. As a result, the wet drainage performance near the outer sides in the tire axial direction in the tire contact surface portion is improved.
  • the invention according to claim 10 is the pneumatic tire according to any one of claims 1 to 9, wherein the narrow circumferential sub-groove has a groove wall on the tire equatorial plane side. It extends linearly in the direction, and has an angle of not less than 40 degrees and not more than 80 degrees with respect to the normal line erected on the tread surface.
  • the groove wall on the tire equatorial plane side of the narrow circumferential sub-groove is extended linearly in the tire circumferential direction, and
  • the angle with respect to the normal line on the surface was set to 40 degrees or more and 80 degrees or less (measured on the narrow angle side), so the rigidity of the block on the tire equatorial side of the narrow peripheral sub-groove and the wet drainage of the narrow peripheral sub-groove And compatibility.
  • the invention according to claim 11 is the pneumatic tire according to any one of claims 1 to 10, wherein the narrow circumferential sub-groove is a tie on the stepping side of the block. It is characterized in that the groove wall on the equatorial plane side is connected to the opposing groove wall on the outside in the tire axial direction.
  • the narrow peripheral sub-groove is formed on the kick-out side of the block, and the groove wall on the tire equatorial plane side is connected to the opposing groove wall on the axial side of the tire. On the stepping side, the groove wall on the tire equatorial plane side is connected to the opposite groove wall on the tire axial direction side.
  • the invention according to claim 12 is a pneumatic tire provided with a plurality of grooves in a tread including a lateral groove extending inclining with respect to the tire circumferential direction, wherein one end of the lateral groove in the tire width direction is provided.
  • Side is formed with a raised portion for raising the lateral groove, so that the lateral groove is substantially open at one end side in the tire width direction and terminates in the other adjacent groove, and the lateral groove has a tire width.
  • the other end of the groove or tread adjacent to the other end in the direction is completely open to the end of the other, or the tread end, the bottom raised portion is a groove bottom surface with an inclined surface that gradually reduces the groove depth toward the top of the tire width direction other end side force. It is characterized by being formed.
  • the lateral groove is completely opened in another groove means that the opening of the lateral groove is opened at a depth larger than 20% of the maximum depth.
  • such a directional tread tread pattern is formed on the tread portion, and the bottom raised portion is formed in the lateral groove.
  • the water near the bottom raised portion flows into the other groove on one side in the tire width direction (one end in the tire axial direction) of the lateral groove, and the lateral groove is formed in the tire width direction by the inclined surface. Since the water is rectified to the water flowing toward the other end, a pneumatic tire having excellent wet drainage properties can be obtained.
  • the rigidity of the corner portion of the adjacent land portion is improved by the raised portion, so that the steering stability on a dry road surface, the uneven wear resistance, and the pattern noise property are improved.
  • This effect is particularly prominent at corners that are sharp when viewed from the tire surface side, that is, when viewed from the tread side.
  • one end of the lateral groove in the tire width direction is open to another groove at a position deeper than 20% of the maximum depth of the lateral groove, turbulent water flows in the other groove. As a result, wet drainage decreases and the block stiffness in the central region of the tread decreases, so that traction performance, braking performance, and cornering performance deteriorate, which is not preferable.
  • a portion having a groove depth of Omm is formed at one end of the lateral groove in the tire width direction and the length (width) of the portion having the groove depth of Omm in the tire width direction is greater than 3 mm, the groove volume of the lateral groove is determined. Is insufficient, and drainage on wet road surface deteriorates.
  • one end in the tire width direction of the lateral groove is substantially open to the other groove and terminates, so that such a problem does not occur.
  • the plurality of grooves include at least a lateral groove, and may include a groove other than the lateral groove, for example, a circumferential main groove.
  • the other groove extends along the tire circumferential direction, and may be a groove or may be inclined with respect to the tire circumferential direction.
  • the invention according to claim 13 is the pneumatic tire according to claim 12, wherein:
  • the grooves are formed at substantially equal intervals, and are characterized in that:
  • the lateral grooves may be formed at substantially equal intervals.
  • the invention according to claim 14 is the pneumatic tire according to claim 12 or 13, wherein the groove portion having the inclined surface as a groove bottom has a groove length. 5 to the groove length of the lateral groove: within the range of LOO%.
  • the above-mentioned groove portion is shorter than 5% of the groove length of the lateral groove having this groove portion, the rigidity of the corner portion of the land portion adjacent to the raised portion is reduced, so that the steering stability on dry road surfaces and the durability of the vehicle are improved. Uneven wear properties and pattern noise properties may be significantly reduced, which is not preferable. This is particularly remarkable in the corners that are acute when viewed from the tread surface side force. Also, if the above-mentioned groove portion is longer than 100% of the groove length of the lateral groove having this groove portion, and this inclined surface protrudes into another groove (such as a circumferential main groove) and the water flow in the other groove is reduced. This is not preferable because it hinders wet drainage.
  • the groove length of the groove portion is in the range of 5 to 100% of the groove length of the lateral groove having the groove portion, such a problem may occur. There is no.
  • the invention according to claim 15 is the pneumatic tire according to any one of claims 12 to 14, wherein the tread includes a circumferential main groove extending along a tire circumferential direction.
  • the bottom raising portion has a groove longitudinal cross section in a mountain shape, and has a slope at one end side where the groove gradually becomes deeper from the top to one end in the tire width direction of the lateral groove as a groove bottom surface,
  • the edge portion on the one end side in the tire width direction of the land portion adjacent to the lateral groove is formed by tapering the edge surface along the circumferential main groove so as to have the same surface as the one end side inclined surface.
  • the inclination angle of the one end side inclined surface and the edge surface with respect to the tire radial direction is within a range of 30 to 60 °.
  • the one end side inclined surface and the edge surface are thus made the same surface.
  • the rigidity of the edge is improved, and steering stability on dry road surfaces and wet road surfaces and uneven wear resistance are improved.
  • water on the land surface near this edge flows into the circumferential main groove without generating turbulence. Etch drainage is further improved.
  • the inclination angle is less than 30 °, turbulent flow occurs when water on the land surface near the edge flows into the circumferential main groove during traveling on a wet road surface, and wet drainage occurs. This is not preferred because the properties are easily reduced. If the angle of inclination is greater than 60 °, the drainage of the wet road surface tends to decrease when running on a wet road surface where the circumferential main groove adjacent to the edge portion tends to have a shortage of groove volume. In the invention according to claim 15, such an inconvenience does not occur because the inclination angle is in the range of 30 to 60 °.
  • the pneumatic tire of the present invention has the above-described configuration, it is possible to obtain a high wet drainage performance without sacrificing other performances.
  • FIG. 1 is a plan view of a tread of a pneumatic tire according to a first embodiment of the present invention.
  • FIG. 2A is an enlarged plan view of a tread.
  • FIG. 2B is a sectional view taken along line 2B-2B of the first narrow circumferential sub-groove.
  • FIG. 2C is a sectional view taken along line 2C-2C of the first narrow circumferential sub-groove.
  • FIG. 2D is a sectional view taken along the line 2D-2D of the second narrow circumferential sub-groove.
  • FIG. 2E is a sectional view of the second narrow circumferential sub-groove taken along line 2E-2E.
  • FIG. 3 is a plan view of a tread of a pneumatic tire according to a second embodiment of the present invention.
  • FIG. 4A is an enlarged plan view of a tread.
  • FIG. 4B is a sectional view taken along line 4B-4B of the first narrow circumferential sub-groove.
  • FIG. 4C is a sectional view taken along line 4C-4C of the first narrow circumferential sub-groove.
  • FIG. 4D is a sectional view taken along line 4D-4D of the second narrow circumferential sub-groove.
  • FIG. 4E is a sectional view of the second narrow circumferential sub-groove taken along line 4E-4E.
  • FIG. 5A is a sectional view taken along line 5-5 of the raised bottom portion shown in FIG. 3.
  • FIG. 5B is a cross-sectional view of a raised portion according to another embodiment.
  • FIG. 5C is a cross-sectional view of a raised portion according to still another embodiment.
  • FIG. 6 is a plan view of a tread of a pneumatic tire according to another embodiment.
  • FIG. 7 is a tire radial cross-sectional view of a pneumatic tire according to a third embodiment.
  • FIG. 8A is a plan view of a tread of a pneumatic tire according to a third embodiment.
  • FIG. 8B is a sectional view taken along line 8B-8B in FIG. 8A.
  • FIG. 9A is a plan view of a tread of a pneumatic tire according to a fourth embodiment.
  • FIG. 9B is a sectional view taken along line 9B-9B in FIG. 9A.
  • FIG. 10A is a plan view of a tread of a pneumatic tire according to a fifth embodiment.
  • FIG. 10B is a sectional view taken along the line 1 OB-1 OB of FIG. 1 OA.
  • FIG. 11A is a plan view of a tread of a pneumatic tire according to a sixth embodiment.
  • FIG. 11B is a sectional view taken along line 11B-11B in FIG. 11A.
  • FIG. 11C is a sectional view taken along line 2C-2 of FIG. 11A.
  • FIG. 12A is a plan view of a tread of a pneumatic tire according to a seventh embodiment.
  • FIG. 12B is a sectional view taken along line 12B-12B in FIG. 12A.
  • FIG. 12C is a sectional view taken along line 12C-12C in FIG. 12A.
  • FIG. 13A is a plan view of a tread of a pneumatic tire according to an eighth embodiment.
  • FIG. 13B is a sectional view taken along line 13B-13B in FIG. 13A.
  • FIG. 13C is a sectional view taken along line 13C-13C in FIG. 13A.
  • FIG. 14A is a plan view of a tread of a pneumatic tire according to a ninth embodiment.
  • FIG. 14B is a sectional view taken along the line 14B-14B in FIG. 14A.
  • FIG. 15A is a plan view of a tread of a pneumatic tire according to a tenth embodiment.
  • FIG. 15B is a sectional view taken along line 15B-15B in FIG. 15A.
  • FIG. 16 is a plan view of a tread of a pneumatic tire according to a conventional example.
  • FIG. 17 is a plan view of a tread of a pneumatic tire according to another conventional example.
  • FIG. 18A is a plan view of a tread of still another conventional pneumatic tire.
  • FIG. 18B is a sectional view taken along line 18B-18B in FIG. 18A.
  • the tread 12 of the pneumatic tire 10 of the present embodiment has a tire circumferential direction.
  • a circumferential wide main groove 14 extending linearly is formed on the tire equatorial plane CL, and the outer side in the tire axial direction.
  • a first narrow circumferential sub-groove 16 extending in the tire circumferential direction is formed in the tire, and a second narrow circumferential sub-groove 18 extending in the tire circumferential direction is formed outside in the tire axial direction.
  • the groove wall 16A on the tire equatorial plane CL side of the first narrow circumferential sub-groove 16 extends linearly in the tire circumferential direction.
  • the axially outer groove wall 16B increases the inclination angle in the circumferential direction with respect to the tire circumferential direction in a direction in which the interval (groove width) with the groove wall 16A increases from the stepping side to the kicking side.
  • the groove wall 16A of the first narrow circumferential sub-groove 16 on the tire equatorial plane CL side has a groove wall angle ⁇ 16A with respect to a normal HL standing on the tread surface 12A of the tread 12. It is preferable that the temperature be equal to or higher than 80 degrees. In the present embodiment, the groove wall angle ⁇ 16A is set to 60 degrees.
  • the groove wall angle ⁇ 16B of the groove wall 16B of the first narrow peripheral sub-groove 16 is set to 5 degrees.
  • the groove wall 16A on the tire equatorial plane CL side of the first narrow circumferential sub-groove 16 has a substantially central partial force of the first narrow circumferential sub-groove 16 on the stepping side.
  • the groove cross-sectional shape of the portion in contact with the groove wall 16B and the groove wall 16A in contact with the groove wall 16B is substantially V-shaped, as shown in FIG. 2C.
  • the lower end of the groove wall 16 A has a flat groove bottom 16C parallel to the tread surface 12A of the tread 12, and has an inverted trapezoidal shape.
  • the groove depth of the portion where the groove wall 16A and the groove wall 16B of the first narrow circumferential sub-groove 16 are in contact increases as going toward the kicking-out side (the direction of the arrow A). You.
  • the second narrow circumferential sub-groove 18 is provided with a The equatorial plane is inclined with respect to the tire circumferential direction so as to sequentially contact the road surface from the CL side to the tread end 12E.
  • the second narrow circumferential sub-groove 18 is such that the angle of the groove wall 18A on the tire equatorial plane CL side with respect to the tire circumferential direction (the circumferential inclination angle OC) is constant over the entire length.
  • the angle of the groove wall 18B on the outer side in the axial direction with respect to the circumferential direction of the tire increases toward the kick-out side.
  • the inclination angle oc of the groove wall 18A of the second narrow circumferential sub-groove 18 in the circumferential direction is preferably 3 degrees or more and 20 degrees or less.
  • the second narrow peripheral sub-groove 18 similarly to the first narrow peripheral sub-groove 16, the second narrow peripheral sub-groove 18 has a groove wall 18A on the tire equatorial plane CL side, and a normal line HL standing on the tread surface 12A. It is preferable that the angle ⁇ is between 0 ° and 80 °. In the present embodiment, the groove wall angle ⁇ 18A is set to 60 degrees.
  • the groove wall angle ⁇ 18B of the groove wall 18B of the second narrow circumferential sub-groove 18 is set to 5 degrees.
  • the groove wall 18A on the tire equatorial plane CL side of the second narrow circumferential sub-groove 18 has the second narrow circumferential sub-groove similarly to the first narrow circumferential sub-groove 16.
  • Substantially central partial force of 18 In contact with the opposing groove wall 18B on the stepping side the groove wall 18A is in contact with the groove wall 18B, and the cross-sectional shape of the groove is the same as that of the first narrow peripheral sub-groove 16.
  • the groove is formed similarly to the first narrow peripheral sub-groove 16.
  • a flat groove bottom parallel to the tread surface 12A of the tread 12 is provided between the lower end of the wall 18A and the lower end of the groove wall 18B.
  • the groove depth of the portion where the groove wall 18A and the groove wall 18B of the second narrow circumferential sub-groove 18 are in contact with each other is similar to the first narrow circumferential sub-groove 16 as it goes toward the kick-out side. It is deep.
  • both the first narrow peripheral sub-groove 16 and the second narrow peripheral sub-groove 18 have a greater groove width and a greater groove depth on the kick-out side than on the step-in side.
  • the tread 12 also has a tread edge 12E that extends toward the tire equatorial plane CL and intersects the first narrow circumferential sub-groove 16 and the second narrow circumferential sub-groove 18.
  • the first lateral groove 20 connected to the circumferential wide main groove 14 and the tire equatorial plane CL located between the tread end 12E and the first lateral groove 20
  • a second lateral groove 22 that extends toward the first lateral groove 16 and intersects the first narrow peripheral sub-groove 16 and the second narrow peripheral sub-groove 18 and terminates without being connected to the circumferentially wide main groove 14; 20 and the second lateral groove 22, extending from the tread end 12 E toward the tire equatorial plane CL and terminating between the first narrow peripheral sub-groove 16 and the second narrow peripheral sub-groove 18.
  • 3A lateral groove 24 is formed.
  • the first lateral groove 20, the second lateral groove 22, and the third lateral groove 24 are arranged in the tire circumferential direction so as to sequentially come into contact with the road surface from the tire equatorial plane CL side toward the tread end 12E during rolling of the load. It is inclined.
  • the tread 12 is divided by a circumferentially wide main groove 14, a first narrow circumferential sub groove 16, a first lateral groove 20, and a second lateral groove 22 on both sides in the tire axial direction of the circumferentially wide main groove 14.
  • a first narrow peripheral sub-groove 16, a second narrow peripheral sub-groove 18, a first lateral groove 20, a second lateral groove 22, are provided outside the first block 26 in the tire axial direction.
  • a second block 28 defined by the third lateral groove 24 .
  • a second narrow peripheral sub-groove 18, a first lateral groove 20, and a third lateral groove 24 are provided outside the second block 28 in the tire axial direction.
  • a stepping-side third block 30, which is defined, and a kick-out side third block 32, which is defined by the second narrow circumferential sub-groove 18, the second lateral groove 22, and the third lateral groove 24, are defined.
  • the end of the second lateral groove 22 on the tire equatorial plane side ends at the center of the first block 26 in the tire axial direction, and the end of the third lateral groove 24 on the tire equatorial plane side is the second block 28. It terminates at the center in the tire axial direction.
  • the groove width of the first lateral groove 20 is W2
  • the groove width of the second lateral groove 22 is W3
  • the groove width of the third lateral groove 24 is
  • W4 When W4 is set, it is preferable to set W3 to 60% or more and 110% or less of W2, and W4 to 20% or more and 60% or less of W2.
  • the groove width W3 of the second lateral groove 22 is set to 64 to 100% of the groove width W2 of the first lateral groove 20, and the groove width W4 of the third lateral groove 24 is It is set to 28 to 42% of the groove width W2.
  • a first lateral sipe 34 for connecting the second lateral groove 22 and the circumferentially wide main groove 14 is formed at the center in the circumferential direction, and the first lateral sipe 34 and the first lateral groove are formed.
  • a second lateral sipe 36 connecting the first narrow circumferential sub-groove 16 and the circumferentially wide main groove 14 is formed between the second horizontal sipes 36.
  • a vertical sipe 38 that also extends toward the stepping side with a kicking edge force and is terminated at the center of the block is formed.
  • the tread pattern of the pneumatic tire 10 of the present embodiment is a directional pattern
  • water between the tread and the road surface is filled with the circumferentially wide main groove 14, the first narrow circumferential sub-groove 16, and the 2 It efficiently flows into the narrow circumferential sub-groove 18, the first lateral groove 20, the second lateral groove 22, and the third lateral groove 24, and high wet performance can be obtained while suppressing an increase in the negative rate.
  • high wet performance can be obtained while suppressing an increase in the negative rate, the tread surface area of each block can be secured and wear resistance is improved.
  • the circumferential length of the second block 28 is approximately 1Z2 of the first block 26, and the circumferential length of the third block 30 on the stepping side and the third block 32 on the kicking side is the same as that of the second block 28. Since it is approximately 1/2, it is possible to increase the block rigidity on the tread center area side to improve traction, brake performance, cornering performance, and at the same time, to improve jet drainage on both sides of the tread. . Furthermore, handling performance is improved when used for front wheels by increasing the block rigidity in the central region in the tire axial direction.
  • the kick-out side force of the block at the time of load rolling is directed toward the step-in side, and the width thereof is increased. And the depth is reduced, the block rigidity on the stepping side of the block adjacent to the first narrow circumferential sub-groove 16 and the second narrow circumferential sub-groove 18 increases, and the traction performance, braking performance, And the cornering performance is improved.
  • the end position of the second lateral groove 22 on the tire equatorial plane side is located in the center area of the first block 26 in the tire axial direction, and the end position of the third lateral groove 24 on the tire equatorial plane side is the tire axis position of the second block 28. Since it is located in the central area in the direction, water on the treads of these blocks can be drained efficiently, and high wet drainage performance can be obtained while the tread area of the blocks (related to wear resistance) and Rigidity (related to steering stability) can be secured. Therefore, high wet drainage performance, steering stability, and abrasion resistance can be balanced.
  • the groove wall 16A on the tire equatorial plane CL side of the first narrow circumferential sub-groove 16 is linearly extended in the tire circumferential direction, and the angle ⁇ 16A with respect to the normal HL on the tread 12A is set to 50 degrees or more. Degrees, the rigidity of the first block 26 on the tire equatorial plane CL side of the first narrow circumferential sub-groove 16 is set. And the wet drainage property of the first narrow circumferential sub-groove 16 can be compatible.
  • the first narrow circumferential sub-groove 16 On the block stepping side of the first narrow circumferential sub-groove 16, since the groove wall 16A on the tire equatorial plane CL side is connected to the opposite groove wall 16B on the tire axial direction side, the first narrow circumferential sub-groove 16 has the first narrow width.
  • the rigidity of the second block 28 outside the width circumferential sub-groove 16 in the tire axial direction can be increased, and the traction performance, braking performance, and cornering performance are improved.
  • the groove wall 18A on the tire equatorial plane CL side is connected to the opposing groove wall 18B on the tire axial direction outer side.
  • the rigidity of the third block 30 outside the narrow circumferential sub-groove 18 in the tire axial direction can be increased.
  • the groove width W3 of the second lateral groove 22 is 60% or more and 110% or less of the groove width W2 of the first lateral groove 20, and the groove width W4 of the third lateral groove 24 is 20% or more of the groove width W2 of the first lateral groove 20.
  • the groove width W3 of the second lateral groove 22 is substantially equal to the groove width W2 of the first lateral groove 20, that is, the groove width W3 of the second lateral groove 22 is at least 60% of the groove width W2 of the first lateral groove 20 110% High wet drainage is ensured by the following.
  • the pneumatic tire 10 of the present embodiment is preferably used as a front tire for an ultra-high performance vehicle for competition.
  • Hydroplaning The vehicle traveled on a wet road surface at a depth of 2 mm, and the hydroplaning generation speed was measured. The evaluation was expressed as an index with the hydroplaning generation speed of the conventional tire being 100. Note that the larger the value is, the higher the hydroplaning generation speed is, and the more excellent the drainage property is.
  • Wet 'Circuit lap time Measures the lap time when traveling around a wet road surface (test course) with a depth of 2 mm. The evaluation was expressed as an index, with the lap time of the conventional tire being 100. The smaller the value, the shorter the lap time and the better the wet circuit performance.
  • Tire of Example The pneumatic tire described in the above embodiment.
  • the tread 502 of the conventional pneumatic tire 500 has a tire equatorial plane.
  • a circumferentially wide main groove 504 is formed on the CL.
  • the tread 502 has a plurality of first lateral grooves 506 on both sides of the circumferentially wide main groove 504, extending from the tread end 502E toward the circumferentially wide main groove 504 and connecting to the circumferentially wide main groove 504.
  • a second lateral groove 508 is formed between the first lateral grooves 506, extends toward the tread end 502E force circumferentially wide main groove 504, and terminates at an intermediate portion between the tire equatorial plane CL and the tread end 502E. I have.
  • a sub-groove 510 extending toward the stepping side and terminating in the block is connected to an intermediate portion of the first lateral groove 506.
  • the tire size of the conventional example and the example is RAR 265Z55R13 (tread width 200 mm
  • Test vehicle wheel alignment front wheel toe angle (toe-out side) lmm
  • the pneumatic tire of the embodiment to which the present invention was applied was found to be superior in hydroplaning, wet 'circuit lap time, and' et 'grip to the pneumatic tire of the conventional example. It can be seen that the performance has been improved.
  • the tread 112 of the pneumatic tire 110 of the present embodiment has a circumferentially wide main groove 114 extending linearly in the tire circumferential direction on the tire equatorial plane CL.
  • a first narrow circumferential sub-groove 116 extending in the tire circumferential direction is formed outside the tire axial direction.
  • a second narrow circumferential sub-groove 118 extending in the tire circumferential direction is formed outside the tire axial direction.
  • the groove wall 116A on the tire equatorial plane CL side of the narrow circumferential sub-groove 116 extends linearly in the tire circumferential direction, and extends in the tire axial direction of the first narrow circumferential sub-groove 116.
  • the outer groove wall 116B increases the inclination angle in the circumferential direction with respect to the tire circumferential direction in a direction in which the interval (groove width) with the groove wall 116A increases from the stepping side to the kicking side.
  • the groove wall 116A on the tire equatorial plane CL side of the first narrow circumferential sub-groove 116 has a groove wall angle with respect to a normal HL standing on the tread surface 112A of the tread 112. More than 80 degrees
  • the groove wall angle ⁇ is set to 60 degrees.
  • the groove wall angle 0 of the groove wall 116B of the first narrow circumferential sub-groove 116 is set to 5 degrees.
  • the groove wall 116A on the tire equatorial plane CL side of the first narrow peripheral sub-groove 116 is substantially the central partial force of the first narrow peripheral sub-groove 116.
  • the groove cross-sectional shape of the portion in contact with the groove wall 116A and the groove wall 116A in contact with the groove wall 116B has a substantially V shape as shown in FIG. 4C.
  • the first narrow peripheral sub-groove 116 at the portion where the groove wall 116A is not in contact with the groove wall 116B, as shown in FIG. It has an inverted trapezoidal shape with a flat groove bottom 116C parallel to the tread surface 112A of the tread 112 between the lower end and the lower end of the groove wall 116B.
  • the groove depth of the portion where the groove wall 116A and the groove wall 116B of the first narrow circumferential sub-groove 116 are in contact increases as going toward the kick-out side.
  • the side wall 118A of the second narrow circumferential sub-groove 118 on the tire equatorial plane CL side is linear in the tire circumferential direction similarly to the groove wall 116A of the first narrow circumferential sub-groove 116.
  • the groove wall 118B on the outer side in the tire axial direction of the second narrow circumferential sub-groove 118 extends in the tire circumferential direction in a direction in which the distance (groove width) from the groove wall 118A increases from the stepping side toward the kicking side.
  • the inclination angle in the circumferential direction with respect to is increased.
  • the second narrow circumferential sub-groove 118 also has a tire red like the first narrow circumferential sub-groove 116.
  • Road surface The groove wall 118A on the CL side is at an angle to the normal HL standing on the tread surface 112A.
  • the angle be 18A or more and 80 ° or less.
  • the groove wall angle ⁇ is set to 60 degrees.
  • the groove wall angle 0 of the groove wall 118B of the second narrow circumferential sub-groove 118 is set to 5 degrees.
  • the groove wall 18A on the tire equatorial plane CL side of the second narrow circumferential sub-groove 118 has the second narrow circumferential sub-groove similarly to the first narrow circumferential sub-groove 116.
  • the substantially central partial force of 118 is in contact with the opposing groove wall 118B on the stepping side, and the groove wall 118A is in contact with the groove wall 118B.
  • it has a substantially V shape.
  • the groove wall 118A is formed similarly to the first narrow peripheral groove 116.
  • a flat groove bottom parallel to the tread surface 112A of the tread 112 is provided between the lower end of the tread 112 and the lower end of the groove wall 118B.
  • the groove depth of the portion where the groove wall 118A and the groove wall 118B of the second narrow circumferential sub-groove 118 are in contact is similar to the first narrow circumferential sub-groove 116, as it goes toward the kick-out side. It is deep.
  • both the first narrow peripheral sub-groove 116 and the second narrow peripheral sub-groove 118 have a greater groove width and groove depth on the kick-out side than on the step-in side, thereby improving drainage. While ensuring block rigidity.
  • the tread 112 has a tread end 112E that extends toward the tire equatorial plane CL and intersects the first narrow circumferential sub-groove 116 and the second narrow circumferential sub-groove 118.
  • a first lateral groove 120 connected to the circumferentially wide main groove 114, and a first lateral groove 120 disposed between the first lateral grooves 120, extending from the tread end 112E toward the tire equatorial plane CL, intersecting with the second narrow peripheral sub-groove 118.
  • a second lateral groove 122 that terminates at an intermediate portion between the first narrow peripheral sub-groove 116 and the second narrow peripheral sub-groove 118 is formed.
  • the tread 112 has a first block defined by a circumferentially wide main groove 114, a first narrow circumferential sub-groove 116, and a first lateral groove 120 on both sides in the tire axial direction of the circumferentially wide main groove 114.
  • the first block 126 is partitioned outside the first block 126 in the tire axial direction by a first narrow circumferential sub-groove 116, a second narrow circumferential sub-groove 118, a first lateral groove 120, and a second lateral groove 122.
  • a second block 128 is defined, and on the outer side in the tire axial direction of the second block 128, a third side block 130 on the stepping side defined by a second narrow circumferential sub-groove 118, a first lateral groove 120, and a second lateral groove 122.
  • 3rd block 132 is partitioned.
  • the first lateral groove 120 has a raised bottom 140 on the circumferentially wide main groove 114 side.
  • the groove wall of No. 4 extends linearly along the tire circumferential direction, and is not uneven.
  • the height of the bottom raised portion 140 gradually decreases toward the outer side in the tire axial direction, which is the highest at the end on the circumferentially wide main groove 14 side, and as shown in FIG. It has a substantially triangular shape.
  • the top portion 140A of the raised bottom portion 140 is linearly arranged on the extension of the tread opening edge of the circumferentially wide main groove 114.
  • the skirt 140B of the raised bottom portion 140 is formed linearly in the tire circumferential direction (parallel to the top portion 140A) as shown in FIG.
  • the bottom elevation portion 140 has a tire axial dimension LO within a range of 60% to 200% of the groove width dimension WO of the circumferentially wide main groove 114.
  • the dimension LO in the axial direction is set to 123% of the groove width dimension WO.
  • the top portion 140A is a vertex of a triangle, and has no width when viewed in a longitudinal cross section. As shown in FIG. 6, the top 140A may have a width L1.
  • width L1 of top 140A is 3 mm or less when top 140A is at the same level as tread 112A of tread 112.
  • the depth d at the top 140A is 10% or more of the groove depth D of the first lateral groove 120 (a part other than the raised part 140, ie, the deepest part) D.
  • the end of the second lateral groove 122 on the tire equatorial plane side ends at the center of the second block 128 in the tire axial direction.
  • the groove width W3 of the second lateral groove 122 of the present embodiment which preferably has a groove width W3 of 10 to 80% of the groove width W2 of the first lateral groove 120, is 1st lateral groove 120 groove width W2
  • the center of the first block 126 in the circumferential direction is located at the center of the block from the first narrow circumferential sub-groove 116.
  • a horizontal sipe 134 extending toward the end of the block is formed.
  • the central portion in the tire axial direction of the third block 130 on the stepping side and the central portion in the axial direction of the third block 132 on the kicking side extend from the kicking edge toward the stepping side, and A vertical sipe 138 terminating at the center of the hole is formed.
  • the tread pattern of the pneumatic tire 110 is a directional pattern, when running on a wet road surface, water between the tread surface and the road surface is widened in the circumferentially wide main groove 114 and the first narrow circumferential sub-groove. 116, the second narrow circumferential sub-groove 118, the first lateral groove 120, and the second lateral groove 122 efficiently flow, and high wet performance can be obtained while suppressing an increase in the negative rate.
  • the kick-out side force of the block at the time of load rolling is directed toward the stepping side, and its width and Since the depth is reduced, the block rigidity on the stepping side of the block adjacent to the first narrow circumferential sub-groove 116 and the second narrow circumferential sub-groove 118 increases, and the traction, braking and cornering performances increase. Is improved.
  • the groove wall 116A on the tire equatorial plane CL side of the first narrow circumferential sub-groove 116 extends linearly in the tire circumferential direction, and the angle ⁇ ⁇ ⁇ ⁇ with respect to the normal HL on the tread 112A is 50 degrees or more and 80 degrees or more. Less than
  • the rigidity of the first block 126 on the tire equatorial plane CL side of the first narrow circumferential sub-groove 116 and the wet drainage property of the first narrow circumferential sub-groove 116 can be compatible. .
  • the groove wall 118A on the tire equatorial plane CL side is connected to the opposing axially outer groove wall 118B on the tire, so that the second The rigidity of the third block 130 outside the narrow circumferential sub-groove 118 in the tire axial direction can be increased.
  • the groove width of the second lateral groove 122 within a range of 10 to 80% of the groove width of the first lateral groove 120, the wet drainage property and the block rigidity of the tread 112 in the outer region in the tire axial direction are improved. Can be compatible.
  • the pneumatic tire 110 of the present embodiment is preferably used as a rear tire for an ultra-high performance vehicle for competition.
  • Hydroplaning Running on a wet road surface with a water depth of 2 mm, the hydroplaning generation speed was measured. In the evaluation, the index was expressed as an index with the hydroplaning generation speed of the conventional tire being 100. The larger the value is, the higher the hydroplaning generation speed is, and the more excellent the drainage performance is.
  • Wet 'Circuit lap time Measured the lap time when traveling around a wet road surface (test course) with a depth of 2 mm. The evaluation was expressed as an index, with the lap time of the conventional tire being 100. The smaller the value, the shorter the lap time and the better the wet circuit performance.
  • Tire of Example 1 is a pneumatic tire having the no-turn shown in Fig. 3 described in the above embodiment.
  • Tire of Example 2 A pneumatic tire having the pattern shown in Fig. 6 described in the above-described embodiment. The width of the top of the raised part is 2 mm.
  • the tread 602 of the conventional pneumatic tire 600 has a circumferentially wide main groove 604 formed on the tire equatorial plane CL.
  • the tread 602 has a plurality of first lateral grooves 606 extending from the tread end 602E toward the circumferentially wide main groove 604 and connected to the circumferentially wide main groove 604 on both sides of the circumferentially wide main groove 604.
  • the second lateral groove 608 is formed between the first lateral grooves 606, the tread end 602E also extends toward the circumferentially wide main groove 604, and terminates at an intermediate portion between the tire equatorial plane CL and the tread end 602E. I have.
  • a sub-groove 610 extending toward the stepping side and terminating at the center of the block is connected to an intermediate portion of the first horizontal groove 606.
  • Reference numeral 612 denotes a sipe formed in the land portion.
  • the tire size of the conventional example and the example is RAR 325Z55R13 (tread width 250mm
  • Test vehicle wheel alignment front wheel toe angle (toe-out side) lmm,
  • the pneumatic tire 210 includes a cord extending substantially in the radial direction, and has a carcass 212 whose both ends are turned back by the bead cores 211, respectively.
  • the carcass 212 is composed of one or more layers.
  • a plurality of belt plies are provided outside the crown portion 12C of the carcass 212 in the tire radial direction.
  • the stacked belt layer 214 is buried!
  • a tread portion 218 having a groove is formed outside the belt layer 214 in the tire radial direction.
  • a first outer main groove 222A extending in the tire circumferential direction is formed on the tread surface portion 219 of the tread portion 218 on one side of the tire equatorial plane CL.
  • An outer main groove 222B is formed on the other side of the tire equatorial plane CL.
  • Each of the first outer main groove 222A and the second outer main groove 222B is formed at a position near the 1Z4 point Q of the width W of the tread surface portion 219, respectively.
  • the tread surface portion 219 is divided into a central region 220 and both side regions 221 by the first outer main groove 222A and the second outer main groove 222B.
  • lug grooves 226 whose ends on the equatorial plane side of the tire substantially open and terminate in the first outer main groove 222A or the second outer main groove 222B are substantially equal in the tire circumferential direction. It is formed at intervals.
  • Both ends in the tire width direction of each lug groove 226 extend so as to be able to drain water beyond the tread end to the outside in the tire width direction.
  • the tread edge means that the pneumatic tire is mounted on the standard rim specified in JATMA YEAR R BOOK (2004 edition, Japan Automobile Tire Association Standard), and the applicable size in JATMA YEAR BOOK Fills 100% of the air pressure (maximum air pressure) corresponding to the large load capacity (the bold load in the internal load capacity correspondence table) as the internal pressure, and refers to the outermost contact area in the tire width direction when the maximum load capacity is applied. If the TRA standard or ETRTO standard is applied at the place of use or the place of manufacture, follow the respective standards.
  • a first inner main groove 224A extending in the tire circumferential direction is formed on one side of the tire equatorial plane CL
  • a second inner main groove 224B extending in the tire circumferential direction is formed in the tire equatorial plane CL. It is formed on one side.
  • the first outer main groove 222A, the second outer main groove 222B, the first inner main groove 224A, and the second inner main groove 224B are all main grooves having a groove depth D. This first inner main groove 224A
  • the second inner main groove 224B includes a space between the first inner main groove 224A and the second inner main groove 224B, a space between the first outer main groove 222A and the first inner main groove 224A, and a second outer main groove. It is arranged at a position where the distance between 222B and the second inner main groove is substantially the same.
  • the central region 220 includes a central land row 228 defined by a first inner main groove 224A and a second inner main groove 224B, and a first outer main groove 222A and a first inner main groove 224A. Become partitioned A first adjacent land row 230 and a second adjacent land row 232 defined by the second outer main groove 222B and the second inner main groove 224B are formed.
  • a plurality of central inclined grooves (lug grooves) 234 are formed at substantially equal intervals so as to cross the central land row 228 and extend inclining with respect to the tire circumferential direction. Tepuru.
  • the first inner main groove 224A, the second inner main groove 224B, and the center inclined groove 234 adjacent to each other in the tire circumferential direction are arranged in the tire circumferential direction so as to straddle both sides of the tire equatorial plane CL.
  • Section 229 is formed in central land row 228.
  • a plurality of first inclined grooves 236 formed at substantially equal intervals so as to cross the first adjacent land row 230 and extending inclining with respect to the tire circumferential direction are provided. It is located.
  • the first inner main groove 224A, the first outer main groove 222A, and the first inclined grooves 236 adjacent to each other in the tire circumferential direction allow the land portions 231 arranged in the tire circumferential direction to become the first adjacent land portions.
  • Columns 230 are formed.
  • the inclination direction of the first inclined groove 236 is opposite to the inclination direction of the central inclined groove 234.
  • the central region 220 has a plurality of second inclined grooves 238 formed at substantially equal intervals so as to cross the second adjacent land row 232 and extending inclining with respect to the tire circumferential direction.
  • the second inner main groove 224B, the second outer main groove 222B, and the second inclined grooves 238 adjacent to each other in the tire circumferential direction allow the land portions 233 arranged in the tire circumferential direction to become second adjacent land portions.
  • the inclination direction of the second inclined groove 238 is the same as that of the first inclined groove 236.
  • the lengths of the central inclined groove 234, the first inclined groove 236, and the second inclined groove 238 are all L.
  • the groove depth of the central inclined groove 234, the first inclined groove 236, and the second inclined groove 238 is D (see FIG. 8B) in the groove portions other than the bottom raised portion described later.
  • first inclined groove 236 becomes the first inner main groove 224A. It is substantially open and terminated at the end (see also FIG. 8B).
  • the first inner main groove side end 236J where the first ridgeline 244 is formed has the highest mountain shape, and the force of the first inner main groove side end 236J also increases.
  • the groove gradually deepens toward the main groove side end 242K (that is, the groove depth gradually decreases from the first outer main groove side end 242K of the first raised bottom portion 242 toward the first inner main groove side end 236J).
  • the first inclined surface 246 is formed as a groove bottom surface.
  • the first inclined groove 236 is completely open to the first outer main groove 222A at the first outer main groove side end 236K of the first inclined groove 236.
  • the groove length L of the groove portion 236P having the first inclined surface 246 as the groove bottom surface is equal to the groove portion 236P.
  • the length of the first inclined groove 236 having P is in the range of 5 to 100% of the groove length L.
  • the first ridge line 244 has the same position in the tire width direction as the groove edge of the first inner main groove 224A.
  • the central inclined groove 234 is formed as the first inner main groove 224A. And is substantially open and terminated.
  • the groove in the longitudinal direction of the center bottom raised portion 252 has the highest mountain shape at the first inner main groove side end 23J where the central ridgeline 254 is formed, and the first inner raised portion Groove side end 23 J
  • the force gradually deepens toward the second inner main groove side end 252K of the center bottom raising part 252 i.e., the second inner main groove side end 252K force of the center bottom raising part 252 also becomes the first force.
  • the groove depth gradually decreases toward the inner main groove side end 23 J.
  • the central inclined surface 256 is formed as the groove bottom surface.
  • the center inclined groove 234 is completely open to the second inner main groove 224B at the second inner main groove side end 234K of the center inclined groove 234.
  • the groove length of the groove portion 234P having the central inclined surface 256 as the groove bottom surface is in the range of 5 to: LOO% of the groove length of the central inclined groove 234 having the groove portion 234P.
  • the central ridgeline 254 has the same position in the tire width direction as the groove edge of the first inner main groove 224A.
  • a second bottom raising portion 262 for raising the groove bottom is formed.
  • the second inclined groove 238 becomes the second inner main groove 224B. It is substantially open and terminated.
  • the groove longitudinal section of the second raised portion 262 has the highest mountain shape at the second inner main groove side end 238J where the second ridgeline 264 is formed, and the second inner Groove side end 238J Force also gradually deepens toward second outer main groove side end 262K of second bottom raising section 262 (i.e., from second outer main groove side end 262K of second bottom raising section 262 to second (The groove depth gradually decreases toward the inner main groove side end 238J.)
  • the second inclined surface 266 is formed as the groove bottom surface.
  • the second inclined groove 238 is completely open to the second outer main groove 222B at the second outer main groove side end 238K of the second inclined groove 238.
  • the groove length of the groove portion 238P having the second inclined surface 266 as the groove bottom surface is within the range of 5 to LOO% of the groove length of the second inclined groove 238 having the groove portion 238P. .
  • the second ridgeline 264 has the same position in the tire width direction as the groove edge of the second inner main groove 224B.
  • the lug grooves 226 on the left side of the paper are described in Fig. 8A, and the lugs on the right side of the paper are described. The description of the groove is omitted.
  • lug groove bottom raising portion 272 that raises the groove bottom is formed.
  • the lug groove 226 is connected to the first outer main groove 222A. It is substantially open and terminates (see also Figure 8B).
  • the first outer main groove side end 226J on which the lug groove ridge line 274 is formed has the highest mountain shape, and the first outer main groove side end 226J also has a lug groove force.
  • the groove gradually deepens toward the tread end 272K of the bottom raised portion 272 (ie, the tread end side 272K force of the lug groove raised portion 272 is deeper toward the first outer main groove side end 226J).
  • the lug groove inclined surface 276 is formed as a groove bottom surface.
  • the lug groove 226 is completely open at the tread end T.
  • the groove length of the groove portion 226P having the lug groove inclined surface 276 as the groove bottom surface is in the range of 5 to 100% of the groove length of the lug groove 226 having the groove portion 226P.
  • the lug groove ridgeline 274 has the same position in the tire width direction as the groove edge of the first outer main groove 222A. [0219]
  • the groove length of the groove where the central inclined surface 256, the first inclined surface 246, the second inclined surface 266, and the lug groove inclined surface 276 form the groove bottom is L (see FIG. 8B). ).
  • such a directional tread tread pattern is formed on the tread surface portion 219, and the center inclined groove 234, the first inclined groove 236, the second inclined groove 238, and the lug groove are formed.
  • the 226 has a central raised part 252, a first raised part 242, a second raised part 262, and a rugged groove raised part 272, respectively.
  • water near the second bottom rising portion 262 is guided by the second inclined surface 266 and flows into the second inner main groove 224B, and water is guided by the second inclined surface 266 and is not guided by the second inclined surface 266.
  • the water near the lug groove bottom raising portion 272 flows into the first outer main groove 222A guided by the lug groove inclined surface 276 and flows toward the tread end T without being guided by the lug groove inclined surface 276. Rectified with water. Therefore, a pneumatic tire having excellent wet drainage properties can be obtained.
  • the first raised bottom portion 242 improves the rigidity of the corner portion of the adjacent land portion 231 (especially the corner portion 31C which is sharp when the force on the tread surface portion 219 is also observed), so that the steering stability on a dry road surface is improved. Properties, uneven wear resistance and pattern noise are improved. The same effect can be obtained for the corners of the land adjacent to the central raised portion 252, the second raised portion 262, and the lug groove raised portion 272.
  • a first outer main groove 322A is formed instead of the first outer main groove 222A, and a second outer main groove 222B is formed instead of the second outer main groove 222B, as compared with the third embodiment.
  • An outer main groove 322B is formed, a first inner main groove 324A is formed instead of the first inner main groove 224A, and a second inner main groove is formed instead of the second inner main groove 224B.
  • 324B is formed.
  • a central inclined groove 334 is formed instead of the central inclined groove 234, a first inclined groove 336 is formed instead of the first inclined groove 236, and a second inclined groove 338 is formed instead of the second inclined groove 238.
  • a lug groove 326 is formed on one side of the tire equatorial plane CL, and a lug groove 327 is formed on the other side of the tire equatorial plane.
  • the basic configuration, operation, and effect of the second inclined groove 338 are the same as those of the first inclined groove 336, and a description thereof will be omitted.
  • the basic configuration, operation, and effect of the lug groove 327 are the same as those of the lug groove 326, and thus description thereof will be omitted.
  • the positions and lengths of the central inclined groove 334, the first inclined groove 336, and the lug groove 326 are the same as those of the third embodiment.
  • the shape and position of this are different from those of the third embodiment.
  • first bottom raising portion 342 for raising the groove bottom is formed.
  • the first inclined groove 336 becomes the first inner main groove 324A. It is substantially open and terminated.
  • the cross section in the groove longitudinal direction of the first raised bottom portion 342 is mountain-shaped, and a first ridgeline 344 parallel to the tire circumferential direction is formed on the top portion 342U. Then, the first inner main groove side first inclined surface 345 where the groove gradually deepens from the first ridgeline 344 toward the first inner main groove 324A, and the first outer side of the first bottom raising portion 342 from the first ridgeline 344.
  • a first outer main groove side first inclined surface 346 whose groove gradually becomes deeper toward the main groove side end 342K is formed on the first bottom raising portion 342 as a groove bottom surface (see FIG. 9B).
  • the surface height of the first ridgeline 344 is the same as the surface height of the land portion 331 adjacent to the first inclined groove 336 (that is, the height of the tread surface F). Therefore, the depth of the first ridgeline 344 from the tread surface F is Omm.
  • the edge 331E of the land portion 331 on the first inner main groove side has an edge surface 331ES that is chamfered in a tapered shape along the first inner main groove 324A.
  • the inclination angle ⁇ ⁇ ⁇ ⁇ with respect to the tire radial direction is set so that the first inner main groove side first inclined surface 345 has the same plane as the edge surface 33 1ES.
  • the angle of inclination 0 is in the range of 30 to 60 °.
  • the central raised portion 352 has a mountain-shaped cross section in the groove longitudinal direction, and a central ridgeline 354 parallel to the tire circumferential direction is formed at the top. Then, the first inner main groove side central inclined surface 355 where the groove gradually becomes deeper from the central ridgeline 354 toward the first inner main groove 324A, and the second inner main groove side end of the central bottom raised portion 352 from the center ridgeline 354 A central bottom raised portion 352 is formed with a second inner main groove side central inclined surface 356 in which the groove gradually becomes deeper toward 352K.
  • the surface height of the central ridgeline 354 is the same as the surface height of the land portion 329 adjacent to the central inclined groove 334 (that is, the height of the tread surface F). Therefore, the depth of the central ridgeline 354 from the tread surface F is Omm.
  • the edge 329E of the land portion 329 on the first inner main groove side has an edge surface 329ES that is chamfered in a tapered shape along the first inner main groove 324A.
  • the inclination angle ⁇ ⁇ ⁇ ⁇ with respect to the tire radial direction is set so that the first inner groove side center inclined surface 355 has the same plane as the edge surface 329ES.
  • the position of the central ridgeline 354 in the tire width direction is the same as the upper edge of the edge surface 329ES.
  • the angle of inclination 0 is in the range of 30 to 60 °.
  • a lug groove bottom raising portion 372 for raising the groove bottom is formed.
  • the lug groove 326 is substantially opened to the first outer main groove 322A. And is terminated.
  • the groove longitudinal section of the lug groove bottom raising portion 372 has a mountain shape, and a lug groove ridgeline 374 parallel to the tire circumferential direction is formed at the top. Then, the first outer main groove side lug slope 375 where the groove gradually deepens from the lug groove ridgeline 374 toward the first outer main groove 322A, and the groove from the lug groove ridgeline 374 to the tread end side end 372K. Is formed on the tread end side lug groove inclined surface 376 and the force S lug groove bottom raised portion 372 which gradually becomes deeper.
  • the surface height of the lug groove ridgeline 374 is the same as the surface height of the land portion 325 adjacent to the lug groove 326 (that is, the height of the tread surface F). Therefore, the depth of the lug groove ridge line 374 from the tread surface F is Omm.
  • the edge portion 325E of the land portion 325 on the first outer main groove side has an edge surface 325ES that is chamfered in a tapered shape along the first outer main groove 322A.
  • the inclination angle ⁇ ⁇ ⁇ ⁇ with respect to the tire radial direction is set so that the first outer main groove side lug groove inclined surface 375 has the same plane as the edge surface 325ES.
  • the position of the lug groove ridgeline 374 in the tire width direction is the same as the upper edge of the edge surface 325ES.
  • the angle of inclination 0 is in the range of 30 to 60 °.
  • the first inner main groove side central inclined surface 355 and the edge surface 329E S form the same plane, and similarly, the first inner main groove side first The inclined surface 345 and the edge surface 331ES and the first outer main groove side lug groove inclined surface 375 and the edge surface 325ES respectively form the same plane. Therefore, the rigidity of each edge portion on which these edge surfaces are formed is improved, and the steering stability on a dry road surface is improved. In addition, when traveling on a wet road surface, water flows without generating turbulence along two surfaces forming the same plane, so that the wet drainage property is further improved.
  • a first outer main groove 422A is formed instead of the first outer main groove 322A, and a second outer main groove 322B is formed instead of the second outer main groove 322B, as compared with the fourth embodiment.
  • An outer main groove 422B is formed, a first inner main groove 424A is formed instead of the first inner main groove 324A, and a second inner main groove 424B is formed instead of the second inner main groove 324B.
  • a central inclined groove 434 is formed instead of the central inclined groove 334, a first inclined groove 436 is formed instead of the first inclined groove 336, and a second inclined groove 438 is formed instead of the second inclined groove 338.
  • a lug groove 426 is formed instead of the lug groove 326 on one side of the tire equatorial plane CL, and a lug groove 427 is formed instead of the lug groove 327 on the other side of the tire equatorial plane CL.
  • the basic configuration, operation, and effect of the second inclined groove 438 are the same as those of the first inclined groove 436, and therefore description thereof is omitted.
  • the basic configuration, operation, and effect of the lug groove 427 are the same as those of the lug groove 426, and therefore description thereof is omitted.
  • the positions and lengths of the central inclined groove 434, the first inclined groove 436, and the lug groove 426 are the same as those in the fourth embodiment, but the bottom raised portions formed in each inclined groove are provided. The shape and position of this are different from those of the fourth embodiment.
  • the longitudinal direction of the groove of the first raised bottom portion 442 is mountain-shaped, and a first ridgeline 444 parallel to the tire circumferential direction is formed at the top. Then, the first inner main groove side first inclined surface 445 where the groove gradually becomes deeper from the first ridgeline 444 toward the first inner main groove 422A, and the first inner main surface of the first bottom raising portion 442 from the first ridgeline 444. A first outer main groove side first inclined surface 446 where the groove gradually deepens toward the groove side end 442K is formed in the first raised bottom portion 442 (see FIG. 10B).
  • the positional force of the first ridgeline 444 in the tire width direction is located closer to the center of the first inner main groove 424A than the upper edge of the edge surface 431ES of the land portion 431.
  • the depth D of the tread surface F of the first ridgeline 444 is set so that the first inner groove side first inclined surface 445 and the edge surface 131 ES form the same plane.
  • the longitudinal direction of the groove of the central raised bottom portion 452 is mountain-shaped, and a central ridgeline 454 parallel to the tire circumferential direction is formed at the top. Then, the first inner main groove side center inclined surface 455 where the groove gradually deepens from the central ridge line 454 toward the first inner main groove 422A, and the second inner main groove side of the central bottom raised portion 452 from the center ridge line 454.
  • the central bottom raised portion 452 is formed with a second inner main groove side central inclined surface 456 in which the groove gradually deepens toward the end 452K.
  • the position of the central ridgeline 454 in the tire width direction is located closer to the center of the first inner main groove 424A than the upper edge of the edge surface 429ES of the adjacent land portion 429.
  • the depth D of the central ridgeline 454 from the tread surface F is set so that the first inner groove side center inclined surface 455 and the edge surface 429ES form the same plane.
  • a lug groove bottom raising portion 472 for raising the groove bottom is formed near the first outer main groove side end 426J of the lug groove 426. As a result, the lug groove 426 is substantially opened to the first outer main groove 422A. do it Terminated.
  • the groove longitudinal direction of the lug groove bottom raising portion 472 is mountain-shaped, and a lug groove ridgeline 474 parallel to the tire circumferential direction is formed at the top.
  • the first outer main groove side lug slope 475 where the groove gradually deepens from the lug groove ridgeline 474 toward the first outer main groove 422A, and the groove is formed from the lug groove ridgeline 474 to the tread end side end 472K. It is formed on the tread end side lug groove inclined surface 476 which gradually becomes deeper, and the force S lug groove bottom raising portion 472.
  • the position of the lug groove ridgeline 474 in the tire width direction is located closer to the center of the first outer main groove 422A than the upper edge of the edge surface 425ES of the land portion 425.
  • the depth D of the lug groove ridgeline 474 from the tread surface F is set such that the first outer main groove side lug groove inclined surface 475 and the edge surface 425ES form the same plane.
  • the volume of the lug groove is increased, and the wet drainage property is improved when the vehicle travels on a wet road surface.
  • the tread portion 819 of the tread portion 818 has a groove width on the tire equatorial plane CL.
  • a center main groove 817 having a width W and a groove depth D is formed. Also, both sides of the tire equatorial plane CL
  • outer main grooves 822 along the tire circumferential direction are formed at positions near the 1Z4 point Q of the width of the tread surface portion 819, respectively.
  • the outer main groove 822 divides the tread surface portion 819 into a central region 820 and both side regions 821.
  • lug grooves 824 are formed at substantially equal intervals in the tire circumferential direction, with the end on the equatorial plane side of the tire being open to the outer main groove 822.
  • Both ends in the tire width direction of each lug groove 824 extend so as to be able to drain water beyond the tread end to the outside in the tire width direction.
  • a plurality of inclined grooves 832 are opened in the outer main groove 822 and directed toward the center main groove 817 while being inclined with respect to the tire circumferential direction so as to sandwich the tire equatorial plane CL. Equatorial plane Located on both sides of CL.
  • the inclined groove 832 has a groove depth of D,
  • the center main groove 817, the outer main groove 822, and the inclined grooves 832 adjacent to each other in the circumferential direction of the tire constitute a pair of land portions 840 on the left and right with respect to the tire equatorial plane CL.
  • a land row 842 is formed in the central area 820.
  • a raised portion 839 for raising the groove bottom is formed.
  • the bottom raising portion 839 includes an outer inclined surface 836 forming a groove bottom on the outer side in the tire width direction of the inclined groove 832, and an inner inclined surface 838 forming a groove bottom on the inner side in the tire width direction of the inclined groove 832, (See FIG. 11B).
  • the edge 843 of the land portion 840 on the center main groove 817 side is chamfered in a tapered shape along the center main groove 817 so as to have an inclined surface 844 forming the same plane as the inner inclined surface 838. (See Figure 11C).
  • the groove length L of the groove portion 832PC having the inner inclined surface 838 as a groove bottom is within a range of 8 to 45% of the width W of the center main groove 817.
  • the edge 843 is substantially parallel to the tire circumferential direction.
  • the ridgeline 846 formed by the outer inclined surface 836 and the inner inclined surface 838 is substantially parallel to the tire circumferential direction.
  • the ridgeline 846 forms the top of the raised portion 839.
  • Ridge line 846 is parallel to tread surface portion 819.
  • the surface height of the ridgeline 846 is the same as the surface height of the land portion 840 (that is, the height of the tread F), and as a result, the depth of the ridgeline 846 is Omm.
  • such a tread tread pattern is formed on the tread portion 819, and the inclined groove 832 has the bottom-up portion 83 having the above-mentioned mountain-shaped cross section. 9 are formed.
  • the rigidity of the corner of the adjacent land portion 840 (particularly, the corner 841 that is acute when viewed from the tire surface side, that is, when the force on the tread surface F side is also sharp) is improved by the raised bottom portion 839, Driving stability on dry road surfaces and uneven wear resistance are improved.
  • an edge portion 843 of the land portion 840 on the center main groove 817 side is chamfered in a tapered shape along the center main groove 817 so as to have the same plane as the inner inclined surface 838. Therefore, the rigidity of the edge portion 845 is improved, and the steering stability on a dry road surface is improved. In addition, when traveling on a wet road surface, the water flowing along each of the edge portion 843 and the inner inclined surface 838 flows without generating turbulent flow, so that the wet drainage property is further improved.
  • the edge 843 is substantially parallel to the tire circumferential direction
  • the ridge 846 formed by the outer inclined surface 836 and the inner inclined surface 838 is substantially parallel to the tire circumferential direction.
  • the raised bottom portion 849 includes an outer inclined surface 856 that forms a groove bottom on the outer side in the tire width direction of the inclined groove 852, an inner inclined surface 858 that forms a groove bottom on the inner side in the tire width direction of the inclined groove 852,
  • the cross section has a mountain shape (see FIG. 12B).
  • the position of the ridgeline 857 formed by the outer inclined surface 856 and the inner inclined surface 858 in the tire width direction is closer to the tire equatorial plane CL than in the sixth embodiment.
  • the ridgeline 857 is parallel to the tread portion 850, and the surface height of the ridgeline 857 is D deeper than the surface height of the land portion 840 (that is, the height of the tread surface F).
  • the inner slope 85 8 and the inclined surface 844 of the edge portion 843 form the same plane.
  • a raised portion 859 for raising the groove bottom is formed.
  • the raised bottom portion 859 is continuous with the outer inclined surface 866 forming the groove bottom on the outer side in the tire width direction of the inclined groove 862, and is continuous with the outer inclined surface 866 on the tire equator side, and has the same height as the land portion 840.
  • This is a mountain-shaped cross section having a certain top plane 865 and the inner inclined surface 838 described in the sixth embodiment, which is continuous with the top plane 865 on the tire equatorial plane side (see FIG. 13B).
  • the width L of the top plane 865 in the tire width direction is within 3 mm.
  • the rigidity of the corner of the land portion 840 adjacent to the raised portion 859 is improved, so that the steering stability and uneven wear resistance on a dry road surface are improved. Is improved.
  • the tread surface portion 919 of the tread portion 918 has circumferential main grooves 922A and 922B along the tire circumferential direction on both sides of the tire equatorial plane CL. Four points are formed at positions near Q.
  • the tread surface portion 919 is divided into a central region 920 and both side regions 921 by the circumferential main grooves 922A and 922B.
  • lug grooves 924 whose end portions on the tire equatorial plane side are open to circumferential main grooves 922A and 922B are formed at substantially equal intervals in the tire circumferential direction.
  • Both ends in the tire width direction of each lug groove 924 extend so as to be able to drain water outward in the tire width direction beyond the tread end.
  • the circumferential main groove 922A is completely opened.
  • a plurality of first inclined grooves 926 are formed at substantially equal intervals in the tire circumferential direction so as to be directed toward the tire center while being inclined with respect to the tire circumferential direction.
  • the opening in the circumferential main groove 922B is completely opened, and a plurality of second inclined grooves 928 are inclined toward the tire center while being inclined with respect to the tire circumferential direction.
  • the first inclined groove 926 is substantially open to the groove wall of the second inclined groove 928 and terminates.
  • the second inclined groove 928 ends without opening to another inclined groove.
  • a land portion row 929 composed of a land portion 931 defined by a circumferential main groove 922, a first inclined groove 926, and a second inclined groove 928 is provided in the tire circumferential direction. Are formed at substantially equal intervals.
  • the pair of the first inclined grooves 926 and the second inclined grooves 928 are arranged at substantially equal intervals in the tire circumferential direction.
  • the first inclined groove 926 and the second inclined groove 928 are provided in the circumferential main groove when the pneumatic tire 910 rotates and the ground contact surface moves in the U direction during tire load rolling.
  • the grooves are inclined in opposite directions with respect to the tire circumferential direction so that the groove edge sequentially contacts the road surface toward the 922 side.
  • first inclined groove 926 At the end of the first inclined groove 926, a raised portion 930 for raising the bottom of the first inclined groove 926 is formed.
  • the first inclined groove 926 is formed as a groove of the second inclined groove 928. It ends substantially open in the wall (see also FIG. 14B).
  • the first terminal end 926J having the ridgeline 934 is the highest mountain shape, and the first terminal end 926J force is also directed toward the circumferential main groove side end 930K of the raised bottom portion 930.
  • the first inclined surface 936 is formed as a groove bottom surface in which the groove gradually becomes deeper (that is, the groove depth gradually decreases toward the first end 926J at the circumferential main groove side end 930K of the bottom raising portion 930).
  • the ridgeline 934 is formed at the top 930U of the raised bottom portion 930, and the ridgeline 934 is located on the opening-side groove edge line 928E of the second inclined groove 928.
  • the groove length L of the groove portion 926P having the first inclined surface 936 as a groove bottom surface is equal to the groove portion 926P.
  • the length of the first inclined groove 926 having P is 5 to 5: within the range of LOO%. [0272]
  • the groove depth of the first inclined groove 926 is D, and the first inclined groove 926 is opened to the second inclined groove 928.
  • the length of the ridge line 934 is L.
  • the second inclined groove 928 has a groove depth D.
  • the inclination angle of the terminal end of the inclined groove 928 with respect to the tire circumferential direction is ⁇ .
  • the surface height of the ridgeline 934 is set to be the same as the surface height of the land portion 931 (that is, the height of the tread surface F).
  • Tread F force depth D is Omm.
  • such a tread tread surface pattern is formed on the tread surface portion 919, and the bottom raised portion 930 having a mountain-shaped cross section as described above is formed, and the ridge is formed.
  • the line 934 is located on the opening-side groove edge line 928E.
  • the angle between the first inclined groove 926 and the second inclined groove 928 is large.
  • the land portion corner portion 931B has a small angle to increase the rigidity in the tire width direction at the land portion corner portion 931S. And the rigidity in the tire circumferential direction is large. Therefore, steering stability on dry road surfaces and uneven wear resistance are improved.
  • the pneumatic tire according to the present embodiment differs from the ninth embodiment in the tread pattern formed in the central region of the tread 939 as shown in FIG.
  • a first inclined groove 946 similar to the first inclined groove 926 described in the ninth embodiment is formed on the right side of the tire equatorial plane CL in the center region on the paper surface.
  • the first inclined groove 946 has a first raised portion 940 similar to the raised portion 930 described in the ninth embodiment.
  • a second inclined groove 948 is formed on the left side of the tire equatorial plane CL in the center area on the paper surface instead of the second inclined groove 928 described in the first embodiment.
  • a second bottom raised portion 942 having the same side sectional view as the first bottom raised portion 940 is formed, and the second inclined groove 948 is formed as a groove wall of the first inclined groove 946. The fact that it is substantially open and terminates at It differs greatly from the embodiment.
  • first ridgeline 944 formed on the top 940U of the first bottom raised portion 940 and the second ridgeline 459 formed on the top of the second bottom raised portion 429 are aligned in a zigzag direction along the tire circumferential direction.
  • a first inclined surface 941 similar to the first inclined surface 936 is formed in the first raised portion 940.
  • the second bottom raising portion 942 is formed with a second inclined surface 943 that gradually increases the groove bottom from the second ridgeline 945 to the side of the circumferential main groove 922B.
  • a zigzag-shaped apparent peripheral sub-groove 950 substantially continuous in the tire circumferential direction is formed. Therefore, when traveling on a wet road surface, the water in the area where the zigzag-shaped apparent peripheral sub-groove 950 is arranged on the tread surface is rectified on both sides of the first ridge line 944 and the second ridge line 945, so that Drainability is further improved.
  • the inventor conducted an experiment to compare the performance of the pneumatic tire according to the present invention with that of a conventional pneumatic tire.
  • the size of all pneumatic tires is PSR 225Z45R17, and the tread width (at the time of JATMA standard internal pressure load) is 180 mm.
  • the tires were mounted on an actual running vehicle, the internal pressure of the tires was set to 220 kPa, and under load conditions, each experiment was performed with two passengers in the front seat to evaluate the performance.
  • the performance evaluations include (1) steering stability on dry roads, (2) hydroplaning, (3) steering stability on wet roads, (4) uneven wear resistance, (5) pattern noise, Was evaluated.
  • the inventor first performed an experiment using a conventional pneumatic tire.
  • the tread portion 719 of the tread portion 718 is provided with outer main grooves 722 along the circumferential direction on both sides of the tire equatorial plane, and the tread portion 719. Are formed at positions near the quarter point Q of the width.
  • the tread portion 719 is divided into a central region 720 and both side regions 721 by the outer main groove 722.
  • lug grooves 726 each having an end on the equatorial plane of the tire opening in the outer main groove 722 are formed at substantially equal intervals in the tire circumferential direction in the both side regions 721. It has been.
  • the central region 720 includes inner main grooves 724 extending in the tire circumferential direction on both sides of the tire equatorial plane CL. Are formed respectively.
  • the inner main grooves 724 are arranged at positions where the distance between the inner main grooves 724 and the distance between the outer main groove 722 and the inner main groove 724 are substantially the same.
  • the groove depth of the inner main groove 724 and the outer main groove 722 is D.
  • inclined grooves 736 that open to the outer main groove 722 and the inner main groove 724 and that extend inclining in the tire circumferential direction are substantially equally spaced in the tire circumferential direction. Formed on both sides of the tire equatorial plane CL.
  • the inclination direction of the inclined groove 736 is the same as that of the pneumatic tire 210 of the third embodiment.
  • the outer main groove 722, the inner main groove 724, and the inclined groove 736 adjacent to each other in the tire circumferential direction make the land row 730 composed of a pair of land portions 731 left and right with respect to the tire equatorial plane CL. Is formed.
  • a central inclined groove 734 that opens in the inner main groove 724 on both sides of the tire equatorial plane CL and extends inclining with respect to the tire circumferential direction is formed so as to be substantially equally spaced in the tire circumferential direction.
  • the inclination direction of the central inclined groove 734 is the same as that of the pneumatic tire 210 of the third embodiment.
  • the outer main groove 722, the inner main groove 724, and the central inclined groove 734 adjacent to each other in the tire circumferential direction form a central land row 728 composed of a land 729 crossing the tire equatorial plane CL. I have.
  • the inclined groove 736 and the central inclined groove 734 have a groove length of L and a groove depth of D.
  • Table 5 shows the conditions of the tread pattern of the conventional pneumatic tire.
  • Table 6 shows the indices.
  • Example 1 used the pneumatic tire of Example 1 in which the tread pattern was set to the conditions shown in Table 5 as the pneumatic tire 210 according to the third embodiment.
  • Table 6 shows that the larger the index, the better the performance. In other words, the larger the index, the better the steering stability on dry or wet road surfaces, the higher the speed at which the hood opening planing occurs, the smaller the wear step and wear amount difference, the lower the pattern noise, Is shown.
  • the inventor used the pneumatic tire of Example 2 in which the tread pattern was set to the conditions shown in Table 5 as the pneumatic tire according to the fourth embodiment.
  • the present inventor used the pneumatic tire of Example 3 in which the tread pattern was set to the conditions shown in Table 5 as the pneumatic tire according to the fifth embodiment.
  • the circumferential main grooves in the present invention are not limited to those extending linearly in the tire circumferential direction, and may extend in a zigzag manner in the tire circumferential direction.
  • a portion through which water passes linearly in the tire circumferential direction (so-called see-through portion: convex portion of the side wall of the bent portion of the groove (tire width) Is a space that is continuous in the circumferential direction without being blocked by ) Is preferably secured.
  • the pneumatic tire according to the present invention is suitable for mounting on a vehicle that requires high and wet performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

明 細 書
空気入りタイヤ
技術分野
[0001] 本発明は、空気入りタイヤにかかり、特に、他性能を犠牲にせずに、高いウエット排 水性を得ることのできる空気入りタイヤに関する。
背景技術
[0002] 空気入りタイヤでは、ウエット性能を得るために、トレッドに周方向溝と横溝とを配置 して ヽる(特許文献 1〜3参照)。
[0003] 空気入りタイヤでは、タイヤ性能を上げるために従来から種々の工夫がなされてお り、(例えば特許文献 4〜7参照)、ウエット路面での排水性を向上させるためには、溝 幅や溝深さを増大させることにより溝容積を増カロさせることが行われている。
[0004] また、競技用超高性能車両用タイヤにおいては、ハイドロプレーニング性能を向上 させるために、ネガティブ率を上げる、トレッドのセンター領域に数本の直線状周方向 溝を配置する手法がとられて!/ヽた。
特許文献 1 :特開昭 57— 194106号公報 (FIG2)
特許文献 2 :特開平 3— 10911号公報 (第 1、 2図)
特許文献 3 :特開平 11 189011号公報(図 1)
特許文献 4:特開 2001— 225611号公報
特許文献 5 :特開平 10— 100615号公報
特許文献 6:特開 2003 - 320814号公報
特許文献 7:特開昭 63— 061606号公報
発明の開示
発明が解決しょうとする課題
[0005] しかし、溝幅や溝深さを増大させた場合、ドライ路面での接地面積の減少、陸部の 剛性不足を招き、ドライ路面での操縦安定性が低下する。また、陸部の剛性不足によ つて偏摩耗性も低下する。
[0006] また、ドライ路面での操縦安定性やパターンノイズ性を向上させるためには、溝面 積を減らし接地面積を増大させることや、陸部端部の横溝内にステップ状の底上げ 部を設け、ブロック剛性を向上させる対策をとることが有効である。
[0007] しかし、このような対策では、溝容積が減少し、更に、段差によって水の流れに乱流 が生じて排水性が悪ィ匕し、ウエット路面での排水性や操縦安定性が低下すると 、う 問題がある。
[0008] ところで、競技用超高性能車両用タイヤにおいては、走行速度域が高いためハイド 口プレーニング現象が起こりやすい。競技用超高性能車両用リアタイヤにおいては、 接地幅が広いためノ、イド口プレーニング現象が低速域力も起こりやすい。そこで、そ れを解決するため、溝幅を広げるなどによりネガティブ率を上げる手法や、センター 域に数本の直線状主溝を配置するなどの手法を取り入れる。しかし、そのためにセン ター部の陸部の面積が減少し、更にブロック幅が減少するため、グリップの低下、摩 耗'性の低下などの問題が生じる。
[0009] また、競技用超高性能車両用フロントタイヤにおいては、ハンドリング性能を向上す るために、タイヤ軸方向中央域にタイヤ周方向に連続するリブ状陸部を配置する手 法がとられる。しかし、そのために、タイヤ軸方向中央域のタイヤ幅方向への排水性 が低下し、タイヤ軸方向中央域のウエット排水性が低下するなどの問題が起こる。
[0010] 本発明は、上記問題を解決すべく成されたもので、他性能 (例えば、操縦安定性、 パターンノイズ性、耐摩耗性等)を犠牲にせずに、高いウエット排水性能を得ることの 出来る空気入りタイヤを提供することが目的である。
課題を解決するための手段
[0011] 請求項 1に記載の発明は、トレッドのタイヤ幅方向中心領域に設けられタイヤ周方 向に延びる少なくとも 1本の周方向広幅主溝と、前記トレッドに設けられトレッド端から 前記周方向広幅主溝に向力つてタイヤ周方向に対して傾斜して延びる複数の横溝と 、前記周方向広幅主溝のタイヤ軸方向外側に配置されタイヤ周方向に延び、前記周 方向広幅主溝よりも溝幅が狭く設定された狭幅周副溝とを備え、前記トレッドは、前 記周方向広幅主溝、前記横溝、及び前記狭幅周副溝で区画された複数のブロックを 有すると共に、負荷転動時に前記各横溝がタイヤ赤道面側からトレッド端に向けて路 面と順次接する方向性トレッドパターンを有する空気入りタイヤであって、前記狭幅 周副溝は、前記ブロックを区画する範囲において、負荷転動時の前記ブロックの蹴り 出し側から踏み込み側に向かって、その幅及び深さが減少している、ことを特徴とし ている。
[0012] 次に、請求項 1に記載の空気入りタイヤの作用を説明する。
[0013] 請求項 1に記載の空気入りタイヤでは、方向性パターンを有しているので、ウエット 路面走行時に、水が周方向広幅主溝、狭幅周副溝、及び横溝に効率的に流れ込み
、高いウエット性能が得られる。
[0014] また、ネガティブ率の増加を抑えつつ高!、ウエット性能が得られるため、ブロックの 踏面面積が確保され、耐摩耗性が向上する。
[0015] また、タイヤ軸方向中央領域のブロック剛性が増加するので、ハンドリング性能が向 上する。
[0016] さらに、狭幅周副溝が、ブロックを区画する範囲において、負荷転動時の前記プロ ックの蹴り出し側力も踏み込み側に向力つて、その幅及び深さを減少させて 、るので 、狭幅周副溝の両側のブロックの踏み込み側のブロック剛性が増加し、トラクシヨン性 能、ブレーキ性能、及びコーナリング性能が向上する。
[0017] なお、「トレッドのタイヤ幅方向中心領域」とは、トレッドをタイヤ軸方向に 3等分した ときの中央の領域のことである。
[0018] 請求項 2に記載の発明は、請求項 1に記載の空気入りタイヤにおいて、前記狭幅周 副溝は、前記周方向広幅主溝のタイヤ軸方向外側に少なくとも 2本設けられ、前記 横溝は、トレッド端から延びて前記狭幅周副溝と交差して前記周方向広幅主溝と連 結する第 1横溝と、前記第 1横溝間に配置されトレッド端力 延びて前記狭幅周副溝 と交差して前記周方向広幅主溝とは連結せずに終端する第 2横溝と、前記第 1横溝 と前記第 2横溝との間に配置されトレッド端から延びて 2本の前記狭幅周副溝間で終 端する第 3横溝力 構成されて 、る、ことを特徴として 、る。
[0019] 次に、請求項 2に記載の空気入りタイヤの作用を説明する。
[0020] トレッドに、トレッド端力 延びて狭幅周副溝と交差して周方向広幅主溝と連結する 第 1横溝と、第 1横溝間に配置されトレッド端力 延びて狭幅周副溝と交差して周方 向広幅主溝とは連結せずに終端する第 2横溝と、第 1横溝と第 2横溝との間に配置さ れトレッド端力 延びて 2本の狭幅周副溝間で終端する第 3横溝を配置することで、 各溝で区画されたブロックのタイヤ周方向長さを、タイヤ赤道面側からトレッド端に向 力つて順次 1/2にでき、トレッド中央領域側でブロック剛性を増カロさせて、トラクシヨン 性能、ブレーキ性能、及びコーナリング性能を向上できると同時に、トレッド両側域で のウエット排水性を向上できる。
[0021] 請求項 3に記載の発明は、請求項 2に記載の空気入りタイヤにおいて、前記第 2横 溝、及び前記第 3横溝のタイヤ赤道面側終端位置は、ブロックのタイヤ軸方向中央 域に位置している、ことを特徴としている。
[0022] 次に、請求項 3に記載の空気入りタイヤの作用を説明する。
[0023] 第 2横溝、及び第 3横溝のタイヤ赤道面側終端位置が、それぞれが配置されて ヽる ブロックのタイヤ軸方向中央域に位置しているため、高いウエット排水性能、操縦安 定性、及び耐摩耗性をバランス良く両立することができる。
[0024] 第 2横溝、及び第 3横溝のタイヤ赤道面側終端位置が、ブロックのタイヤ軸方向中 央よりもタイヤ軸方向外側になると、ブロック表面上にある水が各横溝内に流れ込み 難ぐウエット排水性が低下するため好ましくない。
[0025] また、第 2横溝、及び第 3横溝のタイヤ赤道面側終端位置が、ブロックのタイヤ軸方 向中央よりもタイヤ軸方向内側(タイヤ赤道面側)になると、ブロックの剛性が低下し、 トラクシヨン性能、ブレーキ性能、及びコーナリング性能が低下するため好ましくない。
[0026] なお、「ブロックのタイヤ軸方向中央域」とは、ブロックをタイヤ軸方向に 3等分したと きの中央の領域のことである。
[0027] 請求項 4に記載の発明は、請求項 2または請求項 3に記載の空気入りタイヤにおい て、前記第 1横溝の溝幅を W2、前記第 2横溝の溝幅を W3、前記第 3横溝の溝幅を W4としたときに、 W3を W2の 60%以上 110%以下、 W4を W2の 20%以上 60%以 下に設定する、ことを特徴としている。
[0028] 次に、請求項 4に記載の空気入りタイヤの作用を説明する。
[0029] 第 1横溝の溝幅を W2、第 2横溝の溝幅を W3、第 3横溝の溝幅を W4としたときに、 W3を W2の 60%以上 110%以下、 W4を W2の 20%以上 60%以下に設定すること で、第 1横溝と第 2横溝で囲まれた領域のウエット排水性とブロック剛性とを両立する ことができる。
[0030] 第 2横溝の溝幅 W3を第 1横溝の溝幅 W2の 60%以上 110%以下とすることで、第 2横溝の溝幅 W3を第 1横溝の溝幅 W2と略同等にでき、高いウエット排水性が確保さ れる。
[0031] また、第 3横溝の溝幅 W4が第 1横溝の溝幅 W2の 20%未満になると、第 1横溝、及 び第 2横溝で囲まれた領域のウエット排水性が低下するので好ましくない。
[0032] 一方、第 3横溝の溝幅 W4が第 1横溝の溝幅 W2の 60%を超えると、第 1横溝、及 び第 2横溝で囲まれた領域のブロック剛性が低下するため好ましくない。
[0033] 請求項 5に記載の発明は、請求項 1に記載の空気入りタイヤにおいて、前記狭幅周 副溝は、前記周方向広幅主溝のタイヤ軸方向外側に少なくとも 2本設けられ、前記 横溝は、トレッド端から延びて前記狭幅周副溝と交差して前記周方向広幅主溝と連 結する第 1横溝と、前記第 1横溝間に配置されトレッド端力 延びてタイヤ軸方向最 外側の前記狭幅周副溝とは交差するが、タイヤ軸方向最内側の前記狭幅周副溝と は交差せず、かつ前記周方向広幅主溝とは連結せずに終端する第 2横溝と、力ゝら構 成され、前記第 1横溝は、前記周方向広幅主溝側に底上げ部を有し、前記底上げ部 は、タイヤ軸方向外側の始点力 前記周方向広幅主溝に向けて溝深さが漸減してい る、ことを特徴としている。
[0034] 次に、請求項 5に記載の空気入りタイヤの作用を説明する。
[0035] 請求項 5に記載の空気入りタイヤでは、ウエット路面での走行において、タイヤ軸方 向中央付近の水は周方向広幅主溝に流れ込み、それ以外の水は第 1横溝に流れ込 む。また、周方向広幅主溝と第 1横溝によって囲まれるブロックの踏面上の水は、 2本 の狭幅周副溝と第 2横溝に流れ込む。さらに、トレッドは、方向性パターンを有してい るので、ウエット路面走行時に、水が周方向広幅主溝、狭幅周副溝、第 1横溝、及び 第 2横溝に効率的に流れ込み、高いウエット性能が得られる。
[0036] また、ネガティブ率の増加を抑えつつ高!、ウエット性能が得られるため、ブロックの 踏面面積が確保され、耐摩耗性が向上する。
[0037] さらに、請求項 5に記載の空気入りタイヤでは、第 1横溝は、周方向広幅主溝側に 底上げ部を有し、タイヤ軸方向外側の始点力 周方向広幅主溝に向けて溝深さが漸 減しているので、ウエット路面での走行において、タイヤ軸方向中央付近の水は、底 上げ部により、周方向広幅主溝に流れ込む水と、第 1横溝に流れ込む水とに整流さ れて流れ込むことにより、より一層ゥエツト排水性が向上する。
[0038] さらに、底上げ部により、周方向広幅主溝内を流れる水の乱流の発生を抑えること が可能となり、ウエット排水性が向上する。
[0039] また、底上げ部が、底上げ部両側のブロックを補強するので、トレッド中央域のブロ ック剛性が増加し、トラクシヨン性能、ブレーキ性能、及びコーナリング性能が向上す る。
[0040] ここで、「第 1横溝が周方向広幅主溝と連結する」とは、第 1横溝が第 1横溝自身の 溝深さの 10%以下の深さ(溝深さ Ommは含まず)で周方向広幅主溝に開口する力、 または、第 1横溝の周方向広幅主溝側開口部分での溝深さが Ommである場合、溝 深さが Ommの領域のタイヤ軸方向幅が 3mm以下の場合を意味する。
[0041] 請求項 6に記載の発明は、請求項 5に記載の空気入りタイヤにおいて、前記底上げ 部は、タイヤ軸方向寸法が前記周方向広幅主溝の溝幅寸法の 60〜200%の範囲 内にある、ことを特徴としている。
[0042] 次に、請求項 6に記載の空気入りタイヤの作用を説明する。
[0043] 底上げ部のタイヤ軸方向寸法を周方向広幅主溝の溝幅寸法の 60〜200%の範囲 内にすることで、周方向広幅主溝に流れ込む水の量と、第 1横溝に流れ込む水の量 とを最適にバランスさせ、ウエット排水性を確実に向上させることができる。
[0044] 請求項 7に記載の発明は、請求項 5または請求項 6に記載の空気入りタイヤにおい て、前記底上げ部の頂部の深さ寸法は、前記トレッドの踏面力も計測して、前記第 1 横溝の溝深さ寸法の 10%以下に設定されている、ことを特徴としている。
[0045] 次に、請求項 7に記載の空気入りタイヤの作用を説明する。
[0046] 底上げ部の頂部の深さ寸法が、トレッドの踏面力も計測して、第 1横溝の溝深さ寸 法の 10%よりも大きい場合 (即ち、第 1横溝の底上げ部における溝深さが、底上げ部 以外の部分の溝深さの 10%よりも大きい場合)、周方向広幅主溝内を流れる水に乱 流が発生してウエット排水性が低下し、さらにトレッド中央領域のブロック剛性が低下 し (底上げ部によるブロック補強効果が低下するため)、トラクシヨン性能、ブレーキ性 能、及びコーナリング性能を向上させることが出来なくなる。
[0047] 請求項 8に記載の発明は、請求項 5乃至請求項 7の何れか 1項に記載の空気入りタ ィャにおいて、前記第 2横溝の溝幅は、前記第 1横溝の溝幅の 10〜80%の範囲内 に設定されている、ことを特徴としている。
[0048] 次に、請求項 8に記載の空気入りタイヤの作用を説明する。
[0049] 第 2横溝の溝幅を、第 1横溝の溝幅の 10〜80%の範囲内に設定することにより、ゥ エツト排水性と、トレッドのタイヤ軸方向外側領域のブロック剛性とを両立することがで きる。
[0050] ここで、第 2横溝の溝幅が、第 1横溝の溝幅の 10%未満になると、第 2横溝の溝体 積が不足し、ウエット排水性が低下する。
[0051] 一方、第 2横溝の溝幅が、第 1横溝の溝幅の 80%を超えると、トレッドのタイヤ軸方 向外側領域の踏面面積が減少し、ブロック剛性が低下し、コーナリング性能が悪ィ匕 する。
[0052] 請求項 9に記載の発明は、請求項 2乃至請求項 8の何れか 1項に記載の空気入りタ ィャにおいて、タイヤ軸方向最外側に配置される前記狭幅周副溝は、負荷転動時に タイヤ赤道面側からトレッド端に向けて順次路面と接する方向に傾斜している、ことを 特徴としている。
[0053] 次に、請求項 9に記載の空気入りタイヤの作用を説明する。
[0054] 複数の狭幅周副溝のうち、タイヤ軸方向外側に配置される狭幅周副溝を、負荷転 動時にタイヤ赤道面側からトレッド端に向けて順次路面と接する方向に傾斜させるこ とにより、タイヤ接地面部内のタイヤ軸方向両外側付近のウエット排水性能が向上す る。
[0055] 請求項 10に記載の発明は、請求項 1乃至請求項 9の何れか 1項に記載の空気入り タイヤにおいて、前記狭幅周副溝は、タイヤ赤道面側の溝壁がタイヤ周方向に直線 状に延びると共に、踏面に立てた法線に対する角度が 40度以上 80度以下である、 ことを特徴としている。
[0056] 次に、請求項 10に記載の空気入りタイヤの作用を説明する。
[0057] 狭幅周副溝のタイヤ赤道面側の溝壁を、タイヤ周方向に直線状に延ばし、かつ踏 面に立てた法線に対する角度を 40度以上 80度以下 (狭角側で計測)としたので、狭 幅周副溝のタイヤ赤道面側のブロックの剛性と、狭幅周副溝のウエット排水性とを両 立することができる。
[0058] 踏面に立てた法線に対する狭幅周副溝のタイヤ赤道面側の溝壁の角度が 40度未 満になると、狭幅周副溝のタイヤ赤道面側のブロックの剛性が低下し好ましくな 、。
[0059] 一方、踏面に立てた法線に対する狭幅周副溝のタイヤ赤道面側の溝壁の角度が 8 0度を超えると、狭幅周副溝の溝体積が不足し、ウエット排水性が低下し好ましくない
[0060] 請求項 11に記載の発明は、請求項 1乃至請求項 10の何れか 1項に記載の空気入 りタイヤにおいて、前記狭幅周副溝は、前記ブロックの踏み込み側においては、タイ ャ赤道面側の溝壁が、対向するタイヤ軸方向外側の溝壁に連結している、ことを特 徴としている。
[0061] 次に、請求項 11に記載の空気入りタイヤの作用を説明する。
[0062] 狭幅周副溝は、ブロックの蹴り出し側にぉ 、ては、タイヤ赤道面側の溝壁が、対向 するタイヤ軸方向外側の溝壁に連結して 、な 、が、ブロックの踏み込み側にぉ 、て は、タイヤ赤道面側の溝壁が、対向するタイヤ軸方向外側の溝壁に連結している。
[0063] 赤道面側の溝壁を、これに対向するタイヤ軸方向外側の溝壁に連結することで、狭 幅周副溝のタイヤ軸方向外側のブロックの剛性を高めることができ、トラクシヨン性能 、ブレーキ性能、及びコーナリング性能が向上する。
[0064] 請求項 12に記載の発明は、トレッドに、タイヤ周方向に対して傾斜して延びる横溝 を含む複数本の溝を備えた空気入りタイヤであって、前記横溝のタイヤ幅方向一方 端側には前記横溝を底上げする底上げ部が形成されていることにより、前記横溝は 、タイヤ幅方向一方端側で隣接する他の前記溝に実質上開口して終端し、前記横溝 は、タイヤ幅方向他方端側で隣接する他の前記溝又はトレッド端に完全に開口し、 前記底上げ部は、タイヤ幅方向他方端側力 前記底上げ部の頂部にかけて溝深さ を漸減させる傾斜面を溝底面として形成して 、る、ことを特徴として 、る。
[0065] 次に、請求項 12に記載の空気入りタイヤの作用を説明する。
[0066] 横溝が他の溝に実質上開口して終端するとは、横溝の終端がその横溝の最大深さ の 20%以下の深さで他の溝に開口する力、又は、終端に溝深さが Ommである部分 が形成され、かつ、溝深さが Ommである部分のタイヤ幅方向長さ(幅)が 3mm以内 であることを意味する。
[0067] また、横溝が他の溝に完全に開口するとは、横溝の開口部の深さが最大深さの 20 %より大きい深さで開口することを意味する。
[0068] 請求項 12に記載の空気入りタイヤでは、踏み面部にこのような方向性トレッド踏み 面模様が形成されており、また、横溝には上記のような底上げ部が形成されている。 これにより、ウエット路面での走行で底上げ部付近の水は、横溝のタイヤ幅方向一方 端側 (タイヤ軸方向一方端側)の他の溝に流れ込む水と、傾斜面によって横溝をタイ ャ幅方向他方端に向けて流れる水と、に整流されるので、ウエット排水性に優れた空 気入りタイヤとすることができる。
[0069] また、底上げ部により、隣接する陸部の角部の剛性が向上するため、ドライ路面で の操縦安定性、耐偏摩耗性、及びパターンノイズ性が向上する。なお、タイヤ表面側 から見て、すなわち踏み面側から見て鋭角である角部では、この効果は特に顕著に 見られる。
[0070] また、横溝の上記タイヤ幅方向一方端がその横溝の最大深さの 20%よりも深い深 さ位置で他の溝に開口していると、他の溝内を流れる水に乱流が発生してウエット排 水性が低下すると共に、トレッド中央領域のブロック剛性が低下してトラクシヨン性能、 ブレーキ性能、及びコーナリング性能が低下し、好ましくない。そして、横溝のタイヤ 幅方向一方端に溝深さが Ommである部分が形成され、溝深さが Ommである部分の タイヤ幅方向長さ(幅)が 3mmよりも大きい場合、横溝の溝容積が不足し、ウエット路 面での排水性が低下するため好ましくない。請求項 12に記載の発明では、上述した ように、横溝のタイヤ幅方向一方端が他の溝に実質上開口して終端するので、このよ うな不具合が発生することがない。なお、複数の溝は、少なくとも横溝を含んでおり、 横溝以外の溝、例えば、周方向主溝を含んでいてもよい。また、他の溝は、タイヤ周 方向に沿って延びて 、る溝でも良ぐタイヤ周方向に対して傾斜して 、る溝でも良 、
[0071] 請求項 13に記載の発明は、請求項 12に記載の空気入りタイヤにおいて、前記横 溝は略等間隔で形成されて 、る、ことを特徴として 、る。
[0072] 横溝は略等間隔で形成されて 、てもよ 、。
[0073] 請求項 14に記載の発明は、請求項 12または請求項 13に記載の空気入りタイヤに おいて、前記傾斜面を溝底面として有する溝部分の溝長さは、この溝部分を有する 前記横溝の溝長さの 5〜: LOO%の範囲内である、ことを特徴としている。
[0074] 次に、請求項 14に記載の空気入りタイヤの作用を説明する。
[0075] 上記溝部分がこの溝部分を有する横溝の溝長さの 5%よりも短いと、底上げ部に隣 接する陸部の角部の剛性が低下し、ドライ路面での操縦安定性、耐偏摩耗性、及び パターンノイズ性が大きく低下することがあり、好ましくない。このことは、上記角部のう ち踏み面側力 見て鋭角である角部で特に顕著に見られる。また、上記溝部分がこ の溝部分を有する横溝の溝長さの 100%よりも長 、と、この傾斜面が他の溝 (周方向 主溝など)に突き出して他の溝内の水流の妨げになり、ウエット排水性が低下するた め、好ましくない。
[0076] 請求項 14に記載の発明では、上記溝部分の溝長さはこの溝部分を有する横溝の 溝長さの 5〜100%の範囲内であるので、このような不具合が発生することがない。
[0077] 請求項 15に記載の発明は、請求項 12乃至請求項 14の何れか 1項に記載の空気 入りタイヤにおいて、前記トレッドは、タイヤ周方向に沿って延びる周方向主溝を備え 、前記底上げ部は、溝長手方向断面が山形状であって、前記頂部から前記横溝のタ ィャ幅方向一方端にかけて徐々に溝が深くなる一方端側傾斜面を溝底面として形成 しており、前記横溝に隣接する陸部のタイヤ幅方向一方端側の縁部は、前記一方端 側傾斜面と同一面を有するように前記周方向主溝に沿ってテーパ状に面取りされて なる縁面を有し、前記一方端側傾斜面及び前記縁面のタイヤ径方向に対する傾斜 角度が 30〜60° の範囲内である、ことを特徴としている。
[0078] 次に、請求項 15に記載の空気入りタイヤの作用を説明する。
[0079] 請求項 15に記載の発明では、上記の一方端側傾斜面及び縁面がこのように同一 面にされている。これにより、上記縁部の剛性が向上してドライ路面及びウエット路面 での操縦安定性ゃ耐偏摩耗性が向上する。また、ウエット路面での走行において、こ の縁部付近の陸部表面の水が乱流を生じることなく周方向主溝に流れ込むので、ゥ エツト排水性が更に向上する。
[0080] また、このように同一面にされ、し力も、底上げ部が形成している溝底終端が縁面の 周方向主溝内側の端縁と一致するので、周方向主溝内を流れる水が乱流を生じるこ となく整流された状態で流れる。このこともウエット排水性の向上に寄与している。
[0081] また、上記傾斜角度が 30° 未満であると、ウエット路面での走行において、この縁 部付近の陸部表面の水がこの周方向主溝に流れ込む際に乱流を生じ、ウエット排水 性が低下し易いため、あまり好ましくない。上記傾斜角度が 60° よりも大きいと、この 縁部に隣接する周方向主溝の溝体積が不足し易ぐウエット路面での走行において ウエット排水性が低下し易いので、あまり好ましくない。請求項 15に記載の発明では 、上記傾斜角度が 30〜60° の範囲内にされているので、このような不具合が生じる ことがない。
発明の効果
[0082] 本発明の空気入りタイヤは上記の構成としたので、他性能を犠牲にせずに、高いゥ エツト排水性能を得ることができる、 t 、う優れた効果を有する。
図面の簡単な説明
[0083] [図 1]本発明の第 1の実施形態に係る空気入りタイヤのトレッドの平面図である。
[図 2A]トレッドの拡大平面図である。
[図 2B]第 1狭幅周副溝の 2B— 2B線断面図である。
[図 2C]第 1狭幅周副溝の 2C— 2C線断面図である。
[図 2D]第 2狭幅周副溝の 2D— 2D線断面図である。
[図 2E]第 2狭幅周副溝の 2E— 2E線断面図である。
[図 3]本発明の第 2の実施形態に係る空気入りタイヤのトレッドの平面図である。
[図 4A]トレッドの拡大平面図である。
[図 4B]第 1狭幅周副溝の 4B—4B線断面図である。
[図 4C]第 1狭幅周副溝の 4C 4C線断面図である。
[図 4D]第 2狭幅周副溝の 4D— 4D線断面図である。
[図 4E]第 2狭幅周副溝の 4E—4E線断面図である。
[図 5A]図 3に示す底上げ部の 5— 5線断面図である。 [図 5B]他の実施形態に係る底上げ部の断面図である。
[図 5C]更に他の実施形態に係る底上げ部の断面図である。
[図 6]他の実施形態に係る空気入りタイヤのトレッドの平面図である。 圆 7]第 3の実施形態に係る空気入りタイヤのタイヤ径方向断面図である。
[図 8A]第 3の実施形態に係る空気入りタイヤのトレッドの平面図である。
[図 8B]図 8Aの 8B— 8B線断面図である。
[図 9A]第 4の実施形態に係る空気入りタイヤのトレッドの平面図である。
[図 9B]図 9Aの 9B— 9B線断面図である。
[図 10A]第 5の実施形態に係る空気入りタイヤのトレッドの平面図である。
[図 10B]図 1 OAの 1 OB— 1 OB線断面図である。
[図 11A]第 6の実施形態に係る空気入りタイヤのトレッドの平面図である。
[図 11B]図 11Aの 11B— 11B線断面図である。
[図 11C]図 11Aの 2C— 2線断面図である。
[図 12A]第 7の実施形態に係る空気入りタイヤのトレッドの平面図である。
[図 12B]図 12Aの 12B— 12B線断面図である。
[図 12C]図 12Aの 12C— 12C線断面図である。
[図 13A]第 8の実施形態に係る空気入りタイヤのトレッドの平面図である。
[図 13B]図 13Aの 13B— 13B線断面図である。
[図 13C]図 13Aの 13C— 13C線断面図である。
[図 14A]第 9の実施形態に係る空気入りタイヤのトレッドの平面図である。
[図 14B]図 14Aの 14B— 14B線断面図である。
[図 15A]第 10の実施形態に係る空気入りタイヤのトレッドの平面図である。
[図 15B]図 15Aの 15B— 15B線断面図である。
[図 16]従来例に係る空気入りタイヤのトレッドの平面図である。
[図 17]他の従来例に係る空気入りタイヤのトレッドの平面図である。
[図 18A]更に他の従来に係る空気入りタイヤのトレッドの平面図である。
[図 18B]図 18 Aの 18B— 18B線断面図である。
発明を実施するための最良の形態 [0084] [第 1の実施形態]
以下、図面を参照して本発明の空気入りタイヤの第 1の実施形態を詳細に説明す る。
[0085] 図 1に示すように、本実施形態の空気入りタイヤ 10のトレッド 12には、タイヤ周方向
(矢印 A方向、及び矢印 B方向。なお、矢印 B方向はタイヤ回転方向。 )に直線状に 延びる周方向広幅主溝 14がタイヤ赤道面 CL上に形成されており、そのタイヤ軸方 向外側にタイヤ周方向に延びる第 1狭幅周副溝 16が形成されており、さらにそのタイ ャ軸方向外側にタイヤ周方向に延びる第 2狭幅周副溝 18が形成されている。
[0086] 図 2Aに示すように、第 1狭幅周副溝 16のタイヤ赤道面 CL側の溝壁 16Aはタイヤ 周方向に直線状に延びており、第 1狭幅周副溝 16のタイヤ軸方向外側の溝壁 16B は踏み込み側から蹴り出し側に向けて溝壁 16 Aとの間隔 (溝幅)が広がる方向にタイ ャ周方向に対する対周方向傾斜角度を増大させている。
[0087] 図 2Bに示すように、第 1狭幅周副溝 16のタイヤ赤道面 CL側の溝壁 16Aは、トレツ ド 12の踏面 12Aに立てた法線 HLに対する溝壁角度 θ 16A力 0度以上 80度以下 であることが好ましい。本実施形態では、溝壁角度 θ 16Aが 60度に設定されている。
[0088] ちなみに、第 1狭幅周副溝 16の溝壁 16Bの溝壁角度 θ 16Bは 5度に設定されてい る。
[0089] 図 2A, Cに示すように、第 1狭幅周副溝 16のタイヤ赤道面 CL側の溝壁 16Aは、第 1狭幅周副溝 16の略中央部分力も踏み込み側において溝壁 16Bに接しており、溝 壁 16Aが溝壁 16Bに接している部分の溝断面形状は、図 2Cに示すように、略 V字 形状を呈している。
[0090] また、図 2A, Bに示すように、第 1狭幅周副溝 16において、溝壁 16Aが溝壁 16B に接していない部分では、図 2Bに示すように、溝壁 16Aの下端と溝壁 16Bの下端と の間に、トレッド 12の踏面 12Aと平行な平坦な溝底 16Cを有して逆台形状を呈して いる。
[0091] なお、第 1狭幅周副溝 16の溝壁 16Aと溝壁 16Bとが接している部分の溝深さは、 蹴り出し側(矢印 A方向)へ向かうに従って深くなつて!/、る。
[0092] 図 1に示すように、第 2狭幅周副溝 18は、タイヤ周方向に対し、負荷転動時にタイ ャ赤道面 CL側からトレッド端 12Eに向けて順次路面と接するように、タイヤ周方向に 対して傾斜している。
[0093] 図 2Aに示すように、第 2狭幅周副溝 18は、タイヤ赤道面 CL側の溝壁 18Aのタイヤ 周方向に対する角度 (対周方向傾斜角度 OC )が全長に渡って一定である力 タイヤ 軸方向外側の溝壁 18Bはタイヤ周方向に対する角度が蹴り出し側へ向けて増大し ている。
[0094] なお、第 2狭幅周副溝 18の溝壁 18Aの対周方向傾斜角度 ocは 3度以上 20度以下 が好ましい。
[0095] 図 2Dに示すように、第 2狭幅周副溝 18も第 1狭幅周副溝 16と同様に、タイヤ赤道 面 CL側の溝壁 18Aは、踏面 12Aに立てた法線 HLに対する角度 θ 18A力 0度以 上 80度以下であることが好ましい。本実施形態では、溝壁角度 θ 18Aが 60度に設定 されている。
[0096] ちなみに、第 2狭幅周副溝 18の溝壁 18Bの溝壁角度 θ 18Bは 5度に設定されてい る。
[0097] 図 2A, Eに示すように、第 2狭幅周副溝 18のタイヤ赤道面 CL側の溝壁 18Aは、第 1狭幅周副溝 16と同様に第 2狭幅周副溝 18の略中央部分力 踏み込み側において 対向する溝壁 18Bに接しており、溝壁 18 Aが溝壁 18Bに接して 、る部分の溝断面形 状は、第 1狭幅周副溝 16と同様に略 V字形状を呈している。
[0098] また、図 2A, Dに示すように、第 2狭幅周副溝 18において、溝壁 18Aが溝壁 18B に接していない部分では、第 1狭幅周副溝 16と同様に溝壁 18Aの下端と溝壁 18B の下端との間に、トレッド 12の踏面 12Aと平行な平坦な溝底を有して ヽる。
[0099] なお、第 2狭幅周副溝 18の溝壁 18Aと溝壁 18Bとが接している部分の溝深さは、 第 1狭幅周副溝 16と同様に蹴り出し側へ向かうに従って深くなつている。
[0100] 即ち、第 1狭幅周副溝 16、第 2狭幅周副溝 18共に、踏み込み側より蹴り出し側に おいて、溝幅、及び溝深さが大きくなつている。
[0101] 図 1に示すように、トレッド 12には、トレッド端 12E力もタイヤ赤道面 CLに向けて延 び、第 1狭幅周副溝 16、及び第 2狭幅周副溝 18と交差して周方向広幅主溝 14と連 結する第 1横溝 20と、第 1横溝 20間に配置されトレッド端 12Eからタイヤ赤道面 CL に向けて延び、第 1狭幅周副溝 16、及び第 2狭幅周副溝 18と交差して周方向広幅 主溝 14とは連結せずに終端する第 2横溝 22と、第 1横溝 20と第 2横溝 22との間に配 置されトレッド端 12Eからタイヤ赤道面 CLに向けて延びて第 1狭幅周副溝 16と第 2 狭幅周副溝 18との間で終端する第 3横溝 24が形成されている。
[0102] これら第 1横溝 20、第 2横溝 22、及び第 3横溝 24は、負荷転動時にタイヤ赤道面 C L側からトレッド端 12Eに向けて順次路面と接するように、タイヤ周方向に対して傾斜 している。
[0103] トレッド 12には、周方向広幅主溝 14のタイヤ軸方向両側に、周方向広幅主溝 14、 第 1狭幅周副溝 16、第 1横溝 20、及び第 2横溝 22で区画される第 1ブロック 26が区 画され、第 1ブロック 26のタイヤ軸方向外側には、第 1狭幅周副溝 16、第 2狭幅周副 溝 18、第 1横溝 20、第 2横溝 22、及び第 3横溝 24で区画される第 2ブロック 28が区 画され、第 2ブロック 28のタイヤ軸方向外側には、第 2狭幅周副溝 18、第 1横溝 20、 及び第 3横溝 24で区画される踏み込み側第 3ブロック 30と、第 2狭幅周副溝 18、第 2 横溝 22、及び第 3横溝 24で区画される蹴り出し側第 3ブロック 32が区画されて ヽる。
[0104] なお、第 2横溝 22のタイヤ赤道面側端部は第 1ブロック 26のタイヤ軸方向中央で終 端しており、第 3横溝 24のタイヤ赤道面側端部は第 2ブロック 28のタイヤ軸方向中央 で終端している。
[0105] ここで、第 1横溝 20の溝幅を W2、第 2横溝 22の溝幅を W3、第 3横溝 24の溝幅を
W4としたときに、 W3を W2の 60%以上 110%以下、 W4を W2の 20%以上 60%以 下に設定することが好ましい。
[0106] 本実施形態では、第 2横溝 22の溝幅 W3が第 1横溝 20の溝幅 W2の 64〜100% に設定されており、第 3横溝 24の溝幅 W4が第 1横溝 20の溝幅 W2の 28〜42%に 設定されている。
[0107] また、第 1ブロック 26には、周方向中央部に第 2横溝 22と周方向広幅主溝 14とを 連結する第 1横サイプ 34が形成され、第 1横サイプ 34と第 1横溝 20との間に第 1狭 幅周副溝 16と周方向広幅主溝 14とを連結する第 2横サイプ 36が形成されている。
[0108] また、踏み込み側第 3ブロック 30、及び蹴り出し側第 3ブロック 32には、蹴り出し縁 力も踏み込み側へ向けて延び、ブロック中央で終端する縦サイプ 38が形成されてい る。
(作用)
本実施形態の空気入りタイヤ 10のトレッドパターンは方向性パターンとなっている ので、ウエット路面走行時に、路面との間の水が周方向広幅主溝 14、第 1狭幅周副 溝 16、第 2狭幅周副溝 18、第 1横溝 20、第 2横溝 22、及び第 3横溝 24に効率的に 流れ込み、ネガティブ率の増加を抑えつつ高いウエット性能が得られる。また、ネガ ティブ率の増加を抑えつつ高いウエット性能が得られるため、各ブロックの踏面面積 を確保でき、耐摩耗性が向上する。
[0109] 第 2ブロック 28の周方向長さは第 1ブロック 26の略 1Z2となり、踏み込み側第 3ブロ ック 30、及び蹴り出し側第 3ブロック 32の周方向長さは第 2ブロック 28の略 1/2とな つているので、トレッド中央領域側でブロック剛性を増加させて、トラクシヨン性能、ブ レーキ性能、及びコーナリング性能を向上できると同時に、トレッド両側域でのゥエツ ト排水性を向上できる。さらに、タイヤ軸方向中央領域のブロック剛性が増加すること により、前輪に用いた場合にハンドリング性能が向上する。
[0110] 第 1狭幅周副溝 16、第 2狭幅周副溝 18が、ブロックを区画する範囲において、負 荷転動時のブロックの蹴り出し側力も踏み込み側に向力つて、その幅及び深さを減 少させているので、第 1狭幅周副溝 16、第 2狭幅周副溝 18に隣接するブロックの踏 み込み側のブロック剛性が増加し、トラクシヨン性能、ブレーキ性能、及びコーナリン グ性能が向上する。
[0111] 第 2横溝 22のタイヤ赤道面側終端位置が第 1ブロック 26のタイヤ軸方向中央域に 位置しており、第 3横溝 24のタイヤ赤道面側終端位置が第 2ブロック 28のタイヤ軸方 向中央域に位置しているので、これら各ブロックの踏面上にある水を効率的に排水で き、高いウエット排水性能を得つつ、ブロック踏面面積 (耐摩耗性に関係する)、及び ブロック剛性 (操縦安定性に関係する)を確保できる。したがって、高いウエット排水 性能、操縦安定性、及び耐摩耗性をバランス良く両立することができる。
[0112] 第 1狭幅周副溝 16のタイヤ赤道面 CL側の溝壁 16Aを、タイヤ周方向に直線状に 延ばし、かつ踏面 12Aに立てた法線 HLに対する角度 θ 16Aを 50度以上 80度以下 に設定しているので、第 1狭幅周副溝 16のタイヤ赤道面 CL側の第 1ブロック 26の剛 性と、第 1狭幅周副溝 16のウエット排水性とを両立することができる。
[0113] 第 1狭幅周副溝 16のブロック踏み込み側においては、タイヤ赤道面 CL側の溝壁 1 6Aが、対向するタイヤ軸方向外側の溝壁 16Bに連結しているので、第 1狭幅周副溝 16のタイヤ軸方向外側の第 2ブロック 28の剛性を高めることができ、トラクシヨン性能 、ブレーキ性能、及びコーナリング性能が向上する。
[0114] 同様に、第 2狭幅周副溝 18のブロック踏み込み側においては、タイヤ赤道面 CL側 の溝壁 18Aが、対向するタイヤ軸方向外側の溝壁 18Bに連結しているので、第 2狭 幅周副溝 18のタイヤ軸方向外側の第 3ブロック 30の剛性を高めることができる。
[0115] 第 2横溝 22の溝幅 W3を第 1横溝 20の溝幅 W2の 60%以上 110%以下、第 3横溝 24の溝幅 W4を第 1横溝 20の溝幅 W2の 20%以上 60%以下に設定することで、第 1 横溝 20と第 2横溝 22で囲まれた領域のウエット排水性とブロック剛性とを両立するこ とがでさる。
[0116] 第 2横溝 22の溝幅 W3を、第 1横溝 20の溝幅 W2と略同等、即ち、第 2横溝 22の溝 幅 W3を第 1横溝 20の溝幅 W2の 60%以上 110%以下とすることで、高いウエット排 水性が確保される。
[0117] タイヤ軸方向最外側に配置される第 2狭幅周副溝 18を、負荷転動時にタイヤ赤道 面 CL側からトレッド端 12Eに向けて順次路面と接する方向に傾斜させることにより、 タイヤ接地面部内のタイヤ軸方向両外側付近のウエット排水性能が向上する。
[0118] したがって、本実施形態の空気入りタイヤ 10は、競技用超高性能車両用フロントタ ィャとして用いることが好適である。
[0119] なお、第 2狭幅周副溝 18の溝壁 18Aの対周方向傾斜角度 ocが 3度未満になると、 ウエット排水性能を向上させることが出来なくなる。
[0120] 一方、対周方向傾斜角度 exが 20度を超えると、第 2ブロック 28の第 2横溝 22に接 するブロック端のうち、蹴り出し側のブロック端が鋭角となり、ブロック剛性が不足する こととなり好ましくない。
(試験例)
本発明の効果を確かめるために従来例のタイヤ、及び本発明の適用された実施例 のタイヤをそれぞれ実車の前輪に装着して試験を行い、ハイドロプレーニング、ゥェ ット ·サーキットラップタイム、及びウエットグリップについて従来タイヤとの比較を行つ た。
[0121] ハイドロプレーニング:水深 2mmのウエット路面を走行し、ハイドロプレーング発生 速度を測定した。評価は、従来タイヤのハイドロプレーニング発生速度を 100とする 指数表示とした。なお、数値が大きいほどハイドロプレーニング発生速度が高ぐゥェ ット排水性が優れて 、ることを表して 、る。
[0122] ウエット 'サーキットラップタイム:水深 2mmのウエット路面(テストコース)を周回走行 した時のラップタイムを計測。評価は従来タイヤのラップタイムを 100とする指数表示 とした。なお、数値が小さいほどラップタイムが短ぐウエット 'サーキット走行性が優れ ていることを表す。
[0123] ウエットグリップ:水深 2mmのウエット路面(テストコース)を周回走行した時のテスト ドライバーによるフィーリング評価とした。評価は、従来タイヤのフィーリングを 100とし する指数表示とした。数値が大き ヽほどウエットグリップに優れて ヽることを表す。
[0124] 実施例のタイヤ:前述した実施形態で説明した空気入りタイヤである。
[0125] 従来例のタイヤ:図 16に示すトレッドパターンを有する空気入りタイヤである。
[0126] 図 16に示すように、従来例の空気入りタイヤ 500のトレッド 502には、タイヤ赤道面
CL上に周方向広幅主溝 504が形成されている。
[0127] また、トレッド 502には、周方向広幅主溝 504の両側に、トレッド端 502Eから周方向 広幅主溝 504に向けて延び、周方向広幅主溝 504に連結する第 1横溝 506が複数 形成され、第 1横溝 506の間にはトレッド端 502E力 周方向広幅主溝 504に向けて 延び、タイヤ赤道面 CLとトレッド端 502Eとの中間部分で終端する第 2横溝 508が形 成されている。
[0128] また、第 1横溝 506の中間部には、踏み込み側に向けて延び、ブロック内で終端す る副溝 510が連結している。
[0129] 従来例、及び実施例のタイヤのサイズは、 RAR 265Z55R13 (トレッド幅 200mm
)である。また、各タイヤの緒元は、表 1に記載した通りである。
[0130] 試験車両ホイールァライメント:前輪 トー角(トーアウト側) lmm、
ネガティブキャンバー角 4° 後輪 トー角(トーイン側) lmm
ネガティブキャンバー角 3°
なお、試験結果は、以下の表 2に示す通りである。
[0131] [表 1]
Figure imgf000021_0001
[0132] [表 2]
Figure imgf000021_0002
[0133] 試験の結果から、本発明の適用された実施例の空気入りタイヤは、従来例の空気 入りタイヤに比較してハイドロプレーニング、ウエット 'サーキットラップタイム、及びゥ エツト 'グリップのすべてに対して性能が向上していることが分かる。
[第 2の実施形態]
以下、図面を参照して本発明の空気入りタイヤの第 2の実施形態を詳細に説明す る。
[0134] 図 3に示すように、本実施形態の空気入りタイヤ 110のトレッド 112には、タイヤ周方 向に直線状に延びる周方向広幅主溝 114がタイヤ赤道面 CL上に形成されており、 そのタイヤ軸方向外側にタイヤ周方向に延びる第 1狭幅周副溝 116が形成されてお り、さらにそのタイヤ軸方向外側にタイヤ周方向に延びる第 2狭幅周副溝 118が形成 されている。
[0135] 図 4Aに示すように、狭幅周副溝 116のタイヤ赤道面 CL側の溝壁 116Aはタイヤ周 方向に直線状に延びており、第 1狭幅周副溝 116のタイヤ軸方向外側の溝壁 116B は踏み込み側から蹴り出し側に向けて溝壁 116Aとの間隔 (溝幅)が広がる方向にタ ィャ周方向に対する対周方向傾斜角度を増大させている。
[0136] 図 4Bに示すように、第 1狭幅周副溝 116のタイヤ赤道面 CL側の溝壁 116Aは、ト レッド 112の踏面 112Aに立てた法線 HLに対する溝壁角度 Θ 力 0度以上 80度
16A
以下であることが好ましい。本実施形態では、溝壁角度 Θ が 60度に設定されてい
16A
る。
[0137] ちなみに、第 1狭幅周副溝 116の溝壁 116Bの溝壁角度 0 は 5度に設定されて
16B
いる。
[0138] 図 4A, Cに示すように、第 1狭幅周副溝 116のタイヤ赤道面 CL側の溝壁 116Aは 、第 1狭幅周副溝 116の略中央部分力 踏み込み側において溝壁 116Bに接してお り、溝壁 116Aが溝壁 116Bに接している部分の溝断面形状は、図 4Cに示すように、 略 V字形状を呈している。
[0139] また、図 4A, Bに示すように、第 1狭幅周副溝 116において、溝壁 116Aが溝壁 11 6Bに接していない部分では、図 4Bに示すように、溝壁 116Aの下端と溝壁 116Bの 下端との間に、トレッド 112の踏面 112Aと平行な平坦な溝底 116Cを有して逆台形 状を呈している。
[0140] なお、第 1狭幅周副溝 116の溝壁 116Aと溝壁 116Bとが接している部分の溝深さ は、蹴り出し側へ向かうに従って深くなつて!/、る。
[0141] 図 4Aに示すように、第 2狭幅周副溝 118のタイヤ赤道面 CL側の側壁 118Aは、第 1狭幅周副溝 116の溝壁 116Aと同様にタイヤ周方向に直線状に延びており、第 2 狭幅周副溝 118のタイヤ軸方向外側の溝壁 118Bは踏み込み側から蹴り出し側に向 けて溝壁 118Aとの間隔 (溝幅)が広がる方向にタイヤ周方向に対する対周方向傾 斜角度を増大させている。
[0142] 図 4Dに示すように、第 2狭幅周副溝 118も第 1狭幅周副溝 116と同様に、タイヤ赤 道面 CL側の溝壁 118Aは、踏面 112Aに立てた法線 HLに対する角度 Θ 力 0度
18A 以上 80度以下であることが好ましい。本実施形態では、溝壁角度 Θ が 60度に設
18A
定されている。
[0143] ちなみに、第 2狭幅周副溝 118の溝壁 118Bの溝壁角度 0 は 5度に設定されて
18B
いる。
[0144] 図 4A, Dに示すように、第 2狭幅周副溝 118のタイヤ赤道面 CL側の溝壁 18Aは、 第 1狭幅周副溝 116と同様に第 2狭幅周副溝 118の略中央部分力 踏み込み側に おいて対向する溝壁 118Bに接しており、溝壁 118 Aが溝壁 118Bに接して 、る部分 の溝断面形状は、第 1狭幅周副溝 116と同様に略 V字形状を呈している。
[0145] 図 4A, Eに示すように、第 2狭幅周副溝 118において、溝壁 118Aが溝壁 118Bに 接していない部分では、第 1狭幅周副溝 116と同様に溝壁 118Aの下端と溝壁 118 Bの下端との間に、トレッド 112の踏面 112Aと平行な平坦な溝底を有して 、る。
[0146] なお、第 2狭幅周副溝 118の溝壁 118Aと溝壁 118Bとが接している部分の溝深さ は、第 1狭幅周副溝 116と同様に蹴り出し側へ向かうに従って深くなつている。
[0147] 即ち、第 1狭幅周副溝 116、第 2狭幅周副溝 118共に、踏み込み側より蹴り出し側 において、溝幅、及び溝深さが大きくなつており、排水性を向上しつつ、ブロック剛性 を確保している。
[0148] 図 3に示すように、トレッド 112には、トレッド端 112E力 タイヤ赤道面 CLに向けて 延び、第 1狭幅周副溝 116、及び第 2狭幅周副溝 118と交差して周方向広幅主溝 11 4と連結する第 1横溝 120と、第 1横溝 120間に配置されトレッド端 112Eからタイヤ赤 道面 CLに向けて延び、第 2狭幅周副溝 118と交差して第 1狭幅周副溝 116と第 2狭 幅周副溝 118との中間部で終端する第 2横溝 122とが形成されている。
[0149] トレッド 112には、周方向広幅主溝 114のタイヤ軸方向両側に、周方向広幅主溝 1 14、第 1狭幅周副溝 116、及び第 1横溝 120で区画される第 1ブロック 126が区画さ れ、第 1ブロック 126のタイヤ軸方向外側には、第 1狭幅周副溝 116、第 2狭幅周副 溝 118、第 1横溝 120、及び第 2横溝 122で区画される第 2ブロック 128が区画され、 第 2ブロック 128のタイヤ軸方向外側には、第 2狭幅周副溝 118、第 1横溝 120、及 び第 2横溝 122で区画される踏み込み側第 3ブロック 130、及び蹴り出し側第 3ブロッ ク 132が区画されている。
[0150] 第 1横溝 120は、周方向広幅主溝 114側に底上げ部 140を有している。
[0151] 図 3及び図 5に示すように、本実施形態の底上げ部 140は、周方向広幅主溝 114 側の端部力もタイヤ軸方向外側へ形成されている。したがって、周方向広幅主溝 11
4の溝壁は、タイヤ周方向に沿って直線状に延びており、凹凸していない。
[0152] 底上げ部 140は、周方向広幅主溝 14側の端部において最も高ぐタイヤ軸方向外 側へ向けて高さが漸減しており、図 5に示すように、長手方向断面形状が略三角形を 呈している。
[0153] 底上げ部 140の頂部 140Aは、本実施形態では、図 3に示すように、周方向広幅主 溝 114の踏面開口縁部の延長線上に直線状に配置されて!ヽる。
[0154] また、底上げ部 140の裾 140Bは、本実施形態では、図 3に示すように、タイヤ周方 向に直線状に形成されている(頂部 140Aと平行)。
[0155] 図 3に示すように、底上げ部 140は、タイヤ軸方向寸法 LOが周方向広幅主溝 114 の溝幅寸法 WOの 60〜200%の範囲内にあることが好ましぐ本実施形態では、タイ ャ軸方向寸法 LOが溝幅寸法 WOの 123%に設定されている。
[0156] また、本実施形態の底上げ部 140では、図 5Aに示すように、頂部 140Aが三角形 の頂点となっており、長手方向断面で見て幅を有していないが、図 5B及び図 6に示 すように、頂部 140Aは幅 L1を有していても良い。
[0157] 但し、頂部 140Aの幅 L1は、頂部 140Aの位置がトレッド 112の踏面 112Aと同レ ベルにあるときは、 3mm以下とする。
[0158] また、図 5Cに示すように、頂部 140Aでの深さ dは、第 1横溝 120の溝深さ(底上げ 部 140以外の部分、即ち最深部) Dの 10%以上とする。
[0159] 図 3に示すように、第 2横溝 122のタイヤ赤道面側端部は第 2ブロック 128のタイヤ 軸方向中央で終端している。
[0160] 第 2横溝 122の溝幅 W3は、第 1横溝 120の溝幅 W2の 10〜80%の溝幅を有する ことが好ましぐ本実施形態の第 2横溝 122の溝幅 W3は、第 1横溝 120の溝幅 W2の
14〜50%である。
[0161] また、第 1ブロック 126の周方向中央部には、第 1狭幅周副溝 116からブロック中央 に向けて延び、ブロック中央で終端する横サイプ 134が形成されて 、る。
[0162] また、踏み込み側第 3ブロック 130のタイヤ軸方向中央部、及び蹴り出し側第 3プロ ック 132のタイヤ軸方向中央部には、蹴り出し縁から踏み込み側へ向けて延び、プロ ック中央で終端する縦サイプ 138が形成されている。
(作用)
本実施形態の空気入りタイヤ 110では、ウエット路面での走行において、タイヤ軸 方向中央付近の水は周方向広幅主溝 114に流れ込み、それ以外の水は第 1横溝 1 20に流れ込む。
[0163] さらに、周方向広幅主溝 114と第 1横溝 120によって囲まれるブロックの踏面上の 水は、周方向広幅主溝 114、第 1狭幅周副溝 116、及び第 2横溝 122に流れ込む。
[0164] この空気入りタイヤ 110のトレッドパターンは方向性パターンとなっているので、ゥェ ット路面走行時に、路面との間の水が周方向広幅主溝 114、第 1狭幅周副溝 116、 第 2狭幅周副溝 118、第 1横溝 120、及び第 2横溝 122に効率的に流れ込み、ネガ ティブ率の増加を抑えつつ高いウエット性能が得られる。
[0165] また、ネガティブ率の増加を抑えつつ高!、ウエット性能が得られるため、各ブロック の踏面面積を確保でき、耐摩耗性が向上する。
[0166] 第 1狭幅周副溝 116、第 2狭幅周副溝 118が、ブロックを区画する範囲において、 負荷転動時のブロックの蹴り出し側力も踏み込み側に向力つて、その幅及び深さを 減少させているので、第 1狭幅周副溝 116、第 2狭幅周副溝 118に隣接するブロック の踏み込み側のブロック剛性が増加し、トラクシヨン性能、ブレーキ性能、及びコーナ リング性能が向上する。
[0167] 第 1狭幅周副溝 116のタイヤ赤道面 CL側の溝壁 116Aを、タイヤ周方向に直線状 に延ばし、かつ踏面 112Aに立てた法線 HLに対する角度 Θ を 50度以上 80度以
16A
下に設定しているので、第 1狭幅周副溝 116のタイヤ赤道面 CL側の第 1ブロック 126 の剛性と、第 1狭幅周副溝 116のウエット排水性とを両立することができる。
[0168] 第 1狭幅周副溝 116のブロック踏み込み側にぉ 、ては、タイヤ赤道面 CL側の溝壁 116Aが、対向するタイヤ軸方向外側の溝壁 116Bに連結しているので、第 1狭幅周 副溝 116のタイヤ軸方向外側の第 2ブロック 128の剛性を高めることができ、トラクショ ン性能、ブレーキ性能、及びコーナリング性能が向上する。
[0169] 同様に、第 2狭幅周副溝 118のブロック踏み込み側においては、タイヤ赤道面 CL 側の溝壁 118A力 対向するタイヤ軸方向外側の溝壁 118Bに連結しているので、 第 2狭幅周副溝 118のタイヤ軸方向外側の第 3ブロック 130の剛性を高めることがで きる。
[0170] 第 2横溝 122の溝幅を、第 1横溝 120の溝幅の 10〜80%の範囲内に設定すること により、ウエット排水性と、トレッド 112のタイヤ軸方向外側領域のブロック剛性とを両 立することができる。
[0171] したがって、本実施形態の空気入りタイヤ 110は、競技用超高性能車両用リアタイ ャとして用いることが好適である。
(試験例)
本発明の効果を確かめるために従来例のタイヤ、及び本発明の適用された実施例 のタイヤをそれぞれ実車の後輪に装着して試験を行い、ハイドロプレーニング、ゥェ ット ·サーキットラップタイム、及びウエットグリップについて従来タイヤとの比較を行つ た。
[0172] ハイドロプレーニング:水深 2mmのウエット路面を走行し、ハイドロプレーング発生 速度を測定した。評価は、従来タイヤのハイドロプレーニング発生速度を 100とする 指数表示とした。なお、数値が大きいほどハイドロプレーニング発生速度が高ぐゥェ ット排水性が優れて 、ることを表して 、る。
[0173] ウエット 'サーキットラップタイム:水深 2mmのウエット路面(テストコース)を周回走行 した時のラップタイムを計測。評価は従来タイヤのラップタイムを 100とする指数表示 とした。なお、数値が小さいほどラップタイムが短ぐウエット 'サーキット走行性が優れ ていることを表す。
[0174] ウエットグリップ:水深 2mmのウエット路面(テストコース)を周回走行した時のテスト ドライバーによるフィーリング評価とした。評価は、従来タイヤのフィーリングを 100とし する指数表示とした。数値が大き ヽほどウエットグリップに優れて ヽることを表す。
[0175] 実施例 1のタイヤ:前述した実施形態で説明した図 3のノターンを有する空気入りタ ィャである。 [0176] 実施例 2のタイヤ:前述した実施形態で説明した図 6のノターンを有する空気入りタ ィャである。なお、底上げ部の頂部の幅は、 2mmである。
[0177] 従来例のタイヤ:図 17に示すトレッドパターンを有する空気入りタイヤである。
[0178] 図 17に示すように、従来例の空気入りタイヤ 600のトレッド 602には、タイヤ赤道面 CL上に周方向広幅主溝 604が形成されている。
[0179] また、トレッド 602には、周方向広幅主溝 604の両側に、トレッド端 602Eから周方向 広幅主溝 604に向けて延び、周方向広幅主溝 604に連結する第 1横溝 606が複数 形成され、第 1横溝 606の間にはトレッド端 602E力も周方向広幅主溝 604に向けて 延び、タイヤ赤道面 CLとトレッド端 602Eとの中間部分で終端する第 2横溝 608が形 成されている。
[0180] また、第 1横溝 606の中間部には、踏み込み側に向けて延びて、ブロック中央部分 で終端する副溝 610が連結されている。
[0181] なお、符号 612は、陸部分に形成されたサイプである。
[0182] 従来例、及び実施例のタイヤのサイズは、 RAR 325Z55R13 (トレッド幅 250mm
)である。また、各タイヤの諸元は、表 3に記載した通りである。
[0183] 試験車両ホイールァライメント:前輪 トー角(トーアウト側) lmm、
ネガティブキャンバー角 4°
後輪 トー角(トーイン側) lmm
ネガティブキャンバー角 3°
なお、試験結果は、以下の表 4に示す通りである。
[0184] [表 3]
従来例 実施例 1 実施例 2 周方向広幅主溝 2. 8 2. 8 2. 8
溝深さ D O (mm)
周方向広幅主溝 1 7 1 7 1 7
溝幅 WO (mm)
第 1, 2狭幅周副溝 1. 3〜2. 8 1. 3~2. 8 '溝深さ D 1
第 1, 2狭幅周副溝 4. 0 4. 0
中間部の溝幅 Wl (mm)
第 1横溝 2. 8 2. 8 2. 8
溝深さ D 2 (mm)
第 1横溝 1 3 ~ 1 5 14~ 20 1 4〜20 溝幅 W2 (mm)
第 2横溝 2. 8 2. 8 2. 8
溝深さ D3 (mm)
第 2横溝 6〜9 2~ 1 0 2~ 1 0 溝幅 W3 (mm)
底上げ部 1 6 1 6
幅 L 0 (mm)
底上げ部 0 2
頂部幅 L 1 (mm)
[0185] [表 4]
Figure imgf000028_0001
[0186] 試験の結果から、本発明の適用された実施例 1, 2の空気入りタイヤは、従来例の 空気入りタイヤに比較してハイドロプレーニング、ウエット 'サーキットラップタイム、及 びウエット 'グリップのすべてに対して性能が向上していることが分かる。
[第 3の実施形態]
以下、図面を参照して本発明の空気入りタイヤの第 3の実施形態を詳細に説明す る。
[0187] 図 7に示すように、本実施形態に係る空気入りタイヤ 210は、実質上ラジアル方向 に延びるコードを含み、両端部がそれぞれビードコア 211で折り返されたカーカス 21 2を備えている。カーカス 212は、 1層又は複数層で構成される。
[0188] カーカス 212のクラウン部 12Cのタイヤ径方向外側には、複数枚のベルトプライが 重ねられたベルト層 214が埋設されて!、る。ベルト層 214のタイヤ径方向外側には、 溝を配設したトレッド部 218が形成されている。
[0189] 図 8に示すように、トレッド部 218の踏み面部 219には、タイヤ周方向に延びる第 1 外主溝 222Aがタイヤ赤道面 CLの片面側に形成され、タイヤ周方向に延びる第 2外 主溝 222Bがタイヤ赤道面 CLのもう片面側に形成されている。この第 1外主溝 222A 及び第 2外主溝 222Bは、何れも踏み面部 219の幅 Wの 1Z4点 Qに近い位置にそ れぞれ形成されている。この第 1外主溝 222A及び第 2外主溝 222Bによって、踏み 面部 219が中央領域 220と両側領域 221とに区画されている。
[0190] 両側領域 221には、タイヤ赤道面側の端部が第 1外主溝 222A又は第 2外主溝 22 2Bに実質的に開口して終端するラグ溝 226がタイヤ周方向に略等間隔に形成され ている。
[0191] 各ラグ溝 226のタイヤ幅方向両端部は、トレッド端を越えてタイヤ幅方向外側へ排 水可能なように延びている。ここで、トレッド端とは、空気入りタイヤを JATMA YEA R BOOK (2004年度版、 日本自動車タイヤ協会規格)に規定されている標準リム に装着し、 JATMA YEAR BOOKでの適用サイズ'プライレーティングにおける最 大負荷能力(内圧 負荷能力対応表の太字荷重)に対応する空気圧 (最大空気圧) の 100%を内圧として充填し、最大負荷能力を負荷したときのタイヤ幅方向最外の接 地部分を指す。なお、使用地又は製造地において TRA規格、 ETRTO規格が適用 される場合は各々の規格に従う。
[0192] 中央領域 220には、タイヤ周方向に延びる第 1内主溝 224Aがタイヤ赤道面 CLの 片面側に形成され、タイヤ周方向に延びる第 2内主溝 224Bがタイヤ赤道面 CLのも う片面側に形成されている。第 1外主溝 222A、第 2外主溝 222B、第 1内主溝 224A 、及び、第 2内主溝 224Bは、何れも溝深さ Dの主溝である。この第 1内主溝 224A
0
及び第 2内主溝 224Bは、第 1内主溝 224Aと第 2内主溝 224Bとの間隔、第 1外主溝 222Aと第 1内主溝 224Aとの間隔、及び、第 2外主溝 222Bと第 2内主溝との間隔が 略同一となる位置に配置されている。
[0193] 中央領域 220には、第 1内主溝 224A及び第 2内主溝 224Bによって区画されてな る中央陸部列 228と、第 1外主溝 222Aと第 1内主溝 224Aとによって区画されてなる 第 1隣接陸部列 230と、第 2外主溝 222Bと第 2内主溝 224Bとによって区画されてな る第 2隣接陸部列 232と、が形成されている。
[0194] 中央領域 220には、中央陸部列 228を横断するように略等間隔で形成され、タイヤ 周方向に対して傾斜して延びる複数本の中央傾斜溝 (ラグ溝) 234が形成されて ヽる 。この結果、第 1内主溝 224A、第 2内主溝 224B、及び、タイヤ周方向に互いに隣り 合う中央傾斜溝 234により、タイヤ赤道面 CLの両側に跨るようにタイヤ周方向に配列 された陸部 229が、中央陸部列 228に形成されている。
[0195] また、中央領域 220には、第 1隣接陸部列 230を横断するように略等間隔で形成さ れ、タイヤ周方向に対して傾斜して延びる複数本の第 1傾斜溝 236が配置されてい る。この結果、第 1内主溝 224A、第 1外主溝 222A、及び、タイヤ周方向に互いに隣 り合う第 1傾斜溝 236により、タイヤ周方向に配列された陸部 231が第 1隣接陸部列 2 30に形成されている。この第 1傾斜溝 236の傾斜方向は、中央傾斜溝 234の傾斜方 向と逆方向である。
[0196] 同様に、中央領域 220には、第 2隣接陸部列 232を横断するように略等間隔で形 成され、タイヤ周方向に対して傾斜して延びる複数本の第 2傾斜溝 238が配置され ている。この結果、第 2内主溝 224B、第 2外主溝 222B、及び、タイヤ周方向に互い に隣り合う第 2傾斜溝 238により、タイヤ周方向に配列された陸部 233が第 2隣接陸 部列 232に形成されている。この第 2傾斜溝 238の傾斜方向は第 1傾斜溝 236と同 方向である。
[0197] 中央傾斜溝 234、第 1傾斜溝 236、及び、第 2傾斜溝 238の溝長さは何れも Lであ
0 る。中央傾斜溝 234、第 1傾斜溝 236、及び、第 2傾斜溝 238の溝深さは、後述の底 上げ部以外の溝部分では D (図 8B参照)である。
1
[0198] (第 1傾斜溝)
第 1傾斜溝 236の第 1内主溝側端 236Jの付近には、溝底を底上げする第 1底上げ 部 242が形成されており、この結果、第 1傾斜溝 236は第 1内主溝 224Aに実質上開 口して終端して 、る(図 8Bも参照)。
[0199] 第 1底上げ部 242の溝長手方向断面は、第 1稜線 244が形成された第 1内主溝側 端 236Jが最も高い山形状であり、第 1内主溝側端 236J力も底上げ部 242の第 1外 主溝側端 242Kに向けて徐々に溝が深くなる(すなわち、第 1底上げ部 242の第 1外 主溝側端 242Kから第 1内主溝側端 236Jに向けて溝深さが漸減する)第 1傾斜面 24 6を溝底面として形成して 、る。
[0200] 第 1傾斜溝 236は、第 1傾斜溝 236の第 1外主溝側端 236Kで第 1外主溝 222Aに 完全に開口している。
[0201] 第 1傾斜面 246を溝底面として有する溝部分 236Pの溝長さ Lは、この溝部分 236
1
Pを有する第 1傾斜溝 236の溝長さ Lの 5〜100%の範囲内にされている。
0
[0202] 第 1稜線 244は、タイヤ幅方向位置が第 1内主溝 224Aの溝縁と同じ位置にされて いる。
[0203] (中央傾斜溝)
中央傾斜溝 234の第 1内主溝側端 23 Jの付近には、溝底を底上げする中央底上 げ部 252が形成されており、この結果、中央傾斜溝 234は第 1内主溝 224Aに実質 上開口して終端している。
[0204] 第 1底上げ部 242と同様、中央底上げ部 252の溝長手方向断面は、中央稜線 254 が形成された第 1内主溝側端 23 Jが最も高い山形状であり、第 1内主溝側端 23 J 力も中央底上げ部 252の第 2内主溝側端 252Kに向けて徐々に溝が深くなる (すな わち、中央底上げ部 252の第 2内主溝側端 252K力も第 1内主溝側端 23 Jに向けて 溝深さが漸減する)中央傾斜面 256を溝底面として形成して 、る。
[0205] 中央傾斜溝 234は、中央傾斜溝 234の第 2内主溝側端 234Kで第 2内主溝 224B に完全に開口している。
[0206] 中央傾斜面 256を溝底面として有する溝部分 234Pの溝長さは、この溝部分 234P を有する中央傾斜溝 234の溝長さの 5〜: LOO%の範囲内にされている。
[0207] 中央稜線 254は、タイヤ幅方向位置が第 1内主溝 224Aの溝縁と同じ位置にされて いる。
[0208] (第 2傾斜溝)
第 2傾斜溝 238の第 2内主溝側端 238Jの付近には、溝底を底上げする第 2底上げ 部 262が形成されており、この結果、第 2傾斜溝 238は第 2内主溝 224Bに実質上開 口して終端している。 [0209] 中央底上げ部 252と同様、第 2底上げ部 262の溝長手方向断面は、第 2稜線 264 が形成された第 2内主溝側端 238Jが最も高い山形状であり、第 2内主溝側端 238J 力も第 2底上げ部 262の第 2外主溝側端 262Kに向けて徐々に溝が深くなる (すなわ ち、第 2底上げ部 262の第 2外主溝側端 262Kから第 2内主溝側端 238Jに向けて溝 深さが漸減する)第 2傾斜面 266を溝底面として形成している。
[0210] 第 2傾斜溝 238は、第 2傾斜溝 238の第 2外主溝側端 238Kで第 2外主溝 222Bに 完全に開口している。
[0211] 第 2傾斜面 266を溝底面として有する溝部分 238Pの溝長さは、この溝部分 238P を有する第 2傾斜溝 238の溝長さの 5〜: LOO%の範囲内にされている。
[0212] 第 2稜線 264は、タイヤ幅方向位置が第 2内主溝 224Bの溝縁と同じ位置にされて いる。
[0213] (ラグ溝)
タイヤ赤道面 CLの両側でラグ溝 226の基本的な構成、作用、効果を同じなので、 図 8Aで紙面左側(タイヤ赤道面 CLの片面側)のラグ溝 226について説明し、紙面右 側のラグ溝にっ 、てはその説明を省略する。
[0214] ラグ溝 226の第 1外主溝側端 226Jの付近には、溝底を底上げするラグ溝底上げ部 272が形成されており、この結果、ラグ溝 226は第 1外主溝 222Aに実質上開口して 終端している(図 8Bも参照)。
[0215] ラグ溝底上げ部 272の溝長手方向断面は、ラグ溝稜線 274が形成された第 1外主 溝側端 226Jが最も高い山形状であり、第 1外主溝側端 226J力もラグ溝底上げ部 27 2のトレッド端側端 272Kに向けて徐々に溝が深くなる(すなわち、ラグ溝底上げ部 27 2のトレッド端側端 272K力ゝら第 1外主溝側端 226Jに向けて溝深さが漸減する)ラグ 溝傾斜面 276を溝底面として形成して 、る。
[0216] ラグ溝 226は、トレッド端 Tで完全に開口している。
[0217] ラグ溝傾斜面 276を溝底面として有する溝部分 226Pの溝長さは、この溝部分 226 Pを有するラグ溝 226の溝長さの 5〜 100%の範囲内にされている。
[0218] ラグ溝稜線 274は、タイヤ幅方向位置が第 1外主溝 222Aの溝縁と同じ位置にされ ている。 [0219] 中央傾斜面 256、第 1傾斜面 246、第 2傾斜面 266、及び、ラグ溝傾斜面 276が溝 底を形成している溝部分の溝長さは、何れも L (図 8B参照)である。
1
(作用)
以上説明したように、本実施形態では、このような方向性トレッド踏み面模様が踏み 面部 219に形成され、中央傾斜溝 234、第 1傾斜溝 236、第 2傾斜溝 238、及び、ラ グ溝 226には、中央底上げ部 252、第 1底上げ部 242、第 2底上げ部 262、及び、ラ グ溝底上げ部 272がそれぞれ形成されて ヽる。
[0220] これにより、ウエット路面での走行で、中央底上げ部 252付近の水は、中央傾斜面 256に案内されて第 1内主溝 224Aに流れ込む水と、中央傾斜面 256に案内されず に第 2内主溝 224Bに流れ込む水と、に整流される。また、第 1底上げ部 242付近の 水は、第 1傾斜面 246に案内されて第 1内主溝 224Aに流れ込む水と、第 1傾斜面 2 46に案内されずに第 1外主溝 222Aに流れ込む水と、に整流される。また、第 2底上 げ部 262付近の水は、第 2傾斜面 266に案内されて第 2内主溝 224Bに流れ込む水 と、第 2傾斜面 266に案内されずに第 2外主溝 222Bに流れ込む水と、に整流される 。また、ラグ溝底上げ部 272付近の水は、ラグ溝傾斜面 276に案内された第 1外主溝 222Aに流れ込む水と、ラグ溝傾斜面 276に案内されずにトレッド端 Tに向けて流れ る水と、に整流される。従って、ウエット排水性に優れた空気入りタイヤとすることがで きる。
[0221] また、第 1底上げ部 242により、隣接する陸部 231の角部(特に、踏み面部 219側 力も見て鋭角である角部 31C)の剛性が向上するため、ドライ路面での操縦安定性、 耐偏摩耗性、及びパターンノイズ性が向上する。中央底上げ部 252、第 2底上げ部 2 62やラグ溝底上げ部 272に隣接する陸部の角部についても同様の効果を奏するこ とがでさる。
[第 4の実施形態]
次に、第 4の実施形態について、図 9を参照しつつ説明する。本実施形態に係る空 気入りタイヤでは、第 3の実施形態に比べ、第 1外主溝 222Aに代えて第 1外主溝 32 2Aが形成され、第 2外主溝 222Bに代えて第 2外主溝 322Bが形成され、第 1内主溝 224Aに代えて第 1内主溝 324Aが形成され、第 2内主溝 224Bに代えて第 2内主溝 324Bが形成されている。また、中央傾斜溝 234に代えて中央傾斜溝 334が形成さ れ、第 1傾斜溝 236に代えて第 1傾斜溝 336が形成され、第 2傾斜溝 238に代えて第 2傾斜溝 338が形成されている。また、ラグ溝 226に代えて、タイヤ赤道面 CLの片面 側ではラグ溝 326が形成され、タイヤ赤道面のもう片面側ではラグ溝 327が形成され ている。なお、第 2傾斜溝 338の基本的な構成、作用、効果は第 1傾斜溝 336と同様 であるのでその説明を省略する。また、ラグ溝 327の基本的な構成、作用、効果はラ グ溝 326と同様であるのでその説明を省略する。
[0222] 本実施形態では、中央傾斜溝 334、第 1傾斜溝 336、及びラグ溝 326の位置、長さ は第 3の実施形態と同様であるが、各傾斜溝に形成されている底上げ部の形状、位 置が第 3の実施形態と異なる。
[0223] (第 1傾斜溝)
第 1傾斜溝 336の第 1内主溝側端 336Jの付近には、溝底を底上げする第 1底上げ 部 342が形成されており、この結果、第 1傾斜溝 336は第 1内主溝 324Aに実質上開 口して終端している。
[0224] 第 1底上げ部 342の溝長手方向断面は山形状であり、頂部 342Uにはタイヤ周方 向と平行な第 1稜線 344が形成されている。そして、第 1稜線 344から第 1内主溝 32 4Aに向けて溝が徐々に深くなる第 1内主溝側第 1傾斜面 345と、第 1稜線 344から 第 1底上げ部 342の第 1外主溝側端 342Kに向けて溝が徐々に深くなる第 1外主溝 側第 1傾斜面 346と、が溝底面として第 1底上げ部 342に形成されている(図 9B参照 )。本実施形態では、第 1稜線 344の表面高さは、第 1傾斜溝 336に隣接する陸部 3 31の表面高さ(すなわち踏み面 Fの高さ)と同じにされている。従って、第 1稜線 344 の踏み面 Fからの深さは Ommとなっている。
[0225] また、陸部 331の第 1内主溝側の縁部 331Eは、第 1内主溝 324Aに沿ってテーパ 状に面取りされてなる縁面 331ESを有する。第 1内主溝側第 1傾斜面 345は縁面 33 1ESと同一平面を有するように、タイヤ径方向に対する傾斜角度 Θ が設定されてい
1
る。従って、第 1稜線 344のタイヤ幅方向位置は縁面 331ESの上縁と同じ位置にさ れている。また、この傾斜角度 0 は 30〜60° の範囲内にされている。
1
[0226] (中央傾斜溝) 中央傾斜溝 334の第 1内主溝側端 33 Jの付近には、溝底を底上げする中央底上 げ部 352が形成されており、この結果、中央傾斜溝 334は第 1内主溝 324Aに実質 上開口して終端している。
[0227] 第 1底上げ部 342と同様、中央底上げ部 352の溝長手方向断面は山形状であり、 頂部にはタイヤ周方向と平行な中央稜線 354が形成されている。そして、中央稜線 3 54から第 1内主溝 324Aに向けて溝が徐々に深くなる第 1内主溝側中央傾斜面 355 と、中央稜線 354から中央底上げ部 352の第 2内主溝側端 352Kに向けて溝が徐々 に深くなる第 2内主溝側中央傾斜面 356と、が中央底上げ部 352に形成されている。 本実施形態では、中央稜線 354の表面高さは、中央傾斜溝 334に隣接する陸部 32 9の表面高さ(すなわち踏み面 Fの高さ)と同じにされている。従って、中央稜線 354 の踏み面 Fからの深さは Ommとなっている。
[0228] また、陸部 329の第 1内主溝側の縁部 329Eは、第 1内主溝 324Aに沿ってテーパ 状に面取りされてなる縁面 329ESを有する。第 1内主溝側中央傾斜面 355は縁面 3 29ESと同一平面を有するように、タイヤ径方向に対する傾斜角度 Θ が設定されて
1
いる。従って、中央稜線 354のタイヤ幅方向位置は縁面 329ESの上縁と同じ位置に されている。また、この傾斜角度 0 は 30〜60° の範囲内にされている。
1
[0229] (ラグ溝)
ラグ溝 326の第 1外主溝側端 326Jの付近には、溝底を底上げするラグ溝底上げ部 372が形成されており、この結果、ラグ溝 326は第 1外主溝 322Aに実質上開口して 終端している。
[0230] ラグ溝底上げ部 372の溝長手方向断面は山形状であり、頂部にはタイヤ周方向と 平行なラグ溝稜線 374が形成されている。そして、ラグ溝稜線 374から第 1外主溝 32 2Aに向けて溝が徐々に深くなる第 1外主溝側ラグ溝傾斜面 375と、ラグ溝稜線 374 からトレッド端側端 372Kに向けて溝が徐々に深くなるトレッド端側ラグ溝傾斜面 376 と、力 Sラグ溝底上げ部 372に形成されている。本実施形態では、ラグ溝稜線 374の表 面高さは、ラグ溝 326に隣接する陸部 325の表面高さ(すなわち踏み面 Fの高さ)と 同じにされている。従って、ラグ溝稜線 374の踏み面 Fからの深さは Ommとなってい る。 [0231] また、陸部 325の第 1外主溝側の縁部 325Eは、第 1外主溝 322Aに沿ってテーパ 状に面取りされてなる縁面 325ESを有する。第 1外主溝側ラグ溝傾斜面 375は縁面 325ESと同一平面を有するように、タイヤ径方向に対する傾斜角度 Θ が設定されて
1
いる。従って、ラグ溝稜線 374のタイヤ幅方向位置は縁面 325ESの上縁と同じ位置 にされている。また、この傾斜角度 0 は 30〜60° の範囲内にされている。
1
[0232] 以上説明したように、本実施形態では、第 1内主溝側中央傾斜面 355と縁面 329E Sとが同一平面を形成しており、同様に、第 1内主溝側第 1傾斜面 345と縁面 331ES 、第 1外主溝側ラグ溝傾斜面 375と縁面 325ES、がそれぞれ同一平面を形成してい る。従って、これらの縁面が形成されている各縁部の剛性が向上してドライ路面での 操縦安定性が向上する。また、ウエット路面での走行において、同一平面を形成して いる二面に沿って乱流を発生することなく水が流れるので、ウエット排水性が更に向 上している。
[第 5の実施形態]
次に、第 5の実施形態について図 10を参照しつつ説明する。本実施形態に係る空 気入りタイヤでは、第 4の実施形態に比べ、第 1外主溝 322Aに代えて第 1外主溝 42 2Aが形成され、第 2外主溝 322Bに代えて第 2外主溝 422Bが形成され、第 1内主溝 324Aに代えて第 1内主溝 424Aが形成され、第 2内主溝 324Bに代えて第 2内主溝 424Bが形成されている。また、中央傾斜溝 334に代えて中央傾斜溝 434が形成さ れ、第 1傾斜溝 336に代えて第 1傾斜溝 436が形成され、第 2傾斜溝 338に代えて第 2傾斜溝 438が形成されている。また、タイヤ赤道面 CLの片面側ではラグ溝 326に 代えてラグ溝 426が形成され、タイヤ赤道面 CLのもう片面側ではラグ溝 327に代え てラグ溝 427が形成されている。なお、第 2傾斜溝 438の基本的な構成、作用、効果 は第 1傾斜溝 436と同様であるのでその説明を省略する。また、ラグ溝 427の基本的 な構成、作用、効果はラグ溝 426と同様であるのでその説明を省略する。
[0233] 本実施形態では、中央傾斜溝 434、第 1傾斜溝 436、及びラグ溝 426の位置、長さ は第 4の実施形態と同様であるが、各傾斜溝に形成されている底上げ部の形状、位 置が第 4の実施形態と異なる。
[0234] (第 1傾斜溝) 第 1傾斜溝 436の第 1内主溝側端 436Jの付近には、溝底を底上げする第 1底上げ 部 442が形成されており、この結果、第 1傾斜溝 436は第 1内主溝 424Aに実質上開 口して終端している。
[0235] 第 1底上げ部 442の溝長手方向は山形状であり、頂部にはタイヤ周方向と平行な 第 1稜線 444が形成されている。そして、第 1稜線 444から第 1内主溝 422Aに向け て溝が徐々に深くなる第 1内主溝側第 1傾斜面 445と、第 1稜線 444から第 1底上げ 部 442の第 1内主溝側端 442Kに向けて溝が徐々に深くなる第 1外主溝側第 1傾斜 面 446と、が第 1底上げ部 442に形成されている(図 10B参照)。本実施形態では、 第 1稜線 444のタイヤ幅方向位置力 陸部 431の縁面 431ESの上縁よりも第 1内主 溝 424Aの中心側に位置している。そして、第 1内主溝側第 1傾斜面 445と縁面 131 ESとが同一平面を形成するように、第 1稜線 444の踏み面 F力もの深さ Dが設定さ
2 れている。
[0236] (中央傾斜溝)
中央傾斜溝 434の第 1内主溝側端 43 Jの付近には、溝底を底上げする中央底上 げ部 452が形成されており、この結果、中央傾斜溝 434は第 1内主溝 422Aに実質 上開口して終端している。
[0237] 第 1底上げ部 442と同様、中央底上げ部 452の溝長手方向は山形状であり、頂部 にはタイヤ周方向と平行な中央稜線 454が形成されている。そして、中央稜線 454か ら第 1内主溝 422Aに向けて溝が徐々に深くなる第 1内主溝側中央傾斜面 455と、中 央稜線 454から中央底上げ部 452の第 2内主溝側端 452Kに向けて溝が徐々に深く なる第 2内主溝側中央傾斜面 456と、が中央底上げ部 452に形成されている。本実 施形態では、中央稜線 454のタイヤ幅方向位置が、隣接する陸部 429の縁面 429E Sの上縁よりも第 1内主溝 424Aの中心側に位置している。そして、第 1内主溝側中 央傾斜面 455と縁面 429ESとが同一平面を形成するように、中央稜線 454の踏み面 Fからの深さ Dが設定されている。
2
[0238] (ラグ溝)
ラグ溝 426の第 1外主溝側端 426Jの付近には、溝底を底上げするラグ溝底上げ部 472が形成されており、この結果、ラグ溝 426は第 1外主溝 422Aに実質上開口して 終端している。
[0239] ラグ溝底上げ部 472の溝長手方向は山形状であり、頂部にはタイヤ周方向と平行 なラグ溝稜線 474が形成されている。そして、ラグ溝稜線 474から第 1外主溝 422A に向けて溝が徐々に深くなる第 1外主溝側ラグ溝傾斜面 475と、ラグ溝稜線 474から トレッド端側端 472Kに向けて溝が徐々に深くなるトレッド端側ラグ溝傾斜面 476と、 力 Sラグ溝底上げ部 472に形成されている。本実施形態では、ラグ溝稜線 474のタイヤ 幅方向位置が、陸部 425の縁面 425ESの上縁よりも第 1外主溝 422Aの中心側に 位置している。そして、第 1外主溝側ラグ溝傾斜面 475と縁面 425ESとが同一平面 を形成するように、ラグ溝稜線 474の踏み面 Fからの深さ Dが設定されている。
2
[0240] 本実施形態により、ラグ溝の容積が増大し、ウエット路面での走行でウエット排水性 が向上する。
[第 6の実施形態]
次に、第 6の実施形態の空気入りタイヤ 810について説明する。
[0241] 図 11に示すように、トレッド部 818の踏み面部 819には、タイヤ赤道面 CL上に溝幅
W、溝深さ Dのセンター主溝 817が形成されている。また、タイヤ赤道面 CLの両側
0 0
に、タイヤ周方向に沿った外側主溝 822が、踏み面部 819の幅の 1Z4点 Qに近い 位置にそれぞれ形成されている。この外側主溝 822によって、踏み面部 819が中央 領域 820と両側領域 821とに区画されている。
[0242] 両側領域 821には、タイヤ赤道面側の端部が外側主溝 822に開口するラグ溝 824 がタイヤ周方向に略等間隔に形成されている。
[0243] 各ラグ溝 824のタイヤ幅方向両端部は、トレッド端を越えてタイヤ幅方向外側へ排 水可能なように延びて 、る。
[0244] 中央領域 820には、外側主溝 822に開口しタイヤ周方向に対して傾斜しつつセン ター主溝 817に向力 複数本の傾斜溝 832が、タイヤ赤道面 CLを挟むようにタイヤ 赤道面 CLの両側に配置されている。傾斜溝 832は、溝深さ Dで、何れもセンター主
1
溝 817に実質上開口して終端する。
[0245] この結果、センター主溝 817、外側主溝 822、及び、タイヤ周方向に互いに隣り合う 傾斜溝 832により、タイヤ赤道面 CLに対して左右一対となる陸部 840で構成される 陸部列 842が中央領域 820に形成されている。
[0246] また、傾斜溝 832は、タイヤ負荷転動時、空気入りタイヤ 810が回転して接地面が U方向に移動していくと、センター主溝 817側力も外側主溝 822側に向力つて溝縁 が路面に順次接触するように、タイヤ赤道面で隔てられた左右一対の傾斜溝 832が タイヤ周方向に対し各々反対方向に傾斜して 、る。このように方向性パターンを構成 するように傾斜溝 832を形成することにより、流線方向に合わせた傾斜溝 832で排水 性を確保することができるようになって 、る。
[0247] 傾斜溝 832の終端付近には、溝底を底上げする底上げ部 839が形成されている。
底上げ部 839は、傾斜溝 832のタイヤ幅方向外側の溝底を形成して ヽる外側傾斜 面 836と、傾斜溝 832のタイヤ幅方向内側の溝底を形成している内側傾斜面 838と 、を有する断面山形状である(図 11B参照)。
[0248] 陸部 840のセンター主溝 817側の縁部 843は、内側傾斜面 838と同一面を形成す る傾斜面 844を有するようにセンター主溝 817に沿ってテーパ状に面取りされている (図 11C参照)。
[0249] 外側傾斜面 836を溝底として有する溝部分 832PEの溝長さ L (言い換えると、後
1
述の稜線 846から溝深さが漸増している溝部分 832PEの溝長さ L )は、タイヤ接地
1
幅 Wの 5〜40%の範囲内にある。また、内側傾斜面 838を溝底として有する溝部分 8 32PCの溝長さ Lは、センター主溝 817の幅 Wの 8〜45%の範囲内である。
2 0
[0250] また、縁部 843が、タイヤ周方向に実質上平行である。そして、外側傾斜面 836と 内側傾斜面 838とによって形成される稜線 846が、タイヤ周方向に実質上平行であ る。なお、この稜線 846は、底上げ部 839の頂部を形成している。
[0251] 稜線 846は踏み面部 819と平行にされている。また、稜線 846の表面高さは、陸部 840の表面高さ(すなわち踏み面 Fの高さ)と同じにされており、この結果、稜線 846 の深さは Ommとなる。
[0252] 以上説明したように、本実施形態では、このようなトレッド踏み面模様が踏み面部 8 19に形成されており、また、傾斜溝 832には上記のような断面山形状の底上げ部 83 9が形成されている。これにより、ウエット路面での走行で、踏み面部 819のタイヤ幅 方向中央付近の水は、内側傾斜面 838によって外側主溝 822に流れ込む水と、外 側傾斜面 836によって傾斜溝 832をタイヤ幅方向外側に向けて流れる水と、に整流 されるので、ウエット排水性に優れる。
[0253] また、底上げ部 839により、隣接する陸部 840の角部(特に、タイヤ表面側から見て 、すなわち踏み面 F側力も見て鋭角である角部 841)の剛性が向上するため、ドライ 路面での操縦安定性及び耐偏摩耗性が向上する。
[0254] 更に、陸部 840のセンター主溝 817側の縁部 843は、内側傾斜面 838と同一面を 有するようにセンター主溝 817に沿ってテーパ状に面取りされている。従って、縁部 8 43の剛性が向上してドライ路面での操縦安定性が向上する。また、ウエット路面での 走行において、縁部 843及び内側傾斜面 838のそれぞれの面に沿って流れる水が 乱流を発生することなく流れるので、ウエット排水性が更に向上している。
[0255] 更に、縁部 843が、タイヤ周方向に実質上平行であり、そして、外側傾斜面 836と 内側傾斜面 838とによって形成される稜線 846が、タイヤ周方向に実質上平行であ る。これにより、踏み面部 819のタイヤ幅方向中央付近の水力 内側傾斜面 838によ つてセンター主溝 817に流れ込む水と、外側傾斜面 836によって傾斜溝 832をタイ ャ幅方向外側に向けて流れる水と、に更に整流され易い。従って、ウエット排水性が より優れている。
[第 7の実施形態]
次に、第 7の実施形態について説明する。本実施形態に係る空気入りタイヤでは、 第 6の実施形態に比べ、図 12に示すように、踏み面部 850の傾斜溝 852に形成され ている底上げ部 849の形状、位置が異なる。
[0256] 傾斜溝 852の終端付近には、溝底を底上げする底上げ部 849が形成されている。
底上げ部 849は、傾斜溝 852のタイヤ幅方向外側の溝底を形成して ヽる外側傾斜 面 856と、傾斜溝 852のタイヤ幅方向内側の溝底を形成している内側傾斜面 858と 、を有する断面山形状である(図 12B参照)。
[0257] 外側傾斜面 856と内側傾斜面 858とによって形成される稜線 857のタイヤ幅方向 位置は、第 6の実施形態に比べ、タイヤ赤道面 CLに近い位置にされている。この稜 線 857は踏み面部 850と平行にされており、稜線 857の表面高さは、陸部 840の表 面高さ(すなわち踏み面 Fの高さ)よりも Dだけ深くされている。また、内側傾斜面 85 8と縁部 843の傾斜面 844とは同一面を形成している。
[0258] 本実施形態により、第 6の実施形態の効果に加えて、傾斜溝の断面山形状の底上 げ部 839の領域の溝容積が増加することにより、ウエット路面での走行でウエット排水 性に優れる。
[第 8の実施形態]
次に、第 8の実施形態について説明する。本実施形態に係る空気入りタイヤでは、 第 6の実施形態に比べ、図 13に示すように、踏み面部 860の傾斜溝 862に形成され ている底上げ部 859の形状、位置が異なる。
[0259] 傾斜溝 862の終端付近には、溝底を底上げする底上げ部 859が形成されている。
底上げ部 859は、傾斜溝 862のタイヤ幅方向外側の溝底を形成して ヽる外側傾斜 面 866と、外側傾斜面 866のタイヤ赤道面側に連続し、高さが陸部 840と同じである 頂部平面 865と、頂部平面 865のタイヤ赤道面側に連続する第 6の実施形態で説明 した内側傾斜面 838と、を有する断面山形状である(図 13B参照)。
[0260] 頂部平面 865のタイヤ幅方向の幅 Lは 3mm以内である。
3
[0261] 本実施形態により、第 6の実施形態の効果に加えて、底上げ部 859に隣接する陸 部 840の角部の剛性が向上するため、ドライ路面での操縦安定性及び耐偏摩耗性 が向上する。
[第 9の実施形態]
次に、第 9の実施形態の空気入りタイヤ 910について説明する。
[0262] 図 14に示すように、トレッド部 918の踏み面部 919には、タイヤ赤道面 CLの両側に 、タイヤ周方向に沿った周方向主溝 922A、 922B力 踏み面部 919の幅の 1/4点 Qに近い位置にそれぞれ形成されている。この周方向主溝 922A、 922Bによって、 踏み面部 919が中央領域 920と両側領域 921とに区画されている。
[0263] 両側領域 921には、タイヤ赤道面側の端部が周方向主溝 922A、 922Bに開口す るラグ溝 924がタイヤ周方向に略等間隔に形成されている。
[0264] 各ラグ溝 924のタイヤ幅方向両端部は、トレッド端を越えてタイヤ幅方向外側へ排 水可能なように延びて 、る。
[0265] 中央領域 920のタイヤ赤道面 CLの紙面右側には、周方向主溝 922Aに完全に開 口すると共に、タイヤ周方向に対して傾斜しつつタイヤセンター側に向力う複数本の 第 1傾斜溝 926が、タイヤ周方向に略等間隔で形成されている。中央領域 920のタイ ャ赤道面 CLの紙面左側には、周方向主溝 922Bに完全に開口すると共に、タイヤ 周方向に対して傾斜しつつタイヤセンター側に向力 複数本の第 2傾斜溝 928が、タ ィャ周方向に略等間隔で形成されている。第 1傾斜溝 926は、第 2傾斜溝 928の溝 壁に実質上開口して終端する。第 2傾斜溝 928は、他の傾斜溝に開口することなく終 端している。
[0266] この結果、中央領域 920には、周方向主溝 922、第 1傾斜溝 926、第 2傾斜溝 928 によって区画されてなる陸部 931で構成される陸部列 929が、タイヤ周方向に略等 間隔で形成されている。
[0267] 本実施形態では、このように、第 1傾斜溝 926と第 2傾斜溝 928とで一対となる傾斜 溝がタイヤ周方向に略等間隔で配列されている。また、第 1傾斜溝 926及び第 2傾斜 溝 928は、タイヤ負荷転動時、空気入りタイヤ 910が回転して接地面が U方向に移 動していくと、タイヤセンター側力も周方向主溝 922側に向力つて溝縁が路面に順次 接触するように、タイヤ周方向に対し各々反対方向に傾斜している。このように方向 性パターンを構成するように第 1傾斜溝 926及び第 2傾斜溝 928を形成することによ り、流線方向に合わせた傾斜溝で排水性を確保することができるようになつている。
[0268] 第 1傾斜溝 926の終端部には、第 1傾斜溝 926の溝底を底上げする底上げ部 930 が形成されており、この結果、第 1傾斜溝 926は第 2傾斜溝 928の溝壁に実質上開 口して終端して 、る(図 14Bも参照)。
[0269] 底上げ部 930の溝長手方向断面は、稜線 934が形成された第 1終端 926Jが最も 高い山形状であり、第 1終端 926J力も底上げ部 930の周方向主溝側端 930Kに向け て徐々に溝が深くなる (すなわち、底上げ部 930の周方向主溝側端 930K力も第 1終 端 926Jに向けて溝深さが漸減する)第 1傾斜面 936を溝底面として形成している。
[0270] 稜線 934は底上げ部 930の頂部 930Uに形成されており、また、稜線 934は、第 2 傾斜溝 928の被開口側溝縁線 928E上に位置して 、る。
[0271] 第 1傾斜面 936を溝底面として有する溝部分 926Pの溝長さ Lは、この溝部分 926
1
Pを有する第 1傾斜溝 926の溝長さの 5〜: LOO%の範囲内にされている。 [0272] 第 1傾斜溝 926の溝深さは Dであり、第 1傾斜溝 926が第 2傾斜溝 928に開口して
1
いる長さ、すなわち稜線 934の長さは Lである。第 2傾斜溝 928は、溝深さが Dであ
0 2 る。第 1傾斜溝 926の終端部のタイヤ周方向に対する傾斜角度は Θ であり、第 2傾
1
斜溝 928の終端部のタイヤ周方向に対する傾斜角度は Θ である。
2
[0273] また、本実施形態では、稜線 934の表面高さは陸部 931の表面高さ(すなわち踏 み面 Fの高さ)と同じにされており、この結果、本実施形態では稜線 934の踏み面 F 力 の深さ Dは Ommとなる。
3
[0274] 以上説明したように、本実施形態では、このようなトレッド踏み面模様が踏み面部 9 19に形成されており、また、上記のような断面山形状の底上げ部 930が形成され、稜 線 934は被開口側溝縁線 928E上に位置している。これにより、ウエット路面での走 行で、踏み面部 919の底上げ部 930付近の水は、第 1傾斜面 936に案内されて第 1 傾斜溝 926を流れて周方向主溝 922Aに流れ込む水と、第 2傾斜溝 928を流れて周 方向主溝 22Bに流れ込む水と、に整流されるので、ウエット排水性に優れる。
[0275] また、底上げ部 930により、第 1傾斜溝 926と第 2傾斜溝 928とのなす角度が大きい 陸部角部 931Bでタイヤ幅方向に対する剛性を大きぐなす角度が小さい陸部角部 9 31Sでタイヤ周方向に対する剛性が大きい。従って、ドライ路面での操縦安定性及 び耐偏摩耗性が向上する。
[第 10の実施形態]
次に、第 10の実施形態について説明する。本実施形態に係る空気入りタイヤでは 、第 9の実施形態に比べ、図 15に示すように、踏み面部 939の中央領域に形成され たトレッドパターンが異なる。
[0276] 中央領域のタイヤ赤道面 CLの紙面右側には、第 9の実施形態で説明した第 1傾斜 溝 926と同様の第 1傾斜溝 946が形成されている。第 1傾斜溝 946には、第 9の実施 形態で説明した底上げ部 930と同様の第 1底上げ部 940が形成されている。
[0277] 中央領域のタイヤ赤道面 CLの紙面左側には、第 1実施形態で説明した第 2傾斜溝 928に代えて第 2傾斜溝 948が形成されている。この第 2傾斜溝 948の終端部には、 側面断面図が第 1底上げ部 940と同じである第 2底上げ部 942が形成されており、第 2傾斜溝 948が第 1傾斜溝 946の溝壁に実質上開口して終端していることが第 9の実 施形態に比べて大きく異なる。
[0278] この結果、第 1底上げ部 940の頂部 940Uに形成された第 1稜線 944、及び、第 2 底上げ部 429の頂部に形成された第 2稜線 459が、タイヤ周方向に沿ってジグザグ 向きに配置されている。また、第 1底上げ部 940には第 1傾斜面 936と同様の第 1傾 斜面 941が形成されている。そして、第 2底上げ部 942には、第 1傾斜面 941と同様 、第 2稜線 945から周方向主溝 922Bの側にかけて溝底を徐々に漸増する第 2傾斜 面 943が形成されている。
[0279] 本実施形態により、タイヤ周方向に実質上連続したジグザグ状見かけ周副溝 950 が形成されている。従って、ウエット路面での走行において、踏み面部のうちこのジグ ザグ状見かけ周副溝 950が配置されている領域の水は、第 1稜線 944及び第 2稜線 945の両側に整流されるので、ウエット排水性が更に向上する。
[0280] <実験例>
本発明者は、実験を行うことにより、本発明に係る空気入りタイヤ、及び、従来の空 気入りタイヤの性能を比較した。本実験例では、空気入りタイヤのサイズは全て PSR 225Z45R17であり、トレッド幅 (JATMA寸測標準内圧荷重時)は 180mmである。
[0281] そして、実走行車にタイヤを取付け、タイヤ内圧を 220kPaとし、荷重条件として前 席に 2名乗車した状態で各実験を行い、性能評価を行った。この性能評価としては、 (1)ドライ路面での操縦安定性、(2)ハイドロプレーニング性、(3)ウエット路面での 操縦安定性、(4)耐偏摩耗性、(5)パターンノイズ性、について評価した。
[0282] 本発明者は、まず、従来例の空気入りタイヤを用いて実験を行った。
[0283] この従来例の空気入りタイヤでは、図 18に示すように、トレッド部 718の踏み面部 7 19には、タイヤ赤道面両側に、周方向に沿った外主溝 722が、踏み面部 719の幅の 1/4点 Qに近い位置にそれぞれ形成されている。この外主溝 722によって、踏み面 部 719が中央領域 720と両側領域 721とに区画されている。
[0284] 両側領域 721には、第 3の実施形態の空気入りタイヤ 210と同様、タイヤ赤道面側 の端部が外主溝 722に開口するラグ溝 726がタイヤ周方向に略等間隔に形成され ている。
[0285] 中央領域 720には、タイヤ赤道面 CLの両側に、タイヤ周方向に延びる内主溝 724 がそれぞれ形成されている。この内主溝 724は、内主溝 724同士の間隔と、外主溝 7 22と内主溝 724との間隔と、が略同一となる位置に配置されている。内主溝 724及 び外主溝 722の溝深さは Dである。
0
[0286] また、中央領域 720には、外主溝 722と内主溝 724とに開口し、タイヤ周方向に対 して傾斜して延びる傾斜溝 736が、タイヤ周方向に略等間隔であるようにタイヤ赤道 面 CLの両側に形成されている。傾斜溝 736の傾斜方向は第 3の実施形態の空気入 りタイヤ 210と同様である。この結果、外主溝 722、内主溝 724、及び、タイヤ周方向 に互いに隣り合う傾斜溝 736により、タイヤ赤道面 CLに対して左右一対となる陸部 7 31で構成される陸部列 730が形成されている。
[0287] 更に、タイヤ赤道面 CLの両側の内主溝 724に開口し、タイヤ周方向に対して傾斜 して延びる中央傾斜溝 734が、タイヤ周方向に略等間隔であるように形成されて!ヽる 。中央傾斜溝 734の傾斜方向は第 3の実施形態の空気入りタイヤ 210と同様である。 この結果、外主溝 722、内主溝 724、及び、タイヤ周方向に互いに隣り合う中央傾斜 溝 734により、タイヤ赤道面 CLを跨る陸部 729で構成される中央陸部列 728が形成 されている。
[0288] 傾斜溝 736及び中央傾斜溝 734は、溝長さが何れも Lで、溝深さが何れも Dであ
0 1 る。
[0289] 従来例の空気入りタイヤのトレッドパターンの条件を表 5に示す。
[0290] [表 5]
従来例の空 実施例 1の空実施例 2の空実施例 3の空
気入りタイヤ ¾入りタイヤ 気入りタイヤ 気入りタイヤ 主溝の清深さ
8. 3 8. 3 8. 3 8. 3
DO (mm)
傾斜溝の溝深さ
6. 7 6. フ 6. 7 6. 7
D 1 (mm)
傾斜溝の溝長さ 32 32 32 32
し O (mm)
¾部分の溝長さ 1 6 1 6 1 6
し 1 (mm)
傾斜角度 45 45
Θ 1 Γ )
頂部の深さ 0 0 1
D2 (mm)
[0291] 従来例の空気入りタイヤを用いた実験では、(1)ドライ路面における操縦安定性に つ!、ては、ドライ状態のサーキットコースを各種走行モードにてスポーツ走行したとき のフィーリングによる操縦安定性を、基準値として指数 100とした。(2)ハイド口プレー ユング性については、水深 10mmのウエット路面を走行し、ハイドロプレーニングの 発生限界速度を求め、基準値として指数 100とした。(3)ウエット路面における操縦 安定性については、ウエット状態のサーキットコースを各種走行モードにてスポーツ 走行したときのフィーリングによる操縦安定性を、基準値として指数 100とした。(4)耐 偏摩耗性については、一般路面を 5000km走行後、タイヤ周方向に隣り合うブロック の摩耗段差、及び、中央領域 320と両側領域 (ショルダ領域) 321との摩耗量差、を それぞれ測定し、基準値として指数 100とした。(5)パターンノイズ性については、平 滑路面を速度 60kmZhで走行時の車内での騒音量を測定し、基準値として指数 10 0とした。
[0292] 各指数を表 6に示す。
[0293] [表 6] 従来例の空 実施例 1の空実施例 2の空実施例 3の空
気入りタイヤ 気入りタイヤ 気入りタイヤ 気入りタイヤ ドライ路面での 100
操縱安定性 105 n o 108 ハイドロプレ
100 1 05 1 05 1 06
一二ング性
ウエット路面での
1 00 1 05 1 08 1 1 0
操縱安定性 耐片磨耗性 100 105 n o 109 ノ ターンノイズ性 1 00 1 05 1 1 0 1 08
[0294] 更に、本発明者は、第 3の実施形態に係る空気入りタイヤ 210として、トレッドパター ンが表 5に示す条件にされた実施例 1の空気入りタイヤを用いた。
[0295] そして、従来例の空気入りタイヤと同じ条件で実験を行った。そして、 (1)ドライ路面 での操縦安定性については、ドライバーのフィーリングにより従来例の空気入りタイヤ に対する相対評価となる指数を算出した。 (2)ハイドロプレーニング性については、 ハイドロプレーニングの発生限界速度を求め、従来例の空気入りタイヤに対する相対 評価となる指数を算出した。 (3)ウエット路面での操縦安定性については、ドライバー のフィーリングにより従来例の空気入りタイヤに対する相対評価となる指数を算出した 。 (4)耐偏摩耗性については、同様に摩耗段差及び摩耗量差を求め、従来例の空 気入りタイヤに対する相対評価となる指数を算出した。(5)パターンノイズ性について は、平滑路面を速度 60kmZhで走行時の車内での騒音量を測定し、従来例の空気 入りタイヤに対する相対評価となる指数を算出した。算出した指数を表 6に併せて示 す。
[0296] 表 6では、指数が大きいほど性能が良好であることを示す。すなわち、指数が大き いほど、ドライ路面やウエット路面での操縦安定性が良いことや、ハイド口プレーニン グの発生速度が高いこと、摩耗段差や摩耗量差が小さいこと、パターンノイズが低い こと、を示す。 [0297] また、本発明者は、第 4の実施形態に係る空気入りタイヤとして、トレッドパターンが 表 5に示す条件にされた実施例 2の空気入りタイヤを用いた。
[0298] 実施例 2の空気入りタイヤを用いた実験では、実施例 1の空気入りタイヤと同様にし て、(1)ドライ路面での操縦安定性、(2)ハイドロプレーニング性、(3)ウエット路面で の操縦安定性、(4)耐偏摩耗性、(5)パターンノイズ性、について相対評価となる指 数を算出した。算出した指数を表 6に併せて示す。
[0299] 更に、本発明者は、第 5の実施形態に係る空気入りタイヤとして、トレッドパターンが 表 5に示す条件にされた実施例 3の空気入りタイヤを用いた。
[0300] 実施例 3の空気入りタイヤを用いた実験では、実施例 1や実施例 2の空気入りタイ ャと同様にして、(1)ドライ路面での操縦安定性、(2)ハイドロプレーニング性、(3)ゥ エツト路面での操縦安定性、(4)耐偏摩耗性、(5)パターンノイズ性、について相対 評価となる指数を算出した。算出した指数を表 6に併せて示す。
[0301] 表 6から判るように、実施例 1〜実施例 3の空気入りタイヤでは、何れも、従来例の 空気入りタイヤに比べ、(1)〜(5)の全ての性能にっ 、て良好であると 、う結果にな つた o
[0302] 以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は 一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権 利範囲が上記実施形態に限定されないことは言うまでもない。
[0303] なお、本発明での周方向主溝は、タイヤ周方向に直線状に延びているものに限ら ず、タイヤ周方向にジグザグ状に延びていても良い。但し、周方向主溝がジグザグ状 の場合、排水性を確保するために、タイヤ周方向に直線状に水が通過する部分 (所 謂シースルー部:溝の屈曲部の側壁の凸部(タイヤ幅方向に凸とされる))によって遮 られるこなく周方向に連続する空間部分。 )を確保することが好ましい。
産業上の利用可能性
[0304] 以上のように、本発明に力かる空気入りタイヤは、高 、ウエット性能を要求する車両 に装着するために好適である。
符号の説明
[0305] 10 空気入りタイヤ トレッド
A 踏面
周方向広幅主溝 第 1狭幅周副溝 第 2狭幅周副溝 第 1横溝
第 2横溝
第 3横溝
第 1ブロック
第 2ブロック
踏み込み側第 3ブロック 蹴り出し側第 3ブロック タイヤ赤道面
0 空気入りタイヤ
2 トレッド
2A 踏面
4 周方向広幅主溝
6 第 1狭幅周副溝
8 第 2狭幅周副溝
0 第 1横溝
2 第 2横溝
6 第 1ブロック
8 第 2ブロック
0 踏み込み側第 3ブロック2 蹴り出し側第 3ブロック0 空気入りタイヤ
9 踏み面部
2A 第 1外主溝 (周方向主溝) 222B 第 2外主溝 (周方向主溝)
224A 第 1内主溝 (周方向主溝)
224B 第 2内主溝 (周方向主溝)
226 ラグ溝 (横溝)
226J 第 1外主溝側端 (タイヤ幅方向一方端)
226P 溝部分
228 中央陸部列(陸部列)
229 陸部
230 第 1隣接陸部列 (陸部列)
231 陸部
232 第 2隣接陸部列 (陸部列)
233 陸部
234 中央傾斜溝 (横溝)
23 J 第 1内主溝側端 (タイヤ幅方向一方端)
234K 第 2内主溝側端 (タイヤ幅方向他方端)
234P 溝部分
236 第 1傾斜溝 (横溝)
236J 第 1内主溝側端 (タイヤ幅方向一方端)
236K 第 1外主溝側端 (タイヤ幅方向他方端)
236P 溝部分
238 第 2傾斜溝 (横溝)
238J 第 2内主溝側端 (タイヤ幅方向一方端)
238K 第 2外主溝側端 (タイヤ幅方向他方端)
238P 溝部分
242 第 1底上げ部 (底上げ部)
246 第 1傾斜面 (傾斜面)
252 中央底上げ部 (底上げ部)
256 中央傾斜面 (傾斜面) 262 第 2底上げ部 (底上げ部)
266 第 2傾斜面 (傾斜面)
272 ラグ溝底上げ部 (底上げ部)
322A 第 1外主溝 (周方向主溝)
322B 第 2外主溝 (周方向主溝)
324A 第 2内主溝 (周方向主溝)
324B 第 2内主溝 (周方向主溝)
325 陸部
325E 縁部
325ES 縁面
326 ラグ溝 (横溝)
326J 第 1外主溝側端 (タイヤ幅方向一方端)
327 ラグ溝 (横溝)
329 陸部
329E 縁部
329ES 縁面
331 陸部
331E 縁部
331ES 縁面
334 中央傾斜溝 (横溝)
33 J 第 1内主溝側端 (タイヤ幅方向一方端)
336 第 1傾斜溝 (横溝)
336J 第 1内主溝側端 (タイヤ幅方向一方端)
342 第 1底上げ部 (底上げ部)
342U 頂部
345 第 1内主溝側第 1傾斜面 (一方端側傾斜面) 346 第 1外主溝側第 1傾斜面 (傾斜面)
352 中央底上げ部 (底上げ部) 355 第 1内主溝側中央傾斜面 (一方端側傾斜面)
356 第 2内主溝側中央傾斜面 (傾斜面)
372 ラグ溝底上げ部 (底上げ部)
375 第 1外主溝側ラグ溝傾斜面 (一方端側傾斜面)
376 トレッド端側ラグ溝傾斜面 (傾斜面)
422A 第 1外主溝 (周方向主溝)
422B 第 2外主溝 (周方向主溝)
424A 第 1内主溝 (周方向主溝)
424B 第 2内主溝 (周方向主溝)
434 中央傾斜溝 (横溝)
436 第 1傾斜溝 (横溝)
438 第 2傾斜溝 (横溝)
426 ラグ溝 (横溝)
427 ラグ溝 (横溝)
436J 第 1内主溝側端 (タイヤ幅方向一方端)
442 第 1底上げ部 (底上げ部)
445 第 1内主溝側第 1傾斜面 (一方端側傾斜面)
446 第 1外主溝側第 1傾斜面 (傾斜面)
43 J 第 1内主溝側端 (タイヤ幅方向一方端)
452 中央底上げ部 (底上げ部)
455 第 1内主溝側中央傾斜面 (一方端側傾斜面)
456 第 2内主溝側中央傾斜面 (傾斜面)
426J 第 1外主溝側端 (タイヤ幅方向一方端)
472 ラグ溝底上げ部 (底上げ部)
475 第 1外主溝側ラグ溝傾斜面 (一方端側傾斜面)
476 トレッド端側ラグ溝傾斜面 (傾斜面)
T トレッド端
θ 傾斜角度 810 空気入りタイヤ
817 センター主溝 (溝:
819 踏み面部
832 傾斜溝
832PE 溝部分
832PC 溝部分
836 外側傾斜面
838 内側傾斜面
839 底上げ部
840 陸部
843 縁部
846 稜線
849 底上げ部
850 踏み面部
852 傾斜溝
856 外側傾斜面
857 稜線
858 内側傾斜面
859 底上げ部
860 踏み面部
862 傾斜溝
865 頂部平面
866 外側傾斜面
869 踏み面部
877 センター主溝 (溝)
882 傾斜溝
890 陸部
F 踏み面 910 空気入りタイヤ
919 踏み面部
922A、B 周方向主溝
926 第 1傾斜溝 (傾斜溝) 926P 溝部分
928 第 2傾斜溝 (傾斜溝) 928E 被開口側溝縁線 930 底上げ部
934 稜線
936 第 1傾斜面 (傾斜面) 939 踏み面部
940 第 1底上げ部 (底上げ部) 941 第 1傾斜面 (傾斜面) 942 第 2底上げ部 (底上げ部) 943 第 2傾斜面 (傾斜面) 944 第 1稜線 (稜線)
945 第 2稜線 (稜線)
946 第 1傾斜溝 (傾斜溝) 948 第 2傾斜溝 (傾斜溝) 950 ジグザグ状見かけ周副溝 956 第 1傾斜溝 (傾斜溝) 958 第 2傾斜溝 (傾斜溝) 969 踏み面部
972A、B 周方向主溝
976 第 1傾斜溝 (傾斜溝) 978 第 2傾斜溝 (傾斜溝)

Claims

請求の範囲
[1] トレッドのタイヤ幅方向中心領域に設けられタイヤ周方向に延びる少なくとも 1本の周 方向広幅主溝と、前記トレッドに設けられトレッド端から前記周方向広幅主溝に向か つてタイヤ周方向に対して傾斜して延びる複数の横溝と、前記周方向広幅主溝のタ ィャ軸方向外側に配置されタイヤ周方向に延び、前記周方向広幅主溝よりも溝幅が 狭く設定された狭幅周副溝とを備え、前記トレッドは、前記周方向広幅主溝、前記横 溝、及び前記狭幅周副溝で区画された複数のブロックを有すると共に、負荷転動時 に前記各横溝カ^イヤ赤道面側からトレッド端に向けて路面と順次接する方向性トレ ッドパターンを有する空気入りタイヤであって、
前記狭幅周副溝は、前記ブロックを区画する範囲において、負荷転動時の前記ブ ロックの蹴り出し側力も踏み込み側に向力つて、その幅及び深さが減少している、こと を特徴とする空気入りタイヤ。
[2] 前記狭幅周副溝は、前記周方向広幅主溝のタイヤ軸方向外側に少なくとも 2本設け られ、
前記横溝は、トレッド端から延びて前記狭幅周副溝と交差して前記周方向広幅主 溝と連結する第 1横溝と、前記第 1横溝間に配置されトレッド端から延びて前記狭幅 周副溝と交差して前記周方向広幅主溝とは連結せずに終端する第 2横溝と、前記第 1横溝と前記第 2横溝との間に配置されトレッド端力 延びて 2本の前記狭幅周副溝 間で終端する第 3横溝力も構成されている、ことを特徴とする請求項 1に記載の空気 入りタイヤ。
[3] 前記第 2横溝、及び前記第 3横溝のタイヤ赤道面側終端位置は、ブロックのタイヤ軸 方向中央域に位置している、ことを特徴とする請求項 2に記載の空気入りタイヤ。
[4] 前記第 1横溝の溝幅を W2、前記第 2横溝の溝幅を W3、前記第 3横溝の溝幅を W4 としたときに、 W3を W2の 60%以上 110%以下、 W4を W2の 20%以上 60%以下に 設定する、ことを特徴とする請求項 2または請求項 3に記載の空気入りタイヤ。
[5] 前記狭幅周副溝は、前記周方向広幅主溝のタイヤ軸方向外側に少なくとも 2本設け られ、
前記横溝は、トレッド端から延びて前記狭幅周副溝と交差して前記周方向広幅主 溝と連結する第 1横溝と、前記第 1横溝間に配置されトレッド端から延びてタイヤ軸方 向最外側の前記狭幅周副溝とは交差するが、タイヤ軸方向最内側の前記狭幅周副 溝とは交差せず、かつ前記周方向広幅主溝とは連結せずに終端する第 2横溝と、か ら構成され、
前記第 1横溝は、前記周方向広幅主溝側に底上げ部を有し、
前記底上げ部は、タイヤ軸方向外側の始点力 前記周方向広幅主溝に向けて溝 深さが漸減して ヽる、ことを特徴とする請求項 1に記載の空気入りタイヤ。
[6] 前記底上げ部は、タイヤ軸方向寸法が前記周方向広幅主溝の溝幅寸法の 60〜20
0%の範囲内にある、ことを特徴とする請求項 5に記載の空気入りタイヤ。
[7] 前記底上げ部の頂部の深さ寸法は、前記トレッドの踏面から計測して、前記第 1横溝 の溝深さ寸法の 10%以下に設定されている、ことを特徴とする請求項 5または請求 項 6に記載の空気入りタイヤ。
[8] 前記第 2横溝の溝幅は、前記第 1横溝の溝幅の 10〜80%の範囲内に設定されてい る、ことを特徴とする請求項 5乃至請求項 7の何れ力 1項に記載の空気入りタイヤ。
[9] タイヤ軸方向最外側に配置される前記狭幅周副溝は、負荷転動時にタイヤ赤道面 側からトレッド端に向けて順次路面と接する方向に傾斜している、ことを特徴とする請 求項 2乃至請求項 8の何れか 1項に記載の空気入りタイヤ。
[10] 前記狭幅周副溝は、タイヤ赤道面側の溝壁がタイヤ周方向に直線状に延びると共に
、踏面に立てた法線に対する角度が 40度以上 80度以下である、ことを特徴とする請 求項 1乃至請求項 9の何れか 1項に記載の空気入りタイヤ。
[11] 前記狭幅周副溝は、前記ブロックの踏み込み側においては、タイヤ赤道面側の溝壁 力 対向するタイヤ軸方向外側の溝壁に連結している、ことを特徴とする請求項 1乃 至請求項 10の何れか 1項に記載の空気入りタイヤ。
[12] トレッドに、タイヤ周方向に対して傾斜して延びる横溝を含む複数本の溝を備えた空 気入りタイヤであって、
前記横溝のタイヤ幅方向一方端側には前記横溝を底上げする底上げ部が形成さ れていることにより、前記横溝は、タイヤ幅方向一方端側で隣接する他の前記溝に実 質上開口して終端し、 前記横溝は、タイヤ幅方向他方端側で隣接する他の前記溝又はトレッド端に完全 に開口し、
前記底上げ部は、タイヤ幅方向他方端側力 前記底上げ部の頂部にかけて溝深さ を漸減させる傾斜面を溝底面として形成して 、る、ことを特徴とする空気入りタイヤ。
[13] 前記横溝は略等間隔で形成されている、ことを特徴とする請求項 12に記載の空気入 りタイヤ。
[14] 前記傾斜面を溝底面として有する溝部分の溝長さは、この溝部分を有する前記横溝 の溝長さの 5〜: LOO%の範囲内である、ことを特徴とする請求項 12または請求項 13 に記載の空気入りタイヤ。
[15] 前記トレッドは、タイヤ周方向に沿って延びる周方向主溝を備え、
前記底上げ部は、溝長手方向断面が山形状であって、前記頂部から前記横溝のタ ィャ幅方向一方端にかけて徐々に溝が深くなる一方端側傾斜面を溝底面として形成 しており、
前記横溝に隣接する陸部のタイヤ幅方向一方端側の縁部は、前記一方端側傾斜 面と同一面を有するように前記周方向主溝に沿ってテーパ状に面取りされてなる縁 面を有し、
前記一方端側傾斜面及び前記縁面のタイヤ径方向に対する傾斜角度が 30〜60 ° の範囲内である、ことを特徴とする請求項 12乃至請求項 14の何れか 1項に記載の 空気入りタイヤ。
PCT/JP2005/009792 2004-05-27 2005-05-27 空気入りタイヤ WO2005115770A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE602005020773T DE602005020773D1 (de) 2004-05-27 2005-05-27 Luftreifen
EP05743297A EP1752314B1 (en) 2004-05-27 2005-05-27 Pneumatic tire
US11/597,742 US7849895B2 (en) 2004-05-27 2005-05-27 Pneumatic tire having directional tread pattern
JP2006513963A JP4580387B2 (ja) 2004-05-27 2005-05-27 空気入りタイヤ
US12/941,343 US20110048601A1 (en) 2004-05-27 2010-11-08 Pneumatic tire having directional tread pattern

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004-158059 2004-05-27
JP2004-158060 2004-05-27
JP2004158059 2004-05-27
JP2004158060 2004-05-27
JP2004-265906 2004-09-13
JP2004-265905 2004-09-13
JP2004265905 2004-09-13
JP2004265904 2004-09-13
JP2004265906 2004-09-13
JP2004-265904 2004-09-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/597,742 A-371-Of-International US7849895B2 (en) 2004-05-27 2005-05-27 Pneumatic tire having directional tread pattern
US12/941,343 Division US20110048601A1 (en) 2004-05-27 2010-11-08 Pneumatic tire having directional tread pattern

Publications (1)

Publication Number Publication Date
WO2005115770A1 true WO2005115770A1 (ja) 2005-12-08

Family

ID=35450743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009792 WO2005115770A1 (ja) 2004-05-27 2005-05-27 空気入りタイヤ

Country Status (5)

Country Link
US (2) US7849895B2 (ja)
EP (1) EP1752314B1 (ja)
JP (2) JP4580387B2 (ja)
DE (1) DE602005020773D1 (ja)
WO (1) WO2005115770A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220780A (ja) * 2008-03-18 2009-10-01 Bridgestone Corp 空気入りタイヤ
JP2009255633A (ja) * 2008-04-14 2009-11-05 Bridgestone Corp 空気入りラジアルタイヤ
US20100089509A1 (en) * 2006-12-20 2010-04-15 Bridgeston Corporation pneumatic tire
JP2010105561A (ja) * 2008-10-30 2010-05-13 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2010167857A (ja) * 2009-01-21 2010-08-05 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2011063194A (ja) * 2009-09-18 2011-03-31 Bridgestone Corp タイヤ
JP2011102080A (ja) * 2009-11-10 2011-05-26 Bridgestone Corp タイヤ
CN102673318A (zh) * 2011-03-08 2012-09-19 住友橡胶工业株式会社 充气轮胎
JP2013116643A (ja) * 2011-12-01 2013-06-13 Bridgestone Corp 空気入りタイヤ
JP2013136333A (ja) * 2011-12-28 2013-07-11 Bridgestone Corp 空気入りタイヤ
JP2014108698A (ja) * 2012-11-30 2014-06-12 Bridgestone Corp 空気入りタイヤ
CN104010834A (zh) * 2011-12-27 2014-08-27 株式会社普利司通 充气轮胎
CN105189146A (zh) * 2013-05-13 2015-12-23 住友橡胶工业株式会社 充气轮胎
US9688105B2 (en) 2012-11-30 2017-06-27 Bridgestone Corporation Pneumatic tire
WO2019155786A1 (ja) * 2018-02-09 2019-08-15 横浜ゴム株式会社 空気入りタイヤ
US11173749B2 (en) 2016-04-28 2021-11-16 The Yokohama Rubber Co., Ltd. Pneumatic tire
WO2022145182A1 (ja) * 2020-12-28 2022-07-07 横浜ゴム株式会社 空気入りタイヤ
JP7420541B2 (ja) 2019-12-12 2024-01-23 Toyo Tire株式会社 空気入りタイヤ

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005020773D1 (de) * 2004-05-27 2010-06-02 Bridgestone Corp Luftreifen
JP4684096B2 (ja) * 2005-12-14 2011-05-18 株式会社ブリヂストン 空気入りタイヤ
DE102007061148A1 (de) * 2007-12-17 2009-06-18 Continental Aktiengesellschaft Fahrzeugluftreifen
DE102008009324A1 (de) * 2008-02-15 2009-08-20 Continental Aktiengesellschaft Fahrzeugluftreifen
JP4166819B1 (ja) * 2008-02-29 2008-10-15 横浜ゴム株式会社 空気入りタイヤ
JP4137178B1 (ja) * 2008-02-29 2008-08-20 横浜ゴム株式会社 空気入りタイヤ
TR201010790T1 (tr) 2008-06-30 2011-05-23 Pirelli Tyre S.P.A. Yağmurda kullanım için dış lastik.
RU2461465C1 (ru) * 2008-06-30 2012-09-20 Пирелли Тайр С.П.А. Шина для движения по мокрой дороге
JP4329912B1 (ja) * 2009-03-16 2009-09-09 横浜ゴム株式会社 空気入りタイヤ
JP4367965B1 (ja) * 2009-03-16 2009-11-18 横浜ゴム株式会社 空気入りタイヤ
DE102009003642A1 (de) * 2009-03-19 2010-09-23 Continental Reifen Deutschland Gmbh Laufflächenprofil eines Fahrzeugluftreifens
US9481210B2 (en) * 2010-02-26 2016-11-01 Bridgestone Corporation Pneumatic tire
DE102010016977B4 (de) 2010-05-18 2023-08-17 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
CN103079841B (zh) * 2010-07-02 2015-05-20 株式会社普利司通 充气轮胎
DE102010037698A1 (de) 2010-09-22 2012-03-22 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
US8757229B2 (en) * 2010-10-29 2014-06-24 The Goodyear Tire & Rubber Company Winter tire center tread pattern
JP5981107B2 (ja) * 2011-07-26 2016-08-31 株式会社ブリヂストン タイヤ
JP5432967B2 (ja) * 2011-10-27 2014-03-05 住友ゴム工業株式会社 空気入りタイヤ
JP6073559B2 (ja) * 2012-02-16 2017-02-01 株式会社ブリヂストン レーシングカート用タイヤ
CN104703818B (zh) 2012-09-28 2017-07-21 米其林集团总公司 具有带后缘刀槽花纹的对角肋的轮胎
JP6073739B2 (ja) * 2013-05-01 2017-02-01 株式会社ブリヂストン 空気入りタイヤ
FI125299B (fi) * 2013-10-02 2015-08-14 Nokian Renkaat Oyj Ajoneuvon rengas
JP5635170B1 (ja) * 2013-10-23 2014-12-03 株式会社ブリヂストン 空気入りタイヤ
USD745451S1 (en) * 2013-11-06 2015-12-15 The Goodyear Tire & Rubber Company Tire for automobile
USD745452S1 (en) * 2013-11-06 2015-12-15 The Goodyear Tire & Rubber Company Tire for automobile
US10926586B2 (en) 2013-12-26 2021-02-23 Bridgestone Americas Tire Operations, Llc Tire tread having a flexible gate apparatus
JP6400423B2 (ja) * 2014-10-09 2018-10-03 東洋ゴム工業株式会社 空気入りタイヤ
JP7035740B2 (ja) * 2018-04-06 2022-03-15 住友ゴム工業株式会社 タイヤ
JP6624231B2 (ja) * 2018-04-17 2019-12-25 横浜ゴム株式会社 空気入りタイヤ
DE102019201010A1 (de) * 2019-01-28 2020-07-30 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
DE102019213044A1 (de) * 2019-08-29 2021-03-04 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
CN110936769A (zh) * 2019-12-19 2020-03-31 安徽佳通乘用子午线轮胎有限公司 一种具有镰刀形花纹块的冬季轮胎
EP4043245B1 (en) * 2021-02-12 2024-06-26 Sumitomo Rubber Industries, Ltd. Tyre

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05254311A (ja) * 1992-03-13 1993-10-05 Bridgestone Corp 空気入りタイヤ
JPH10278512A (ja) * 1997-04-07 1998-10-20 Bridgestone Corp 乗用車用高性能空気入りラジアル・タイヤ
JPH11198609A (ja) * 1998-01-19 1999-07-27 Bridgestone Corp 空気入りタイヤ
JP2001071709A (ja) * 1999-09-08 2001-03-21 Bridgestone Corp 方向性パターンを有する空気入りタイヤ
JP2003146024A (ja) * 2001-11-13 2003-05-21 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2455130A1 (de) * 1974-11-21 1976-05-26 Continental Gummi Werke Ag Luftreifen fuer kraftfahrzeuge
FR2312385A1 (fr) * 1975-05-30 1976-12-24 Uniroyal Structure de bande de roulement et enveloppe de bandage pneumatique en comportant application
DE8007151U1 (de) * 1980-03-15 1981-04-16 Uniroyal Gmbh, 5100 Aachen Fahrzeugluftreifen
US4456046A (en) 1981-05-11 1984-06-26 Miller Timothy I High-speed tires
JPS6361606A (ja) 1986-08-30 1988-03-17 Bridgestone Corp 空気入りラジアルタイヤ
JP2573196B2 (ja) * 1987-01-06 1997-01-22 住友ゴム工業 株式会社 空気入りタイヤ
JPH02179508A (ja) * 1988-12-29 1990-07-12 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JPH0310911A (ja) 1989-06-07 1991-01-18 Bridgestone Corp 空気入りタイヤ
DE9000204U1 (ja) * 1990-01-10 1991-02-21 Uniroyal Englebert Reifen Gmbh, 5100 Aachen, De
DE9002986U1 (ja) * 1990-03-12 1991-04-04 Uniroyal Englebert Reifen Gmbh, 5100 Aachen, De
JP2905256B2 (ja) * 1990-04-19 1999-06-14 株式会社ブリヂストン 高速走行用空気入りタイヤ
DE9016455U1 (ja) * 1990-12-04 1991-07-25 Uniroyal Englebert Reifen Gmbh, 5100 Aachen, De
JPH05319026A (ja) * 1992-05-27 1993-12-03 Bridgestone Corp 空気入りタイヤ
US5361815A (en) * 1992-11-16 1994-11-08 The Goodyear Tire & Rubber Company Tread for a tire with blocks and ribs
IT1265035B1 (it) * 1993-05-31 1996-10-28 Pirelli Pneumatico per ruote di veicoli con battistrada a bassa rumorosita' di rotolamento
JP3197727B2 (ja) * 1993-12-22 2001-08-13 横浜ゴム株式会社 空気入りタイヤ
US5746849A (en) * 1995-12-11 1998-05-05 The Goodyear Tire & Rubber Company Tire tread including tie bar
JP3136103B2 (ja) 1996-09-27 2001-02-19 住友ゴム工業株式会社 空気入りタイヤ
IT1284979B1 (it) * 1996-10-18 1998-05-28 Pirelli Coodinamento Pneumatic Pneumatico con migliorate prestazioni e relativi motodo e stampo di fabbricazione
JP3675595B2 (ja) * 1996-12-06 2005-07-27 株式会社ブリヂストン 乗用車用空気入りタイヤ
DE19702675C2 (de) * 1997-01-25 2002-02-07 Continental Ag Profil für PKW-Luftreifen
JP3764266B2 (ja) 1997-12-25 2006-04-05 住友ゴム工業株式会社 空気入りラジアルタイヤ
DE69930481T2 (de) * 1998-10-30 2006-10-19 Sumitomo Rubber Industries Ltd., Kobe Fahrzeugreifen
JP4278758B2 (ja) * 1999-02-19 2009-06-17 株式会社ブリヂストン 空気入りタイヤ
EP1075971B1 (en) * 1999-02-26 2007-08-29 Bridgestone Corporation Pneumatic tire
JP4615655B2 (ja) * 2000-01-17 2011-01-19 株式会社ブリヂストン 空気入りタイヤ
JP4369001B2 (ja) 2000-02-17 2009-11-18 株式会社ブリヂストン 方向性パターンを有する空気入りタイヤ
FR2824552B1 (fr) * 2001-05-14 2004-04-02 Lafarge Platres Procede et dispositif pour la formation de couches denses dans un pate de platre
JP4184674B2 (ja) * 2002-02-14 2008-11-19 株式会社ブリヂストン 空気入りタイヤ
JP3963769B2 (ja) 2002-04-30 2007-08-22 横浜ゴム株式会社 空気入りタイヤ
JP3678727B2 (ja) 2003-01-07 2005-08-03 住友ゴム工業株式会社 空気入りタイヤ
DE602005020773D1 (de) * 2004-05-27 2010-06-02 Bridgestone Corp Luftreifen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05254311A (ja) * 1992-03-13 1993-10-05 Bridgestone Corp 空気入りタイヤ
JPH10278512A (ja) * 1997-04-07 1998-10-20 Bridgestone Corp 乗用車用高性能空気入りラジアル・タイヤ
JPH11198609A (ja) * 1998-01-19 1999-07-27 Bridgestone Corp 空気入りタイヤ
JP2001071709A (ja) * 1999-09-08 2001-03-21 Bridgestone Corp 方向性パターンを有する空気入りタイヤ
JP2003146024A (ja) * 2001-11-13 2003-05-21 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100089509A1 (en) * 2006-12-20 2010-04-15 Bridgeston Corporation pneumatic tire
JP2009220780A (ja) * 2008-03-18 2009-10-01 Bridgestone Corp 空気入りタイヤ
JP2009255633A (ja) * 2008-04-14 2009-11-05 Bridgestone Corp 空気入りラジアルタイヤ
JP2010105561A (ja) * 2008-10-30 2010-05-13 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP4653832B2 (ja) * 2008-10-30 2011-03-16 住友ゴム工業株式会社 空気入りタイヤ
JP2010167857A (ja) * 2009-01-21 2010-08-05 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2011063194A (ja) * 2009-09-18 2011-03-31 Bridgestone Corp タイヤ
JP2011102080A (ja) * 2009-11-10 2011-05-26 Bridgestone Corp タイヤ
CN102673318A (zh) * 2011-03-08 2012-09-19 住友橡胶工业株式会社 充气轮胎
CN102673318B (zh) * 2011-03-08 2015-09-23 住友橡胶工业株式会社 充气轮胎
JP2013116643A (ja) * 2011-12-01 2013-06-13 Bridgestone Corp 空気入りタイヤ
CN104010834A (zh) * 2011-12-27 2014-08-27 株式会社普利司通 充气轮胎
CN104010834B (zh) * 2011-12-27 2016-06-29 株式会社普利司通 充气轮胎
JP2013136333A (ja) * 2011-12-28 2013-07-11 Bridgestone Corp 空気入りタイヤ
JP2014108698A (ja) * 2012-11-30 2014-06-12 Bridgestone Corp 空気入りタイヤ
US9688105B2 (en) 2012-11-30 2017-06-27 Bridgestone Corporation Pneumatic tire
CN105189146A (zh) * 2013-05-13 2015-12-23 住友橡胶工业株式会社 充气轮胎
US11173749B2 (en) 2016-04-28 2021-11-16 The Yokohama Rubber Co., Ltd. Pneumatic tire
WO2019155786A1 (ja) * 2018-02-09 2019-08-15 横浜ゴム株式会社 空気入りタイヤ
JP2019137218A (ja) * 2018-02-09 2019-08-22 横浜ゴム株式会社 空気入りタイヤ
US11760133B2 (en) 2018-02-09 2023-09-19 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP7420541B2 (ja) 2019-12-12 2024-01-23 Toyo Tire株式会社 空気入りタイヤ
WO2022145182A1 (ja) * 2020-12-28 2022-07-07 横浜ゴム株式会社 空気入りタイヤ
JP7473849B2 (ja) 2020-12-28 2024-04-24 横浜ゴム株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
EP1752314A1 (en) 2007-02-14
US20070215258A1 (en) 2007-09-20
US20110048601A1 (en) 2011-03-03
DE602005020773D1 (de) 2010-06-02
EP1752314B1 (en) 2010-04-21
EP1752314A4 (en) 2008-12-24
US7849895B2 (en) 2010-12-14
JP4580387B2 (ja) 2010-11-10
JP4862090B2 (ja) 2012-01-25
JPWO2005115770A1 (ja) 2008-03-27
JP2010285152A (ja) 2010-12-24

Similar Documents

Publication Publication Date Title
WO2005115770A1 (ja) 空気入りタイヤ
KR101562679B1 (ko) 공기 타이어
US9150056B2 (en) Pneumatic tire
US8496036B2 (en) Pneumatic tire with tread having center rib, curved oblique grooves and connecting groove portions
JP3380605B2 (ja) 空気入りタイヤ
US7178570B2 (en) Pneumatic tire including main and auxiliary oblique grooves in axially inner region of tread
US7891392B2 (en) Pneumatic tire with tread having curved oblique grooves and chamfers
CN101815624B (zh) 充气轮胎
JP4744800B2 (ja) 空気入りタイヤ
KR101787770B1 (ko) 공기 타이어
EP2586628A2 (en) Pneumatic tire
JP5330865B2 (ja) 空気入りタイヤ
US10479142B2 (en) Pneumatic tire
JP4275283B2 (ja) 空気入りタイヤ
JP3949939B2 (ja) 空気入りタイヤ
JP6558297B2 (ja) 空気入りタイヤ
JP4413590B2 (ja) 空気入りタイヤ
JP4373264B2 (ja) 空気入りタイヤ
JP4268034B2 (ja) 空気入りタイヤ
JP4369001B2 (ja) 方向性パターンを有する空気入りタイヤ
JP4122179B2 (ja) 空気入りタイヤ
JP3980403B2 (ja) 空気入りタイヤ
JP2010184570A (ja) 空気入りタイヤ
JP4689852B2 (ja) 空気入りタイヤ
JP4286586B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513963

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11597742

Country of ref document: US

Ref document number: 2007215258

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005743297

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005743297

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11597742

Country of ref document: US