WO2005052691A1 - 厚膜パターンの形成方法、電子部品の製造方法、およびフォトリソグラフィー用感光性ペースト - Google Patents

厚膜パターンの形成方法、電子部品の製造方法、およびフォトリソグラフィー用感光性ペースト Download PDF

Info

Publication number
WO2005052691A1
WO2005052691A1 PCT/JP2004/015621 JP2004015621W WO2005052691A1 WO 2005052691 A1 WO2005052691 A1 WO 2005052691A1 JP 2004015621 W JP2004015621 W JP 2004015621W WO 2005052691 A1 WO2005052691 A1 WO 2005052691A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive
photosensitive paste
weight
paste
monomer
Prior art date
Application number
PCT/JP2004/015621
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Kambara
Shuichi Towata
Michiaki Iha
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to US10/596,000 priority Critical patent/US8298754B2/en
Priority to JP2005515745A priority patent/JP4211782B2/ja
Publication of WO2005052691A1 publication Critical patent/WO2005052691A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5188Metallising, e.g. infiltration of sintered ceramic preforms with molten metal organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0514Photodevelopable thick film, e.g. conductive or insulating paste

Definitions

  • the present invention relates to a method for forming a thick film pattern using a photolithography method, a method for manufacturing an electronic component, and a photosensitive paste for photolithography used for forming a thick film pattern using a photolithography method.
  • notches such as wiring conductors constituting high-frequency circuits included in these electronic devices are fine, have a large film thickness, and have a cross-sectional shape. Is required to have a rectangular shape, and furthermore, to have a wiring accuracy in which variation in wiring dimensions is small.
  • a method of forming such a fine pattern As a method of forming such a fine pattern, a method of forming a pattern using a photolithography method is widely used.
  • a conventional photosensitive paste used therein for example, an inorganic paste is used.
  • a photosensitive paste containing a powder, a photosensitive monomer, a polymer, a photopolymerization initiator, and the like has been proposed (for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-82449
  • the inventor of the present application has found that a polymer affects the photocuring depth. This is because (a) the irradiation light is refracted and scattered by the polymer, so that the UV light reaches the inside of the photosensitive paste film, and (b) the UV light is absorbed by the polymer, c) poly It is considered that the presence of the monomer inhibits the micro-Brownian movement of the monomer in the photosensitive paste and makes the polymerization difficult to proceed.
  • the present invention solves the above problems, and a thick film pattern capable of efficiently forming a thick film pattern having a large thickness and a high dimensional accuracy and a high shape accuracy by a photolithography method.
  • An object of the present invention is to provide a forming method, a method for manufacturing an electronic component using the same, and a photosensitive paste for photolithography suitable for use in the method.
  • a method for forming a thick film pattern according to the present invention includes an inorganic powder, a photosensitive monomer, and a photopolymerization initiator, and substantially contains a polymer.
  • the method for forming a thick film pattern according to claim 3 is characterized in that:
  • Inorganic powder 60-90% by weight
  • Photosensitive monomer 5-39% by weight
  • Photopolymerization initiator 11-10% by weight
  • a photosensitive paste containing a photosensitive monomer having a double bond concentration in a range of 8 mmolZg to 11 mmolZg is used as the photosensitive paste.
  • the method for forming a thick film pattern according to claim 5 is characterized in that a paste containing a photosensitive monomer having an ethylene oxide structure having a polymerization degree of S3 or less is used as the photosensitive paste. .
  • the method of forming a thick film pattern according to claim 6 is characterized in that the photosensitive paste contains an ultraviolet absorber.
  • the method of forming a thick film pattern according to claim 7 is characterized in that the photosensitive paste contains a solvent in a proportion of 5% by weight or less.
  • the method of forming a thick film pattern according to claim 8 is characterized in that, in the development step, development is performed using an organic solvent.
  • the method of forming a thick film pattern according to claim 9 is characterized in that, in the exposing step, the photosensitive paste film and a photomask are arranged so as not to be in contact with each other and subjected to an exposing process. I have.
  • the method of forming a thick film pattern according to claim 10 is characterized in that in the exposing step, the photosensitive paste is exposed to light without using a photomask.
  • the photosensitive paste for photolithography of the present invention contains an inorganic powder, a photosensitive monomer, and a photopolymerization initiator, and does not substantially contain a polymer.
  • a photosensitive paste for photolithography comprising an inorganic powder, a photosensitive monomer, a photopolymerization initiator, and a polymer,
  • the ratio (weight ratio) of the photosensitive monomer to the total amount of the photosensitive monomer and the polymer is represented by the following formula (1):
  • the photosensitive paste for photolithography according to claim 14 is:
  • the content ratio of the inorganic powder, the photosensitive monomer, and the photopolymerization initiator is as follows: inorganic powder: 60 to 90% by weight
  • Photosensitive monomer 5-39% by weight
  • Photopolymerization initiator 11-10% by weight
  • the photosensitive paste for photolithography according to claim 15 is characterized in that the photosensitive monomer is a photosensitive monomer having a double bond concentration of 8 mmolZg-1 ImmolZg.
  • the photosensitive paste for photolithography according to claim 16 is characterized in that the photosensitive monomer is a photosensitive monomer having a degree of polymerization of 3 or less and having an ethylene oxide structure.
  • the photosensitive paste for photolithography according to claim 17 is characterized in that it contains an ultraviolet absorber.
  • the photosensitive paste for photolithography according to claim 18 is characterized in that it contains a solvent in a proportion of 5% by weight or less.
  • the method for forming a thick film pattern according to the present invention includes an inorganic powder, a photosensitive monomer, and a photopolymerization initiator, and substantially contains a polymer.
  • a photosensitive paste film is formed by coating on a support, and the photosensitive paste film is exposed to light. After processing, development is performed to form a predetermined thick film pattern, so that a thick film pattern having a large thickness and high dimensional accuracy and shape accuracy can be efficiently formed.
  • a photosensitive paste substantially containing no polymer since a photosensitive paste substantially containing no polymer is used, a photosensitive paste film that does not cause refraction, scattering, or absorption of irradiation light by the polymer in the exposure step is generated.
  • the ultraviolet light can easily reach the inside of the polymer, and the polymer does not hinder the micro-Brownian motion of the photosensitive monomer. This makes it possible to form a thick film pattern with a high aspect ratio and high dimensional accuracy and shape accuracy.
  • the phrase "the photosensitive paste does not substantially contain a polymer" means that the present invention includes a case where a small amount of a polymer is contained as an impurity in the photosensitive paste. .
  • the photosensitive amount based on the total amount of the photosensitive monomer and the polymer is not affected.
  • Monomer ratio (weight ratio) i Photosensitive monomer Z (photosensitive monomer + polymer) ⁇ 0.86 is satisfied, that is, the ratio of polymer to the total amount of photosensitive monomer and polymer is 0. If it is less than 14 (less than 14% by weight), it is possible to suppress the refraction, scattering, or absorption of irradiation light by the polymer in the exposure step, and ultraviolet light reaches the inside of the photosensitive paste film. This facilitates the formation of a thick film pattern with a large thickness and high dimensional accuracy and high shape accuracy by preventing the polymer from hindering the micro-Brownian motion of the photosensitive monomer. It becomes possible.
  • the content ratios of the inorganic powder, the photosensitive monomer, and the photopolymerization initiator constituting the photosensitive paste are defined as follows:
  • Inorganic powder 60-90% by weight
  • Photosensitive monomer 5-39% by weight
  • Photopolymerization initiator 11-10% by weight
  • a photosensitive paste containing a photosensitive monomer having a double bond concentration in the range of 8 mmolZg to 11 mmolZg is used as the photosensitive paste.
  • the photosensitive mask is arranged so as not to be in contact with the photomask, and the photomask is subjected to an exposure treatment, whereby the photomask is formed. It is possible to prevent the photosensitive paste film from being damaged by contact, and to form a highly reliable thick film pattern.
  • the photosensitive paste is subjected to an exposing process without using a photomask, thereby eliminating the need for a photomask.
  • the cost can be reduced, the manufacturing process can be simplified, and the present invention can be made more effective.
  • the method of manufacturing an electronic component according to the present invention includes forming a thick film pattern by the method according to any one of claims 11 to 10, and then firing the thick film pattern. As a result, it is possible to efficiently and reliably manufacture electronic components having high performance and high reliability with fine patterns.
  • the photosensitive paste of the present invention contains an inorganic powder, a photosensitive monomer, and a photopolymerization initiator, and does not substantially contain a polymer.
  • Ultraviolet light can easily reach the inside of the photosensitive paste film where irradiation light is not refracted, scattered, or absorbed, and the polymer does not hinder the micro Brownian motion of the photosensitive monomer. The polymerization proceeds easily. Therefore
  • the photosensitive paste for photolithography of the present invention it is possible to reliably form a thick film pattern having high dimensional accuracy and high shape accuracy.
  • a polymer may be contained, and in some cases, the photosensitive monomer may be based on the total amount of the photosensitive monomer and the polymer.
  • Ratio (weight ratio) power Photosensitive monomer Z (photosensitive monomer + polymer) ⁇ 0.86 is satisfied, that is, the ratio of polymer to the total amount of photosensitive monomer and polymer is less than 0.14 by weight (Less than 14% by weight), it is possible to suppress the refraction, scattering, or absorption of irradiation light by the polymer in the exposure step, and it is possible to prevent ultraviolet rays from reaching inside the photosensitive paste film for photolithography. This makes it easier for light to reach, and prevents the polymer from hindering the micro-Brownian motion of the photosensitive monomer. Turns can be formed reliably.
  • the content ratio of the inorganic powder, the photosensitive monomer, and the photopolymerization initiator constituting the photosensitive paste for photolithography is defined as follows:
  • Inorganic powder 60-90% by weight
  • Photosensitive monomer 5-39% by weight
  • Photopolymerization initiator 11-10% by weight
  • the photosensitive monomer contains a photosensitive monomer having a double bond concentration of 8 mmolZg to 11 ImmolZg, photocuring is performed.
  • the depth can be improved, and the present invention can be made more effective.
  • the photosensitive monomer contains a photosensitive monomer having an ethylene oxide structure having a degree of polymerization of 3 or less, In particular, the value of the photocuring depth can be increased, and the present invention can be made more effective.
  • the thick film is dried without drying or with a minimum drying time.
  • a pattern can be formed, and the present invention can be made more effective.
  • FIG. 1] (a)-(c) are diagrams showing a method of forming a thick film pattern by a method working on an embodiment of the present invention.
  • FIGS. 2 (a) to 2 (d) are diagrams showing a method of forming a thick film pattern by another method of the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating an electronic component (ceramic multilayer substrate) according to an embodiment of the present invention.
  • FIG. 4 is a perspective view showing an appearance of a chip coil according to an embodiment of the present invention.
  • FIG. 5 is an exploded perspective view showing the configuration of the chip coil shown in FIG. 4.
  • a photosensitive paste is used. Therefore, usually, the content ratio of the inorganic powder, the photosensitive monomer, and the photopolymerization initiator is, respectively,
  • the content range of the inorganic powder in the range of 60 to 90% by weight, when metal powder is used as the inorganic powder, poor conductivity (increase in conductor resistance) is prevented. In addition, when ceramic raw material powder or glass powder is used as the inorganic powder, it is possible to prevent insulation failure.
  • the content range of the inorganic powder in the range of 60 to 90% by weight, an excessive increase in the viscosity of the photosensitive paste, difficulty in handling, and a decrease in printability are caused.
  • the smoothing force can also keep the photocurability good. Further, it is possible to prevent the strength of the cured product from being reduced and the cured product from becoming brittle.
  • an inorganic powder having a mean particle size in the range of 0.1 to 10 ⁇ m by using an inorganic powder having a mean particle size in the range of 0.1 to 10 ⁇ m, aggregation of particles is suppressed, dispersibility is maintained well, and fine patterns are formed. And a photosensitive paste having sufficient photocurability can be obtained, which is preferable. Further, it is more preferable to use one having an average particle size of 0.5 to 5 m.
  • spherical inorganic powders It is preferable to use spherical inorganic powders.
  • foil-like, granular, massive, flat, plate-like, rod-like, and needle-like ones can also be used, and can be appropriately selected depending on the thick film pattern to be formed.
  • inorganic powder conductive powder, ceramic powder, glass powder, and the like can be used.
  • the conductive powder Ag, Au, Pt, Pd, Cu, Ni, W, Al, Mo and the like can be used, and these can be used in combination. It is also possible to use an alloy containing at least one of the above metals. Further, it is also possible to use a metal powder coated with an oxide coat, a nitride coat or a silicon nitride coat.
  • Examples of the ceramic powder include Al, Ag, Cu, Ni, Ti, Ba, Pb, Zr, Mn, Cr, Sr, and F. e, Y, Nb, La, Si, Zn, Bi, B, and at least one metal selected from the group consisting of Ru, oxides, borides, nitrides, silicon nitrides, and the like can be used. . It is also possible to use glass composite ceramic powder.
  • the glass powder a known glass powder such as a borosilicate glass powder can be used. More specifically, as the glass powder, SiO—PbO system, SiO—Zn
  • glass powder such as 2 3 2 2 3 2 3 2 2 2 3 2 2 2.
  • the inorganic powder it is also possible to use a mixture of the above substances, that is, for example, to use a mixture of Ag and glass.
  • the ratio of the photosensitive monomer is preferably in the range of 5 to 39% by weight as described above. This means that by setting the proportion of the photosensitive monomer in the range of 5 to 39% by weight, it is possible to prevent a decrease in photocurability and a resulting decrease in the strength of the cured product (brittleness of the cured product). At the same time, it is possible to prevent the proportion of the inorganic powder from being too low.
  • photosensitive monomer stearyl acrylate, tetrahydrofurfuryl acrylate, lauryl acrylate, 2-phenoxshetyl acrylate, isodecyl acrylate, isooctyl acrylate, tridecyl acrylate, Proprotatonate acrylate, ethoxylated nourphenol atalylate, 1,4-butanediol diatalylate, diethylene glycol diatalylate, tetraethylene glycol diatalylate, triethylene glycol diatalylate, ethoxylated bisphenol A diatalylate, propoxy Neopentyl glycol diatalylate, tris (2-hydroxyethyl) isocyanurate triatalylate, propoxylated trimethylolpropane triatalylate, propoxylated glyate Riltriatalylate, pentaerythritol tetraataly
  • the photosensitive monomers having a double bond concentration in the range of 8 mmolZg to 11 mmolZg include hexanediol triatalylate, tripropylene glycol triatalylate, trimethylolpropane triatalylate, and 1,3-butanediol diatallylate.
  • a photosensitive paste containing a photosensitive monomer having an ethylene oxide structure having a degree of polymerization of 3 or less it is possible to improve the photocuring depth. That is, when the degree of polymerization of the ethylene oxide structure is as small as 3 or less, the effect of improving the photocuring depth is increased.
  • Examples of the photosensitive monomer having an ethylene oxide structure having a degree of polymerization of 3 or less include ethoxylated (ethylene oxide modified) such as ethoxylated trimethylolpropane triatalylate, and polyethylene glycol diatalylate. .
  • the photopolymerization initiator is desirably contained in the range of 110% by weight.
  • the photopolymerization initiator in the range of 110 to 10% by weight, it is possible to avoid insufficient photocurability due to too little photopolymerization initiator and to prevent a decrease in the hardness of the cured product, thereby achieving a high aspect ratio pattern.
  • the photosensitive paste absorbs too much ultraviolet light and prevents energy from reaching the inside, has a sufficient thickness, and has a high degree of hardness. It is preferable that the pattern can be reliably formed.
  • examples of the photopolymerization initiator that can be suitably used include benzyl and benzyl.
  • a photosensitizer may be added.
  • the photosensitizer include P-dimethylaminobenzoic acid isoamyl ester and P-dimethylaminobenzoic acid ethyl ester.
  • a paste containing a solvent in a proportion of 5% by weight or less can be used.
  • the solvent examples include alcohols such as ethanol and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, and aromatic compounds such as xylene. Is exemplified. These solvents can be used as a mixture.
  • the drying step it is basically preferable not to contain a solvent. Even when a solvent is added due to its origin, there is no particular problem if the proportion of the solvent is 5% by weight or less. If the content of the solvent exceeds 5% by weight, the effect of the present invention is not necessarily impaired, but a drying step is required.
  • a thixo agent a thickener, an anti-settling agent), a dispersant, a polymerization inhibitor (a radical trapping agent), an ultraviolet absorber (a dye, It is also possible to add additives such as pigments and HALS (hindered amine ultraviolet absorber).
  • a thixo agent a thickener, an anti-settling agent
  • a dispersant a polymerization inhibitor (a radical trapping agent)
  • a radical trapping agent a radical trapping agent
  • an ultraviolet absorber a dye
  • additives such as pigments and HALS (hindered amine ultraviolet absorber).
  • the photocurable depth of this photosensitive paste P1 at an exposure dose of 400 mjZcm 2 was 18.9 ⁇ .
  • FIG. 1 A film (photosensitive paste film) 2 having a thickness of 17.0 m was formed on a substrate 1 (alumina substrate in this example). Then, as shown in FIG. 1 (b), the photosensitive paste film 2 is cured by irradiating ultraviolet light under the condition of 400 mjZcm 2 through the photomask 3, and as shown in FIG. Was removed using ethanol to obtain a thick film pattern in which a plurality of linear patterns L having the same width were arranged via the space S.
  • the aspect ratio of the pattern (the ratio of the height dimension to the bottom dimension of the cross section (height dimension Z bottom dimension)) was examined from the dimensions after firing, the aspect ratio was 0.80.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing, and cured by irradiating ultraviolet light at 400 miZcm 2 . This operation was repeated to form a paste film having a thickness of 100 m.
  • the Vickers hardness of this coating film was 24.6 Hv.
  • a photosensitive paste P2 containing no polymer was prepared by mixing and kneading the following materials.
  • the photocurable depth of this photosensitive paste P2 at an exposure dose of 400 mjZcm 2 was 16.2 ⁇ .
  • a film having a thickness of 16.0 m was formed on an alumina substrate by screen printing. Purple under the conditions of 400mjZcm 2 and then through a photomask It was cured by irradiation with external light, and the uncured portion was removed using ethanol. As a result, the minimum LZS was 25Z25 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.69.
  • a film having a thickness of 25 ⁇ m was formed by screen printing on an alumina substrate using the photosensitive paste P2, and cured by irradiating ultraviolet light at 400 miZcm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating film was measured and found to be 15.2 Hv.
  • the photocurable depth of this photosensitive paste P3 at an exposure dose of 400 mjZcm 2 was 12.8 m.
  • a film having a thickness of 12. O / zm was formed on an alumina substrate by screen printing. Then, it was cured by irradiating it with ultraviolet light under the condition of 400 mj / cm 2 through a photomask, and the uncured portion was removed using ethanol.
  • the minimum LZS was 25Z25 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.61.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P3, and the film was cured by irradiating ultraviolet light at 400 miZcm 2 . This operation was repeated to form a paste film having a thickness of 100 m.
  • the Vickers hardness of this coating film was measured and found to be 10.6 Hv.
  • the photocurable depth of this photosensitive paste P4 at an exposure dose of 400 mjZcm 2 was 22. ⁇ .
  • a film having a thickness of 20.8 / zm was formed on an alumina substrate by screen printing. Then, it was cured by irradiating it with ultraviolet light under a condition of 400 mj / cm 2 through a photomask, and an uncured portion was removed using acetone. As a result, the minimum LZS was 25Z20 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.68.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P4, and cured by irradiating ultraviolet light at 400 miZcm 2 . Repeat this operation Then, a paste film having a thickness of 100 m was formed.
  • the Vickers hardness of this coating film was 30.2 Hv.
  • the depth of light curing of this photosensitive paste P5 at an exposure dose of 400 mjZcm 2 was 18.5 m.
  • a film having a thickness of 18 .: L m was formed on an alumina substrate by screen printing using the photosensitive paste P5. Then, it was cured by irradiating it with ultraviolet light under the condition of 400 mjZcm 2 through a photomask, and the uncured portion was removed using acetone.
  • the minimum L / S was 25/25 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.62.
  • a film having a thickness of 25 ⁇ m was formed by screen printing on an alumina substrate using the photosensitive paste P5, and the film was cured by irradiating ultraviolet light at 400 miZcm 2 . This operation was repeated to form a paste film having a thickness of 100 m.
  • the Vickers hardness of this coating film was 26.5 Hv.
  • a film of 16.8 / zm was formed. Then, it was cured by irradiating it with ultraviolet light under a condition of 400 mj / cm 2 through a photomask, and an uncured portion was removed using acetone. As a result, the minimum LZS was 30Z30 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.55.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P6, and cured by irradiating ultraviolet light at 400 miZcm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating was measured.
  • the photocurable depth of this photosensitive paste P7 at an exposure dose of 400 mjZcm 2 was 15.2 ⁇ .
  • a 14.7 ⁇ m thick film (photosensitive paste film) 2 was formed on a PET film 5 as a support by screen printing, as shown in Fig. 2 (a). Formed. Then, it was cured by irradiating it with ultraviolet light under the condition of 400 miZcm 2 through a photomask, and as shown in FIG. 2 (b), the uncured portion was removed using ethanol.
  • the ratio (LZS) of the smallest linear pattern L to the space S was 25Z30 ⁇ m.
  • the pattern (thick film pattern) L formed on the PET film 5 was inverted, and as shown in FIG.
  • the pattern (thick film pattern) L was formed on the green sheet 6 by applying pressure and transferring under the conditions of 0.5 MPa and 60 seconds, as shown in FIG.
  • the pattern L was fired, and the width and thickness of the pattern were observed with a laser microscope. As a result, the aspect ratio was 0.51.
  • this photosensitive paste P7 film having a thickness of 25 m was formed by screen printing on an alumina substrate and cured by irradiation with ultraviolet light at 400miZcm 2. This operation was repeated to form a paste film having a thickness of 100 m.
  • the Vickers hardness of this coating film was 14.8 Hv.
  • This photocurable depth of this photosensitive paste P8 at an exposure dose of 400 mjZcm 2 was 13.9 ⁇ .
  • a film having a thickness of 13.0 m was formed on a PET film as a support by screen printing. Then, it was cured by irradiating it with ultraviolet light under a condition of 400 miZcm 2 through a photomask, and the uncured portion was removed using ethanol. As a result, the minimum LZS was 25Z30 m.
  • the pattern formed on the PET film was inverted, and the green sheet was pressed and transferred on a green sheet under the conditions of 60 ° C., 0.5 MPa, and 60 seconds using a thermocompression bonding machine. This pattern was fired, and the width and thickness of the pattern were observed with a laser microscope. As a result, the aspect ratio was 0.45.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P8, and the film was cured by irradiation with ultraviolet light at 400 miZcm 2 . This operation was repeated to form a paste film having a thickness of 100 m.
  • the Vickers hardness of this coating film was 15.4 Hv.
  • the photocurable depth of this photosensitive paste P9 at an exposure dose of 400 mjZcm 2 was 15.8 m.
  • a film having a thickness of 15 .: m was formed on an alumina substrate by screen printing using the photosensitive paste P9. Then, it was cured by irradiating it with ultraviolet light under the condition of 400 mj / cm 2 through a photomask, and the uncured portion was removed using ethanol.
  • the minimum LZS was 30Z30 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.59.
  • a film having a thickness of 25 ⁇ m was formed by screen printing on an alumina substrate using the photosensitive paste P9, and the film was cured by irradiating with ultraviolet light at 400 miZcm 2 . This operation was repeated to form a paste film having a thickness of 100 m.
  • the Vickers hardness of this coating film was 17.8 Hv.
  • the photocurable depth of this photosensitive paste P10 at an exposure dose of 400 mjZcm 2 was 14.8 ⁇ m.
  • a film having a thickness of 13.8 / zm was formed on an alumina substrate by screen printing. Then, it was cured by irradiating ultraviolet light under the condition of 400 miZcm 2 through a photomask, and the uncured portion was removed using ethanol.
  • the L / S of the maximum / J was 25/25 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.53.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P10, and cured by irradiating ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating film was measured and found to be 16.9 Hv.
  • the photocurable depth of this photosensitive paste P11 at an exposure dose of 400 mjZcm 2 was 14.1 ⁇ m.
  • a film having a thickness of 14. O / zm was formed on an alumina substrate by screen printing. Then, it was cured by irradiating ultraviolet light under the condition of 400 miZcm 2 through a photomask, and the uncured portion was removed using ethanol.
  • the L / S of the maximum / J was 20/20 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.70.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P11, and cured by irradiating ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating film was measured and found to be 15.7 Hv.
  • Trimethylolpropane Atari rate (Echirenokishido no denaturing) (photosensitive monomer): 16. 5 wt 0/0
  • L / S was 30/30 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.61.
  • a film having a thickness of 25 ⁇ m was formed by screen printing on an alumina substrate using the photosensitive paste P12, and the film was cured by irradiation with ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating film was measured and found to be 27.5 Hv.
  • Acrylic copolymer (polymer) 0.5% by weight
  • the photocurable depth of this photosensitive paste P13 at an exposure dose of 400 mjZcm 2 was 16.7 ⁇ m.
  • a film having a thickness of 16.5 m was formed on an alumina substrate by screen printing. Then, it was cured by irradiating ultraviolet light under the condition of 400 miZcm 2 through a photomask, and the uncured portion was removed using ethanol.
  • the L / S of the maximum / J was 25/25 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.68.
  • a ⁇ m film was formed and cured by irradiating with ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating film was measured to be 19.9 Hv.
  • Acrylic copolymer (polymer) 1.0% by weight
  • the photocurable depth of this photosensitive paste P14 at an exposure dose of 400 mjZcm 2 was 16. ⁇ ⁇ m.
  • a film having a thickness of 15.8 / zm was formed on an alumina substrate by screen printing. Then, it was cured by irradiating ultraviolet light under the condition of 400 miZcm 2 through a photomask, and the uncured portion was removed using ethanol.
  • the L / S of the maximum / J was 25/25 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.62.
  • a ⁇ m film was formed and cured by irradiating with ultraviolet light at 400 n3j / cm 2 . Repeat this operation Thus, a paste film having a thickness of 100 m was formed. The Vickers hardness of this coating film was measured and found to be 18.5 Hv.
  • Acrylic copolymer (polymer) 1.0% by weight
  • Thixotropic agent 2.0% by weight
  • the photocurable depth of this photosensitive paste P15 at an exposure dose of 400 mjZcm 2 was 15.6 ⁇ m.
  • a film having a thickness of 15 .: m was formed on an alumina substrate by screen printing. Then, it was cured by irradiating ultraviolet light under the condition of 400 miZcm 2 through a photomask, and the uncured portion was removed using ethanol.
  • the L / S of the maximum / J was 25/25 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.60.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P15, and cured by irradiating ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m.
  • the Vickers hardness of this coating film was 18.4 Hv.
  • Acrylic copolymer (polymer) 2.0% by weight
  • the photocurable depth of this photosensitive paste P16 at an exposure dose of 400 mjZcm 2 was 14.2 ⁇ m.
  • a film having a thickness of 14. O / zm was formed on an alumina substrate by screen printing. Then, it was cured by irradiating ultraviolet light under the condition of 400 miZcm 2 through a photomask, and the uncured portion was removed using ethanol. As a result, the maximum L / S was 30/25 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.48.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P16, and the film was cured by irradiation with ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m.
  • the Vickers hardness of this coating film was 18. OHv.
  • Thixotropic agent 2.0% by weight
  • This photosensitive paste P17 The depth of light curing of this photosensitive paste P17 at an exposure dose of 400 mjZcm 2 was 12.5 ⁇ m.
  • a film having a thickness of 11.5 / zm was formed on an alumina substrate by screen printing. Then, it was cured by irradiating ultraviolet light under the condition of 400 miZcm 2 through a photomask, and the uncured portion was removed using ethanol. As a result, the maximum L / S was 30/25 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.55.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P17, and cured by irradiating ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating film was measured and found to be 15.8 Hv.
  • This photosensitive paste P18 The depth of light curing of this photosensitive paste P18 at an exposure dose of 400 mjZcm 2 was 13.8 ⁇ m.
  • a film having a thickness of 12.5 m was formed on an alumina substrate by screen printing. Then, it was cured by irradiating ultraviolet light under the condition of 400 miZcm 2 through a photomask, and the uncured portion was removed using ethanol. As a result, the L / S of the maximum / J was 35/35 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.35.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P18, and cured by irradiating ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating film was measured and found to be 14.3 Hv.
  • the light-curing depth of this photosensitive paste P19 at an exposure dose of 400 mjZcm 2 was 11.3 ⁇ m.
  • a film having a thickness of 10. O / zm was formed on an alumina substrate by screen printing. Then, it was cured by irradiating ultraviolet light under the condition of 400 miZcm 2 through a photomask, and the uncured portion was removed using ethanol.
  • the L / S of the maximum / J was 35/30 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.30.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P19, and the film was cured by irradiating ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating film was measured and found to be 13.2 Hv.
  • this photosensitive paste P20 The depth of light curing of this photosensitive paste P20 at an exposure dose of 400 mjZcm 2 was 11. ⁇ ⁇ m. Use this photosensitive paste P20 to screen-print on an alumina substrate. A 9.5 m thick film was formed. Then, it was cured by irradiating ultraviolet light under the condition of 400 miZcm 2 through a photomask, and the uncured portion was removed using ethanol. As a result, the L / S at the maximum / J was 40/30 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.29.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P20, and the film was cured by irradiation with ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m.
  • the Vickers hardness of this coating film was 13. ⁇ .
  • UV absorber anthraquinone dye: 1.6% by weight
  • This photosensitive paste P21 The depth of light curing of this photosensitive paste P21 at an exposure dose of 400 mjZcm 2 was 15.5 ⁇ m.
  • a film having a thickness of 14.8 / zm was formed on an alumina substrate by screen printing. Then, it was cured by irradiating ultraviolet light under the condition of 400 miZcm 2 through a photomask, and the uncured portion was removed using ethanol. As a result, the L / S of the maximum / J was 25/20 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0%.
  • the aspect ratio was 0%.
  • a film having a thickness of 25 ⁇ m was formed by screen printing on an alumina substrate using the photosensitive paste P21, and the film was cured by irradiation with ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m.
  • the Vickers hardness of this coating film measured 15. ⁇ .
  • Acrylic copolymer (polymer) 3.0% by weight
  • This photosensitive paste P01 The depth of light curing of this photosensitive paste P01 at an exposure dose of 400 mjZcm 2 was 9.6 m.
  • a film having a thickness of 9.6 / zm was formed on an alumina substrate by screen printing. Then, it was cured by irradiating it with ultraviolet light at 400 mi / cm 2 through a photomask, and the uncured portion was removed using ethanol. As a result, the minimum LZS was 30Z30 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0%. It was 32.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P01, and cured by irradiating ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating film was measured and found to be 17.3 Hv.
  • Acrylic copolymer (polymer) 4.0% by weight
  • Thixotropic agent 2.0% by weight
  • the photocurable depth of this photosensitive paste P02 at an exposure dose of 400 mjZcm 2 was 6.7 m.
  • a film having a thickness of 6.7 m was formed on an alumina substrate by screen printing. Then, it was cured by irradiating it with ultraviolet light at 400 miZcm 2 through a photomask, and the uncured portion was removed using a 0.5% by weight aqueous solution of sodium carbonate.
  • the minimum LZS was 30 ⁇ 30 / ⁇ .
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.27.
  • a film having a thickness of 25 ⁇ m was formed by screen printing on an alumina substrate using the photosensitive paste P02, and the film was cured by irradiation with ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating film was measured and found to be 15.4 Hv.
  • Acrylic polymer (polymer) 6.2% by weight
  • the photocurable depth of this photosensitive paste P03 at an exposure dose of 400 mjZcm 2 was 9.1 m.
  • a 8.5 m thick film was formed on an alumina substrate by screen printing. Then, it was cured by irradiating it with ultraviolet light at 400 miZcm 2 through a photomask, and the uncured portion was removed using a 0.5% by weight aqueous solution of sodium carbonate.
  • the minimum LZS was 25 ⁇ 25 / ⁇ .
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.43.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P03, and cured by irradiating ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m.
  • the Vickers hardness of this coating film was 18.8 Hv.
  • Acrylic polymer (polymer) 5.5% by weight
  • This photosensitive paste P04 The depth of light curing of this photosensitive paste P04 at an exposure dose of 400 mjZcm 2 was 7.2 m.
  • a film having a thickness of 7.0 m was formed on an alumina substrate by screen printing. Then, it was cured by irradiating it with ultraviolet light at 400 miZcm 2 through a photomask, and the uncured portion was removed using a 0.5% by weight aqueous solution of sodium carbonate.
  • the minimum LZS was 30 ⁇ 25 / ⁇ .
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.31.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P04, and the film was cured by irradiation with ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating film was measured and found to be 12.7 Hv.
  • Acrylic polymer (polymer) 4.1% by weight
  • the photocurable depth of this photosensitive paste P05 at an exposure dose of 400 mjZcm 2 was 7.0 m.
  • a film having a thickness of 7.0 m was formed on a PET film by screen printing. Then, it was cured by irradiating it with ultraviolet light at 400 miZcm 2 through a photomask, and the uncured portion was removed using a 0.5% by weight aqueous solution of sodium carbonate. As a result, the minimum LZS was 30 ⁇ 30 / ⁇ .
  • the pattern formed on the PET film was inverted and transferred onto a green sheet under the conditions of 60 ° C, 0.5 MPa, and 60 seconds using a thermocompression bonding machine. The pattern was fired, and the width and thickness of the pattern were observed with a laser microscope to find that the aspect ratio was 0.33.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P05, and cured by irradiating ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating film was measured and found to be 8. ⁇ .
  • Acrylic polymer (polymer) 5.6% by weight
  • Dibutynole phthalate 0.8% by weight.
  • the photocurable depth of this photosensitive paste P06 at an exposure dose of 400 mjZcm 2 was 7.9 m.
  • a film having a thickness of 7 .: m was formed on a PET film by screen printing using the photosensitive paste P06. Then, through a photomask, purple at 400miZcm 2 It was cured by irradiating it with external light, and the uncured portion was removed using a 0.5% by weight aqueous solution of sodium carbonate. As a result, the minimum LZS was 30 ⁇ 30 / ⁇ ⁇ .
  • the pattern formed on the PET film was inverted, and the green sheet was pressed and transferred on a green sheet under the conditions of 60 ° C, 0.5 MPa, and 60 seconds using a thermocompression bonding machine.
  • the pattern was fired, and the width and thickness of the pattern were observed with a laser microscope. As a result, the aspect ratio was 0.20.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P06, and the film was cured by irradiating ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating film was measured and found to be 12.7 Hv.
  • Acrylic polymer (polymer) 7.8% by weight
  • the photocurable depth of this photosensitive paste P07 at an exposure dose of 400 mjZcm 2 was 7.0 m.
  • screen printing is performed The film of 7. Then, it was cured by irradiating it with ultraviolet light at 400 miZcm 2 through a photomask, and the uncured portion was removed using acetone.
  • the minimum LZS was 35Z30 ⁇ m.
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.27.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P07, and cured by irradiating ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m. The Vickers hardness of this coating film was measured and found to be 10.5 Hv.
  • Acrylic polymer (polymer) 6.8% by weight
  • the photocurable depth of this photosensitive paste P08 at an exposure dose of 400 mjZcm 2 was 6.5 m.
  • a film having a thickness of 6.5 / zm was formed on an alumina substrate by screen printing. Purple under the conditions of 400mi / cm 2 and then through a photomask It was cured by irradiating it with external light, and the uncured portion was removed using a 0.5% by weight aqueous solution of sodium carbonate.
  • the minimum LZS was 25 ⁇ 25 / ⁇ .
  • the aspect ratio of the noturn was examined from the dimensions after firing, the aspect ratio was 0.41.
  • a film having a thickness of 25 ⁇ m was formed on an alumina substrate by screen printing using the photosensitive paste P08, and the film was cured by irradiation with ultraviolet light at 400 n3j / cm 2 . This operation was repeated to form a paste film having a thickness of 100 m.
  • the Vickers hardness of this coating film was measured to be 13.6 Hv.
  • Example No. 1-21 measured as described above are shown in Table 115, and the conditions and characteristics of Comparative Example No. 1-8 are shown in Table 6 and Table 6. See Figure 7.
  • Monomer A dipentaerythritol hexatalylate
  • Monomer B Trimethylolpropane EO-modified triatalylate
  • Monomer c trimethylolpropane triatalylate
  • DGME Dipropylene glycol monomethyl ether
  • the photosensitive paste containing no polymer and the photosensitive paste containing a polymer within the scope of the present invention were found to have a light curing depth.
  • a photosensitive paste with a thickness of 10 m or more and within the scope of the present invention a thick film pattern having a large thickness and high dimensional accuracy and high shape accuracy can be efficiently formed.
  • the light-sensitive pastes of Comparative Examples No. 1 to 8 which contain a polymer with a light curing depth of less than 10 m and a pattern having a sufficient thickness can be obtained when a light-sensitive paste is used. It can be seen that they cannot be formed.
  • a laser having a wavelength of 300 to 420 nm was used using a force maskless exposure machine (for example, manufactured by Ball Semiconductor Co., Ltd.) which performs exposure processing through a photomask. It is also possible to irradiate the photosensitive paste film with light or UV light to cure the photosensitive paste film. In this case, a desired pattern can be formed by moving the stage indicating the photosensitive paste film in accordance with the information about the pattern input in advance.
  • FIG. 3 is a cross-sectional view showing an electronic component (ceramic multilayer substrate) according to one embodiment of the present invention.
  • the ceramic multilayer substrate is a ceramic multilayer substrate provided with an electrode (inner copper pattern, surface copper pattern, etc.) formed by using the photosensitive paste (photosensitive copper base) of the present invention and having a thick film pattern. It is a substrate.
  • the ceramic multilayer substrate 11 of this embodiment is formed by laminating insulator layers 12a, 12b, 12c, 12d, 12e, and 12f and dielectric layers 13a and 13b.
  • the inner copper pattern 15 and the via hole 16 form a capacitor pattern, a coil pattern, a strip line, and the like.
  • a chip component 20 such as a chip capacitor, a thick film resistor 21, a semiconductor IC 22, and the like are provided, and a surface copper pattern 17 and an inner copper pattern are provided. 15 and so on.
  • the inner copper pattern (thick film pattern) 15 and the surface copper pattern (thick film pattern) 17 have a width of about 50 ⁇ m and a thickness of 5 ⁇ m or more.
  • a glass powder, a ceramic powder, and an organic vehicle are mixed to prepare a slurry for an insulator ceramic dust sheet.
  • a slurry for a dielectric ceramic green sheet is prepared.
  • each of the obtained slurries is formed into a sheet by a doctor blade method or the like, and dried at a temperature of 50 to 150 ° C. to produce an insulating ceramic green sheet and a dielectric ceramic green sheet.
  • a via hole is formed in each ceramic green sheet as necessary.
  • a photosensitive paste (photosensitive copper paste) having a predetermined photocuring depth and being useful in one embodiment of the present invention is prepared, and a photosensitive copper paste is applied on a support. A copper base film is formed. The thickness of the photosensitive copper paste film is set in consideration of the photo-curing depth.
  • the photosensitive copper paste film is exposed to light and then developed to form a thick film pattern of a predetermined shape on the support.
  • the thick film pattern formed on the support is transferred onto the ceramic green sheets (insulator ceramic green sheets and dielectric ceramic green sheets (transfer object)) produced as described above.
  • a capacitor pattern, a coil pattern, and the like are formed.
  • the ceramic green sheets on which the thick film patterns are formed are stacked, pressed and fired at a predetermined temperature. Thereafter, a chip multilayer, a semiconductor IC, and the like are mounted, and a thick film resistor is printed, thereby forming a ceramic multilayer substrate 11 as shown in FIG.
  • the shape of the thick film pattern of the present invention is used. Thick film patterns (inner layer copper pattern, surface layer copper pattern, etc.) are formed by the forming method, so a high-precision, fine, large-thick film pattern is formed on the ceramic green sheet by the transfer method. It becomes possible. Then, ceramic green sheets on which a strong thick film pattern is formed are stacked, pressed, and fired at a predetermined temperature to form a ceramic multi-layer substrate sufficiently compatible with high-speed signal transmission and high-density wiring. It can be manufactured efficiently.
  • Thick film patterns inner layer copper pattern, surface layer copper pattern, etc.
  • the present invention can be applied to various other electronic components, such as a circuit board that is not multilayered and shows a ceramic multilayer substrate as an electronic component. .
  • FIGS. 4 and 5 are diagrams showing another example of an electronic component that is useful in an embodiment of the present invention.
  • FIG. 4 is a perspective view showing the appearance of a chip coil 31 as an example of the electronic component described above
  • FIG. 5 is an exploded perspective view showing a component body 32 of the chip coil 31 shown in FIG. .
  • the chip coil 31 includes an insulating substrate 33, and is formed on the insulating substrate 33 by using a photosensitive paste for photolithography (a photosensitive paste for an insulator) that is effective in the present invention. Insulator films 34, 35, 36 and 37 are sequentially laminated. Further, on each of the insulating substrate 33 and the insulator films 34, 35 and 36, a conductive film 38 formed by using a photosensitive paste for photolithography (a conductive paste for a conductor), which is useful in the present invention. , 39, 40 and 41 respectively; ⁇ are standing.
  • a photosensitive paste for photolithography a photosensitive paste for an insulator
  • the insulating substrate 33, the insulating films 34-37, and the conductor films 38-41 form a component body 32, and external terminals 42 and 43 are provided respectively!
  • the above-described conductor films 38-41 are connected via via-hole connecting portions 44-46 provided through each of the insulator films 34-36 so as to form a predetermined coil pattern as a whole. It is electrically connected.
  • FIG. 5 only the positions of the via-hole connecting portions 44-46 are indicated by dashed-dotted lines, and the through conductors that provide the via-hole connecting portions 44-46 are not shown.
  • the conductor film 38 is electrically connected to the conductor film 39 via a via-hole connection portion 44 provided in the insulator film 34.
  • the conductor film 39 The conductive film 40 is electrically connected to the conductive film 40 through a via-hole connecting portion 45 provided in the film 35, and the conductive film 40 is electrically connected to the conductive film 41 through a via-hole connecting portion 46 provided in the insulator film 36. Electrically connected.
  • Each end of the conductor films 38-41 connected to form a coil pattern in this manner, that is, one end of the conductor film 38 and one end of the conductor film 41 are connected to the external terminals 42 and It is electrically connected to 43.
  • a photosensitive paste for photolithography (a photosensitive paste for a conductor) is applied on an insulating substrate 33 having, for example, an alumina force, which is effective in the present invention.
  • various methods such as a screen printing method, a spin coating method, and a doctor blade method can be used.
  • the photosensitive paste for photolithography (photosensitive paste for insulator) according to the present invention is applied so as to cover the conductive film 38 on the insulating substrate 33.
  • the same method as in the above-described application of the conductive photosensitive paste can be applied.
  • a hole having a diameter of, for example, 50 / zm (not shown) for the via-hole connection portion 44 is formed.
  • This photosensitive paste film (insulator paste film) is exposed to light through a photomask having a predetermined pattern in order to form a film.
  • a baking process is performed, for example, in air under predetermined conditions to thereby provide a hole having a hole for the via-hole connection portion 44.
  • An edge film 34 is formed.
  • a conductive paste is filled in the hole for the above-described via-hole connecting portion 44 and dried to form the via-hole connecting portion 44 in the insulator film 34.
  • a sinusoidal conductor film 39 is formed on the insulator film 34 by the same method as in the formation of the conductor film 38 described above.
  • the conductor paste is filled in the via-hole connection portion by applying the conductor paste once, a photosensitive paste film (conductor paste film) is formed, and then exposed and developed to form a via-hole.
  • the conductor and the conductor film may be fired simultaneously.
  • the photosensitive paste for photolithography (photosensitive paste for insulator) of the present invention is used for forming the insulator films 34 to 37, the insulator Fine holes for the via-hole connections 44-46 to be provided in the membranes 34-36 can be easily and easily formed with excellent precision in shape and position.
  • the conductive films 38-41 are also formed using the photosensitive paste (photosensitive base for conductor) of the present invention, they are finer and higher than the conductive films 38-41.
  • the density of turns can be easily and easily provided with high precision.
  • the dimensional accuracy and the shape This makes it possible to efficiently form a high-thickness film pattern, and thus to efficiently manufacture a high-performance and highly reliable ceramic multilayer substrate, chip coil component, and the like.
  • the present invention can be widely applied to various electronic components and methods for manufacturing the same.

Abstract

 厚みが大きく、しかも、高硬度でアスペクト比が高く、寸法精度や形状精度の高い厚膜パターンを形成することが可能な厚膜パターンの形成方法、それを用いた電子部品の製造方法、およびフォトリソグラフィー法による厚膜パターンの形成に用いられるフォトリソグラフィー用感光性ペーストを提供する。  無機粉末、感光性モノマー、および光重合開始剤を含有し、ポリマーを実質的に含有していない感光性ペーストを支持体上に塗布して感光性ペースト膜を形成し、この感光性ペースト膜に露光処理を施した後、現像して所定の厚膜パターンを形成する。  また、無機粉末、感光性モノマー、光重合開始剤、およびポリマーを含有し、かつ、感光性モノマーとポリマーの合計量に対する感光性モノマーの割合(重量割合)が0.86以上である感光性ペーストを用いる。

Description

明 細 書
厚膜パターンの形成方法、電子部品の製造方法、およびフォトリソグラフ ィー用感光性ペースト
技術分野
[0001] 本願発明は、フォトリソグラフィ一法を利用した厚膜パターンの形成方法、電子部品 の製造方法、およびフォトリソグラフィ一法による厚膜パターンの形成に用いられるフ オトリソグラフィー用感光性ペーストに関する。
背景技術
[0002] 高周波電子機器の高密度化や高速信号ィ匕に伴い、これらの電子機器が備える高 周波回路を構成する配線導体などのノターンは、微細で、膜厚が大きぐし力も、断 面形状が矩形であること、さらには、配線寸法のばらつきが小さいという配線精度を 有して 、ることが求められて 、る。
[0003] このような微細なパターンを形成する方法としては、フォトリソグラフィ一法を利用し たパターンの形成方法が広く用いられており、そこで用いられる従来の感光性ペース トとしては、例えば、無機粉末、感光性モノマー、ポリマー、光重合開始剤などを含む 感光性ペーストが提案されている (例えば特許文献 1)。
特許文献 1:特開 2002— 82449号公報
発明の開示
発明が解決しょうとする課題
[0004] しかしながら、従来の感光性ペーストでは、フォトリソグラフィ一法を用いてパターン を形成する場合、十分な光硬化深度 (照射した光、例えば紫外光などが厚膜中を進 行し、榭脂の硬化に消費されたり、榭脂成分に吸収されたりして減衰し、榭脂の硬化 に最小限必要なエネルギーを下回るまでの厚膜表面からの深さ)を得ることができな いという問題点があった。
[0005] 本願発明者は、この光硬化深度にポリマーが影響を及ぼしていることを見い出した 。これは、(a)照射光がポリマーに屈折、散乱されるため、感光性ペースト膜の内部に まで紫外光が到達しに《なること、(b)ポリマーにより紫外光が吸収されること、(c)ポリ マーを含有していると感光性ペースト中のモノマーのミクロブラウン運動が阻害され、 重合が進みにくくなることが原因であると考えられる。
[0006] 本願発明は、上記問題点を解決するものであり、フォトリソグラフィ一法により、厚み が大きぐ寸法精度や形状精度の高い厚膜パターンを効率よく形成することが可能な 厚膜パターンの形成方法、それを用いた電子部品の製造方法、およびそれに用いる のに適したフォトリソグラフィー用感光性ペーストを提供することを課題とする。
課題を解決するための手段
[0007] 上記課題を解決するために、本願発明(請求項 1)の厚膜パターンの形成方法は、 無機粉末、感光性モノマー、および光重合開始剤を含有し、ポリマーを実質的に含 有して 、な 、感光性ペーストを支持体上に塗布して感光性ペースト膜を形成する膜 形成工程と、
前記感光性ペースト膜に露光処理を施す露光工程と、
前記露光処理が施された前記感光性ペースト膜を現像して、所定の厚膜パターン を形成する現像工程と
を具備することを特徴として 、る。
[0008] また、本願発明(請求項 2)の厚膜パターンの形成方法は、
無機粉末、感光性モノマー、光重合開始剤、およびポリマーを含有する感光性べ 一ストであって、かつ、前記感光性モノマーと前記ポリマーの合計量に対する前記感 光性モノマーの割合 (重量割合)力 下記の式 (1) :
感光性モノマー Z (感光性モノマー +ポリマー)≥0. 86…… (1)
の要件を満たす感光性ペーストを支持体上に塗布して感光性ペースト膜を形成する 膜形成工程と、
前記感光性ペースト膜に露光処理を施す露光工程と、
前記露光処理が施された前記感光性ペースト膜を現像して、所定の厚膜パターン を形成する現像工程と
を具備することを特徴として 、る。
[0009] また、請求項 3の厚膜パターンの形成方法は、
前記感光性ペーストを構成する無機粉末、感光性モノマー、および光重合開始剤 の含有割合が、
無機粉末 :60— 90重量%
感光性モノマー :5— 39重量%
光重合開始剤 :1一 10重量%
の範囲にあることを特徴として 、る。
[0010] また、請求項 4の厚膜パターンの形成方法は、前記感光性ペーストとして、二重結 合濃度が 8mmolZg— l lmmolZgの範囲にある感光性モノマーを含有する感光性 ペーストを用いることを特徴として 、る。
[0011] また、請求項 5の厚膜パターンの形成方法は、前記感光性ペーストとして、重合度 力 S3以下のエチレンォキシド構造を有する感光性モノマーを含有するものを用いるこ とを特徴としている。
[0012] また、請求項 6の厚膜パターンの形成方法は、前記感光性ペーストが紫外線吸収 剤を含有するものであることを特徴として 、る。
[0013] また、請求項 7の厚膜パターンの形成方法は、前記感光性ペーストが 5重量%以下 の割合で溶剤を含有するものであることを特徴としている。
[0014] また、請求項 8の厚膜パターンの形成方法は、前記現像工程にぉ ヽて、有機溶剤 を用いて現像を行うことを特徴として 、る。
[0015] また、請求項 9の厚膜パターンの形成方法は、前記露光工程にお!、て、前記感光 性ペースト膜とフォトマスクを接触させないように配置して露光処理を施すことを特徴 としている。
[0016] また、請求項 10の厚膜パターンの形成方法は、前記露光工程にお!、て、フォトマス クを用いずに感光性ペーストに露光処理を施すことを特徴として 、る。
[0017] また、本願発明(請求項 11)の電子部品の製造方法は、
請求項 1一 10のいずれかに記載の方法により厚膜パターンを形成する工程と、 前記厚膜パターンを焼成する工程と、
を具備することを特徴として 、る。
[0018] また、本願発明(請求項 12)のフォトリソグラフィー用感光性ペーストは、無機粉末、 感光性モノマー、光重合開始剤を含有し、ポリマーを実質的に含有していないことを 特徴としている。
[0019] また、本願発明(請求項 13)のフォトリソグラフィー用感光性ペーストは、
無機粉末、感光性モノマー、光重合開始剤、およびポリマーを含有するフォトリソグ ラフィー用感光性ペーストであって、
前記感光性モノマーと前記ポリマーの合計量に対する前記感光性モノマーの割合 (重量割合)が、下記の式 (1) :
感光性モノマー Z (感光性モノマー +ポリマー)≥0. 86…… (1)
の要件を満たすことを特徴として ヽる。
[0020] また、請求項 14のフォトリソグラフィー用感光性ペーストは、
前記無機粉末、前記感光性モノマー、および前記光重合開始剤の含有割合が、 無機粉末 :60— 90重量%
感光性モノマー :5— 39重量%
光重合開始剤 :1一 10重量%
の範囲にあることを特徴として 、る。
[0021] また、請求項 15のフォトリソグラフィー用感光性ペーストは、前記感光性モノマーが 、二重結合濃度が 8mmolZg— 1 ImmolZgの感光性モノマーであることを特徴として いる。
[0022] また、請求項 16のフォトリソグラフィー用感光性ペーストは、前記感光性モノマーが 、重合度が 3以下のエチレンォキシド構造を有する感光性モノマーであることを特徴 としている。
[0023] また、請求項 17のフォトリソグラフィー用感光性ペーストは、紫外線吸収剤を含有す るものであることを特徴として 、る。
[0024] また、請求項 18のフォトリソグラフィー用感光性ペーストは、 5重量%以下の割合で 溶剤を含有するものであることを特徴として 、る。
発明の効果
[0025] 本願発明(請求項 1)の厚膜パターンの形成方法は、無機粉末、感光性モノマー、 および光重合開始剤を含有し、ポリマーを実質的に含有して 、な 、感光性ペースト を支持体上に塗布して感光性ペースト膜を形成し、この感光性ペースト膜に露光処 理を施した後、現像して所定の厚膜パターンを形成するようにしているので、厚みが 大きぐ寸法精度や形状精度の高い厚膜パターンを効率よく形成することが可能にな る。
[0026] すなわち、ポリマーを実質的に含有していない感光性ペーストを用いるようにしてい るので、露光工程において、ポリマーによる照射光の屈折や散乱、あるいは吸収など が生じることがなぐ感光性ペースト膜の内部にまで紫外光が到達しやすくなり、かつ 、ポリマーにより感光性モノマーのミクロブラウン運動が阻害されることがなぐ重合が 進みにくくなることが抑制されるため、厚みが大きぐし力も、高硬度でアスペクト比が 高ぐ寸法精度や形状精度の高い厚膜パターンを形成することが可能になる。
なお、本願発明において、感光性ペーストが「ポリマーを実質的に含有していない」 とは、本願発明が感光性ペースト中に不純物として微量のポリマーが含まれる場合を 含むことを意味するものである。
[0027] また、本願発明(請求項 2)の厚膜パターンの形成方法のように、ポリマーを含有す る感光性ペーストを用いる場合においても、感光性モノマーとポリマーの合計量に対 する感光性モノマーの割合 (重量割合) i 感光性モノマー Z (感光性モノマー +ポ リマー)≥0. 86の要件を満たす場合、すなわち、感光性モノマーとポリマーの合計 量に対するポリマーの割合が重量割合で 0. 14未満(14重量%未満)の場合には、 露光工程において、ポリマーによる照射光の屈折や散乱、あるいは吸収などを抑制 することが可能で、感光性ペースト膜の内部にまで紫外光が到達しやすくなり、かつ 、ポリマーにより感光性モノマーのミクロブラウン運動が阻害されることを抑制して、厚 みが大きぐ寸法精度や形状精度の高い厚膜パターンを確実に形成することが可能 になる。
[0028] また、請求項 3の厚膜パターンの形成方法のように、感光性ペーストを構成する無 機粉末、感光性モノマー、および光重合開始剤の含有割合を、
無機粉末 :60— 90重量%
感光性モノマー :5— 39重量%
光重合開始剤 :1一 10重量%
の範囲とすることにより、感光性ペーストの光硬化深度の値を大きくすることが可能に なり、力かる感光性ペーストを用いることにより、厚みが大きぐ寸法精度や形状精度 の高い厚膜パターンを効率よく形成することが可能になる。
[0029] また、請求項 4の厚膜パターンの形成方法のように、感光性ペーストとして、二重結 合濃度が 8mmolZg— l lmmolZgの範囲にある感光性モノマーを含有する感光性 ペーストを用いることにより、光硬化深度を向上させることが可能になり、本願発明を より実効あらしめることが可能になる。
[0030] また、請求項 5の厚膜パターンの形成方法のように、感光性ペーストとして、重合度 が 3以下のエチレンォキシド構造を有する感光性モノマーを含有するものを用いるこ とにより、光硬化深度の値を大きくすることが可能になり好ましい。
[0031] また、請求項 6の厚膜パターンの形成方法のように、感光性ペーストとして、紫外線 吸収剤を含有するものを用いることにより、少な 、露光量でより深 、光硬化深度を得 ることが可能になるため、厚みが大きぐ寸法精度や形状精度の高い厚膜パターンを 効率よく形成することが可能になる。
[0032] また、請求項 7の厚膜パターンの形成方法のように、感光性ペーストとして、 5重量 %以下の割合で溶剤を含有するものを用いることにより、乾燥工程を不要にし、ある いは、乾燥工程を簡略ィ匕することが可能になり、本願発明をより実効あらしめることが 可會 になる。
[0033] また、請求項 8の厚膜パターンの形成方法のように、現像工程において、有機溶剤 を用いて現像を行うことにより、パターン内に不純物が入ることがなぐまた、リンス行 程を不要にし、あるいは、リンス行程を簡略ィ匕することが可能となるため、容易かつ速 やかに現像を行うことが可能になり、本願発明をより実効あらしめることが可能になる
[0034] また、請求項 9の厚膜パターンの形成方法のように、露光工程において、感光性べ 一スト膜とフォトマスクを接触させないように配置して露光処理を施すことにより、フォト マスクが接触して感光性ペースト膜がダメージを受けることを防止して、信頼性の高 い厚膜パターンを形成することが可能になる。
[0035] また、請求項 10の厚膜パターンの形成方法のように、露光工程において、フォトマ スクを用 、ずに感光性ペーストに露光処理を施すことにより、フォトマスクを不要にし て、コストの低減を図ることが可能になるとともに、製造工程を簡略化することが可能 になり、本願発明をより実効あらしめることが可能になる。
[0036] また、本願発明(請求項 11)の電子部品の製造方法は、請求項 1一 10のいずれか に記載の方法により厚膜パターンを形成した後、この厚膜パターンを焼成するように して 、るので、微細なパターンを備えた高性能で信頼性の高 、電子部品を効率よく し力も確実に製造することが可能になる。
[0037] また、本願発明(請求項 12)の感光性ペーストは、無機粉末、感光性モノマー、光 重合開始剤を含有し、ポリマーを実質的に含有していないので、露光工程において 、ポリマーによる照射光の屈折や散乱、あるいは吸収などが生じることがなぐ感光性 ペースト膜の内部にまで紫外光が到達しやすくなり、かつ、ポリマーにより感光性モノ マーのミクロブラウン運動が阻害されることがなぐ重合が進みやすくなる。したがって
、本願発明のフォトリソグラフィー用感光性ペーストを用いることにより、寸法精度や形 状精度の高い厚膜パターンを確実に形成することが可能になる。
[0038] また、本願発明(請求項 13)のフォトリソグラフィー用感光性ペーストのように、ポリマ 一を含有して 、る場合にぉ 、ても、感光性モノマーとポリマーの合計量に対する感光 性モノマーの割合 (重量割合)力 感光性モノマー Z (感光性モノマー +ポリマー)≥ 0. 86の要件を満たす場合、すなわち、感光性モノマーとポリマーの合計量に対する ポリマーの割合が重量割合で 0. 14未満(14重量%未満)の場合には、露光工程に おいて、ポリマーによる照射光の屈折や散乱、あるいは吸収などを抑制することが可 能で、フォトリソグラフィー用感光性ペースト膜の内部にまで紫外光が到達しやすくな り、かつ、ポリマーにより感光性モノマーのミクロブラウン運動が阻害されることを抑制 して、厚みが大きぐ寸法精度や形状精度の高い厚膜パターンを確実に形成するこ とが可能になる。
[0039] また、請求項 14のフォトリソグラフィー用感光性ペーストのように、前記フォトリソダラ フィー用感光性ペーストを構成する無機粉末、感光性モノマー、および光重合開始 剤の含有割合を、
無機粉末 :60— 90重量%
感光性モノマー :5— 39重量% 光重合開始剤 :1一 10重量%
の範囲とすることにより、光硬化深度の値の大きいフォトリソグラフィー用感光性べ一 ストを得ることが可能になり、力かるフォトリソグラフィー用感光性ペーストを用いること により、厚みが大きぐ寸法精度や形状精度の高い厚膜パターンを効率よく形成する ことが可能になる。
[0040] また、請求項 15のフォトリソグラフィー用感光性ペーストのように、感光性モノマーと して、二重結合濃度が 8mmolZg一 1 ImmolZgの感光性モノマーを含んで ヽる場合 には、光硬化深度を向上させることが可能になり、本願発明をより実効あらしめること が可能になる。
[0041] また、請求項 16のフォトリソグラフィー用感光性ペーストのように、感光性モノマーと して、重合度が 3以下のエチレンォキシド構造を有する感光性モノマーを含んで 、る 場合には、特に光硬化深度の値を大きくすることが可能になり、本願発明をより実効 あらしめることが可能になる。
[0042] また、請求項 17のフォトリソグラフィー用感光性ペーストのように、紫外線吸収剤を 含有して!/、る場合には、少な 、露光量でより深 、光硬化深度を得ることが可能になる ため、厚みが大きぐ寸法精度や形状精度の高い厚膜パターンを効率よく形成するこ とが可能になり、本願発明をより実効あらしめることが可能になる。
[0043] また、請求項 18のフォトリソグラフィー用感光性ペーストのように、 5重量%以下の割 合で溶剤を含有している場合、乾燥させることなぐあるいは、最低限の乾燥時間に より厚膜パターンを形成することが可能になり、本願発明をより実効あらしめることが 可會 になる。
図面の簡単な説明
[0044] [図 l](a)— (c)は、本願発明の実施例に力かる方法により厚膜パターンを形成する方 法を示す図である。
[図 2](a)— (d)は、本願発明の実施例の他の方法により厚膜パターンを形成する方法 を示す図である。
[図 3]本願発明の一実施例に力かる電子部品(セラミック多層基板)を示す断面図で める。 [図 4]本願発明の一実施例にカゝかるチップコイルの外観を示す斜視図である。
[図 5]図 4のチップコイルの構成を示す分解斜視図である。
符号の説明
[0045] L ライン状のパターン (厚膜パターン)
S スペース
1 基板 (アルミナ基板)
2 膜 (感光性ペースト膜)
3 フォトマスク
5 PETフィルム
6 グリーンシート
11 セラミック多層基板
12aゝ 12bゝ 12c、 12d、 12eゝ 12f 絶縁体層
13a, 13b 誘電体層
15 内層銅パターン
16 ノィァホール
17 表層銅パターン
20 チップ部品
21 厚膜抵抗体
22 半導体 IC
31 チップコイル
32 部品本体
33 絶縁性基板
34, 35, 36, 37 絶縁体膜
38、 39、 40、 41 導体膜
42、 43 外部端子
44、 45, 46 バイァホール接続部
発明を実施するための最良の形態
[0046] 本願発明の厚膜パターンの形成方法を実施するにあたっては、感光性ペーストとし て、通常、無機粉末、感光性モノマー、および光重合開始剤の含有割合が、それぞ れ、
(a)無機粉末 :60— 90重量%
(b)感光性モノマー :5— 39重量%
(c)光重合開始剤 :1一 10重量%
の範囲にあるものを用いることが望まし 、。
[0047] 無機粉末の含有量の範囲を 60— 90重量%の範囲とすることにより、無機粉末とし て金属粉末を使用する場合には、導電性不良 (導体抵抗の増大)を引き起こすことを 防止することが可能になり、また、無機粉末としてセラミック原料粉末やガラス粉末を 使用する場合には、絶縁性不良を引き起こすことを防止することが可能になる。
[0048] さらに、無機粉末の含有量の範囲を 60— 90重量%の範囲とすることにより、感光 性ペーストの粘度の過度の上昇、取り扱いの困難性や、印刷性の低下などを招いた りすることがなぐし力も、光硬化性を良好に保つことが可能になる。また、硬化物強 度が低下したり、硬化物が脆くなつたりすることを回避することができる。
[0049] また、無機粉末の粒径範囲としては平均粒径 0. 1— 10 μ mの範囲のものを用いる ことにより、粒子の凝集を抑制して、分散性を良好に保ち、微細なパターンを得ること が可能になるととともに、十分な光硬化性を備えた感光性ペーストを得ることが可能 になり好ましい。また、平均粒径 0. 5— 5 mのものを用いることがさらに好ましい。
[0050] 無機粉末としては球状のものを用いることが好ましい。ただし、箔状、粒状、塊状、 偏平状、板状、棒状、針状のものなどを用いることも可能であり、形成すべき厚膜バタ ーンにより適宜選択することができる。
また、無機粉末としては、導電性粉末、セラミック粉末、ガラス粉末などを用いること が可能である。
[0051] 導電性粉末としては、 Ag、 Au、 Pt、 Pd、 Cu、 Ni、 W、 Al、 Moなどを用いることが 可能であり、これらを組み合わせて用いることも可能である。また、上記金属の少なく とも 1種以上を含む合金を用いることも可能である。さらに、金属粉末に酸化物コート 、窒化物コート、または珪ィ匕物コートを施したものを用いることも可能である。
[0052] セラミック粉末としては、例えば Al、 Ag、 Cu、 Ni、 Ti、 Ba、 Pb、 Zr、 Mn、 Cr、 Sr、 F e、 Y、 Nb、 La、 Si、 Zn、 Bi、 B及び Ruからなる群より選ばれる少なくとも 1種の金属 の酸化物、硼化物、窒化物、珪ィ匕物などを用いることが可能である。また、ガラス複合 系のセラミック粉末を用いることも可能である。
[0053] また、ガラス粉末としては、ほう珪酸系ガラス粉末などの公知のガラス粉末を使用す ることが可能である。より具体的には、ガラス粉末としては、 SiO— PbO系、 SiO— Zn
2 2
O系、 SiO— Bi O系、 SiO— K O系、 SiO— Na O系、 SiO— PbO— B O系、 SiO
2 2 3 2 2 2 2 2 2 3 2
-ZnO-B O系、 SiO—Bi O—B O系、 SiO—K O—B O系、 SiO—Na O—B O
2 3 2 2 3 2 3 2 2 2 3 2 2 2 系などのガラス粉末を用いることが可能である。
3
[0054] なお、無機粉末としては、上記の物質を混合して使用すること、すなわち、例えば、 Agとガラスを混合して用いることも可能である。
[0055] また、感光性モノマーの割合は、上述のように 5— 39重量%の範囲にあることが望 ましい。これは、感光性モノマーの割合を 5— 39重量%の範囲とすることにより、光硬 化性の低下や、それによる硬化物強度の低下 (硬化物の脆性化)を防止することが可 能になるとともに、無機粉末の割合が低下しすぎることを回避することが可能になり好 まし!/、ことによる。
[0056] なお、感光性モノマーとしては、ステアリルアタリレート、テトラヒドロフルフリルアタリ レート、ラウリルアタリレート、 2—フエノキシェチルアタリレート、イソデシルアタリレート、 イソォクチルアタリレート、トリデシルアタリレート、力プロラタトンアタリレート、エトキシ 化ノユルフェノールアタリレート、 1, 4 ブタンジオールジアタリレート、ジエチレングリ コールジアタリレート、テトラエチレングリコールジアタリレート、トリエチレングリコール ジアタリレート、エトキシ化ビスフエノール Aジアタリレート、プロポキシ化ネオペンチル グリコールジアタリレート、トリス(2—ヒドロキシェチル)イソシァヌレートトリアタリレート、 プロポキシ化トリメチロールプロパントリアタリレート、プロポキシ化グリセリルトリアタリレ ート、ペンタエリスリトールテトラアタリレート、テトラヒドロフルフリルメタタリレート、シク 口へキシルメタタリレート、イソデシルメタタリレート、ラウリルメタタリレート、トリエチレン グリコールジメタタリレート、テトラエチレングリコールジメタクリレート、 1, 9ーノナンジォ ールジアタリレート、 1, 6—へキサンジオールジメタタリレート、ネオペンチルグリコー ルジメタタリレート、エトキシ化ビスフエノール Aジメタクリレート、エトキシ化イソシァヌ ル酸ジアタリレート、エトキシ化パラクミルフエノールアタリレート、ェチルへキシルカル ビトールアタリレート、 N ビュル 2—ピロリドン、イソボル-ルアタリレート、ポリプロピ レングリコールジアタリレートなどが例示される。
[0057] また、感光性モノマーとして、二重結合濃度が 8mmolZg— l lmmolZgの範囲にあ るモノマーを用いることにより、特に光硬化深度を向上させることが可能になる。 なお、二重結合濃度が 8mmolZg— l lmmolZgの範囲にある感光性モノマーとし ては、へキサンジオールトリアタリレート、トリプロピレングリコールトリアタリレート、トリメ チロールプロパントリアタリレート、 1,3-ブタンジオールジアタリレート、ペンタエリスリト ールトリアタリレート、ジトリメチロールプロパンテトラアタリレート、ジペンタエリスリトー ルヒドロキシペンタアタリレート、エトキシ化ペンタエリスリトールテトラアタリレート、ェチ レングリコールジメタクリレート、 1,4-ブタンジオールジメタタリレート、ジエチレングリコ ールジメタタリレート、 1,3-ブチレングリコールジメタタリレート、トリメチロールプロパン トリアタリレート、ジペンタエリスリトールペンタアタリレート、ジペンタエリスリトールへキ サアタリレートなどが例示される。
[0058] また、重合度が 3以下のエチレンォキシド構造を有する感光性モノマーを含有する 感光性ペーストを用いることにより、光硬化深度を向上させることが可能になる。すな わち、エチレンォキシド構造の重合度が 3以下と小さい場合、光硬化深度を向上させ る効果が大きくなる。
重合度が 3以下のエチレンォキシド構造を有する感光性モノマーとしては、エトキシ 化トリメチロールプロパントリアタリレートなどのエトキシ化 (エチレンォキシド変性)され たもの、ポリエチレングリコールジアタリレートなどが例示される。
[0059] また、光重合開始剤は 1一 10重量%の範囲で含有させることが望ましい。光重合開 始剤を 1一 10重量%の範囲とすることにより、光重合開始剤が少なすぎることによる、 光硬化性の不足や、硬化物の硬度低下を回避して、高アスペクト比のパターンを形 成することを可能になるとともに、感光性ペーストが紫外光を吸収しすぎて内部まで エネルギーが到達しなくなることを回避することが可能になり、十分な厚みを有し、硬 化物の高度の高 、パターンを確実に形成することが可能になり好ま 、。
[0060] 本願発明にお 、て好適に用いることの可能な光重合開始剤としては、ベンジル、ベ ンゾインェチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルェ 一テル、ベンゾフエノン、ベンゾィル安息香酸、ベンゾィル安息香酸メチル、 4 ベン ゾィルー 4'ーメチルジフエ-ルサルファイド、ベンジルジメチルケタール、 2— n—ブトキ シー 4ージメチルァミノべンゾエート、 2 クロ口チォキサントン、 2, 4 ジェチルチオキサ ントン、 2, 4—ジイソプロピルチォキサントン、イソプロピルチォキサントン、 2—ジメチル アミノエチルベンゾエート、 p—ジメチルァミノ安息香酸ェチル、 p—ジメチルァミノ安息 香酸イソァミル、 3, 3' ジメチルー 4ーメトキシベンゾフエノン、 2, 4 ジメチルチオキサ ントン、 1— (4—ドデシルフェ-ル )—2—ヒドロキシ— 2 メチルプロパン 1 オン、 2, 2- ジメトキシー 1, 2—ジフエニルェタン 1 オン、ヒドロキシシクロへキシルフェニルケトン 、 2—ヒドロキシー 2—メチルー 1—フエ-ルプロパン 1 オン、 1— [4— (2—ヒドロキシエト キシ) フエ-ル]— 2—ヒドロキシー 2—メチルー 1—プロパン 1 オン、 2—メチルー 1— [4 (メチルチオ)フエ-ル ]ー2—モルフォリノプロパン 1 オン、メチルベンゾィルフオル メート、 1 フエ-ルー 1, 2—プロパンジオン 2— (o エトキシカルボ-ル)ォキシム、 2 —ベンジルー 2—ジメチルァミノ一 1— (4 モルフォリノフエ-ル)一 1ーブタノン、ビス(2, 6 —ジメトキシベンゾィル)—2, 4, 4—トリメチルペンチルフォスフィンオキサイド、ビス(2 , 4, 6—トリメチルベンゾィル)フエ-ルフォスフィンオキサイド、ビス (2, 4, 6—トリメチ ルベンゾィル )—2,4,4—トリメチルペンチルフォスフィンォキシド、ビス (2,6—ジクロルべ ンゾィル)— 2,4,4—トリメチルペンチルフォスフィンォキシド、 1— (4 イソプロピルフエ- ル)— 2—ヒドロキシー 2—メチルプロパン— 1 オン、 1,2—ジフエ二ルエタンジオン、メチ ルフエニルダリオキシレートなどが例示される。なお、これらの光重合開始剤は単独 で又は 2種以上を同時に用いることが可能である。
[0061] また、場合により、光増感剤を添加してもよい。光増感剤としては、例えば、 P-ジメチ ルァミノ安息香酸イソアミルエステル、 P-ジメチルァミノ安息香酸ェチルエステルなど が例示される。
[0062] また、感光性ペーストとして、溶剤を 5重量%以下の割合で含有させたものを用いる ことが可能である。
溶剤としては、具体的には、エタノール、イソプロピルアルコールなどのアルコール 類、アセトン、メチルェチルケトンなどのケトン類、キシレンなどの芳香族化合物など が例示される。これらの溶剤は混合して用いることも可能である。
なお、乾燥工程を不要にする見地から、基本的には溶剤を含有させないことが望ま しいが、感光性ペーストの粘度調整の目的で添加する場合や、添加剤などを加える 場合に、添加剤に由来して溶剤が添加される場合などにおいても、溶剤の割合が 5 重量%以下であれば特に問題はない。なお、溶剤の含有率が 5重量%を超えても、 必ずしも本願発明の作用効果が損なわれることはないが、乾燥工程が必要になる。
[0063] また、本願発明においては、感光性ペーストに、必要に応じて、チクソ剤 (増粘剤、 沈降防止剤)、分散剤、重合禁止剤 (ラジカルトラップ剤)、紫外線吸収剤 (染料、顔料 、 HALS=ヒンダードアミン系紫外線吸収剤)などの添加剤を添加することも可能である 実施例 1
[0064] 以下、本願発明の実施例を示して、その特徴とするところをさらに詳しく説明する。
[0065] [実施例 No. 1]
<感光性ペースト P 1の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P1を 作製した。
Ag粉末(平均粒径 = 2. 8 m) : 75. 0重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) :17. 7重量0 /0
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :1. 6 重量%
2, 4 ジェチルチオキサントン :0. 5重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブ タノンー 1 : 2. ペンタメチレングリコール :3. 0重量%
[0066] <感光性ペースト P 1を用 、た膜の形成および特性評価 >
この感光性ペースト P1の、露光量 400mjZcm2における光硬化深度は 18. 9 μ ηι であった。
この感光性ペースト P1を用いて、図 1(a)に示すように、スクリーン印刷により支持体 である基板 (この実施例ではアルミナ基板) 1上に厚さ 17. 0 mの膜 (感光性ペース ト膜) 2を形成した。それから図 1(b)に示すように、フォトマスク 3を介して 400mjZcm 2の条件で紫外光を照射して感光性ペースト膜 2を硬化させ、図 1(c)に示すように、未 硬化部をエタノールを用いて除去することにより、同一幅のライン状のパターン Lがス ペース Sを介して複数配設された厚膜パターンを得た。なお、ライン状のパターン の 幅とスペース Sの幅の下限はパターン幅 20 μ m、スペース幅 20 μ mであった(以下、 最小の LZS = 20/20 μ mと!ヽうように記載する)。
また、焼成後の寸法から、パターンのアスペクト比(断面の底辺寸法に対する高さ寸 法の比(高さ寸法 Z底辺寸法)を調べたところ、アスペクト比は 0. 80であった。
[0067] 次に、この感光性ペースト P1を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400miZcm2で紫外光を照射して硬化させた。この操作を繰り返し 、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したところ 24. 6Hvであった。
[0068] [実施例 No. 2]
<感光性ペースト P2の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P2を 作製した。
Ag粉末(平均粒径 = 2. 8 m) : 80. 0重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) :14. 8重量0 /0
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :2. 0 重量%
2, 4 ジェチルチオキサントン :0. 9重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 2. 3 重量%
[0069] く感光性ペースト P2を用いた膜の形成および特性評価〉
この感光性ペースト P2の、露光量 400mjZcm2における光硬化深度は 16. 2 μ ηι であった。この感光性ペースト Ρ2を用いてスクリーン印刷によりアルミナ基板上に厚さ 16. 0 mの膜を形成した。それからフォトマスクを介して 400mjZcm2の条件で紫 外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最小 の LZSは 25Z25 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 69であった。
[0070] 次に、この感光性ペースト P2を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400miZcm2で紫外光を照射して硬化させた。この操作を繰り返し 、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したところ 15. 2Hvであった。
[0071] [実施例 No. 3]
<感光性ペースト P3の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P3を 作製した。
Ag粉末(平均粒径 =2. 8 m) : 85. 0重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) :10. 9重量0 /0
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :1. 2 重量%
2, 4 ジェチルチオキサントン :0. 4重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 1. 2 重量%
ェチルカルビトールアセテート :1. 3重量0 /0
[0072] く感光性ペースト P3を用いた膜の形成および特性評価〉
この感光性ペースト P3の、露光量 400mjZcm2における光硬化深度は 12. 8 m であった。この感光性ペースト P3を用いてスクリーン印刷によりアルミナ基板上に厚さ 12. O /z mの膜を形成した。それからフォトマスクを介して 400mj/cm2の条件で紫 外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最小 の LZSは 25Z25 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 61であった。 [0073] 次に、この感光性ペースト P3を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400miZcm2で紫外光を照射して硬化させた。この操作を繰り返し 、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したところ 10. 6Hvであった。
[0074] [実施例 No. 4]
<感光性ペースト P4の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P4を 作製した。
Ag粉末(平均粒径 = 2. 8 m) : 71. 0重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) :11. 0重量0 /0 トリメチロールプロパン EO変性 (重合度 n= 1)トリアタリレート (感光性モノマー) : 1 1. 0重量%
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :1. 7 重量%
2, 4 ジェチルチオキサントン :1. 5重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 2. 3 重量%
チクソ剤 : 1. 5重量%
[0075] く感光性ペースト P4を用いた膜の形成および特性評価〉
この感光性ペースト P4の、露光量 400mjZcm2における光硬化深度は 22. Ι μ ηι であった。この感光性ペースト Ρ4を用いてスクリーン印刷によりアルミナ基板上に厚さ 20. 8 /z mの膜を形成した。それからフォトマスクを介して 400mj/cm2の条件で紫 外光を照射して硬化させ、未硬化部をアセトンを用いて除去した。その結果、最小の LZSは 25Z20 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 68であった。
[0076] 次に、この感光性ペースト P4を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400miZcm2で紫外光を照射して硬化させた。この操作を繰り返し 、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したところ 30. 2Hvであった。
[0077] [実施例 No. 5]
<感光性ペースト P5の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P5を 作製した。
Ag粉末(平均粒径 = 2. 8 m) : 75. 0重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) :9. 5重量0 /0 トリメチロールプロパン EO変性 (重合度 n= 1)トリアタリレート (感光性モノマー) : 9 . 5重量%
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :2. 8 重量%
2, 4 ジェチルチオキサントン :0. 7重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 2. 5 重量%
[0078] く感光性ペースト P5を用いた膜の形成および特性評価〉
この感光性ペースト P5の、露光量 400mjZcm2における光硬化深度は 18. 5 m であった。この感光性ペースト P5を用いてスクリーン印刷によりアルミナ基板上に厚さ 18.: L mの膜を形成した。それからフォトマスクを介して 400mjZcm2の条件で紫 外光を照射して硬化させ、未硬化部をアセトンを用いて除去した。その結果、最小の L/S«25/25 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 62であった。
[0079] 次に、この感光性ペースト P5を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400miZcm2で紫外光を照射して硬化させた。この操作を繰り返し 、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したところ 26. 5Hvであった。
[0080] [実施例 No. 6] <感光性ペースト P6の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P6を 作製した。
Ag粉末(平均粒径 = 2. 8 m) : 80. 0重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) :7. 6重量0 /0 トリメチロールプロパン EO変性 (重合度 n= 1)トリアタリレート (感光性モノマー) : 7 . 6重量%
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :1. 5 重量%
2, 4 ジェチルチオキサントン :0. 6重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 2. 0 重量%
ペンタメチレングリコール :0. 7重量%
[0081] く感光性ペースト P6を用いた膜の形成および特性評価〉
この感光性ペースト P6の、露光量 400mjZcm2における光硬化深度は 17. O ^ m であった。この感光性ペースト P6を用いてスクリーン印刷によりアルミナ基板上に厚さ
16. 8 /z mの膜を形成した。それからフォトマスクを介して 400mj/cm2の条件で紫 外光を照射して硬化させ、未硬化部をアセトンを用いて除去した。その結果、最小の LZSは 30Z30 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 55であった。
[0082] 次に、この感光性ペースト P6を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400miZcm2で紫外光を照射して硬化させた。この操作を繰り返し 、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したところ
17. ΙΗνであった。
[0083] [実施例 No. 7]
<感光性ペースト P7の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P7を 作製した。
Ag粉末(平均粒径 = 2. 8 m) : 80. 0重量%
Si— B系ガラス粉末 (平均粒径 = 1. 5 m) : 2. 4重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) :15. 0重量0 /0
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :1. 5 重量%
2, 4 ジェチルチオキサントン :0. 6重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 0. 5 重量%
[0084] く感光性ペースト P7を用いた膜の形成および特性評価〉
この感光性ペースト P7の、露光量 400mjZcm2における光硬化深度は 15. 2 μ ηι であった。この感光性ペースト Ρ7を用いて、図 2(a)に示すように、スクリーン印刷によ り支持体である PETフィルム 5上に厚さ 14. 7 μ mの膜 (感光性ペースト膜) 2を形成 した。それからフォトマスクを介して 400miZcm2の条件で紫外光を照射して硬化さ せ、図 2(b)に示すように、未硬化部をエタノールを用いて除去した。その結果、最小 のライン状のパターン Lとスペース Sの比(LZS)は、 25Z30 μ mであった。
[0085] 次に、この PETフィルム 5上に形成したパターン (厚膜パターン) Lを反転し、図 2(c) に示すように、グリーンシート 6上に熱圧着機を用いて 60°C、 0. 5MPa、 60秒の条 件で加圧、転写して、図 2(d)に示すように、グリーンシート 6上にパターン (厚膜パタ ーン) Lを形成した。このパターン Lを焼成し、パターンの幅と厚みをレーザー顕微鏡 により観察したところアスペクト比は 0. 51であった。
[0086] また、この感光性ペースト P7を用いてアルミナ基板上にスクリーン印刷で厚さ 25 mの膜を形成し、 400miZcm2で紫外光を照射して硬化させた。この操作を繰り返し 、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したところ 14. 8Hvであった。
[0087] [実施例 No. 8]
<感光性ペースト P8の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P8を 作製した。
Ag粉末(平均粒径 = 2. 8 /z m) : 56. 3重量%
Al Oコート Ag (平均粒径 = 2. O ^ m) : 18. 8重量%
2 3
Si— B系ガラス粉末 (平均粒径 = 1. 5 m) : 2. 4重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) :16. 5重量0 /0
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :1. 5 重量%
2, 4 ジェチルチオキサンソン :0. 9重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 2. 3 重量%
ジプロピレングリコールモノメチルエーテル :1. 3重量%
[0088] く感光性ペースト P8を用いた膜の形成および特性評価〉
この感光性ペースト P8の、露光量 400mjZcm2における光硬化深度は 13. 9 μ ηι であった。この感光性ペースト Ρ8を用いてスクリーン印刷により支持体である PETフ イルム上に厚さ 13. 0 mの膜を形成した。それからフォトマスクを介して 400miZc m2の条件で紫外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。 その結果、最小の LZSは 25Z30 mであった。
[0089] 次に、この PETフィルム上に形成したパターンを反転し、グリーンシート上に熱圧着 機を用いて 60°C、 0. 5MPa、 60秒の条件で加圧、転写した。このパターンを焼成し 、パターンの幅と厚みをレーザー顕微鏡により観察したところアスペクト比は 0. 45で あった。
[0090] 次に、この感光性ペースト P8を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400miZcm2で紫外光を照射して硬化させた。この操作を繰り返し 、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したところ 15. 4Hvであった。
[0091] [実施例 No. 9]
<感光性ペースト P9の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P9を 作製した。
Cu粉末(平均粒径 = 2. 5 m) : 77. 0重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) : 14. 0重量0 /0
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :1. 0 重量%
2, 4 ジェチルチオキサントン :0. 4重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 1. 6 重量%
ジプロピレングリコールモノメチルエーテル :3. 0重量%
ペンタメチレングリコール :3. 0重量%
[0092] く感光性ペースト P9を用いた膜の形成および特性評価〉
この感光性ペースト P9の、露光量 400mjZcm2における光硬化深度は 15. 8 m であった。この感光性ペースト P9を用いてスクリーン印刷によりアルミナ基板上に厚さ 15.: mの膜を形成した。それからフォトマスクを介して 400mj/cm2の条件で紫 外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最小 の LZSは 30Z30 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 59であった。
[0093] 次に、この感光性ペースト P9を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400miZcm2で紫外光を照射して硬化させた。この操作を繰り返し 、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したところ 17. 8Hvであった。
[0094] [実施例 No. 10]
<感光性ペースト P 10の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P10を 作製した。
Cu粉末(平均粒径 = 2. 5 m) : 80. 0重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) : 14. 0重量0 /0 2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :1. 8 重量%
2, 4 ジェチルチオキサントン :0. 9重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 2. 1 重量%
フタル酸ジ n ブチル :1. 2重量%
[0095] く感光性ペースト P10を用いた膜の形成および特性評価〉
この感光性ペースト P10の、露光量 400mjZcm2における光硬化深度は 14. 8 μ mであつた。この感光性ペースト P 10を用 、てスクリーン印刷によりアルミナ基板上に 厚さ 13. 8 /z mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で 紫外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最 /J、の: L/Sは 25/25 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 53であった。
[0096] 次に、この感光性ペースト P10を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 16. 9Hvであった。
[0097] [実施例 No. 11]
<感光性ペースト PI 1の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P1 1を 作製した。
AgPd粉末(平均粒径 = 2. O ^ m) : 80. 0重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) : 14. 0重量0 /0
2—メチルー 1 [4— (メチルチオ)フエ-ル]— 2 モルフォリノプロパン 1 オン :3.
2, 4 ジェチルチオキサントン :0. 9重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブ タノンー 1 : 2. [0098] <感光性ペースト P 11を用 、た膜の形成および特性評価 >
この感光性ペースト P11の、露光量 400mjZcm2における光硬化深度は 14. 1 μ mであつた。この感光性ペースト P 11を用 、てスクリーン印刷によりアルミナ基板上に 厚さ 14. O /z mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で 紫外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最 /J、の: L/Sは 20/20 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 70であった。
[0099] 次に、この感光性ペースト P11を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 15. 7Hvであった。
[0100] [実施例 No. 12]
<感光性ペースト P 12の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P12を 作製した。
Ag粉末(平均粒径 = 3. O /z m) : 75. 0重量%
トリメチロールプロパントリアタリレート(エチレンォキシド変性なし)(感光性モノマー ) : 16. 5重量0 /0
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :5. 0 重量%
2, 4 ジェチルチオキサントン :2. 0重量%
チクソ剤 : 1. 5重量%
[0101] く感光性ペースト P12を用いた膜の形成および特性評価〉
この感光性ペースト P12の、露光量 400mjZcm2における光硬化深度は 17. 1 μ mであつた。この感光性ペースト P 12を用 、てスクリーン印刷によりアルミナ基板上に 厚さ 17. O /z mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で 紫外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最
/J、の: L/Sは 30/30 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 61であった。
[0102] 次に、この感光性ペースト P12を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 27. 5Hvであった。
[0103] [実施例 No. 13]
く感光性ペースト PI 3の作製〉
以下の材料を配合し、混練することによりポリマーを本願発明の範囲内で含有する 感光性ペースト P13を作製した。
Ag粉末(平均粒径 = 2. 8 m) : 75. 0重量%
アクリル系共重合体 (ポリマー) :0. 5重量%
トリメチロールプロパン EO変性 (重合度 n= 1)トリアタリレート (感光性モノマー) : 1 4. 5重量%
(感光性モノマー Z (感光性モノマ一" hポリマー) = 14. 5/ ( 14. 5 + 0. 5) = 0. 9 7)
ベンジルジメチルケタール :2. 0重量%
ビス(2, 4, 6—トリメチルベンゾィル) フエ-ルフォスフィンォキシド :2. 0重量0 /0 ジプロピレングリコールモノメチルエーテル :5. 0重量%
チクソ剤 : 1. 0重量%
[0104] く感光性ペースト P13を用いた膜の形成および特性評価〉
この感光性ペースト P13の、露光量 400mjZcm2における光硬化深度は 16. 7 μ mであつた。この感光性ペースト P 13を用 、てスクリーン印刷によりアルミナ基板上に 厚さ 16. 5 mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で 紫外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最 /J、の: L/Sは 25/25 μ mであった。 また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 68であった。
[0105] 次に、この感光性ペースト P13を用いてアルミナ基板上にスクリーン印刷で厚さ 25
μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 19. 9Hvであった。
[0106] [実施例 No. 14]
<感光性ペースト P 14の作製 >
以下の材料を配合し、混練することによりポリマーを本願発明の範囲内で含有する 感光性ペースト P14を作製した。
Ag粉末(平均粒径 = 2. 8 m) : 75. 0重量%
アクリル系共重合体 (ポリマー) :1. 0重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) :17. 5重量0 /0 (感光性モノマー Z (感光性モノマー +ポリマー) = 17. 5/ ( 17. 5 + 1. 0) = 0. 9 5)
1ーヒドロキシーンクロへキシルーフエ-ルーケトン :2. 5重量0 /0
ビス(2, 4, 6—トリメチルベンゾィル) フエ-ルフォスフィンォキシド :3. 0重量0 /0 ジプロピレングリコールモノメチルエーテル :1. 0重量%
[0107] く感光性ペースト P14を用いた膜の形成および特性評価〉
この感光性ペースト P14の、露光量 400mjZcm2における光硬化深度は 16. Ο μ mであつた。この感光性ペースト P 14を用 、てスクリーン印刷によりアルミナ基板上に 厚さ 15. 8 /z mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で 紫外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最 /J、の: L/Sは 25/25 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 62であった。
[0108] 次に、この感光性ペースト P14を用いてアルミナ基板上にスクリーン印刷で厚さ 25
μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 18. 5Hvであった。
[0109] [実施例 No. 15]
<感光性ペースト PI 5の作製 >
以下の材料を配合し、混練することによりポリマーを本願発明の範囲内で含有する 感光性ペースト P15を作製した。
Ag粉末(平均粒径 = 2. 8 m) : 75. 0重量%
アクリル系共重合体 (ポリマー) :1. 0重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) :9. 0重量0 /0 (感光性モノマー Z (感光性モノマー +ポリマー) = 9. 0/ (9. 0 + 1. 0) = 0. 90) 1ーヒドロキシーンクロへキシルーフエ-ルーケトン :3. 5重量0 /0
ビス(2, 4, 6—トリメチルベンゾィル) フエ-ルフォスフィンォキシド :5. 5重量0 /0 ジプロピレングリコールモノメチルエーテル :4. 0重量%
チクソ剤 : 2. 0重量%
[0110] く感光性ペースト P15を用いた膜の形成および特性評価〉
この感光性ペースト P15の、露光量 400mjZcm2における光硬化深度は 15. 6 μ mであつた。この感光性ペースト P 15を用 、てスクリーン印刷によりアルミナ基板上に 厚さ 15.: mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で 紫外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最 /J、の: L/Sは 25/25 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 60であった。
[0111] 次に、この感光性ペースト P15を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 18. 4Hvであった。
[0112] [実施例 No. 16]
<感光性ペースト PI 6の作製 > 以下の材料を配合し、混練することによりポリマーを本願発明の範囲内で含有する 感光性ペースト P16を作製した。
Ag粉末(平均粒径 = 2. 8 m) : 75. 0重量%
アクリル系共重合体 (ポリマー) :2. 0重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) :12. 5重量0 /0 (感光性モノマー Z (感光性モノマ一" hポリマー) = 12. 5/ ( 12. 5 + 2. 0) = 0. 8 6)
1ーヒドロキシーンクロへキシルーフエ-ルーケトン :2. 0重量0 /0
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 3. 2 重量%
ジプロピレングリコールモノメチルエーテル :3. 8重量%
チクソ剤 : 1. 5重量%
[0113] く感光性ペースト P16を用いた膜の形成および特性評価〉
この感光性ペースト P16の、露光量 400mjZcm2における光硬化深度は 14. 2 μ mであつた。この感光性ペースト P 16を用 、てスクリーン印刷によりアルミナ基板上に 厚さ 14. O /z mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で 紫外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最 /J、の: L/Sは 30/25 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 48であった。
[0114] 次に、この感光性ペースト P16を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 18. OHvであった。
[0115] [実施例 No. 17]
<感光性ペースト P 17の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P17を 作製した。 Ag粉末(平均粒径 = 3. 0 /z m) : 75. 0重量%
トリメチロールプロパン EO変性 (重合度 n= 1)トリアタリレート (感光性モノマー) : 1 6. 0重量%
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :4. 5 重量%
2, 4 ジェチルチオキサントン :1. 0重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 1. 5 重量%
チクソ剤 : 2. 0重量%
[0116] く感光性ペースト P17を用いた膜の形成および特性評価〉
この感光性ペースト P17の、露光量 400mjZcm2における光硬化深度は 12. 5 μ mであつた。この感光性ペースト P 17を用 、てスクリーン印刷によりアルミナ基板上に 厚さ 11. 5 /z mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で 紫外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最 /J、の: L/Sは 30/25 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 55であった。
[0117] 次に、この感光性ペースト P17を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 15. 8Hvであった。
[0118] [実施例 No. 18]
<感光性ペースト PI 8の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P18を 作製した。
Ag粉末(平均粒径 = 3. 0 /z m) : 75. 0重量%
イソシァヌル酸トリアリル (感光性モノマー) :17. 5重量0 /0
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :2. 5 2, 4 ジェチルチオキサントン :0. 9重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 2. 5 重量%
チクソ剤 : 1. 6重量%
[0119] く感光性ペースト P18を用いた膜の形成および特性評価〉
この感光性ペースト P18の、露光量 400mjZcm2における光硬化深度は 13. 8 μ mであつた。この感光性ペースト P 18を用 、てスクリーン印刷によりアルミナ基板上に 厚さ 12. 5 mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で 紫外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最 /J、の: L/Sは 35/35 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 35であった。
[0120] 次に、この感光性ペースト P18を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 14. 3Hvであった。
[0121] [実施例 No. 19]
<感光性ペースト PI 9の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P19を 作製した。
Ag粉末(平均粒径 = 3. 0 /z m) : 75. 0重量%
トリメチロールプロパン EO変性 (重合度 n= 3)トリアタリレート (感光性モノマー) : 1 8. 0重量%
ベンジルジメチルケタール :2. 5重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 2. 5 重量%
チクソ剤 : 2. 0重量% [0122] く感光性ペースト P19を用いた膜の形成および特性評価〉
この感光性ペースト P19の、露光量 400mjZcm2における光硬化深度は 11. 3 μ mであつた。この感光性ペースト P 19を用 、てスクリーン印刷によりアルミナ基板上に 厚さ 10. O /z mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で 紫外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最 /J、の: L/Sは 35/30 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 30であった。
[0123] 次に、この感光性ペースト P19を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 13. 2Hvであった。
[0124] [実施例 No. 20]
<感光性ペースト P20の作製 >
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P20を 作製した。
Ag粉末(平均粒径 = 3. 0 /z m) : 75. 0重量%
トリメチロールプロパン EO変性 (重合度 n=4)トリアタリレート (感光性モノマー) : 1 8. 5重量%
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :2. 5 重量%
2, 4 ジェチルチオキサントン :0. 9重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 1. 6 重量%
チクソ剤 : 1. 5重量%
[0125] く感光性ペースト P20を用いた膜の形成および特性評価〉
この感光性ペースト P20の、露光量 400mjZcm2における光硬化深度は 11. Ο μ mであつた。この感光性ペースト P20を用 、てスクリーン印刷によりアルミナ基板上に 厚さ 9. 5 mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で 紫外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最 /J、の L/Sは 40/30 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 29であった。
[0126] 次に、この感光性ペースト P20を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 13. ΙΗνであった。
[0127] [実施例 No. 21]
く感光性ペースト P21の作製〉
以下の材料を配合し、混練することによりポリマーを含まない感光性ペースト P21を 作製した。
Ag粉末(平均粒径 = 2. 8 m) : 80. 0重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) :13. 2重量0 /0
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :2. 0 重量%
2, 4 ジェチルチオキサントン :0. 9重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 2. 3 重量%
紫外線吸収剤 (アントラキノン系染料) : 1. 6重量%
[0128] く感光性ペースト P21を用いた膜の形成および特性評価〉
この感光性ペースト P21の、露光量 400mjZcm2における光硬化深度は 15. 5 μ mであつた。この感光性ペースト P21を用 、てスクリーン印刷によりアルミナ基板上に 厚さ 14. 8 /z mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で 紫外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最 /J、の: L/Sは 25/20 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 65であった。
[0129] 次に、この感光性ペースト P21を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 15. ΙΗνであった。
[0130] [比較例 No. 1]
<感光性ペースト P01の作製 >
以下の材料を配合し、混練することによりポリマーを本願発明の範囲を超えて含有 する感光性ペースト P01を作製した。
Ag粉末(平均粒径 =2. 8 m) : 75. 0重量%
アクリル系共重合体 (ポリマー) :3. 0重量%
ジペンタエリスリトールへキサアタリレート(感光性モノマー) :13. 0重量0 /0 (感光性モノマー Z (感光性モノマー +ポリマー) = 13. 0/ (13. 0 + 3. 0) =0. 8 1)
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :2. 0 重量%
2, 4 ジェチルチオキサントン :0. 5重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 3. 0 重量%
ジプロピレングリコールモノメチルエーテル :2. 0重量%
チクソ剤 : 1. 5重量%
[0131] <感光性ペースト P01を用 、た膜の形成および特性評価 >
この感光性ペースト P01の、露光量 400mjZcm2における光硬化深度は 9. 6 m であった。この感光性ペースト P01を用いてスクリーン印刷によりアルミナ基板上に厚 さ 9. 6 /z mの膜を形成した。それからフォトマスクを介して 400mi/cm2の条件で紫 外光を照射して硬化させ、未硬化部をエタノールを用いて除去した。その結果、最小 の LZSは 30Z30 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 32であった。
[0132] 次に、この感光性ペースト P01を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 17. 3Hvであった。
[0133] [比較例 No. 2]
<感光性ペースト P02の作製 >
以下の材料を配合し、混練することによりポリマーを本願発明の範囲を超えて含有 する感光性ペースト P02を作製した。
Ag粉末(平均粒径 =2. 8 m) : 75. 0重量%
アクリル系共重合体 (ポリマー) :4. 0重量%
ジペンタエリスリトールヒドロキシペンタアタリレート(感光性モノマー) :11. 5重量 %
(感光性モノマー Z (感光性モノマ一" hポリマー) = 11. 5/ (11. 5+4. 0) =0. 7 4)
2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :2. 5 重量%
2, 4 ジェチルチオキサントン :0. 5重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 1. 0 重量%
ジプロピレングリコールモノメチルエーテル :3. 5重量%
チクソ剤 : 2. 0重量%
[0134] く感光性ペースト P02を用いた膜の形成および特性評価〉
この感光性ペースト P02の、露光量 400mjZcm2における光硬化深度は 6. 7 m であった。この感光性ペースト P02を用いてスクリーン印刷によりアルミナ基板上に厚 さ 6. 7 mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で紫 外光を照射して硬化させ、未硬化部を 0. 5重量%炭酸ナトリウム水溶液を用いて除 去した。その結果、最小の LZSは 30Ζ30 /ζ πιであった。 また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 27であった。
[0135] 次に、この感光性ペースト P02を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 15. 4Hvであった。
[0136] [比較例 No. 3]
<感光性ペースト P03の作製 >
以下の材料を配合し、混練することによりポリマーを本願発明の範囲を超えて含有 する感光性ペースト P03を作製した。
Ag粉末(平均粒径 = 2. 8 m) : 74. 0重量%
アクリルポリマー(ポリマー) :6. 2重量%
トリメチロールプロパン EO変性 (重合度 n= 1)トリアタリレート (感光性モノマー) : 6 . 0重量%
(感光性モノマー Z (感光性モノマ一" hポリマー) =6. 0/ (6. 0 + 6. 2) =0. 49) 2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :0. 6 重量%
2, 4 ジェチルチオキサントン :0. 2重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 :0. 9 重量%
ジプロピレングリコールモノメチルエーテル :11. 6重量%
チクソ剤 :0. 5重量%
[0137] く感光性ペースト P03を用いた膜の形成および特性評価〉
この感光性ペースト P03の、露光量 400mjZcm2における光硬化深度は 9. 1 m であった。この感光性ペースト P03を用いてスクリーン印刷によりアルミナ基板上に厚 さ 8. 5 mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で紫 外光を照射して硬化させ、未硬化部を 0. 5重量%炭酸ナトリウム水溶液を用いて除 去した。その結果、最小の LZSは 25Ζ25 /ζ πιであった。 また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 43であった。
[0138] 次に、この感光性ペースト P03を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 18. 8Hvであった。
[0139] [比較例 No. 4]
<感光性ペースト P04の作製 >
以下の材料を配合し、混練することによりポリマーを本願発明の範囲を超えて含有 する感光性ペースト P04を作製した。
Ag粉末(平均粒径 = 2. 8 m) : 77. 0重量%
アクリル系ポリマー(ポリマー) :5. 5重量%
トリメチロールプロパン EO変性 (重合度 n= 1)トリアタリレート (感光性モノマー) : 6 . 2重量%
(感光性モノマー Z (感光性モノマー +ポリマー) =6. 2/(6. 2 + 5. 5) =0. 53) 2—メチルー 1 [4— (メチルチオ)フエ-ル]— 2 モルフォリノプロパン 1 オン :1.
2, 4 ジェチルチオキサントン :0. 2重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 0. 4 重量%
ペンタメチレングリコール :1. 2重量%
ジプロピレングリコールモノメチルエーテル :8. 5重量%
[0140] く感光性ペースト P04を用いた膜の形成および特性評価〉
この感光性ペースト P04の、露光量 400mjZcm2における光硬化深度は 7. 2 m であった。この感光性ペースト P04を用いてスクリーン印刷によりアルミナ基板上に厚 さ 7. 0 mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で紫 外光を照射して硬化させ、未硬化部を 0. 5重量%炭酸ナトリウム水溶液を用いて除 去した。その結果、最小の LZSは 30Ζ25 /ζ πιであった。 また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 31であった。
[0141] 次に、この感光性ペースト P04を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 12. 7Hvであった。
[0142] [比較例 No. 5]
<感光性ペースト P05の作製 >
以下の材料を配合し、混練することによりポリマーを本願発明の範囲を超えて含有 する感光性ペースト P05を作製した。
Ag粉末(平均粒径 = 2. 8 m) : 80重量%
Si— B系ガラス粉末 (平均粒径 = 1. 5 m) : 2. 4重量%
アクリル系ポリマー(ポリマー) :4. 1重量%
トリメチロールプロパン EO変性 (重合度 n= 1)トリアタリレート (感光性モノマー) : 2 . 8重量%
(感光性モノマー Z (感光性モノマー +ポリマー) = 2. 8/ (2. 8+4. 1) =0. 41) 2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :1. 8 重量%
2, 4 ジェチルチオキサントン :0. 3重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 1. 1 重量%
ェチルカルビトールアセテート :7. 5重量0 /0
[0143] く感光性ペースト P05を用いた膜の形成および特性評価〉
この感光性ペースト P05の、露光量 400mjZcm2における光硬化深度は 7. 0 m であった。この感光性ペースト P05を用いてスクリーン印刷により PETフィルム上に厚 さ 7. 0 mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で紫 外光を照射して硬化させ、未硬化部を 0. 5重量%炭酸ナトリウム水溶液を用いて除 去した。その結果、最小の LZSは 30Ζ30 /ζ πιであった。 [0144] 次に、この PETフィルム上に形成したパターンを反転し、グリーンシート上に熱圧着 機を用いて 60°C、 0. 5MPa、 60秒の条件で加圧、転写した。このパターンを焼成し 、パターンの幅と厚みをレーザー顕微鏡により観察したところアスペクト比は 0. 33で あった。
[0145] 次に、この感光性ペースト P05を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 8. ΙΗνであった。
[0146] [比較例 No. 6]
<感光性ペースト P06の作製 >
以下の材料を配合し、混練することによりポリマーを本願発明の範囲を超えて含有 する感光性ペースト P06を作製した。
Cu粉末(平均粒径 = 2. 5 m) : 80重量%
アクリル系ポリマー(ポリマー) :5. 6重量%
トリメチロールプロパン EO変性 (重合度 n= 1)トリアタリレート (感光性モノマー) : 3 . 8重量%
(感光性モノマー Z (感光性モノマー +ポリマー) = 3. 8/ (3. 8 + 5. 6) =0. 40) 2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :1. 0 重量%
2, 4 ジェチルチオキサントン :0. 3重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 : 1. 6 重量%
ジプロピレングリコールモノメチルエーテル :6. 9重量%
フタノレ酸ジブチノレ : 0. 8重量%。
[0147] く感光性ペースト P06を用いた膜の形成および特性評価〉
この感光性ペースト P06の、露光量 400mjZcm2における光硬化深度は 7. 9 m であった。この感光性ペースト P06を用いてスクリーン印刷により PETフィルム上に厚 さ 7.: mの膜を形成した。それからフォトマスクを介して 400miZcm2の条件で紫 外光を照射して硬化させ、未硬化部を 0. 5重量%炭酸ナトリウム水溶液を用いて除 去した。その結果、最小の LZSは 30Ζ30/ζ πιであった。
次に、この PETフィルム上に形成したパターンを反転し、グリーンシート上に熱圧着 機を用いて 60°C、 0. 5MPa、 60秒の条件で加圧、転写した。このパターンを焼成し 、パターンの幅と厚みをレーザー顕微鏡により観察したところアスペクト比は 0. 20で あった。
[0148] 次に、この感光性ペースト P06を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 12. 7Hvであった。
[0149] [比較例 No. 7]
<感光性ペースト P07の作製 >
以下の材料を配合し、混練することによりポリマーを本願発明の範囲を超えて含有 する感光性ペースト P07を作製した。
Cu粉末(平均粒径 = 2. 5 m) : 80重量%
Si— B系ガラス粉末(平均粒径 = 1. 5 m) : 0. 4重量0 /0
アクリル系ポリマー(ポリマー) :7. 8重量%
トリメチロールプロパン EO変性 (重合度 n= 1)トリアタリレート (感光性モノマー) : 2 . 8重量%
(感光性モノマー Z (感光性モノマー +ポリマー) =2. 8/(2. 8 + 7. 8) =0. 26) 2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :1. 0 重量% 2, 4 ジェチルチオキサントン :0. 3重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブタノン 1 :0. 5 重量%
ジプロピレングリコールモノメチルエーテル :7. 2重量%
[0150] く感光性ペースト P07を用いた膜の形成および特性評価〉
この感光性ペースト P07の、露光量 400mjZcm2における光硬化深度は 7. 0 m であった。この感光性ペースト P07を用いてスクリーン印刷によりアルミナ基板上に厚 さ 7. の膜を形成した。それからフォトマスクを介して 400miZcm2の条件で紫 外光を照射して硬化させ、未硬化部をアセトンを用いて除去した。その結果、最小の LZSは 35Z30 μ mであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 27であった。
[0151] 次に、この感光性ペースト P07を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 10. 5Hvであった。
[0152] [比較例 No. 8]
<感光性ペースト P08の作製 >
以下の材料を配合し、混練することによりポリマーを本願発明の範囲を超えて含有 する感光性ペースト P08を作製した。
AgPd粉末(平均粒径 = 2. O ^ m) : 75重量%
アクリル系ポリマー(ポリマー) :6. 8重量%
トリメチロールプロパン EO変性 (重合度 n= l)トリアタリレート (感光性モノマー) :4 . 1重量%
(感光性モノマー Z (感光性モノマー +ポリマー) =4. 1/ (4. 1 + 6. 8) =0. 38) 2—メチルー 1 [4 (メチルチオ)フエ-ル ]ー2 モルフォリノプロパン 1 オン :1. 5 重量%
2, 4 ジェチルチオキサントン :0. 3重量%
2—べンジルー 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ーブ タノンー 1 : 1. 1重量%
ジプロピレングリコールモノメチルエーテル :11. 2重量%
[0153] く感光性ペースト P08を用いた膜の形成および特性評価〉
この感光性ペースト P08の、露光量 400mjZcm2における光硬化深度は 6. 5 m であった。この感光性ペースト P08を用いてスクリーン印刷によりアルミナ基板上に厚 さ 6. 5 /z mの膜を形成した。それからフォトマスクを介して 400mi/cm2の条件で紫 外光を照射して硬化させ、未硬化部を 0. 5重量%炭酸ナトリウム水溶液を用いて除 去した。その結果、最小の LZSは 25Ζ25 /ζ πιであった。
また、焼成後の寸法から、ノターンのアスペクト比を調べたところ、アスペクト比は 0 . 41であった。
[0154] 次に、この感光性ペースト P08を用いてアルミナ基板上にスクリーン印刷で厚さ 25 μ mの膜を形成し、 400n3j/cm2で紫外光を照射して硬化させた。この操作を繰り返 し、厚さ 100 mのペースト膜を形成した。この塗膜のビッカース硬度を測定したとこ ろ 13. 6Hvであった。
[0155] なお、上述のようにして測定した実施例 No. 1— 21の条件、諸特性などを表 1一 5 に示し、比較例 No. 1— 8の条件、諸特性などを表 6および 7に示す。
[0156] [表 1]
実施例 実施例 実施例 実施伊 J 実施例 No.
No.1 No.2 No.3 No.4 ペース卜 PI P2 P3 P4 無機粉末 1 Ag Ag Ag Ag 無機粉末 2
無機粉末粒径 1
2.8 2.8 2.8 2.8 mj
無機粉末粒径 2
― ―
無機粉末の含有割合
ί ϋ. U ou. υ δο, υ 711. U (重量》
光硬化深度
(at 權 mJ/cm2) 18.9 16.2 12.8 22.1 (Mm)
ピツカ一ス硬度 (HV) 24.6 15.2 10.6 30.2 解像性 (L/S) 20120 25125 25125 25120 焼成後アスペクト比 0.80 0.69 0.61 0.68 形成対象 (基板/フィルム) アルミナ アルミナ アルミナ アルミナ
Figure imgf000044_0001
h eft— fctfc スクリーン スクリーン スクリーン スクリーン ターノ: it?fi¾ ffi
印刷 印刷 印刷 印刷 モノマー 1 A A A A モノマー 2 - - - B エチレンォキシト'構造の重合度 0 0 0 1 感光性モ -の
二重結合濃度 10.38 10.38 10.38 8.70
(咖ぃ g—1)
^リマー垦 (里 0 0 0 0 モバ-バモノマ- +ホ 'リマ-) 1.0 1.0 1.0 1.0 有機溶剤 PMG ECA
溶剤量
3.0 0 1.3 0 (重量《
現像液 エタノール エタノール エタノール ァセ卜ン 各種添加剤 チクソ剤 乾燥工程 不要 不要
Figure imgf000045_0001
実施例 実施例 実施例 実施例 実施例 No.
No.9 No.10 No.11 No.12 ぺ一スト P9 P10 P11 P12 無機粉末 1 Cu Cu AgPd Ag 無機粉末 2
無機粉末粒径 1
2.5 2.5 2.0 3.0 無機粉末粒径 2 ― 一 一 ― 無機粉末の含有割合
π. u 8ひ.ひ 80.0
(重量》
光硬化深度
(at 400mJ/cm2) 15.8 14.8 14.1 17.1 ビッカース硬度 (HV) 17.8 16.9 15.7 27.5 解像性 (L/S) 30130 25125 20 / 20 30130 焼成後ァスぺクト比 0.59 0.53 0.7 0.61 形成対象 (基板/フィ M) アルミナ アルミナ アルミナ アルミナ スクリーン スクリーン スクリーン スクリーン Blハ?- 力! ¾
印刷 印刷 印刷 印刷 モノマ一 1 A A A C モノマー 2 - - - エチレン シト'構造の重合度
感光性モパ-の
二重結合濃度 10.38 10.38 10.38 10.14 (mmol -g"')
ポリマー量 (重量
モノマ-/ (モノマ-十 fリマ ) 1.0 1.0 1.0 1.0 有機溶剤 DGME/PMG
溶剤量
(重量 ¾)
現像液 エタノール エタノール エタノール エタノール 各種添加剤 DBP チクゾ剤 乾燥工程 必要
Figure imgf000047_0001
実施例 実施例 実施例 実施例 実施例 実施例 No.
No.17 No.18 No.19 No.20 No.21 ペース卜 P17 P18 P19 P20 P21 機粉末 1 Λσ Δ2
無機粉末 2
無機粉末粒径 1
3.0 3.0 3.0 3.0 2.8 ίί¾1¾¾τ ^ A住 L
- - - - 無機粉末の含有割合
75.0 75.0 75.0 75.0 80.0 (重量 ¾)
光硬化深度
(at 400mJ/cin2) 12.5 13.8 11.3 11.0 15.5
( ] 11)
ピツカ一ス硬度 (HV) 15.8 14.3 13.2 13.1 15.1 解像性 (L/S) 30125 35135 35130 40130 25 / 20 焼成後ァスぺクト比 0.55 0.35 0.30 0.29 0.65 形成対象 (基板/フィルム) アルミナ アルミナ アルミナ アルミナ アルミナ スクリーン スクリーン スクリーン スクリーン スクリーン 厚膜 Λ°タ-ン形成方法
印刷 印刷 印刷 印刷 印刷 モノマー 1 Β D Β B A モノマー 2 - ― - - エチレン: tキシト'構造の重合度 1 0 3 4 0 感光性モノマ-の
― feiioti.濃度 7.01 12.05 4.34 3.64 10.38
(mmol -g"1)
ポリマー量 (重量^ 0 0 0 0 0 モバ -/(モノマ- +ホ'リマ-) 1.0 1.0 1.0 1.0 1.0 有機溶剤
溶剤量
0 0 0 0 0 現像液 エタノールエタノール エタノール エタノ一ル エタノール 紫外線 各種添加剤 チクソ剤 チクソ剤 チクソ剤 チクソ剤
吸収剤 乾燥工程 不要 不要 6] 比較例 比較例 比較例 比較例 実施例 No.
No.1 No.2 No.3 No.4 ペースト P01 P02 P03 P04 無機粉末 1 1 Α Joσ Ασ 無機粉末 2
無機粉末粒径 1
2.8 2.8 2.8 2.8 機粉去 ?
- - - - 無機粉末の含有割合
75.0 75.0 74.0 77.0 (重量》
光硬化深度
(at 400mJ/cm2) 9.6 6.7 9.1 7.2
Figure imgf000049_0001
ピツカ一ス硬度 (HV) 17.3 15.4 18.8 12.7 解像性 α/s) 30130 30130 25125 30125 焼成後ァスぺクト比 0.32 0.27 0.43 0.31 形成対象 (基板/フイルム) アルミナ アルミナ アルミナ アルミナ スクリーン スクリーン スクリーン スクリーン 厚膜 Λタ-ン形成方法
印刷 印刷 印刷 印刷 モノマー 1 A A B B モノマー 2 - - - エチレンォキシト'構造の重合度 0 0 1 1 感光性モノマ-の
二重結合濃度 10.38 10.38 7.01 7.01 »ol -g"')
ポリマー量 (重量 ) 3.0 4.0 6.2 5.5 モ -/(モノマ- +ホ°リマ-) 0.81 0.74 0.49 0.53 有機溶剤 廳 E DGME DGME PMG/DGME 溶剤量
2.0 3.5 11.6 1.2/8.5 (重量
炭酸 炭酸 炭酸 現像液 エタノール
ナトリウム ナトリウム ナトリウム 各種添加剤 チクソ剤 チクソ剤 チクソ剤
乾燥工程 不要 不要 必要 必要 比較例 比較例 比較例 比較例 実施例 No.
No.5 No.6 No.7 No.8
ぺ一ス卜 P05 P06 P07 P08 無爐
慨^木 11 Ag Γし U Agr Q
無機粉末 2 ガラス粉末 ガラス粉末
無機粉末粒径 1
2.8 2.5 2.5 2.0
- J»
無機粉末 径 2
1.5 - 1.5 - 舞 j»¾機l?»粉l7j feの含有害 n l'Jl含
80.0 / 2.4 80.0 80.0/0.4 75.0
(重量 ¾)
光硬化深度
(at 400mJ/cm2) 7.0 7.9 7.0 6.5 ピツカ一ス硬度 (HV) 8.1 12.7 10.5 13.6
解像性 (L/S) 30 / 30 30130 35130 25125 焼成後ァスぺク卜比 0.33 0.20 0.27 0.41
形成対象 (基板/フィルム) PET PET アルミナ アルミナ
ス々 11—ン フ々リーン ズ々リーン 厚膜 Λ°タ-ン形成方法
印刷 印刷 印刷 印刷 モノマ一 1 B B B B モノマー 2
エチレン シト'構造の重合度 1 1 1 1
咸 ίΕϊ IH/ /マ-の
ー虛 ¾口濃 7.01 7.01 7.01 7.01
( mmn 1 - or-1)
4.1 5.6 7.8 6.8
モノマ-/ (モノマ-十ホ'リマ-) 0.41 0.40 0.26 0.38 有機溶剤 ECA DGME DGME DGME
溶剤量
7.5 6.9 7.2 11.2
炭酸 炭酸 炭酸 現像液 アセトン
ナ卜リウム ナトリウム ナトリウム 各種添加剤 DBP
乾燥工程 必要 なお、表 1 7において、モノマー A、モノマー B、モノマー C、モノマー D PMG E CA DGME, DBP、ポリマーの表記は、それぞれ、以下の物質であることを示して いる。
モノマー A:ジペンタエリスリトールへキサアタリレート
モノマー B:トリメチロールプロパン EO変性トリアタリレート モノマー c:トリメチロールプロパントリアタリレート
モノマー D:イソシァヌル酸トリアリル
PMG:ペンタメチレングリコール
ECA:ェチルカルビトールアセテート
DGME:ジプロピレングリコールモノメチルエーテル
DBP:フタノレ酸ジブチノレ
ポリマー:メタクリル酸ーメタクリル酸メチル共重合体
分子量 Mw= 15000
[0164] 上記の実施例 No. 1— 21および比較例 No. 1— 8から、ポリマーを含有しない感 光性ペーストおよび、本願発明の範囲内でポリマーを含有する感光性ペーストは、光 硬化深度が 10 m以上で、力かる本願発明の範囲内の感光性ペーストを用いること により、厚みが大きぐ寸法精度や形状精度の高い厚膜パターンを効率よく形成する ことができるが、本願発明の範囲を超えてポリマーを含有する比較例 No. 1— 8の感 光性ペーストは、光硬化深度が 10 m未満で、カゝかる感光性ペーストを用いた場合 には、十分な厚みを有するパターンを形成することができな ヽことがわかる。
[0165] なお、上記の各実施例および比較例ではフォトマスクを介して露光処理を施すよう にしている力 マスクレス露光機 (例えば、ボールセミコンダクタ社製)を用いて、波長 300— 420nmのレーザ光や UV光を感光性ペースト膜に照射し、感光性ペースト膜 を硬化させるようにすることも可能である。なお、その場合、予め入力されているバタ ーンに関する情報にしたがい、感光性ペースト膜を指示するステージを移動させるこ とにより、所望のパターンを形成することができる。
実施例 2
[0166] 図 3は、本願発明の一実施例に力かる電子部品(セラミック多層基板)を示す断面 図である。なお、このセラミック多層基板は、本願発明の感光性ペースト (感光性銅べ 一スト)を用いて形成された厚膜パターン力もなる電極(内層銅パターンや表層銅パ ターンなど)を備えたセラミック多層基板である。
[0167] この実施例のセラミック多層基板 11は、絶縁体層 12a、 12b、 12c、 12d、 12e及び 12fと、誘電体層 13a及び 13bとを積層することにより形成されており、その内部には 、内層銅パターン 15及びバイァホール 16により、コンデンサパターン、コイルパター ン、ストリップラインなどが形成されている。
[0168] さらに、セラミック多層基板 11の一方主面上には、チップコンデンサなどのチップ部 品 20、厚膜抵抗体 21、半導体 IC22などが設けられており、表層銅パターン 17や内 層銅パターン 15などにそれぞれ接続されている。
なお、このセラミック多層基板 11において、内層銅パターン (厚膜パターン) 15、及 び表層銅パターン (厚膜パターン) 17は幅が約 50 μ m、膜厚が 5 μ m以上となってい る。
[0169] つぎに、このセラミック多層基板 11の製造方法について説明する。
まず、ガラス粉末、セラミック粉末及び有機ビヒクルを混合して、絶縁体セラミックダリ ーンシート用スラリーを調製する。また、同様にして、誘電体セラミックグリーンシート 用スラリーを調製する。次いで、得られた各スラリーをドクターブレード法などによって シート状に成形し、 50— 150°Cの温度で乾燥させて、絶縁体セラミックグリーンシート 及び誘電体セラミックグリーンシートを作製する。なお、各セラミックグリーンシートに は、必要に応じてノィァホールを形成する。
[0170] また、所定の光硬化深度を有する、本願発明の一実施例に力かる感光性ペースト( 感光性銅ペースト)を用意し、支持体上に感光性銅ペーストを塗布して、感光性銅べ 一スト膜を形成する。なお、感光性銅ペースト膜の膜厚は、光硬化深度を考慮して設 定する。
[0171] そして、この感光性銅ペースト膜に露光処理を行った後、現像して、支持体上に所 定形状の厚膜パターンを形成する。
[0172] 次に、支持体上に形成された厚膜パターンを、上述のようにして作製したセラミック グリーンシート(絶縁体セラミックグリーンシート及び誘電体セラミックグリーンシート( 被転写体) )上に転写して、コンデンサパターンやコイルパターンなどを形成する。
[0173] それから、厚膜パターンが形成されたセラミックグリーンシートを積み重ね、圧着し た後、所定温度にて焼成する。その後、チップ部品、半導体 ICなどを搭載し、厚膜抵 抗体を印刷することにより、図 3に示すようなセラミック多層基板 11が形成される。
[0174] このセラミック多層基板 11を製造するにあたっては、本願発明の厚膜パターンの形 成方法により、厚膜パターン(内層銅パターンや表層銅パターンなど)を形成するよう にしているので、転写法によりセラミックグリーンシート上に高精度で微細な、膜厚の 大きい厚膜パターンを形成することが可能になる。そして、力かる厚膜パターンが形 成されたセラミックグリーンシートを積み重ね、圧着した後、所定温度にて焼成するこ とにより、高速信号化、高密度配線ィ匕に十分に対応したセラミック多層基板を効率よ く製造することがでさる。
[0175] なお、上記実施例 2では、電子部品としてセラミック多層基板を示している力 多層 化されていない回路基板をはじめ、その他の種々の電子部品にも本願発明を適用 することが可能である。
実施例 3
[0176] また、図 4,図 5は、本願発明の実施例に力かる電子部品の他の例を示す図である
[0177] 図 4は上述した電子部品の一例としてのチップコイル 31の外観を示す斜視図であり 、図 5は図 4に示したチップコイル 31の部品本体 32を分解して示す斜視図である。
[0178] チップコイル 31は、絶縁性基板 33を備え、この絶縁性基板 33上には、本願発明に 力かるフォトリソグラフィー用感光性ペースト (絶縁体用感光性ペースト)を用いて形 成される絶縁体膜 34、 35、 36および 37が順次積層されている。また、絶縁性基板 3 3ならびに絶縁体膜 34、 35および 36の各々上には、本願発明に力かるフォトリソダラ フィー用感光性ペースト(導体用感光性ペースト)を用いて形成される導体膜 38、 39 、 40および 41がそれぞ; ^立置されている。
[0179] そして、これらの絶縁性基板 33、絶縁体膜 34— 37および導体膜 38— 41により、 部品本体 32が構成され、この部品本体 32の相対向する各端面上には外部端子 42 および 43がそれぞれ設けられて!/、る。
[0180] 前述した導体膜 38— 41は、全体として所定のコイルパターンを形成するように、絶 縁体膜 34— 36の各々を貫通して設けられたバイァホール接続部 44一 46を介して、 電気的に接続される。なお、バイァホール接続部 44一 46は、図 5において、各位置 を 1点鎖線で示すのみで、これらバイァホール接続部 44一 46をそれぞれ与える貫通 導体の図示は省略されている。 [0181] より詳細には、導体膜 38は、絶縁体膜 34に設けられたバイァホール接続部 44を介 して、導体膜 39と電気的に接続され、同様に、導体膜 39は、絶縁体膜 35に設けら れたバイァホール接続部 45を介して、導体膜 40と電気的に接続され、導体膜 40は 、絶縁体膜 36に設けられたバイァホール接続部 46を介して、導体膜 41に電気的に 接続されている。そして、このようにコイルパターンを形成するように接続された導体 膜 38— 41の各端部、すなわち、導体膜 38の一方端部および導体膜 41の一方端部 は、それぞれ、外部端子 42および 43に電気的に接続されている。
[0182] つぎに、このチップコイル 31の製造方法について説明する。
図 5に示すように、まず、例えばアルミナ力もなる絶縁性基板 33上に、本願発明に 力かるフォトリソグラフィー用感光性ペースト (導体用感光性ペースト)を塗布する。こ のフォトリソグラフィー用感光性ペースト(導体用感光性ペースト)を塗布するにあたつ ては、スクリーン印刷法、スピンコート法、ドクターブレード法などの種々の方法を用 いることが可能である。
[0183] 次 、で、上述のように塗布されて形成された感光性ペースト膜 (導体用ペースト膜) を乾燥した後、所定のパターンを有するフォトマスクを介して露光処理する。
[0184] 次に、現像処理を実施して、感光性ペースト膜 (導体用ペースト膜)の不要部分を 除去した後、例えば、空気中において所定条件で焼成処理することによって、スノ ィ ラル状の導体膜 38を形成する。
[0185] 次いで、絶縁性基板 33上であって、導体膜 38を覆うように、本願発明にかかるフォ トリソグラフィー用感光性ペースト(絶縁体用感光性ペースト)を塗布する。この塗布に は、前述した導体用感光性ペーストの塗布の場合と同様の方法を適用することがで きる。
[0186] 次 、で、上述のように形成された感光性ペースト膜 (絶縁体用ペースト膜)を乾燥し た後、バイァホール接続部 44用の、例えば直径 50 /z mの孔(図示を省略)を形成す るために、所定のパターンを有するフォトマスクを介して、この感光性ペースト膜 (絶 縁体用ペースト膜)を露光処理する。
[0187] 次に、現像処理を実施して、不要部分を除去した後、例えば、空気中において所 定条件で焼成処理することによって、バイァホール接続部 44のための孔を有する絶 縁体膜 34を形成する。
[0188] 次いで、上述のバイァホール接続部 44のための孔に、導体ペーストを充填し、乾 燥して、絶縁体膜 34に、バイァホール接続部 44を形成する。
[0189] そして、前述した導体膜 38の形成の場合と同様の方法によって、スノィラル状の導 体膜 39を絶縁体膜 34上に形成する。
なお、導体ペーストを一回塗布することにより、バイァホール接続部の孔に導体べ 一ストを充填するとともに感光性ペースト膜 (導体用ペースト膜)を形成し、その後、露 光、現像して、バイァホール導体と導体膜とを同時に焼成してもよい。
[0190] その後、前述したのと同様の方法に従って、絶縁体膜 35、導体膜 40、絶縁体膜 36
、および導体膜 41を順次形成する。そして、保護用の絶縁体膜 37を形成した後、外 部端子 42および 43を設けることによって、図 4に示すような外観を有するチップコィ ル 31が完成される。
[0191] 上述した製造方法によれば、絶縁体膜 34— 37の形成のために、本願発明のフォト リソグラフィー用感光性ペースト (絶縁体用感光性ペースト)を用いているので、特に、 絶縁体膜 34— 36に設けられるべきノィァホール接続部 44一 46のための微細な孔 を、形状および位置に関して優れた精度をもって簡単かつ容易に形成することがで きる。
[0192] また、導体膜 38— 41についても、本願発明の感光性ペースト (導体用感光性べ一 スト)を用いて形成しているので、これら導体膜 38— 41に対して、微細かつ高密度の ノターンを、高い精度をもって簡単かつ容易に与えることができる。特に、通常のスク リーン印刷法等を適用する場合に比べて、導体膜 38— 41を厚く形成することが容易 であるので、チップコイル 31を高周波特性に優れたものとすることが可能になる。 なお、本願発明の感光性ペーストを、導体用感光性ペーストあるいは絶縁体用感 光性ペーストの 、ずれかにのみ用いるようにすることも可能である。
[0193] なお、本願発明は上記実施例に限定されるものではなぐ発明の範囲内において、 種々の応用、変形をカ卩えることが可能である。
産業上の利用可能性
[0194] 本願発明によれば、フォトリソグラフィ一法により、厚みが大きぐ寸法精度や形状精 度の高い厚膜パターンを効率よく形成することが可能になり、ひいては、高性能で、 信頼性の高いセラミック多層基板やチップコイル部品などを効率よく製造することが 可會 になる。
したがって、本願発明は、種々の電子部品並びにその製造方法に、広く適用する とが可能である。

Claims

請求の範囲
[1] 無機粉末、感光性モノマー、および光重合開始剤を含有し、ポリマーを実質的に含 有して 、な 、感光性ペーストを支持体上に塗布して感光性ペースト膜を形成する膜 形成工程と、
前記感光性ペースト膜に露光処理を施す露光工程と、
前記露光処理が施された前記感光性ペースト膜を現像して、所定の厚膜パターン を形成する現像工程と
を具備することを特徴とする厚膜パターンの形成方法。
[2] 無機粉末、感光性モノマー、光重合開始剤、およびポリマーを含有する感光性べ 一ストであって、かつ、前記感光性モノマーと前記ポリマーの合計量に対する前記感 光性モノマーの割合 (重量割合)力 下記の式 (1) :
感光性モノマー Z (感光性モノマー +ポリマー)≥0. 86…… (1)
の要件を満たす感光性ペーストを支持体上に塗布して感光性ペースト膜を形成する 膜形成工程と、
前記感光性ペースト膜に露光処理を施す露光工程と、
前記露光処理が施された前記感光性ペースト膜を現像して、所定の厚膜パターン を形成する現像工程と
を具備することを特徴とする厚膜パターンの形成方法。
[3] 前記感光性ペーストを構成する無機粉末、感光性モノマー、および光重合開始剤 の含有割合が、
無機粉末 :60— 90重量%
感光性モノマー :5— 39重量%
光重合開始剤 :1一 10重量%
の範囲にあることを特徴とする請求項 1または 2記載の厚膜パターンの形成方法。
[4] 前記感光性ペーストとして、二重結合濃度が 8mmolZg— l lmmolZgの範囲にある 感光性モノマーを含有する感光性ペーストを用いることを特徴とする請求項 1一 3の V、ずれかに記載の厚膜パターンの形成方法。
[5] 前記感光性ペーストとして、重合度が 3以下のエチレンォキシド構造を有する感光 性モノマーを含有するものを用いることを特徴とする請求項 1一 4のいずれかに記載 の厚膜パターンの形成方法。
[6] 前記感光性ペーストが紫外線吸収剤を含有するものであることを特徴とする請求項
1一 5のいずれかに記載の厚膜パターンの形成方法。
[7] 前記感光性ペーストが 5重量%以下の割合で溶剤を含有するものであることを特徴 とする請求項 1一 6のいずれかに記載の厚膜パターンの形成方法。
[8] 前記現像工程において、有機溶剤を用いて現像を行うことを特徴とする請求項 1一
7の 、ずれかに記載の厚膜パターンの形成方法。
[9] 前記露光工程にぉ 、て、前記感光性ペースト膜とフォトマスクを接触させな 、ように 配置して露光処理を施すことを特徴とする請求項 1一 8のいずれかに記載の厚膜パ ターンの形成方法。
[10] 前記露光工程にぉ 、て、フォトマスクを用いずに感光性ペーストに露光処理を施す ことを特徴とする請求項 1一 8のいずれかに記載の厚膜パターンの形成方法。
[11] 請求項 1一 10のいずれかに記載の方法により厚膜パターンを形成する工程と、 前記厚膜パターンを焼成する工程と、
を具備することを特徴とする電子部品の製造方法。
[12] 無機粉末、感光性モノマー、光重合開始剤を含有し、ポリマーを実質的に含有して
V、な 、ことを特徴とするフォトリソグラフィー用感光性ペースト。
[13] 無機粉末、感光性モノマー、光重合開始剤、およびポリマーを含有するフォトリソグ ラフィー用感光性ペーストであって、
前記感光性モノマーと前記ポリマーの合計量に対する前記感光性モノマーの割合 (重量割合)が、下記の式 (1) :
感光性モノマー Z (感光性モノマー +ポリマー)≥0. 86…… (1)
の要件を満たすことを特徴とするフォトリソグラフィー用感光性ペースト。
[14] 前記無機粉末、前記感光性モノマー、および前記光重合開始剤の含有割合が、 無機粉末 :60— 90重量%
感光性モノマー :5— 39重量%
光重合開始剤 :1一 10重量% の範囲にあることを特徴とする請求項 12または 13記載のフォトリソグラフィー用感光 性ペースト。
[15] 前記感光性モノマーが、二重結合濃度が 8mmolZg— l lmmolZgの感光性モノマ 一であることを特徴とする請求項 12— 14のいずれかに記載のフォトリソグラフィー用 感光'性ペースト。
[16] 前記感光性モノマーが、重合度が 3以下のエチレンォキシド構造を有する感光性 モノマーであることを特徴とする請求項 12— 15のいずれかに記載のフォトリソグラフ ィー用感光性ペースト。
[17] 紫外線吸収剤を含有するものであることを特徴とする請求項 12— 16のいずれかに 記載のフォトリソグラフィー用感光性ペースト。
[18] 5重量%以下の割合で溶剤を含有するものであることを特徴とする請求項 12— 17 のいずれかに記載のフォトリソグラフィー用感光性ペースト。
PCT/JP2004/015621 2003-11-25 2004-10-21 厚膜パターンの形成方法、電子部品の製造方法、およびフォトリソグラフィー用感光性ペースト WO2005052691A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/596,000 US8298754B2 (en) 2003-11-25 2004-10-21 Method for forming thick film pattern, method for manufacturing electronic component, and photolithography photosensitive paste
JP2005515745A JP4211782B2 (ja) 2003-11-25 2004-10-21 厚膜パターンの形成方法、電子部品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-393551 2003-11-25
JP2003393551 2003-11-25

Publications (1)

Publication Number Publication Date
WO2005052691A1 true WO2005052691A1 (ja) 2005-06-09

Family

ID=34631432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015621 WO2005052691A1 (ja) 2003-11-25 2004-10-21 厚膜パターンの形成方法、電子部品の製造方法、およびフォトリソグラフィー用感光性ペースト

Country Status (4)

Country Link
US (1) US8298754B2 (ja)
JP (1) JP4211782B2 (ja)
TW (1) TWI266966B (ja)
WO (1) WO2005052691A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180580A (ja) * 2010-02-02 2011-09-15 Toray Ind Inc 有機−無機複合導電性パターン形成用感光性ペーストおよび有機−無機複合導電性パターンの製造方法
JP2012513624A (ja) * 2008-12-23 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 感光性ペーストおよびそれを用いたパターン生産方法
JP2013175505A (ja) * 2012-02-23 2013-09-05 Murata Mfg Co Ltd セラミック電子部品の製造方法およびセラミック電子部品
WO2018038074A1 (ja) * 2016-08-24 2018-03-01 東レ株式会社 感光性ペースト、セラミックグリーンシート、電子部品、パターンの製造方法および電子部品の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018047B2 (en) * 2007-08-06 2011-09-13 Infineon Technologies Ag Power semiconductor module including a multilayer substrate
US8154114B2 (en) * 2007-08-06 2012-04-10 Infineon Technologies Ag Power semiconductor module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268870A (ja) * 1989-04-10 1990-11-02 Dainippon Printing Co Ltd 厚膜パターン形成方法
JPH07135386A (ja) * 1993-11-09 1995-05-23 Toray Ind Inc セラミックス・グリーンシート上にパターンを形成する方法
JPH07152153A (ja) * 1993-11-30 1995-06-16 Futaba Corp 感光性ペースト
JPH09329892A (ja) * 1996-06-12 1997-12-22 Nippon Kayaku Co Ltd 樹脂組成物、そのフィルム及びその硬化物
JP2001358466A (ja) * 2000-06-15 2001-12-26 Murata Mfg Co Ltd 多層回路部品及びその製造方法
JP2002214772A (ja) * 1995-06-12 2002-07-31 Toray Ind Inc 感光性ペースト

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661576A (en) * 1970-02-09 1972-05-09 Brady Co W H Photopolymerizable compositions and articles
US4557995A (en) * 1981-10-16 1985-12-10 International Business Machines Corporation Method of making submicron circuit structures
US4598037A (en) * 1984-12-21 1986-07-01 E. I. Du Pont De Nemours And Company Photosensitive conductive metal composition
US5234970A (en) * 1991-07-16 1993-08-10 W. R. Grace & Co.-Conn. Dual curing composition based on isocyanate trimer and use thereof
JP3672105B2 (ja) 1991-09-09 2005-07-13 東レ株式会社 感光性導電ペースト
JP3153828B2 (ja) * 1991-11-29 2001-04-09 旭化成株式会社 光重合性導電ペースト組成物
JPH06104569A (ja) 1992-09-22 1994-04-15 Ngk Spark Plug Co Ltd 多層配線基板とその製造方法
US6197480B1 (en) * 1995-06-12 2001-03-06 Toray Industries, Inc. Photosensitive paste, a plasma display, and a method for the production thereof
CN100474491C (zh) 1995-06-12 2009-04-01 东丽株式会社 等离子体显示器
US5648196A (en) * 1995-07-14 1997-07-15 Cornell Research Foundation, Inc. Water-soluble photoinitiators
JPH09218508A (ja) 1996-02-08 1997-08-19 Toray Ind Inc 感光性ペースト
JP3830109B2 (ja) 1996-02-20 2006-10-04 東京応化工業株式会社 絶縁蛍光体パターン形成用感光性ペースト組成物及び絶縁蛍光体パターンの形成方法
JP3520663B2 (ja) 1996-05-10 2004-04-19 東レ株式会社 感光性ペースト
JP3428483B2 (ja) 1998-02-17 2003-07-22 凸版印刷株式会社 パターン形成方法、プラズマディスプレイのリブ基板の製造方法、プラズマディスプレイの製造方法
JP3482880B2 (ja) 1998-08-04 2004-01-06 凸版印刷株式会社 構造物の製造方法、絶縁体パターンを有するガラス基板の製造方法。
KR20000015469A (ko) * 1998-08-29 2000-03-15 박이순 광중합형 감광성 형광체 페이스트 조성물및 이를 이용한 형광막의 형성방법
JP2001040021A (ja) 1999-07-30 2001-02-13 Toppan Printing Co Ltd 焼成用放射線硬化ペースト組成物およびそれを用いた構造体
JP2001092118A (ja) 1999-09-20 2001-04-06 Murata Mfg Co Ltd 感光性ペーストおよび電子部品
JP3699336B2 (ja) * 2000-06-08 2005-09-28 スリーエム イノベイティブ プロパティズ カンパニー プラズマディスプレイパネル基板用リブの製造方法
TW526693B (en) 2000-06-15 2003-04-01 Murata Manufacturing Co Multilayer circuit component and method for manufacturing the same
JP2002082449A (ja) 2000-06-30 2002-03-22 Murata Mfg Co Ltd 厚膜パターンの形成方法及びそれに用いられる感光性ペースト
JP3674501B2 (ja) * 2000-11-30 2005-07-20 株式会社村田製作所 感光性銅ペースト、銅パターンの形成方法、及びセラミック多層基板の製造方法
JP2002270036A (ja) 2001-03-14 2002-09-20 Noritake Co Ltd 無溶剤型光硬化性導体ペーストおよびセラミック電子部品製造方法
JP4266077B2 (ja) * 2001-03-26 2009-05-20 富士フイルム株式会社 平版印刷版原版及び平版印刷方法
JP3827196B2 (ja) * 2001-05-01 2006-09-27 東京応化工業株式会社 感光性絶縁ペースト組成物及びそれを用いた感光性フィルム
JP3614152B2 (ja) * 2001-08-07 2005-01-26 株式会社村田製作所 感光性導電ペースト、それを用いた回路基板及びセラミック多層基板の製造方法
US20040170925A1 (en) * 2002-12-06 2004-09-02 Roach David Herbert Positive imageable thick film compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268870A (ja) * 1989-04-10 1990-11-02 Dainippon Printing Co Ltd 厚膜パターン形成方法
JPH07135386A (ja) * 1993-11-09 1995-05-23 Toray Ind Inc セラミックス・グリーンシート上にパターンを形成する方法
JPH07152153A (ja) * 1993-11-30 1995-06-16 Futaba Corp 感光性ペースト
JP2002214772A (ja) * 1995-06-12 2002-07-31 Toray Ind Inc 感光性ペースト
JPH09329892A (ja) * 1996-06-12 1997-12-22 Nippon Kayaku Co Ltd 樹脂組成物、そのフィルム及びその硬化物
JP2001358466A (ja) * 2000-06-15 2001-12-26 Murata Mfg Co Ltd 多層回路部品及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513624A (ja) * 2008-12-23 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 感光性ペーストおよびそれを用いたパターン生産方法
JP2011180580A (ja) * 2010-02-02 2011-09-15 Toray Ind Inc 有機−無機複合導電性パターン形成用感光性ペーストおよび有機−無機複合導電性パターンの製造方法
JP2013175505A (ja) * 2012-02-23 2013-09-05 Murata Mfg Co Ltd セラミック電子部品の製造方法およびセラミック電子部品
WO2018038074A1 (ja) * 2016-08-24 2018-03-01 東レ株式会社 感光性ペースト、セラミックグリーンシート、電子部品、パターンの製造方法および電子部品の製造方法

Also Published As

Publication number Publication date
JPWO2005052691A1 (ja) 2007-06-21
US20070224534A1 (en) 2007-09-27
JP4211782B2 (ja) 2009-01-21
TWI266966B (en) 2006-11-21
US8298754B2 (en) 2012-10-30
TW200517794A (en) 2005-06-01

Similar Documents

Publication Publication Date Title
JP5163687B2 (ja) 感光性導電ペースト、それを用いた積層型電子部品の製造方法、および積層型電子部品
CN107003605B (zh) 感光性导电膏、使用该感光性导电膏的层叠型电子部件的制造方法及层叠型电子部件
JP4563199B2 (ja) インクジェット印刷可能厚膜フィルムインク組成物および方法
JP6662491B1 (ja) 感光性導電ペーストおよびそれを用いたパターン形成グリーンシートの製造方法
JP6614355B2 (ja) 感光性導電ペースト、積層型電子部品の製造方法、及び、積層型電子部品
TWI812688B (zh) 感光性組成物、複合體、電子零件及電子零件的製造方法
WO2005052691A1 (ja) 厚膜パターンの形成方法、電子部品の製造方法、およびフォトリソグラフィー用感光性ペースト
JP2017182901A (ja) 感光性導電ペースト及び、それを用いた電子部品の製造方法
JP6637087B2 (ja) 感光性組成物とその利用
JP2002082449A (ja) 厚膜パターンの形成方法及びそれに用いられる感光性ペースト
JP4639931B2 (ja) 感光性ペースト、厚膜パターンの形成方法、および電子部品の製造方法
KR102579847B1 (ko) 감광성 조성물과 그의 이용
JP2001092118A (ja) 感光性ペーストおよび電子部品
JP4029242B2 (ja) セラミックグリーンシート、セラミック基板及びセラミック多層基板の製造方法
JP4639411B2 (ja) ペースト組成物、電子部品およびセラミックグリーンシート、ならびに多層セラミック基板の製造方法
WO2022191054A1 (ja) 感光性組成物とその利用
KR101834691B1 (ko) 전자 부품의 제조 방법
JP2023134944A (ja) 感光性導電ペースト、導電パターン付き基材の製造方法、硬化膜、焼成体の製造方法、焼成体および電子部品
JP2020160376A (ja) 感光性組成物とその利用
CN116893572A (zh) 感光性玻璃组合物、电子部件和电子部件的制造方法
JP6163876B2 (ja) 感光性ペースト
CN117631452A (zh) 感光性糊料、布线图案形成方法、电子部件制造方法和电子部件
KR20230049063A (ko) 감광성 도전 페이스트, 경화물, 소성체, 전자 부품, 회로 패턴이 있는 절연성 세라믹스층의 제조 방법, 전자 부품의 제조 방법, 회로 패턴이 있는 기판의 제조 방법 및 인덕터의 제조 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515745

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10596000

Country of ref document: US

Ref document number: 2007224534

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10596000

Country of ref document: US