WO2005024787A1 - 信号処理方法および装置 - Google Patents

信号処理方法および装置 Download PDF

Info

Publication number
WO2005024787A1
WO2005024787A1 PCT/JP2004/012543 JP2004012543W WO2005024787A1 WO 2005024787 A1 WO2005024787 A1 WO 2005024787A1 JP 2004012543 W JP2004012543 W JP 2004012543W WO 2005024787 A1 WO2005024787 A1 WO 2005024787A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
step size
adaptive filter
pseudo
relative relationship
Prior art date
Application number
PCT/JP2004/012543
Other languages
English (en)
French (fr)
Inventor
Miki Sato
Akihiko Sugiyama
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005513634A priority Critical patent/JP4632047B2/ja
Priority to CN2004800322654A priority patent/CN1875403B/zh
Priority to US10/570,392 priority patent/US7720233B2/en
Priority to EP04772499.2A priority patent/EP1667114B1/en
Publication of WO2005024787A1 publication Critical patent/WO2005024787A1/ja
Priority to US12/751,570 priority patent/US9543926B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02165Two microphones, one receiving mainly the noise signal and the other one mainly the speech signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H2021/007Computation saving measures; Accelerating measures
    • H03H2021/0076Measures relating to the convergence time
    • H03H2021/0078Measures relating to the convergence time varying the step size

Definitions

  • the present invention relates to a signal processing method and a signal processing apparatus, and in particular, cancels other signals mixed in with a desired signal input from a microphone, a handset, a communication path or the like, or the like Method and apparatus for enhancing a desired signal.
  • Voice signals input from a microphone, a handset, etc. are subject to voice coding and voice recognition processing. Background noise signals mixed in such speech signals pose a serious problem in speech coding and speech recognition in narrowband speech coding apparatuses and speech recognition apparatuses with high information compression.
  • a signal processing device for the purpose of eliminating such an acoustically superimposed noise component a two-input noise canceller using an adaptive filter is disclosed in reference documents [1], [9] and [23]. It is done.
  • a 2-input noise canceller mixes an audio input terminal with an adaptive filter that approximates an impulse response of a path (noise path) along which a noise signal input to a reference input terminal passes until it reaches the audio input terminal.
  • the pseudo noise signal corresponding to the noise signal component to be generated is generated, and the received signal power input to the voice input terminal is operated to suppress the noise signal by subtracting the pseudo noise signal.
  • the sound receiving signal is a signal in which an audio signal and a noise signal are mixed, and generally, a signal input from a microphone or a handset to an audio input terminal is a sound receiving signal.
  • the filter coefficient of the adaptive filter is corrected by taking the correlation between the error signal obtained by subtracting the pseudo noise signal from the reception signal and the reference signal input to the reference input terminal.
  • LMS algorithm Least-Mean-Square Algorithm
  • FIG. 1 is a diagram showing a typical configuration of a conventional two-input noise canceller.
  • This noise canceller has two input terminals 101 and 102, an adaptive filter 107, a subtractor 111 and an output terminal. And 113.
  • An input terminal 101 receives an acoustic-electrical converted signal from a microphone placed near the speaker.
  • the input signal X (k) is the target audio signal S (k) mixed with the background noise signal n (k), and is expressed by equation (1).
  • the input terminal 102 a signal that has been subjected to acoustic-to-electrical conversion by a microphone placed at a position farther from the speaker than the input terminal 101 is inputted.
  • the microphone connected to input terminal 2 is sufficiently away from the speaker and sufficiently close to a noise source, the signal X (k) input to input terminal 102 is input to input terminal 101. This corresponds to the background noise signal N (k), and equation (2) holds.
  • Adaptive filter 107 performs filter calculation with signal X (k) input to input terminal 102 as input, and outputs pseudo noise signal R (k) as the calculation result.
  • the subtractor 111 subtracts the pseudo noise signal R (k) output from the adaptive filter 107 from the signal X (k) input to the input terminal 101 to generate a difference signal e (k),
  • the signal is transmitted to the output terminal 113 as the output signal of the noise canceller, and is supplied to the adaptive filter 107 as an error signal for updating the coefficients of the adaptive filter 107.
  • the difference signal e (k) is given by equation (3).
  • the adaptive filter 107 updates the coefficients of the filter using a coefficient correction algorithm based on the input error signal.
  • the LMS algorithm described in reference literature [23] is used as the coefficient updating algorithm of the adaptive filter
  • the j-th coefficient of the adaptive filter 107 at time k is w (k)
  • the adaptive filter 107 outputs
  • the pseudo noise signal R (k) to be expressed is expressed by Equation (4).
  • R (k) ⁇ Wj (k)-X r (kj) to (4)
  • N indicates the number of taps of the adaptive filter 107. Also, updating of the coefficient is performed according to equation (5).
  • W (k + l) w (k) + a-e (k)-X (kj) ⁇ ⁇ ⁇ ⁇ (5)
  • step size is a constant called "step size", which is a parameter for determining the convergence time of the coefficient and the residual error after convergence.
  • reference documents [10]-[19], [25] describe a noise canceller that controls step size.
  • FIG. 2 is a diagram showing a configuration of a conventional adaptive noise canceller which performs control of a step size described in reference [25].
  • this conventional device comprises two adaptive filters 5, 7 and uses the signal-to-noise ratio at input terminal 1 estimated using adaptive filter 5 to set the step size of adaptive filter 7.
  • the convergence time of the adaptive filter 7 is reduced by controlling the voice signal to be a small step size when the voice signal is larger than the noise signal and a large step size in the reverse state, and the noise cancellation transmitted to the output terminal 13 It can reduce distortion in later signals.
  • the noise removal apparatus further includes two delay circuits 3 and 4, two subtractors 9 and 11, a step size control circuit 19, and a signal-to-noise ratio estimation circuit 21.
  • the operation of adaptive filter 5 is equal to the operation of adaptive filter 107 in the apparatus shown in FIG. 1 described above. Therefore, the signal-to-noise ratio estimation circuit 21 is supplied with the estimated value of the audio signal component from which the influence of the noise at the input terminal 1 has been removed and the estimated value of the noise signal component at the input terminal 1. This is because the input of the signal-to-noise ratio estimation circuit 21 is input terminal 1 This is because the output of the subtracter 9 that approximates the voice component in the above and the output of the adaptive filter 5 that approximates the noise component.
  • the signal-to-noise ratio estimation circuit is also called a signal-to-noise power relative relationship estimation circuit.
  • the signal-to-noise ratio estimation circuit 21 obtains an estimation value of the signal-to-noise ratio using the estimation value of the supplied audio signal component and the estimation value of the noise signal component.
  • the signal-to-noise ratio determined by the signal-to-noise ratio estimation circuit 21 is supplied to the step size control circuit 19, and the obtained step size is supplied to the adaptive filter 7.
  • the input signal to the adaptive filter 7 is different from the case of the adaptive filter 107 in FIG. 1 and is obtained by delaying the signal supplied to the input terminal 2 by the delay circuit 4.
  • the signal supplied to the subtractor 11 from the input terminal 1 is different from the subtractor 111 of the circuit shown in FIG. 1 and is delayed by the delay circuit 3.
  • the delay circuits 3 and 4 generate equal time delays, and the noise cancellation by the adaptive filter 7 is performed on the signals obtained by delaying the signals supplied to the input terminals 1 and 2 by the same time. Is configured.
  • the delay time generated by the delay circuit 3 and the delay time generated by the delay circuit 4 are set to be equal to or longer than the delay time generated when the signal-to-noise ratio estimation circuit 21 calculates an estimated value.
  • the subtractor 11 cancels the noise in the same way as the subtractor 11 of the device shown in FIG. 1 and transmits the output to the output terminal 13.
  • the configuration of the signal-to-noise ratio estimation circuit 21 can be expressed as shown in FIG.
  • the signal-to-noise ratio estimation circuit 21 comprises averaging circuits 14 and 15 and an arithmetic circuit 16.
  • An averaging circuit 14 is supplied with an estimated value of the audio signal component, calculates an average value thereof, and outputs an average value of the estimated audio signal.
  • the averaging circuit 15 is supplied with the estimated value of the noise signal component, calculates the average value thereof, and outputs the average value of the estimated noise signal.
  • the outputs of the averaging circuits 14 and 15 are both supplied to the arithmetic circuit 16.
  • the arithmetic circuit 16 obtains an estimated value of the average signal-to-noise ratio using the average value of the estimated speech signal components supplied from the averaging circuits 14 and 15 and the average value of the estimated noise signal components, and Output as a signal to noise ratio of 1.
  • the averaging circuits 14 and 15 calculate an average power E (k) from time k to time k. Assuming that the input signal is Y (k), the average power E (k) is given by equation (6).
  • equation (7) may be used instead of equation (6),
  • is a constant of 0 ⁇ ⁇ 1.
  • the step size control circuit 19 supplies the calculated step size to the adaptive filter 7 based on the first signal-to-noise ratio determined by the signal-to-noise ratio estimation circuit 21.
  • the step size control circuit 19 receives the SNR 1 (k) and calculates a step size a (k).
  • a (k) is a value of the function f (x) that decreases monotonously when SNR1 ⁇ SNR1 (k) ⁇ SNR1
  • ⁇ and ⁇ ⁇ ⁇ ⁇ are constants that satisfy ⁇ .
  • the monotonically decreasing function f ( ⁇ ) can be represented, for example, by the equations (9a) and (9c).
  • the second adaptive filter 5 is used to estimate the signal-to-noise ratio at the voice input terminal, whereby the signal-to-noise ratio is large, sometimes small.
  • the step size of the first adaptive filter 7 can be controlled such that the size, in reverse, is a large step size. Because of this, the shadow of the jamming signal It becomes possible to operate with reduced sound.
  • the audio signal s (k) is mixed with the background noise signal N (k), and a component correlated with the audio signal s (k) appears at the output of the adaptive filter. For this reason, the distortion of the signal transmitted to the output terminal 13 causes an error in the voice signal component supplied to the signal-to-noise ratio estimation circuit 21 which is received.
  • reference documents [20], [21], and [26] refer to adaptive filters that approximate the impulse response of the path taken by a voice signal until it reaches the reference input terminal.
  • the noise canceller used is described.
  • Figure 4 shows the configuration of the noise canceller described in reference [26].
  • the noise canceller shown in FIG. 4 is the same as the noise canceller shown in FIG. 2 except that adaptive filters 6 and 8, subtractors 10 and 12, step size control circuit 20, and signal-to-noise ratio estimation.
  • the circuit 22 is added.
  • the adaptive filter 8 generates a signal corresponding to the voice signal leaking to the input terminal 2 and supplies the result obtained by subtracting the output of the adaptive filter 8 from the signal supplied to the input terminal 2 to the adaptive filter 7 By doing this, the disturbance of the audio signal leaking to the input terminal 2 is reduced and re-established.
  • the adaptive filter 6 and the signal-to-noise ratio estimation circuit 22 control the step size of the adaptive filter 8 according to the same principle as that of the noise canceller shown in FIG. In the apparatus shown in FIG.
  • the input signal to the adaptive filter 7 is an estimated value of the noise signal component from which the influence of speech is removed, unlike the case of the apparatus shown in FIG. This is because the output of the subtractor 12 approximating the noise component at the input force input terminal 2 of the adaptive filter 7.
  • the input signal of the adaptive filter 5 is the output of the subtractor 10, unlike the case of the device shown in FIG.
  • the input signal of the adaptive filter 8 is an estimated value of the speech signal component from which the influence of noise has been removed. This is because the input of the adaptive filter 8 is the output of the subtractor 11 that approximates the voice component at the input terminal 1. Adaptive filter 8 is supplied from subtractor 11 The filter operation is performed on the received signal, and the first pseudo sound signal is output as the operation result. Similarly, the input signal of the adaptive filter 6 is the output of the subtractor 9. The adaptive filter 6 performs a filter operation on the signal supplied from the subtractor 9 and outputs a second pseudo sound signal as the operation result.
  • the subtractor 12 also subtracts the output of the adaptive filter 8 from the output power of the delay circuit 4 and supplies the subtraction result as an output to the adaptive filter 7 and also outputs the result to the adaptive filter 8 as an error signal for updating the coefficient. introduce.
  • the subtractor 10 subtracts the output of the adaptive filter 6 from the signal supplied to the input terminal 2 and supplies the subtraction result to the adaptive filter 5 and transmits it to the adaptive filter 6 as an error signal for updating the coefficient. .
  • the signal-to-noise ratio estimation circuit 22 is supplied with an estimated value of the noise signal component from which the influence of speech at the input terminal 2 has been removed and an estimated value of the audio signal component at the input terminal 2. This is because the input of the signal-to-noise ratio estimation circuit 2 is the output of the subtractor 10 that approximates the noise component at the input terminal 2 and the output of the adaptive filter 6 that approximates the voice component.
  • the configuration of the signal-to-noise ratio estimation circuit 22 is identical to the configuration of the signal-to-noise ratio estimation circuit 21 described with reference to FIG.
  • the signal-to-noise ratio estimation circuit 22 obtains an estimation value of the signal-to-noise ratio using the estimation value of the supplied speech signal component and the estimation value of the noise signal component as the second signal-to-noise ratio. , Step size control circuit 20.
  • the step size control circuit 20 supplies the calculated step size to the adaptive filter 8 based on the second signal-to-noise ratio determined by the signal-to-noise ratio estimation circuit 22.
  • the step size control circuit 20 receives the SNR 2 (k) and calculates the step size a (k).
  • (K) is a value of a function f (x) that monotonically increases in SNR 2 and SNR 2 (k) and SNR 2
  • a and ⁇ are constants that satisfy a ⁇ a.
  • the monotonically increasing function f ( ⁇ ) can be, for example, equations (12a) and (12c).
  • the audio signal leaking to the reference input terminal is estimated using the adaptive filter 8 and the estimated value is subtracted by the subtracter to leak to the input terminal 2 It is possible to reduce the disturbance by the audio signal. Also, by using the adaptive filter 6 to estimate the signal-to-noise ratio at the reference input terminal, the steps of the adaptive filter 8 are made to have a large step size when the signal-to-noise ratio is large and a small step size in the reverse state. The size can be controlled, and the operation with reduced influence of the interference signal is possible.
  • Patent Document 1 [1] Japanese Patent Application Laid-Open No. 9-37663
  • Patent Document 2 [2] JP-A-8-56180
  • Patent Document 3 [3] Japanese Patent Application Laid-Open No. 6-284491
  • Patent Document 4 [4] Japanese Patent Application Laid-Open No. 6-90493
  • Patent Document 5 [5] Japanese Patent Application Laid-Open No. 91-181652
  • Patent Document 6 [6] Japanese Patent Application Laid-Open No. 5-75391
  • Patent Document 7 [7] Japanese Patent Application Laid-Open No. 5-158494
  • Patent Document 8 [8] Japanese Patent Application Laid-Open No. 5-22788
  • Patent Document 9 [9] Japanese Patent Application Laid-Open No. 61-194914
  • Patent Document 10 [10] Japanese Patent Application Laid-Open No. 2000-4494
  • Patent Document 11 [11] Japanese Patent Application Laid-Open No. 2000-172299
  • Patent Document 12 [12] Japanese Patent Application Laid-Open No. 11-27099
  • Patent Document 13 [13] Japanese Patent Application Laid-Open No. 11-345000 Patent Document 14: [14] Japanese Patent Application Laid-Open No. 10-3298
  • Patent Document 15 [15] Japanese Patent Application Laid-Open No. 10-215193
  • Patent Document 16 [16] Japanese Patent Application Laid-Open No. 9-18291
  • Patent Document 17 [17] Japanese Patent Application Laid-Open No. 8-241086
  • Patent Document 18 [18] Japanese Patent Application Laid-Open No. 62-135019
  • Patent Document 19 [19] Japanese Patent Application Laid-Open No. 61-194913
  • Patent Document 20 [20] Japanese Patent Application Laid-Open No. 10-215194
  • Patent Document 21 [21] Japanese Patent Application Laid-Open No. 8-110794
  • Patent Document 22 [22] Japanese Patent Application Publication No. 11-502324
  • Non-Patent Document 2 [24] Jin-ichi Nagumo and Atsuhiko Noda, "A Learning Method for System Identification,” IEEE Transactions on Automatic Control, VOL. 12, NO. 3, 1967, pp. 282-287
  • Non Patent Literature 3 [25] Shigeji Ikeda and Akihiko Sugiyama, "An Adaptive Noise
  • Non-patent literature 4 [26] Shigeji Ikeda and Akihiko Sugiyama, "An Adaptive Noise
  • Non-Patent Document 5 [27] David G. Messerschmitt, "Echo Cancellation in Speech and Data Transmission,” IEEE Journal on Selected Are as in Communications, VOL. SAC-2, NO. 2, 1984, pp. 283-297
  • Non-Patent Document 6 [28] John J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, VOL. 9, NO. 1, pp. 14-37, 1992 Disclosure of the Invention Problem that invention tries to solve
  • the signal-to-noise ratio at the audio input terminal and the reference input terminal changes in a wide range depending on the environment in which the noise canceller is used and the arrangement of the audio input terminal and the reference input terminal.
  • the signal-to-noise ratio value at the voice input terminal or the reference input terminal The convergence time increases or distortion in the output signal of the subtractor 9, 10 increases. These cause degradation in the accuracy of the estimated values of the voice component and the noise component supplied to the signal-to-noise ratio estimation circuits 21, 22, and increase the convergence time of the adaptive filters 7, 8 or the output terminal 13. This causes an increase in distortion in the output voice that is output.
  • an object of the present invention is to realize noise cancellation with less distortion in output speech whose convergence time is short with respect to a wide range of signal-to-noise ratio input signals at speech input terminals and reference input terminals. To provide a signal processing method.
  • Another object of the present invention is to provide a signal that achieves low noise cancellation in output speech whose convergence time is short with respect to an input signal with a wide range of signal-to-noise ratios at the audio input terminal and reference input terminal. It is in providing a processing apparatus.
  • a signal processing method is a method of extracting a desired signal using a first signal and a second signal including the desired signal, the first signal being a first signal. Controlling the first signal processing operating with the first signal and the second signal as inputs using the relationship between the second signal and the second signal, and using the result of the first signal processing; Controlling a second signal processing that operates with the second signal and the second signal as inputs.
  • a signal processing method comprising the steps of: generating a first pseudo signal by a first adaptive filter having a first signal as an input; Generating a first difference signal by subtracting the pseudo signal, updating the first adaptive filter coefficients using the first difference signal, and receiving a second signal as a second input. Generating a second pseudo signal by the adaptive filter, generating a second difference signal by subtracting the second signal strength second pseudo signal, and using the second difference signal to generate a second difference signal.
  • 2 adaptation Updating the coefficients of the first adaptive filter using a first step size controlled according to the relative relationship between the second pseudo signal and the second difference signal, and updating the coefficients of the second filter. Controlling the updating of the coefficients of the second adaptive filter using a second step size controlled according to the relative relationship between the first signal and the second signal; And output.
  • the relative relationship between the second pseudo signal and the second difference signal and the relative relationship between the first signal and the second signal are typically represented by a signal-to-noise ratio.
  • a signal processing method is a signal processing method in which a first signal and a second signal are input, and a first intermediate signal is input.
  • An adaptive filter generates a first pseudo signal, and a second signal strength generates a first difference signal by subtracting the first pseudo signal, and the first difference signal is used to generate a first adaptive filter.
  • the second pseudo signal is generated by the step of updating the coefficients of the second adaptive filter with the second intermediate signal as an input, and the second signal power is calculated by subtracting the second pseudo signal. Generating a difference signal and updating the coefficients of the second adaptive filter using the second difference signal; and generating a third pseudo signal by the third adaptive filter having the first difference signal as an input.
  • a third difference signal by subtracting the first signal strength third pseudo signal Inputting the third difference signal as a first intermediate signal to the first adaptive filter, updating the coefficients of the third adaptive filter using the third difference signal, and inputting the second difference signal.
  • Generating a fourth pseudo signal by the fourth adaptive filter, and generating a fourth difference signal by subtracting the first signal strength and the fourth signal, and the fourth difference signal is generated by the second adaptive signal.
  • the second adaptive filter is input as an intermediate signal of the second adaptive filter, the fourth differential signal is used to update the coefficient of the fourth adaptive filter, and the first step size is calculated based on the relative relationship between the signals.
  • the first adaptive filter coefficient update is controlled, the second step size is used to control the second adaptive filter coefficient update, and the third step size is used to update the third adaptive filter coefficient Control the fourth adaptive filter coefficient update using the fourth step size It has a step that includes the steps of output the first difference signal.
  • the relative relationship between signals is represented by a signal-to-noise ratio as an example, but an index other than the signal-to-noise ratio may be used as the relative relationship.
  • the first step size is controlled according to the relative relationship between the second pseudo signal and the second difference signal
  • the second step size is the first signal and the second signal.
  • the third step size is controlled according to the relative relationship between the fourth signal and the fourth signal
  • the fourth step size is controlled according to the relative relationship with the second signal. It is controlled according to the relative relationship between the signal and the second signal.
  • the first step size is controlled according to the relative relationship between the second pseudo signal and the second difference signal
  • the second step size includes the first signal and the second signal.
  • the third step size is controlled according to the relative relationship between the fourth pseudo signal and the fourth difference signal
  • the fourth step size is the fourth pseudo signal with the fourth pseudo signal. It is controlled according to the relative relationship with the fourth difference signal.
  • a signal processing device is a signal processing device that receives a first signal and a second signal including a desired signal, and extracts the desired signal, A calculation circuit that calculates the relationship between the first signal and the second signal, first signal processing means that receives the first signal and the second signal, and the first signal and the second signal. A second signal processing means for controlling the operation of the first signal processing means using the output of the calculation circuit, and using the output of the first signal processing means. Operation is controlled.
  • a signal processing device comprises a first adaptive filter that receives a first signal as an input and generates a first pseudo signal, and a second signal strength, a first pseudo signal.
  • a first subtractor that generates a first difference signal by subtraction, a second adaptive filter that receives the first signal as an input and generates a second pseudo signal, and a second pseudo signal from the second signal.
  • a second subtractor that generates a second difference signal by subtracting the signal and a first step size that generates a first step size according to the relative relationship between the second pseudo signal and the second difference signal Control means, and second step size control means for generating a second step size in accordance with the relative relationship between the first signal and the second signal;
  • the coefficients of the first adaptive filter are updated using the step size, and the second difference signal and the second difference signal are updated.
  • the coefficients of the second adaptive filter are updated using the two step sizes, and the first difference signal is output.
  • a signal processing device comprises a first signal and a second signal.
  • a signal processing apparatus for inputting, a first adaptive filter that receives a first intermediate signal as an input and generates a first pseudo signal, and a second signal strength by subtracting the first pseudo signal.
  • a first subtractor for generating a difference signal
  • a second adaptive filter for generating a second pseudo signal with the second intermediate signal as an input, and subtracting the second pseudo signal from the second signal. Therefore, a second subtractor for generating a second difference signal, a third adaptive filter for generating a third pseudo signal with the first difference signal as an input, and the first to third pseudo signals.
  • the third subtractor generates a third difference signal by subtracting the third difference signal and supplies the third difference signal as a first intermediate signal to the first adaptive filter, and the second difference signal as an input.
  • a fourth adaptive filter that generates a fourth pseudo signal, and subtracting the first signal strength and the fourth pseudo signal
  • the first step A step size control means for generating a size, a second step size, a third step size and a fourth step size, and using the first difference signal and the first step size, the first step;
  • the coefficients of the adaptive filter are updated and the coefficients of the second adaptive filter are updated using the second difference signal and the second step size, and the third difference signal and the third step size are used to perform the third
  • the coefficients of the adaptive filter of 3 are updated, the coefficients of the fourth adaptive filter are updated using the fourth difference signal and the fourth step size, and the first difference signal is output.
  • the signal-to-noise ratio is estimated, and an adaptive filter having a step size appropriately controlled using the signal-to-noise ratio estimate is operated, based on the output signal of the adaptive filter.
  • FIG. 1 is a block diagram showing an example of the configuration of a conventional signal processing apparatus.
  • FIG. 2 is a block diagram showing another example of the configuration of a conventional signal processing apparatus.
  • FIG. 3 is a block diagram showing a configuration of a signal-to-noise ratio estimation circuit used in the signal processing device shown in FIG.
  • FIG. 4 is a block diagram showing still another example of the configuration of a conventional signal processing device.
  • FIG. 7 is a block diagram of a signal processing apparatus according to a third embodiment of the present invention.
  • FIG. 8 is a block diagram of a signal processing device according to a fourth embodiment of the present invention.
  • FIG. 9 is a block diagram of a signal processing apparatus according to a fifth embodiment of the present invention.
  • FIG. 10 is a block diagram of a signal processing apparatus according to a sixth embodiment of the present invention.
  • FIG. 11 is a block diagram of a signal processing apparatus according to the seventh embodiment of the present invention.
  • FIG. 13 is a block diagram of a signal processing device according to the eighth embodiment.
  • FIG. 13 is a block diagram showing an example of a configuration of a speech recognition device using the signal processing device of the present invention.
  • FIG. 14 is a block diagram showing an example of the configuration of a robot apparatus using the signal processing apparatus of the present invention.
  • a signal processing apparatus according to the present invention will be described by way of an embodiment realized as an apparatus for processing an audio signal, in particular, an example realized as a noise cancellation apparatus.
  • the signal processing apparatus of each of the following embodiments can be used as various signal processing apparatuses other than the noise cancellation apparatus whose configuration can not be changed.
  • the signal processing apparatus has the first input received from audio input terminal 1, reference input terminal 2, output terminal 13, and audio input terminal 1. From the reference input terminal 2 and a first delay circuit 3 for generating a first delayed sound reception signal by giving a predetermined delay time to the first sound reception signal in response to the sound reception signal X (k) of Second incoming signal X to be input
  • a second delay circuit 4 for generating a second delayed sound receiving signal by giving the same delay time as the first delay circuit 3 to the second received sound signal, and a first delayed sound receiving
  • a first subtractor 11 which subtracts a first pseudo noise signal from the signal to generate a first error signal, and a second delayed sound reception signal, subtracts a first pseudo sound signal to generate a second error
  • a second subtractor 12 for generating a signal, and a second error signal as an input to generate a first pseudo noise signal to minimize the first error signal
  • a first adaptive filter 7 for updating the coefficients so as to generate the first pseudo-speech signal with the first error signal as an input, and a second for updating the coefficients so as to minimize the second error signal Adaptive filter 8 and equipped.
  • the first error signal from the first subtractor 11 is also output to the output terminal 13 as a noise-canceled voice signal.
  • the signal processing apparatus shown in FIG. 5 generates a third error signal by subtracting the second pseudo noise signal from the first sound reception signal, and a second subtractor 9, and A fourth subtractor 10 that subtracts the second pseudo speech signal to generate a fourth error signal, and generates a second pseudo noise signal with the fourth error signal as an input.
  • a third adaptive filter 5 for updating the coefficient so that the third error signal becomes minimum, and a third error signal as input to generate a second pseudo voice signal, and the fourth error signal is minimum
  • a first signal-to-noise ratio circuit that generates a first signal-to-noise relationship from the third error signal and the second pseudo-noise signal.
  • a second signal-to-noise ratio circuit 22 for generating a second signal-to-noise relative relationship from the second pseudo-speech signal and the fourth error signal, and a first sound-receiving signal
  • a third signal-to-noise ratio circuit 23 that generates a third signal-to-noise relative relationship from the second received signal and the filter of the first adaptive filter 7 based on the first signal-to-noise relative relationship.
  • a first step size control circuit 19 that outputs a step size that determines the correction amount of the coefficient, and a step size that determines the correction amount of the filter coefficient of the second adaptive filter 8 based on the second signal-to-noise relationship.
  • Step size control circuit 20 for outputting the third step size for outputting the step size for determining the correction amount of the filter coefficient of the third adaptive filter 5 based on the third signal-to-noise relative relation
  • a control circuit 17 and a fourth step size control circuit 18 outputting a step size for determining the correction amount of the filter coefficient of the fourth adaptive filter 6 based on the third signal-to-noise relative relation as well The That.
  • the signal to noise ratio estimation circuit described using FIG. 3 can be used as the signal to noise ratio estimation circuit 21-23. Therefore, in the above-mentioned, the signal to noise ratio is used as the signal to noise relative relationship.
  • the signal processing device shown in FIG. 5 has a third signal-to-noise ratio estimation circuit in addition to the conventional signal processing device shown in FIG. 23 and 3rd step size control circuit 17 and 4th step size control circuit 18 is there.
  • elements which are the same as or equivalent to the elements shown in FIG. 4 are denoted by the same reference numerals. Therefore, in the following, the description of the same elements as those in FIG. 4 is omitted to avoid duplication, and the signal-to-noise ratio estimation circuit 23, the step size control circuit 17 and the step size control circuit 18 are mainly used.
  • the signal processing apparatus shown in FIG. 5 will be described.
  • the signal-to-noise ratio estimation circuit 23 to which the first received signal input to the voice input terminal 1 and the second received signal input to the reference input terminal 2 are supplied is the first received signal.
  • an estimated value of the signal-to-noise ratio is determined.
  • Output as the signal-to-noise ratio of The third signal-to-noise ratio determined by the signal-to-noise ratio estimation circuit 23 is supplied to the step size control circuit 17 and the step size control circuit 18, and the obtained step sizes are the adaptive filter 5 and the adaptive filter, respectively. 6 is supplied.
  • the step size control circuit 17 supplies the adaptive filter 5 with the calculated step size a (k) based on the third signal-to-noise ratio obtained by the signal-to-noise ratio estimation circuit 23. .
  • the step size control circuit 17 calculates the step size a (k) with SNR 3 (k) as an input.
  • a (k) is a value of the function f (x) that monotonically decreases when SNR3 ⁇ SNR3 (k) ⁇ SNR3
  • SNR3 and SNR3 are constants satisfying SNR3 ⁇ SNR3.
  • ⁇ and ⁇ ⁇ ⁇ ⁇ are constants that satisfy ⁇ .
  • the step size control circuit 18 calculates the step size a (k) calculated based on the third signal-to-noise ratio SNR3 (k) obtained by the signal-to-noise ratio estimation circuit 23 as an adaptive filter Supply to 6.
  • a (k) is obtained as a value of a function f (x) that monotonically increases when SNR 4 ⁇ SNR 4 (k) ⁇ SNR 4.
  • SNR4 and SNR4 are constants satisfying SNR4 ⁇ SNR4. This relationship can be expressed by the equations (14a)-(14c).
  • alpha is a constant that satisfies a ⁇ a c
  • the monotonically increasing function f (x) is the same as f (x), using a, a, SNR 4 and SNR 4 instead of ⁇ , a, SNR 2 and SNR 2 in the above equation (12a) — (12c) It can be decided.
  • This signal processing device estimates the noise signal included in the first sound reception signal in order to cancel the noise signal mixed in the first sound reception signal input from the audio input terminal 1. And an adaptive filter 7 for estimating a voice signal included in the second voice-pickup signal in order to cancel the voice signal mixed in the second voice-pickup signal input to the reference input terminal 2. And the first received signal input from the voice input terminal 1 to estimate the signal-to-noise relationship (ie, signal-to-noise ratio) in the first received signal and the second received signal.
  • a third adaptive filter 5 for estimating a noise signal contained therein and a fourth adaptive filter 6 for estimating a speech signal included in a second received signal input to the reference input terminal 2 are provided.
  • the first step size control circuit 19 Supply a large step size to adaptive filter 7 of 1 and Speed up. Conversely, when it is determined that the first received signal has less noise compared to the voice signal, the first step size control circuit 19 supplies the first adaptive filter 7 with a smaller step size, which causes an error. Prevent them from moving towards convergence.
  • the second step size control circuit 20 when it is determined that the second step size control circuit 20 has more voice signals than noise signals in the second received signal based on the signal-to-noise relative relationship in the second received signal, Supply a large step size to the second adaptive filter 8 to accelerate convergence. Conversely, if it is determined that the speech signal is less than the noise signal, the second step size control circuit 20 supplies a small step size to the second adaptive filter 8 and tends to misconvergence. To prevent that.
  • the third step size control circuit 17 determines that the first received signal has more noise signals than the voice signal. When this happens, a large step size is supplied to the third adaptive filter 5 to accelerate convergence. Conversely, the third step size control circuit 17 supplies a small step size to the third adaptive filter 5 when it is determined that the first received signal has less noise than the voice signal, which is erroneous. Prevents the move towards convergence. Similarly, when it is determined that the fourth step size control circuit 18 has more voice signals than the noise signal in the second received signal based on the signal-to-noise relative relationship in the second received signal, Supply a large step size to the fourth adaptive filter 6 to accelerate convergence. Conversely, when it is determined that the voice signal is less than the noise signal, the fourth step size control circuit 18 supplies a small step size to the fourth adaptive filter 6 to make a mistake for convergence. To prevent.
  • the signal processing apparatus uses the signal-to-noise ratio estimated using the signals input to the voice input terminal 1 and the reference input terminal 2 for adaptation.
  • the magnitude of the signal that interferes with the coefficient update operation of filter 5 is estimated, and the step size of adaptive filter 5 is reduced to a small step size when the signal-to-noise ratio is large, thereby reducing the influence of the interference signal on the coefficient update operation.
  • control is made to shorten the convergence time of the coefficient update operation as a large step size.
  • this signal processing device controls the step size of the adaptive filter 6 to be a large step size when the signal-to-noise ratio is large, and a small step size in the reverse state.
  • the convergence time does not depend on the value of the signal-to-noise ratio at voice input terminal 1 or reference input terminal 2. Is reduced or distortion in the output signals of the subtractors 9 and 10 is reduced. These lead to an improvement in the estimation accuracy of the speech and noise components supplied to the signal-to-noise ratio estimation circuits 21 and 22, and the convergence time of the adaptive filters 7 and 8 is shortened or output to the output terminal 13. Achieve distortion reduction in the output speech. That is, it can be used as a noise canceller with little distortion in the output voice whose convergence time of the adaptive filters 7 and 8 is short with respect to the input signal of a wide range of signal to noise ratio at the voice input terminal 1 and the reference input terminal 2. Thus, a signal processing apparatus of the present invention is obtained.
  • FIG. 6 showing the signal processing apparatus according to the second embodiment of the present invention, elements identical or equivalent to the elements shown in FIG. 5 are denoted by the same reference numerals.
  • the signal processing apparatus has a first sound reception input from the audio input terminal 1, the reference input terminal 2, the output terminal 13 and the audio input terminal 1.
  • First delay circuit 3 that generates a first delayed sound reception signal by giving a predetermined delay time to the first sound reception signal, and a second sound reception signal X input from reference input terminal 2 Receive (k)
  • a second delay circuit 4 for generating a second delayed sound reception signal by giving the same delay time as the first delay circuit 3 to the second sound reception signal, and a first delay sound reception signal from the first delay sound reception signal.
  • the first subtractor 11 which generates a first error signal by subtracting the pseudo noise signal of the second signal, and the second delayed sound reception signal, subtracts the first pseudo sound signal to generate a second error signal.
  • the second error signal from the second subtractor 12 and the second subtractor 12 to generate a first pseudo noise signal and update the coefficient so that the first error signal is minimized
  • a first pseudo-speech signal is generated with the first adaptive filter 7 and the first error signal from the first subtractor 11 as input, and the second updating the coefficients so as to minimize the second error signal.
  • the first error signal is also supplied to the output terminal 13 as a noise-canceled speech signal.
  • this signal processing device subtracts a second pseudo noise signal from the first sound reception signal to generate a third error signal, and a second sound reception signal power.
  • a fourth subtractor 10 that subtracts the second pseudo speech signal to generate a fourth error signal, and a fourth error signal as input generates a second pseudo noise signal, and the third error signal is
  • the third adaptive filter 5 updates coefficients so as to be minimized, and the third error signal is input to generate a second pseudo speech signal, and the coefficients are updated so as to minimize the fourth error signal.
  • Adaptive filter 6 a first signal-to-noise ratio estimation circuit 21 for generating a first signal-to-noise relative relationship from a third error signal and a second pseudo noise signal, and a second pseudo voice signal
  • a second signal-to-noise ratio estimation circuit 22 for generating a second signal-to-noise relative relationship from the first error signal and the fourth error signal
  • a third signal-to-noise ratio estimation circuit 23 for generating a third signal-to-noise relative relationship from the received signal of the first filter, and a filter coefficient of the first adaptive filter based on the first signal-to-noise relative relationship.
  • the first step size control circuit 19 outputs the step size for determining the correction amount, and outputs the step size for determining the correction amount of the filter coefficient of the second adaptive filter based on the second signal-to-noise relative relationship.
  • a second step size control circuit 20, and a third step size control circuit 17 for outputting a step size for determining the correction amount of the filter coefficient of the third adaptive filter based on the third signal-to-noise relative relationship;
  • a fourth step size control circuit 18 for outputting a step size for determining the correction amount of the filter coefficient of the fourth adaptive filter 6 based on the second signal-to-noise relative relationship.
  • the signal processing device of the second embodiment shown in FIG. 6 is the same as the first embodiment shown in FIG.
  • the step size control circuit 18 is different from the signal processing device of the embodiment, and the other elements have the same configuration. Therefore, the step size control circuit 18 will be described below.
  • An input signal to the step size control circuit 18 is obtained by the second signal to noise ratio estimation circuit 22 which is smaller than the third signal to noise ratio from the third signal to noise ratio estimation circuit 23. It is the second signal-to-noise ratio.
  • the step size control circuit 18 supplies the calculated step size ⁇ ⁇ ⁇ ⁇ (k) to the fourth adaptive filter 6 based on the second signal-to-noise ratio SNR 2 (k).
  • SNR5 and SNR5 are constants satisfying SNR5 and SNR5, and
  • the signal processing apparatus shown in FIG. It becomes possible to operate in the same manner as the signal processing device of the embodiment.
  • the input signal of the step size control circuit 18 is the signal to noise ratio determined by the signal to noise ratio estimation circuit 23, and the input signal of the step size control circuit 17.
  • the signal-to-noise ratio may be set as the signal-to-noise ratio calculated by the signal-to-noise ratio estimation circuit 21. This is also apparent in the symmetry of the circuit configuration.
  • the operation principle of the signal processing device of the second embodiment shown in FIG. 6 is the same as that of the signal processing device of the first embodiment described above. Specifically, the processing procedure in the second embodiment includes the steps (al) (al 9) in the first embodiment, and further,
  • FIG. 7 showing the signal processing apparatus, elements which are the same as or equivalent to the elements shown in FIG.
  • the signal processing apparatus has a first sound reception input from the audio input terminal 1, the reference input terminal 2, the output terminal 13, and the audio input terminal 1.
  • First delay circuit 3 that generates a first delayed sound reception signal by giving a predetermined delay time to the first sound reception signal, and a second sound reception signal X input from reference input terminal 2 Receive (k)
  • a second delay circuit 4 for generating a second delayed sound reception signal by giving the same delay time as the first delay circuit 3 to the second sound reception signal, and a first delay sound reception signal from the first delay sound reception signal.
  • a first subtractor 11 for subtracting the pseudo noise signal of the first to generate a first error signal, and subtracting the first pseudo sound signal from the second delayed sound reception signal to generate a second error signal.
  • the second error signal from the second subtractor 12 and the second subtractor 12 to generate a first pseudo noise signal and update the coefficient so that the first error signal is minimized
  • a first pseudo-speech signal is generated with the first adaptive filter 7 and the first error signal from the first subtractor 11 as input, and the second updating the coefficients so as to minimize the second error signal.
  • the first error signal is also supplied to the output terminal 13 as a noise-canceled speech signal.
  • the signal processing device further includes a third subtractor 9 that subtracts the second pseudo noise signal from the first sound reception signal to generate a third error signal, and a second sound reception signal power.
  • a fourth subtractor 10 that subtracts the second pseudo speech signal to generate a fourth error signal, and a fourth error signal as input generates a second pseudo noise signal, and the third error signal is
  • the third adaptive filter 5 updates coefficients so as to be minimized, and the third error signal is input to generate a second pseudo speech signal, and the coefficients are updated so as to minimize the fourth error signal.
  • Adaptive filter 6 a first signal-to-noise ratio estimation circuit 21 for generating a first signal-to-noise relative relationship from a third error signal and a second pseudo noise signal, and a second pseudo voice signal
  • a second signal-to-noise ratio estimation circuit 22 for generating a second signal-to-noise relative relationship from the first error signal and the fourth error signal
  • a first step size control circuit 19 outputting a step size for determining a correction amount of the filter coefficient of the first adaptive filter based on the relationship, and a second adaptation based on the second signal-to-noise relative relationship.
  • a second step size control circuit 20 which outputs a step size for determining the amount of correction of the filter coefficient of the filter
  • the third step size control circuit 17 which outputs the step size for determining the correction amount of the filter coefficient of the third adaptive filter, and the filter coefficient of the fourth adaptive filter based on the second signal-to-noise relative relationship.
  • a fourth step size control circuit 18 for outputting a step size for determining the correction amount.
  • the signal processing apparatus according to the third embodiment shown in FIG. 7 is the same as the signal processing apparatus according to the second embodiment shown in FIG. 6 except that the third signal-to-noise ratio estimation circuit 23 is removed. Accordingly, the step size control circuit 17 is different from the device of FIG.
  • the other configuration is the same as that of the device shown in FIG. 6, and the operation of the elements other than the step size control circuit 17 in the signal processing device of the third embodiment shown in FIG. Step size control circuit 17 will be described below.
  • the input signal of the step size control circuit 17 has the first signal-to-noise ratio determined by the first signal-to-noise ratio estimation circuit 21.
  • the step size control circuit 17 converts the step size a (k) calculated based on the signal-to-noise ratio SNR 1 (k) into the adaptive filter 5.
  • a (k) is SNR3 (k), SNR3, SNR3 of equation (13c)-(13c), instead of ⁇ and ⁇ max mm 3 max 3 mm mm, SNR1 (k), SNR6, SNR6, ⁇ You can make the same decision by using ct.
  • SNR6 and SNR6 are constants satisfying SNR6 ⁇ SNR6, and ⁇ and ⁇ are
  • mm max mm max 6 mm is a constant that satisfies a ⁇ a.
  • the first signal-to-noise ratio estimation circuit 21 obtains the first signal-to-noise ratio estimation circuit 21.
  • the noise ratio it is not necessary to provide the third signal-to-noise ratio estimation circuit, and the amount of operation corresponding to the third third signal-to-noise ratio estimation circuit can be reduced.
  • the operation principle of the signal processing device of the third embodiment shown in FIG. 7 is the same as that of the signal processing device of the first embodiment described above. Specifically, the processing procedure in the third embodiment includes steps (al) (al 6) in the first embodiment, and further,
  • FIG. 8 showing a signal processing apparatus according to a fourth embodiment of the present invention, elements identical or equivalent to the elements shown in FIG. 5 are denoted by the same reference numerals.
  • the signal processing apparatus has a first sound reception input from audio input terminal 1, reference input terminal 2, output terminal 13 and audio input terminal 1.
  • First delay circuit 3 that generates a first delayed sound reception signal by giving a predetermined delay time to the first sound reception signal, and a second sound reception signal X input from reference input terminal 2 Receive (k)
  • a second delay circuit 4 for generating a second delayed sound reception signal by giving the same delay time as the first delay circuit 3 to the second sound reception signal, and a first delay sound reception signal from the first delay sound reception signal.
  • the first subtractor 11 which generates a first error signal by subtracting the pseudo noise signal of the second signal, and the second delayed sound reception signal, subtracts the first pseudo sound signal to generate a second error signal.
  • the second error signal from the second subtractor 12 and the second subtractor 12 to generate a first pseudo noise signal and update the coefficient so that the first error signal is minimized
  • a first pseudo-speech signal is generated with the first adaptive filter 7 and the first error signal from the first subtractor 11 as input, and the second updating the coefficients so as to minimize the second error signal.
  • the first error signal is also supplied to the output terminal 13 as a noise-canceled speech signal.
  • the signal processing device subtracts the second pseudo noise signal from the first sound reception signal to calculate the second pseudo noise signal.
  • the third adaptive filter 5 generates a second pseudo noise signal with an error signal of the input and updates the coefficient so that the third error signal is minimized, and a second error signal with the third error signal as an input.
  • the fourth adaptive filter 7 updates the coefficient so that the 4 error signal is minimized, and the first adaptive signal-to-noise relationship is generated from the third error signal and the second pseudo noise signal.
  • Control circuit 32 and the relative relationships between the second signal-to-noise relative relationship and the third signal-to-noise relative relationship as inputs.
  • a second control circuit 33 which selects one of the signal / noise relative relationships according to whether or not the relative relationship is within a predetermined range and outputs the fifth signal / noise relative relationship;
  • a first step size control circuit 19 which outputs a step size for determining a correction amount of the filter coefficient of the first adaptive filter 7 based on the signal-to-noise relative relationship of 1; and a second signal-to-noise relative relationship.
  • the second step size control circuit 20 which outputs the step size for determining the correction amount of the filter coefficient of the second adaptive filter 8 and the third adaptive filter 5 of the fourth adaptive filter 5 based on the fourth signal-to-noise relative relation.
  • the third step size control circuit 17 that outputs the step size that determines the correction amount of the filter coefficient, and the correction amount of the filter coefficient of the fourth adaptive filter 6 is determined based on the fifth signal-to-noise relative relationship.
  • the A fourth step size control circuit 18 for outputting a Tsupusaizu, and a.
  • the signal processing apparatus according to the fourth embodiment shown in FIG. 8 adds control circuits 32 and 33 to the signal processing apparatus shown in FIG. 5, and signals via control circuits 32 and 33.
  • the noise to noise ratio is input to the step size control circuits 17 and 18, respectively.
  • the control circuits 32 and 33 and the step size control circuits 17 and 18 will be described below. Will be explained.
  • the control circuit 32 includes a third signal-to-noise ratio determined by the third signal-to-noise ratio estimation circuit 23 and a first signal-to-noise ratio estimation circuit 21. Signal to noise ratio is provided. The control circuit 32 then receives the signals supplied from the signal-to-noise ratio estimation circuits 23 and 21. One of the noise to noise ratios SNR 3 (k) and SNR 1 (k) is selected as the fourth signal to noise ratio SNR 4 (k) and supplied to the step size control circuit 17. This relationship can be expressed by the equations (15a), (15b), and (16).
  • Formulas (17a) and (17b) may be used instead of formulas (15a) and (15b).
  • R is a positive constant and R (k) is the change of r (k) averaged from time k 1 m + 1 to k
  • the input signal of the step size control circuit 17 is the fourth signal-to-noise ratio SNR 4 (k) obtained by the control circuit 32.
  • the step size control circuit 17 calculates the step size ⁇ (calculated based on the fourth signal-to-noise ratio SNR 4 (k)).
  • a (k) is an alternative to SNR3 (k), SNR3, SNR3, ⁇ , a in Eqs. (13a)-(13c)
  • SNR7, SNR7 are constants that satisfy SNR7 ⁇ SNR7, and ⁇ mm max mm max 7 mm / max
  • the control circuit 33 is provided with the third signal-to-noise ratio determined by the third signal-to-noise ratio estimation circuit 23 and the second signal-to-noise ratio estimation circuit 22. Signal to noise ratio is provided.
  • the control circuit 33 selects one of the signal-to-noise ratios SNR3 (k) and SNR2 (k) supplied from the signal-to-noise ratio estimation circuits 23 and 22 as a fifth signal-to-noise ratio SNR5 (k), Supply to the step size control circuit 18. This relationship can be expressed by equations (19a), (19b), and (20). Saru.
  • R is a positive constant and R (k) is the change of r (k) averaged from time k 1 m + 1 to k
  • the input signal of the step size control circuit 18 is the fifth signal-to-noise ratio SNR5 (k) obtained by the control circuit 33.
  • the step size control circuit 18 calculates the step size a (k) calculated based on this signal-to-noise ratio SNR5 (k)
  • a (k) is an alternative to SNR 3 (k) ⁇ SNR 4, SNR 4, a and a in Eqs. (14a)-(14c)
  • SNR8, SNR8 are constants that satisfy SNR8 ⁇ SNR8, and ⁇ mm max mm max 8 mm 8 max 8 mm
  • an appropriate value is selected from the first and third signal-to-noise ratios determined by signal-to-noise ratio estimation circuits 21 and 23, and the step-size control circuit is selected.
  • the second and third signal-to-noise ratios obtained by the signal-to-noise ratio estimation circuits 22 and 23 and supplying them to the step size control circuit 18, thus, it becomes possible to calculate an optimal step size than when either one of the signal-to-noise ratios is supplied to the step size control circuits 17 and 18. This is because the estimated value in the signal-to-noise ratio estimation circuit 23 leaks to the input terminal 1 and the noise signal component This is because it is not sufficiently accurate due to the influence of the audio signal component leaking into 2.
  • signal-to-noise ratio estimation circuits 21 and 22 perform estimation operation with high accuracy in order to perform estimation operation using the signals removed by adaptive filters 5 and 6 for the effects of these leaked components. You can get it. Under the influence of convergence of adaptive filters 5 and 6, the accuracy of the estimated value is not sufficient until these adaptive filters converge. Therefore, by selecting appropriate signal-to-noise ratios by the control circuits 32 and 33 and supplying them to the step size control circuits 17 and 18, it becomes possible to calculate an optimum step size.
  • the operating principle of the signal processing device of the fourth embodiment shown in FIG. 8 is the same as that of the signal processing device of the first embodiment described above. Specifically, the processing procedure in the fourth embodiment includes the steps (al) (al 7) in the first embodiment, and further,
  • the fifth signal-to-noise relative is selected based on whether the relative relationship between the first signal-to-noise relative relationship and the second signal-to-noise relative relationship is within a predetermined range. Output as a relation,
  • FIG. 9 showing a signal processing apparatus according to a fifth embodiment of the present invention
  • elements identical or equivalent to the elements shown in FIG. 5 are denoted by the same reference numerals.
  • the signal processing apparatus according to the fifth embodiment shown in FIG. 9 has a first sound reception input from the audio input terminal 1, the reference input terminal 2, the output terminal 13, and the audio input terminal 1.
  • Receive signal X (k) is a first sound reception input from the audio input terminal 1, the reference input terminal 2, the output terminal 13, and the audio input terminal 1.
  • First delay circuit 3 that generates a first delayed sound reception signal by giving a predetermined delay time to the first sound reception signal, and a second sound reception signal X input from reference input terminal 2 Receive (k)
  • a second delay circuit 4 for generating a second delayed sound reception signal by giving the same delay time as the first delay circuit 3 to the second sound reception signal, and a first delay sound reception signal from the first delay sound reception signal.
  • a first subtractor 11 for subtracting the pseudo noise signal of the first to generate a first error signal, and subtracting the first pseudo sound signal from the second delayed sound reception signal to generate a second error signal.
  • the second error signal from the second subtractor 12 and the second subtractor 12 to generate a first pseudo noise signal and update the coefficient so that the first error signal is minimized
  • a first pseudo-speech signal is generated with the first adaptive filter 7 and the first error signal from the first subtractor 11 as input, and the second updating the coefficients so as to minimize the second error signal.
  • the first error signal is also supplied to the output terminal 13 as a noise-canceled speech signal.
  • this signal processing device suppresses the component higher than a predetermined frequency in the first sound reception signal and outputs the first low pass filter 24 and the first in the second sound reception signal.
  • the second low-pass filter 25 that suppresses and outputs components above the same predetermined frequency as those in the low-pass filter 24 and the signal power supplied from the first low-pass filter 24 is predetermined.
  • the second decimation circuit 27 generates a second error signal by subtracting the second pseudo noise signal from the second decimation circuit 27 and the first decimation sound signal.
  • Third subtractor 9 and second decimated sound signal strength Second pseudo sound A fourth subtractor 10 for subtracting a signal to generate a fourth error signal, and a fourth error signal as input to generate a second pseudo noise signal so that the third error signal is minimized.
  • a first signal-to-noise ratio estimation circuit 21 for generating a first signal-to-noise relative relationship from a third error signal and a second pseudo noise signal, a second pseudo speech signal and a fourth error signal To 2
  • a second signal-to-noise ratio estimation circuit 22 for generating a signal-to-noise relative relationship between the signals; and a third signal-to-noise relative relationship from the first decimated sound signal and the second decimated sound signal.
  • First step size outputting a step size for determining the correction amount of the filter coefficient of the first adaptive filter 5 based on the third signal-to-noise ratio estimation circuit 23 and the first signal-to-noise relative relation
  • a control circuit a second step size control circuit for outputting a step size for determining the correction amount of the filter coefficient of the second adaptive filter based on the second signal-to-noise relationship
  • a third signal A third step size control circuit 17 which outputs a step size for determining the correction amount of the finalor coefficient of the third adaptive filter 5 based on the noise-to-noise relative relationship, and based on the third signal-to-noise relative relationship as well.
  • the 4th adaptive filter 6 It has a fourth step size control circuit 1 8 for outputting a step size for determining the amount of correction of data coefficients, the.
  • the signal processing apparatus of the fifth embodiment shown in FIG. 9 is obtained by adding low-pass filters 24 and 25 and thinning circuits 26 and 27 to the signal processing apparatus shown in FIG. It is.
  • the low pass filters 24 and 25 and the decimation circuits 26 and 27 will be described below.
  • the thinning circuit 26 converts the sampling frequency into f by decimating the signal of the sampling frequency f supplied from the voice input terminal 1 through the low pass filter 24 and outputs the same. That is, the thinning rate is f / f.
  • the low pass filter 24 suppresses an input signal component having a frequency of f or more to be supplied to the decimation circuit 26 in order to prevent aliasing distortion caused by the decimation processing in the decimation circuit 26. However, it is 2f ⁇ f ⁇ f.
  • the decimation circuit 27 converts the sampling frequency to f by decimating the signal of the sampling frequency f supplied from the reference input terminal 2 through the low pass filter 25.
  • the low pass filter 25 operates in the same manner as the low pass filter 24.
  • the signals changed to sampling frequency power by decimation are supplied to the signal-to-noise ratio estimation circuits 21, 22 and 23 and the adaptive filters 5 and 6.
  • the amount of computation of the circuit can be reduced.
  • the operating principle of the signal processing device of the fifth embodiment shown in FIG. 9 is the same as that of the signal processing device of the first embodiment described above.
  • the processing procedure in the sixth embodiment is specific. Includes the steps (al) to (a8) in the first embodiment, and
  • FIG. 10 showing a signal processing apparatus according to a sixth embodiment of the present invention, elements which are the same as or equivalent to the elements shown in FIG. 5 are denoted by the same reference numerals.
  • the signal processing apparatus has a first sound receiving unit 1 which receives an audio input terminal 1, a reference input terminal 2, an output terminal 13, and an audio input terminal 1.
  • First delay circuit 3 that generates a first delayed sound reception signal by giving a predetermined delay time to the first sound reception signal, and a second sound reception signal X input from reference input terminal 2 Receive (k)
  • a second delay circuit 4 for generating a second delayed sound reception signal by giving the same delay time as the first delay circuit 3 to the second sound reception signal, and a first delay sound reception signal from the first delay sound reception signal.
  • a first subtractor 11 for subtracting the pseudo noise signal of the first to generate a first error signal, and subtracting the first pseudo sound signal from the second delayed sound reception signal to generate a second error signal.
  • the second error signal from the second subtractor 12 and the second subtractor 12 to generate a first pseudo noise signal and update the coefficient so that the first error signal is minimized
  • a first pseudo-speech signal is generated with the first adaptive filter 7 and the first error signal from the first subtractor 11 as input, and the second updating the coefficients so as to minimize the second error signal.
  • the first error signal is also supplied to the output terminal 13 as a noise-canceled speech signal.
  • this signal processing device subtracts the second pseudo noise signal from the first sound reception signal to generate a third error signal, and the second sound reception signal power.
  • a fourth subtractor 10 that subtracts the second pseudo speech signal to generate a fourth error signal, and a fourth error signal as input generates a second pseudo noise signal, and the third error signal is
  • the third adaptive filter 5 updates coefficients so as to be minimized, and the third error signal is input to generate a second pseudo speech signal, and the coefficients are updated so as to minimize the fourth error signal.
  • an adaptive filter 6 a first signal-to-noise ratio estimation circuit 21 for generating a first signal-to-noise relative relationship from the third error signal and the second pseudo noise signal, and a first sound receiving signal.
  • a third signal-to-noise ratio estimation circuit 23 for generating a third signal-to-noise relative relationship from the second sound-receiving signal and the first signal-to-noise relative relationship Step Sai of determining the amount of correction of first filter coefficient of the adaptive filter 5 based on the Step size control circuit 19 for outputting the second step size for outputting the step size for determining the correction amount of the filter coefficient of the second adaptive filter based on the first signal-to-noise relative relationship.
  • the signal processing apparatus of the sixth embodiment shown in FIG. 10 is the signal processing apparatus shown in FIG. 5 from which the second signal-to-noise ratio estimation circuit 22 is removed. Therefore, the first signal-to-noise ratio is sent from the first signal-to-noise ratio estimation circuit 21 to the step size control circuit 20. Since the signal processing apparatus shown in FIG. 10 is the same as the apparatus shown in FIG. 5 in the other points, the step size control circuit 20 will be described below.
  • the input signal of the step size control circuit 20 is the first signal-to-noise ratio SNR 1 (k) obtained by the signal-to-noise ratio estimation circuit 21, and the step size control circuit 10 receives SNR 1 (SNR 1).
  • the step size a (k) calculated based on k) is supplied to the adaptive filter 8.
  • a (k) is an alternative to SNR 2 (k) SNR SNR 2, SNR 2, ⁇ , ⁇ in Eqs. (11a)-(12c)
  • SNR9 and SNR9 are constants that satisfy SNR9 ⁇ SNR9, and ⁇ mm max mm max 9 mm 9 max 9 mm
  • the first signal-to-noise ratio determined by the signal-to-noise ratio estimation circuit 21 By using the ratio, it is possible to reduce the second signal-to-noise ratio estimation circuit 22 and to reduce the amount of operation corresponding to the second signal-to-noise ratio estimation circuit.
  • the processing procedure in the sixth embodiment includes steps (al) to (al 5) in the first embodiment, and further,
  • FIG. 11 showing the signal processing apparatus of the seventh embodiment of the present invention, elements which are the same as or equivalent to the elements shown in FIG.
  • the signal processing apparatus has a first sound reception input from audio input terminal 1, reference input terminal 2, output terminal 13, and audio input terminal 1.
  • First delay circuit 3 that generates a first delayed sound reception signal by giving a predetermined delay time to the first sound reception signal, and a second sound reception signal X input from reference input terminal 2 Receive (k)
  • a second delay circuit 4 for generating a second delayed sound reception signal by giving the same delay time as the first delay circuit 3 to the second sound reception signal, and a first delay sound reception signal from the first delay sound reception signal.
  • the first subtractor 11 which generates a first error signal by subtracting the pseudo noise signal of the second signal, and the second delayed sound reception signal, subtracts the first pseudo sound signal to generate a second error signal.
  • the second error signal from the second subtractor 12 and the second subtractor 12 to generate a first pseudo noise signal and update the coefficient so that the first error signal is minimized
  • a first pseudo-speech signal is generated with the first adaptive filter 7 and the first error signal from the first subtractor 11 as input, and the second updating the coefficients so as to minimize the second error signal.
  • the first error signal is also supplied to the output terminal 13 as a noise-canceled speech signal.
  • this signal processing device subtracts the second pseudo noise signal from the first sound reception signal to generate a third error signal, and the second sound reception signal power.
  • Second simulated speech signal The fourth subtractor 10 generates a fourth error signal by subtracting the second error signal, generates a second pseudo noise signal with the fourth error signal as an input, and the coefficient so that the third error signal is minimized.
  • a third adaptive filter 5, and a fourth adaptive filter 6 that receives a third error signal as input and generates a second pseudo speech signal, and updates a coefficient so that the fourth error signal is minimized.
  • a first signal-to-noise ratio estimation circuit 21 for generating a first signal-to-noise relative relationship from a third error signal and a second pseudo-noise signal, and predetermined from the first signal-to-noise relative relationship. To generate a sixth signal-to-noise relative relationship by multiplying the first value and the third signal-to-noise relative relationship from the first sound receiving signal and the second sound receiving signal.
  • the first adaptive filter 7 based on the signal-to-noise ratio estimation circuit 23 and the first signal-to-noise relationship.
  • the first step size control circuit 19 that outputs the step size that determines the positive amount, and the step size that determines the correction amount of the filter coefficient of the second adaptive filter 8 based on the sixth signal-to-noise relationship
  • a third step size control circuit for outputting a step size for determining the correction amount of the filter coefficient of the third adaptive filter 5 based on the second step size control circuit 20 and the third signal-to-noise relative relationship.
  • a fourth step size control circuit 18 for outputting a step size for determining the correction amount of the filter coefficient of the fourth adaptive filter 6 based on the third signal-to-noise relative relationship.
  • the signal processing device of the seventh embodiment shown in FIG. 11 is obtained by removing the second signal-to-noise ratio estimation circuit 22 from the signal processing device of the first embodiment shown in FIG. Instead, a multiplication circuit 28 is provided. Since the signal processing device shown in FIG. 11 is the same as the device shown in FIG. 5 except for this point, the multiplication circuit 28 will be described below.
  • the multiplication circuit 28 multiplies the first signal-to-noise ratio supplied from the signal-to-noise ratio estimation circuit 21 by a predetermined value to output the output of the second signal-to-noise ratio estimation circuit. Determine an approximation of the second signal-to-noise ratio.
  • the multiplying circuit 28 supplies this approximate value to the step size control circuit 20 as a sixth signal to noise ratio.
  • it is necessary to provide a second signal-to-noise ratio estimation circuit by obtaining an approximate value of the second signal-to-noise ratio from the first signal-to-noise ratio obtained by the signal-to-noise ratio estimation circuit 21. Can be eliminated, and the amount of operation corresponding to the second signal-to-noise ratio estimation circuit can be reduced.
  • the first signal-to-noise ratio estimation is performed.
  • the circuit 21 is removed, and the second signal-to-noise ratio output from the second signal-to-noise ratio estimation circuit is calculated.
  • An approximate value of the first signal-to-noise ratio is obtained, and this approximate value is input to the step size control circuit 19. It may be a signal.
  • the operation principle of the signal processing device of the seventh embodiment shown in FIG. 11 is the same as that of the signal processing device of the first embodiment described above. Specifically, the processing procedure in the seventh embodiment includes the steps (al) (al 5) in the first embodiment, and further,
  • FIG. 12 showing the signal processing apparatus according to the eighth embodiment of the present invention, elements which are the same as or equivalent to the elements shown in FIG.
  • the signal processing apparatus has a first sound reception input from the audio input terminal 1, the reference input terminal 2, the output terminal 13, and the audio input terminal 1.
  • First delay circuit 3 that generates a first delayed sound reception signal by giving a predetermined delay time to the first sound reception signal, and a second sound reception signal X input from reference input terminal 2 Receive (k)
  • a second delay circuit 4 for generating a second delayed sound reception signal by giving the same delay time as the first delay circuit 3 to the second sound reception signal, and a first delay sound reception signal from the first delay sound reception signal.
  • a first adaptive filter that generates a first pseudo noise signal with the second error signal from the second subtractor and the second subtracter as an input and generates a first pseudo noise signal to minimize the first error signal;
  • a second adaptive filter 8 generating a first pseudo speech signal with the first error signal from the first subtractor 11 as input and updating the coefficient so that the second error signal is minimized.
  • the first error signal is also supplied to the output terminal 13 as a noise-cancelled speech signal.
  • the signal processing apparatus further includes a third subtractor 9 that subtracts the second pseudo noise signal from the first received signal to generate a third error signal, and the second received signal power.
  • a fourth subtractor 10 that subtracts the pseudo speech signal to generate a fourth error signal, and a fourth error signal as input generates a second pseudo noise signal and the third error signal is minimized.
  • the third adaptive filter 5 updates the coefficients, and the fourth adaptive signal updates the coefficients so that the second error signal is generated with the third error signal as an input and the fourth error signal is minimized.
  • a filter 6 a first signal-to-noise ratio estimation circuit 21 for generating a first signal-to-noise relative relationship from the third error signal and the second pseudo-noise signal, a second pseudo-voice signal and a fourth
  • a second signal-to-noise ratio estimation circuit 22 for generating a second signal-to-noise relative relationship from the error signal of the first reception signal and the second reception signal.
  • a third signal-to-noise ratio estimation circuit 23 for generating a third signal-to-noise relative relationship from the signal and a predetermined delay time for the third signal-to-noise relative relationship to provide delayed signal-to-noise relative.
  • Step size for determining the correction amount of the coefficient
  • Second step size to output
  • a third step size control circuit that outputs a step size for determining the correction amount of the filter coefficient of the third adaptive filter 5 based on the control circuit 20 and the expanded signal to noise relative relationship and the average signal to noise relative relationship.
  • 35 also extended signal to noise relative
  • a fourth step size control circuit 36 which outputs a step size for determining the correction amount of the filter coefficient of the fourth adaptive filter 6 based on the average signal-to-noise relative relationship.
  • the signal processing device of the eighth embodiment shown in FIG. 12 has the comparison circuits 29, 34, the delay circuit 30 and the averaging circuit 31 added to the signal processing device of the first embodiment shown in FIG. Further, step size control circuits 35 and 36 are provided in place of the step size control circuits 17 and 18. Otherwise, the device shown in FIG. 12 has the same configuration as the device shown in FIG. Hereinafter, the comparison circuits 29, 34, the delay circuit 30, the averaging circuit 31, and the step size control circuits 35, 36 will be described.
  • Delay circuit 30 delays the signal-to-noise ratio determined by signal-to-noise ratio estimation circuit 23 for a fixed period of time, and then compares it as the seventh signal-to-noise ratio or the delayed signal-to-noise relationship.
  • the circuit 29 and the comparison circuits 29, 34 are supplied.
  • the comparison circuit 29 compares the third signal-to-noise ratio supplied from the signal-to-noise ratio estimation circuit 23 with the seventh signal-to-noise ratio supplied from the delay circuit 30, and Select the larger one and supply it to the step size control circuit 35 as the expanded signal-to-noise relationship or the eighth signal-to-noise ratio.
  • the output of comparison circuit 29 corresponds to the delay time provided by delay circuit 30 in the section where the signal-to-noise ratio is high. It is an extended form in the positive time direction.
  • the interval for which a small step size can be obtained is also extended in the positive time direction, so that the control of the adaptive filter is more accurate near the end of the speech interval It can be performed.
  • the comparison circuit 34 compares the third signal-to-noise ratio supplied from the signal-to-noise ratio estimation circuit 23 with the seventh signal-to-noise ratio supplied from the delay circuit 30 and has a smaller value. Then, the second expanded signal-to-noise relationship or tenth signal-to-noise ratio is supplied to the step size control circuit 36. That is, the output of the comparison circuit 34 corresponds to the delay time given by the delay circuit 30 in a section where the signal-to-noise ratio is lower than the third signal-to-noise ratio obtained by the signal-to-noise ratio estimation circuit 23. In the positive time direction.
  • the operation of the comparison circuit 34 is to select the smaller one of the third signal-to-noise ratio and the seventh signal-to-noise ratio in the operation of the comparison circuit 29 instead of selecting the larger one. Select it as the tenth signal-to-noise ratio.
  • the comparison circuit 34 is omitted, and as the comparison circuit 29, the larger one of the third signal-to-noise ratio and the seventh signal-to-noise ratio is taken as the eighth signal-to-noise ratio, and the smaller one is taken as the tenth signal-to-noise ratio.
  • the averaging circuit 31 calculates the average of the third signal-to-noise ratio SNR 3 (k) supplied from the signal-to-noise ratio estimating circuit 23 from time k 1 M + 1 to k, as shown in FIG. Signal-to-noise ratio S NR9 (k) to the step size control circuits 35 and 36. This relationship can be expressed by equation (23).
  • the step size control circuit 35 is based on the eighth signal-to-noise ratio SN R8 (k) determined by the comparison circuit 29 and the ninth signal-to-noise ratio SNR9 (k) determined by the averaging circuit 31.
  • the calculated step size OL (k) is supplied to the adaptive filter 5.
  • the step size control circuit 35 receives the SNR 8 (k) and SNR 9 (k) to calculate the step size a (k). This relationship can be expressed by equations (24a)-(24c) and (25)
  • 10 mm a is a constant that satisfies ⁇ a a
  • a (SNR 9 (k)), B (SNR 9 (k)) is SNR 9 (k l O max l O min l O max
  • a (SNR 9 (k)) and B (SNR 9 (k)) can be expressed by the following equations (26a) ⁇ (26c) and (27a) ⁇ (27c).
  • SNR11 and SNR11 are constants satisfying SNR11 ⁇ SNR11, A, A, A
  • the step size control circuit 36 is based on the tenth signal-to-noise ratio SNRIO (k) determined by the comparison circuit 34 and the ninth signal-to-noise ratio SNR9 (k) determined by the averaging circuit 31.
  • the calculated step size ((k) is supplied to the adaptive filter 6. This relationship is given by equation (28a)
  • SNR12 and SNR12 are constants that satisfy SNR12 ⁇ SNR12, C (SNR9
  • D (SNR 9 (k)) are parameters determined by SNR 9 (k).
  • C (SNR 9 (k)) and D (SNR 9 (k)) are A, A, A, B, B, B, and SN of the equations (26a) and (27c).
  • C, C, C, D, D, and D are positive constants max min max 1 2 3 1 2 3.
  • the third signal-to-noise ratio calculated by signal-to-noise ratio estimation circuit 23 is By supplying the expanded value and the average value to the step size control circuits 35, 36 to calculate the step size, it is possible to calculate the optimum step size even when the signal to noise ratio takes a wide range of values. It becomes a word.
  • the averaging circuit 31 is omitted, and A (SNR 9 (k)), B (S NR 9 (k)), C (SNR 9 (k)), D (SNR 9 (k) It is also possible to replace it with a constant.
  • the sections with high or low signal-to-noise ratios for the outputs of the signal-to-noise ratio estimation circuit 21 and the signal-to-noise ratio estimation circuit 22 also have positive time directions.
  • the step size control circuits 19 and 20 may be supplied with the value and the average value expanded to the step size to calculate the step size. Also in this case, it is possible to omit the averaging circuit.
  • the operation principle of the signal processing device of the eighth embodiment shown in FIG. 12 is the same as that of the signal processing device of the first embodiment described above. Specifically, the processing procedure in the eighth embodiment includes the steps (al) (al7) in the first embodiment, and further,
  • the third signal-to-noise relative relationship is delayed by providing a predetermined delay time. Generating a noise-to-noise relationship,
  • the signal-to-noise ratio estimation circuits 21, 22 and 23 operate to obtain the power ratio between the supplied signal component and noise component.
  • the signal-to-noise ratio estimation circuits 21, 22, 23 may be operated to obtain the absolute amplitude ratio of the signal instead of the power ratio.
  • a constant is added to the power (or absolute amplitude) of the noise component. It may be This correction is effective to avoid division by zero and achieve stable operation when the power of the noise component (absolute amplitude) takes a value close to zero.
  • the signal-to-noise ratio estimation circuits 21, 22, 23 a constant may be added to the signal component which is the numerator for the power ratio or the absolute amplitude ratio. This concept may be extended to calculate the ratio after applying specific operations to the denominator and the numerator for which the signal-to-noise ratio should be configured. In other words, what is required in the signal-to-noise ratio estimation circuits 21, 22 and 23 corresponds to the concept of expressing the relative relationship between the signal power and the absolute amplitude ratio of the signal and noise in a strict sense. If it is required.
  • the signal processing based on the present invention is included in the input speech signal.
  • Noise cancellation has been described as an example.
  • reference [27] by supplying the reference signal to the input terminal 2 and the echo signal to the input terminal 1, the above-described devices can also be used for echo cancellation.
  • FIG. 13 is a block diagram showing an example in which a speech recognition device is realized using the signal processing device described above.
  • the voice recognition device 50 performs voice recognition on the output signal of the signal processing circuit 37 including the signal processing device according to each of the above-described embodiments and the signal processing circuit 37, and outputs the recognition result to the output terminal 39. It has 38 and.
  • the signal processing circuit 37 according to the present invention at the front stage of the speech recognition circuit 38, noise is removed from the speech signal to be recognized, so that a speech recognition apparatus capable of more accurate speech recognition is realized. That ability S can.
  • the robot device 60 is realized by providing an operation control circuit 40 which receives an output of the voice recognition circuit 38 and outputs an operation control signal, and a drive unit 41 which causes the predetermined member to operate with the operation control signal as an input. It is possible.
  • the signal-to-noise ratio estimation circuit estimates the signal-to-noise ratio, which is an indicator of the relative relationship between the signals, and the step controller appropriately controlled using this estimated value.
  • the signal-to-noise ratio estimation circuit receives an estimated value of a speech signal as input and calculates an average value thereof to calculate an average value of the estimated speech signal.
  • a first averaging circuit 14 for outputting, a second averaging circuit 15 for receiving the estimated value of the noise signal as input and calculating the average value thereof and outputting the average value of the estimated noise signal; and the average value of the estimated speech signal A configuration having an arithmetic circuit 16 that calculates the ratio of the average value of the estimated noise signal and outputs a signal-to-noise ratio can be used.
  • the first step size control circuit 19 controls signal to noise.
  • the signal to noise ratio output from the ratio estimation circuit 21 may be received as an input, and a small step size may be output when the signal to noise ratio is large as compared to when the signal to noise ratio is small.
  • second step size control circuit 20 receives the signal to noise ratio output from signal to noise ratio estimation circuit 22 as an input, and when the signal to noise ratio is small, signal to noise ratio is reduced. It is also possible to output a smaller step size compared to when the ratio is large.
  • the third step size control circuit 17 receives the signal to noise ratio output from the signal to noise ratio estimation circuit 23 as an input, and the signal to noise ratio is large when the signal to noise ratio is large. It is also possible to output a smaller step size compared to when the ratio is small.
  • the fourth step size control circuit 18 receives the signal to noise ratio output from the signal to noise ratio estimation circuit 23 as an input, and when the signal to noise ratio is small, the signal to noise ratio is It may be configured to output a small step size compared to when the ratio is large.
  • the third step size control circuit 17 receives the enhanced signal to noise ratio and the average signal to noise ratio as inputs, and compares the average signal to noise with respect to the enhanced signal to noise ratio. If the sum of the product of the product of the coefficient determined by the ratio and the constant determined by the average signal-to-noise ratio is within the range between the maximum value and the minimum value, the value is added.
  • a step size is output, and when the added value is larger than the maximum value, a predetermined minimum step size is output as the step size, and when the added value is smaller than the minimum value, the predetermined maximum step size is the step size Also, output as configuration.
  • the fourth step size control circuit 18 receives the enhanced signal to noise ratio and the average signal to noise ratio as inputs, and compares the average signal to noise with respect to the enhanced signal to noise ratio. If the sum of the product of the product of the coefficient determined by the ratio and the constant determined by the average signal-to-noise ratio is within the range between the maximum value and the minimum value, the value is added. Output as a step size, and if the sum is larger than the maximum value, Specified maximum:-Output, and also predetermined minimum if output value is smaller than the minimum value.
  • the signal processing device can also be realized by software. That is, by configuring the processing operation of each circuit in the signal processing device of each embodiment described above as a step or procedure in software, it is possible to configure a program used for signal processing. Such a program is executed by a processor such as a signal processor or a DSP (Digital Signal Processor) that constitutes a noise canceller.
  • a processor such as a signal processor or a DSP (Digital Signal Processor) that constitutes a noise canceller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Computational Linguistics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Telephone Function (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Noise Elimination (AREA)

Abstract

 信号処理装置は、第1の信号を入力として第1の擬似信号を生成する第1の適応フィルタと、第2の信号から第1の擬似信号を差し引いて第1の差信号を出力する第1の減算器と、第1の信号を入力として第2の擬似信号を生成する第2の適応フィルタと、第2の信号から第2の擬似信号を差し引いて第2の差信号を出力する第2の減算器と、第2の擬似信号と第2の差信号との相対関係に応じて、第1の適応フィルタの更新に用いられる第1のステップサイズを生成する第1のステップサイズ制御回路と、第1の信号と第2の信号との相対関係に応じて、第2の適応フィルタの更新に用いられる第2のステップサイズを生成する第2のステップサイズ制御回路と、を有する。                                                                         

Description

明 細 書
信号処理方法および装置
技術分野
[0001] 本発明は、信号処理方法および信号処理装置に関し、特に、マイクロフォン、ハン ドセット、通信路等から入力した所望の信号に対して混入した他の信号を消去し、ま たは、そのような所望の信号を強調するための方法および装置に関する。
^景技術
[0002] マイクロフォンやハンドセット等から入力した音声信号は、音声符号化や音声認識 処理の対象となる。このような音声信号に混入した背景雑音信号は、情報圧縮度の 高い狭帯域音声符号化装置や音声認識装置等において、音声符号化や音声認識 を行う上で、大きな問題となる。このような音響的に重畳した雑音成分の消去を目的 とした信号処理装置として、参考文献 [ 1]一 [9]、 [23]には、適応フィルタを用いた 2 入力型雑音消去装置が開示されている。
[0003] 2入力型雑音消去装置は、参照入力端子に入力した雑音信号が音声入力端子に 到達するまでに通る経路(ノイズパス)のインパルス応答を近似する適応フィルタを用 いて、音声入力端子に混入する雑音信号成分に対応した擬似雑音信号を生成し、 音声入力端子に入力された受音信号力 この擬似雑音信号を差し引くことによって、 雑音信号を抑圧するように動作する。受音信号とは、音声信号と雑音信号とが混在し た信号のことであり、一般に、マイクロフォンやハンドセットから音声入力端子に入力 する信号は受音信号である。このとき、適応フィルタのフィルタ係数は、受音信号から 擬似雑音信号を差し引いた誤差信号と参照入力端子に入力された参照信号との相 関をとることにより修正される。
[0004] このような適応フィルタの係数修正アルゴリズムとしては、参考文献 [23]に記載され ている「LMSアルゴリズム (Least-Mean-Square Algorithm)]や参考文献 [24]に記載 されている「LIM(Learning Identification Method)」が知られている。
[0005] 図 1は、従来の 2入力型雑音消去装置の代表的な構成を示す図である。この雑音 消去装置は、 2つの入力端子 101、 102と適応フィルタ 107と減算器 111と出力端子 113とを備えている。
[0006] 入力端子 101には、話者の近傍に置かれたマイクロフォンによって音響-電気変換 された信号が入力される。入力された信号 X (k)は、 目的とする音声信号 S(k)に背 景雑音信号 n(k)が混入したものであり、式 (1)で表される。
[0007] X (k)=S(k)+n(k) …ひ)
一方、入力端子 102には、入力端子 101よりも話者から離れた位置に置かれたマイ クロフオンによって音響一電気変換された信号が入力される。入力端子 2に接続する マイクロフォンが、十分に話者から離れた位置にあり、十分に雑音源に近い場合、入 力端子 102に入力された信号 X (k)は、入力端子 101に入力される背景雑音信号 N (k)に相当し、式 (2)が成り立つ。
[0008] X (k)=N(k) —(2)
適応フィルタ 107は、入力端子 102に入力された信号 X (k)を入力としてフィルタ演 算を行い、演算結果として擬似雑音信号 R(k)を出力する。
[0009] 減算器 111は、入力端子 101に入力された信号 X (k)から、適応フィルタ 107が出 力する擬似雑音信号 R (k)を減算して差信号 e (k)を生成し、雑音消去装置の出力 信号として出力端子 113に伝達するとともに、適応フィルタ 107の係数更新のための 誤差信号として適応フィルタ 107に供給する。差信号 e(k)は、式 (3)で与えられる。
[0010] e(k)=S(k)+n(k)-R(k) ·'·(3)
適応フィルタ 107は、入力された誤差信号をもとに、係数修正アルゴリズムを用いて フィルタの係数の更新を行う。ここで、適応フィルタの係数更新アルゴリズムとして、参 考文献 [23]に記載の LMSアルゴリズムを仮定し、時刻 kにおける適応フィルタ 107 の j番目の係数を w (k)とすると、適応フィルタ 107が出力する擬似雑音信号 R(k)は 、式 (4)で表される。
[0011] [数 1]
N-1
R(k)= ^Wj(k)-Xr(k-j) 〜(4)
7=0
[0012] ここで、 Nは適応フィルタ 107のタップ数を示す。また、係数の更新は、式 (5)にした がって行われる。 [0013] w (k+ l) =w (k) + a - e (k) -X (k-j) · ' ·(5)
ここで、 ctは「ステップサイズ」と呼ばれる定数であり、係数の収束時間や収束後の 残留誤差を決定するパラメータである。ステップサイズ αが大きい場合には、係数の 修正量が多くなるため、収束が早くなるが、その一方で、最適値付近での係数変動 が大きくなり、最終的な残留誤差が大きくなる。反対に、ステップサイズひが小さい場 合には、収束時間は増加するが、最終的な残留誤差が小さくなる。
[0014] 式 (3)に示したように、誤差信号 e (k)は、音声信号 S (k)を含んでおり、係数更新動 作は e (k) = 0となるように行われるために、 S (k)≠ 0の時、 R (k) =n (k)となるような 係数更新動作は行われなレ、。このため、音声信号 S (k)が、適応フィルタ 107の係数 更新動作にとっては、妨害信号として大きな影響を与える。音声信号 S (k)の影響を 軽減するためには、ステップサイズひを極めて小さな値に設定する必要がある。しか し、上述したようにステップサイズを小さくすると適応フィルタ 107の収束時間が増加 するという問題が生じる。
[0015] このような問題を考慮した方式として、参考文献 [ 10]— [ 19]、 [25]に、ステップサ ィズの制御を行う雑音消去装置が記載されている。
[0016] 図 2は、参考文献 [25]に記載された、ステップサイズの制御を行う従来の適応型雑 音消去装置 (adaptive noise canceller)の構成を示す図である。図 2に示すように、この 従来の装置は、 2つの適応フィルタ 5、 7を備え、適応フィルタ 5を用いて推定した入 力端子 1における信号対雑音比を用いて、適応フィルタ 7のステップサイズを制御す る。音声信号が雑音信号より大きいときには小さなステップサイズ、逆の状態では大 きなステップサイズとなるように制御することによって、適応フィルタ 7の収束時間を短 縮し、出力端子 13に伝達される雑音消去後の信号における歪を減らすことができる 。この雑音除去装置には、さらに、 2つの遅延回路 3、 4と 2つの減算器 9、 11とステツ プサイズ制御回路 19と信号対雑音比推定回路 21とを備えている。
[0017] 適応フィルタ 5の動作は、上述の図 1に示した装置における適応フィルタ 107の動 作と等しい。したがって、信号対雑音比推定回路 21には、入力端子 1における雑音 の影響をとり除かれた音声信号成分の推定値と、入力端子 1における雑音信号成分 の推定値とが供給される。これは、信号対雑音比推定回路 21の入力が、入力端子 1 における音声成分を近似する減算器 9の出力と、雑音成分を近似する適応フィルタ 5 の出力となっているためである。なお、信号対雑音比推定回路は、信号対雑音電力 相対関係推定回路とも呼ばれる。
[0018] 信号対雑音比推定回路 21では、供給される音声信号成分の推定値と雑音信号成 分の推定値とを用いて、信号対雑音比の推定値を求める。信号対雑音比推定回路 2 1で求められた信号対雑音比は、ステップサイズ制御回路 19に供給され、得られたス テツプサイズが適応フィルタ 7に供給される。
[0019] 一方、適応フィルタ 7への入力信号は、図 1の適応フィルタ 107の場合とは異なり、 入力端子 2に供給された信号を遅延回路 4で遅延させたものとなっている。同様に、 減算器 11に入力端子 1から供給される信号は、図 1に示した回路の減算器 111と異 なり、遅延回路 3で遅延させたものとなっている。遅延回路 3、 4は、等しい時間の遅 延を発生させ、適応フィルタ 7による雑音消去が、入力端子 1、 2に供給された信号を 同一の時間だけ遅延させた信号に対して実行されるように構成されている。遅延回 路 3が生じる遅延時間と遅延回路 4が生じる遅延時間は、信号対雑音比推定回路 21 が推定値を算出する際に生じる遅延時間以上に設定される。減算器 11は、図 1に示 した装置の減算器 11と同様に雑音を消去し、出力を出力端子 13に伝達する。
[0020] 信号対雑音比推定回路 21の構成は、図 3のように表すことができる。信号対雑音 比推定回路 21は、平均回路 14、 15及び演算回路 16から構成されている。平均回 路 14は、音声信号成分の推定値が供給され、その平均値を算出して推定音声信号 の平均値を出力する。同様に、平均回路 15は、雑音信号成分の推定値が供給され 、その平均値を算出して推定雑音信号の平均値を出力する。平均回路 14、 15の出 力は、いずれも演算回路 16に供給される。演算回路 16は、平均回路 14、 15から供 給される推定音声信号成分の平均値と推定雑音信号成分の平均値とを用いて、平 均信号対雑音比の推定値を求め、これを第 1の信号対雑音比として出力する。
[0021] 平均回路 14、 15は、時刻 k一 Lから時刻 kまでの平均電力 E (k)を計算する。入力信 号を Y (k)とすると、平均電力 E (k)は式 (6)で与えられる。
[0022] [数 2]
Figure imgf000007_0001
[0023] また、式 (6)のかわりに式 (7)を用いてもよい,
[0024] E(k) = y -E(k-l) + (1 - γ ) -Y2(k) •(7)
ただし、 γは 0く γく 1の定数である。
[0025] ステップサイズ制御回路 19は、信号対雑音比推定回路 21で求められた第 1の信号 対雑音比に基づレ、て計算したステップサイズを、適応フィルタ 7に供給する。
[0026] 時刻 kにおける第 1の信号対雑音比を SNR1 (k)とすると、ステップサイズ制御回路 19は、 SNR1 (k)を入力として、ステップサイズ a (k)を計算する。
1
[0027] a (k)は、 SNR1 < SNR1 (k) < SNR1 で単調減少する関数 f (x)の値として
1 mm max 1 求める。ここに、 SNR1 、 SNR1 は、 SNR1 <SNR1 を満たす定数である。
mm max mm max
[0028] この関係は、式 (8a)— (8c)で表すことができる。
[0029] a (k; =
(SNRl(k)<SNRl ) ■(8a)
min
a (k) =f (SNRl(k))
1 1
(SNR1 ≤SNRl(k)≤SNR1 ) -(8b)
min max
(k) =
1 lmin
(SNRl(k) >SNR1 ) -(8c)
ただし、 ひ 、 ひ は、 ひ < を満たす定数である。
lmin lmax lmin lmax
[0030] 単調減少関数 f (χ)は、例えば、式 (9a) (9c)で表すことができる。
1
[0031] f (χ)=-Α·χ + Β "-(9a)
1
ただし、
A= -a )/(SNRl -SNR1 ) ···( )
lmax lmin max min
B={ α + a +A- (SNR1 +SNR1 )}/2 〜(9c)
lmax lmin max min
参考文献 [25]に記載された雑音消去装置によれば、第 2の適応フィルタ 5を用い て音声入力端子における信号対雑音比を推定することにより、信号対雑音比が大き レ、ときには小さなステップサイズ、逆の状態では大きなステップサイズとなるように、第 1の適応フィルタ 7のステップサイズを制御することができる。このため、妨害信号の影 響を軽減した動作が可能となる。
[0032] しかしながら、入力端子 2に供給される信号が、十分に話者から離れた位置で収集 されていない場合には、式 (10)に示すように、入力端子 2に入力される信号 X (k)は
、背景雑音信号 N (k)に音声信号 s (k)が混入したものとなり、音声信号 s (k)と相関 のある成分が適応フィルタの出力に現れることになる。このため、出力端子 13に伝達 される信号に歪を生じるだけでなぐ信号対雑音比推定回路 21に供給される音声信 号成分に誤りを生じる。
[0033] X (k) =N (k) +s (k) · ' ·(10)
このような問題を考慮した雑音除去装置として、参考文献 [20]、 [21]、 [26]には、 音声信号が参照入力端子に到達するまでに通る経路のインパルス応答を近似する 適応フィルタを用いた雑音消去装置が記載されている。図 4は、参考文献 [26]に記 載された雑音消去装置の構成を示してレ、る。
[0034] 図 4に示した雑音消去装置は、図 2に示した雑音消去装置に対し、さらに、適応フィ ルタ 6、 8と減算器 10、 12とステップサイズ制御回路 20と信号対雑音比推定回路 22 とを追加したものである。この雑音消去装置では、入力端子 2に漏れこむ音声信号に 対応した信号を適応フィルタ 8が生成し、適応フィルタ 8の出力を入力端子 2に供給さ れる信号から減算した結果を適応フィルタ 7に供給することにより、入力端子 2に漏れ こむ音声信号の妨害を軽減してレ、る。適応フィルタ 6及び信号対雑音比推定回路 22 は、図 2に示した雑音消去装置の場合と同様の原理にしたがって、適応フィルタ 8の ステップサイズを制御する。図 4に示す装置において適応フィルタ 7への入力信号は 、図 2に示す装置の場合とは異なり、音声の影響をとり除かれた雑音信号成分の推 定値となっている。これは、適応フィルタ 7の入力力 入力端子 2における雑音成分を 近似する減算器 12の出力となっているためである。同様に、図 4に示す装置におい て、適応フィルタ 5の入力信号は、図 2に示す装置の場合と異なり、減算器 10の出力 となっている。
[0035] 適応フィルタ 8の入力信号は、雑音の影響をとり除かれた音声信号成分の推定値と なっている。これは、適応フィルタ 8の入力が、入力端子 1における音声成分を近似 する減算器 11の出力となっているためである。適応フィルタ 8は、減算器 11から供給 された信号に対してフィルタ演算を行い、演算結果として第 1の擬似音声信号を出力 する。同様に、適応フィルタ 6の入力信号は、減算器 9の出力となっている。適応フィ ルタ 6は、減算器 9から供給された信号に対してフィルタ演算を行い、演算結果として 第 2の擬似音声信号を出力する。
[0036] 減算器 12は、遅延回路 4の出力力も適応フィルタ 8の出力を減算し、減算結果を出 力として適応フィルタ 7に供給するとともに、係数更新のための誤差信号として適応フ ィルタ 8に伝達する。減算器 10は、入力端子 2に供給される信号から適応フィルタ 6 の出力を減算し、その減算結果を適応フィルタ 5に供給するとともに、係数更新のた めの誤差信号として適応フィルタ 6に伝達する。
[0037] 信号対雑音比推定回路 22には、入力端子 2における音声の影響を取り除かれた 雑音信号成分の推定値と、入力端子 2における音声信号成分の推定値が供給され る。これは、信号対雑音比推定回路 2の入力が、入力端子 2における雑音成分を近 似する減算器 10の出力と、音声成分を近似する適応フィルタ 6の出力となっているた めである。信号対雑音比推定回路 22の構成は、図 3を用いて説明した信号対雑音 比推定回路 21の構成と等しい。したがって、信号対雑音比推定回路 22は、供給され る音声信号成分の推定値と雑音信号成分の推定値とを用いて、信号対雑音比の推 定値を求め、第 2の信号対雑音比として、ステップサイズ制御回路 20に供給する。
[0038] ステップサイズ制御回路 20は、信号対雑音比推定回路 22で求められた第 2の信号 対雑音比に基づレ、て計算したステップサイズを、適応フィルタ 8に供給する。
[0039] 時刻 kにおける第 2の信号対雑音比の推定値を SNR2 (k)とすると、ステップサイズ 制御回路 20は、 SNR2 (k)を入力として、ステップサイズ a (k)を計算する。
2
[0040] (k)は、 SNR2 く SNR2 (k)く SNR2 で単調増加する関数 f (x)の値として
2 mm max 2 求める。ここで、 SNR2 、 SNR2 は、 SNR2 < SNR2 を満たす定数である。こ
mm max mm max
の関係は、式 (1 la)— (1 lc)で表すことができる。
[0041] ( )― a
(SNR2 (k) < SNR2 ) …ひ la)
min
a (k) = f (SNR2 (k) )
2 2
(SNR2 ≤SNR2 (k)≤SNR2 ) •■•(l ib) (k) =
2 2max
(SNR2(k) >SNR2 ) 〜(llc)
max
ただし、 a 、 α は、 a < a を満たす定数である。
2mm 2max 2 mm 2max
[0042] 単調増加関数 f (χ)は、例えば、式 (12a) (12c)とすることができる。
2
[0043] f (x)=Ox + D ---(12a)
2
C=(a —a )/(SNR2 -SNR2 ) "'(12 )
2max 2min max min
D={ひ + a -C- (SNR2 +SNR2 )}/2 ---(12c)
2max 2min max min
参考文献 [26]に記載の雑音消去装置によれば、適応フィルタ 8を用いて参照入力 端子に漏れこむ音声信号を推定し、この推定値を減算器で差し引くことにより、入力 端子 2に漏れこむ音声信号による妨害を軽減することができる。また、適応フィルタ 6 を用いて参照入力端子における信号対雑音比を推定することにより、信号対雑音比 が大きいときには大きなステップサイズ、逆の状態では小さなステップサイズとなるよう に、適応フィルタ 8のステップサイズを制御することができ、妨害信号の影響を軽減し た動作が可能となる。
[0044] 以下、本明細書で引用した参考文献を列挙する。
特許文献 1: [1]特開平 9-36763号公報
特許文献 2: [2]特開平 8— 56180号公報
特許文献 3: [3]特開平 6— 284491号公報
特許文献 4: [4]特開平 6— 90493号公報
特許文献 5: [5]特開平 9一 181653号公報
特許文献 6: [6]特開平 5 - 75391号公報
特許文献 7: [7]特開平 5— 158494号公報
特許文献 8: [8]特開平 5 - 22788号公報
特許文献 9: [9]特開昭 61 - 194914号公報
特許文献 10: [10]特開 2000-4494号公報
特許文献 11 :[11]特開 2000—172299号公報
特許文献 12: [12]特開平 11—27099号公報
特許文献 13: [13]特開平 11—345000号公報 特許文献 14 : [14]特開平 10-3298号公報
特許文献 15 : [15]特開平 10-215193号公報
特許文献 16 : [16]特開平 9-18291号公報
特許文献 17 : [17]特開平 8-241086号公報
特許文献 18 : [18]特開昭 62—135019号公報
特許文献 19 : [19]特開昭 61—194913号公報
特許文献 20 : [20]特開平 10—215194号公報
特許文献 21 : [21]特開平 8—110794号公報
特許文献 22 : [22]特表平 11—502324号公報
特午文默丄: [23」 Bernard Wi row et. al, Adaptive Noise Cancelling: Principles and Applications," PROCEEDINGS OF IEEE, VOL. 63, NO. 12, 1975, pp.
1692-1716
非特許文献 2 : [24]Jin-ichi Nagumo and Atsuhiko Noda, "A Learning Method for System Identification," IEEE Transactions on Automatic Control, VOL. 12, NO. 3, 1967, pp. 282-287
非特許文献 3 : [25] Shigeji Ikeda and Akihiko Sugiyama, "An Adaptive Noise
Canceller with Low Signal Distortion for Speech Codec," IEEE TRANSACTIONS
ON SIGNAL PROCESSING, VOL. 47, NO. 3, 1999, pp. 665-674
非特許文献 4 : [26] Shigeji Ikeda and Akihiko Sugiyama, "An Adaptive Noise
Canceller with Low Signal Distortion in the Presence of Crosstalk," IEICE
TRANSACTIONS ON FUNDAMENTALS, VOL. E82—A, NO. 8, 1999, pp.
1517-1525
非特許文献 5 : [27] David G. Messerschmitt, "Echo Cancellation in Speech and Data Transmission," IEEE Journal on Selected Are as in Communications, VOL. SAC-2, NO. 2, 1984, pp. 283-297
非特許文献 6 : [28]John J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, VOL. 9, NO. 1, pp. 14—37, 1992 発明の開示 発明が解決しょうとする課題
[0045] ところで、雑音消去装置が用いられる環境、及び、音声入力端子や参照入力端子 の配置によって、音声入力端子や参照入力端子における信号対雑音比は広範囲に 変化する。例えば図 4を参照して説明した従来の装置では、適応フィルタ 5、 6の係数 更新のステップサイズが固定値であるために、音声入力端子や参照入力端子におけ る信号対雑音比の値によっては、収束時間が増加し、または、減算器 9、 10の出力 信号における歪が増加する。これらは、信号対雑音比推定回路 21、 22に供給される 音声成分と雑音成分との推定値の精度の劣化を引き起こし、適応フィルタ 7、 8の収 束時間の増カロ、あるいは出力端子 13に出力される出力音声における歪増加を生じ る。
[0046] したがって、本発明の目的は、音声入力端子や参照入力端子における広範囲な信 号対雑音比の入力信号に対して、収束時間が短ぐ出力音声における歪の少ない雑 音消去を実現する信号処理方法を提供することにある。
[0047] 本発明の別の目的は、音声入力端子や参照入力端子における広範囲な信号対雑 音比の入力信号に対して、収束時間が短ぐ出力音声における歪の少ない雑音消去 を実現する信号処理装置を提供することにある。
課題を解決するための手段
[0048] 本発明の 1つのアスペクトに係る信号処理方法は、第 1の信号と、所望の信号を含 む第 2の信号とを用いて所望の信号を取り出す方法であって、第 1の信号と第 2の信 号の関係を用いて、第 1の信号と第 2の信号を入力として動作する第 1の信号処理を 制御する段階と、第 1の信号処理の結果を用いて、第 1の信号と第 2の信号を入力と して動作する第 2の信号処理を制御する段階と、を有する。
[0049] 本発明の他のアスペクトに係る信号処理方法は、第 1の信号を入力とする第 1の適 応フィルタによって第 1の擬似信号を生成する段階と、第 2の信号から第 1の擬似信 号を差し引くことによって第 1の差信号を生成する段階と、第 1の差信号を用いて第 1 の適応フィルタの係数を更新する段階と、第 1の信号を入力とする第 2の適応フィルタ によって第 2の擬似信号を生成する段階と、第 2の信号力 第 2の擬似信号を差し引 くことによって第 2の差信号を生成する段階と、第 2の差信号を用いて第 2の適応フィ ルタの係数を更新する段階と、第 2の擬似信号と第 2の差信号との相対関係に応じて 制御される第 1のステップサイズを用いて第 1の適応フィルタの係数更新を制御する 段階と、第 1の信号と第 2の信号との相対関係に応じて制御される第 2のステップサイ ズを用いて第 2の適応フィルタの係数更新を制御する段階と、第 1の差信号を出力す る段階と、を有する。
[0050] 第 2の擬似信号と第 2の差信号との相対関係や第 1の信号と第 2の信号との相対関 係は、典型的には、信号対雑音比で表される。
[0051] 本発明のさらに別のアスペクトに係る信号処理方法は、第 1の信号と第 2の信号とを 入力とする信号処理方法であって、第 1の中間信号を入力とする第 1の適応フィルタ によって第 1の擬似信号を生成し、第 2の信号力 第 1の擬似信号を差し引くことによ つて第 1の差信号を生成し、第 1の差信号を用いて第 1の適応フィルタの係数を更新 する段階と、第 2の中間信号を入力とする第 2の適応フィルタによって第 2の擬似信 号を生成し、第 2の信号力 第 2の擬似信号を差し引くことによって第 2の差信号を生 成し、第 2の差信号を用いて第 2の適応フィルタの係数を更新する段階と、第 1の差 信号を入力とする第 3の適応フィルタによって第 3の擬似信号を生成し、第 1の信号 力 第 3の擬似信号を差し引くことによって第 3の差信号を生成し、第 3の差信号を第 1の中間信号として第 1の適応フィルタに入力し、第 3の差信号を用いて第 3の適応フ ィルタの係数を更新する段階と、第 2の差信号を入力とする第 4の適応フィルタによつ て第 4の擬似信号を生成し、第 1の信号力 第 4の擬似信号を差し引くことによって第 4の差信号を生成し、第 4の差信号を第 2の中間信号として第 2の適応フィルタに入 力し、第 4の差信号を用いて第 4の適応フィルタの係数を更新する段階と、信号間の 相対関係に基づいて、第 1のステップサイズを用いて第 1の適応フィルタの係数更新 を制御し、第 2のステップサイズを用いて第 2の適応フィルタの係数更新を制御し、第 3のステップサイズを用いて第 3の適応フィルタの係数更新を制御し、第 4のステップ サイズを用いて第 4の適応フィルタの係数更新を制御する段階と、第 1の差信号を出 力する段階と、を有する。
[0052] 本発明において、信号間の相対関係は一例として信号対雑音比で表されるが、相 対関係として、信号対雑音比以外の指標も用いてもよい。 [0053] 信号間の相対関係の一例として、第 1のステップサイズは第 2の擬似信号と第 2の 差信号との相対関係に応じて制御され、第 2のステップサイズは第 1の信号と第 2の 信号との相対関係に応じて制御され、第 3のステップサイズは第 4の擬似信号と第 4 の差信号との相対関係に応じて制御され、第 4のステップサイズは第 1の信号と第 2 の信号との相対関係に応じて制御される。また別の例では、第 1のステップサイズは 第 2の擬似信号と第 2の差信号との相対関係に応じて制御され、第 2のステップサイ ズは第 1の信号と第 2の信号との相対関係に応じて制御され、第 3のステップサイズ は、第 4の擬似信号と第 4の差信号との相対関係に応じて制御され、第 4のステップ サイズは、第 4の擬似信号と第 4の差信号との相対関係に応じて制御される。これら の例の他にも、各ステップサイズを求めるために用いられる相対関係を構成する信号 の組合せは、多数、存在する。
[0054] 本発明のさらに他のアスペクトにかかる信号処理装置は、第 1の信号と、所望の信 号を含む第 2の信号とを入力し、所望の信号を取り出す信号処理装置であって、第 1 の信号と第 2の信号の関係を計算する計算回路と、第 1の信号と第 2の信号を入力と する第 1の信号処理手段と、第 1の信号と第 2の信号を入力とする第 2の信号処理手 段と、を備え、計算回路の出力を用いて第 1の信号処理手段の動作が制御され、第 1 の信号処理手段の出力を用いて第 2の信号処理手段の動作が制御される。
[0055] 本発明のさらに他のアスペクトにかかる信号処理装置は、第 1の信号を入力として 第 1の擬似信号を生成する第 1の適応フィルタと、第 2の信号力 第 1の擬似信号を 差し引くことによって第 1の差信号を生成する第 1の減算器と、第 1の信号を入力とし て第 2の擬似信号を生成する第 2の適応フィルタと、第 2の信号から第 2の擬似信号 を差し引くことによって第 2の差信号を生成する第 2の減算器と、第 2の擬似信号と第 2の差信号の相対関係に応じて第 1のステップサイズを生成する第 1のステップサイ ズ制御手段と、第 1の信号と第 2の信号の相対関係に応じて第 2のステップサイズを 生成する第 2のステップサイズ制御手段と、を有し、第 1の差信号と第 1のステップサ ィズを用いて第 1の適応フィルタの係数が更新され、第 2の差信号と第 2のステップサ ィズを用いて第 2の適応フィルタの係数が更新され、第 1の差信号が出力される。
[0056] 本発明のさらに他のアスペクトにかかる信号処理装置は、第 1の信号と第 2の信号と 入力する信号処理装置であって、第 1の中間信号を入力として第 1の擬似信号を生 成する第 1の適応フィルタと、第 2の信号力 第 1の擬似信号を差し引くことによって 第 1の差信号を生成する第 1の減算器と、第 2の中間信号を入力として第 2の擬似信 号を生成する第 2の適応フィルタと、第 2の信号から第 2の擬似信号を差し引くことに よって第 2の差信号を生成する第 2の減算器と、第 1の差信号を入力として第 3の擬 似信号を生成する第 3の適応フィルタと、第 1の信号から第 3の擬似信号を差し引くこ とによって第 3の差信号を生成し、第 3の差信号を第 1の中間信号として第 1の適応フ ィルタに供給する第 3の減算器と、第 2の差信号を入力として第 4の擬似信号を生成 する第 4の適応フィルタと、第 1の信号力 第 4の擬似信号を差し引くことによって第 4 の差信号を生成し、第 4の差信号を第 2の中間信号として第 2の適応フィルタに供給 する第 4の減算器と、信号間の相対関係に基づいて、第 1のステップサイズ、第 2のス テツプサイズ、第 3のステップサイズ及び第 4のステップサイズを生成するステップサイ ズ制御手段と、を有し、第 1の差信号と第 1のステップサイズを用いて第 1の適応フィ ルタの係数が更新され、第 2の差信号と第 2のステップサイズを用いて第 2の適応フィ ルタの係数が更新され、第 3の差信号と第 3のステップサイズを用いて第 3の適応フィ ルタの係数が更新され、第 4の差信号と第 4のステップサイズを用いて第 4の適応フィ ルタの係数が更新され、第 1の差信号が出力される。
[0057] 本発明によれば、信号対雑音比を推定し、信号対雑音比推定値を用いて適切に 制御されたステップサイズを有する適応フィルタを動作させ、適応フィルタの出力信 号に基づいて推定された信号対雑音比を用いて他の適応フィルタのステップサイズ を決定することにより、音声入力端子や参照入力端子における、広範囲な信号対雑 音比の入力信号に対して、収束時間が短ぐかつ、出力音声における歪の少ない信 号処理を実現することができる。
図面の簡単な説明
[0058] [図 1]従来の信号処理装置の構成の一例を示すブロック図である。
[図 2]従来の信号処理装置の構成の別の例を示すブロック図である。
[図 3]図 2に示した信号処理装置に用いられる信号対雑音比推定回路の構成を示す ブロック図である。 [図 4]従来の信号処理装置の構成のさらに別の例を示すブロック図である。
園 5]本発明の第 1の実施形態の信号処理装置の構成を示すブロック図である。 園 6]本発明の第 2の実施形態の信号処理装置の構成を示すブロック図である。
[図 7]本発明の第 3の実施形態の信号処理装置の構成 図である。
[図 8]本発明の第 4の実施形態の信号処理装置の構成 図である。
[図 9]本発明の第 5の実施形態の信号処理装置の構成 図である。
[図 10]本発明の第 6の実施形態の信号処理装置の構成 図である [図 11]本発明の第 7の実施形態の信号処理装置の構成 図である [図 12]本発明の第 8の実施形態の信号処理装置の構成 図である [図 13]本発明の信号処理装置を用レ、る音声認識装置の構成の一例を示すブロック 図である。
[図 14]本発明の信号処理装置を用いるロボット装置の構成の一例を示すブロック図 である。
発明を実施するための最良の形態
[0059] 本発明を実施するための最良の形態について説明する。以下では、本発明に基づ く信号処理装置を、音声信号を処理する装置として実現化した形態、特に、雑音消 去装置として実現した例を挙げて説明する。しかしながら、以下の各実施形態の信号 処理装置は、その構成を変更することなぐ雑音消去装置以外の各種の信号処理装 置として用いることができることは、レ、うまでもない。
[0060] 図 5に示した本発明の第 1の実施形態の信号処理装置は、音声入力端子 1と、参 照入力端子 2と、出力端子 13と、音声入力端子 1から入力される第 1の受音信号 X ( k)を受けて第 1の受音信号に予め定められた遅延時間を与えて第 1の遅延受音信 号を生成する第 1の遅延回路 3と、参照入力端子 2から入力される第 2の受音信号 X
(k)を受けて第 2の受音信号に第 1の遅延回路 3と同じ遅延時間を与えて第 2の遅延 受音信号を生成する第 2の遅延回路 4と、第 1の遅延受音信号から第 1の擬似雑音 信号を減算して第 1の誤差信号を生成する第 1の減算器 11と、第 2の遅延受音信号 力 第 1の擬似音声信号を減算して第 2の誤差信号を生成する第 2の減算器 12と、 第 2の誤差信号を入力として第 1の擬似雑音信号を生成して第 1の誤差信号が最小 となるように係数を更新する第 1の適応フィルタ 7と、第 1の誤差信号を入力として第 1 の擬似音声信号を生成し第 2の誤差信号が最小となるように係数を更新する第 2の 適応フィルタ 8と、備える。第 1の減算器 11からの第 1の誤差信号は、雑音が消去さ れた音声信号として、出力端子 13にも出力されている。
[0061] さらに、図 5に示した信号処理装置は、第 1の受音信号から第 2の擬似雑音信号を 減算して第 3の誤差信号を生成する第 3の減算器 9と、第 2の受音信号力 第 2の擬 似音声信号を減算して第 4の誤差信号を生成する第 4の減算器 10と、第 4の誤差信 号を入力として第 2の擬似雑音信号を生成し、第 3の誤差信号が最小となるように係 数を更新する第 3の適応フィルタ 5と、第 3の誤差信号を入力として第 2の擬似音声信 号を生成し第 4の誤差信号が最小となるように係数を更新する第 4の適応フィルタ 6と 、第 3の誤差信号と第 2の擬似雑音信号とから第 1の信号対雑音相対関係を生成す る第 1の信号対雑音比回路 21と、第 2の擬似音声信号と第 4の誤差信号とから第 2の 信号対雑音相対関係を生成する第 2の信号対雑音比回路 22と、第 1の受音信号と 第 2の受音信号とから第 3の信号対雑音相対関係を生成する第 3の信号対雑音比回 路 23と、第 1の信号対雑音相対関係に基づいて第 1の適応フィルタ 7のフィルタ係数 の修正量を決定するステップサイズを出力する第 1のステップサイズ制御回路 19と、 第 2の信号対雑音相対関係に基づいて第 2の適応フィルタ 8のフィルタ係数の修正 量を決定するステップサイズを出力する第 2のステップサイズ制御回路 20と、第 3の 信号対雑音相対関係に基づいて第 3の適応フィルタ 5のフィルタ係数の修正量を決 定するステップサイズを出力する第 3のステップサイズ制御回路 17と、同じく第 3の信 号対雑音相対関係に基づいて第 4の適応フィルタ 6のフィルタ係数の修正量を決定 するステップサイズを出力する第 4のステップサイズ制御回路 18と、を備えている。
[0062] 上述の信号処理装置において、信号対雑音比推定回路 21— 23としては、図 3を 用いて説明した信号対雑音比推定回路を使用することができる。したがって、上述し たものでは、信号対雑音相対関係として、信号対雑音比が用レ、られることになる。
[0063] 図 4と図 5とを比較すれば分かるように、図 5に示した信号処理装置は、図 4に示し た従来の信号処理装置に対し、さらに第 3の信号対雑音比推定回路 23と第 3のステ ップサイズ制御回路 17と第 4のステップサイズ制御回路 18を追加した構成のもので ある。図 5において、図 4に示した要素と同一または同等の要素には、同一の参照符 号が付されている。そこで、以下では、図 4におけるものと同一の要素についての説 明は重複をさけるために省略し、信号対雑音比推定回路 23、ステップサイズ制御回 路 17及びステップサイズ制御回路 18を中心にして、図 5に示した信号処理装置を説 明する。
[0064] 音声入力端子 1に入力された第 1の受音信号と参照入力端子 2に入力された第 2の 受音信号とが供給される信号対雑音比推定回路 23は、第 1の受音信号を音声信号 成分の推定値とし、第 2の受音信号を雑音信号成分の推定値として、信号対雑音比 の推定値を求め、これを第 3の信号対雑音相対関係である第 3の信号対雑音比とし て出力する。信号対雑音比推定回路 23で求められた第 3の信号対雑音比は、ステツ プサイズ制御回路 17及びステップサイズ制御回路 18に供給され、得られたステップ サイズが、それぞれ、適応フィルタ 5及び適応フィルタ 6に供給される。
[0065] ステップサイズ制御回路 17は、信号対雑音比推定回路 23で求められた第 3の信号 対雑音比に基づレ、て計算したステップサイズ a (k)を、適応フィルタ 5に供給する。
3
時刻 kにおける第 3の信号対雑音比の推定値を SNR3 (k)とすると、ステップサイズ制 御回路 17は、 SNR3 (k)を入力としてステップサイズ a (k)を計算する。
[0066] a (k)は、 SNR3 < SNR3 (k) < SNR3 で単調減少する関数 f (x)の値として
ό mm max ό 求める。ここに、 SNR3 、 SNR3 は、 SNR3 < SNR3 を満たす定数である。こ
mm max mm max
の関係は、式 (13a)— (13c)で表わすことができる。
[0067] a (k) = a
ύ 3max
(SNR3 (k) < SNR3 ) •(13a)
min
a (k) = f (SNR3 (k) )
3 3
(SNR3 ≤SNR3 (k)≤SNR3 ) ■(13b)
min max
a (k) = a
3 3min
(SNR3 (k) > SNR3 ) ■(13c)
ただし、 ひ 、 ひ は、 ひ < を満たす定数である。
3min 3max 3min 3max
[0068] 単調減少関数 f (x)は、式 (9a) (9c)のひ 、 ひ 、 SNR1 、 SNR1 の代わり
3 lmax lmin max min
に、 ひ 、 a 、 SNR3 、 SNR3 を用いて、 f (x)と同様に決定できる。
3max 3min max min 1 [0069] ステップサイズ制御回路 18は、信号対雑音比推定回路 23で求められた第 3の信号 対雑音比 SNR3 (k)に基づレ、て計算したステップサイズ a (k)を、適応フィルタ 6に 供給する。
[0070] a (k)は、 SNR4 < SNR4 (k) < SNR4 で単調増加する関数 f (x)の値として 求める。ここで SNR4 、 SNR4 は、 SNR4 < SNR4 を満たす定数である。この 関係は、式 (14a)— (14c)で表わすことができる。
Figure imgf000019_0001
(SNR3 (k) < SNR4 ) •(14a)
a (k) = f (SNR3 (k) )
(SNR4 ≤ SNR3 (k)≤ SNR4 ) ■(14b)
(k) =
(SNR3 (k) > SNR4 ) ■(14c)
ただし、 a 、 α は、 a < a を満たす定数である c
[0072] 単調増加関数 f (x)は、上式 (12a)— (12c)の α 、 a 、 SNR2 、 SNR2 の代 わりに、 a 、 a 、 SNR4 、 SNR4 を用いて、 f (x)と同様に決定できる。
[0073] 次に、図 5に示した信号処理装置すなわち雑音消去装置の動作原理について説 明する。
[0074] この信号処理装置は、音声入力端子 1から入力される第 1の受音信号に混入する 雑音信号を消去するために、第 1の受音信号に含まれる雑音信号を推定する第 1の 適応フィルタ 7と、参照入力端子 2に入力される第 2の受音信号に混入する音声信号 を消去するために第 2の受音信号に含まれる音声信号を推定する第 2の適応フィノレ タ 8と、第 1の受音信号及び第 2の受音信号における信号対雑音相対関係 (すなわち 信号対雑音比)を推定するために、音声入力端子 1から入力される第 1の受音信号 に含まれる雑音信号を推定する第 3の適応フィルタ 5と、参照入力端子 2に入力され る第 2の受音信号に含まれる音声信号を推定する第 4の適応フィルタ 6とを備えてい る。そして、第 1のステップサイズ制御回路 19は、第 1の受音信号における信号対雑 音相対関係に基づき、第 1の受音信号において音声信号に比べ雑音信号が多いと 判断したときは、第 1の適応フィルタ 7に対して大きなステップサイズを供給し、収束を 速める。逆に、第 1の受音信号において音声信号に比べ雑音信号が少ないと判断し たときは、第 1のステップサイズ制御回路 19は、第 1の適応フィルタ 7に小さなステツ プサイズを供給し、誤った収束へ向力うことを防止する。同様に、第 2のステップサイ ズ制御回路 20は、第 2の受音信号における信号対雑音相対関係に基づき、第 2の 受音信号において雑音信号に比べ音声信号が多いと判断したときは、第 2の適応フ ィルタ 8に大きなステップサイズを供給し、収束を速める。逆に、雑音信号に比べ音声 信号が少ないと判断したときは、第 2のステップサイズ制御回路 20は、第 2の適応フィ ルタ 8に小さなステップサイズを供給し、誤った収束へ向力、うことを防止する。
[0075] さらに、第 1の受音信号における信号対雑音相対関係に基づき、第 3のステップサ ィズ制御回路 17は、第 1の受音信号において音声信号に比べ雑音信号が多いと判 断したときは、第 3の適応フィルタ 5に大きなステップサイズを供給し、収束を速める。 逆に、第 1の受音信号において音声信号に比べ雑音信号が少ないと判断したときは 、第 3のステップサイズ制御回路 17は、第 3の適応フィルタ 5に小さなステップサイズ を供給し、誤った収束へ向力うことを防止する。同様に、第 4のステップサイズ制御回 路 18は、第 2の受音信号における信号対雑音相対関係に基づき、第 2の受音信号 において雑音信号に比べ音声信号が多いと判断したときは、第 4の適応フィルタ 6に 大きなステップサイズを供給し、収束を速める。逆に、雑音信号に比べ音声信号が少 ないと判断したときは、第 4のステップサイズ制御回路 18は、第 4の適応フィルタ 6に 小さなステップサイズを供給し、誤った収束へ向力 ことを防止する。
[0076] 以上説明したように、本発明の第 1の実施形態による信号処理装置は、音声入力 端子 1と参照入力端子 2に入力される信号を用いて推定した信号対雑音比を用いて 適応フィルタ 5の係数更新動作にとって妨害となる信号の大きさを推定し、適応フィル タ 5のステップサイズを、信号対雑音比が大きいときには小さなステップサイズとして 係数更新動作への妨害信号の影響を軽減し、逆の状態では大きなステップサイズと して係数更新動作の収束時間を短縮するように制御する。同様に、この信号処理装 置は、適応フィルタ 6のステップサイズを、信号対雑音比が大きいときには大きなステ ップサイズ、逆の状態では小さなステップサイズとなるように制御する。したがって、音 声入力端子 1や参照入力端子 2における信号対雑音比の値に依存せず、収束時間 が短縮し、または、減算器 9及び 10の出力信号における歪が減少する。これらは、信 号対雑音比推定回路 21及び 22に供給する音声成分と雑音成分の推定値精度の向 上につながり、適応フィルタ 7及び 8の収束時間の短縮、あるいは出力端子 13に出 力される出力音声における歪削減を達成する。すなわち、音声入力端子 1や参照入 力端子 2における広範囲な信号対雑音比の入力信号に対して、適応フィルタ 7及び 8 の収束時間が短ぐ出力音声における歪の少ない雑音消去装置として用いられるこ との信号処理装置が得られたことになる。
上述した第 1の実施形態での処理手順は、具体的には、以下の、
(al)受音信号に予め定められた遅延時間を与えて第 1及び第 2の遅延受音信号 を生成する段階、
(a2)第 1の遅延受音信号力 第 1の擬似雑音信号を減算して第 1の誤差信号を生 成する段階、
(a3)第 2の遅延受音信号から第 1の擬似音声信号を減算して第 2の誤差信号を生 成する段階、
(a4)第 2の誤差信号を第 1の適応フィルタ 7に入力して第 1の擬似雑音信号を生成 する段階、
(a5)第 1の誤差信号が最小となるように第 1の適応フィルタ 7の係数を更新する段 階、
(a6)第 1の誤差信号を第 2の適応フィルタ 8に入力して第 1の擬似音声信号を生成 する段階、
(a7)第 2の誤差信号が最小となるように第 2の適応フィルタ 8の係数を更新する段 階、
(a8)第 1の誤差信号を雑音が消去された音声信号として出力端子に出力するする 段階、
(a9)第 1の受音信号力 第 2の擬似雑音信号を減算して第 3の誤差信号を生成す る段階、
(alO)第 2の受音信号力 第 2の擬似雑音信号を減算して第 4の誤差信号を生成 する段階、 (al l)第 4の誤差信号を第 1の適応フィルタと同様の構成の第 3の適応フィルタ 5に 入力して第 2の擬似雑音信号を生成する段階、
(al 2)第 3の誤差信号が最小となるように第 3の適応フィルタ 5の係数を更新する段 階、
(al 3)第 3の誤差信号を第 2の適応フィルタと同様の構成の第 4の適応フィルタ 6に 入力して第 2の擬似音声信号を生成する段階、
(al4)第 4の誤差信号が最小となるように第 4の適応フィルタ 6の係数を更新する段 階、
(al 5)第 3の誤差信号と第 2の擬似雑音信号とから第 1の信号対雑音相対関係を 生成する段階、
(al6)第 2の擬似音声信号と第 4の誤差信号とから第 2の信号対雑音相対関係を 生成する段階、
(al 7)第 1の受音信号と第 2の受音信号とから第 3の信号対雑音相対関係を生成 する段階、
(al8)第 1の信号対雑音相対関係に基づいて第 1の適応フィルタ 7のフィルタ係数 の修正量を決定するステップサイズを出力する段階、
(al 9)第 2の信号対雑音相対関係に基づいて第 2の適応フィルタ 8のフィルタ係数 の修正量を決定するステップサイズを出力する段階、
(a20)第 3の信号対雑音相対関係に基づいて第 3及び第 4の適応フィルタ 5、 6の フィルタ係数の修正量を決定するステップサイズを出力するする段階、
とを有する。
[0078] 次に、本発明の第 2の実施形態について説明する。本発明の第 2の実施形態の信 号処理装置を示す図 6において、図 5に示した要素と同一又は同等の要素には、同 一の参照符号が付されてレ、る。
[0079] 図 6に示した第 2の実施形態の信号処理装置は、音声入力端子 1と、参照入力端 子 2と、出力端子 13と、音声入力端子 1から入力される第 1の受音信号 X (k)を受け
P
て第 1の受音信号に予め定められた遅延時間を与えて第 1の遅延受音信号を生成 する第 1の遅延回路 3と、参照入力端子 2から入力される第 2の受音信号 X (k)を受
R けて第 2の受音信号に第 1の遅延回路 3と同じ遅延時間を与えて第 2の遅延受音信 号を生成する第 2の遅延回路 4と、第 1の遅延受音信号から第 1の擬似雑音信号を減 算して第 1の誤差信号を生成する第 1の減算器 11と、第 2の遅延受音信号力 第 1の 擬似音声信号を減算して第 2の誤差信号を生成する第 2の減算器 12と、第 2の減算 器 12からの第 2の誤差信号を入力として第 1の擬似雑音信号を生成して第 1の誤差 信号が最小となるように係数を更新する第 1の適応フィルタ 7と、第 1の減算器 11から の第 1の誤差信号を入力として第 1の擬似音声信号を生成し第 2の誤差信号が最小 となるように係数を更新する第 2の適応フィルタ 8と、を備えており、第 1の誤差信号は 、雑音が消去された音声信号として出力端子 13にも供給されている。
[0080] さらにこの信号処理装置は、第 1の受音信号から第 2の擬似雑音信号を減算して第 3の誤差信号を生成する第 3の減算器 9と、第 2の受音信号力 第 2の擬似音声信号 を減算して第 4の誤差信号を生成する第 4の減算器 10と、第 4の誤差信号を入力とし て第 2の擬似雑音信号を生成し第 3の誤差信号が最小となるように係数を更新する 第 3の適応フィルタ 5と、第 3の誤差信号を入力として第 2の擬似音声信号を生成し第 4の誤差信号が最小となるように係数を更新する第 4の適応フィルタ 6と、第 3の誤差 信号と第 2の擬似雑音信号とから第 1の信号対雑音相対関係を生成する第 1の信号 対雑音比推定回路 21と、第 2の擬似音声信号と第 4の誤差信号とから第 2の信号対 雑音相対関係を生成する第 2の信号対雑音比推定回路 22と、第 1の受音信号と第 2 の受音信号とから第 3の信号対雑音相対関係を生成する第 3の信号対雑音比推定 回路 23と、第 1の信号対雑音相対関係に基づいて第 1の適応フィルタのフィルタ係 数の修正量を決定するステップサイズを出力する第 1のステップサイズ制御回路 19と 、第 2の信号対雑音相対関係に基づいて第 2の適応フィルタのフィルタ係数の修正 量を決定するステップサイズを出力する第 2のステップサイズ制御回路 20と、第 3の 信号対雑音相対関係に基づいて第 3の適応フィルタのフィルタ係数の修正量を決定 するステップサイズを出力する第 3のステップサイズ制御回路 17と、第 2の信号対雑 音相対関係に基づいて第 4の適応フィルタ 6のフィルタ係数の修正量を決定するステ ップサイズを出力する第 4のステップサイズ制御回路 18と、を有する。
[0081] すなわち、図 6に示した第 2の実施形態の信号処理装置は、図 5に示した第 1の実 施形態の信号処理装置とは、ステップサイズ制御回路 18が相違しており、他の要素 は同一構成とされている。したがって、以下、ステップサイズ制御回路 18について説 明する。
[0082] ステップサイズ制御回路 18への入力信号は、第 3の信号対雑音比推定回路 23か らの第 3の信号対雑音比ではなぐ第 2の信号対雑音比推定回路 22で求められた第 2の信号対雑音比となっている。ステップサイズ制御回路 18は、第 2の信号対雑音比 SNR2 (k)に基づレ、て計算したステップサイズひ (k)を、第 4の適応フィルタ 6に供給
4
する。
[0083] ひ (k)は、式 (14a)— (14c)の SNR3 (k)、 SNR4 、 SNR4 、 ひ 、 ひ の代わり
4mm に、 SNR2 (k)、 SNR5 、 SNR5 、 ひ 、 ひ を用いて同様に決定することがで
max min 5max 5min
きる。ここで、 SNR5 、 SNR5 は、 SNR5 く SNR5 を満たす定数、 ひ
5mm は、 ひ く a を満たす定数である。このように、信号対雑音比推定回路 23で
5max 5mm 5max
求められた第 3の信号対雑音比の代わりに、信号対雑音比推定回路 22で求められ た第 2の信号対雑音比を用いることにより、図 6に示した信号処理装置は、第 1の実 施形態の信号処理装置と同様に動作することが可能となる。
[0084] 同様に、本実施形態の信号処理装置において、ステップサイズ制御回路 18の入力 信号を、信号対雑音比推定回路 23で求められた信号対雑音比とし、ステップサイズ 制御回路 17の入力信号を、信号対雑音比推定回路 21で求められた信号対雑音比 とした構成としてもよい。これは、回路構成の対称性力らも明らかである。
[0085] 図 6に示した第 2の実施形態の信号処理装置の動作原理は、上述した第 1の実施 形態の信号処理装置と同様のものである。第 2の実施形態での処理手順は、具体的 には、第 1の実施形態での段階 (al ) (al 9)を含み、さらに、
(a20a)第 3の信号対雑音相対関係に基づいて第 3の適応フィルタ 5のフィルタ係 数の修正量を決定するステップサイズを出力する段階、
(a21 a)第 2の信号対雑音相対関係に基づいて第 4の適応フィルタ 6のフィルタ係 数の修正量を決定するステップサイズを出力する段階、
を備えている。
[0086] 次に、本発明の第 3の実施形態について説明する。本発明の第 3の実施形態の信 号処理装置を示す図 7において、図 6に示した要素と同一又は同等の要素には、同 一の参照符号が付されてレ、る。
[0087] 図 7に示した第 3の実施形態の信号処理装置は、音声入力端子 1と、参照入力端 子 2と、出力端子 13と、音声入力端子 1から入力される第 1の受音信号 X (k)を受け
P
て第 1の受音信号に予め定められた遅延時間を与えて第 1の遅延受音信号を生成 する第 1の遅延回路 3と、参照入力端子 2から入力される第 2の受音信号 X (k)を受
R
けて第 2の受音信号に第 1の遅延回路 3と同じ遅延時間を与えて第 2の遅延受音信 号を生成する第 2の遅延回路 4と、第 1の遅延受音信号から第 1の擬似雑音信号を減 算して第 1の誤差信号を生成する第 1の減算器 11と、第 2の遅延受音信号から第 1の 擬似音声信号を減算して第 2の誤差信号を生成する第 2の減算器 12と、第 2の減算 器 12からの第 2の誤差信号を入力として第 1の擬似雑音信号を生成して第 1の誤差 信号が最小となるように係数を更新する第 1の適応フィルタ 7と、第 1の減算器 11から の第 1の誤差信号を入力として第 1の擬似音声信号を生成し第 2の誤差信号が最小 となるように係数を更新する第 2の適応フィルタ 8と、を備えており、第 1の誤差信号は 、雑音が消去された音声信号として出力端子 13にも供給されている。
[0088] さらにこの信号処理装置は、第 1の受音信号から第 2の擬似雑音信号を減算して第 3の誤差信号を生成する第 3の減算器 9と、第 2の受音信号力 第 2の擬似音声信号 を減算して第 4の誤差信号を生成する第 4の減算器 10と、第 4の誤差信号を入力とし て第 2の擬似雑音信号を生成し第 3の誤差信号が最小となるように係数を更新する 第 3の適応フィルタ 5と、第 3の誤差信号を入力として第 2の擬似音声信号を生成し第 4の誤差信号が最小となるように係数を更新する第 4の適応フィルタ 6と、第 3の誤差 信号と第 2の擬似雑音信号とから第 1の信号対雑音相対関係を生成する第 1の信号 対雑音比推定回路 21と、第 2の擬似音声信号と第 4の誤差信号とから第 2の信号対 雑音相対関係を生成する第 2の信号対雑音比推定回路 22と、第 1の信号対雑音相 対関係に基づいて第 1の適応フィルタのフィルタ係数の修正量を決定するステップサ ィズを出力する第 1のステップサイズ制御回路 19と、第 2の信号対雑音相対関係に 基づいて第 2の適応フィルタのフィルタ係数の修正量を決定するステップサイズを出 力する第 2のステップサイズ制御回路 20と、第 1の信号対雑音相対関係に基づいて 第 3の適応フィルタのフィルタ係数の修正量を決定するステップサイズを出力する第 3のステップサイズ制御回路 17と、第 2の信号対雑音相対関係に基づいて第 4の適 応フィルタのフィルタ係数の修正量を決定するステップサイズを出力する第 4のステツ プサイズ制御回路 18と、を有する。
[0089] すなわち、図 7に示した第 3の実施形態の信号処理装置は、図 6に示した第 2の実 施形態の信号処理装置力 第 3の信号対雑音比推定回路 23を取り除いたものであ り、それにともなって、ステップサイズ制御回路 17が図 6の装置とは相違している。こ れ以外の構成については図 6に示す装置と同様であり、図 7に示した第 3の実施形態 の信号処理装置においてステップサイズ制御回路 17を除く要素の動作は、図 6に示 したものと同様であるため、以下では、ステップサイズ制御回路 17について説明する
[0090] ステップサイズ制御回路 17の入力信号は、第 1の信号対雑音比推定回路 21で求 められた第 1の信号対雑音比となっている。ステップサイズ制御回路 17は、この信号 対雑音比 SNR1 (k)に基づいて計算したステップサイズ a (k)を、適応フィルタ 5に
3
供給する。
[0091] a (k)は、式 (13a)— (13c)の SNR3 (k)、 SNR3 、 SNR3 、 α , a の代わり ό max mm 3max 3mm ίこ、 SNR1 (k)、 SNR6 、 SNR6 、 α 、 ct を用レヽて同様 ίこ決定できる。
max min 6max 6mm
[0092] ここで、 SNR6 、 SNR6 は、 SNR6 < SNR6 を満たす定数であり、 α 、 α
mm max mm max 6 mm は、 a < a を満たす定数である。
6max 6mm 6max
[0093] このように、第 3の信号対雑音比推定回路を設けて第 3の信号対雑音比を用いる代 わりに、第 1の信号対雑音比推定回路 21で求められた第 1の信号対雑音比を用いる ことにより、第 3の信号対雑音比推定回路を設ける必要がなくなり、その第 3の第 3の 信号対雑音比推定回路に相当する演算量を削減することができる。
[0094] 図 7に示した第 3の実施形態の信号処理装置の動作原理は、上述した第 1の実施 形態の信号処理装置と同様のものである。第 3の実施形態での処理手順は、具体的 には、第 1の実施形態での段階 (al ) (al 6)を含み、さらに、
(al 7b)第 1の信号対雑音相対関係に基づいて第 1の適応フィルタ 7のフィルタ係 数の修正量を決定するステップサイズを出力する段階、 (al8b)第 2の信号対雑音相対関係に基づいて第 2の適応フィルタ 8のフィルタ係 数の修正量を決定するステップサイズを出力する段階、
(al 9b)第 1の信号対雑音相対関係に基づいて第 3の適応フィルタ 5のフィルタ係 数の修正量を決定するステップサイズを出力する段階、
(a20b)第 2の信号対雑音相対関係に基づいて第 4の適応フィルタ 6のフィルタ係 数の修正量を決定するステップサイズを出力する段階
を有してレヽる。
[0095] 次に、本発明の第 4の実施形態について説明する。本発明の第 4の実施形態の信 号処理装置を示す図 8において、図 5に示した要素と同一又は同等の要素には、同 一の参照符号が付されてレ、る。
[0096] 図 8に示した第 4の実施形態の信号処理装置は、音声入力端子 1と、参照入力端 子 2と、出力端子 13と、音声入力端子 1から入力される第 1の受音信号 X (k)を受け
P
て第 1の受音信号に予め定められた遅延時間を与えて第 1の遅延受音信号を生成 する第 1の遅延回路 3と、参照入力端子 2から入力される第 2の受音信号 X (k)を受
R
けて第 2の受音信号に第 1の遅延回路 3と同じ遅延時間を与えて第 2の遅延受音信 号を生成する第 2の遅延回路 4と、第 1の遅延受音信号から第 1の擬似雑音信号を減 算して第 1の誤差信号を生成する第 1の減算器 11と、第 2の遅延受音信号力 第 1の 擬似音声信号を減算して第 2の誤差信号を生成する第 2の減算器 12と、第 2の減算 器 12からの第 2の誤差信号を入力として第 1の擬似雑音信号を生成して第 1の誤差 信号が最小となるように係数を更新する第 1の適応フィルタ 7と、第 1の減算器 11から の第 1の誤差信号を入力として第 1の擬似音声信号を生成し第 2の誤差信号が最小 となるように係数を更新する第 2の適応フィルタ 8と、を備えており、第 1の誤差信号は 、雑音が消去された音声信号として出力端子 13にも供給されている。
[0097] さらにこの信号処理装置は、第 1の受音信号から第 2の擬似雑音信号を減算して第
3の誤差信号を生成する第 3の減算器 9と、第 2の受音信号力 第 2の擬似音声信号 を減算して第 4の誤差信号を生成する第 4の減算器 10と、第 4の誤差信号を入力とし て第 2の擬似雑音信号を生成し第 3の誤差信号が最小となるように係数を更新する 第 3の適応フィルタ 5と、第 3の誤差信号を入力として第 2の擬似音声信号を生成し第 4の誤差信号が最小となるように係数を更新する第 4の適応フィルタ 7と、第 3の誤差 信号と第 2の擬似雑音信号とから第 1の信号対雑音相対関係を生成する第 1の信号 対雑音比推定回路 21と、第 2の擬似音声信号と第 4の誤差信号とから第 2の信号対 雑音相対関係を生成する第 2の信号対雑音比推定回路 22と、第 1の受音信号と第 2 の受音信号とから第 3の信号対雑音相対関係を生成する第 3の信号対雑音比推定 回路 23と、第 1の信号対雑音相対関係と第 3の信号対雑音相対関係の相対関係を 入力として、これらの信号対雑音相対関係の相対関係が予め定められた範囲内であ るか否かにより一方を選択して第 4の信号対雑音相対関係として出力する第 1の制御 回路 32と、第 2の信号対雑音相対関係と第 3の信号対雑音相対関係の相対関係を 入力として、これらの信号対雑音相対関係の相対関係が予め定められた範囲内であ るか否かにより一方を選択して第 5の信号対雑音相対関係として出力する第 2の制御 回路 33と、第 1の信号対雑音相対関係に基づいて第 1の適応フィルタ 7のフィルタ係 数の修正量を決定するステップサイズを出力する第 1のステップサイズ制御回路 19と 、第 2の信号対雑音相対関係に基づいて第 2の適応フィルタ 8のフィルタ係数の修正 量を決定するステップサイズを出力する第 2のステップサイズ制御回路 20と、第 4の 信号対雑音相対関係に基づいて第 3の適応フィルタ 5のフィルタ係数の修正量を決 定するステップサイズを出力する第 3のステップサイズ制御回路 17と、第 5の信号対 雑音相対関係に基づいて第 4の適応フィルタ 6のフィルタ係数の修正量を決定するス テツプサイズを出力する第 4のステップサイズ制御回路 18と、を備えている。
[0098] すなわち、図 8に示した第 4の実施形態の信号処理装置は、図 5に示した信号処理 装置に対して制御回路 32、 33を追加し、制御回路 32、 33を介して信号対雑音比が それぞれステップサイズ制御回路 17、 18に入力するようにしたものである。図 8に示 した信号処理装置において、ステップサイズ制御回路 17、 18以外の要素の動作は 図 5に示す装置と同様であるため、以下では、制御回路 32、 33及びステップサイズ 制御回路 17、 18について説明する。
[0099] 制御回路 32には、第 3の信号対雑音比推定回路 23で求められた第 3の信号対雑 音比と、第 1の信号対雑音比推定回路 21で求められた第 1の信号対雑音比が供給 される。そして制御回路 32は、信号対雑音比推定回路 23、 21から供給される信号 対雑音比 SNR3 (k)、 SNR1 (k)の一方を選択して第 4の信号対雑音比 SNR4 (k)と し、ステップサイズ制御回路 17に供給する。この関係は、式 (15a)、 (15b), (16)で表す こと力 Sできる。
[0100] SNR4 (k)=SNRl(k) (r (k)≥r ) ---(15a)
1 lt
SNR4 (k)=SNR3(k) (r (k) <r ) ---(15b)
1 lth
r (k) = SNR3 (k) /SNR1 (k) ー(16)
1
ただし、 r は正の定数である。
lth
[0101] 式 (15a)、(15b)の代わりに、式 (17a)、(17b)を用いてもよい。
[0102] SNR4 (k)=SNR3(k) (R (k)≥R ) ---(17a)
1 lth
SNR4 (k)=SNRl(k) (R (k)<R ) ---(17b)
1 lth
ただし、 R は正の定数、 R (k)は、 r (k)の変化を時刻 k一 m+ 1から kまで平均した
lth 1 1
ものであり、式 (18)で与えられる。
[0103] [数 3] ( ) = ( -り- ( - 1)|} •(18)
Figure imgf000029_0001
[0104] ステップサイズ制御回路 17の入力信号は、図 5に示した装置とは異なり、制御回路 32で求められた第 4の信号対雑音比 SNR4(k)となっている。ステップサイズ制御回 路 17は、この第 4の信号対雑音比 SNR4(k)に基づいて計算したステップサイズ α (
3 k)を、適応フィルタ 5に供給する。
[0105] a (k)は、式 (13a)— (13c)の SNR3(k)、 SNR3 、 SNR3 、 α , a の代わり
max mm 3max 3mm
に、 SNR4(k)、 SNR7 、 SNR7 、 α 、 ct を用いて同様に決定できる。ここで
max min 7max 7mm
、 SNR7 、 SNR7 は、 SNR7 <SNR7 を満たす定数、 ひ 、 ひ は、 α mm max mm max 7mm /max
< a を満たす定数である。
7max
[0106] 制御回路 33には、第 3の信号対雑音比推定回路 23で求められた第 3の信号対雑 音比と、第 2の信号対雑音比推定回路 22で求められた第 2の信号対雑音比が供給 される。制御回路 33は、信号対雑音比推定回路 23、 22から供給される信号対雑音 比 SNR3 (k)、 SNR2 (k)の一方を選択して第 5の信号対雑音比 SNR5 (k)とし、ステ ップサイズ制御回路 18に供給する。この関係は、式 (19a)、 (19b), (20)で表すことがで さる。
[0107] SNR5(k)=SNR2(k) (r (k)≥r ) •(19a)
2th
SNR5(k)=SNR3(k) (r (k)<r ) •(19b)
2th
r (k) = SNR3 (k) /SNR2 (k) -(20)
ただし、 r は正の定数である。式 (19a)、(19b)の代わりに、式 (21a)、(21b)を用いても
2th
よい
[0108] SNR5(k)=SNR3(k) (R (k)≥R ) ---(21a)
SNR5(k)=SNR2(k) (R (k)<R ) —(21b)
2 2th
ただし、 R は正の定数、 R (k)は、 r (k)の変化を時刻 k一 m+ 1から kまで平均した
2th 2 2
ものであり、式 (22)で与えられる。
[0109] [数 4]
1
R2( ) ∑{|r2(ん一 /)— r2 (ん一 /— 1)|} '(22)
Figure imgf000030_0001
[0110] ステップサイズ制御回路 18の入力信号は、図 5に示した装置とは異なり、制御回路 33で求められた第 5の信号対雑音比 SNR5 (k)となっている。ステップサイズ制御回 路 18は、この信号対雑音比 SNR5 (k)に基づいて計算したステップサイズ a (k)を、
4 適応フィルタ 6に供給する。
[0111] a (k)は、式 (14a)— (14c)の SNR3(k)ゝ SNR4 、 SNR4 , a , a の代わり
4 max mm 4m ax 4mm に、 SNR5(k)、 SNR8 、 SNR8 、 α 、 α を用いて同様に決定できる。ここで
8max 8mm
、 SNR8 、 SNR8 は、 SNR8 <SNR8 を満たす定数、 ひ 、 ひ は、 α mm max mm max 8mm 8max 8 mm
< a を満たす定数である。
8max
[0112] このように、本実施形態によれば、信号対雑音比推定回路 21及び 23で求められた 第 1及び第 3の信号対雑音比から適切な値を選択してステップサイズ制御回路 17に 供給し、同様に、信号対雑音比推定回路 22及び 23で求められた第 2及び第 3の信 号対雑音比から適切な値を選択してステップサイズ制御回路 18に供給することによ り、いずれか一方の信号対雑音比を、ステップサイズ制御回路 17及び 18に供給した 場合よりも、最適なステップサイズを算出することが可能となる。これは、信号対雑音 比推定回路 23における推定値が、入力端子 1に漏れ込む雑音信号成分と入力端子 2に漏れ込む音声信号成分の影響を受け、十分に正確ではないためである。
[0113] 一方、信号対雑音比推定回路 21及び 22は、これらの漏れ込み成分の影響を適応 フィルタ 5及び 6で除去された信号を用いて推定動作を行うために、高精度の推定値 を得ることができる。し力、し、適応フィルタ 5及び 6の収束の影響を受け、これらの適応 フィルタが収束するまでは、推定値の精度が十分ではない。そこで、制御回路 32及 び 33によって、適切な信号対雑音比を選択してステップサイズ制御回路 17及び 18 に供給することにより、最適なステップサイズの算出を可能とする。
[0114] 図 8に示した第 4の実施形態の信号処理装置の動作原理は、上述した第 1の実施 形態の信号処理装置と同様のものである。第 4の実施形態での処理手順は、具体的 には、第 1の実施形態での段階 (al) (al 7)を含み、さらに、
(al8c)第 1の信号対雑音相対関係と第 2の信号対雑音相対関係の相対関係が予 め定められた範囲内であるか否かにより一方を選択して第 4の信号対雑音相対関係 として出力する段階、
(al 9c)第 1の信号対雑音相対関係と第 2の信号対雑音相対関係の相対関係が予 め定められた範囲内であるか否かにより一方を選択して第 5の信号対雑音相対関係 として出力する段階、
(a20c)第 1の信号対雑音相対関係に基づいて第 1の適応フィルタ 7のフィルタ係 数の修正量を決定するステップサイズを出力する段階、
(a21c)第 2の信号対雑音相対関係に基づいて第 2の適応フィルタ 8のフィルタ係 数の修正量を決定するステップサイズを出力する段階、
(a22c)第 4の信号対雑音相対関係に基づいて第 3の適応フィルタ 5のフィルタ係 数の修正量を決定するステップサイズを出力する段階、
(a23c)第 5の信号対雑音相対関係に基づいて第 4の適応フィルタ 6のフィルタ係 数の修正量を決定するステップサイズを出力する段階、
とを有する。
[0115] 次に、本発明の第 5の実施形態について説明する。本発明の第 5の実施形態の信 号処理装置を示す図 9において、図 5に示した要素と同一又は同等の要素には、同 一の参照符号が付されてレ、る。 [0116] 図 9に示した第 5の実施形態の信号処理装置は、音声入力端子 1と、参照入力端 子 2と、出力端子 13と、音声入力端子 1から入力される第 1の受音信号 X (k)を受け
P
て第 1の受音信号に予め定められた遅延時間を与えて第 1の遅延受音信号を生成 する第 1の遅延回路 3と、参照入力端子 2から入力される第 2の受音信号 X (k)を受
R
けて第 2の受音信号に第 1の遅延回路 3と同じ遅延時間を与えて第 2の遅延受音信 号を生成する第 2の遅延回路 4と、第 1の遅延受音信号から第 1の擬似雑音信号を減 算して第 1の誤差信号を生成する第 1の減算器 11と、第 2の遅延受音信号から第 1の 擬似音声信号を減算して第 2の誤差信号を生成する第 2の減算器 12と、第 2の減算 器 12からの第 2の誤差信号を入力として第 1の擬似雑音信号を生成して第 1の誤差 信号が最小となるように係数を更新する第 1の適応フィルタ 7と、第 1の減算器 11から の第 1の誤差信号を入力として第 1の擬似音声信号を生成し第 2の誤差信号が最小 となるように係数を更新する第 2の適応フィルタ 8と、を備えており、第 1の誤差信号は 、雑音が消去された音声信号として出力端子 13にも供給されている。
[0117] さらにこの信号処理装置は、第 1の受音信号における予め定められた周波数以上 の成分を抑圧して出力する第 1の低域通過フィルタ 24と、第 2の受音信号における第 1の低域通過フィルタ 24におけるものと同じ予め定められた周波数以上の成分を抑 圧して出力する第 2の低域通過フィルタ 25と、第 1の低域通過フィルタ 24より供給さ れる信号力 予め定められた間引き率で信号を間引いて第 1の間引き受音信号を生 成する第 1の間引き回路 26と、第 2の低域通過フィルタより供給される信号力 第 1の 間引き回路 26と同じ間引き率で信号を間引いて第 2の間引き受音信号を生成する 第 2の間引き回路 27と、第 1の間引き受音信号力 第 2の擬似雑音信号を減算して 第 3の誤差信号を生成する第 3の減算器 9と、第 2の間引き受音信号力 第 2の擬似 音声信号を減算して第 4の誤差信号を生成する第 4の減算器 10と、第 4の誤差信号 を入力として第 2の擬似雑音信号を生成し第 3の誤差信号が最小となるように係数を 更新する第 3の適応フィルタ 5と、第 3の誤差信号を入力として第 2の擬似音声信号を 生成し第 4の誤差信号が最小となるように係数を更新する第 4の適応フィルタ 6と、第 3の誤差信号と第 2の擬似雑音信号とから第 1の信号対雑音相対関係を生成する第 1の信号対雑音比推定回路 21と、第 2の擬似音声信号と第 4の誤差信号とから第 2 の信号対雑音相対関係を生成する第 2の信号対雑音比推定回路 22と、第 1の間引 き受音信号と第 2の間引き受音信号とから第 3の信号対雑音相対関係を生成する第 3の信号対雑音比推定回路 23と、第 1の信号対雑音相対関係に基づいて第 1の適 応フィルタ 5のフィルタ係数の修正量を決定するステップサイズを出力する第 1のステ ップサイズ制御回路 19と、第 2の信号対雑音相対関係に基づいて第 2の適応フィル タのフィルタ係数の修正量を決定するステップサイズを出力する第 2のステップサイズ 制御回路 20と、第 3の信号対雑音相対関係に基づいて第 3の適応フィルタ 5のフィノレ タ係数の修正量を決定するステップサイズを出力する第 3のステップサイズ制御回路 17と、同じく第 3の信号対雑音相対関係に基づいて第 4の適応フィルタ 6のフィルタ 係数の修正量を決定するステップサイズを出力する第 4のステップサイズ制御回路 1 8と、を有する。
[0118] すなわち、図 9に示した第 5の実施形態の信号処理装置は、図 1に示した信号処理 装置に対し、低域通過フィルタ 24、 25、及び間引き回路 26、 27を付加したものであ る。以下では、低域通過フィルタ 24、 25、及び間引き回路 26、 27について説明する
[0119] 間引き回路 26は、音声入力端子 1から低域通過フィルタ 24を経て供給されたサン プリング周波数 f の信号を間引くことにより、サンプリング周波数を f に変換して出力 する。すなわち、間引き率は f /f となる。低域通過フィルタ 24は、間引き回路 26に おける間引き処理によって生じる折り返し歪 (aliasing distortion)を防ぐために、周波 数 f 以上の入力信号成分を抑圧し、間引き回路 26に供給する。ただし、 2f < f < f である。同様に間引き回路 27は、参照入力端子 2から低域通過フィルタ 25を経て供 給されたサンプリング周波数 f の信号を間引くことにより、サンプリング周波数を f に変 換して出力する。低域通過フィルタ 25は、低域通過フィルタ 24と同様の動作をする。
[0120] このように本実施形態では、間引きによってサンプリング周波数力 ¾に変更された信 号が信号対雑音比推定回路 21、 22、 23、及び適応フィルタ 5、 6に供給されるため に、これらの回路の演算量を低減することができる。
[0121] 図 9に示した第 5の実施形態の信号処理装置の動作原理は、上述した第 1の実施 形態の信号処理装置と同様のものである。第 6の実施形態での処理手順は、具体的 には、第 1の実施形態での段階 (al)—(a8)を含み、さらに、
(a9d)第 1及び第 2の受音信号を第 1及び第 2の低域通過フィルタ 24、 25に入力し て予め定められた周波数以上の成分を抑圧した信号を生成する段階、
(alOd) 1及び第 2の低域通過フィルタ 24、 25から供給される信号から予め定めら れた間引き率の信号を間引いて第 1及び第 2の間引き受音信号を生成する段階、
(al ld)第 1の間引き受音信号力 第 2の擬似雑音信号を減算して第 3の誤差信号 を生成する段階
(al 2d)第 2の間引き受音信号力 第 2の擬似雑音信号を減算して第 4の誤差信号 を生成する段階、
(al 3d)第 4の誤差信号を第 1の適応フィルタと同様の構成の第 3の適応フィルタ 5 に入力して第 2の擬似雑音信号を生成する段階、
(al4d)第 3の誤差信号が最小となるように第 3の適応フィルタ 5の係数を更新する 段階、
(al 5d)第 3の誤差信号を第 2の適応フィルタと同様の構成の第 4の適応フィルタ 6 に入力して第 2の擬似音声信号を生成する段階、
(al6d)第 4の誤差信号が最小となるように第 4の適応フィルタ 6の係数を更新する 段階、
(al 7d)第 3の誤差信号と第 2の擬似雑音信号とから第 1の信号対雑音相対関係を 生成する段階、
(al8d)第 2の擬似音声信号と第 4の誤差信号とから第 2の信号対雑音相対関係を 生成する段階、
(al 9d)第 1の間引き受音信号と第 2の間引き受音信号とから、第 3の信号対雑音 相対関係を生成する段階、
(a20d)第 1の信号対雑音相対関係に基づいて第 1の適応フィルタ 7のフィルタ係 数の修正量を決定するステップサイズを出力する段階、
(a21d)第 2の信号対雑音相対関係に基づいて第 2の適応フィルタ 8のフィルタ係 数の修正量を決定するステップサイズを出力する段階、
(a22d)第 3の信号対雑音相対関係に基づいて第 3及び第 4の適応フィルタ 7、 8の フィルタ係数の修正量を決定するステップサイズを出力する段階、
とを有する。
[0122] 次に、本発明の第 6の実施形態について説明する。本発明の第 6の実施形態の信 号処理装置を示す図 10において、図 5に示した要素と同一又は同等の要素には、 同一の参照符号が付されてレ、る。
[0123] 図 10に示した第 6の実施形態の信号処理装置は、音声入力端子 1と、参照入力端 子 2と、出力端子 13と、音声入力端子 1から入力される第 1の受音信号 X (k)を受け
P
て第 1の受音信号に予め定められた遅延時間を与えて第 1の遅延受音信号を生成 する第 1の遅延回路 3と、参照入力端子 2から入力される第 2の受音信号 X (k)を受
R
けて第 2の受音信号に第 1の遅延回路 3と同じ遅延時間を与えて第 2の遅延受音信 号を生成する第 2の遅延回路 4と、第 1の遅延受音信号から第 1の擬似雑音信号を減 算して第 1の誤差信号を生成する第 1の減算器 11と、第 2の遅延受音信号から第 1の 擬似音声信号を減算して第 2の誤差信号を生成する第 2の減算器 12と、第 2の減算 器 12からの第 2の誤差信号を入力として第 1の擬似雑音信号を生成して第 1の誤差 信号が最小となるように係数を更新する第 1の適応フィルタ 7と、第 1の減算器 11から の第 1の誤差信号を入力として第 1の擬似音声信号を生成し第 2の誤差信号が最小 となるように係数を更新する第 2の適応フィルタ 8と、を備えており、第 1の誤差信号は 、雑音が消去された音声信号として出力端子 13にも供給されている。
[0124] さらにこの信号処理装置は、第 1の受音信号から第 2の擬似雑音信号を減算して第 3の誤差信号を生成する第 3の減算器 9と、第 2の受音信号力 第 2の擬似音声信号 を減算して第 4の誤差信号を生成する第 4の減算器 10と、第 4の誤差信号を入力とし て第 2の擬似雑音信号を生成し第 3の誤差信号が最小となるように係数を更新する 第 3の適応フィルタ 5と、第 3の誤差信号を入力として第 2の擬似音声信号を生成し第 4の誤差信号が最小となるように係数を更新する第 4の適応フィルタ 6と、第 3の誤差 信号と第 2の擬似雑音信号とから第 1の信号対雑音相対関係を生成する第 1の信号 対雑音比推定回路 21と、第 1の受音信号と第 2の受音信号とから第 3の信号対雑音 相対関係を生成する第 3の信号対雑音比推定回路 23と、第 1の信号対雑音相対関 係に基づいて第 1の適応フィルタ 5のフィルタ係数の修正量を決定するステップサイ ズを出力する第 1のステップサイズ制御回路 19と、第 1の信号対雑音相対関係に基 づいて第 2の適応フィルタのフィルタ係数の修正量を決定するステップサイズを出力 する第 2のステップサイズ制御回路 20と、第 3の信号対雑音相対関係に基づいて第 3の適応フィルタ 5のフィルタ係数の修正量を決定するステップサイズを出力する第 3 のステップサイズ制御回路 17と、同じく第 3の信号対雑音相対関係に基づいて第 4の 適応フィルタ 6のフィルタ係数の修正量を決定するステップサイズを出力する第 4のス テツプサイズ制御回路 18と、を有する。
[0125] すなわち、図 10に示した第 6の実施形態の信号処理装置は、図 5に示した信号処 理装置から、第 2の信号対雑音比推定回路 22を取り除いたものである。そのため、ス テツプサイズ制御回路 20には、第 1の信号対雑音比推定回路 21から第 1の信号対 雑音比が送られている。これ以外の点については図 10に示す信号処理装置は図 5 に示す装置と同様であるから、以下では、ステップサイズ制御回路 20について説明 する。
[0126] ステップサイズ制御回路 20の入力信号は、信号対雑音比推定回路 21で求められ た第 1の信号対雑音比 SNR1 (k)となっており、ステップサイズ制御回路 10は、 SNR 1 (k)に基づいて計算したステップサイズ a (k)を、適応フィルタ 8に供給する。
2
[0127] a (k)は、式 (11a)— (12c)の SNR2 (k)ヽ SNR2 、 SNR2 、 α 、 α の代わり
2 max mm 2mm 2max に、 SNRl (k)、 SNR9 、 SNR9 、 α 、 α を用いて同様に決定できる。ここで
max min 9 mm 9max
、 SNR9 、 SNR9 は、 SNR9 < SNR9 を満たす定数、 ひ 、 ひ は、 α mm max mm max 9mm 9max 9 mm
< a を満たす定数である。
9max
[0128] このように、第 2の信号対雑音比推定回路 22を設けて第 2の信号対雑音比を用い る代わりに、信号対雑音比推定回路 21で求められた第 1の信号対雑音比を用レ、るこ とにより、第 2の信号対雑音比推定回路 22を削減することができ、第 2の信号対雑音 比推定回路に相当する演算量を削減することができる。
[0129] もちろん、回路構成の対称性に基づき、本実施形態において、図 5に示した信号処 理装置における第 2の信号対雑音比推定回路 22の代わりに第 1の信号対雑音比推 定回路 21を除去し、ステップサイズ制御回路 19の入力信号を、信号対雑音比推定 回路 22で求められた第 2の信号対雑音比としてもよい。 [0130] 図 10に示した第 6の実施形態の信号処理装置の動作原理は、上述した第 1の実施 形態の信号処理装置と同様のものである。第 6の実施形態での処理手順は、具体的 には、第 1の実施形態での段階 (al)—(al 5)を含み、さらに、
(al6e)第 1の受音信号と第 2の受音信号とから第 3の信号対雑音相対関係を生成 する段階、
(al 7e)第 1の信号対雑音相対関係に基づいて第 1及び第 2の適応フィルタ 7、 8の フィルタ係数の修正量を決定するステップサイズを出力する段階、
(al8e)第 3の信号対雑音相対関係に基づいて第 3及び第 4の適応フィルタ 5、 6の フィルタ係数の修正量を決定するステップサイズを出力する段階、
とを有する。
[0131] 次に、本発明の第 7の実施形態について説明する。本発明の第 7の実施形態の信 号処理装置を示す図 11において、図 5に示した要素と同一又は同等の要素には、 同一の参照符号が付されてレ、る。
[0132] 図 11に示した第 7の実施形態の信号処理装置は、音声入力端子 1と、参照入力端 子 2と、出力端子 13と、音声入力端子 1から入力される第 1の受音信号 X (k)を受け
P
て第 1の受音信号に予め定められた遅延時間を与えて第 1の遅延受音信号を生成 する第 1の遅延回路 3と、参照入力端子 2から入力される第 2の受音信号 X (k)を受
R
けて第 2の受音信号に第 1の遅延回路 3と同じ遅延時間を与えて第 2の遅延受音信 号を生成する第 2の遅延回路 4と、第 1の遅延受音信号から第 1の擬似雑音信号を減 算して第 1の誤差信号を生成する第 1の減算器 11と、第 2の遅延受音信号力 第 1の 擬似音声信号を減算して第 2の誤差信号を生成する第 2の減算器 12と、第 2の減算 器 12からの第 2の誤差信号を入力として第 1の擬似雑音信号を生成して第 1の誤差 信号が最小となるように係数を更新する第 1の適応フィルタ 7と、第 1の減算器 11から の第 1の誤差信号を入力として第 1の擬似音声信号を生成し第 2の誤差信号が最小 となるように係数を更新する第 2の適応フィルタ 8と、を備えており、第 1の誤差信号は 、雑音が消去された音声信号として出力端子 13にも供給されている。
[0133] さらにこの信号処理装置は、第 1の受音信号から第 2の擬似雑音信号を減算して第 3の誤差信号を生成する第 3の減算器 9と、第 2の受音信号力 第 2の擬似音声信号 を減算して第 4の誤差信号を生成する第 4の減算器 10と、第 4の誤差信号を入力とし て第 2の擬似雑音信号を生成し第 3の誤差信号が最小となるように係数を更新する 第 3の適応フィルタ 5と、第 3の誤差信号を入力として第 2の擬似音声信号を生成し第 4の誤差信号が最小となるように係数を更新する第 4の適応フィルタ 6と、第 3の誤差 信号と第 2の擬似雑音信号とから第 1の信号対雑音相対関係を生成する第 1の信号 対雑音比推定回路 21と、第 1の信号対雑音相対関係から予め定められた値を乗算 して第 6の信号対雑音相対関係を生成する乗算回路 28と、第 1の受音信号と第 2の 受音信号とから第 3の信号対雑音相対関係を生成する第 3の信号対雑音比推定回 路 23と、第 1の信号対雑音相対関係に基づいて第 1の適応フィルタ 7のフィルタ係数 の修正量を決定するステップサイズを出力する第 1のステップサイズ制御回路 19と、 第 6の信号対雑音相対関係に基づいて第 2の適応フィルタ 8のフィルタ係数の修正 量を決定するステップサイズを出力する第 2のステップサイズ制御回路 20と、第 3の 信号対雑音相対関係に基づいて第 3の適応フィルタ 5のフィルタ係数の修正量を決 定するステップサイズを出力する第 3のステップサイズ制御回路 17と、同じく第 3の信 号対雑音相対関係に基づいて第 4の適応フィルタ 6のフィルタ係数の修正量を決定 するステップサイズを出力する第 4のステップサイズ制御回路 18と、を有する。
[0134] すなわち、図 11に示した第 7の実施形態の信号処理装置は、図 5に示した第 1の実 施形態の信号処理装置から、第 2の信号対雑音比推定回路 22を取り除き、その代わ りに乗算回路 28を設けたものである。これ以外の点につレ、ては図 11に示す信号処 理装置は図 5に示す装置と同様であるから、以下では、乗算回路 28について説明す る。
[0135] 乗算回路 28は、信号対雑音比推定回路 21から供給された第 1の信号対雑音比に 、予め定められた値を乗算することにより、第 2の信号対雑音比推定回路の出力する 第 2の信号対雑音比の近似値を求める。乗算回路 28は、この近似値を、第 6の信号 対雑音比として、ステップサイズ制御回路 20に供給する。このように、信号対雑音比 推定回路 21で求められた第 1の信号対雑音比から第 2の信号対雑音比の近似値を 求めることにより、第 2の信号対雑音比推定回路を設ける必要がなくなり、第 2の信号 対雑音比推定回路に対応する演算量を削減することができる。 [0136] もちろん、回路構成の対称性に基づき、本実施形態において、図 5に示した信号処 理装置における第 2の信号対雑音比推定回路 22の代わりに第 1の信号対雑音比推 定回路 21を除去し、第 2の信号対雑音比推定回路が出力する第 2の信号対雑音比 力 第 1の信号対雑音比の近似値を求め、この近似値をステップサイズ制御回路 19 の入力信号とするようにしてもよい。
[0137] 図 11に示した第 7の実施形態の信号処理装置の動作原理は、上述した第 1の実施 形態の信号処理装置と同様のものである。第 7の実施形態での処理手順は、具体的 には、第 1の実施形態での段階 (al) (al 5)を含み、さらに、
(al6f)第 1の信号対雑音相対関係から予め定められた値を乗算して第 6の信号対 雑音相対関係を生成する段階、
(al 7f)第 1の受音信号と第 2の受音信号とから第 3の信号対雑音相対関係を生成 する段階、
(al8f)第 1の信号対雑音相対関係に基づいて第 1の適応フィルタ 7のフィルタ係数 の修正量を決定するステップサイズを出力する段階、
(al 9f)第 6の信号対雑音相対関係に基づいて第 2の適応フィルタ 8のフィルタ係数 の修正量を決定するステップサイズを出力する段階、
(a20f)第 3の信号対雑音相対関係に基づいて第 3及び第 4の適応フィルタ 5、 6の フィルタ係数の修正量を決定するステップサイズを出力する段階、
とを有する。
[0138] 次に、本発明の第 8の実施形態について説明する。本発明の第 8の実施形態の信 号処理装置を示す図 12において、図 5に示した要素と同一又は同等の要素には、 同一の参照符号が付されてレ、る。
[0139] 図 12に示した第 8の実施形態の信号処理装置は、音声入力端子 1と、参照入力端 子 2と、出力端子 13と、音声入力端子 1から入力される第 1の受音信号 X (k)を受け
P
て第 1の受音信号に予め定められた遅延時間を与えて第 1の遅延受音信号を生成 する第 1の遅延回路 3と、参照入力端子 2から入力される第 2の受音信号 X (k)を受
R
けて第 2の受音信号に第 1の遅延回路 3と同じ遅延時間を与えて第 2の遅延受音信 号を生成する第 2の遅延回路 4と、第 1の遅延受音信号から第 1の擬似雑音信号を減 算して第 1の誤差信号を生成する第 1の減算器 11と、第 2の遅延受音信号力 第 1の 擬似音声信号を減算して第 2の誤差信号を生成する第 2の減算器 12と、第 2の減算 器 12からの第 2の誤差信号を入力として第 1の擬似雑音信号を生成して第 1の誤差 信号が最小となるように係数を更新する第 1の適応フィルタ 7と、第 1の減算器 11から の第 1の誤差信号を入力として第 1の擬似音声信号を生成し第 2の誤差信号が最小 となるように係数を更新する第 2の適応フィルタ 8と、を備えており、第 1の誤差信号は 、雑音が消去された音声信号として出力端子 13にも供給されている。
さらにこの信号処理装置は、第 1の受音信号から第 2の擬似雑音信号を減算して第 3の誤差信号を生成する第 3の減算器 9と、第 2の受音信号力 第 2の擬似音声信号 を減算して第 4の誤差信号を生成する第 4の減算器 10と、第 4の誤差信号を入力とし て第 2の擬似雑音信号を生成し第 3の誤差信号が最小となるように係数を更新する 第 3の適応フィルタ 5と、第 3の誤差信号を入力として第 2の擬似音声信号を生成し第 4の誤差信号が最小となるように係数を更新する第 4の適応フィルタ 6と、第 3の誤差 信号と第 2の擬似雑音信号とから第 1の信号対雑音相対関係を生成する第 1の信号 対雑音比推定回路 21と、第 2の擬似音声信号と第 4の誤差信号とから第 2の信号対 雑音相対関係を生成する第 2の信号対雑音比推定回路 22と、第 1の受音信号と第 2 の受音信号とから第 3の信号対雑音相対関係を生成する第 3の信号対雑音比推定 回路 23と、第 3の信号対雑音相対関係に予め定められた遅延時間を与えて遅延信 号対雑音相対関係を生成する第 3の遅延回路 30と、第 3の信号対雑音相対関係と 遅延信号対雑音相対関係を比較して値の大きい方を拡張信号対雑音相対関係とし て出力する比較回路 29、 34と、第 3の信号対雑音相対関係を時間平均して平均信 号対雑音相対関係を生成する平均回路 31と、第 1の信号対雑音相対関係に基づい て第 1の適応フィルタ 7のフィルタ係数の修正量を決定するステップサイズを出力する 第 1のステップサイズ制御回路 19と、第 2の信号対雑音相対関係に基づいて第 2の 適応フィルタ 8のフィルタ係数の修正量を決定するステップサイズを出力する第 2のス テツプサイズ制御回路 20と、拡張信号対雑音相対関係及び平均信号対雑音相対関 係に基づいて第 3の適応フィルタ 5のフィルタ係数の修正量を決定するステップサイ ズを出力する第 3のステップサイズ制御回路 35と、同じく拡張信号対雑音相対関係 及び平均信号対雑音相対関係に基づいて第 4の適応フィルタ 6のフィルタ係数の修 正量を決定するステップサイズを出力する第 4のステップサイズ制御回路 36と、を有 する。
[0141] すなわち図 12に示す第 8の実施形態の信号処理装置は、図 5に示す第 1の実施形 態の信号処理装置に、比較回路 29、 34、遅延回路 30及び平均回路 31を付加し、さ らに、ステップサイズ制御回路 17、 18に代えて、ステップサイズ制御回路 35、 36を 設けたものである。それ以外の点では、図 12に示す装置は、図 5に示す装置と同様 の構成を有する。以下では、比較回路 29、 34、遅延回路 30、平均回路 31及びステ ップサイズ制御回路 35、 36について説明する。
[0142] 遅延回路 30は、信号対雑音比推定回路 23で求められた信号対雑音比を一定時 間遅延させた後、遅延信号対雑音相対関係すなわち第 7の信号対雑音比として、比 較回路 29と比較回路 29、 34に供給する。
[0143] 比較回路 29は、信号対雑音比推定回路 23から供給される第 3の信号対雑音比と、 遅延回路 30から供給される第 7の信号対雑音比とを比較して、値が大きレ、方を選択 し、拡張信号対雑音相対関係すなわち第 8の信号対雑音比として、ステップサイズ制 御回路 35に供給する。比較回路 29の出力は、信号対雑音比推定回路 23で求めら れた第 3の信号対雑音比と比べて、信号対雑音比の高い区間が遅延回路 30の与え る遅延時間に対応して正の時間方向に拡張された形となっている。このため、比較回 路 29の出力を信号対雑音比として選択することによって、小さなステップサイズの得 られる区間も正の時間方向に拡張され、このため音声区間終了間際により正確な適 応フィルタの制御を行うことができる。
[0144] 比較回路 34は、信号対雑音比推定回路 23から供給される第 3の信号対雑音比と、 遅延回路 30から供給される第 7の信号対雑音比とを比較して値が小さい方を選択し 、第 2の拡張信号対雑音相対関係すなわち第 10の信号対雑音比として、ステップサ ィズ制御回路 36に供給する。すなわち、比較回路 34の出力は、信号対雑音比推定 回路 23で求められた第 3の信号対雑音比と比べて、信号対雑音比の低い区間が遅 延回路 30の与える遅延時間に対応して正の時間方向に拡張された形となっている。 このため、比較回路 34の出力を信号対雑音比として選択することによって、小さなス テツプサイズの得られる区間も正の時間方向に拡張され、音声区間終了間際に、より 正確な適応フィルタの制御を行うことができる。この説明から明らかなように、比較回 路 34の動作は、比較回路 29の動作において第 3の信号対雑音比と第 7の信号対雑 音比の大きい方を選択する代わりに、小さい方を選択して、第 10の信号対雑音比と してレ、る。したがって、比較回路 34を省略し、比較回路 29として、第 3の信号対雑音 比と第 7の信号対雑音比の大きい方を第 8の信号対雑音比とし、小さい方を第 10の 信号対雑音比とする機能を有する回路を用いることによつても、上記と同等の効果を 得ること力 Sできる。
[0145] 平均回路 31には、信号対雑音比推定回路 23から供給される第 3の信号対雑音比 SNR3 (k)の平均を時刻 k一 M + 1から kまで計算した結果を、第 9の信号対雑音比 S NR9 (k)としてステップサイズ制御回路 35、 36に供給する。この関係は、式 (23)で表 すことができる。
[0146] [数 5]
SNR9(k) = 3(k - i) 〜(23)
Figure imgf000042_0001
[0147] ステップサイズ制御回路 35は、比較回路 29で求められた第 8の信号対雑音比 SN R8 (k)と平均回路 31で求められた第 9の信号対雑音比 SNR9 (k)に基づいて計算 したステップサイズ OL (k)を、適応フィルタ 5に供給する。
3
[0148] 時刻 kにおいて、ステップサイズ制御回路 35は、 SNR8 (k)、 SNR9 (k)を入力とし てステップサイズ a (k)を計算する。この関係は、式 (24a)— (24c)及び (25)で表すこと
3
ができる。
[0149] a (k) = a (g (k) < SNR10 ) •(24a)
3 lOmax 1 min
(k) = g (k)
3 1
(SNR10 ≤g (k)≤SNR10 ) •(24b)
(k)
3 lOmin
(g (k) > SNR10 ) •(24c)
1 max
g (k) =-A (SNR9 (k) ) - SNR8 (k) + B (SNR9 (k) ) - - - (25)
1
二こで、 SNR10 、 SNR10 fま、 SNR10 < SNR10 を満たす定数、 ひ
10mm a は、 α く a を満たす定数、 A(SNR9(k))、 B(SNR9(k))は SNR9(k lOmax lOmin lOmax
)によって決定されるパラメータである。
[0150] A(SNR9(k))、 B(SNR9(k))は、例えば、次式 (26a)— (26c)、 (27a)— (27c)とする こと力 Sできる。
[0151] A(SNR9(k)) =A
1
(SNR9(k) >SNR11 ) ---(26a)
max
A(SNR9(k)) =A
2
(SNR11 ≤SNR9(k)≤SNR11 ) 〜(26b)
min max
A(SNR9(k)) =A
3
(SNR9(k)く SNR11 ) ---(26c)
min
B(SNR9(k))=B
1
(SNR9(k) >SNR11 ) ---(27a)
max
B(SNR9(k))=B
2
(SNR11 ≤SNR9(k)≤SNR11 ) ---(27¾
min max
B(SNR9(k))=B
3
(SNR9(k)く SNR11 ) '--(27。)
min
ここで、 SNR11 、 SNR11 は SNR11 < SNR11 を満たす定数、 A、 A、 A
min max min max 1 2
、 B、 B、 Bは正の定数である。
3 1 2 3
[0152] すなわち、式 (9a)の f (X)における A及び Bの値を、 SNR3(k)の値に基づいて適切
1
な値に設定する。
[0153] ステップサイズ制御回路 36は、比較回路 34で求められた第 10の信号対雑音比 S NRIO (k)と平均回路 31で求められた第 9の信号対雑音比 SNR9 (k)に基づいて計 算したステップサイズひ (k)を、適応フィルタ 6に供給する。この関係は、式 (28a)
4
(28c), (29)で表すことができる。
[0154] a (k = a
4 11 min
(g (k)く SNR12 ) ---(28a)
2 min
(k) =g (k)
4 2
(SNR12 ≤g (k)≤SNR12 ) 〜(28b)
min 2 max (k) =
4 1 lmax
(g (k) >SNR12 ) 〜(28c)
2 max
g (k) =C(SNR9 (k)) -SNRlO(k) +D(SNR9(k)) ·'·(29)
2
ここで、 SNR12 、 SNR12 は、 SNR12 <SNR12 を満たす定数、 C (SNR9
mm max mm max
(k) )、 D (SNR9 (k) )は SNR9 (k)によって決定されるパラメータである。
[0155] C (SNR9 (k) )、 D (SNR9 (k) )は、式 (26a) (27c)の A、A、A、 B、 B、 B、 SN
1 2 3 1 2 3
Rll 、 SNR11 の代わりに、 C、 C、 C、 D、 D、 D、 SNR13 、 SNR13 を用 min max 1 2 3 1 2 3 min max いて、 A(SNR9(k))、 B(SNR9(k))と同様に決定できる。ここで、 SNR13 、 SNR
min
13 は、 SNR13 く SNR13 を満たす定数、 C、 C、 C、 D、 D、 Dは正の定数 max min max 1 2 3 1 2 3 である。
[0156] すなわち、上式 (12a)の f (X)における、 C及び Dの値を、 SNR3(k)の値に基づいて
2
適切な値に設定する。
[0157] 以上説明したように、信号対雑音比推定回路 23で求められた第 3の信号対雑音比 の代わりに、信号対雑音比推定回路 23で求められた第 3の信号対雑音比の拡張値 と平均値をステップサイズ制御回路 35、 36に供給してステップサイズを算出すること により、信号対雑音比が広範囲の値をとる場合でも、最適なステップサイズを算出す ること力 S可言 となる。
[0158] また、上記の信号処理装置において、平均回路 31を省略し、 A(SNR9(k))、 B(S NR9 (k) )、 C (SNR9 (k) )、 D (SNR9 (k) )を定数に置き換えた構成としてもょレヽ。
[0159] さらに、上記の信号処理装置において、信号対雑音比推定回路 21及び信号対雑 音比推定回路 22の出力に対しても、信号対雑音比の高い区間または低い区間を正 の時間方向に拡張した値と平均値をステップサイズ制御回路 19及び 20に供給し、ス テツプサイズを算出する構成としてもよい。この場合も、同様に平均回路を省略するこ とが可能である。
[0160] 図 12に示した第 8の実施形態の信号処理装置の動作原理は、上述した第 1の実施 形態の信号処理装置と同様のものである。第 8の実施形態での処理手順は、具体的 には、第 1の実施形態での段階 (al) (al7)を含み、さらに、
(al8g)第 3の信号対雑音相対関係に予め定められた遅延時間を与えて遅延信号 対雑音相対関係を生成する段階、
(al 9g)第 3の信号対雑音相対関係と遅延信号対雑音相対関係を比較して値の大 きい方を拡張信号対雑音相対関係として出力する段階、
(a20g)第 3の信号対雑音相対関係を時間平均して平均信号対雑音相対関係を生 成する段階、
(a21g)第 1の信号対雑音相対関係に基づいて第 1の適応フィルタ 7のフィルタ係 数の修正量を決定するステップサイズを出力する段階、
(a22g)第 2の信号対雑音相対関係に基づいて第 2の適応フィルタ 8のフィルタ係 数の修正量を決定するステップサイズを出力する段階、
(a23g)拡張信号対雑音相対関係及び平均信号対雑音相対関係に基づいて第 3 及び第 4の適応フィルタ 5、 6のフィルタ係数の修正量を決定するステップサイズを出 力する段階、
とを有する。
[0161] 以上説明した第 1乃至第 8の実施形態では、信号対雑音比推定回路 21、 22、 23 は、供給される信号成分と雑音成分の電力比を求めるように動作している。しかしな がら、信号対雑音比推定回路 21、 22、 23において、電力比に代えて、信号の絶対 振幅比を求めるように動作させるようにしてもよいことは、当然のことである。さらに、信 号対雑音比推定回路 21、 22、 23において、推定された信号対雑音比の値を補正 するために、雑音成分の電力(または絶対振幅)に定数を加算するように構成するよ うにしてもよい。この補正は、雑音成分の電力ほたは絶対振幅)が極めてゼロに近い 値をとる際に、ゼロによる除算を避け、安定な動作を達成するために有効である。同 様に、信号対雑音比推定回路 21、 22、 23において、電力比または絶対振幅比につ いて、分子である信号成分に定数を加算するようにしてもよい。この考え方を拡張し て、信号対雑音比を構成すべき分母及び分子に対してそれぞれ特定の演算を施し た後に、比をとる構成としてもよい。言い換えれば、信号対雑音比推定回路 21、 22、 23において求めるものは、厳密な意味での信号と雑音の電力または絶対振幅の比 である必要はなぐ両者の相対関係を表す概念に相当するものであればよい。
[0162] 上述の各実施形態では、本発明の基づく信号処理として、入力音声信号に含まれ る雑音消去を例に挙げて説明してきた。しかしながら、参考文献 [27]に示されるよう に、入力端子 2に参照信号を、入力端子 1に反響信号を供給することにより、上述し た各装置は、反響消去にも利用できる。
[0163] 図 13は、上述した信号処理装置を用いて音声認識装置を実現した例を示すブロッ ク図である。音声認識装置 50は、上述した各実施形態の信号処理装置からなる信号 処理回路 37と、信号処理回路 37の出力信号に対して音声認識を行い、認識結果を 出力端子 39に出力する音声認識回路 38と、を備えている。音声認識回路 38の前段 に、本発明に基づく信号処理回路 37を設けることで、認識対象の音声信号から雑音 が除去されるので、より正確な音声認識を行うことができる音声認識装置を実現する こと力 Sできる。
[0164] さらに、図 14に示すように、図 13に示す構成において。音声認識回路 38の出力を 受けて動作制御信号を出力する動作制御回路 40と、動作制御信号を入力として所 定部材に動作を行わせる駆動部 41と、を設けることで、ロボット装置 60を実現するこ とが可能である。
[0165] 上記の実施形態によれば、信号対雑音比推定回路により、信号間の相対関係の指 標である信号対雑音比を推定し、この推定値を用いて適切に制御されたステップサ ィズを有する適応フィルタを動作させ、その出力信号に基づいて推定された信号対 雑音比を用いて他の適応フィルタのステップサイズを決定することにより、音声入力 端子や参照入力端子における広範囲な信号対雑音比の入力信号に対して、収束時 間が短ぐ出力音声における歪の少ない信号処理を実現することができる。
[0166] 本発明の各実施形態においては、信号対雑音比推定回路は、図 3に示したように、 音声信号の推定値を入力としてその平均値を算出して推定音声信号の平均値を出 力する第 1の平均回路 14と、雑音信号の推定値を入力としてその平均値を算出して 推定雑音信号の平均値を出力する第 2の平均回路 15と、推定音声信号の平均値と 推定雑音信号の平均値の比を算出し信号対雑音比を出力する演算回路 16と、を有 する構成を用いることができる。
[0167] 本発明はさらに別の変形実施形態が可能である。
[0168] 本発明の一実施形態において、第 1のステップサイズ制御回路 19は、信号対雑音 比推定回路 21が出力する信号対雑音比を入力として受け、信号対雑音比が大きい ときには信号対雑音比が小さい時と比較して小さな値のステップサイズを出力する構 成としてもよい。
[0169] 本発明の一実施形態において、第 2のステップサイズ制御回路 20は、信号対雑音 比推定回路 22が出力する信号対雑音比を入力として受け、信号対雑音比が小さい ときには信号対雑音比が大きい時と比較して小さな値のステップサイズを出力する構 成としてもよレ、。
[0170] 本発明の一実施形態において、第 3のステップサイズ制御回路 17は、信号対雑音 比推定回路 23が出力する信号対雑音比を入力として受け、信号対雑音比が大きい ときには信号対雑音比が小さい時と比較して小さな値のステップサイズを出力する構 成としてもよレ、。
[0171] 本発明の一実施形態において、第 4のステップサイズ制御回路 18は、信号対雑音 比推定回路 23が出力する信号対雑音比を入力として受け、信号対雑音比が小さい ときには信号対雑音比が大きい時と比較して小さな値のステップサイズを出力する構 成としてもよい。
[0172] 本発明の一実施形態において、第 3のステップサイズ制御回路 17は、拡張信号対 雑音比と平均信号対雑音比を入力として受け、拡張信号対雑音比に対して平均信 号対雑音比によって決定される係数を乗じた乗算値に、平均信号対雑音比によって 決定される定数を加算した加算値が、予め定められた最大値と最小値の範囲内であ る時は加算値をステップサイズとして出力し、加算値が最大値よりも大きいときは予め 定められた最小ステップサイズをステップサイズとして出力し、加算値が最小値よりも 小さいときは予め定められた最大ステップサイズをステップサイズとして出力する構成 としてもよレ、。
[0173] 本発明の一実施形態において、第 4のステップサイズ制御回路 18は、拡張信号対 雑音比と平均信号対雑音比を入力として受け、拡張信号対雑音比に対して平均信 号対雑音比によって決定される係数を乗じた乗算値に、平均信号対雑音比によって 決定される定数を加算した加算値が、予め定められた最大値と最小値の範囲内であ る時は加算値をステップサイズとして出力し、加算値が最大値よりも大きいときは予め 定められた最大: -出力し、加算値が最小値よりも 小さいときは予め定められた最小 —出力する構成 としてもよレ、。
[0174] 以上説明した本発明に基づく信号処理装置は、ソフトウェアによって実現することも できる。すなわち、上述した各実施形態の信号処理装置における各回路の処理動作 をソフトウェアにおけるステップまたは手続きとして構成することで、信号処理に用い られるプログラムを構成すること力できる。そのようなプログラムは、信号処理装置ある いは雑音消去装置を構成する DSP(Digital Signal Processor)などのプロセッサで実 行される。
[0175] さらには、そのようなプログラムからなるプログラムプロダクトあるいはそのようなプロ グラムを格納した記憶媒体も、本発明の範疇に含まれる。

Claims

請求の範囲
[1] 第 1の信号と第 2の信号とを入力とする信号処理方法であって、
第 1の中間信号を入力とする第 1の適応フィルタによって第 1の擬似信号を生成し、 前記第 2の信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を生成 し、前記第 1の差信号を用いて前記第 1の適応フィルタの係数を更新する段階と、 第 2の中間信号を入力とする第 2の適応フィルタによって第 2の擬似信号を生成し、 前記第 2の信号力 前記第 2の擬似信号を差し引くことによって第 2の差信号を生成 し、前記第 2の差信号を用いて前記第 2の適応フィルタの係数を更新する段階と、 前記第 1の差信号を入力とする第 3の適応フィルタによって第 3の擬似信号を生成 し、前記第 1の信号力 前記第 3の擬似信号を差し引くことによって第 3の差信号を生 成し、前記第 3の差信号を前記第 1の中間信号として前記第 1の適応フィルタに入力 し、前記第 3の差信号を用いて前記第 3の適応フィルタの係数を更新する段階と、 前記第 2の差信号を入力とする第 4の適応フィルタによって第 4の擬似信号を生成 し、前記第 1の信号力 前記第 4の擬似信号を差し引くことによって第 4の差信号を生 成し、前記第 4の差信号を前記第 2の中間信号として前記第 2の適応フィルタに入力 し、前記第 4の差信号を用いて前記第 4の適応フィルタの係数を更新する段階と、 信号間の相対関係に基づいて、第 1のステップサイズを用いて前記第 1の適応フィ ルタの係数更新を制御し、第 2のステップサイズを用いて前記第 2の適応フィルタの 係数更新を制御し、第 3のステップサイズを用いて前記第 3の適応フィルタの係数更 新を制御し、第 4のステップサイズを用いて前記第 4の適応フィルタの係数更新を制 御する段階と、
前記第 1の差信号を出力する段階と、
を有する、信号処理方法。
[2] 第 1の信号と第 2の信号とを入力とする信号処理方法であって、
前記第 1の信号及び前記第 2の信号を遅延することによってそれそれ第 1の遅延信 号及び第 2の遅延信号を生成する段階と、
第 1の中間信号を入力とする第 1の適応フィルタによって第 1の擬似信号を生成し、 前記第 2の遅延信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を 生成し、前記第 1の差信号を用いて前記第 1の適応フィルタの係数を更新する段階と 第 2の中間信号を入力とする第 2の適応フィルタによって第 2の擬似信号を生成し、 前記第 2の信号力 前記第 2の擬似信号を差し引くことによって第 2の差信号を生成 し、前記第 2の差信号を用いて前記第 2の適応フィルタの係数を更新する段階と、 前記第 1の差信号を入力とする第 3の適応フィルタによって第 3の擬似信号を生成 し、前記第 1の遅延信号力 前記第 3の擬似信号を差し引くことによって第 3の差信 号を生成し、前記第 3の差信号を前記第 1の中間信号として前記第 1の適応フィルタ に入力し、前記第 3の差信号を用いて前記第 3の適応フィルタの係数を更新する段 階と、
前記第 2の差信号を入力とする第 4の適応フィルタによって第 4の擬似信号を生成 し、前記第 1の信号力 前記第 4の擬似信号を差し引くことによって第 4の差信号を生 成し、前記第 4の差信号を前記第 2の中間信号として前記第 2の適応フィルタに入力 し、前記第 4の差信号を用いて前記第 4の適応フィルタの係数を更新する段階と、 信号間の相対関係に基づいて、第 1のステップサイズを用いて前記第 1の適応フィ ルタの係数更新を制御し、第 2のステップサイズを用いて前記第 2の適応フィルタの 係数更新を制御し、第 3のステップサイズを用いて前記第 3の適応フィルタの係数更 新を制御し、第 4のステップサイズを用いて前記第 4の適応フィルタの係数更新を制 御する段階と、
前記第 1の差信号を出力する段階と、
を有する、信号処理方法。
[3] 第 1の信号と第 2の信号とを入力とする信号処理方法であって、
前記第 1の信号を間引くことによって第 1の間引き信号を生成し、前記第 2の信号を 間引くことによって第 2の間引き信号を生成する段階と、
第 1の中間信号を入力とする第 1の適応フィルタによって第 1の擬似信号を生成し、 前記第 2の信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を生成 し、前記第 1の差信号を用いて前記第 1の適応フィルタの係数を更新する段階と、 第 2の中間信号を入力とする第 2の適応フィルタによって第 2の擬似信号を生成し、 前記第 2の間引き信号から前記第 2の擬似信号を差し引くことによって第 2の差信号 を生成し、前記第 2の差信号を用いて前記第 2の適応フィルタの係数を更新する段 階と、
前記第 1の差信号を入力とする第 3の適応フィルタによって第 3の擬似信号を生成 し、前記第 1の信号力 前記第 3の擬似信号を差し引くことによって第 3の差信号を生 成し、前記第 3の差信号を前記第 1の中間信号として前記第 1の適応フィルタに入力 し、前記第 3の差信号を用いて前記第 3の適応フィルタの係数を更新する段階と、 前記第 2の差信号を入力とする第 4の適応フィルタによって第 4の擬似信号を生成 し、前記第 1の間引き信号から前記第 4の擬似信号を差し引くことによって第 4の差信 号を生成し、前記第 4の差信号を前記第 2の中間信号として前記第 2の適応フィルタ に入力し、前記第 4の差信号を用いて前記第 4の適応フィルタの係数を更新する段 階と、
信号間の相対関係に基づいて、第 1のステップサイズを用いて前記第 1の適応フィ ルタの係数更新を制御し、第 2のステップサイズを用いて前記第 2の適応フィルタの 係数更新を制御し、第 3のステップサイズを用いて前記第 3の適応フィルタの係数更 新を制御し、第 4のステップサイズを用いて前記第 4の適応フィルタの係数更新を制 御する段階と、
前記第 1の差信号を出力する段階と、
を有する、信号処理方法。
[4] 第 1の信号と第 2の信号とを入力とする信号処理方法であって、
前記第 1の信号及び前記第 2の信号を遅延することによってそれそれ第 1の遅延信 号及び第 2の遅延信号を生成する段階と、
前記第 1の信号を間引くことによって第 1の間引き信号を生成し、前記第 2の信号を 間引くことによって第 2の間引き信号を生成する段階と、
第 1の中間信号を入力とする第 1の適応フィルタによって第 1の擬似信号を生成し、 前記第 2の遅延信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を 生成し、前記第 1の差信号を用いて前記第 1の適応フィルタの係数を更新する段階と 第 2の中間信号を入力とする第 2の適応フィルタによって第 2の擬似信号を生成し、 前記第 2の間引き信号から前記第 2の擬似信号を差し引くことによって第 2の差信号 を生成し、前記第 2の差信号を用いて前記第 2の適応フィルタの係数を更新する段 階と、
前記第 1の差信号を入力とする第 3の適応フィルタによって第 3の擬似信号を生成 し、前記第 1の遅延信号力 前記第 3の擬似信号を差し引くことによって第 3の差信 号を生成し、前記第 3の差信号を前記第 1の中間信号として前記第 1の適応フィルタ に入力し、前記第 3の差信号を用いて前記第 3の適応フィルタの係数を更新する段 階と、
前記第 2の差信号を入力とする第 4の適応フィルタによって第 4の擬似信号を生成 し、前記第 1の間引き信号から前記第 4の擬似信号を差し引くことによって第 4の差信 号を生成し、前記第 4の差信号を前記第 2の中間信号として前記第 2の適応フィルタ に入力し、前記第 4の差信号を用いて前記第 4の適応フィルタの係数を更新する段 階と、
信号間の相対関係に基づいて、第 1のステップサイズを用いて前記第 1の適応フィ ルタの係数更新を制御し、第 2のステップサイズを用いて前記第 2の適応フィルタの 係数更新を制御し、第 3のステップサイズを用いて前記第 3の適応フィルタの係数更 新を制御し、第 4のステップサイズを用いて前記第 4の適応フィルタの係数更新を制 御する段階と、
前記第 1の差信号を出力する段階と、
を有する、信号処理方法。
[5] 前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは第 1の信号と前記第 2の信号との相 対関係に応じて制御され、前記第 3のステップサイズは前記第 4の擬似信号と前記第 4の差信号との相対関係に応じて制御され、前記第 4のステップサイズは前記第 1の 信号と前記第 2の信号との相対関係に応じて制御される、請求項 1または 2に記載の 信号処理方法。
[6] 前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは前記第 1の信号と前記第 2の信号と の相対関係に応じて制御され、前記第 3のステップサイズは、前記第 4の擬似信号と 前記第 4の差信号との相対関係に応じて制御され、前記第 4のステップサイズは、前 記第 4の擬似信号と前記第 4の差信号との相対関係に応じて制御される、請求項 1ま たは 2に記載の信号処理方法。
[7] 前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは前記第 2の擬似信号と前記第 2の差 信号との相対関係に応じて制御され、前記第 3のステップサイズは前記第 4の擬似信 号と前記第 4の差信号との相対関係に応じて制御され、前記第 4のステップサイズは 前記第 1の信号と前記第 2の信号との相対関係に応じて制御される、請求項 1または 2に記載の信号処理方法。
[8] 前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは前記第 2の擬似信号と前記第 2の差 信号との相対関係に応じて制御され、前記第 3のステップサイズは前記第 4の擬似信 号と前記第 4の差信号との相対関係に応じて制御され、前記第 4のステップサイズは 前記第 4の擬似信号と前記第 4の差信号との相対関係に応じて制御される、請求項 1 乃至 4のレ、ずれか 1項に記載の信号処理方法。
[9] 前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは前記第 1の信号と前記第 2の信号と の相対関係又は前記第 2の擬似信号と前記第 2の差信号との相対関係のいずれか 一方に応じて制御され、前記第 3のステップサイズは前記第 4の擬似信号と前記第 4 の差信号の相対関係に応じて制御され、前記第 4のステップサイズは前記第 1の信 号と前記第 2の信号との相対関係又は前記第 4の擬似信号と前記第 4の差信号との 相対関係のいずれか一方に応じて制御される、請求項 1または 2に記載の信号処理 方法。
[10] 前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは前記第 1の信号と前記第 2の信号と の相対関係に応じて制御され、前記第 3のステップサイズは前記第 2の擬似信号と前 記第 2の差信号との相対関係に応じて制御され、前記第 4のステップサイズは前記第 1の信号と前記第 2の信号との相対関係に応じて制御される、請求項 1または 2に記 載の信号処理方法。
[11] 前記第 1のステップサイズは、前記第 4の擬似信号と前記第 4の差信号との相対関 係に応じて制御され、前記第 2のステップサイズは前記第 1の信号と前記第 2の信号 との相対関係に応じて制御され、前記第 3のステップサイズは前記第 4の擬似信号と 前記第 4の差信号との相対関係に応じて制御され、前記第 4のステップサイズは前記 第 1の信号と前記第 2の信号との相対関係に応じて制御される、請求項 1または 2に 記載の信号処理方法。
[12] 前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは前記第 1の信号と前記第 2の信号の 相対関係に応じて制御され、前記第 3のステップサイズは前記第 2の擬似信号と前記 第 2の差信号の相対関係を補正して得られた値に応じて制御され、前記第 4のステツ プサイズは前記第 1の信号と前記第 2の信号の相対関係に応じて制御される、請求 項 1または 2に記載の信号処理方法。
[13] 前記第 1のステップサイズは、前記第 4の擬似信号と前記第 4の差信号との相対関 係を補正して得られた値に応じて制御され、前記第 2のステップサイズは前記第 1の 信号と前記第 2の信号との相対関係に応じて制御され、前記第 3のステップサイズは 前記第 4の擬似信号と前記第 4の差信号との相対関係に応じて制御され、前記第 4 のステップサイズは前記第 1の信号と前記第 2の信号との相対関係に応じて制御され る、請求項 1または 2に記載の信号処理方法。
[14] 前記第 1の信号と前記第 2の信号との相対関係を遅延することによって、遅延相対 関係信号を生成する段階と、
前記第 1の信号と前記第 2の信号の相対関係を平均することによって平均信号を生 成する段階と、をさらに有し、
前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは前記第 1の信号と前記第 2の信号の 相対関係と前記第 1の遅延信号のうち値の大きい方と前記平均信号とに応じて制御 され、前記第 3のステップサイズは前記第 4の擬似信号と前記第 4の差信号との相対 関係に応じて制御され、前記第 4のステップサイズは前記第 1の信号と前記第 2の信 号の相対関係と前記遅延相対関係信号のうち値の小さい方と前記平均信号とに応じ て制御される、請求項 1または 2に記載の信号処理方法。
[15] 前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは第 1の間引き信号と前記第 2の間引 き信号との相対関係に応じて制御され、前記第 3のステップサイズは前記第 4の擬似 信号と前記第 4の差信号との相対関係に応じて制御され、前記第 4のステップサイズ は前記第 1の間引き信号と前記第 2の間引き信号との相対関係に応じて制御される、 請求項 3または 4に記載の信号処理方法。
[16] 前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは前記第 1の間引き信号と前記第 2の 間引き信号との相対関係に応じて制御され、前記第 3のステップサイズは、前記第 4 の擬似信号と前記第 4の差信号との相対関係に応じて制御され、前記第 4のステップ サイズは、前記第 4の擬似信号と前記第 4の差信号との相対関係に応じて制御される 、請求項 3または 4に記載の信号処理方法。
[17] 前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは前記第 2の擬似信号と前記第 2の差 信号との相対関係に応じて制御され、前記第 3のステップサイズは前記第 4の擬似信 号と前記第 4の差信号との相対関係に応じて制御され、前記第 4のステップサイズは 前記第 1の間引き信号と前記第 2の間引き信号との相対関係に応じて制御される、請 求項 3または 4に記載の信号処理方法。
[18] 前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは前記第 1の間引き信号と前記第 2の 間引き信号との相対関係又は前記第 2の擬似信号と前記第 2の差信号との相対関係 のレ、ずれか一方に応じて制御され、前記第 3のステップサイズは前記第 4の擬似信 号と前記第 4の差信号の相対関係に応じて制御され、前記第 4のステップサイズは前 記第 1の間引き信号と前記第 2の間引き信号との相対関係又は前記第 4の擬似信号 と前記第 4の差信号との相対関係のレ、ずれか一方に応じて制御される、請求項 3また は 4に記載の信号処理方法。
[19] 前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは前記第 1の間引き信号と前記第 2の 間引き信号との相対関係に応じて制御され、前記第 3のステップサイズは前記第 2の 擬似信号と前記第 2の差信号との相対関係に応じて制御され、前記第 4のステップサ ィズは前記第 1の間引き信号と前記第 2の間引き信号との相対関係に応じて制御さ れる、請求項 3または 4に記載の信号処理方法。
[20] 前記第 1のステップサイズは、前記第 4の擬似信号と前記第 4の差信号との相対関 係に応じて制御され、前記第 2のステップサイズは前記第 1の間弓 Iき信号と前記第 2 の間引き信号との相対関係に応じて制御され、前記第 3のステップサイズは前記第 4 の擬似信号と前記第 4の差信号との相対関係に応じて制御され、前記第 4のステップ サイズは前記第 1の間引き信号と前記第 2の間引き信号との相対関係に応じて制御 される、請求項 3または 4に記載の信号処理方法。
[21] 前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは前記第 1の間引き信号と前記第 2の 間引き信号の相対関係に応じて制御され、前記第 3のステップサイズは前記第 2の擬 似信号と前記第 2の差信号の相対関係を補正して得られた値に応じて制御され、前 記第 4のステップサイズは前記第 1の間引き信号と前記第 2の間弓 [き信号の相対関係 に応じて制御される、請求項 1または 2に記載の信号処理方法。
[22] 前記第 1のステップサイズは、前記第 4の擬似信号と前記第 4の差信号との相対関 係を補正して得られた値に応じて制御され、前記第 2のステップサイズは前記第 1の 間引き信号と前記第 2の間引き信号との相対関係に応じて制御され、前記第 3のステ ップサイズは前記第 4の擬似信号と前記第 4の差信号との相対関係に応じて制御さ れ、前記第 4のステップサイズは前記第 1の間引き信号と前記間引き第 2の信号との 相対関係に応じて制御される、請求項 3または 4に記載の信号処理方法。
[23] 前記第 1の信号と前記第 2の信号との相対関係を遅延することによって、遅延相対 関係信号を生成する段階と、 前記第 1の間引き信号と前記第 2の間引き信号の相対関係を平均することによって 平均信号を生成する段階と、をさらに有し、
前記第 1のステップサイズは前記第 2の擬似信号と前記第 2の差信号との相対関係 に応じて制御され、前記第 2のステップサイズは前記第 1の間引き信号と前記第 2の 間引き信号の相対関係と前記第 1の遅延信号のうち値の大きい方と前記平均信号と に応じて制御され、前記第 3のステップサイズは前記第 4の擬似信号と前記第 4の差 信号との相対関係に応じて制御され、前記第 4のステップサイズは前記第 1の間引き 信号と前記第 2の間引き信号の相対関係と前記遅延相対関係信号のうち値の小さい 方と前記平均信号とに応じて制御される、請求項 3または 4に記載の信号処理方法。
[24] 第 1の信号と、所望の信号を含む第 2の信号とを用いて、前記第 1の信号と前記第 2 の信号との関係を示す第 1の指標を計算する段階と、
前記第 1の信号と、前記第 2の信号と、前記第 1の指標とを用いて、前記所望の信 号と前記所望の信号以外の信号の関係を示す第 2の指標を計算する段階と、 前記第 1の信号と、前記第 2の信号と、前記第 2の指標とを用いて、前記所望の信 号を取り出す段階と、
を有する信号処理方法。
[25] 第 1の信号と、所望の信号を含む第 2の信号とを用いて所望の信号を取り出す方法 であって、
前記第 1の信号と前記第 2の信号の関係を用いて、前記第 1の信号と前記第 2の信 号を入力として動作する第 1の信号処理を制御する段階と、
前記第 1の信号処理の結果を用いて、前記第 1の信号と前記第 2の信号を入力とし て動作する第 2の信号処理を制御する段階と、
を有する信号処理方法。
[26] 第 1の信号を入力とする第 1の適応フィルタによって第 1の擬似信号を生成する段 階と、
第 2の信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を生成する 段階と、
前記第 1の差信号を用いて前記第 1の適応フィルタの係数を更新する段階と、 前記第 1の信号を入力とする第 2の適応フィルタによって第 2の擬似信号を生成す る段階と、
前記第 2の信号力 前記第 2の擬似信号を差し引くことによって第 2の差信号を生 成する段階と、
前記第 2の差信号を用いて前記第 2の適応フィルタの係数を更新する段階と、 前記第 2の擬似信号と前記第 2の差信号との相対関係に応じて制御される第 1のス テツプサイズを用いて前記第 1の適応フィルタの係数更新を制御する段階と、 前記第 1の信号と前記第 2の信号との相対関係に応じて制御される第 2のステップ サイズを用いて前記第 2の適応フィルタの係数更新を制御する段階と、
前記第 1の差信号を出力する段階と、
を有する、信号処理方法。
[27] 第 1の信号及び第 2の信号を遅延させてそれぞれ第 1の遅延信号及び第 2の遅延 信号を生成する段階と、
前記第 1の遅延信号を入力とする第 1の適応フィルタによって第 1の擬似信号を生 成する段階と、
前記第 2の遅延信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号 を生成する段階と、
前記第 1の差信号を用いて前記第 1の適応フィルタの係数を更新する段階と、 前記第 1の信号を入力とする第 2の適応フィルタによって第 2の擬似信号を生成す る段階と、
前記第 2の信号力 前記第 2の擬似信号を差し引くことによって第 2の差信号を生 成する段階と、
前記第 2の差信号を用いて前記第 2の適応フィルタの係数を更新する段階と、 前記第 2の擬似信号と前記第 2の差信号との相対関係に応じて制御される第 1のス テツプサイズを用いて前記第 1の適応フィルタの係数更新を制御する段階と、 前記第 1の信号と前記第 2の信号との相対関係に応じて制御される第 2のステップ サイズを用いて前記第 2の適応フィルタの係数更新を制御する段階と、
前記第 1の差信号を出力する段階と、 を有する、信号処理方法。
[28] 第 1の信号を入力とする第 1の適応フィルタによって第 1の擬似信号を生成する段 階と、
第 2の信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を生成する 段階と、
前記第 1の信号を間引くことによって第 1の間引き信号を生成する段階と、 前記第 2の信号を間引くことによって第 2の間引き信号を生成する段階と、 前記第 1の差信号を用いて前記第 1の適応フィルタの係数を更新する段階と、 前記第 1の間引き信号を入力とする第 2の適応フィルタによって第 2の擬似信号を 生成する段階と、
前記第 2の間引き信号から前記第 2の擬似信号を差し引くことによって第 2の差信 号を生成する段階と、
前記第 2の差信号を用いて前記第 2の適応フィルタの係数を更新する段階と、 前記第 2の擬似信号と前記第 2の差信号との相対関係に応じて制御される第 1のス テツプサイズを用いて前記第 1の適応フィルタの係数更新を制御する段階と、 前記第 1の間引き信号と前記第 2の間引き信号との相対関係に応じて制御される第 2のステップサイズを用いて前記第 2の適応フィルタの係数更新を制御する段階と、 前記第 1の差信号を出力する段階と、
を有する、信号処理方法。
[29] 第 1の信号及び第 2の信号を遅延させてそれぞれ第 1の遅延信号及び第 2の遅延 信号を生成する段階と、
前記第 1の遅延信号を入力とする第 1の適応フィルタによって第 1の擬似信号を生 成する段階と、
前記第 2の遅延信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号 を生成する段階と、
前記第 1の信号を間引くことによって第 1の間引き信号を生成する段階と、 前記第 2の信号を間引くことによって第 2の間引き信号を生成する段階と、 前記第 1の差信号を用いて前記第 1の適応フィルタの係数を更新する段階と、 前記第 1の間引き信号を入力とする第 2の適応フィルタによって第 2の擬似信号を 生成する段階と、
前記第 2の間引き信号から前記第 2の擬似信号を差し引くことによって第 2の差信 号を生成する段階と、
前記第 2の差信号を用いて前記第 2の適応フィルタの係数を更新する段階と、 前記第 2の擬似信号と前記第 2の差信号との相対関係に応じて制御される第 1のス テツプサイズを用いて前記第 1の適応フィルタの係数更新を制御する段階と、 前記第 1の間引き信号と前記第 2の間引き信号との相対関係に応じて制御される第 2のステップサイズを用いて前記第 2の適応フィルタの係数更新を制御する段階と、 前記第 1の差信号を出力する段階と、
を有する、信号処理方法。
[30] 第 1の信号と、所望の信号を含む第 2の信号とを入力し、前記第 1の信号と前記第 2 の信号の関係を示す第 1の指標を計算する第 1の計算回路と、
前記第 1の信号と、前記第 2の信号と、前記第 1の指標とを入力し、前記所望の信 号と、所望信号以外の信号との関係を示す第 2の指標を計算する第 2の計算回路と 前記第 1の信号と、前記第 2の信号と、前記第 2の指標とを入力し、前記所望の信 号を取り出す信号処理回路と、
を有する、信号処理装置。
[31] 第 1の信号と、所望の信号を含む第 2の信号とを入力し、所望の信号を取り出す信 号処理装置であって、
前記第 1の信号と前記第 2の信号の関係を計算する計算回路と、
前記第 1の信号と前記第 2の信号を入力とする第 1の信号処理手段と、 前記第 1の信号と前記第 2の信号を入力とする第 2の信号処理手段と、 を備え、
前記計算回路の出力を用いて前記第 1の信号処理手段の動作が制御され、前記 第 1の信号処理手段の出力を用いて前記第 2の信号処理手段の動作が制御される、
[32] 第 1の信号を入力として第 1の擬似信号を生成する第 1の適応フィルタと、 第 2の信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を生成する 第 1の減算器と、
前記第 1の信号を入力として第 2の擬似信号を生成する第 2の適応フィルタと、 前記第 2の信号力 前記第 2の擬似信号を差し引くことによって第 2の差信号を生 成する第 2の減算器と、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて第 1のステップサイズ を生成する第 1のステップサイズ制御手段と、
前記第 1の信号と前記第 2の信号の相対関係に応じて第 2のステップサイズを生成 する第 2のステップサイズ制御手段と、
を有し、
前記第 1の差信号と前記第 1のステップサイズを用いて前記第 1の適応フィルタの 係数が更新され、前記第 2の差信号と前記第 2のステップサイズを用いて前記第 2の 適応フィルタの係数が更新され、前記第 1の差信号が出力される、信号処理装置。
[33] 第 1の信号を入力として第 1の擬似信号を生成する第 1の適応フィルタと、
第 2の信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を生成する 第 1の減算器と、
前記第 1の信号を間引くことによって第 1の間引き信号を生成する第 1の間引き手 段と、
前記第 2の信号を間引くことによって第 2の間引き信号を生成する第 2の間引き手 段と、
前記第 1の間引き信号を入力として第 2の擬似信号を生成する第 2の適応フィルタ と、
前記第 2の間引き信号から前記第 2の擬似信号を差し引くことによって第 2の差信 号を生成する第 2の減算器と、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて第 1のステップサイズ を生成する第 1のステップサイズ制御手段と、
前記第 1の間引き信号と前記第 2の間引き信号の相対関係に応じて第 2のステップ サイズを生成する第 2のステップサイズ制御手段と、
を有し、
前記第 1の差信号と前記第 1のステップサイズを用いて前記第 1の適応フィルタの 係数が更新され、前記第 2の差信号と前記第 2のステップサイズを用いて前記第 2の 適応フィルタの係数が更新され、前記第 1の差信号が出力される、信号処理装置。
[34] 前記第 1の適応フィルタに入力する前記第 1の信号に遅延を与える第 1の遅延手段 と、
前記第 1の減算器に入力する前記第 2の信号に遅延を与える第 2の遅延手段と、 をさらに有する、請求項 32または 33に記載の信号処理装置。
[35] 第 1の信号と第 2の信号と入力する信号処理装置であって、
第 1の中間信号を入力として第 1の擬似信号を生成する第 1の適応フィルタと、 前記第 2の信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を生 成する第 1の減算器と、
第 2の中間信号を入力として第 2の擬似信号を生成する第 2の適応フィルタと、 前記第 2の信号力 前記第 2の擬似信号を差し引くことによって第 2の差信号を生 成する第 2の減算器と、
前記第 1の差信号を入力として第 3の擬似信号を生成する第 3の適応フィルタと、 前記第 1の信号力 前記第 3の擬似信号を差し引くことによって第 3の差信号を生 成し、前記第 3の差信号を前記第 1の中間信号として前記第 1の適応フィルタに供給 する第 3の減算器と、
前記第 2の差信号を入力として第 4の擬似信号を生成する第 4の適応フィルタと、 前記第 1の信号力 前記第 4の擬似信号を差し引くことによって第 4の差信号を生 成し、前記第 4の差信号を前記第 2の中間信号として前記第 2の適応フィルタに供給 する第 4の減算器と、
信号間の相対関係に基づいて、第 1のステップサイズ、第 2のステップサイズ、第 3 のステップサイズ及び第 4のステップサイズを生成するステップサイズ制御手段と、 を有し、
前記第 1の差信号と前記第 1のステップサイズを用いて前記第 1の適応フィルタの 係数が更新され、前記第 2の差信号と前記第 2のステップサイズを用いて前記第 2の 適応フィルタの係数が更新され、前記第 3の差信号と前記第 3のステップサイズを用 レ、て前記第 3の適応フィルタの係数が更新され、前記第 4の差信号と前記第 4のステ ップサイズを用いて前記第 4の適応フィルタの係数が更新され、前記第 1の差信号が 出力される、信号処理装置。
[36] 前記第 3の減算器に入力する前記第 1の信号に遅延を与える第 1の遅延回路と、 前記第 1の減算器に入力する前記第 2の信号に遅延を与える第 2の遅延回路と、 をさらに有する、請求項 35に記載の信号処理装置。
[37] 前記ステップサイズ制御手段は、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて前記第 1のステップ サイズを生成する第 1のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係に応じて前記第 2のステップサイズを 生成する第 2のステップサイズ制御回路と、
前記第 4の擬似信号と前記第 4の差信号の相対関係に応じて前記第 3のステップ サイズを生成する第 3のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係に応じて前記第 4のステップサイズを 生成する第 4のステップサイズ制御回路と、
を有する、請求項 35または 36に記載の信号処理装置。
[38] 前記ステップサイズ制御手段は、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて前記第 1のステップ サイズを生成する第 1のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係に応じて前記第 2のステップサイズを 生成する第 2のステップサイズ制御回路と、
前記第 4の擬似信号と前記第 4の差信号の相対関係に応じて前記第 3のステップ サイズを生成する第 3のステップサイズ制御回路と、
前記第 4の擬似信号と前記第 4の差信号の相対関係に応じて前記第 4のステップ サイズを生成する第 4のステップサイズ制御回路と、
を有する、請求項 35または 36に記載の信号処理装置。
[39] 前記ステップサイズ制御手段は、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて前記第 1のステップ サイズを生成する第 1のステップサイズ制御回路と、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて前記第 2のステップ サイズを生成する第 2のステップサイズ制御回路と、
前記第 4の擬似信号と前記第 4の差信号の相対関係に応じて前記第 3のステップ サイズを生成する第 3のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係に応じて前記第 4のステップサイズを 生成する第 4のステップサイズ制御回路と、
を有する、請求項 35または 36に記載の信号処理装置。
[40] 前記ステップサイズ制御手段は、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて前記第 1のステップ サイズを生成する第 1のステップサイズ制御回路と、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて前記第 2のステップ サイズを生成する第 2のステップサイズ制御回路と、
前記第 4の擬似信号と前記第 4の差信号の相対関係に応じて前記第 3のステップ サイズを生成する第 3のステップサイズ制御回路と、
前記第 4の擬似信号と前記第 4の差信号の相対関係に応じて前記第 4のステップ サイズを生成する第 4のステップサイズ制御回路と、
を有する、請求項 35または 36に記載の信号処理装置。
[41] 前記ステップサイズ制御回路は、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて前記ォ第 1のステツ プサイズを生成する第 1のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係又は前記第 2の擬似信号と前記第 2 の差信号の相対関係のいずれか一方に応じて、前記第 2のステップサイズを生成す る第 2のステップサイズ制御回路と、
前記第 4の擬似信号と前記第 4の差信号の相対関係に応じて前記第 3のステップ サイズを生成する第 3のステップサイズ制御回路と、 前記第 1の信号と前記第 2の信号の相対関係又は前記第 4の擬似信号と前記第 4 の差信号の相対関係のいずれか一方に応じて前記第 4のステップサイズを生成する 第 4のステップサイズ制御回路と、
を有する、請求項 35または 36に記載の信号処理装置。
[42] 前記ステップサイズ制御手段は、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて前記第 1のステップ サイズを生成する第 1のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係に応じて前記第 2のステップサイズを 生成する第 2のステップサイズ制御回路と、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて前記第 3のステップ サイズを生成する第 3のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係に応じて前記第 4のステップサイズを 生成する第 4のステップサイズ制御回路と、
を有する、請求項 35または 36に記載の信号処理装置。
[43] 前記ステップサイズ制御手段は、
前記第 4の擬似信号と前記第 4の差信号の相対関係に応じて前記第 1のステップ サイズを生成する第 1のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係に応じて前記第 2のステップサイズを 生成する第 2のステップサイズ制御回路と、
前記第 4の擬似信号と前記第 4の差信号の相対関係に応じて前記第 3のステップ サイズを生成する第 3のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係に応じて前記第 4のステップサイズを 生成する第 4のステップサイズ制御回路と、
を有する、請求項 35または 36に記載の信号処理装置。
[44] 前記ステップサイズ制御手段は、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて前記第 1のステップ サイズを生成する第 1のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係に応じて前記第 2のステップサイズを 生成する第 2のステップサイズ制御回路と、
前記第 2の擬似信号と前記第 2の差信号の相対関係を補正して得られた値に応じ て第 3のステップサイズを生成する前記第 3のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係に応じて前記第 4のステップサイズを 生成する第 4のステップサイズ制御回路と、
を有する、請求項 35または 36に記載の信号処理装置。
[45] 前記ステップサイズ制御手段は、
前記第 4の擬似信号と前記第 4の差信号の相対関係を補正して得られた値に応じ て前記第 1のステップサイズを生成する第 1のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係に応じて前記第 2のステップサイズを 生成する第 2のステップサイズ制御回路と、
前記第 4の擬似信号と前記第 4の差信号の相対関係に応じて前記第 3のステップ サイズを生成する第 3のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係に応じて前記第 4のステップサイズを 生成する第 4のステップサイズ制御回路と、
を有する、請求項 35または 36に記載の信号処理装置。
[46] 前記第 1の信号と前記第 2の信号の相対関係を遅延することによって遅延信号を生 成する遅延手段と、
前記第 1の信号と前記第 2の信号の相対関係を平均することによって平均信号を生 成する平均手段と、
をさらに有し、
前記ステップサイズ制御手段は、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて前記第 1のステップ サイズを生成する第 1のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係と前記遅延信号のうち値の大きい方 と、前記平均信号とに応じて、前記第 2のステップサイズを生成する第 2のステップサ ィズ制御回路と、
前記第 4の擬似信号と前記第 4の差信号の相対関係に応じて前記第 3のステップ サイズを生成する第 3のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係と前記遅延信号のうち値の小さい方 と前記平均信号に応じて第 4のステップサイズを生成する前記第 4のステップサイズ 制御回路と、
を有する、請求項 35または 36に記載の信号処理装置。
[47] 前記第 1の信号と前記第 2の信号の相対関係を遅延することによって遅延信号を生 成する第 1の遅延手段と、
前記第 1の信号と前記第 2の信号の相対関係を平均することによって平均信号を生 成する平均手段と、
をさらに有し、
前記ステップサイズ制御手段は、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて前記第 1のステップ サイズを生成する第 1のステップサイズ制御回路と、
前記第 1の信号と前記第 2の信号の相対関係と前記遅延信号のうち値の大きい方 と前記平均信号に応じて前記第 2のステップサイズを生成し、前記第 1の信号と前記 第 2の信号の相対関係と前記遅延信号のうち値の小さい方と前記平均信号に応じて 第 4のステップサイズを生成する第 2のステップサイズ制御回路と、
前記第 4の擬似信号と前記第 4の差信号の相対関係に応じて前記第 3のステップ サイズを生成する第 3のステップサイズ制御回路と、
を有する、請求項 35または 36に記載の信号処理装置。
[48] 前記第 4の減算器に入力する前記第 1の信号を間引く第 1の間引き手段と、
前記第 2の減算器に入力する前記第 2の信号を間引く第 2の間引き手段と、 をさらに有する、請求項 35、 36、 40のいずれか 1項に記載の信号処理装置。
[49] 前記第 4の減算器に入力する前記第 1の信号を間引く第 1の間引き手段と、
前記第 2の減算器に入力する前記第 2の信号を間引く第 2の間引き手段と、 をさらに有し、前記第 1の信号と前記第 2の信号の前記相対関係として、間引かれ た後の前記第 1の信号と間引かれた後の前記第 2の信号との相対関係を用いる、請 求項 37、 38、 39、 41、 42、 43、 44、 45、 46、 47のレヽずれ力、 1項に記載の信号処理
[50] 前記第 1の信号が音声入力端子から入力された第 1の受音信号であり、 前記第 2の信号が参照入力端子から入力された第 2の受音信号であり、 前記第 1の受音信号における信号対雑音相対関係に基づき、前記第 1の受音信号 において音声信号に比べ雑音信号が多いと判断したときは、前記第 1のステップサイ ズ制御手段は、前記第 1の適応フィルタには大きなステップサイズを供給して収束を 速め、前記第 1の受音信号において音声信号に比べ雑音信号が少ないと判断したと きは、前記第 1の適応フィルタには小さなステップサイズを供給し、
前記第 2の受音信号における信号対雑音相対関係に基づき、前記第 2の受音信号 において雑音信号に比べ音声信号が多いと判断したときは、前記第 2のステップサイ ズ制御手段は、前記第 2の適応フィルタには大きなステップサイズを供給して収束を 速め、雑音信号に比べ音声信号が少ないと判断したときは、前記第 2の適応フィルタ には小さなステップサイズを供給し、雑音の消去を行う、請求項 32乃至 34のいずれ 力 1項に記載の信号処理装置。
[51] 前記第 1の信号が音声入力端子から入力された第 1の受音信号であり、
前記第 2の信号が参照入力端子から入力された第 2の受音信号であり、 前記第 1の受音信号における信号対雑音相対関係に基づき、前記第 1の受音信号 において音声信号に比べ雑音信号が多いと判断したときは、前記第 1のステップサイ ズ制御回路は、前記第 1の適応フィルタには大きなステップサイズを供給して収束を 速め、前記第 1の受音信号において音声信号に比べ雑音信号が少ないと判断したと きは、前記第 1の適応フィルタには小さなステップサイズを供給し、
前記第 2の受音信号における信号対雑音相対関係に基づき、前記第 2の受音信号 において雑音信号に比べ音声信号が多いと判断したときは、前記第 2のステップサイ ズ制御回路は、前記第 2の適応フィルタには大きなステップサイズを供給して収束を 速め、雑音信号に比べ音声信号が少ないと判断したときは、前記第 2の適応フィルタ には小さなステップサイズを供給し、
前記第 1の受音信号における信号対雑音相対関係に基づき、前記第 1の受音信号 において音声信号に比べ雑音信号が多いと判断したときは、前記第 3のステップサイ ズ制御回路は、前記第 3の適応フィルタには大きなステップサイズを供給して収束を 速め、前記第 1の受音信号において音声信号に比べ雑音信号が少ないと判断したと きは、前記第 3の適応フィルタには小さなステップサイズを供給し、
前記第 2の受音信号における信号対雑音相対関係に基づき、前記第 2の受音信号 において雑音信号に比べ音声信号が多いと判断したときは、前記第 4のステップサイ ズ制御回路は、前記第 4の適応フィルタには大きなステップサイズを供給して収束を 速め、雑音信号に比べ音声信号が少ないと判断したときは、前記第 4の適応フィルタ には小さなステップサイズを供給し、雑音の消去を行う、
請求項 35乃至 49のいずれか 1項に記載の信号処理装置。
[52] 前記第 1の信号が第 1の入力端子から入力された反響信号であり、
前記第 2の信号が第 2の入力端子から入力された参照信号であり、
反響を消去した信号が出力される、請求項 32乃至 49のいずれ力 4項に記載の信
[53] 信号処理装置を構成するコンピュータに、
第 1の信号と所望の信号を含む第 2の信号を用いて前記第 1の信号と前記第 2の信 号の関係を示す第 1の指標を計算する処理と、
前記第 1の信号と前記第 2の信号と前記第 1の指標を用いて前記所望の信号と所 望信号以外の信号の関係を示す第 2の指標を計算する処理と、
前記第 1の信号と前記第 2の信号と前記第 2の指標を用いて前記所望の信号を取り 出す処理と、
を実行させるプログラム。
[54] 第 1の信号と所望の信号を含む第 2の信号を用いて所望の信号を取り出す信号処 理装置を構成するコンピュータに、
前記第 1の信号と前記第 2の信号の関係を用いて、前記第 1の信号と前記第 2の信 号を入力として動作する第 1の信号処理を制御する処理と、
前記第 1の信号処理結果を用いて、前記第 1の信号と前記第 2の信号を入力として 動作する第 2の信号処理を制御する処理と
を実行させるプログラム。
[55] 信号処理装置を構成するコンピュータに、
第 1の信号を入力とする第 1の適応フィルタによって第 1の擬似信号を生成し、第 2 の信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を生成し、前記 第 1の差信号を用いて前記第 1の適応フィルタの係数を更新する処理と、
前記第 1の信号を入力とする第 2の適応フィルタによって第 2の擬似信号を生成し、 前記第 2の信号力 前記第 2の擬似信号を差し引くことによって第 2の差信号を生成 し、前記第 2の差信号を用いて前記第 2の適応フィルタの係数を更新する処理と、 前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて制御される第 1のステ ップサイズを用いて前記第 1の適応フィルタの係数更新を制御する処理と、
前記第 1の信号と前記第 2の信号の相対関係に応じて制御される第 2のステップサ ィズを用いて前記第 2の適応フィルタの係数更新を制御する処理と、
前記第 1の差信号を出力する処理と、
を実行させるプログラム。
[56] 信号処理装置を構成するコンピュータに、
第 1の信号を入力とする第 1の適応フィルタによって第 1の擬似信号を生成し、第 2 の信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を生成し、前記 第 1の差信号を用いて前記第 1の適応フィルタの係数を更新する処理と、
前記第 1の信号を間引くことによって第 1の間引き信号を生成する処理と、 前記第 2の信号を間引くことによって第 2の間引き信号を生成する処理と、 前記第 1の間引き信号を入力とする第 2の適応フィルタによって第 2の擬似信号を 生成し、前記第 2の間引き信号から前記第 2の擬似信号を差し引くことによって第 2の 差信号を生成し、前記第 2の差信号を用いて前記第 2の適応フィルタの係数を更新 する処理と、
前記第 2の擬似信号と前記第 2の差信号の相対関係に応じて制御される第 1のステ ップサイズを用いて前記第 1の適応フィルタの係数更新を制御する処理と、
前記第 1の間引き信号と前記第 2の間引き信号の相対関係に応じて制御される第 2 のステップサイズを用いて前記第 2の適応フィルタの係数更新を制御する処理と、 前記第 1の差信号を出力する処理と、 を実行させるプログラム。
[57] 第 1の信号と第 2の信号とを入力とする信号処理装置を構成するコンピュータに、 第 1の中間信号を入力とする第 1の適応フィルタによって第 1の擬似信号を生成し、 前記第 2の信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を生成 し、前記第 1の差信号を用いて前記第 1の適応フィルタの係数を更新する処理と、 第 2の中間信号を入力とする第 2の適応フィルタによって第 2の擬似信号を生成し、 前記第 2の信号力 前記第 2の擬似信号を差し引くことによって第 2の差信号を生成 し、前記第 2の差信号を用いて前記第 2の適応フィルタの係数を更新する処理と、 前記第 1の差信号を入力とする第 3の適応フィルタによって第 3の擬似信号を生成 し、前記第 1の信号力 前記第 3の擬似信号を差し引くことによって第 3の差信号を生 成し、前記第 3の差信号を前記第 1の中間信号として前記第 1の適応フィルタに入力 し、前記第 3の差信号を用いて前記第 3の適応フィルタの係数を更新する処理と、 前記第 2の差信号を入力とする第 4の適応フィルタによって第 4の擬似信号を生成 し、前記第 1の信号力 前記第 4の擬似信号を差し引くことによって第 4の差信号を生 成し、前記第 4の差信号を前記第 2の中間信号として前記第 2の適応フィルタに入力 し、前記第 4の差信号を用いて前記第 4の適応フィルタの係数を更新する処理と、 信号間の相対関係に基づいて、第 1のステップサイズを用いて前記第 1の適応フィ ルタの係数更新を制御し、第 2のステップサイズを用いて前記第 2の適応フィルタの 係数更新を制御し、第 3のステップサイズを用いて前記第 3の適応フィルタの係数更 新を制御し、第 4のステップサイズを用いて前記第 4の適応フィルタの係数更新を制 御する処理と、
前記第 1の差信号を出力する処理と、
を実行させる、プログラム。
[58] 第 1の信号と第 2の信号とを入力とする信号処理装置を構成するコンピュータに、 前記第 1の信号及び前記第 2の信号を遅延することによってそれそれ第 1の遅延信 号及び第 2の遅延信号を生成する処理と、
第 1の中間信号を入力とする第 1の適応フィルタによって第 1の擬似信号を生成し、 前記第 2の遅延信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を 生成し、前記第 1の差信号を用いて前記第 1の適応フィルタの係数を更新する処理と 第 2の中間信号を入力とする第 2の適応フィルタによって第 2の擬似信号を生成し、 前記第 2の信号力 前記第 2の擬似信号を差し引くことによって第 2の差信号を生成 し、前記第 2の差信号を用いて前記第 2の適応フィルタの係数を更新する処理と、 前記第 1の差信号を入力とする第 3の適応フィルタによって第 3の擬似信号を生成 し、前記第 1の遅延信号力 前記第 3の擬似信号を差し引くことによって第 3の差信 号を生成し、前記第 3の差信号を前記第 1の中間信号として前記第 1の適応フィルタ に入力し、前記第 3の差信号を用いて前記第 3の適応フィルタの係数を更新する処 理と、
前記第 2の差信号を入力とする第 4の適応フィルタによって第 4の擬似信号を生成 し、前記第 1の信号力 前記第 4の擬似信号を差し引くことによって第 4の差信号を生 成し、前記第 4の差信号を前記第 2の中間信号として前記第 2の適応フィルタに入力 し、前記第 4の差信号を用いて前記第 4の適応フィルタの係数を更新する処理と、 信号間の相対関係に基づいて、第 1のステップサイズを用いて前記第 1の適応フィ ルタの係数更新を制御し、第 2のステップサイズを用いて前記第 2の適応フィルタの 係数更新を制御し、第 3のステップサイズを用いて前記第 3の適応フィルタの係数更 新を制御し、第 4のステップサイズを用いて前記第 4の適応フィルタの係数更新を制 御する処理と、
前記第 1の差信号を出力する処理と、
を実行させる、プログラム。
[59] 第 1の信号と第 2の信号とを入力とする信号処理装置を構成するコンピュータに、 前記第 1の信号を間引くことによって第 1の間引き信号を生成し、前記第 2の信号を 間引くことによって第 2の間引き信号を生成する処理と、
第 1の中間信号を入力とする第 1の適応フィルタによって第 1の擬似信号を生成し、 前記第 2の信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を生成 し、前記第 1の差信号を用いて前記第 1の適応フィルタの係数を更新する処理と、 第 2の中間信号を入力とする第 2の適応フィルタによって第 2の擬似信号を生成し、 前記第 2の間引き信号から前記第 2の擬似信号を差し引くことによって第 2の差信号 を生成し、前記第 2の差信号を用いて前記第 2の適応フィルタの係数を更新する処 理と、
前記第 1の差信号を入力とする第 3の適応フィルタによって第 3の擬似信号を生成 し、前記第 1の信号力 前記第 3の擬似信号を差し引くことによって第 3の差信号を生 成し、前記第 3の差信号を前記第 1の中間信号として前記第 1の適応フィルタに入力 し、前記第 3の差信号を用いて前記第 3の適応フィルタの係数を更新する処理と、 前記第 2の差信号を入力とする第 4の適応フィルタによって第 4の擬似信号を生成 し、前記第 1の間引き信号から前記第 4の擬似信号を差し引くことによって第 4の差信 号を生成し、前記第 4の差信号を前記第 2の中間信号として前記第 2の適応フィルタ に入力し、前記第 4の差信号を用いて前記第 4の適応フィルタの係数を更新する処 理と、
信号間の相対関係に基づいて、第 1のステップサイズを用いて前記第 1の適応フィ ルタの係数更新を制御し、第 2のステップサイズを用いて前記第 2の適応フィルタの 係数更新を制御し、第 3のステップサイズを用いて前記第 3の適応フィルタの係数更 新を制御し、第 4のステップサイズを用いて前記第 4の適応フィルタの係数更新を制 御する処理と、
前記第 1の差信号を出力する処理と、
を実行させる、プログラム。
[60] 第 1の信号と第 2の信号とを入力とする信号処理装置を構成するコンピュータに、 前記第 1の信号及び前記第 2の信号を遅延することによってそれそれ第 1の遅延信 号及び第 2の遅延信号を生成する処理と、
前記第 1の信号を間引くことによって第 1の間引き信号を生成し、前記第 2の信号を 間引くことによって第 2の間引き信号を生成する処理と、
第 1の中間信号を入力とする第 1の適応フィルタによって第 1の擬似信号を生成し、 前記第 2の遅延信号力 前記第 1の擬似信号を差し引くことによって第 1の差信号を 生成し、前記第 1の差信号を用いて前記第 1の適応フィルタの係数を更新する処理と 第 2の中間信号を入力とする第 2の適応フィルタによって第 2の擬似信号を生成し、 前記第 2の間引き信号から前記第 2の擬似信号を差し引くことによって第 2の差信号 を生成し、前記第 2の差信号を用いて前記第 2の適応フィルタの係数を更新する処 理と、
前記第 1の差信号を入力とする第 3の適応フィルタによって第 3の擬似信号を生成 し、前記第 1の遅延信号力 前記第 3の擬似信号を差し引くことによって第 3の差信 号を生成し、前記第 3の差信号を前記第 1の中間信号として前記第 1の適応フィルタ に入力し、前記第 3の差信号を用いて前記第 3の適応フィルタの係数を更新する処 理と、
前記第 2の差信号を入力とする第 4の適応フィルタによって第 4の擬似信号を生成 し、前記第 1の間引き信号から前記第 4の擬似信号を差し引くことによって第 4の差信 号を生成し、前記第 4の差信号を前記第 2の中間信号として前記第 2の適応フィルタ に入力し、前記第 4の差信号を用いて前記第 4の適応フィルタの係数を更新する処 理と、
信号間の相対関係に基づいて、第 1のステップサイズを用いて前記第 1の適応フィ ルタの係数更新を制御し、第 2のステップサイズを用いて前記第 2の適応フィルタの 係数更新を制御し、第 3のステップサイズを用いて前記第 3の適応フィルタの係数更 新を制御し、第 4のステップサイズを用いて前記第 4の適応フィルタの係数更新を制 御する処理と、
前記第 1の差信号を出力する処理と、
を実行させる、プログラム。
[61] 請求項 32乃至 49のいずれか 1項に記載の信号処理装置と、
前記信号処理装置から出力される信号の音声認識を行い、音声認識結果を出力 する音声認識手段と、
を有する音声認識装置。
[62] ロボットの所定部材の動作を行う駆動手段と、
前記駆動手段を制御する動作制御手段と、
請求項 61記載の音声認識装置と、 を備え、
前記動作制御手段は、前記音声認識装置からの音声認識結果を入力とし、前記音 声認識結果に基づき、前記駆動手段を制御する、ロボット装置。
PCT/JP2004/012543 2003-09-02 2004-08-31 信号処理方法および装置 WO2005024787A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005513634A JP4632047B2 (ja) 2003-09-02 2004-08-31 信号処理方法および装置
CN2004800322654A CN1875403B (zh) 2003-09-02 2004-08-31 信号处理方法和装置
US10/570,392 US7720233B2 (en) 2003-09-02 2004-08-31 Signal processing method and apparatus
EP04772499.2A EP1667114B1 (en) 2003-09-02 2004-08-31 Signal processing method and apparatus
US12/751,570 US9543926B2 (en) 2003-09-02 2010-03-31 Signal processing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003309917 2003-09-02
JP2003-309917 2003-09-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/570,392 A-371-Of-International US7720233B2 (en) 2003-09-02 2004-08-31 Signal processing method and apparatus
US12/751,570 Continuation US9543926B2 (en) 2003-09-02 2010-03-31 Signal processing method and device

Publications (1)

Publication Number Publication Date
WO2005024787A1 true WO2005024787A1 (ja) 2005-03-17

Family

ID=34269626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012543 WO2005024787A1 (ja) 2003-09-02 2004-08-31 信号処理方法および装置

Country Status (6)

Country Link
US (2) US7720233B2 (ja)
EP (1) EP1667114B1 (ja)
JP (2) JP4632047B2 (ja)
KR (1) KR100806769B1 (ja)
CN (2) CN102592605A (ja)
WO (1) WO2005024787A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180896A (ja) * 2005-12-28 2007-07-12 Kenwood Corp 音声信号処理装置および音声信号処理方法
JP2007241104A (ja) * 2006-03-10 2007-09-20 Saitama Univ 適応線形予測器、音声強調装置、及び音声強調システム
JP2008312199A (ja) * 2007-05-11 2008-12-25 Toa Corp エコーキャンセラ
JP2009159274A (ja) * 2007-12-26 2009-07-16 Toshiba Corp エコー抑圧処理装置
CN102208190A (zh) * 2011-05-06 2011-10-05 声科科技(南京)有限公司 抑制非平稳噪声设备收敛时间的测量方法及装置
US9805734B2 (en) 2010-10-08 2017-10-31 Nec Corporation Signal processing device, signal processing method and signal processing program for noise cancellation
US10043532B2 (en) 2014-03-17 2018-08-07 Nec Corporation Signal processing apparatus, signal processing method, and signal processing program
WO2019092798A1 (ja) * 2017-11-07 2019-05-16 日本電気株式会社 信号処理装置、信号処理方法、および信号処理プログラム
US10825465B2 (en) 2016-01-08 2020-11-03 Nec Corporation Signal processing apparatus, gain adjustment method, and gain adjustment program

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100592389C (zh) * 2008-01-18 2010-02-24 华为技术有限公司 合成滤波器状态更新方法及装置
US8027484B2 (en) * 2005-07-27 2011-09-27 Panasonic Corporation Active vibration noise controller
CN101030372B (zh) * 2007-02-01 2011-11-30 北京中星微电子有限公司 一种语音信号处理系统
US9473850B2 (en) * 2007-07-19 2016-10-18 Alon Konchitsky Voice signals improvements in compressed wireless communications systems
US8503687B2 (en) * 2007-09-20 2013-08-06 Nec Corporation System identification device and system identification method
CN102057428B (zh) * 2008-06-11 2013-08-14 三菱电机株式会社 回声消除器
US8208649B2 (en) * 2009-04-28 2012-06-26 Hewlett-Packard Development Company, L.P. Methods and systems for robust approximations of impulse responses in multichannel audio-communication systems
WO2012049986A1 (ja) * 2010-10-12 2012-04-19 日本電気株式会社 信号処理装置、信号処理方法、並びに信号処理プログラム
US9443503B2 (en) 2010-11-25 2016-09-13 Nec Corporation Signal processing device, signal processing method and signal processing program
US20130311175A1 (en) * 2011-01-13 2013-11-21 Nec Corporation Speech processing apparatus, control method thereof, storage medium storing control program thereof, and vehicle, information processing apparatus, and information processing system including the speech processing apparatus
JP5936070B2 (ja) * 2011-01-13 2016-06-15 日本電気株式会社 音声処理装置及びその制御方法とその制御プログラム、該音声処理装置を備えた車両、情報処理装置及び情報処理システム
WO2012096074A1 (ja) * 2011-01-13 2012-07-19 日本電気株式会社 音声処理装置及びその制御方法とその制御プログラムを格納した記憶媒体、該音声処理装置を備えた車両、情報処理装置及び情報処理システム
JP5664307B2 (ja) * 2011-02-09 2015-02-04 株式会社Jvcケンウッド ノイズ低減装置およびノイズ低減方法
JP5496418B2 (ja) * 2011-05-10 2014-05-21 三菱電機株式会社 適応等化器、音響エコーキャンセラ装置および能動騒音制御装置
EP2590165B1 (en) * 2011-11-07 2015-04-29 Dietmar Ruwisch Method and apparatus for generating a noise reduced audio signal
US9100257B2 (en) * 2012-01-25 2015-08-04 Marvell World Trade Ltd. Systems and methods for composite adaptive filtering
US8879663B1 (en) * 2012-06-26 2014-11-04 L-3 Communications Corp. Adaptive filtering for canceling distortion in radio frequency signals
US8780963B1 (en) * 2012-06-26 2014-07-15 L-3 Communications Corp. Adaptive filtering for canceling leaked transmit signal distortion from a received RF signal in an RF transceiver
US9685171B1 (en) * 2012-11-20 2017-06-20 Amazon Technologies, Inc. Multiple-stage adaptive filtering of audio signals
US9595997B1 (en) * 2013-01-02 2017-03-14 Amazon Technologies, Inc. Adaption-based reduction of echo and noise
SG10201404041XA (en) * 2013-07-12 2015-02-27 Agency Science Tech & Res Printed Circuit Arrangement And Method Of Forming The Same
JP6160519B2 (ja) * 2014-03-07 2017-07-12 株式会社Jvcケンウッド 雑音低減装置
WO2015145920A1 (ja) * 2014-03-27 2015-10-01 日本電気株式会社 信号分離装置及び信号分離方法
KR20160099897A (ko) * 2015-02-13 2016-08-23 한국전자통신연구원 지구국 통신 장치 및 전송 주파수 대역 할당 방법
US10366701B1 (en) * 2016-08-27 2019-07-30 QoSound, Inc. Adaptive multi-microphone beamforming
CN108550371B (zh) * 2018-03-30 2021-06-01 云知声智能科技股份有限公司 智能语音交互设备快速稳定的回声消除方法
CN110992923B (zh) * 2019-12-19 2022-06-07 浙江大华技术股份有限公司 回声消除方法、电子设备以及存储装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07199990A (ja) * 1993-12-28 1995-08-04 Ricoh Co Ltd 音声認識装置
JPH103298A (ja) * 1996-06-14 1998-01-06 Nec Corp 雑音消去方法及び雑音消去装置
JPH10207490A (ja) * 1997-01-22 1998-08-07 Toshiba Corp 信号処理装置
JPH1141687A (ja) * 1997-07-18 1999-02-12 Toshiba Corp 信号処理装置および信号処理方法
JPH11345000A (ja) * 1998-06-03 1999-12-14 Nec Corp 雑音消去方法及び雑音消去装置
JP2000172299A (ja) * 1998-12-09 2000-06-23 Nec Corp 雑音消去方法及びそれを用いた雑音消去装置
JP2001195085A (ja) * 1999-11-05 2001-07-19 Alpine Electronics Inc 音声認識用オーディオキャンセル装置
JP2002171591A (ja) * 2000-12-04 2002-06-14 Sony Corp ステレオマイクロホン装置、雑音低減処理方法及び装置
JP2002207500A (ja) * 2001-01-12 2002-07-26 Alpine Electronics Inc 不要音信号除去装置
JP2002258898A (ja) * 2001-03-02 2002-09-11 Alpine Electronics Inc 音声認識装置
JP2002366191A (ja) * 2001-05-28 2002-12-20 Internatl Business Mach Corp <Ibm> ロボットおよびその制御方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194913A (ja) 1985-02-22 1986-08-29 Fujitsu Ltd ノイズキヤンセラ
JPS61194914A (ja) 1985-02-22 1986-08-29 Fujitsu Ltd ノイズキヤンセラ
JPH0685500B2 (ja) 1985-12-06 1994-10-26 日本電気株式会社 雑音消去装置
JP2976252B2 (ja) 1990-11-01 1999-11-10 日本電気株式会社 適応フィルタにおける係数制御方法及び装置並びにノイズ除去の方法及び装置
JP3128870B2 (ja) 1991-07-04 2001-01-29 ソニー株式会社 ノイズ低減装置
JPH0522788A (ja) 1991-07-11 1993-01-29 Sony Corp ノイズ低減装置
CA2074782C (en) * 1991-07-30 1997-10-07 Akihiko Sugiyama Method of and apparatus for identifying unknown system using adaptive filter
JP3107117B2 (ja) 1992-09-09 2000-11-06 ソニー株式会社 音声入力装置及びこれを用いた撮像装置
JPH06284491A (ja) 1993-03-25 1994-10-07 Sony Corp 適応型雑音低減装置
JP3484757B2 (ja) 1994-05-13 2004-01-06 ソニー株式会社 音声信号の雑音低減方法及び雑音区間検出方法
JPH0856180A (ja) 1994-08-10 1996-02-27 Toshiba Corp ノイズキャンセラ
JP3431696B2 (ja) 1994-10-11 2003-07-28 シャープ株式会社 信号分離方法
JP2760373B2 (ja) 1995-03-03 1998-05-28 日本電気株式会社 雑音消去装置
JP2685031B2 (ja) 1995-06-30 1997-12-03 日本電気株式会社 雑音消去方法及び雑音消去装置
JPH0936763A (ja) 1995-07-25 1997-02-07 Toshiba Corp ノイズキャンセラ
JPH11502324A (ja) 1995-12-15 1999-02-23 フィリップス エレクトロニクス エヌ ベー 適応雑音除去装置、雑音減少システム及び送受信機
JP2891295B2 (ja) 1995-12-25 1999-05-17 日本電気株式会社 音響エコーキャンセラ
JP2874679B2 (ja) 1997-01-29 1999-03-24 日本電気株式会社 雑音消去方法及びその装置
JP2930101B2 (ja) 1997-01-29 1999-08-03 日本電気株式会社 雑音消去装置
JP4068182B2 (ja) 1997-06-30 2008-03-26 株式会社東芝 適応フィルタ
US6636474B1 (en) * 1997-07-16 2003-10-21 Victor Company Of Japan, Ltd. Recording medium and audio-signal processing apparatus
JP3216704B2 (ja) * 1997-08-01 2001-10-09 日本電気株式会社 適応アレイ装置
JPH11202894A (ja) 1998-01-20 1999-07-30 Mitsubishi Electric Corp 雑音除去装置
JPH11231900A (ja) 1998-02-17 1999-08-27 Nagano Japan Radio Co 雑音低減方法および雑音低減装置
US6717991B1 (en) * 1998-05-27 2004-04-06 Telefonaktiebolaget Lm Ericsson (Publ) System and method for dual microphone signal noise reduction using spectral subtraction
JP3748712B2 (ja) 1998-05-29 2006-02-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ライナー用樹脂成形体
JP4196431B2 (ja) 1998-06-16 2008-12-17 パナソニック株式会社 機器内蔵型マイクロホン装置及び撮像装置
US6473733B1 (en) * 1999-12-01 2002-10-29 Research In Motion Limited Signal enhancement for voice coding
JP3566158B2 (ja) * 1999-12-07 2004-09-15 三菱電機株式会社 エコーキャンセラ装置
JP2001215992A (ja) 2000-01-31 2001-08-10 Toyota Motor Corp 音声認識装置
SG97885A1 (en) * 2000-05-05 2003-08-20 Univ Nanyang Noise canceler system with adaptive cross-talk filters
US7162420B2 (en) * 2002-12-10 2007-01-09 Liberato Technologies, Llc System and method for noise reduction having first and second adaptive filters

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07199990A (ja) * 1993-12-28 1995-08-04 Ricoh Co Ltd 音声認識装置
JPH103298A (ja) * 1996-06-14 1998-01-06 Nec Corp 雑音消去方法及び雑音消去装置
JPH10207490A (ja) * 1997-01-22 1998-08-07 Toshiba Corp 信号処理装置
JPH1141687A (ja) * 1997-07-18 1999-02-12 Toshiba Corp 信号処理装置および信号処理方法
JPH11345000A (ja) * 1998-06-03 1999-12-14 Nec Corp 雑音消去方法及び雑音消去装置
JP2000172299A (ja) * 1998-12-09 2000-06-23 Nec Corp 雑音消去方法及びそれを用いた雑音消去装置
JP2001195085A (ja) * 1999-11-05 2001-07-19 Alpine Electronics Inc 音声認識用オーディオキャンセル装置
JP2002171591A (ja) * 2000-12-04 2002-06-14 Sony Corp ステレオマイクロホン装置、雑音低減処理方法及び装置
JP2002207500A (ja) * 2001-01-12 2002-07-26 Alpine Electronics Inc 不要音信号除去装置
JP2002258898A (ja) * 2001-03-02 2002-09-11 Alpine Electronics Inc 音声認識装置
JP2002366191A (ja) * 2001-05-28 2002-12-20 Internatl Business Mach Corp <Ibm> ロボットおよびその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1667114A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180896A (ja) * 2005-12-28 2007-07-12 Kenwood Corp 音声信号処理装置および音声信号処理方法
JP2007241104A (ja) * 2006-03-10 2007-09-20 Saitama Univ 適応線形予測器、音声強調装置、及び音声強調システム
JP2008312199A (ja) * 2007-05-11 2008-12-25 Toa Corp エコーキャンセラ
JP2009159274A (ja) * 2007-12-26 2009-07-16 Toshiba Corp エコー抑圧処理装置
US9805734B2 (en) 2010-10-08 2017-10-31 Nec Corporation Signal processing device, signal processing method and signal processing program for noise cancellation
CN102208190A (zh) * 2011-05-06 2011-10-05 声科科技(南京)有限公司 抑制非平稳噪声设备收敛时间的测量方法及装置
US10043532B2 (en) 2014-03-17 2018-08-07 Nec Corporation Signal processing apparatus, signal processing method, and signal processing program
US10825465B2 (en) 2016-01-08 2020-11-03 Nec Corporation Signal processing apparatus, gain adjustment method, and gain adjustment program
WO2019092798A1 (ja) * 2017-11-07 2019-05-16 日本電気株式会社 信号処理装置、信号処理方法、および信号処理プログラム

Also Published As

Publication number Publication date
US20070071253A1 (en) 2007-03-29
EP1667114A1 (en) 2006-06-07
US7720233B2 (en) 2010-05-18
KR100806769B1 (ko) 2008-03-06
CN1875403B (zh) 2012-11-28
US9543926B2 (en) 2017-01-10
JP2011022604A (ja) 2011-02-03
CN102592605A (zh) 2012-07-18
EP1667114A4 (en) 2009-01-07
JPWO2005024787A1 (ja) 2007-11-08
KR20060087541A (ko) 2006-08-02
JP4632047B2 (ja) 2011-02-16
US20100217587A1 (en) 2010-08-26
EP1667114B1 (en) 2013-06-19
CN1875403A (zh) 2006-12-06

Similar Documents

Publication Publication Date Title
WO2005024787A1 (ja) 信号処理方法および装置
JP2685031B2 (ja) 雑音消去方法及び雑音消去装置
JP5049277B2 (ja) クリアな信号の取得のための方法及びシステム
JP4697465B2 (ja) 信号処理の方法、信号処理の装置および信号処理用プログラム
JP2930101B2 (ja) 雑音消去装置
US20130191119A1 (en) Signal processing device, signal processing method and signal processing program
JP4101317B2 (ja) 適応識別とそれに関する適応エコーキャンセラのための方法と装置
WO2005074156A1 (en) Echo canceller with interference-level controlled step size
JPH08241086A (ja) 雑音消去装置
US8270624B2 (en) Noise cancelling device and method, and noise cancelling program
US8503687B2 (en) System identification device and system identification method
JP4705893B2 (ja) エコーキャンセラ
EP3432607B1 (en) Feedback canceller and hearing aid
JPH07135478A (ja) ステレオエコーキャンセラ
JPH07264102A (ja) ステレオエコーキャンセラ
JP3982823B2 (ja) 音声処理装置、音声処理方法および音声処理プログラム
JP4543896B2 (ja) エコー除去方法、エコーキャンセラ及び電話中継装置
EP3667662A1 (en) Acoustic echo cancellation device, acoustic echo cancellation method and acoustic echo cancellation program
JP3293575B2 (ja) 雑音消去方法及びそれを用いた雑音消去装置
US8363821B2 (en) Apparatus and method for canceling echo
GB2329097A (en) Echo cancellers
JP4324036B2 (ja) エコーキャンセル装置
JPH11289283A (ja) エコー除去方法およびエコーキャンセラ
JP4591102B2 (ja) エコーキャンセラおよびそれを用いたハンズフリー電話とエコーキャンセル方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480032265.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513634

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004772499

Country of ref document: EP

Ref document number: 10570392

Country of ref document: US

Ref document number: 1020067004347

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004772499

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10570392

Country of ref document: US