WO2005024970A1 - Elektronische vorrichtung enthaltend einen organischen halbleiter und dazwischen eine pufferschicht bestehend aus einem polymer welches kationisch polymerisierbar ist und keine photosäure enthält - Google Patents

Elektronische vorrichtung enthaltend einen organischen halbleiter und dazwischen eine pufferschicht bestehend aus einem polymer welches kationisch polymerisierbar ist und keine photosäure enthält Download PDF

Info

Publication number
WO2005024970A1
WO2005024970A1 PCT/EP2004/009902 EP2004009902W WO2005024970A1 WO 2005024970 A1 WO2005024970 A1 WO 2005024970A1 EP 2004009902 W EP2004009902 W EP 2004009902W WO 2005024970 A1 WO2005024970 A1 WO 2005024970A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
organic
buffer layer
layer
atoms
Prior art date
Application number
PCT/EP2004/009902
Other languages
English (en)
French (fr)
Inventor
Amir Parham
Aurélie FALCOU
Susanne Heun
Jürgen STEIGER
Klaus Meerholz
David Christoph MÜLLER
Original Assignee
Covion Organic Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34258390&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005024970(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Covion Organic Semiconductors Gmbh filed Critical Covion Organic Semiconductors Gmbh
Priority to DE200450012028 priority Critical patent/DE502004012028D1/de
Priority to AT04764853T priority patent/ATE492913T1/de
Priority to JP2006525128A priority patent/JP5133562B2/ja
Priority to EP04764853.0A priority patent/EP1671379B2/de
Priority to US10/570,640 priority patent/US20070034862A1/en
Publication of WO2005024970A1 publication Critical patent/WO2005024970A1/de
Priority to KR1020067004561A priority patent/KR101071034B1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/211Changing the shape of the active layer in the devices, e.g. patterning by selective transformation of an existing layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether

Definitions

  • Organic solar cells O-SC
  • organic field effect transistors O-FET
  • organic switching elements O-IC
  • organic laser diodes O-lasers
  • organic devices can be produced from solution, which is associated with less technical and cost outlay than vacuum processes as they are in general be carried out for low molecular weight compounds.
  • single-color electroluminescent devices can be produced comparatively easily by coating the materials from solution (such as, for example, by spin coating, rackel techniques, etc.).
  • the structuring that is to say the control of the individual pixels, is usually carried out here for the “feed lines”, that is to say for example for the electrodes. This can e.g. B. done by shadow masks in the manner of a template.
  • the structuring of organic circuits and partially organic solar cell panels or laser arrays can be carried out similarly.
  • the individual pixels can be generated by the vapor deposition of the individual colors using shadow masks (with the associated difficulties mentioned above), this is not possible for polymeric and solution-processed materials, and the structuring can no longer be carried out solely by The electrodes are structured.
  • One way out here is to apply the active layer (for example: the light-emitting layer in OLEDs / PLEDs; the same applies to lasers or charge transport layers in all applications) in a structured manner.
  • the active layer for example: the light-emitting layer in OLEDs / PLEDs; the same applies to lasers or charge transport layers in all applications
  • a pattern of areas with cross-linked and areas with uncross-linked material can thus be obtained by structured irradiation.
  • the areas with uncrosslinked material can then be removed by suitable operations (e.g. rinsing with suitable solvents). This leads to the desired structuring.
  • suitable operations e.g. rinsing with suitable solvents.
  • the subsequent application of the various layers (or other materials which are to be applied in the vicinity of the first material) can be carried out after the crosslinking has taken place.
  • the radiation, as it is used for structuring is a standard process of today's electronics and can e.g. B. with lasers or by area irradiation through an appropriate photomask. This mask does not pose a risk of occupancy, since only radiation and no material flow through the mask can be recorded here.
  • EP 0637899 proposes electroluminescent arrangements with one or more layers in which at least one layer is obtained by thermal or radiation-induced crosslinking, which also contain at least one emitter layer and at least one charge transport unit per layer.
  • the crosslinking can take place radically, anionically, cationically or via a photo-induced ring closure reaction. It is mentioned as an advantage that several layers can be built up one above the other or that the layers can be structured in a radiation-induced manner. However, no teaching is given as to which of the various crosslinking reactions can be used to produce a suitable device and how the crosslinking reaction is best carried out.
  • radical-crosslinkable units or groups capable of photocycloaddition are preferred, that auxiliaries of various types, for example initiators, may be present and that the film is preferably crosslinked by means of actinic radiation and not thermally.
  • auxiliaries of various types for example initiators
  • the film is preferably crosslinked by means of actinic radiation and not thermally.
  • Suitable device configurations are also not described. It is not clear how many layers the device preferably has, how thick they should be, which material classes should be used and which of them should be cross-linked. It is therefore not obvious to a person skilled in the art how the invention described can be successfully put into practice.
  • an intermediate layer of a conductive, doped polymer is often introduced as a charge injection layer between the electrode (in particular the anode) and the functional material (Appl. Phys. Leu. 1997, 70, 2067-2069).
  • a conductive, doped polymer can also be used directly as an anode (or, depending on the application, also as a cathode).
  • the most common of these polymers are polythiophene derivatives (e.g. poly (ethylene dioxythiophene), PEDOT) and polyaniline (PANI), which are usually doped with polystyrene sulfonic acid or other polymer-bound Brönstedt acids and thus brought into a conductive state.
  • protons or other impurities which are suspected of diffusing into the functional layer from the acid groups when operating the device, are believed to significantly increase the functionality of the device there to disturb. It is believed that these contaminants reduce the efficiency as well as the life of the devices.
  • Protons or other cationic impurities have a particularly negative effect if the functional semiconductor layer applied to this layer can be crosslinked cationically and, as described above, is to be structured.
  • the functional layer is already partially or completely crosslinked without the possibility of controlled crosslinking, for example by actinic radiation. The advantage of targeted structurability is lost.
  • cationically cross-linkable materials offer the possibility of structuring and thus an alternative to printing techniques.
  • the technical application of these materials has not hitherto been possible, since the problem of uncontrolled crosslinking on a doped charge injection layer has not yet been solved.
  • the electronic properties of the devices can be significantly improved if at least one buffer layer is introduced between the doped intermediate layer and the functional organic semiconductor layer and can be crosslinked cationically.
  • a buffer layer whose cationic crosslinking is thermally induced, i. H. by increasing the temperature to 50 to 250 ° C, preferably to 80 to 200 ° C and to which no photo acid is added.
  • Another advantage of this buffer layer is that the non-controllable cross-linking of a cationically cross-linkable semiconductor can be avoided by using the buffer layer and thus only the targeted structuring of the semiconductor is made possible.
  • Another advantage of the crosslinking of the buffer layer is that the crosslinking increases the glass transition temperature of the material and thus the stability of the layer.
  • the invention therefore relates to electronic devices containing at least one layer of a conductive, doped polymer and one layer of an organic semiconductor, characterized in that at least one conductive or semiconductive organic buffer layer is introduced between these two layers, which is cationically polymerizable and less than 0.5% of a photo acid is added.
  • an organic buffer layer the crosslinking of which can be induced thermally in the corresponding device arrangement, ie by increasing the temperature to 50-250 ° C., preferably to 80-200 ° C., without the addition of further auxiliaries, such as photo acids.
  • a photoacid is a compound that releases a protic acid upon exposure to actinic radiation through a photochemical reaction. Examples of photoacids are 4- (thiophenoxyphenyl) diphenylsulfonium hexafluoroantimonate or ⁇ 4 - [(2-hydroxytetradecyl) -oxy] phenyl ⁇ phenyliodonium hexafluoroantimonate and others, as described for example in EP 1308781.
  • the photo acid can be added for the crosslinking reaction, a proportion of about 0.5 to 3% by weight being preferably selected in accordance with the prior art.
  • Electronic devices in the sense of this invention are organic or polymeric light emitting diodes (OLED, PLED, e.g. EP 0676461, WO 98/27136), organic solar cells (O-SC, e.g. WO 98/48433, WO 94/05045) , organic field-effect transistors (O-FET, e.g. US 5705826, US 5596208, WO 00/42668), field quench elements (FQD, e.g. US 2004/017148), organic switching elements (O -IC, e.g. WO 95/31833, WO 99/10939), organic optical amplifiers or organic laser diodes (O-lasers, e.g. WO 98/03566).
  • Organic in the sense of this invention means that at least one layer of an organic conductive doped polymer, at least one conductive or semiconductive organic buffer layer and at least one layer containing at least one organic semiconductor are present;
  • other organic layers for example electrodes
  • layers may also be present that are not based on organic materials, such as, for example, inorganic intermediate layers or electrodes.
  • the electronic device is made up of substrate (usually glass or a plastic film), electrode, intermediate layer made of a conductive, doped polymer, crosslinkable buffer layer according to the invention, organic semiconductor and counterelectrode.
  • substrate usually glass or a plastic film
  • electrode intermediate layer made of a conductive, doped polymer
  • crosslinkable buffer layer according to the invention
  • organic semiconductor and counterelectrode This device is structured (depending on the application), contacted and hermetically sealed, since the life of such devices is drastically shortened in the presence of water and / or air.
  • the structure For applications in O-FETs, it is also necessary for the structure to contain an additional electrode (gate) in addition to the electrode and counterelectrode (source and drain), which is separated from the organic semiconductor by an insulator layer with a generally high dielectric constant. It may also be useful to add additional layers to the device.
  • the electrodes are selected so that their potential matches the potential of the adjacent organic layer as closely as possible in order to ensure the most efficient electron or hole injection possible.
  • the cathode is to inject electrons, as is the case, for example, in OLEDs / PLEDs or n-type O-FETs, or is to accept holes, as is the case, for example, in O-SCs, the cathode is a low-work function metal, metal alloys or multilayer Structures with different metals are preferred, such as, for example, alkaline earth metals, alkali metals, main group metals or lanthanides (e.g. Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.).
  • other metals can also be used in addition to the aforementioned metals, which have a relatively high work function, such as. B.
  • the cathodes are usually between 10 and 10000 nm, preferably between 20 and 1000 nm, thick. It may also be preferred to insert a thin intermediate layer of a material with a high dielectric constant between a metallic cathode and the organic semiconductor (or other functional organic layers which may be present). Alkali metal or alkaline earth metal fluorides, for example, but also the corresponding oxides (eg LiF, Li 2 O, BaF 2 , MgO, NaF, etc.) are suitable for this. The layer thickness of this dielectric layer is preferably between 1 and 10 nm.
  • the anode preferably has a potential greater than 4.5 eV vs. Vacuum on. Metals with a high redox potential, such as Ag, Pt or Au, are suitable for this. Metal / metal oxide electrodes (e.g. Al / Ni / NiO x , Al / Pt / PtO x ) may also be preferred.
  • the anode can also consist of a conductive organic material (e.g. a conductive, doped polymer).
  • At least one of the electrodes has to be transparent to enable either the irradiation of the organic material (O-SC) or the coupling out of light (OLED / PLED, O-LASER, organic optical amplifier).
  • O-SC organic material
  • O-LASER organic optical amplifier
  • a preferred construction uses a transparent anode.
  • Preferred anode materials here are conductive mixed metal oxides. Indium tin oxide (ITO) or indium zinc oxide (IZO) are particularly preferred.
  • conductive, doped organic materials in particular conductive doped polymers.
  • a similar structure also applies to inverted structures in which the light is coupled out of the cathode or irradiated at the cathode becomes.
  • the cathode then preferably consists of the materials described above, with the difference that the metal is very thin and therefore transparent.
  • the layer thickness of the cathode is preferably less than 50 nm, particularly preferably less than 30 nm, in particular less than 10 nm.
  • Another transparent, conductive material is applied thereon, such as indium tin oxide (ITO), indium zinc oxide (IZO). , Etc..
  • conductive, doped polymers come into question as conductive, doped polymer (either as an electrode or as an additional charge injection layer or "planarization layer” in order to compensate for unevenness in the electrode and thus to minimize short-circuits).
  • Polymers are preferred here which, depending on the application, have one Have conductivity of> 10 "8 S / cm.
  • the conductive, doped polymer is applied to the anode or acts directly as an anode.
  • the potential of the layer is preferably 4 to 6 eV vs. Vacuum.
  • the thickness of the layer is preferably between 10 and 500 nm, particularly preferably between 20 and 250 nm.
  • the layers are generally thicker in order to ensure a good electrical connection to the outside and a low capacitive resistance guarantee.
  • Derivatives of polythiophene (particularly preferably poly (ethylenedioxythiophene), PEDOT) and polyaniline (PANI) are particularly preferably used.
  • the doping is usually done by acids or by oxidizing agents.
  • the doping is preferably carried out using polymer-bound Bronsted acids.
  • polymer-bound sulfonic acids in particular poly (styrene sulfonic acid), poly (vinyl sulfonic acid) and PAMPSA (poly (2-acrylamido-2-methylpropanesulfonic acid)).
  • the conductive polymer is usually applied from an aqueous solution or dispersion and is insoluble in organic solvents. As a result, the subsequent layer of organic solvents can be applied without problems.
  • low-molecular, oligomeric, dendritic or polymeric semiconducting materials can be considered as organic semiconductors.
  • An organic material in the sense of this invention should not only be understood to mean purely organic materials, but also organometallic materials and metal coordination compounds with organic ligands.
  • the oligomeric, dendritic or polymeric materials can be conjugated, non-conjugated or even partially conjugated.
  • conjugated polymers are polymers which mainly contain sp 2 -hybridized carbon atoms in the main chain and which are also replaced by corresponding heteroatoms could be. In the simplest case, this means alternating double and single bonds in the main chain.
  • conjugated polymer Mainly means that naturally occurring defects that lead to interruptions in conjugation do not invalidate the term "conjugated polymer”. Furthermore, this application text also refers to conjugate if, for example, arylamine units and / or certain heterocycles (ie conjugation via N, O or S atoms) and / or organometallic complexes (ie conjugation via the metal atom) are present in the main chain , In contrast, units such as simple alkylene chains, (thio) ether bridges, ester, amide or imide linkages would be clearly defined as non-conjugated segments.
  • a conjugated organic material should also be understood to mean ⁇ -conjugated polysilanes, -germylenes and analogs which carry organic side groups and can therefore be applied from organic solvents, such as, for example, poly (phenylmethylsilane).
  • Non-conjugated materials are materials in which there are no longer conjugated units in the main chain or in the dendrimer structure.
  • Partly conjugated materials are to be understood as meaning materials which have longer conjugated sections in the main chain or in the dendrimer backbone, which are bridged by non-conjugated units, or which contain longer conjugated units in the side chain.
  • Typical representatives of conjugated polymers are poly-para-phenylene vinylenes (PPV), polyfluorenes, polyspirobifluorenes or systems based in the broadest sense on poly-p-phenylene (PPP), and Derivatives of these structures.
  • Materials with high charge carrier mobility are of particular interest for use in O-FETs. These are, for example, oligo- or poly (triarylamines), oligo- or poly (thiophenes) and copolymers which contain a high proportion of these units.
  • the layer thickness of the organic semiconductor is preferably 10-500 nm, particularly preferably 20-250 nm.
  • a dendrimer is to be understood here as a highly branched compound which is composed of a multifunctional center (core) to which branched monomers are bound in a regular structure, so that a tree-like structure is obtained. Both the center and the monomers can assume any branched structures which consist of purely organic units as well as organometallic compounds or coordination compounds. Dendrimer is to be understood here generally, as described, for example, in M. Fischer, F. Vögtle, Angew. Chem., Int. Ed. 1999, 38, 885-905.
  • crosslinkable organic layers have been developed (WO 02/10129). These are insoluble after the crosslinking reaction and can therefore no longer be attacked by solvents when applying further layers.
  • Crosslinkable organic semiconductors also have advantages for structuring multicolored PLEDs. The use of crosslinkable organic semiconductors is therefore also preferred.
  • Preferred crosslinking reactions are cationic polymerizations based on electron-rich olefin derivatives, heteronuclear multiple bonds with heteroatoms or heterogroupings or rings with heteroatoms (e.g. O, S, N, P, Si, etc.). Particularly preferred crosslinking reactions are cationic polymerizations based on rings with heteroatoms. Such crosslinking reactions are described in detail below for the buffer layer according to the invention.
  • Semiconducting luminescent polymers that can be chemically crosslinked are generally disclosed in WO 96/20253.
  • Semiconducting polymers containing oxetane have proven particularly suitable, as described in WO 02/10129. These can be cross-linked in a targeted and controlled manner by adding photo acid and radiation.
  • crosslinkable low-molecular compounds are also possible, such as, for example, cationically crosslinkable triarylamines (M. S. Bayer et al., Macromol. Rapid Commun. 1999, 20, 224-228; D. C. Müller et ai, ChemPhysChem 2000, 207-211). These descriptions are part of the present invention via quotation.
  • this buffer layer is therefore the introduction of a buffer layer, which is introduced between the conductive, doped polymer and the organic semiconductor and carries cationically crosslinkable units, so that they can accommodate low molecular weight, cationic species and intrinsic cationic charge carriers which can diffuse from the conductive, doped polymer.
  • this buffer layer can be both low molecular weight and oligomeric, dendritic or polymeric.
  • the layer thickness is preferably in the range from 5 to 300 nm, particularly preferably in the range from 10 to 200 nm.
  • the potential of the layer is preferably between the potential of the conductive, doped polymer and that of the organic semiconductor. This can be achieved by a suitable choice of materials for the buffer layer and a suitable substitution of the materials.
  • Preferred materials for the buffer layer are derived from hole-conducting materials, as are also used as hole conductors in other applications.
  • Cationic crosslinkable materials based on triarylamine, based on thiophene, based on triarylphosphine or combinations of these systems are particularly preferred for this purpose.
  • Copolymers with other monomer units, such as. B. fluorene, spirobifluorene, etc., with a high proportion of these hole-conducting units are suitable. By suitable substitution, the. Potentials of these connections can be set.
  • electron-withdrawing substituents e.g.
  • the buffer layer according to the invention can be low molecular weight compounds which are crosslinked in the layer and thus made insoluble. Also possible are oligomeric, dendritic or polymer-soluble compounds which are made insoluble by subsequent cationic crosslinking. Mixtures of low molecular weight compounds and oligomeric, dendritic and / or polymeric compounds can also be used.
  • cationic species that can diffuse from the conductive, doped polymer are primarily protons that can originate from the dopant used (frequently polymer-bound sulfonic acids), but also from ubiquitous ones Water. Cationic species, such as metal ions, can also be present as (unwanted) impurities in the conductive polymer.
  • cationic species is the electrode to which the conductive polymer is applied.
  • indium ions can escape from an ITO anode and diffuse into the active layers of the device.
  • Other, possibly existing, Low molecular weight cationic species are monomeric or oligomeric constituents of the conductive polymer which are converted into a cationic state by protonation or other doping. It is also possible for charge carriers introduced by oxidative doping to diffuse into the semiconductor layer.
  • the cationically crosslinkable buffer layer can trap diffusing cationic species, which subsequently initiates the crosslinking reaction; on the other hand, the crosslinking simultaneously makes the buffer layer insoluble, so that the subsequent application of an organic semiconductor from the usual organic solvents does not cause any problems.
  • the cross-linked buffer layer represents a further barrier against diffusion.
  • the following functional groups are preferred cationically polymerizable groups of the buffer layer:
  • Rings with heteroatoms e.g. O, S, N, P, Si, etc.
  • cationic ring-opening polymerization cationic ring-opening polymerization
  • Organic materials which carry at least one substituent which reacts by cationic ring-opening polymerization are preferred.
  • a general overview of cationic ring-opening polymerization is given, for example, by EJ Goethals et al., "Cationic Ring Opening Polymerization” (New Methods Polym. Synth. 1992, 67-109).
  • non-aromatic cyclic systems in which one or several ring atoms are identical or different O, S, N, P, Si, etc.
  • Cyclic systems with 3 to 7 ring atoms in which 1 to 3 ring atoms are identical or different are O, S or N are preferred.
  • Examples of such systems are unsubstituted or substituted cyclic amines (e.g. aziridine, azeticine, tetrahydropyrrole, piperidine), cyclic ethers (e.g. oxirane, oxetane, tetrahydrofuran, pyran, dioxane), as well as the corresponding sulfur derivatives, cyclic acetals (e.g.
  • R 1 is the same or different, a straight-chain, branched or cyclic alkyl, alkoxy or thioalkoxy group with 1 to 20 C atoms, an aromatic or heteroaromatic ring system with 4 to 24 aromatic ring atoms or an alkenyl group with 2 up to 10 carbon atoms in which one or more hydrogen atoms can be replaced by halogen, such as Cl and F, or CN and one or more non-adjacent carbon atoms by -O-, -S-, -CO-, -COO- or -O-CO- can be replaced; a plurality of radicals R 1 here may also form a mono- or polycyclic, aliphatic or aromatic ring system with one another or with R 2 , R 3 and / or R 4 ;
  • R 2 is the same or different, a straight-chain, branched or cyclic alkyl group with 1 to 20 C atoms, an aromatic or heteroaromatic ring system with 4 to 24 aromatic ring atoms or an alkenyl group with 2 to 10 C atoms, in which one or more hydrogen atoms can be replaced by halogen, such as Cl and F, or CN and one or more non-adjacent C atoms can be replaced by -O-, -S-, -CO-, -COO- or -O-CO- can; a plurality of radicals R 2 with one another or with R 1 , R 3 and / or R 4 can also form a mono- or polycyclic, aliphatic or aromatic ring system;
  • X is the same or different on each occurrence -O-, -S-, -CO-, -COO-, -O-CO- or a divalent group - (CR 3 R 4 ) n -;
  • Z is the same or different at each occurrence a bivalent group - (CR 3 R 4 ) n -;
  • R 3 , R 4 is the same or different hydrogen, a straight-chain, branched or cyclic alkyl, alkoxy or thioalkoxy group with 1 to 20 C atoms, an aromatic or heteroaromatic ring system with 4 to 24 aromatic ring atoms or one Alkenyl group with 2 to 10 carbon atoms, in which one or more hydrogen atoms also by halogen, such as Cl or F, or CN can be replaced; two or more radicals R 3 or R 4 can also form a ring system with one another or with R 1 or R 2 ;
  • n is the same or different an integer between 0 and 20, preferably between 1 and 10, in particular between 1 and 6; with the proviso that the number of these groups according to formula (I) or formula (II) or formula (III) is limited by the maximum available, ie substitutable, H atoms.
  • the crosslinking of these units is preferably carried out by thermal treatment of the device at this stage. It is not necessary and also not desirable to add a photo acid for the crosslinking since this introduces impurities into the device. Without wishing to be bound by any particular theory, we suspect that the protons emerging from the conductive, doped polymer layer trigger the crosslinking of the buffer layer.
  • This crosslinking preferably takes place at a temperature of 80 to 200 ° C. and a duration of 0.1 to 120 minutes, preferably 1 to 60 minutes, particularly preferably 1 to 10 minutes, in an inert atmosphere.
  • This crosslinking particularly preferably takes place at a temperature of 100 to 180 ° C. and a duration of 20 to 40 minutes in an inert atmosphere.
  • auxiliaries to the buffer layer for crosslinking which are not photo acids but which can promote crosslinking.
  • salts in particular organic salts, such as, for example, tetrabutylammonium hexafluoroantimonate, which are added as conductive salts for better crosslinking
  • acids in particular organic acids, such as, for example, acetic acid or addition of further polystyrene sulfonic acid to the conductive polymer, or oxidizing substances, such as, for example, nitrylium or nitrosylium Salts (NO + , N0 2 + ), in question.
  • oxidizing substances such as, for example, nitrylium or nitrosylium Salts (NO + , N0 2 + ), in question.
  • the auxiliaries have the advantage that the crosslinking can be carried out more easily and that thicker buffer layers can also be produced as a result.
  • a substrate for example glass or a plastic
  • the anode for example indium tin -Oxide, ITO, etc.
  • the Anode e.g. photolithographic
  • the entire substrate and the corresponding interconnection are first produced using a very complex process, in order to enable what is known as an active matrix control.
  • the pre-cleaned substrate coated with the anode is either treated with ozone or with oxygen plasma or irradiated for a short time with an excimer lamp.
  • a conductive polymer e.g. B. a doped polythiophene (PEDOT) or polyaniline (PANI) in a thin layer usually between 10 and 500 nm, preferably between 20 and 300 nm layer thickness, applied to the ITO substrate by spin coating or other coating processes.
  • PEDOT polythiophene
  • PANI polyaniline
  • the cationically crosslinkable buffer layer according to the invention is applied to this layer.
  • the corresponding compound is first dissolved in a solvent or solvent mixture and filtered. Since organic semiconductors and v. a. the surfaces of the layers are sometimes extremely influenced by oxygen or other air components, it is advisable to carry out this operation under protective gas.
  • Aromatic liquids such as toluene, xylenes, anisole, chlorobenzene are suitable as solvents for polymeric compounds, but also others such as cyclic ethers (e.g. dioxane, methyldioxane, THF) or amides such as NMP or DMF, but also Solvent mixtures, as described in the application WO 02/072714.
  • organic solvents are also suitable for low molecular weight compounds, and are selected depending on the class of compound used.
  • the previously described supports can be coated or painted over the entire surface, for. B. by spin-coat method, surge and wave coating or rackel techniques.
  • the buffer layer can then be crosslinked by heating the device at this stage in an inert atmosphere. It is neither necessary nor desirable here to add a photo acid; the thermal treatment of the buffer layer on the doped polymer is sufficient to carry out the crosslinking reaction. It can then optionally be rinsed with a solvent, for example THF. Finally, it may be dried.
  • a solution of an organic semiconductor is applied.
  • the choice of semiconductor depends on the desired application. If a crosslinkable organic semiconductor is used, it can be structured by targeted crosslinking in accordance with the desired application. This can be carried out in the case of cationically crosslinkable semiconductors, for example by adding a photo acid, irradiation through a shadow mask and subsequent thermal treatment. Since the underlying buffer layer is not acidic, the use of a photo acid should not be omitted here.
  • the non-crosslinked portion of the semiconductor can then be washed off with an organic solvent in which the semiconductor is soluble. This process can be repeated for different materials in order to apply several materials side by side in a structured manner. For example, electroluminescent polymers of different emission colors can be applied side by side for a full-color display, or organic field effect transistors of different functions can be applied side by side for organic circuits.
  • Several crosslinkable layers can also be applied one above the other.
  • Additional functional layers such as charge injection or transport layers, further emission layers and / or hole blocking layers can optionally be applied to these polymer layers, eg. B. from solution by methods as described for the buffer layer, but also by vapor deposition.
  • a cathode is applied. According to the prior art, this is done by a vacuum process and can be done, for example, by thermal vapor deposition or by plasma spraying (sputtering).
  • the cathode can be applied over the entire surface or in a structured manner through a mask. Then the electrodes are contacted.
  • the structure described above is adapted and optimized for the individual applications and can generally be used for various applications, such as organic and polymer light-emitting diodes, organic solar cells, organic field effect transistors, organic switching elements, organic optical amplifiers or organic laser diodes.
  • this crosslinkable buffer layer which is introduced between the conductive, doped polymer and the organic semiconductor, offers the following advantages: 1) By introducing the crosslinkable buffer layer according to the invention, the optoelectronic properties of the electronic device are improved compared to a device which does not contain such a buffer layer. So you can see a higher efficiency and a longer life with reduced operating voltage. It is striking that this effect is particularly pronounced when the crosslinking of the buffer layer is initiated thermally. If a photoacid is added to the buffer layer for crosslinking, as described in the literature, the service life remains practically unchanged. 2) Since the buffer layer probably intercepts cationic species that emerge from the conductive, doped polymer, these are prevented from diffusing into the organic semiconductor. If the organic semiconductor is now a cationically crosslinkable compound, undesired crosslinking of the semiconductor is avoided. This enables the controlled structuring of the semiconductor that was previously not possible.
  • the present invention is illustrated by the following examples, without wishing to restrict it thereto. These examples only deal with organic and polymeric light emitting diodes. However, the person skilled in the art can use the examples given to illustrate further electronic devices, such as O-SCs, O-FETs, O-ICs, optical amplifiers and O-lasers, to name just a few further applications, without inventive step.
  • Example 1 Synthesis of a cationically crosslinkable polymer P1 for the
  • Example 2 Synthesis of a cationically crosslinkable polymer P2 for use as a buffer layer a) Synthesis of bis- (4-bromophenyl) - (4- sec butylphenyl) amine (monomer M4)
  • the starting amounts of Pd (OAc) 2 and P (o-tol) 3 were added after 4 h, after 5.5 h and after 8.5 h. After a reaction time of 8 h, 2 ml of toluene were added. As the endcapper, 24 mg (0.08 mmol) of 3,4-bispentoxybenzeneboronic acid were added, the mixture was heated under reflux for 2 h, then 40 mg (0.12 mmol) of 3,4-bispentoxybenzene bromide were added and the mixture was heated under reflux for 1 h. The reaction solution was cooled to 65 ° C.
  • Example 3 Synthesis of a cationically crosslinkable molecule V1 for use as a buffer layer
  • the LEDs were manufactured according to a general process, which was adapted in individual cases to the respective circumstances (e.g. solution viscosity and optimal layer thickness of the functional layers in the device).
  • the LEDs described below were each three-layer systems (three organic layers), i. H.
  • PEDOT is a polythiophene derivative (Baytron P4083 from H.C. Stark, Goslar). Ba from Aldrich and Ag from Aldrich was used as the cathode in all cases. How PLEDs can be represented in general is described in detail in WO 04/037887 and the literature cited therein.
  • a cationically crosslinkable semiconductor was applied as a buffer layer to the PEDOT layer.
  • the crosslinkable polymers P1 and P2 or the crosslinkable low molecular weight compound V1 were used as materials for the buffer layer.
  • a solution (with a concentration of 4-25 mg / ml in, for example, toluene, chlorobenzene, xylene, etc.) was prepared from the crosslinkable material and dissolved by stirring at room temperature. Depending on the material, it can also be advantageous to stir at 50 - 70 ° C for some time. After the compound was completely dissolved, it was filtered through a 5 ⁇ m filter.
  • the buffer layer was spun on at variable speeds (400 - 6000 rpm) with a spin coater in an inert atmosphere.
  • the layer thicknesses could be varied in the range from approximately 20 to 300 nm.
  • the crosslinking was then carried out by heating the device to 180 ° C. for 30 minutes on a hotplate in an inert atmosphere.
  • the organic semiconductor and the cathode are now applied to the buffer layer, as described in WO 04/037887 and the literature cited therein.
  • Example 5 Production of structured LEDs with an additional buffer layer
  • the structured LEDs were produced analogously to Example 4 up to and including the step of crosslinking the buffer layer. Deviating from that Cationically crosslinkable semiconductors were used as organic semiconductors. These were red, green and blue emitting conjugated polymers based on poly spirobifluorene, which were functionalized with oxetane groups. These materials and their synthesis have already been described in the literature (Nature 2003, 421, 829).
  • a solution (generally with a concentration of 4-25 mg / ml in, for example, toluene, chlorobenzene, xylo cyclohexanone (4: 1)) was prepared from the cationically crosslinkable semiconductors and dissolved by stirring at room temperature.
  • the film was then annealed in an inert atmosphere for 3 minutes at 130 ° C., then treated with a 10 "4- molar LiAIH 4 solution in THF and rinsed with THF. As a result, the non-crosslinked areas in the film were washed off. This process is carried out repeated with the other solutions of the crosslinkable organic semiconductors, and in this way the three primary colors were applied in a structured manner next to one another, and the electrodes were vapor-deposited and contacted as described above.
  • the polymer showed a service life of approx. 500 h under otherwise identical conditions.
  • An LED was also produced, the buffer layer of which was added 0.5% by weight of ⁇ 4- [(2-hydroxytetradecyl) -oxy] -phenyl ⁇ -phenyliodonium hexafluoroantimonate was crosslinked photochemically by UV irradiation (3 s, 302 nm) and subsequent heating to 90 ° C. for 30 seconds. The buffer layer was then rinsed with THF and heated to 180 ° C for 5 minutes. This LED had a service life of approx. 630 h under otherwise identical conditions.
  • the measurement was repeated with polymer P2 as a buffer layer, as described in Example 6, under otherwise identical conditions.
  • the polymer showed a lifespan of approx. 1500 h without adding photo acid to the buffer layer and of approx. 600 h with addition of photo acid.
  • the measurement was repeated with compound V1 as a buffer layer, as described in Example 6, under otherwise identical conditions.
  • the polymer had a lifespan of approx. 1350 h without adding photo acid to the buffer layer and of approx. 550 h with addition of photo acid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

Gegenstand der erfindung sind elektronische Vorrichtungen, enthaltend mindestens eine Schicht eines leitfähigen, dotierten Polymers und eine Schicht eines organischen Halbleiters, dadurch gekennzeichnet, dass zwischen diesen beiden Schichten mindestens eine leitende oder halbleitende organische Pufferschicht eingebracht ist, welche kationisch polymerisierbar ist und der weniger als 0,5 % einer Photosäure zugemischt ist. Überraschend wurde gefunden, dass die elektronischen Eigenschaften der Vorrichtungen deutlich verbessert werden können, wenn zwischen die dotierte Zwischenschicht und die funktionnelle organische Halbleiterschicht mindestens eine Pufferschicht eingebracht wird, die kationisch vernetzbar ist, Besonders gute Eigenschaften werden bei einer Pufferschicht erhalten, deren kaiionisch Vernetzung thermisch induziert wird, d.h. durch Temperaturerhöhung auf 50 bis 250° C, bevorzugt auf 80 bis 200° C und der keine Photosäure zugesetzt wird. Ein weiterer Vorteil dieser Pufferschicht besteht darin, dass die nicht kontrollierbare Vernetzung eines kationisch vemetzbaren Halbleiters durch Verwendung der Pufferschicht vermieden werden kann und somit erst die gezielte Strukturierung des Halbleiters ermöglicht wird. Ein nochmals weiterer Vorteil der Vernetzung der Pufferschicht besteht darin, dass durch die Vernetzung die Glasübergangstemperatur des Materials und damit die Stabilität der Schicht erhöht wird.

Description

Beschreibung
ELEKTRONISCHE VORRICHTUNG ENTHALTEND EINEN ORGANISCHEN LEITER UND EINEN ORGANISCHEN HALBLEITER UND DAZWISCHEN EINE PUFFERSCHICHT BESTEHEND AUS EINEM POLYMER WELCHES KATIONISCH POLYMERISIERBAR IST UND KEINE PHOTOSÄURE ENTHÄLT
Elektronische Vorrichtungen, welche organische, metallorganische oder polymere Halbleiter, bzw. auch Verbindungen aus verschiedenen dieser drei Gruppen enthalten, werden immer häufiger in kommerziellen Produkten verwendet oder stehen kurz vor der Markteinführung. Als Beispiele für bereits kommerzielle Produkte seien hier Ladungstransportmaterialien auf organischer Basis (i. d. R. Lochtransporter auf Triarylaminbasis) in Kopiergeräten und organische oder polymere Leuchtdioden (OLEDs oder PLEDs) in Anzeige- oder Display- Vorrichtungen genannt. Organische Solarzellen (O-SC), organische Feldeffekt- Transistoren (O-FET), organische Schaltelemente (O-IC) oder organische Laserdioden (O-Laser) sind in einem Forschungsstadium weit fortgeschritten und könnten in der Zukunft große Bedeutung erlangen.
Viele dieser Vorrichtungen weisen, unabhängig vom Verwendungszweck, folgenden allgemeinen Schichtaufbau auf, der für die einzelnen Anwendungen entsprechend angepasst wird: (1) Substrat (2) Kontaktierung: leitfähige Substanz, Elektrode; häufig metallisch oder anorganisch, aber auch aus organischen bzw. polymeren leitfähigen Materialien (3) Eventuell Ladungsinjektionsschicht bzw. Zwischenschicht zum Ausgleich von Unebenheiten der Elektrode („Planarisation Layer"), häufig aus einem leitfähigen, dotierten Polymer (4) Organischer Halbleiter (5) Eventuell Isolierschicht (6) Zweite Kontaktierung: wie (2); zweite Elektrode, Materialien wie unter (2) genannt (7) Verschaltung (8) Verkapselung.
Ein Vorteil, den viele dieser organischen Vorrichtungen, v. a. solche, welche auf polymeren bzw. dendritischen oder oligomeren Halbleitern basieren, besitzen, ist, dass diese aus Lösung hergestellt werden können, was mit geringerem technischen und Kostenaufwand verbunden ist als Vakuumprozesse, wie sie im Allgemeinen für niedermolekulare Verbindungen durchgeführt werden. So können beispielsweise einfarbige elektrolumineszierende Vorrichtungen vergleichsweise einfach erzeugt werden, indem die Materialien durch Flächenbeschichtung aus Lösung (wie z. B. durch Spin-Coating, Rackel-Techniken, etc.) verarbeitet werden. Üblicherweise wird hier die Strukturierung, d. h. die Ansteuerung der einzelnen Bildpunkte, bei den "Zuleitungen", d. h. beispielsweise bei den Elektroden, durchgeführt. Dies kann z. B. durch Schattenmasken nach Art einer Schablone erfolgen. Ähnlich kann auch die Strukturierung organischer Schaltkreise und teilweise organischer Solarzellen- Panels bzw. Laser-Arrays erfolgen. Für die industrielle Massenfertigung ergeben sich hieraus jedoch deutliche Nachteile: Die Masken sind nach ein- oder mehrmaliger Benutzung unbrauchbar durch Belagbildung und müssen aufwändig regeneriert werden. Für die Produktion wäre es daher wünschenswert, einen Prozess zur Verfügung zu haben, für den keine Schattenmasken benötigt werden. Flächenbeschichtungen und Strukturierung durch Schattenmasken können außerdem nicht ohne Weiteres angewandt werden, wenn beispielsweise Vollfarbdisplays oder organische Schaltkreise mit unterschiedlichen Schaltelementen erzeugt werden sollen. Für Vollfarbdisplays müssen die drei Grundfarben (rot, grün, blau) in einzelnen Pixels (Bildpunkten) mit hoher Auflösung nebeneinander aufgebracht werden. Analoges gilt für elektronische Schaltkreise mit unterschiedlichen Schaltelementen. Während bei niedermolekularen aufdampfbaren Molekülen die einzelnen Bildpunkte durch das Aufdampfen der einzelnen Farben durch Schattenmasken erzeugt werden können (mit den oben bereits erwähnten damit verbundenen Schwierigkeiten), ist dies für polymere und aus Lösung verarbeitete Materialien nicht möglich, und die Strukturierung kann nicht mehr alleinig durch Strukturierung der Elektroden erfolgen. Hier besteht ein Ausweg darin, die aktive Schicht (beispielsweise: die Licht emittierende Schicht in OLEDs/PLEDs; Analoges gilt für Laser bzw. Ladungstransportschichten in allen Anwendungen) direkt strukturiert aufzubringen. Dass dies erhebliche Probleme bereitet, ist alleine schon aus den Dimensionen verständlich: Es müssen Strukturen im Bereich von einigen 10 μm bei Schichtdicken im Bereich von weniger als 100 nm bis zu wenigen μm geschaffen werden. In letzter Zeit wurden hierfür insbesondere verschiedene Drucktechniken in Erwägung gezogen, wie beispielsweise Tintenstrahldruck, Off- Set-Druck, etc.. Jedoch hat jede dieser Drucktechniken ihre eigenen Probleme, und keine ist bislang soweit ausgereift, dass sie für einen Massenfertigungsprozess anwendbar wäre. Außerdem wird hier (im Bereich der OLEDs) für die Elektroden die oben bereits geschilderte Maskentechnologie verwendet. Diese bringt jedoch auch hier die oben geschilderten Probleme der Belagbildung mit sich. Deshalb muss die Strukturierbarkeit durch Drucktechniken derzeit noch als ungelöstes Problem angesehen werden. Ein anderer Ansatz zur Strukturierbarkeit wurde in WO 02/10129 und Nature 2003, 421, 829 vorgeschlagen. Dort werden strukturierbare Materialien beschrieben, die zur Verwendung in strukturierten Vorrichtungen, wie OLEDs, PLEDs, organischen Lasern, organischen Schaltelementen oder organischen Solarzellen geeignet sind. Es handelt sich dabei um organische, insbesondere elektrolumineszierende Materialien, die mindestens eine zur Vernetzung befähigte Oxetangruppe enthalten, deren Vernetzungsreaktion gezielt ausgelöst und gesteuert werden kann. In Macromol. Rapid Commun. 1999, 20, 225 sind mit Oxetangruppen funktionalisierte N,N,N\N'-Tetraphenylbenzidine beschrieben, die photoinduziert vernetzbar sind. Diese Verbindungsklasse wird als strukturierbarer Lochleiter direkt auf der Anode der organischen elektronischen Vorrichtung eingesetzt. Dabei wird den Materialien zur Vernetzung mindestens ein Photoinitiator zugemischt. Durch Bestrahlung mit aktinischer Strahlung wird eine Säure erzeugt, die durch kationische, ringöffnende Polymerisation eine Vernetzungsreaktion auslöst. Durch strukturierte Bestrahlung kann so ein Muster von Bereichen mit vernetztem und Bereichen mit unvemetztem Material erhalten werden. Durch geeignete Operationen (z. B. Spülen mit geeigneten Lösemitteln) können dann die Bereiche mit unvemetztem Material entfernt werden. Dies führt zur gewünschten Strukturierung. So kann das nachfolgende Aufbringen der verschiedenen Schichten (bzw. anderer Materialien, die in Nachbarschaft zum ersten Material aufgebracht werden sollen) nach erfolgter Vernetzung durchgeführt werden. Die Bestrahlung, wie sie zur Strukturierung angewandt wird, ist ein Standard prozess der heutigen Elektronik und kann z. B. mit Lasern oder durch flächige Bestrahlung durch eine entsprechende Photomaske erfolgen. Diese Maske birgt hier keine Gefahr der Belegung, da hier ja nur Strahlung und kein Materialfluss durch die Maske zu verzeichnen ist. In ChemPhysChem 2000, 207 wird eine solche vernetzte Triarylamin-Schicht als Zwischenschicht zwischen einem leitfähigen dotierten Polymer und einem organischen lumineszierenden Halbleiter eingebracht. Dabei wird eine höhere Effizienz erhalten. Auch hier wird für die Vernetzung eine Photosäure verwendet. Dies scheint notwendig zu sein für die vollständige Vernetzung der Triarylaminschicht. Jedoch verbleiben die Photosäure bzw. deren Reaktionsprodukte nach der Vernetzung als Verunreinigung in der elektronischen Vorrichtung. Es ist allgemein anerkannt, dass sowohl organische wie auch anorganische Verunreinigungen den Betrieb organischer elektronischer Vorrichtungen stören können. Deshalb wäre es wünschenswert, die Verwendung der Photosäure weitestmöglich reduzieren zu können. In EP 0637899 werden elektrolumineszierende Anordnungen mit ein oder mehreren Schichten vorgeschlagen, in denen mindestens eine Schicht durch thermische oder strahlungsinduzierte Vernetzung erhalten wird, die außerdem mindestens eine Emitterschicht enthalten und pro Schicht mindestens eine Ladungstransporteinheit. Dabei kann die Vernetzung radikalisch, anionisch, kationisch oder über eine photoinduzierte Ringschlussreaktion ablaufen. Als Vorteil wird genannt, dass dadurch mehrere Schichten übereinander aufgebaut werden können oder auch, dass die Schichten strahlungsinduziert strukturiert werden können. Es wird jedoch keine Lehre erteilt, durch welche der vielfältigen Vemetzungsreaktionen ein taugliches Device hergestellt werden kann und wie die Vernetzungsreaktion am besten durchgeführt wird. Es wird lediglich erwähnt, dass radikalisch vemetzbare Einheiten bzw. zur Photocycloaddition befähigte Gruppen bevorzugt sind, dass Hilfsstoffe verschiedener Art, beispielsweise Initiatoren, enthalten sein können und dass der Film bevorzugt mittels aktinischer Strahlung und nicht thermisch vernetzt wird. Auch geeignete Device-Konfigurationen sind nicht beschrieben. So ist nicht klar, wie viele Schichten das Device bevorzugt aufweist, wie dick diese sein sollen, welche Materialklassen bevorzugt verwendet werden und welche davon vernetzt werden sollen. Daher ist es auch für den Fachmann nicht offensichtlich, wie die beschriebene Erfindung erfolgreich in die Praxis umgesetzt werden kann.
In Vorrichtungen für die organische Elektronik wird häufig zwischen die Elektrode (insbesondere die Anode) und das Funktionsmaterial eine Zwischenschicht aus einem leitfähigen, dotierten Polymer als.Ladungsinjektionsschicht eingebracht (Appl. Phys. Leu. 1997, 70, 2067-2069). Alternativ kann auch ein leitfähiges, dotiertes Polymer direkt als Anode (oder je nach Anwendung auch als Kathode) verwendet werden. Die geläufigsten dieser Polymere sind Polythiophenderivate (z. B. Poly(ethylendioxythiophen), PEDOT) und Polyanilin (PANI), die in der Regel mit Polystr rolsulfonsäure oder anderen polymergebundenen Brönstedt-Säuren dotiert und so in einen leitfähigen Zustand gebracht werden. Ohne in der nachfolgenden Erfindung an die Richtigkeit dieser speziellen Theorie gebunden sein zu wollen, vermuten wir, dass aus den sauren Gruppen bei Betreiben der Vorrichtung Protonen oder andere Verunreinigungen in die funktioneile Schicht diffundieren, die im Verdacht stehen, dort die Funktionalität der Vorrichtung bedeutend zu stören. So wird vermutet, dass diese Verunreinigungen die Effizienz wie auch die Lebensdauer der Vorrichtungen reduzieren. Insbesondere negativ wirken sich Protonen oder sonstige kationische Verunreinigungen dann aus, wenn die auf diese Schicht aufgebrachte funktioneile Halbleiterschicht kationisch vernetzbar ist und, wie oben beschrieben, strukturiert werden soll. Wir vermuten, dass durch die Anwesenheit von Protonen oder anderen kationischen Verunreinigungen die funktionelle Schicht bereits teilweise oder vollständig vernetzt wird, ohne dass die Möglichkeit zur kontrollierten Vernetzung, beispielsweise durch aktinische Strahlung, gegeben ist. Damit geht der Vorteil der gezielten Strukturierbarkeit verloren. So bieten kationisch vernetzbare Materialien zwar prinzipiell die Möglichkeit zur Strukturierung und somit eine Alternative zu Drucktechniken. Jedoch ist die technische Anwendung dieser Materialien bislang nicht möglich, da das Problem der unkontrollierten Vernetzung auf einer dotierten Ladungsinjektionsschicht noch nicht gelöst ist.
Überraschend wurde nun gefunden, dass die elektronischen Eigenschaften der Vorrichtungen deutlich verbessert werden können, wenn zwischen die dotierte Zwischenschicht und die funktioneile organische Halbleiterschicht mindestens eine Pufferschicht eingebracht wird, die kationisch vernetzbar ist. Besonders gute Eigenschaften werden bei einer Pufferschicht erhalten, deren kationische Vernetzung thermisch induziert wird, d. h. durch Temperaturerhöhung auf 50 bis 250 °C, bevorzugt auf 80 bis 200 °C und der keine Photosäure zugesetzt wird. Ein weiterer Vorteil dieser Pufferschicht besteht darin, dass die nicht kontrollierbare Vernetzung eines kationisch vernetzbaren Halbleiters durch Verwendung der Pufferschicht vermieden werden kann und somit erst die gezielte Strukturierung des Halbleiters ermöglicht wird. Ein nochmals weiterer Vorteil der Vernetzung der Pufferschicht besteht darin, dass durch die Vernetzung die Glasübergangtemperatur des Materials und damit die Stabilität der Schicht erhöht wird.
Gegenstand der Erfindung sind daher elektronische Vorrichtungen, enthaltend mindestens eine Schicht eines leitfähigen, dotierten Polymers und eine Schicht eines organischen Halbleiters, dadurch gekennzeichnet, dass zwischen diese beiden Schichten mindestens eine leitende oder halbleitende organische Pufferschicht eingebracht ist, welche kationisch polymerisierbar ist und der weniger als 0.5 % einer Photosäure zugemischt ist. .
Bevorzugt ist dabei, wenn der halbleitenden organischen Pufferschicht keine Photosäure zugemischt ist.
Weiterhin bevorzugt ist eine organische Pufferschicht, deren Vernetzung in der entsprechenden Device-Anordnung thermisch, d. h. durch Temperaturerhöhung auf 50 - 250 °C, bevorzugt auf 80 - 200 °C, ohne Zusatz weiterer Hilfsstoffe, wie beispielsweise Photosäuren, induziert werden kann. Eine Photosäure ist eine Verbindung, die bei Bestrahlung mit aktinischer Strahlung durch eine photochemische Reaktion eine protische Säure freisetzt. Beispiele für Photosäuren sind 4-(Thio-phenoxyphenyl)-diphenylsulfonium hexafluoroantimonat oder {4-[(2-Hydroxytetradecyl)-oxyl]-phenyl}-phenyliodonium hexafluoroantimonat und andere, wie beispielsweise in EP 1308781 beschrieben. Die Photosäure kann für die Vernetzungsreaktion zugesetzt werden, wobei gemäß dem Stand der Technik bevorzugt ein Anteil von ca. 0.5 bis 3 Gew.% gewählt wird.
Elektronische Vorrichtungen im Sinne dieser Erfindung sind organische oder polymere Leuchtdioden (OLED, PLED, z. B. EP 0676461 , WO 98/27136), organische Solarzellen (O-SC, z. B. WO 98/48433, WO 94/05045), organische Feld- Effekt-Transistoren (O-FET, z. B. US 5705826, US 5596208, WO 00/42668), Feld- Quench-Elemente (FQD, z. B. US 2004/017148), organische Schaltelemente (O-IC, z. B. WO 95/31833, WO 99/10939), organische optische Verstärker oder organische Laserdioden (O-Laser, z. B. WO 98/03566). Organisch im Sinne dieser Erfindung bedeutet, dass mindestens eine Schicht eines organischen leitfähigen dotierten Polymers, mindestens eine leitende oder halbleitende organische Pufferschicht und mindestens eine Schicht enthaltend mindestens einen organischen Halbleiter vorhanden sind; es können außer diesen auch weitere organische Schichten (beispielsweise Elektroden) vorhanden sein. Es können aber durchaus auch Schichten vorhanden sein, die nicht auf organischen Materialien basieren, wie beispielsweise anorganische Zwischenschichten oder Elektroden.
Die elektronische Vorrichtung ist im einfachsten Fall aufgebaut aus Substrat (üblicherweise Glas oder eine Kunststofffolie), Elektrode, Zwischenschicht aus einem leitfähigen, dotierten Polymer, erfindungsgemäße vernetzbare Pufferschicht, organischer Halbleiter und Gegenelektrode. Diese Vorrichtung wird entsprechend (je nach Anwendung) strukturiert, kontaktiert und hermetisch versiegelt, da sich die Lebensdauer derartiger Vorrichtungen bei Anwesenheit von Wasser und/oder Luft drastisch verkürzt. Dabei kann es auch bevorzugt sein, als Elektrodenmaterial für eine oder beide Elektroden ein leitfähiges, dotiertes Polymer zu verwenden und dann keine Zwischenschicht aus leitfähigem, dotiertem Polymer einzubringen. Für Anwendungen in O-FETs ist es außerdem nötig, dass der Aufbau außer Elektrode und Gegenelektrode (Source und Drain) noch eine weitere Elektrode (Gate) enthält, die durch eine Isolatorschicht mit einer in der Regel hohen Dielektrizitätskonstante vom organischen Halbleiter abgetrennt ist. Außerdem kann es sinnvoll sein, in die Vorrichtung noch weitere Schichten einzubringen. Die Elektroden werden so gewählt, dass ihr Potenzial möglichst gut mit dem Potenzial der angrenzenden organischen Schicht übereinstimmt, um eine möglichst effiziente Elektronen- bzw. Lochinjektion zu gewährleisten. Soll die Kathode Elektronen injizieren, wie dies beispielsweise in OLEDs/PLEDs oder n-leitenden O-FETs der Fall ist, oder Löcher aufnehmen, wie dies beispielsweise in O-SCs der Fall ist, sind als Kathode Metalle mit geringer Austrittsarbeit, Metalllegierungen oder mehrlagige Strukturen mit verschiedenen Metallen bevorzugt, wie beispielsweise Erdalkalimetalle, Alkalimetalle, Hauptgruppenmetalle oder Lanthanide (z. B. Ca, Ba, Mg, AI, In, Mg, Yb, Sm, etc.). Bei mehrlagigen Strukturen können auch zusätzlich zu den vorgenannten Metallen weitere Metalle verwendet werden, die eine relativ hohe Austrittsarbeit aufweisen, wie z. B. Ag, wobei dann in der Regel Kombinationen der Metalle, wie beispielsweise Ca/Ag oder Ba/Ag verwendet werden. Die Kathoden sind üblicherweise zwischen 10 und 10000 nm, bevorzugt zwischen 20 und 1000 nm, dick. Es kann auch bevorzugt sein, zwischen eine metallische Kathode und den organischen Halbleiter (bzw. andere fuήktionelle organische Schichten, die gegebenenfalls anwesend sind) eine dünne Zwischenschicht eines Materials mit einer hohen Dielektrizitätskonstanten einzubringen. Hierfür kommen beispielsweise Alkalimetall- oder Erdalkalimetallfluoride, aber auch die entsprechenden -oxide in Frage (z. B. LiF, Li20, BaF2, MgO, NaF, etc.). Die Schichtdicke dieser dielektrischen Schicht beträgt bevorzugt zwischen 1 und 10 nm.
Als Anode sind Materialien mit hoher Austrittsarbeit bevorzugt, wenn an der Anode Löcher injiziert (wie beispielsweise in OLEDs/PLEDs, p-leitenden O-FETs) bzw. Elektronen aufgenommen (wie beispielsweise O-SCs) werden. Bevorzugt weist die Anode ein Potential größer 4.5 eV vs. Vakuum auf. Hierfür sind einerseits Metalle mit hohem Redoxpotenzial geeignet, wie beispielsweise Ag, Pt oder Au. Es können auch Metall/Metalloxid-Elektroden (z. B. AI/Ni/NiOx, AI/Pt/PtOx) bevorzugt sein. Die Anode kann auch aus einem leitfähigen organischen Material (z. B. ein leitfähiges, dotiertes Polymer) bestehen.
Für einige Anwendungen muss mindestens eine der Elektroden transparent sein, um entweder die Bestrahlung des organischen Materials (O-SC) oder die Auskopplung von Licht (OLED/PLED, O-LASER, organischer optischer Verstärker) zu ermöglichen. Ein bevorzugter Aufbau verwendet eine transparente Anode. Bevorzugte Anodenmaterialien sind hier leitfähige gemischte Metalloxide. Besonders bevorzugt sind Indium-Zinn-Oxid (ITO) oder Indium-Zink-Oxid (IZO). Bevorzugt sind weiterhin leitfähige, dotierte organische Materialien, insbesondere leitfähige dotierte Polymere. Ein ähnlicher Aufbau gilt auch für invertierte Strukturen, bei denen das Licht aus der Kathode ausgekoppelt bzw. an der Kathode eingestrahlt wird. Die Kathode besteht dann bevorzugt aus den oben beschriebenen Materialien mit dem Unterschied, dass das Metall sehr dünn und damit transparent ist. Die Schichtdicke der Kathode liegt bevorzugt unter 50 nm, besonders bevorzugt unter 30 nm, insbesondere unter 10 nm. Darauf wird ein weiteres transparentes, leitfähiges Material aufgebracht, wie beispielsweise Indium-Zinn-Oxid (ITO), Indium- Zink-Oxid (IZO), etc..
Als leitfähiges, dotiertes Polymer (entweder als Elektrode oder als zusätzliche Ladungsinjektionsschicht oder „Planarisation Layer", um Unebenheiten der Elektrode auszugleichen und so Kurzschlüsse zu minimieren) kommen verschiedene organische, dotierte leitfähige Polymere in Frage. Bevorzugt sind hier Polymere, die je nach Anwendung eine Leitfähigkeit von > 10"8 S/cm aufweisen. In einer bevorzugten Ausführungsform dieser Erfindung ist das leitfähige, dotierte Polymer auf die Anode aufgebracht oder fungiert direkt als Anode. Hier beträgt das Potenzial der Schicht bevorzugt 4 bis 6 eV vs. Vakuum. Die Dicke der Schicht beträgt bevorzugt zwischen 10 und 500 nm, besonders bevorzugt zwischen 20 und 250 nm. Ist das leitfähige, dotierte Polymer selbst die Elektrode, sind die Schichten im Allgemeinen dicker, um eine gute elektrische Verbindung nach außen und einen geringen kapazitiven Widerstand zu gewährleisten. Besonders bevorzugt werden Derivate von Polythiophen (besonders bevorzugt Poly(ethylendioxythiophen), PEDOT) und Polyanilin (PANI) verwendet. Die Dotierung erfolgt in der Regel durch Säuren oder durch Oxidationsmittel. Bevorzugt erfolgt die Dotierung durch polymergebundene Brönsted-Säuren. Besonders bevorzugt sind hierfür allgemein polymergebundene Sulfonsäuren, insbesondere Poly(styrolsulfonsäure), Poly(vinylsulfonsäure) und PAMPSA (Poly(2-acrylamido-2-methyl- propansulfonsäure)). Das teitfähige Polymer wird in der Regel aus einer wässrigen Lösung oder Dispersion aufgetragen und ist unlöslich in organischen Lösungsmitteln. Dadurch kann die Folgeschicht aus organischen Lösungsmitteln problemlos aufgebracht werden.
Als organische Halbleiter kommen prinzipiell niedermolekulare, oligomere, dendritische oder polymere halbleitende Materialien in Frage. Unter einem organischen Material im Sinne dieser Erfindung sollen nicht nur rein organische Materialien, sondern auch metallorganische Materialien und Metallkoordinationsverbindungen mit organischen Liganden verstanden werden. Dabei können die oligomeren, dendritischen oder polymeren Materialien konjugiert, nicht-konjugiert oder auch teilkonjugiert sein. Konjugierte Polymere im Sinne dieser Erfindung sind Polymere, die in der Hauptkette hauptsächlich sp2-hybridisierte Kohlenstoffatome enthalten, die auch durch entsprechende Heteroatome ersetzt sein können. Dies bedeutet im einfachsten Fall abwechselndes Vorliegen von Doppel- und Einfachbindungen in der Hauptkette. Hauptsächlich meint, dass natürlich auftretende Defekte, die zu Konjugationsunterbrechungen führen, den Begriff "konjugiertes Polymer" nicht entwerten. Des Weiteren wird in diesem Anmeldetext ebenfalls als konjugiert bezeichnet, wenn sich in der Hauptkette beispielsweise Arylamineinheiten und/oder bestimmte Heterocyclen (d. h. Konjugation über N-, O- oder S-Atome) und/oder metallorganische Komplexe (d. h. Konjugation über das Metallatom) befinden. Hingegen würden Einheiten wie beispielsweise einfache Alkylenketten, (Thio)Etherbrücken, Ester-, Amid- oder Imidverknüpfungen eindeutig als nicht-konjugierte Segmente definiert. Außerdem sollen unter einem konjugierten organischen Material auch σ-konjugierte Polysilane, -germylene und Analoga verstanden werden, die organische Seitengruppen tragen und dadurch aus organischen Lösungsmitteln aufgebracht werden können, wie beispielsweise Poly(phenylmethylsilan). Nicht-konjugierte Materialien sind Materialien, in denen keine längeren konjugierten Einheiten in der Hauptkette bzw. im Dendrimergerüst auftreten. Unter teilkonjugierten Materialien sollen Materialien verstanden werden, die längere konjugierte Abschnitte in der Hauptkette bzw. im Dendrimergrundgerüst aufweisen, die durch nicht-konjugierte Einheiten überbrückt sind, oder die längere konjugierte Einheiten in der Seitenkette enthalten. Typische Vertreter konjugierter Polymere, wie sie beispielsweise in PLEDs oder O-SCs verwendet werden können, sind Poly-para-phenylenvinylene (PPV), Polyfluorene, Polyspirobifluorene oder Systeme, die im weitesten Sinne auf Poly-p-phenylen (PPP) basieren, und Derivate dieser Strukturen. Für die Verwendung in O-FETs sind vor allem Materialien mit hoher Ladungsträgermobilität von Interesse. Dies sind beispielsweise Oligo- oder Poly(triarylamine), Oligo- oder Poly(thiophene) und Copolymere, die einen hohen Anteil dieser Einheiten enthalten. Die Schichtdicke des organischen Halbleiters beträgt je nach Anwendung bevorzugt 10 - 500 nm, besonders bevorzugt 20 - 250 nm.
Unter einem Dendrimer soll hier eine hochverzweigte Verbindung verstanden werden, die aus einem multifunktionellen Zentrum (core) aufgebaut ist, an das in einem regelmäßigen Aufbau verzweigte Monomere gebunden werden, so dass eine baumartige Struktur erhalten wird. Dabei können sowohl das Zentrum, als auch die Monomere beliebige verzweigte Strukturen annehmen, die sowohl aus rein organischen Einheiten, als auch Organometallverbindungen oder Koordinationsverbindungen bestehen. Dendrimer soll hier allgemein so verstanden werden, wie dies beispielsweise in M. Fischer, F. Vögtle, Angew. Chem., Int. Ed. 1999, 38, 885-905 beschrieben ist. Um mehrere organische Halbleiter aus Lösung übereinander aufbringen zu können, was für viele optoelektronische Anwendungen (z. B. PLEDs) von Vorteil ist, wurden vernetzbare organische Schichten entwickelt (WO 02/10129). Diese sind nach der Vernetzungsreaktion unlöslich und können daher durch Lösungsmittel beim Aufbringen weiterer Schichten nicht mehr angegriffen werden. Vernetzbare organische Halbleiter haben auch zur Strukturierung mehrfarbiger PLEDs Vorteile. Bevorzugt ist also weiterhin die Verwendung vernetzbarer organischer Halbleiter. Bevorzugte Vernetzungsreaktionen sind kationische Polymerisationen, basierend auf elektronenreichen Olefinderivaten, heteronuklearen Mehrfachbindungen mit Heteroatomen oder Heterogruppierungen oder Ringen mit Heteroatomen (z. B. O, S, N, P, Si, etc.). Besonders bevorzugte Vernetzungsreaktionen sind kationische Polymerisationen, basierend auf Ringen mit Heteroatomen. Solche Vernetzungsreaktionen sind unten für die erfindungsgemäße Pufferschicht ausführlich beschrieben.
Halbleitende lumineszierende Polymere, die chemisch vernetzt werden können, werden in WO 96/20253 allgemein offenbart. Als besonders geeignet haben sich Oxetan-haltige halbleitende Polymere erwiesen, wie in WO 02/10129 beschrieben. Diese können durch Zusatz einer Photosäure und Bestrahlung gezielt und kontrolliert vernetzt werden. Es kommen aber auch vernetzbare niedermolekulare Verbindungen in Frage, wie beispielsweise kationisch vernetzbare Triarylamine (M. S. Bayer et al., Macromol. Rapid Commun. 1999, 20, 224-228; D. C. Müller et ai, ChemPhysChem 2000, 207-211). Diese Beschreibungen sind via Zitat Bestandteil der vorliegenden Erfindung.
Ohne an eine bestimmte Theorie gebunden sein zu wollen, vermuten wir, dass die in dem leitfähigen dotierten Polymer enthaltenen Protonen oder andere kationische Verunreinigungen bereits eine kationische Polymerisation auslösen können, wenn darauf ein kationisch vernetzbarer Halbleiter aufgebracht wird, und damit deren Strukturierung unmöglich machen. Aber auch Schichten organischer Halbleiter, die nicht kationisch vernetzbar sind, auf leitfähigen, dotierten Polymeren sind problematisch, da Verunreinigungen und deren Diffusion aus den dotierten Polymeren im Verdacht stehen, begrenzend für die Lebensdauer der elektronischen Vorrichtung zu sein. Außerdem ist die Lochinjektion aus dem dotierten Polymer in den organischen Halbleiter oft nicht zufriedenstellend.
Erfindungsgemäß ist daher die Einführung einer Pufferschicht, die zwischen das leitfähige, dotierte Polymer und den organischen Halbleiter eingebracht wird und die kationisch vernetzbare Einheiten trägt, so dass sie niedermolekulare, kationische Spezies sowie intrinsische kationische Ladungsträger aufnehmen kann, die aus dem leitfähigen, dotierten Polymer diffundieren können. Diese Pufferschicht kann vor der Vernetzung sowohl niedermolekular als auch oligomer, dendritisch oder polymer sein. Die Schichtdicke liegt bevorzugt im Bereich von 5 - 300 nm, besonders bevorzugt im Bereich von 10 - 200 nm. Bevorzugt liegt das Potenzial der Schicht zwischen dem Potenzial des leitfähigen, dotierten Polymers und dem des organischen Halbleiters. Dies kann erreicht werden durch geeignete Wahl der Materialien für die Pufferschicht sowie geeignete Substitution der Materialien.
Bevorzugte Materialien für die Pufferschicht leiten sich ab von lochleitenden Materialien, wie sie auch in anderen Anwendungen als Lochleiter verwendet werden. Besonders bevorzugt eignen sich hierfür kationisch vernetzbare Materialien auf Triarylamin-Basis, auf Thiophen-Basis, auf Triarylphosphin-Basis oder Kombinationen dieser Systeme, Auch Copolymere mit anderen Monomer-Einheiten, wie z. B. Fluoren, Spirobifluoren, etc., mit einem hohen Anteil dieser lochleitenden Einheiten sind geeignet. Durch geeignete Substitution können die. Potenziale dieser Verbindungen eingestellt werden. So erhält man durch Einführung elektronenziehender Substituenten (z. B. F, Cl, CN, etc.) Verbindungen mit einem niedrigeren HOMO (= höchstes besetztes Molekülorbital), während durch Einführung elektronenschiebender Substituenten (z. B. Alkoxygruppen, Aminogruppen, etc.) ein höheres HOMO erreicht wird.
Bei der erfindungsgemäßen Pufferschicht kann es sich um niedermolekulare Verbindungen handeln, die in der Schicht vernetzt und so unlöslich gemacht werden. Ebenfalls kommen oligomere, dendritische oder polymere lösliche Verbindungen in Frage, die durch anschließende kationische Vernetzung unlöslich gemacht werden. Weiterhin können Mischungen aus niedermolekularen Verbindungen und oligomeren, dendritischen und/oder polmyeren Verbindungen verwendet werden. Ohne bei dieser Erfindung an eine spezielle Theorie gebunden sein zu wollen, sind kationische Spezies, die aus dem leitfähigen, dotierten Polymer diffundieren können, an erster Stelle Protonen, die ursprünglich aus dem verwendeten Dotiermittel (häufig polymergebundene Sulfonsäuren) stammen können, aber auch aus ubiquitärem Wasser. Kationische Spezies, wie beispielsweise Metallionen, können auch als (ungewollte) Verunreinigungen im leitfähigen Polymer vorhanden sein. Eine weitere mögliche Quelle kationischer Spezies ist die Elektrode, auf die das leitfähige Polymer aufgetragen ist. So können beispielsweise aus einer ITO-Anode Indium-Ionen austreten und in die aktiven Schichten des Devices diffundieren. Weitere, möglicherweise vorhandene, niedermolekulare kationische Spezies sind monomere oder oligomere Bestandteile des leitfähigen Polymers, die durch Protonierung oder andere Dotierung in einen kationischen Zustand überführt werden. Es ist weiterhin möglich, dass durch oxidative Dotierung eingebrachte Ladungsträger in die Halbleiterschicht diffundieren. Die kationisch vernetzbare Pufferschicht kann diffundierende kationische Spezies abfangen, wodurch nachfolgend die Vernetzungsreaktion initiiert wird; andererseits wird durch die Vernetzung gleichzeitig die Pufferschicht unlöslich gemacht, so dass das anschließende Auftragen eines organischen Halbleiters aus den üblichen organischen Lösemitteln keine Probleme bereitet. Die vernetzte Pufferschicht stellt eine weitere Barriere gegen Diffusion dar.
Bevorzugte kationisch polymerisierbare Gruppen der Pufferschicht sind folgende funktioneile Gruppen:
1) elektronenreiche Olefinderivate,
2) heteronukleare Mehrfachbindungen mit Heteroatomen oder Heterogruppierungen oder
3) Ringe mit Heteroatomen (z. B. O, S, N, P, Si, etc.), die durch kationische ringöffnende Polymerisation (cationic ring-opening Polymerisation) reagieren.
Bevorzugt sind organische Materialien, die mindestens einen Substituenten tragen, der durch kationische ringöffnende Polymerisation reagiert. Einen allgemeinen Überblick über die kationische ringöffnende Polymerisation gibt beispielsweise E. J. Goethals et al., „Cationic Ring Opening Polymerization" (New Methods Polym. Synth. 1992, 67-109). Allgemein eignen sich hierfür nicht-aromatische cyclische Systeme, in denen ein oder mehrere Ringatome gleich oder verschieden O, S, N, P, Si, etc. sind.
Bevorzugt sind cyclische Systeme mit 3 bis 7 Ringatomen, in denen 1 bis 3 Ringatome gleich oder verschieden O, S oder N sind. Beispiele für solche Systeme sind unsubstituierte oder substituierte cyclische Amine (z. B. Aziridin, Azeticin, Tetrahydropyrrol, Piperidin), cyclische Ether (z. B. Oxiran, Oxetan, Tetrahydrofuran, Pyran, Dioxan), ebenso wie die entsprechenden Schwefelderivate, cyclische Acetale (z. B. 1 ,3-Dioxolan, 1 ,3-Dioxepan, Trioxan), Lactone, cyclische Carbonate, aber auch cyclische Strukturen, die unterschiedliche Heteroatome im Cyclus enthalten, wie beispielsweise Oxazoline, Dihydrooxazine oder Oxazolone. Bevorzugt sind weiterhin cyclische Siloxane mit 4 bis 8 Ringatomen.
Ganz besonders bevorzugt sind niedermolekulare, oligomere oder polymere organische Materialien, bei denen mindestens ein H-Atom durch eine Gruppe der Formel (I), Formel (II) oder Formel (III) ersetzt ist;
Figure imgf000015_0001
Formel (I) Formel (II) Formel (III) dabei gilt:
R1 ist bei jedem Auftreten gleich oder verschieden Wasserstoff, eine geradkettige, verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxy- Gruppe mit 1 bis 20 C-Atomen, ein aromatisches oder heteroaromatisches Ringsystem mit 4 bis 24 aromatischen Ringatomen oder eine Alkenylgruppe mit 2 bis 10 C-Atomen, bei denen ein oder mehrere Wasserstoffatome durch Halogen, wie Cl und F, oder CN ersetzt sein können und ein oder mehrere nicht benachbarte C-Atome durch -O-, -S-, -CO-, -COO- oder -O-CO- ersetzt sein können; dabei können auch mehrere Reste R1 miteinander bzw. mit R2, R3 und/oder R4 ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden;
R2 ist bei jedem Auftreten gleich oder verschieden Wasserstoff, eine geradkettige, verzweigte oder cyclische Alkylgruppe mit 1 bis 20 C-Atomen, ein aromatisches oder heteroaromatisches Ringsystem mit 4 bis 24 aromatischen Ringatomen oder eine Alkenylgruppe mit 2 bis 10 C- Atomen, bei denen ein oder mehrere Wasserstoffatome durch Halogen, wie Cl und F, oder CN ersetzt sein können und ein oder mehrere nicht benachbarte C-Atome durch -O-, -S-, -CO-, -COO- oder -O-CO- ersetzt sein können; dabei können auch mehrere Reste R2 miteinander bzw. mit R1, R3 und/oder R4 ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden;
X ist bei jedem Auftreten gleich oder verschieden -O-, -S-, -CO-, -COO-, -O-CO- oder eine bivalente Gruppe -(CR3R4)n-;
Z ist bei jedem Auftreten gleich oder verschieden eine bivalente Gruppe -(CR3R4)n-; R3, R4 ist bei jedem Auftreten gleich oder verschieden Wasserstoff, eine geradkettige, verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxy- Gruppe mit 1 bis 20 C-Atomen, ein aromatisches oder heteroaromatisches Ringsystem mit 4 bis 24 aromatischen Ringatomen oder eine Alkenyl-Gruppe mit 2 bis 10 C-Atomen, bei denen ein oder mehrere Wasserstoffatome auch durch Halogen, wie Cl oder F, oder CN ersetzt sein können; dabei können auch zwei oder mehr Reste R3 bzw. R4 miteinander bzw. mit R1 oder R2 ein Ringsystem bilden; n ist bei jedem Auftreten gleich oder verschieden eine ganze Zahl zwischen 0 und 20, vorzugsweise zwischen 1 und 10, insbesondere zwischen 1 und 6; mit der Maßgabe, dass die Anzahl dieser Gruppen gemäß Formel (I) bzw. Formel (II) bzw. Formel (III) durch die maximal verfügbaren, d. h. substituierbaren H-Atome begrenzt ist.
Die Vernetzung dieser Einheiten wird bevorzugt durch thermisches Behandeln der Vorrichtung in diesem Stadium durchgeführt. Es ist nicht nötig und auch nicht wünschenswert, für die Vernetzung eine Photosäure zuzusetzen, da dadurch Verunreinigungen in das Device eingebracht werden. Ohne an eine spezielle Theorie gebunden sein zu wollen, vermuten wir, dass durch die aus der leitfähigen, dotierten Polymerschicht austretenden Protonen die Vernetzung der Pufferschicht ausgelöst wird. Bevorzugt findet diese Vernetzung bei einer Temperatur von 80 bis 200 °C und einer Dauer von 0.1 bis 120 Minuten, bevorzugt 1 bis 60 Minuten, besonders bevorzugt 1 bis 10 Minuten, in einer inerten Atmosphäre statt. Besonders bevorzugt findet diese Vernetzung bei einer Temperatur von 100 bis 180 °C und einer Dauer von 20 bis 40 Minuten in einer inerten Atmosphäre statt. Es kann auch vorteilhaft sein, der Pufferschicht zur Vernetzung weitere Hilfsstoffe zuzusetzen, die keine Photosäuren sind, die aber die Vernetzung fördern können. Hier kommen beispielsweise Salze, insbesondere organische Salze, wie beispielsweise Tetrabutylammoniumhexafluoroantimonat, die als Leitsalze zur besseren Vernetzung zugesetzt werden, Säuren, insbesondere organische Säuren, wie beispielsweise Essigsäure oder Zusatz von weiterer Polystyrolsulfonsäure zum leitfähigen Polymer, oder oxidierende Stoffe, wie beispielsweise Nitrylium- oder Nitrosylium-Salze (NO+, N02 +), in Frage. Diese Hilfsstoffe können nach durchgeführter Vernetzung leicht ausgewaschen werden und verbleiben somit nicht als Verunreinigung im Film. Die Hilfsstoffe haben den Vorteil, dass dadurch die Vernetzung leichter vollständig durchgeführt werden kann und dass dadurch auch dickere Pufferschichten erzeugt werden können.
Für die Herstellung der Vorrichtungen wird in der Regel folgendes allgemeine Verfahren angewandt, das entsprechend ohne weiteres erfinderisches Zutun für den Einzelfall anzupassen ist: • Ein Substrat (z. B. Glas oder auch ein Kunststoff) wird mit der Anode beschichtet (beispielsweise Indium-Zinn-Oxid, ITO, etc.). Anschließend wird die Anode (z. B. photolithografisch) der gewünschten Anwendung gemäß strukturiert und verschaltet. Es kann hier auch sein, dass das ganze Substrat und die entsprechende Verschaltung zunächst über einen recht aufwändigen Prozess erzeugt wird, um dadurch eine sogenannte Aktiv-Matrix-Steuerung zu ermöglichen. Das mit der Anode beschichtete vorgereinigte Substrat wird entweder mit Ozon oder mit Sauerstoffplasma behandelt oder kurze Zeit mit einer Excimer-Lampe bestrahlt.
Anschließend wird ein leitfähiges Polymer, z. B. ein dotiertes Polythiophen- (PEDOT) oder Polyanilinderivat (PANI) in einer dünnen Schicht üblicherweise zwischen 10 und 500 nm, bevorzugt zwischen 20 und 300 nm Schichtdicke, auf das ITO-Substrat durch Spincoaten oder andere Beschichtungsverfahren aufgebracht .
Auf diese Schicht wird die erfindungsgemäße kationisch vernetzbare Pufferschicht aufgebracht. Die entsprechende Verbindung wird dazu zunächst in einem Lösemittel oder Lösemittelgemisch gelöst und filtriert. Da organische Halbleiter und v. a. die Oberflächen der Schichten teilweise extrem durch Sauerstoff oder andere Luftbestandteile beeinflusst werden, empfiehlt es sich, diese Operation unter Schutzgas durchzuführen. Als Lösemittel für polymere Verbindungen eignen sich aromatische Flüssigkeiten wie beispielsweise Toluol, Xylole, Anisol, Chlorbenzol, aber auch andere, wie beispielsweise cyclische Ether (z. B. Dioxan, Methyldioxan, THF) oder auch Amide, wie beispielsweise NMP oder DMF, aber auch Lösemittelgemische, wie in der Anmeldeschrift WO 02/072714 beschrieben. Für niedermolekulare Verbindungen eignen sich auch weitere organische Lösemittel, die abhängig von der verwendeten Verbindungsklasse gewählt werden. Mit diesen Lösungen können die vorher beschriebenen Träger ganzflächig beschichtet bzw. lackiert werden, z. B. durch Spin-Coat-Verfahren, Schwall- und Wellenbeschichtung oder Rackel-Techniken. Die Vernetzung der Pufferschicht kann dann durch Erhitzen des Devices in diesem Stadium in einer inerten Atmosphäre erfolgen. Es ist hier nicht nötig und auch nicht wünschenswert, eine Photosäure zuzusetzen; die thermische Behandlung der Pufferschicht auf dem dotierten Polymer reicht aus, um die Vernetzungsreaktion durchzuführen. Optional kann anschließend mit einem Lösungsmittel, beispielsweise THF, gespült werden. Abschließend wird eventuell getrocknet.
Darauf bringt man dann eine Lösung eines organischen Halbleiters auf. Die Wahl des Halbleiters hängt von der gewünschten Anwendung ab. Wird ein vernetzbarer organischer Halbleiter verwendet, kann dieser entsprechend der gewünschten Anwendung durch gezielte Vernetzung strukturiert werden. Dies kann bei kationisch vernetzbaren Halbleitern beispielsweise durch Zusatz einer Photosäure, Bestrahlung durch eine Schattenmaske und anschließende thermische Behandlung erfolgen. Da die darunter liegende Pufferschicht nicht sauer ist, sollte an dieser Stelle nicht auf die Verwendung einer Photosäure verzichtet werden. Der nicht-vernetzte Anteil des Halbleiters kann anschließend mit einem organischen Lösemittel, in dem der Halbleiter löslich ist, abgewaschen werden. Dieser Prozess kann für unterschiedliche Materialien wiederholt werden, um auf diese Weise strukturiert mehrere Materialien nebeneinander aufzubringen. So können beispielsweise elektrolumineszierende Polymere unterschiedlicher Emissionsfarbe strukturiert nebeneinander für ein Vollfarbdisplay oder organische Feldeffekttransistoren verschiedener Funktion nebeneinander für organische Schaltungen aufgebracht werden. Es können auch mehrere vernetzbare Schichten übereinander aufgebracht werden.
• Auf diese Polymerschichten können optional weitere funktionelle Schichten, wie beispielsweise Ladungsinjektions- oder -transportschichten , weitere Emissionsschichten und/oder Lochblockierschichten aufgebracht werden, z. B. aus Lösung durch Methoden, wie diese für die Pufferschicht beschrieben wurden, aber auch durch Aufdampfen.
• Anschließend wird eine Kathode aufgebracht. Dies erfolgt nach dem Stand der Technik durch einen Vakuumprozess und kann beispielsweise durch thermisches Bedampfen oder durch Plasmaspritzen (Sputtern) geschehen. Die Kathode kann dabei vollflächig oder auch durch eine Maske strukturiert aufgebracht werden. Dann erfolgt die Kontaktierung der Elektroden.
• Da viele der Anwendungen empfindlich auf Wasser, Sauerstoff oder sonstige Bestandteile der Atmosphäre reagieren, ist eine effektive Einkapselung des Devices unerlässlich.
• Der oben beschriebene Aufbau wird für die einzelnen Anwendungen entsprechend angepasst und optimiert und kann allgemein für verschiedene Anwendungen, wie organische und polymere Leuchtdioden, organische Solarzellen, organische Feldeffektransitoren, organische Schaltelemente, organische optische Verstärker oder organische Laserdioden verwendet werden.
Überraschend bietet diese vernetzbare Pufferschicht, die zwischen das leitfähige, dotierte Polymer und den organischen Halbleiter eingebracht wird, folgende Vorteile: 1 ) Durch Einbringen der erfindungsgemäßen vernetzbaren Pufferschicht verbessern sich die optoelektronischen Eigenschaften der elektronischen Vorrichtung gegenüber einer Vorrichtung, die keine derartige Pufferschicht enthält. So beobachtet man eine höhere Effizienz und eine höhere Lebensdauer bei verringerter Betriebsspannung. Dabei fällt auf, dass dieser Effekt besonders ausgeprägt ist, wenn die Vernetzung der Pufferschicht thermisch initiiert wird. Wird der Pufferschicht zur Vernetzung eine Photosäure zugesetzt, wie in der Literatur beschrieben, bleibt die Lebensdauer praktisch unverändert. 2) Da die Pufferschicht vermutlich kationische Spezies abfängt, die aus dem leitfähigen, dotierten Polymer austreten, werden diese an der Diffusion in den organischen Halbleiter gehindert. Handelt es sich bei dem organischen Halbleiter nun um eine kationisch vernetzbare Verbindung, wird so eine ungewollte Vernetzung des Halbleiters wird vermieden. Dadurch wird die kontrollierte Strukturierung des Halbleiters erst ermöglicht, die bislang so nicht möglich war.
Die vorliegende Erfindung wird durch die folgenden Beispiele näher erläutert, ohne sie darauf einschränken zu wollen. In diesen Beispielen wird nur auf organische und polymere Leuchtdioden eingegangen. Der Fachmann kann jedoch aus den aufgeführten Beispielen ohne erfinderisches Zutun weitere elektronische Vorrichtungen darstellen, wie beispielsweise O-SCs, O-FETs, O-ICs, optische Verstärker und O-Laser, um nur einige weitere Anwendungen zu nennen.
Beispiele:
Beispiel 1 : Synthese eines kationisch vernetzbaren Polymers P1 für die
Verwendung als Pufferschicht a) Synthese literaturbekannter Vorstufen
3-Ethyl-3-(iodmethyl)oxetan (WO 96/21657), 11-(4-Bromphenoxy)-1-undecanol (M. Trollsaas et al., Macromol. Chem. Phys. 1996, 197, 767-779) und N,N'-Diphenylbenzidin (K. Wiechert et al., Zeitschrift Chem. 1975, 15, 49-50) wurden gemäß der Literatur synthetisiert.
b) Synthese von N,N'-Bis-(4-bromphenyl)-N,N'-bis-(4-tert-butylphenyl)-biphenyl-4,4'- diamin (Monomer M1)
Figure imgf000019_0001
Die Synthese von Monomer M1 ist in WO 02/077060 beschrieben.
c) Synthese von N,N'-Bis-(4-boronsäurepinakolester)phenyl-N,N'-bis-(4-tert- butylphenyl)-biphenyl-4,4'-diamin (Monomer M2)
Figure imgf000020_0001
Die Synthese von Monomer M2 ist in der nicht offen gelegten Anmeldung DE 10337077.3 beschrieben.
d) Synthese von 3-(11-(4-Bromphenoxy)-undecan-1-oxy)methylen-3-ethyl-oxetan
Figure imgf000020_0002
.6 g (30 mmol) NaH wurden in 70 mL trockenem DMF suspendiert und unter Schutzgas gerührt. Dazu wurde bei 40 °C eine Lösung aus 6.8 g (20 mmol) 11-(4-Bromphenoxy)-1-undecanol in 25 ml DMF gegeben. Nach 1 h wurden 2.96 g (22 mmol) 3-Ethyl-3-(iodmethyl)oxetan und 0.166g (1.0 mmol) Kl zugegeben und 24 h bei 40 °C gerührt. Nach Abkühlen auf Raumtemperatur wurde die Reaktionsmischung mit 200 mL Wasser und 200 mL CH2CI2 versetzt, die organische Phase wurde abgetrennt, über Mg2S04 getrocknet und das Lösungsmittel im Vakuum entfernt. Das Produkt wurde chromatographisch gereinigt (Silica, Laufmittel Hexan). Die Ausbeute betrug 3.2 g (89 % d. Th.), die Reinheit 98 % (nach HPLC). 1H-NMR (CDCI3, 500 MHz): 1.45 (t, J = 7.3 Hz, 3H), 1.45 (m, 14H), 1.55 (m, 2H), 1.75 (m, 4H), 3.42 (t, J = 6.3 Hz, 2H), 3.46 (s, 2H), 3.85 (t, J = 6.3 Hz, 2H), 4.39 (d, J = 5.9 Hz, 2H), 4.44 (d, J = 5.9 Hz, 2H), 6.75 (d, J = 9 Hz, 2H), 7.35 (d, J = 9 Hz, 2H).
e) Synthese von Oxetan-substituiertem N,N,N',N'-Tetraphenylbenzidin
Figure imgf000020_0003
Eine entgaste Lösung von 5.1 g (9.7 mmol) N.N'-Diphenylbenzidin und 14 g (21.4 mmol) 3-(11-(4-Bromphenoxy)-undecan-1-oxy)methylen-3-ethyl-oxetan in 250 mL Toluol wurde 1 h mit N2 gesättigt. Dann wurde die Lösung zunächst mit 0.12 g (0.39 mmol)
Figure imgf000021_0001
dann mit 69 mg (0.19 mmol) Pd(OAc)2 versetzt. Anschließend wurden 3.8 g (50.4 mmol) festes NaO^u zugegeben. Die Reaktionsmischung wurde 5 h unter Rückfluss erhitzt. Nach Abkühlen auf Raumtemperatur wurden 0.85 g NaCN und 10 mL Wasser zugesetzt. Die organische Phase wurde mit 4 x 50 mL H20 gewaschen, über MgS0 getrocknet und die Lösungsmittel in Vakuum entfernt. Das reine Produkt erhielt man durch Umkristallisation aus Dioxan in einer Reinheit von 99.2 % (gemäß HPLC). Die Ausbeute betrug 12 g (75 % d. Th.). 1H-NMR (CDCI3, 500 MHz): 0.81 (t, J = 7.3 Hz, 6H), 1.17 (t, J = 7.0 Hz, 12H), 1.23- 1.35 (m, 28H), 3.94 (t, J = 6.3 Hz, 4H), 4.03 (t, J = 6.3 Hz, 8H), 4.21 (d, J = 5.9 Hz, 4H), 4.29 (d, J = 5.9 Hz, 4H), 6.91-7.01 (m, 14H), 7.04 (d, J = 9 Hz, 4H), 7.27 (d, J = 8 Hz, 4H), 7.49 (d, J = 8.7 Hz, 4H).
f) Synthese von Oxetan-substituiertem, bromierten N,N,N',N'-Tetraphenylbenzidin (Monomer M3)
Figure imgf000021_0002
45.72 g (43.7 mmol) Oxetan-substituiertes N,N,N',N'-Tetraphenylbenzidin wurden in 500 mL THF vorgelegt. Dazu wurde bei 0 °C unter Lichtausschluss eine Lösung aus 15.15 g (84.4 mmol) NBS in 300 mL THF getropft. Man ließ auf RT kommen und rührte 4 h weiter. Es wurden 500 mL Wasser zugesetzt, und die Mischung wurde mit CH2CI2 extrahiert. Die organische Phase wurde über MgS04 getrocknet und die Lösungsmittel in Vakuum entfernt. Das Produkt wurde mit Hexan heiß ausgerührt und abgesaugt. Nach wiederholter chromatographischer Aufreinigung (Silica, Hexan/Ethylacetat 4:1) erhielt man das Produkt in einer Ausbeute von 44 g (85 % d. Th.) als blassbraunes Öl, welches eine Reinheit von 99.2 % (gemäß HPLC) aufwies. 1H-NMR (DMSO-d6, 500 MHz): 0.81 (t, J = 7.3 Hz, 6H), 1.17 (t, J = 7.0 Hz, 12H), 1.23-1.35 (m, 28H), 3.94 (t, J = 6.3 Hz, 4H), 4.03 (t, J = 6.3 Hz, 8H), 4.21 (d, J = 5.9 Hz, 4H), 4.29 (d, J = 5.9 Hz, 4H), 6.91-7.02 (m, 12H), 7.04 (d, J = 9 Hz, 4H), 7.29 (d, J = 8 Hz, 4H), 7.51 (d, J = 8.7 Hz, 4H).
g) Polymersynthese: Synthese von Polymer P1
1.7056 g (2 mmol) Monomer M2, 0.9104 g (1.2 mmol) Monomer M1 , 0.9723 g (0.8 mmol) Monomer M3 und 2.03 g (4.4 mmol) Kaliumphosphat-Hydrat wurden in 12.5 mL Toluol, 12.5 mL Dioxan und 12 mL Wasser (alle Lösungsmittel sauerstofffrei) gelöst und bei 40 °C 30 Minuten mit einem Argonstrom entgast. Dann wurden 0.90 mg Pd(OAc)2 und 6.30 mg P(o-tol)3 als Katalysator zugegeben, und die Reaktionsmischung wurde 3 h unter Rückfluss erhitzt. Es wurden 20 mL Toluol und als Endcapper 12 mg (0.04 mmol) 3,4-Bispentoxybenzolboronsäure zugegeben, 1 h unter Rückfluss erhitzt, dann wurden 20 mg (0.06 mmol) 3,4-Bispentoxybenzolbromid zugegeben und 1 h unter Rückfluss erhitzt. Die Reaktionslösung wurde auf 65 °C abgekühlt und 4 h mit 10 mL 5 %iger wässriger Natrium-N,N,Diethyldithiocarbamat-Lösung ausgerührt. Die organische Phase wurde mit 3 x 80 mL Wasser gewaschen und durch Zugabe in das doppelte Volumen Methanol ausgefällt. Das Rohpolymer wurde in Chlorbenzol gelöst, über Celit filtriert und durch Zugabe des doppelten Volumens Methanol gefällt. Man erhielt 2.24 g (78 % d. Th.) des Polymers P1.
Beispiel 2: Synthese eines kationisch vernetzbaren Polymers P2 für die Verwendung als Pufferschicht a) Synthese von Bis-(4-bromphenyl)-(4-secbutylphenyl)-amin (Monomer M4)
Figure imgf000022_0001
Die Synthese von Monomer M4 wurde in Analogie zur Synthese in DE 19981010 durchgeführt.
b) Synthese von Bis-((4-boronsäurepinakolester)phenyl)- (4-secbutylphenyl)-amin (Monomer M5)
Figure imgf000022_0002
Die Synthese von Monomer 5 ist in der nicht offen gelegten Anmeldung DE 10337077.3 beschrieben.
c) Synthese von 2,7-Dibrom-(2,5-dimethylphenyl)-9-(3,4-di(3-ethyl(oxetan-3- ethyloxy)-hexyloxyphenyl))-fluoren (Monomer M6)
Figure imgf000023_0001
Die Synthese von Monomer M6 ist in C. D. Müller et al., Natύre 2003, 421, 829 beschrieben.
d) Polymersynthese: Synthese von Polymer P2
1.4695 g (3.2 mmol) Monomer M4, 2.2134 g (4 mmol) Monomer M5, 0.7463 g (0.8 mmol) Monomer M6 und 4.05 g (8.8 mmol) Kaliumphosphat-Hydrat wurden in 25 mL Toluol, 25 mL Dioxan und 25 mL Wasser (alle Lösungsmittel sauerstofffrei) gelöst und bei 40 °C 30 Minuten mit einem Argonstrom entgast. Dann wurden 1.80 mg Pd(OAc)2 und 14.61 mg P(o-tol)3 zugegeben, und die Reaktionsmischung wurde 10 h unter Rückfluss erhitzt. Dabei wurden nach 4 h, nach 5.5 h und nach 8.5 h jeweils die Ausgangsmengen an Pd(OAc)2 und P(o-tol)3 zugegeben. Nach 8 h Reaktionszeit wurden 2 mL Toluol zugegeben. Als Endcapper wurden 24 mg (0.08 mmol) 3,4- Bispentoxybenzolboronsäure zugegeben, 2 h unter Rückfluss erhitzt, dann wurden 40 mg (0.12 mmol) 3,4-Bispentoxybenzolbromid zugegeben und 1 h unter Rückfluss erhitzt. Die Reaktionslösung wurde auf 65 °C abgekühlt und 4 h mit 20 mL 5 %iger wässriger Lösung von Natrium-N,N-Diethyldithiocarbamat ausgerührt. Die Phasen wurden getrennt und der Vorgang wurde noch einmal mit 40 mL der Dithiocarbamat- Lösung wiederholt. Die Phasen wurden getrennt, die organische Phase mit 3 x 150 mL Wasser gewaschen und durch Zugabe in das doppelte Volumen Methanol ausgefällt. Das Rohpolymer wurde in Chlorbenzol gelöst, über Celit filtriert und durch Zugabe des doppelten Volumens Methanol gefällt. Man erhielt 1.84 g (64 % d. Th.) des Polymers P2, das in Chlorbenzol löslich, jedoch in Toluol, THF oder Chloroform unlöslich ist.
Beispiel 3: Synthese eines kationisch vernetzbaren Moleküls V1 für die Verwendung als Pufferschicht
Figure imgf000023_0002
Die Synthese des kationisch vernetzbaren Moleküls V1 ist in M. S. Bayer et al., Macromol. Rapid Commun. 1999, 20, 224-228 beschrieben.
Die Deviceergebnisse, die bei Verwendung des Polymers P1 und P2 bzw. des Moleküls V1 als Pufferschicht erhalten wurden, sind in Beispiel 6 - 8 zusammengefasst.
Beispiel 4: Herstellung von LEDs mit einer zusätzlichen Pufferschicht
Die Herstellung der LEDs erfolgte nach einem allgemeinen Verfahren, welches im Einzelfall auf die jeweiligen Gegebenheiten (z. B. Lösungsviskosität und optimale Schichtdicke der funktioneilen Schichten im Device) angepasst wurde. Die nachfolgend beschriebenen LEDs waren jeweils Dreischichtsysteme (drei organische Schichten), d. h.
Substrat//ITO//PEDOT//Pufferschicht//Polymer//Kathode. PEDOT ist ein Poiythiophen-Derivat (Baytron P4083 von H. C. Stark, Goslar). Als Kathode wurde in allen Fällen Ba von der Firma Aldrich und Ag von der Firma Aldrich verwendet. Wie PLEDs allgemein dargestellt werden können, ist in WO 04/037887 und der darin zitierten Literatur ausführlich beschrieben.
Davon abweichend wurde hier auf die PEDOT-Schicht ein kationisch vernetzbarer Halbleiter als Pufferschicht aufgebracht. Als Materialien für die Pufferschicht wurden hier die vernetzbaren Polymere P1 und P2 bzw. die vernetzbare niedermolekulare Verbindung V1 verwendet. Von dem vernetzbaren Material wurde eine Lösung (mit einer Konzentration von 4 - 25 mg/ml in beispielsweise Toluol, Chlorbenzol, Xylol, etc.) angesetzt und durch Rühren bei Raumtemperatur gelöst. Je nach Material kann es auch vorteilhaft sein, für einige Zeit bei 50 - 70 °C zu rühren. Nach vollständigem Lösen der Verbindung wurde sie durch einen 5 μm Filter filtriert. Dann wurde die Pufferschicht bei variablen Geschwindigkeiten (400 - 6000 rpm) mit einem Spincoater in einer inerten Atmosphäre aufgeschleudert. Die Schichtdicken konnten dadurch im Bereich von ca. 20 bis 300 nm variiert werden. Anschließend erfolgte die Vernetzung durch Erhitzen des Devices auf 180 °C für 30 Minuten auf einer Heizplatte in einer inerten Atmosphäre. Auf die Pufferschicht werden nun der organische Halbleiter und die Kathode aufgebracht, wie in WO 04/037887 und der darin zitierten Literatur beschrieben.
Beispiel 5: Herstellung von strukturierten LEDs mit einer zusätzlichen Pufferschicht
Die Herstellung der strukturierten LEDs erfolgte analog zu Beispiel 4 bis einschließlich zum Schritt der Vernetzung der Pufferschicht. Abweichend dazu wurden als organische Halbleiter kationisch vernetzbare Halbleiter verwendet. Dies waren rot, grün und blau emittierende konjugierte Polymere auf Basis von Poly- Spirobifluoren, die mit Oxetangruppen funktionalisiert wurden. Diese Materialien und deren Synthese sind bereits in der Literatur beschrieben (Nature 2003, 421, 829). Von den kationisch vernetzbaren Halbleitern wurde eine Lösung (in der Regel mit einer Konzentration von 4 - 25 mg/ml in beispielsweise Toluol, Chlorbenzol, Xylo Cyclohexanon (4:1)) angesetzt und durch Rühren bei Raumtemperatur gelöst. Je nach Verbindung kann es auch vorteilhaft sein, für einige Zeit bei 50 - 70 °C zu rühren. Dabei wurden den Lösungen des kationisch vernetzbaren Halbleiters noch ca. 0.5 Gew.% (bezogen auf das Polymer) der Photosäure {4-[(2-hydroxytetradecyl)- oxyl]-phenyl}-phenyliodonium hexafluoroantimonat zugesetzt. Auf die vernetzte Pufferschicht wurde nun durch Spincoating unter vergleichbaren Bedingungen wie für die Pufferschicht die Lösung des ersten kationisch vernetzbaren Halbleiters und der Photosäure aufgebracht. Nach Trocknen des Films wurde durch Bestrahlung mit einer UV-Lampe (10 W, 302 nm, 5 Min.) durch eine Maske strukturiert vernetzt. Der Film wurde dann in einer inerten Atmosphäre 3 Minuten bei 130 °C getempert, anschließend mit einer 10"4-molaren LiAIH4-Lösung in THF behandelt und mit THF nachgespült. Dadurch wurden die nicht-vernetzten Stellen im Film abgewaschen. Dieser Vorgang wird mit den weiteren Lösungen der vernetzbaren organischen Halbleiter wiederholt, und auf diese Weise wurden die drei Grundfarben strukturiert nebeneinander aufgebracht. Das Aufdampfen der Elektroden und die Kontaktierung erfolgten dann, wie oben beschrieben.
Beispiel ,6: Lebensdauermessung einer LED mit einer zusätzlichen Pufferschicht P1
Die LED wurde hergestellt, wie in Beispiel 4 beschrieben. Dabei wurden 20 nm PEDOT verwendet. Als Pufferschicht wurde eine 20 nm dicke Schicht von Polymer P1 aufgebracht, die wie in Beispiel 4 beschrieben thermisch vernetzt wurde. Als halbleitendes Polymer wurde ein blau emittierendes Polymer verwendet (Zusammensetzung: 50 mol% Monomer M7, 30 mol% Monomer M8, 10 mol% Monomer M1 , 10 mol% Monomer M9). Die Monomere sind unten abgebildet, ihre Synthese ist in WO 03/020790 beschrieben. Das Polymer zeigte in der Elektrolumineszenz eine Lebensdauer (= Helligkeitsabfall auf die Hälfte der Anfangshelligkeit) von ca. 1600 h bei Raumtemperatur und einer Anfangshelligkeit von 300 cd/m2. In einer Vergleichs-LED ohne die Pufferschicht zeigte das Polymer unter ansonsten gleichen Bedingungen eine Lebensdauer von ca. 500 h. Es wurde außerdem eine LED hergestellt, deren Pufferschicht unter Zusatz von 0.5 Gew.% {4- [(2-hydroxytetradecyl)-oxyl]-phenyl}-phenyliodonium hexafluoroantimonat photochemisch durch UV-Bestrahlung (3 s, 302 nm) und anschließendes Erhitzen auf 90 °C für 30 Sekunden vernetzt wurde. Die Pufferschicht wurde anschließend mit THF gespült und 5 Minuten auf 180 °C erhitzt. Diese LED hatte unter ansonsten gleichen Bedingungen eine Lebensdauer von ca. 630 h.
Figure imgf000026_0001
Beispiel 7: Lebensdauermessung einer LED mit einer zusätzlichen Pufferschicht P2
Die Messung wurde wiederholt mit Polymer P2 als Pufferschicht, wie in Beispiel 6 beschrieben unter ansonsten identischen Bedingungen. Das Polymer zeigte eine Lebensdauer von ca. 1500 h ohne Zusatz von Photosäure zur Pufferschicht und von ca. 600 h mit Zusatz von Photosäure.
Beispiel 8: Lebensdauermessung einer LED mit einer zusätzlichen Pufferschicht V1
Die Messung wurde wiederholt mit Verbindung V1 als Pufferschicht, wie in Beispiel 6 beschrieben unter ansonsten identischen Bedingungen. Das Polymer zeigte eine Lebensdauer von ca. 1350 h ohne Zusatz von Photosäure zur Pufferschicht und von ca. 550 h mit Zusatz von Photosäure.

Claims

Patentansprüche:
1. Elektronische Vorrichtung, enthaltend mindestens eine Schicht eines leitfähigen, dotierten Polymers und mindestens eine Schicht eines organischen Halbleiters, dadurch gekennzeichnet, dass zwischen diese Schichten mindestens eine leitende oder halbleitende organische Pufferschicht eingebracht ist, welche kationisch polymerisierbar ist und der weniger als 0.5 % einer Photosäure zugesetzt ist.
2. Elektronische Vorrichtung gemäß Anspruch 1 , dadurch gekennzeichnet, dass der Pufferschicht keine Photosäure zugesetzt ist.
3. Elektronische Vorrichtung gemäß Anspruch 1 und / oder 2, dadurch gekennzeichnet, dass die Vernetzung der organischen Pufferschicht thermisch initiiert wird.
4. Elektronische Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich um organische oder polymere Leuchtdioden (OLED, PLED), organische Solarzellen (O-SC), organische Feld- Effekt-Transistoren (O-FET), organische Schaltelemente (O-IC), organische Feld-Quench Devices (O-FQD), organische optische Verstärker oder organische Laserdioden (O-Laser) handelt.
5. Elektronische Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie folgende Elemente enthält: Substrat, Elektrode, Zwischenschicht aus einem leitfähigen, dotierten Polymer, leitende oder halbleitende organische, kationisch vernetzbare Pufferschicht, organischer Halbleiterschicht und Gegenelektrode.
6. Elektronische Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zwischen eine metallische Kathode und den organischen Halbleiter eine Zwischenschicht eines Materials mit einer hohen Dielektrizitätskonstanten eingebracht ist.
7. Elektronische Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Anode Materialien mit einem Potenzial größer 4.5 eV vs. Vakuum verwendet werden.
8. Elektronische Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das leitfähige dotierte Polymer eine Leitfähigkeit von > 10"8 S/cm und ein Potenzial von 4 - 6 eV vs. Vakuum aufweist.
9. Elektronische Vorrichtung gemäß Anspruch 8, dadurch gekennzeichnet, dass als leitfähiges Polymer Derivate von Polythiophen oder Polyanilin verwendet werden und die Dotierung durch polymergebundene Brönsted-Säuren erfolgt.
10. Elektronische Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass als organische Halbleiter niedermolekulare, oligomere, dendritische oder polymere halbleitende Materialien verwendet werden.
11. Elektronische Vorrichtung gemäß Anspruch 10, dadurch gekennzeichnet, dass der organische Halbleiter ein konjugiertes Polymer ist.
12. Elektronische Vorrichtung gemäß Anspruch 10 und/oder 11 , dadurch gekennzeichnet, dass der organische Halbleiter eine kationisch vemetzbare Verbindung ist.
13. Elektronische Vorrichtung gemäß Anspruch 12, dadurch gekennzeichnet, dass die kationische Vernetzung über ringöffnende kationische Polymerisation eines Heterocyclus verläuft.
14. Elektronische Vorrichtung gemäß Anspruch 13, dadurch gekennzeichnet, dass die kationische Vernetzung über Oxetan-Gruppen erfolgt, die unter Zusatz einer Photosäure durch Bestrahlung vernetzt werden können.
15. Elektronische Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die vernetzbare Pufferschicht vor der Vernetzung niedermolekular, oligomer, dendritisch oder polymer ist.
16. Elektronische Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Schichtdicke der Pufferschicht im Bereich von 5 - 300 nm liegt.
17. Elektronische Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das Potenzial der Pufferschicht zwischen dem Potenzial des leitfähigen, dotierten Polymers und dem des organischen Halbleiters liegt.
18. Elektronische Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass für die Pufferschicht kationisch vernetzbare, lochleitende Materialien verwendet werden.
19. Elektronische Vorrichtung gemäß Anspruch 18, dadurch gekennzeichnet, dass für die Pufferschicht kationisch vernetzbare Materialien auf Triarylamin-Basis, auf Thiophen-Basis oder auf Triarylphosphin-Basis verwendet werden.
20. Elektronische Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass als Materialien für die Pufferschicht Materialien verwendet werden, bei denen mindestens ein H-Atom durch eine durch kationische ringöffnende Polymerisation reagierende heterocyclische Gruppe ersetzt ist.
21. Elektronische Vorrichtung gemäß Anspruch 20, dadurch gekennzeichnet, dass es sich bei dem kationisch polymerisierbaren Heterocyclus um eine Gruppe der Formel (I), (II) oder (III) handelt,
Figure imgf000029_0001
Formel (I) Formel (II) Formel (III) wobei gilt R1 ist bei jedem Auftreten gleich oder verschieden Wasserstoff, eine geradkettige, verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxy- Gruppe mit 1 bis 20 C-Atomen, ein aromatisches oder heteroaromatisches Ringsystem mit 4 bis 24 aromatischen Ringatomen oder eine Alkenylgruppe mit 2 bis 10 C-Atomen, bei denen ein oder mehrere Wasserstoffatome durch Halogen, wie Cl und F, oder CN ersetzt sein können und ein oder mehrere nicht benachbarte C-Atome durch -O-, -S-, -CO-, -COO- oder -O-CO- ersetzt sein können; dabei können auch mehrere Reste R1 miteinander bzw. mit R2, R3 und/oder R4 ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden; R2 ist bei jedem Auftreten gleich oder verschieden Wasserstoff, eine geradkettige, verzweigte oder cyclische Alkylgruppe mit 1 bis 20 C-Atomen, ein aromatisches oder heteroaromatisches Ringsystem mit 4 bis 24 aromatischen Ringatomen oder eine Alkenylgruppe mit 2 bis 10 C-Atomen, bei denen ein oder mehrere Wasserstoffatome durch Halogen, wie Cl und F, oder CN ersetzt sein können und ein oder mehrere nicht benachbarte C-Atome durch -O-, -S-, -CO-, -COO- oder -O-CO- ersetzt sein können; dabei können auch mehrere Reste R2 miteinander bzw. mit R1, R3 und/oder R4 ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden; X ist bei jedem Auftreten gleich oder verschieden -O-, -S-, -CO-, -COO-, -O-CO- oder eine bivalente Gruppe -(CR3R4)n-; Z ist bei jedem Auftreten gleich oder verschieden eine bivalente Gruppe -(CR3R4)n-; R3, R4 ist bei jedem Auftreten gleich oder verschieden Wasserstoff, eine geradkettige, verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxy- Gruppe mit 1 bis 20 C-Atomen, ein aromatisches oder heteroaromatisches Ringsystem mit 4 bis 24 aromatischen Ringatomen oder eine Alkenyl-Gruppe mit 2 bis 10 C-Atomen, bei denen ein oder mehrere Wasserstoffatome auch durch Halogen, wie Cl oder F, oder Cn ersetzt sein können; dabei können auch zwei oder mehr Reste R3 bzw. R4 miteinander bzw. auch mit R1 oder R2 ein Ringsystem bilden; n ist bei jedem Auftreten gleich oder verschieden eine ganze Zahl zwischen 0 und 20; mit der Maßgabe, dass die Anzahl dieser Gruppen gemäß Formel (I) bzw. Formel (II) bzw. Formel (III) durch die maximal verfügbaren, d. h. substituierbaren H-Atome begrenzt ist.
22. Elektronische Vorrichtung gemäß Anspruch 21 , dadurch gekennzeichnet, dass die Vernetzung dieser Einheiten durch thermische Behandlung der Vorrichtung durchgeführt wird.
23. Elektronische Vorrichtung gemäß Anspruch 22, dadurch gekennzeichnet, dass die Vernetzung bei einer Temperatur von 80 bis 200 °C und einer Dauer von 0.1 bis 120 Minuten in einer inerten Atmosphäre stattfindet.
PCT/EP2004/009902 2003-09-04 2004-09-04 Elektronische vorrichtung enthaltend einen organischen halbleiter und dazwischen eine pufferschicht bestehend aus einem polymer welches kationisch polymerisierbar ist und keine photosäure enthält WO2005024970A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE200450012028 DE502004012028D1 (de) 2003-09-04 2004-09-04 Elektronische vorrichtung enthaltend einen organischen leiter und einen organischen halbleiter und dazwischen eine pufferschicht bestehend aus einem polymer welches kationisch polymerisierbar ist
AT04764853T ATE492913T1 (de) 2003-09-04 2004-09-04 Elektronische vorrichtung enthaltend einen organischen leiter und einen organischen halbleiter und dazwischen eine pufferschicht bestehend aus einem polymer welches kationisch polymerisierbar ist
JP2006525128A JP5133562B2 (ja) 2003-09-04 2004-09-04 有機半導体を含む電子デバイス
EP04764853.0A EP1671379B2 (de) 2003-09-04 2004-09-04 Elektronische vorrichtung enthaltend einen organischen leiter und einen organischen halbleiter und dazwischen eine pufferschicht bestehend aus einem polymer welches kationisch polymerisierbar ist
US10/570,640 US20070034862A1 (en) 2003-09-04 2004-09-04 Electronic device comprising an organic semiconductor, an organic semiconductor, and an intermediate buffer layer made of a polymer that is cationically polymerizable and contains no photoacid
KR1020067004561A KR101071034B1 (ko) 2003-09-04 2006-03-03 유기 반도체를 포함하는 전자 디바이스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003140711 DE10340711A1 (de) 2003-09-04 2003-09-04 Elektronische Vorrichtung enthaltend organische Halbleiter
DE10340711.1 2003-09-04

Publications (1)

Publication Number Publication Date
WO2005024970A1 true WO2005024970A1 (de) 2005-03-17

Family

ID=34258390

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2004/009902 WO2005024970A1 (de) 2003-09-04 2004-09-04 Elektronische vorrichtung enthaltend einen organischen halbleiter und dazwischen eine pufferschicht bestehend aus einem polymer welches kationisch polymerisierbar ist und keine photosäure enthält
PCT/EP2004/009903 WO2005024971A1 (de) 2003-09-04 2004-09-04 Elektronische vorrichtungen enthaltend einen organischen leiter und halbleiter und dazwischen eine pufferschicht aus einem vernetzten polymer

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/009903 WO2005024971A1 (de) 2003-09-04 2004-09-04 Elektronische vorrichtungen enthaltend einen organischen leiter und halbleiter und dazwischen eine pufferschicht aus einem vernetzten polymer

Country Status (8)

Country Link
US (2) US7901766B2 (de)
EP (2) EP1671379B2 (de)
JP (3) JP5355857B2 (de)
KR (2) KR101042863B1 (de)
CN (2) CN1849717A (de)
AT (2) ATE418161T1 (de)
DE (3) DE10340711A1 (de)
WO (2) WO2005024970A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183404A (ja) * 2003-12-23 2005-07-07 Samsung Sdi Co Ltd 有機電界発光素子用の中間層形成物質及びそれを用いた有機電界発光素子
JP2009521591A (ja) * 2005-12-27 2009-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 新規なコポリマーを含む組成物およびそのような組成物を使用して製造された電子デバイス
JP2009527110A (ja) * 2006-02-13 2009-07-23 メルク パテント ゲーエムベーハー 有機電子素子、その製造方法及びその使用
US9929346B2 (en) 2009-06-01 2018-03-27 Hitachi Chemical Company, Ltd. Organic electronic material, ink composition containing same, and organic thin film, organic electronic element, organic electroluminescent element, lighting device, and display device formed therewith

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340711A1 (de) * 2003-09-04 2005-04-07 Covion Organic Semiconductors Gmbh Elektronische Vorrichtung enthaltend organische Halbleiter
DE102004021567A1 (de) 2004-05-03 2005-12-08 Covion Organic Semiconductors Gmbh Elektronische Vorrichtungen enthaltend organische Halbleiter
GB2425654B (en) * 2005-04-29 2010-03-17 Seiko Epson Corp A method of fabricating a heterojunction of organic semiconducting polymers
KR100715548B1 (ko) * 2005-07-29 2007-05-07 광 석 서 부분 치환된 고분자 도판트를 사용하여 합성된 전도성고분자
US7576356B2 (en) * 2005-08-08 2009-08-18 Osram Opto Semiconductors Gmbh Solution processed crosslinkable hole injection and hole transport polymers for OLEDs
EP2412699A1 (de) * 2005-12-28 2012-02-01 E.I. Du Pont De Nemours And Company Zusammensetzungen mit neuen Verbindungen und elektronische Vorrichtungen aus den Zusammensetzungen
US8138075B1 (en) 2006-02-06 2012-03-20 Eberlein Dietmar C Systems and methods for the manufacture of flat panel devices
DE112007000699T5 (de) 2006-05-12 2009-06-04 Merck Patent Gmbh Auf Indenofluorenpolymeren basierende organische Halbleitermaterialien
JP4175397B2 (ja) * 2006-06-28 2008-11-05 セイコーエプソン株式会社 有機エレクトロルミネセンス装置の製造方法
US8632892B2 (en) 2006-07-19 2014-01-21 Hitachi Chemical Co., Ltd. Organic electronic material, organic electronic device, and organic electroluminescent device
WO2008099926A1 (ja) * 2007-02-15 2008-08-21 Mitsubishi Chemical Corporation 有機電界発光素子及び有機デバイスの製造方法
JP5196928B2 (ja) * 2007-09-18 2013-05-15 キヤノン株式会社 有機発光素子及び表示装置
JP2011505439A (ja) * 2007-11-21 2011-02-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 共役コポリマー
US20090236979A1 (en) * 2008-03-24 2009-09-24 Air Products And Chemicals, Inc. Organic Electroluminescent Device and the Method of Making
JP5540600B2 (ja) * 2008-08-13 2014-07-02 三菱化学株式会社 電子デバイス、有機電界発光素子、有機el表示装置および有機el照明
US8643000B2 (en) * 2008-11-18 2014-02-04 E I Du Pont De Nemours And Company Organic electronic device with low-reflectance electrode
JP5359255B2 (ja) * 2008-12-19 2013-12-04 コニカミノルタ株式会社 有機光電変換素子
JP5141600B2 (ja) * 2009-03-09 2013-02-13 三菱化学株式会社 有機電界発光素子用組成物の製造方法
CN101624589B (zh) * 2009-04-10 2011-08-31 重庆大学 一种新型米根霉固定化发酵载体单元及使用方法
WO2011091086A1 (en) 2010-01-19 2011-07-28 Sirigen Inc. Novel reagents for directed biomarker signal amplification
US8859171B2 (en) * 2010-03-03 2014-10-14 Xerox Corporation Charge transport particles
KR101181228B1 (ko) * 2010-10-11 2012-09-10 포항공과대학교 산학협력단 유기 태양 전지 및 이의 제조 방법
KR101756657B1 (ko) * 2010-11-03 2017-07-12 엘지디스플레이 주식회사 백색 유기 발광 소자 및 이를 이용한 표시 장치
JP5944120B2 (ja) * 2011-07-21 2016-07-05 コニカミノルタ株式会社 有機光電変換素子とその製造方法、およびそれを用いた有機太陽電池
KR20150052024A (ko) * 2012-09-04 2015-05-13 미쯔비시 가가꾸 가부시끼가이샤 유기 전계 발광 소자 및 그의 제조 방법
US9502657B2 (en) 2012-09-07 2016-11-22 Pioneer Corporation Organic electroluminescence device and manufacturing method thereof
JP2015534219A (ja) 2012-09-18 2015-11-26 ネダーランゼ・オルガニサティ・フォーア・トゥーゲパスト−ナトゥールヴェテンシャッペリーク・オンデルゾエク・ティーエヌオー 電気光学デバイス積層体
WO2014048542A1 (de) * 2012-09-27 2014-04-03 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
KR102019465B1 (ko) * 2012-12-13 2019-09-06 주식회사 엘지화학 적층된 층을 제조하기 위한 방법 및 재료, 및 이를 사용하여 제조된 소자
WO2015146957A1 (ja) * 2014-03-27 2015-10-01 日産化学工業株式会社 電荷輸送性ワニス
CN106133938B (zh) * 2014-04-09 2018-06-19 住友化学株式会社 发光元件和用于该发光元件的组合物
CN107406588B (zh) * 2015-02-25 2020-06-23 三菱化学株式会社 聚合物、有机电致发光元件用组合物、有机电致发光元件、有机el显示装置和有机el照明
CN108701765A (zh) * 2015-10-16 2018-10-23 陶氏环球技术有限责任公司 用于制备有机电荷传输膜的方法
US9644112B1 (en) * 2016-04-20 2017-05-09 Eastman Kodak Company Articles having electrically-conductive layer or pattern
EP3552252B1 (de) 2016-12-06 2023-05-17 Merck Patent GmbH Herstellungsverfahren für eine elektronische vorrichtung
JP7056644B2 (ja) * 2017-03-24 2022-04-19 日産化学株式会社 フッ素原子含有重合体及びその利用
JP2018203889A (ja) * 2017-06-06 2018-12-27 日立化成株式会社 硬化性重合体、重合液、導電性膜及び有機発光素子
EP3651223A4 (de) * 2017-07-04 2021-03-17 Hitachi Chemical Company, Ltd. Organisches elektronikmaterial und organisches elektronikelement
KR102385225B1 (ko) 2017-07-12 2022-04-11 삼성디스플레이 주식회사 유기막 형성용 조성물, 이를 이용한 표시 장치 및 표시 장치의 제조 방법
CN107799571B (zh) * 2017-10-12 2020-10-09 武汉华星光电半导体显示技术有限公司 有机发光二极管器件及显示装置
CN112352331A (zh) * 2018-07-11 2021-02-09 默克专利有限公司 含高度支化聚合物的制剂、高度支化聚合物和含此高度支化聚合物的电光器件
CN111048663A (zh) 2018-10-12 2020-04-21 康宁股份有限公司 用于有机薄膜晶体管的可uv图案化的聚合物掺混物
CN111138810B (zh) 2018-11-05 2024-05-17 康宁股份有限公司 用于有机薄膜晶体管的可uv图案化的聚合物掺混物
KR20200069400A (ko) 2018-12-05 2020-06-17 삼성디스플레이 주식회사 축합환 화합물, 이를 포함한 조성물 및 이로부터 형성된 박막을 포함하는 유기 발광 소자
KR20220036393A (ko) 2020-09-14 2022-03-23 삼성디스플레이 주식회사 표시 장치
KR20220060630A (ko) 2020-11-04 2022-05-12 삼성디스플레이 주식회사 기판의 도전성 본딩 구조 및 이를 포함하는 표시 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637899A1 (de) * 1993-08-02 1995-02-08 BASF Aktiengesellschaft Elektrolumineszierende Anordnung
WO2002010129A2 (de) * 2000-08-01 2002-02-07 Covion Organic Semiconductors Gmbh Strukturierbare materialien, verfahren zu deren herstellung und deren verwendung
WO2002021611A1 (de) * 2000-09-11 2002-03-14 Siemens Aktiengesellschaft Photostrukturierbare neue organische halbleitermaterialien

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US5331183A (en) 1992-08-17 1994-07-19 The Regents Of The University Of California Conjugated polymer - acceptor heterojunctions; diodes, photodiodes, and photovoltaic cells
JP3082479B2 (ja) * 1992-10-23 2000-08-28 ジェイエスアール株式会社 ネガ型感放射線性樹脂組成物
JP2848207B2 (ja) * 1993-09-17 1999-01-20 凸版印刷株式会社 有機薄膜el素子
EP0666298A3 (de) * 1994-02-08 1995-11-15 Tdk Corp Organisches elektrolumineszentes Element und darin gebrauchte Verbindung.
EP0676461B1 (de) 1994-04-07 2002-08-14 Covion Organic Semiconductors GmbH Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
KR100350817B1 (ko) 1994-05-16 2003-01-24 코닌클리케 필립스 일렉트로닉스 엔.브이. 유기반도체물질로형성된반도체장치
JP3246189B2 (ja) 1994-06-28 2002-01-15 株式会社日立製作所 半導体表示装置
TW293172B (de) 1994-12-09 1996-12-11 At & T Corp
DE19500912A1 (de) * 1995-01-13 1996-07-18 Basf Ag Elektrolumineszierende Anordnung
KR100431015B1 (ko) * 1995-07-28 2004-07-30 다우 글로벌 테크놀로지스 인크. 2,7-아릴-9-치환된플루오렌및9-치환된플루오렌올리고머및중합체
JP3865406B2 (ja) * 1995-07-28 2007-01-10 住友化学株式会社 2,7−アリール−9−置換フルオレン及び9−置換フルオレンオリゴマー及びポリマー
US5929194A (en) 1996-02-23 1999-07-27 The Dow Chemical Company Crosslinkable or chain extendable polyarylpolyamines and films thereof
JP3643433B2 (ja) * 1996-03-25 2005-04-27 ケミプロ化成株式会社 トリフェニルアミン含有ポリエーテルケトン、その製法およびそれを用いた有機el素子
WO1998003566A1 (en) 1996-07-19 1998-01-29 The Regents Of The University Of California Conjugated polymers as materials for solid state lasers
JP3899566B2 (ja) 1996-11-25 2007-03-28 セイコーエプソン株式会社 有機el表示装置の製造方法
DE19652261A1 (de) 1996-12-16 1998-06-18 Hoechst Ag Arylsubstituierte Poly(p-arylenvinylene), Verfahren zur Herstellung und deren Verwendung in Elektroluminszenzbauelementen
DE19711713A1 (de) 1997-03-20 1998-10-01 Hoechst Ag Photovoltaische Zelle
US6309763B1 (en) * 1997-05-21 2001-10-30 The Dow Chemical Company Fluorene-containing polymers and electroluminescent devices therefrom
JP4509228B2 (ja) 1997-08-22 2010-07-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 有機材料から成る電界効果トランジスタ及びその製造方法
JP2000077185A (ja) 1998-08-28 2000-03-14 Asahi Chem Ind Co Ltd 有機エレクトロルミネッセンス素子
US6107452A (en) 1998-10-09 2000-08-22 International Business Machines Corporation Thermally and/or photochemically crosslinked electroactive polymers in the manufacture of opto-electronic devices
KR100400291B1 (ko) * 1998-11-27 2004-02-05 주식회사 하이닉스반도체 신규의포토레지스트용단량체,그의공중합체및이를이용한포토레지스트조성물
JP4743968B2 (ja) 1999-01-15 2011-08-10 住友化学株式会社 半導体ポリマー電界効果トランジスタ
JP2001076874A (ja) * 1999-09-07 2001-03-23 Tdk Corp 有機el表示装置
KR20020095210A (ko) * 2000-04-11 2002-12-20 듀폰 디스플레이즈, 인크. 가용성 폴리(플루오렌-옥사디아졸) 공액 중합체
KR20080110928A (ko) 2001-03-10 2008-12-19 메르크 파텐트 게엠베하 유기 반도체 용액 및 분산액
JP2003007471A (ja) * 2001-04-13 2003-01-10 Semiconductor Energy Lab Co Ltd 有機発光素子および前記素子を用いた発光装置
KR100888424B1 (ko) * 2001-05-16 2009-03-11 더 트러스티즈 오브 프린스턴 유니버시티 고효율 다칼라 전기 유기 발광 장치
JP2003007475A (ja) * 2001-06-20 2003-01-10 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2003029400A (ja) * 2001-07-19 2003-01-29 Fuji Photo Film Co Ltd 画像形成材料
DE10143353A1 (de) 2001-09-04 2003-03-20 Covion Organic Semiconductors Konjugierte Polymere enthaltend Spirobifluoren-Einheiten und deren Verwendung
JP2003103696A (ja) * 2001-09-27 2003-04-09 Hitachi Chem Co Ltd 凹凸を形成するための版、その製造方法、それを用いた電磁波シールド材料、その製造方法、並びにその電磁波シールド材料を用いた電磁波遮蔽構成体及び電磁波シールドディスプレイ
EP1308781A3 (de) 2001-10-05 2003-09-03 Shipley Co. L.L.C. Cyclische sulfonium und sulfoxonium Fotosäure erzeugende Verbindungen und diese Verbindungen enthaltende Fotoresiste
JP2003142272A (ja) * 2001-11-01 2003-05-16 Nichia Chem Ind Ltd 高分子正孔輸送材およびそれを用いた有機電界発光素子
JP4197117B2 (ja) * 2001-11-22 2008-12-17 シャープ株式会社 キャリア輸送性を有する高分子材料を用いた有機薄膜素子、有機薄膜素子の製造方法、および配線
JP2003163086A (ja) * 2001-11-27 2003-06-06 Nippon Hoso Kyokai <Nhk> 有機el素子および有機elディスプレイ
US6743757B2 (en) * 2001-12-06 2004-06-01 Infineum International Ltd. Dispersants and lubricating oil compositions containing same
DE10159946A1 (de) 2001-12-06 2003-06-18 Covion Organic Semiconductors Prozess zur Herstellung von Aryl-Aryl gekoppelten Verbindungen
TW536924B (en) 2002-02-22 2003-06-11 E Ray Optoelectronics Technolo Efficient organic electroluminescent device with new red fluorescent dopants
JP3946671B2 (ja) 2002-07-23 2007-07-18 三星エスディアイ株式会社 光子発光抑制素子基盤の画像表示装置及びこれを利用した画像表示方法
US20040028804A1 (en) * 2002-08-07 2004-02-12 Anderson Daniel G. Production of polymeric microarrays
WO2004023573A2 (en) 2002-09-03 2004-03-18 Cambridge Display Technology Limited Optical device
DE10249723A1 (de) 2002-10-25 2004-05-06 Covion Organic Semiconductors Gmbh Arylamin-Einheiten enthaltende konjugierte Polymere, deren Darstellung und Verwendung
GB0226010D0 (en) * 2002-11-08 2002-12-18 Cambridge Display Tech Ltd Polymers for use in organic electroluminescent devices
US6982179B2 (en) * 2002-11-15 2006-01-03 University Display Corporation Structure and method of fabricating organic devices
ATE401672T1 (de) * 2003-05-12 2008-08-15 Cambridge Entpr Ltd Herstellung einer polymeren vorrichtung
US20050017629A1 (en) * 2003-07-22 2005-01-27 Altair Center, Llc. Light emitting devices based on hyperbranched polymers with lanthanide ions
DE10340711A1 (de) * 2003-09-04 2005-04-07 Covion Organic Semiconductors Gmbh Elektronische Vorrichtung enthaltend organische Halbleiter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637899A1 (de) * 1993-08-02 1995-02-08 BASF Aktiengesellschaft Elektrolumineszierende Anordnung
WO2002010129A2 (de) * 2000-08-01 2002-02-07 Covion Organic Semiconductors Gmbh Strukturierbare materialien, verfahren zu deren herstellung und deren verwendung
WO2002021611A1 (de) * 2000-09-11 2002-03-14 Siemens Aktiengesellschaft Photostrukturierbare neue organische halbleitermaterialien

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRAIG T: "Crosslinkable hole-transporting polymers by palladium catalyzed C-N-coupling reaction", MACROMOLECULAR: RAPID COMMUNICATIONS, WILEY VCH, WEINHEIM, DE, vol. 21, no. 9, June 2000 (2000-06-01), pages 583 - 589, XP002193425, ISSN: 1022-1336 *
CHANG S-C ET AL: "MULTICOLOR ORGANIC LIGHT-EMITTING DIODES PROCESSED BY HYBRID INKJETPRINTING", ADVANCED MATERIALS, VCH VERLAGSGESELLSCHAFT, WEINHEIM, DE, vol. 11, no. 9, 5 July 1999 (1999-07-05), pages 734 - 737, XP000851832, ISSN: 0935-9648 *
J.V. CRIVELLO, J.H.W. LAM: "Complex Triarylsulfonium Salt Photoinitiators. II. The Preparation of Several New Complex Triarylsulfonium Salts and the Influence of Their Structure in Photoinitiated Cationic Polymerization", JOURNAL OF POLYMER SCIENCE, POLYMER CHEMISTRY EDITION, vol. 18, 1980, pages 2697 - 2714, XP002305902 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183404A (ja) * 2003-12-23 2005-07-07 Samsung Sdi Co Ltd 有機電界発光素子用の中間層形成物質及びそれを用いた有機電界発光素子
JP2009521591A (ja) * 2005-12-27 2009-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 新規なコポリマーを含む組成物およびそのような組成物を使用して製造された電子デバイス
US8440324B2 (en) 2005-12-27 2013-05-14 E I Du Pont De Nemours And Company Compositions comprising novel copolymers and electronic devices made with such compositions
KR101295484B1 (ko) 2005-12-27 2013-08-09 이 아이 듀폰 디 네모아 앤드 캄파니 신규한 공중합체를 포함하는 조성물 및 상기 조성물로제조된 전자 장치
JP2009527110A (ja) * 2006-02-13 2009-07-23 メルク パテント ゲーエムベーハー 有機電子素子、その製造方法及びその使用
US20110065222A1 (en) * 2006-02-13 2011-03-17 Merck Patent Gmbh Electronic component, method for its production and its use
KR101379991B1 (ko) 2006-02-13 2014-04-11 메르크 파텐트 게엠베하 전자 부품, 그의 제조방법, 및 그의 용도
US9929346B2 (en) 2009-06-01 2018-03-27 Hitachi Chemical Company, Ltd. Organic electronic material, ink composition containing same, and organic thin film, organic electronic element, organic electroluminescent element, lighting device, and display device formed therewith
US10840451B2 (en) 2009-06-01 2020-11-17 Hitachi Chemical Company, Ltd. Organic electronic material, ink composition containing same, and organic thin film, organic electronic element, organic eletroluminescent element, lighting device, and display device formed therewith
US11737345B2 (en) 2009-06-01 2023-08-22 Resonac Corporation Organic electronic material, ink composition containing same, and organic thin film, organic electronic element, organic electroluminescent element, lighting device, and display device formed therewith

Also Published As

Publication number Publication date
ATE492913T1 (de) 2011-01-15
JP2007504657A (ja) 2007-03-01
EP1671379B2 (de) 2014-10-01
KR20070036014A (ko) 2007-04-02
EP1671379B8 (de) 2011-03-23
US7901766B2 (en) 2011-03-08
DE10340711A1 (de) 2005-04-07
EP1671379B1 (de) 2010-12-22
EP1661191A1 (de) 2006-05-31
KR101042863B1 (ko) 2011-06-20
ATE418161T1 (de) 2009-01-15
US20060251886A1 (en) 2006-11-09
JP5133562B2 (ja) 2013-01-30
DE502004008698D1 (de) 2009-01-29
EP1661191B1 (de) 2008-12-17
JP2013191867A (ja) 2013-09-26
CN1849717A (zh) 2006-10-18
EP1671379A1 (de) 2006-06-21
CN100508237C (zh) 2009-07-01
WO2005024971A1 (de) 2005-03-17
KR101071034B1 (ko) 2011-10-06
JP2007504656A (ja) 2007-03-01
JP5355857B2 (ja) 2013-11-27
US20070034862A1 (en) 2007-02-15
KR20060096414A (ko) 2006-09-11
DE502004012028D1 (de) 2011-02-03
CN1864280A (zh) 2006-11-15

Similar Documents

Publication Publication Date Title
EP1671379B8 (de) Elektronische vorrichtung enthaltend einen organischen leiter und einen organischen halbleiter und dazwischen eine pufferschicht bestehend aus einem polymer welches kationisch polymerisierbar ist
KR101139739B1 (ko) 유기 반도체 가교결합 방법
WO2007093282A1 (de) Elektronisches bauteil, verfahren zu dessen herstellung und dessen verwendung
EP1656407B1 (de) Konjugierte copolymere, deren darstellung und verwendung
EP1668058B1 (de) Konjugierte polymere, deren darstellung und verwendung
DE60312861T2 (de) Puffer-schichten für organische elektrolumineszenzvorrichtungen und verfahren zu deren herstellung und ihre verwendung
EP2203944B1 (de) Optoelektronische vorrichtung
EP1709699B1 (de) Konjugierte polymere, deren darstellung und verwendung
EP2203945B1 (de) Optoelektronische vorrichtung
DE10304819A1 (de) Carbazol-enthaltende konjugierte Polymere und Blends, deren Darstellung und Verwendung
EP1670844A1 (de) Weiss emittierende copolymere, deren darstellung und verwendung
EP2401315B1 (de) Vernetzbare und vernetzte polymere, verfahren zu deren herstellung sowie deren verwendung
EP2318473B1 (de) Fluorverbrückte assoziate für optoelektronische anwendungen
DE102008045662A1 (de) Optoelektronische Vorrichtung
DE102008045664A1 (de) Optoelektronische Vorrichtung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480028998.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007034862

Country of ref document: US

Ref document number: 1020067004561

Country of ref document: KR

Ref document number: 10570640

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006525128

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004764853

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004764853

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10570640

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067004561

Country of ref document: KR