WO2004094479A1 - 低摩擦性フッ素ゴム架橋体の製造方法 - Google Patents

低摩擦性フッ素ゴム架橋体の製造方法 Download PDF

Info

Publication number
WO2004094479A1
WO2004094479A1 PCT/JP2004/005683 JP2004005683W WO2004094479A1 WO 2004094479 A1 WO2004094479 A1 WO 2004094479A1 JP 2004005683 W JP2004005683 W JP 2004005683W WO 2004094479 A1 WO2004094479 A1 WO 2004094479A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororubber
polyol
weight
parts
low
Prior art date
Application number
PCT/JP2004/005683
Other languages
English (en)
French (fr)
Inventor
Toshihiro Higashira
Hiroyuki Sano
Kenichi Fujimoto
Original Assignee
Nok Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corporation filed Critical Nok Corporation
Priority to JP2005505755A priority Critical patent/JP4545686B2/ja
Priority to DE112004000681T priority patent/DE112004000681T5/de
Priority to US10/553,759 priority patent/US7279530B2/en
Publication of WO2004094479A1 publication Critical patent/WO2004094479A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine

Definitions

  • the present invention relates to a method for producing a low-friction crosslinked fluororubber, and more particularly, to a well-balanced low-friction, low-adhesion, low-rebound resilience, vibration-proof rubber, shock-absorbing stopper part, and particularly a hard disk (
  • the present invention relates to a method for producing a low-friction crosslinked fluororubber which can be suitably used for producing parts for a head control section of an apparatus, and the use of the low-friction crosslinked fluororubber obtained by the method.
  • fluororubber has rubber elasticity, which is the inherent characteristic of rubber, like other general-purpose rubbers, and has excellent properties such as heat resistance, oil resistance, and chemical resistance compared to other general-purpose rubbers Utilizing these characteristics, it can be used, for example, as leakage-preventing rubber parts such as o-rings, packings, gaskets, etc., as vibration-isolating rubber, belts, rubber bows, I-cloths, printer heads, hard disks (HD D) Shock absorbing stopper parts such as the head control section of the device, and more specifically, it is used for various purposes as a stopper installed for the purpose of suppressing malfunction of the reading arm in the HDD device, and the like.
  • leakage-preventing rubber parts such as o-rings, packings, gaskets, etc.
  • vibration-isolating rubber belts, rubber bows, I-cloths, printer heads, hard disks (HD D) Shock absorbing stopper parts such as the head control section of the device, and more specifically, it is used for various purposes
  • the stop means the position of the movable range of the head unit (arm swing position) when the arm having the recording and reading head unit at the end stands by, and further, after the arm is activated or on standby This part is installed for the purpose of absorbing shocks and the like in order to suppress malfunction of the arm at the time.
  • the inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, together with a polyol crosslinkable fluororubber, a specific crosslinker, a crosslink accelerator, hydroxyl hydroxide, and, if necessary, magnesium oxide, etc.
  • the crosslinking accelerator in the fluorine rubber composition (or in the preformed product) is excellent in the surface layer. And found that the cross-linking density of the rubber surface can be improved, the rubber surface can be reduced in friction and adhesion, and the rebound resilience of the fluororubber molded article can be reduced.
  • cross-linking accelerator Z cross-linking agent an organic quaternary phosphonium salt as a cross-linking accelerator to a cross-linking agent
  • the present inventors have set the addition ratio (crosslinking accelerator, crosslinking agent) of the organic quaternary phosphonium salt or the like as a crosslinking accelerator in the fluororubber composition to be higher than that of the conventional fluororubber composition.
  • crosslinking accelerator crosslinking accelerator
  • crosslinking agent crosslinking agent
  • By increasing the cross-linking properties it is possible to improve all of the properties of the crosslinked product, such as low friction, low adhesiveness, and low resilience, in a well-balanced manner. O-rings, packings, gaskets, etc.
  • the present inventors have completed the present invention.
  • Japanese Patent Publication No. Hei 4-370704 discloses that a surface of a vulcanized molded article of a fluorine-containing elastomer is coated with a polyhydroxy compound as a crosslinking agent (vulcanizing agent) and, if necessary, vulcanized.
  • vulcanizing agent a polyhydroxy compound as a crosslinking agent
  • a method for surface modification of a fluorine-containing elastomer molded article which is impregnated with a promoting activator (crosslinking accelerator) and vulcanized again is disclosed. It states that non-adhesiveness and low friction can be imparted to the surface of the molded article.
  • cross-linking agent such as a polyhydroxy compound or a vulcanization accelerating activator (cross-linking accelerating agent)
  • a surface treating solution in which the cross-linking agent and the cross-linking accelerator are dissolved in an organic solvent such as acetone is used. It is used and may cause environmental pollution by organic solvents.
  • organic solvent such as acetone
  • Japanese Patent Application Laid-Open No. 7-30999 discloses that (A) 100 parts by weight of a fluororubber obtained by copolymerizing vinylidene fluoride, hexafluoropropylene and, if necessary, tetrafluoroethylene, (B) 0.05 to 2 parts by weight of an organic quaternary phosphonium salt, (C) 0.1 to 3 parts by weight of a nitrogen-containing organic compound and a Z or phosphorus-containing organic compound, and (D) a polyhydroxyl conjugate 0
  • a fluororubber composition comprising 1 to 10 parts by weight, (E) a metal oxide and 0.5 to 30 parts by weight of a metal oxide and / or a metal hydroxide is disclosed.
  • a polyol is vulcanized by placing a foam in a mold and performing compression molding or the like under heating to obtain a fluororubber vulcanized molded product, and the obtained molded product has reduced mechanical properties. It states that no molding defects occurred during vulcanization molding.
  • Japanese Patent Application Laid-Open No. 7-310100 discloses that (A) 100 parts by weight of fluorine rubber obtained by copolymerizing fuzihibiurilidene, hexafluoropropylene and, if necessary, tetrafluoroethylene; ) Organic quaternary phosphonium salt 0.05 to 2 parts by weight, (C) organic quaternary ammonium hydrogen sulfate, etc.
  • Part (E) discloses a fluororubber composition comprising 0.5 to 30 parts by weight of a metal oxide Z or a metal hydroxide, and a preform of a desired shape comprising the composition is placed in a mold.
  • a fluoro rubber vulcanized molded product by vulcanizing the polyol by performing compression molding and the like under heating.It is described that the molded product obtained does not have molding defects during vulcanization molding. ing.
  • Patent Document 2 similarly to Patent Document 2, in the molded articles specifically disclosed in Examples of the publication, migration of organic quaternary phosphonium salts and the like to the surface of the rubber molded article is poor, and the coefficient of friction is low. And high adhesive strength.
  • Japanese Patent Application Laid-Open No. 7-82449 discloses a polyol vulcanized fluorororubber composition in which a polyol vulcanized fluororubber is blended with a hydrotalcite-related conjugate.
  • Vulcanization components are mixed with rubber, press vulcanized at 140 to 200 ° C for about 2 to 120 minutes as primary vulcanization, and about 150 to 25 as secondary vulcanization. It is described that the process is performed by oven vulcanization at 0 ° C for about 0 to 30 hours.
  • the vulcanizing components include 0.5 to 10 parts by weight of a vulcanizing agent such as a polyhydroxy aromatic compound per 100 parts by weight of fluororubber, and!
  • composition has good mold release properties, good vulcanization properties, and improved engine oil resistance.
  • a vulcanization accelerator which is treated with a fatty acid ester or the like as a vulcanization accelerator, has an average particle size of 7.5 ⁇ m or less, and has a specific surface area of 20 m 2 Z It is described that those containing calcium hydroxide of g or more have good f-compression set when vulcanized.
  • the vulcanization includes primary vulcanization at 170 ° C. for 10 minutes and secondary vulcanization at 200 ° C. for 24 hours.
  • the vulcanization accelerating aid in the publication is considered to have a high specific surface area and to be treated with a fatty acid ester or the like, but the crosslink density and the rebound resilience of the fluororubber molded article increase.
  • an organic accelerator such as an organic quaternary phospho-pium salt
  • the friction coefficient and the adhesive strength are high.
  • JP-A-2001-1924822 discloses that 100 parts by weight of fluororubber, 0.5 to 3 parts by weight of calcium hydroxide, 4 to 15 parts by weight of magnesium magnesium, After vulcanizing and molding a fluororubber composition containing a total of about 10 to 50 parts by weight of a thermal plaque and a bituminous coal filler in the presence of a polyol-based vulcanizing agent, about 250 to 300 ° It is described that a heat treatment is performed at a temperature of C to produce a vulcanized rubber rubber molded article having excellent compression set resistance and the like.
  • polyol vulcanizing agent Polyhydroxy as the polyol vulcanizing agent It is described that the aromatic compound and the like are used in about 0.5 to 10 parts by weight per 100 parts by weight of the fluorinated rubber, and the ammonium salt or the phosphonium salt is used in about 0.1 to 30 parts by weight.
  • the fluororubber composition is vulcanized at about 150 to 230 ° C. for about 1 to 30 minutes by a compression press or the like, and about 250 to 300 ° for gronots and seal packings. It states that heat treatment (secondary vulcanization) is performed in an air oven or the like for about 5 to 48 hours at C.
  • the molded articles described in this publication have the problems that the rebound resilience is high, the migration of organic quaternary phosphonium salts to the rubber surface is small, and the friction coefficient and the adhesive strength are high.
  • Japanese Patent No. 3,063,172 discloses 100 parts by weight of fluororubber, liquid polyisoprene rubber and hydrogenated liquid polyisoprene.
  • the invention discloses a fluororubber composition comprising 0.5 to 10 parts by weight of a liquid hydrocarbon rubber selected from rubbers, and describes that the processability such as extrusion processability is good and the vulcanized rubber properties are also good.
  • Patent No. 3 222 054 (corresponding to Japanese Patent Application Laid-Open No. Hei 9-2108751) includes (A) a fluororubber polymer, and (B) a melting point containing a fluorine-containing organic group of 30 to A rubber composition comprising a wax at 200 ° C., (C) a crosslinking agent selected from amines, polyols and peroxides, and (B) a melting point of 30 to 200 ° C. containing a fluorine-containing organic group.
  • a rubber composition comprising a crosslinking agent selected from wax, (C) amine, polyol, and peroxide is disclosed.
  • the rubber composition has excellent workability, excellent kneading workability, and excellent mold release properties.
  • Patent No. 2653340 (corresponding to Japanese Patent Application Laid-Open No. 6-293850) includes (A) a polyol cross-linked fluororubber, (B) a liquid fluororubber, and (C) 1
  • a fluorine rubber composition comprising a polyol in which at least one of the ⁇ H groups in the molecule is silylated is disclosed, and the composition is produced at a low temperature of 130 to 160 ° C. at which foaming does not occur. It is also described that a bridge is formed (primary crosslinking) and secondary crosslinking is performed at a temperature of 120 to 250 ° C.
  • the composition has excellent workability, and the obtained molded product has low hardness. It states that it can be used for various purposes.
  • JP-A-5-239300 discloses that (A) an elastomer copolymer having a vinylidene fluoride unit and at least one other fluorine-containing monomer unit, and (B) an alkoxy copolymer.
  • Phosphine vulcanization accelerator consisting of triphenylphosphine substituted with a phenyl group or a phenoxy group, etc .
  • C a polyol crosslinking agent
  • D a fluoride containing a divalent metal oxide or hydroxide.
  • a vulcanized elastomer vulcanizing composition is disclosed.
  • the vulcanizing composition is primarily vulcanized at the time of primary vulcanization (press vulcanization), secondary vulcanization (oven heating) and used as a vulcanized molded product such as a sealing material. It is described that the vulcanized molded product has good rubber elasticity and tensile properties.
  • Japanese Unexamined Patent Publication No. 6-24815 discloses a fluororubber composition obtained by blending calcium oxide and polyethylene wax with a fluororubber obtained by copolymerizing vinylidene fluoride, tetrafluoroethylene and propylene.
  • the composition is vulcanized at 100 to 400 ° C. for several seconds to 5 hours, and then 150 to 300 in order to stabilize the vulcanized physical properties. It is described that secondary vulcanization may be carried out for about 30 minutes to 48 hours at C, the composition is described as having no fusion failure during vulcanization and molding, and the molded article has heat resistance And so on.
  • Japanese Unexamined Patent Publication No. Hei 6-316180 discloses a copolymer obtained by copolymerizing vinylidene fluoride, hexafluoropropylene and, if necessary, tetrafluoroethylene.
  • a method for producing a vulcanized rubber vulcanized molded product using an organic quaternary ammonium salt as a vulcanization accelerator when molding a rubber with a mold by polyol vulcanization has been disclosed. It states that there is no molding failure during molding.
  • the fluorororubber compositions described in the above documents include liquid hydrocarbon rubber, wax containing a fluorine-containing organic group and having a melting point of 30 to 200 ° C., liquid fluororubber, and tertiary phosphine crosslinked. Accelerator, calcium oxide, polyethylene oxide, organic quaternary ammonium salt, etc. are added.
  • the vulcanized molded article made of such a fluororubber composition has low adhesion, low friction and low rebound resilience, Or they are not enough in balance of those characteristics.
  • crosslinking accelerator preferably, organic quaternary phosphonium
  • polyol-based crosslinking agent preferably, bisphenols
  • calcium hydroxide preferably, calcium hydroxide
  • oxidized magnesium preferably, calcium hydroxide
  • the heat treatment is performed for 48 hours, more preferably for 10 to 48 hours, to obtain a crosslinked low-rubber fluororubber having a friction coefficient of less than 1 on the surface of the crosslinked product.
  • the crosslinking accelerator is added to the polyol crosslinkable fluororubber in an amount of 100 parts by weight. 1 to 20 parts by weight, the polyol crosslinking agent in an amount of 0.4 to 20 parts by weight, and 0.5 to 10 parts by weight of calcium hydroxide having a specific surface area of less than 20 m 2 / g. It is preferably contained in an amount of part by weight.
  • the polyol-crosslinkable fluororubber composition contains the magnesium oxide in an amount of 3.0 parts by weight or less based on 100 parts by weight of the polyol-crosslinkable fluororubber. Is preferred.
  • the polyol-crosslinkable fluororubber composition further has a polytetrafluoroethylene (PTFE) force of 5 to 100 parts by weight based on the polyol-crosslinkable fluororubber 100 parts by weight. Preferably, it is contained in an amount of 200 parts by weight.
  • PTFE polytetrafluoroethylene
  • an average depth of 0.5 to 200 m using a compression molding die having an irregular inner surface of the die is used. It is preferable to obtain a crosslinked body having a rough surface and to perform the above heat treatment.
  • the polyol is added to 100 parts by weight of the polyol crosslinkable fluororubber. It is also preferable that 1 to 10 parts by weight of a system crosslinking agent is contained, and the weight ratio R ⁇ crosslinking accelerator Z polyol-based crosslinking agent ⁇ is 0.9 to 2.
  • a stopper component for shock absorption represented by a stopper for an HDD device according to the present invention is characterized by being obtained by the method for producing a low-friction crosslinked fluororubber described above.
  • the rate of change of the holding torque value is preferably 14% or less. According to the present invention, only the heat treatment of the fluororubber composition is performed without performing surface modification with a surface treatment solution containing an organic solvent (vulcanization and preliminary molding may be performed before this heat treatment, if necessary.
  • the present invention provides an inexpensive method for producing a low-friction crosslinked fluororubber which can be suitably used for the production of rubber parts, belts, rubberized cloths, wipers and the like. Further, since the low-wear fluororubber crosslinked product according to the present invention has improved non-adhesion and is stable, it can be suitably used particularly as a stopper for HDD devices.
  • Figure 1 shows the test equipment used to evaluate the adhesive durability of the low friction fluororubber crosslinked article obtained by the method for producing a low friction fluororubber crosslinked article according to the present invention.
  • FIG. 2 is a cross-sectional view of the outer stopper inserted into the test device of FIG.
  • Figure 3 is an explanatory diagram of a test device used to evaluate the rate of change in the magnet adhesion test.
  • Figure 4 is an explanatory diagram of a test device used to evaluate the holding torque value.
  • the polish described in detail below is used.
  • the obtained cross-linked product (cross-linked fluoro rubber) is subjected to 150 ° C. to 300 ° C., preferably 200 ° C. 300 ° (:, more preferably in a temperature range of 240 to 300 ° C for 0.1 to 48 hours, preferably 1 to 48 hours, more preferably 10 to 48 hours. ing.
  • polyol crosslinkable fluorororubber composition (polyol crosslinkable fluororubber composition) preferably used in the present invention, and vulcanization conditions (including secondary vulcanization performed as necessary in addition to primary vulcanization). ), Heat treatment conditions after vulcanization, and properties of the obtained low-friction cross-linked fluororubber, etc., will be described in detail.
  • the polyol-crosslinkable fluorororubber composition (polyol-crosslinkable fluororubber composition) preferably used in the present invention comprises a polyol-crosslinkable fluororubber, an organic quaternary phosphonium salt as a crosslinking accelerator, and bisphenol. It contains a polyol-based cross-linking agent represented by the above-mentioned class and calcium hydroxide, and optionally contains magnesium oxide.
  • polyol-crosslinkable fluororubber polyol-crosslinkable fluororubber
  • a (co) polymer of one or more fluorine-containing olefins can be used.
  • fluorine-containing olefin examples include, for example, vinylidene fluoride, hexafluoropropylene, pentafluoropropylene, trifluoroethylene, trifluorochloroethylene, tetrafluoroethylene, butyl fluoride, -Fluoroacrylates, perfluoroalkyl acrylates, perfluoromethyl vinyl ether, perfluoropropyl vinyl ether, etc. It is.
  • fluorinated olefins may be used alone or in combination of two or more.
  • a polyol crosslinked fluororubber (co) polymer
  • pyridene fluoride-hexafluoropropylene binary copolymer tetrafluoroethylene-propylene binary copolymer
  • viride fluoride Commonly available fluoro rubbers such as tert-fluoroethylene-hexafluoropropylene terpolymer can be used as they are.
  • the crosslinking agent is preferably a polyol-based crosslinking agent such as bisphenols.
  • a polyol-based crosslinking agent such as bisphenols.
  • bisphenols 2,2-bis (4-hydroxypropane [bisphenol A], 2,2-bis (4-hydroxy) (Droxyphenyl) no.—Fluoropropane [bisphenole AF], bis (4-hydroxyphenyl ⁇ /) sphone [bisphenol S], bisphenole A—bis (diphenylphosphate), 4,4,1-dihydroxydiphene ⁇ 4,
  • bisphenols bisphenols.
  • bisphenole AF 2,2-bis (4-hydroxy) (Droxyphenyl) no.
  • bisphenole AF bis (4-hydroxyphenyl ⁇ /) sphone
  • bisphenol S bisphenole A—bis (diphenylphosphate)
  • polyhydroxy aromatic compounds such as 4, di
  • a commercially available masterbatch containing a crosslinker and a crosslinking agent may be used, for example, a curative VC # 30 (manufactured by Dupont 'Dow' Elastomer Co., Ltd .: a crosslinking agent [Bisphenol AF] ] 50 wt%) These crosslinking agents may be used alone or in combination of two or more.
  • Cross-linking accelerators include organic quaternary phosphonium salts, active hydrogen-containing aromatic compounds
  • Cross-linking accelerators commonly used in polyol cross-linking such as quaternary phosphonium salt and other molecular compounds such as quaternary phosphonium salts, and divalent metal amine complex compounds.
  • quaternary phosphonium salt and other molecular compounds such as quaternary phosphonium salts, and divalent metal amine complex compounds.
  • an organic quaternary phosphonium salt is preferable in order to reduce the amount of the art gas from the obtained low friction fluororubber crosslinked product.
  • cross-linking accelerator organic quaternary phosphonium salts specifically, the applicant of the present invention disclosed in Japanese Patent Application Laid-Open No. 2001-192482 a “001 0” to “00 Examples described in the section “12” are preferred, and triphenyl benzylphosphonium bromide, triphenylbenzylphosphonium chloride and the like are preferably used.
  • a commercially available master batch containing a raw rubber and a crosslinking accelerator may be used as the crosslinking accelerator.
  • examples of commercially available masterbatches include Curative VC # 20 (manufactured by Dupont Dow Elastomer Co., Ltd .: containing a crosslinking accelerator [organic phosphonium salt] 33 wt%).
  • the polyol cross-linked fluororubber composition used in the present invention includes, as a rubber compounding agent, a sequestering agent such as carbon black and carbon fiber; calcium carbonate, magnesium carbonate, aluminum hydroxide, and hydroxide. Fillers such as magnesium, aluminum silicate, magnesium silicate, calcium silicate, potassium titanate, titanium oxide, barium sulfate, aluminum borate, glass fiber, and aramide fiber;
  • Processing aids such as wax and metal soap
  • Acid acceptors such as zinc oxide (excluding calcium hydroxide; the same applies hereinafter);
  • silica when used in the rubber industry, it may have a low adhesion effect at room temperature, but it may be preferable not to add silica in order to increase adhesion to a metal under high humidity.
  • the polyol-crosslinkable fluorororubber composition contains 100 parts by weight of the polyol-crosslinkable fluororubber, and a crosslinking accelerator (preferably an organic quaternary phospho-dimethyl). Salt) 1 Usually in an amount of 2.:! To 20 parts by weight, preferably 2.5 to: 10 parts by weight,
  • the polyol crosslinking agent (preferably bisphenols) is usually present in an amount of from 0.4 to 20 parts by weight, preferably from 1 to 0 parts by weight,
  • the amount of Sani-Dani Magnesium is 3 parts by weight or less, preferably 1 to 3 parts by weight,
  • calcium hydroxide is contained in an amount of usually 0.5 to 10 parts by weight, preferably 1 to 7 parts by weight, particularly preferably 1 to 5 parts by weight.
  • the amount of the crosslinking accelerator is less than the above range, the coefficient of friction and the adhesive strength of the rubber surface tend to increase, and if the amount is more than the above range, the obtained low-friction crosslinked fluororubber (molded product) is bent. When pressed, deformed, etc., the molded article tends to crack.
  • the amount of the crosslinking agent is less than the above range, foaming tends to occur after molding, and it becomes impossible to form a crosslinked body having a predetermined shape. If the amount is more than the above range, the obtained low-friction fluororubber is obtained. When the crosslinked body (molded body) is bent, compressed or deformed, cracks tend to be generated.
  • cross-linking agent is used within the above range and foaming occurs at the time of cross-linking molding, foaming can be eliminated by further increasing the above-mentioned reinforcing agent, filler, acid acceptor and cross-linking agent. The amount of these components can be adjusted as needed. do it.
  • the weight of a crosslinking accelerator represented by the organic quaternary ammonium salt or organic quaternary phosphonium salt and a polyol-based crosslinking agent represented by bisphenols are used.
  • the ratio (R) ⁇ crosslinking accelerator Z polyol-based crosslinking agent ⁇ is usually 0.9 to 5, preferably 0.9 to 4, more preferably about 0.9 to 3, and particularly preferably 0.9 to 3. 2
  • the weight ratio R (crosslinking accelerator / polyol crosslinking agent) in the polyol-crosslinkable fluororubber composition is smaller than the above range, the migration of the crosslinking accelerator to the rubber surface layer is poor and the rubber surface layer
  • the weight ratio R is larger than this range, the crosslink density of the rubber surface layer is increased but is obtained.
  • the amount of the magnesium oxide is larger than the above amount (that is, 3.0 parts by weight with respect to 100 parts by weight of the uncrosslinked fluororubber), the resilience of the molded article obtained is high, and the magnesium oxide itself is obtained. May have an adhesive force with the metal, the adhesive force between the obtained rubber molded body and the mating metal is increased, and the migration of a bridging accelerator such as an organic phosphonium salt A to the surface of the molded body is small. A product with low friction coefficient and low adhesive strength cannot be obtained.
  • the amount of the cross-linking agent is 0.4 with respect to 100 parts by weight of the fluorine-crosslinkable fluororubber. Not less than 10 parts by weight, preferably not less than 0.4 parts by weight and not more than 10 parts by weight, and the value of R ⁇ crosslinking promoter Z polyol-based crosslinking agent ⁇ is preferably 0.9 to 2, Is 0.9 to 1.5.
  • the obtained fluororubber cross-linked body has excellent non-adhesiveness, Since it has excellent non-adhesive stability, it can be suitably used as a stopper for an HDD device.
  • the lower limit of the amount of magnesium oxide may be 0 parts by weight with respect to 100 parts by weight of the uncrosslinked fluororubber, but preferably 1 part by weight or more and 3.0 parts by weight or less. This is desirable because it can sometimes provide an appropriate crosslinking rate and can provide a low friction, low adhesion crosslinked product (molded product) without foaming. Note that the caloric content of the magnesium oxide is similar to that of calcium hydroxide.
  • foaming occurs during molding, it is desirable to add more acid acceptors of other components.
  • 0.5 to 10 parts by weight of the acid acceptor is added to 100 parts by weight of the polyol cross-linked fluororubber. It can be blended in parts by weight.
  • the resulting rubber as a whole has a high crosslinking density and a high rebound resilience.
  • the transfer of the crosslinking accelerator to the rubber surface may be significantly reduced or reduced, and the rubber surface may not have low tackiness.
  • the calcium hydroxide a commercially available calcium hydroxide having a specific surface area of less than 20 m 2 Zg is preferably used as it is.
  • the polyol crosslinkable fluororubber yarn composition further includes a polytetrafluoroethylene (PTFE) force, from the viewpoint of low friction, low adhesion, and low rebound resilience. It may be contained in an amount of 5 to 200 parts by weight, preferably about 20 to 100 parts by weight, based on 100 parts by weight of the fluororubber.
  • PTFE polytetrafluoroethylene
  • Polytetrafluoroethylene (PTFE) itself has good low-friction performance, low-adhesion performance, and good rebound resilience. By adding this PTFE during the preparation of a fluororubber composition, the molded product obtained has low friction performance and low Adhesion performance, rebound resilience characteristics, etc. can be improved.
  • a compound containing the above-mentioned components in the above-mentioned amounts such as an intermix, a kneader, a closed kneader such as a panbury mixer, or a rubber such as an open roll. It may be kneaded with a general kneader.
  • the “other preparation method” of the yarn composition include a method in which each component is dissolved with a solvent or the like and dispersed with a stirrer or the like.
  • Crosslinking (vulcanization) molding of the polyol crosslinkable fluororubber composition obtained as described above is usually performed using an injection molding machine, a compression molding machine, a vulcanizing press machine, an open machine, and the like. This is done by heating (primary vulcanization) at a temperature of 230 ° for about 1 to 120 minutes.
  • primary vulcanization is a process of cross-linking to the extent that the shape can be maintained in order to form a predetermined shape (preliminary molding).
  • the vulcanization is preferably performed using a mold and air heating Primary vulcanization is also possible with an oven of the same type.
  • the polyol crosslinkable fluororubber at the time of polyol crosslinkage of the composition, particularly at the time of primary vulcanization, as the vulcanizing press or the like, or together with the vulcanizing press, for example, low friction properties, From the viewpoint of improving the low tackiness, the inner peripheral surface of the mold almost corresponds to the uneven surface of a desired depth (eg, 0.5 to 200 ⁇ ) on the surface of the obtained crosslinked product.
  • a cross-linked body having an uneven surface having an average depth of 0.5 to 200 ⁇ may be obtained by using a compression molding die subjected to unevenness processing at a depth.
  • the material to be treated is compression-molded as described below.
  • Compression molding may be performed by raising the temperature, or (b): After kneading, the temperature may be continuously increased and compression molding may be performed.
  • the above process (a) is performed.
  • composition is formed into a fixed shape before vulcanization of the polyol-crosslinkable fluororubber composition, a molded article having low friction and low tackiness can be obtained regardless of (a) or (b).
  • the degree of low friction and low tackiness of the obtained cross-linked fluororubber is not affected by the heat-up pattern or the heat-up curve for the preceding heat treatment, and the fluororesin composition of the present invention It depends on the temperature and time at which it is performed.
  • the heat treatment method of the present invention is the same as the ordinary secondary vulcanization, but if the material (polyol crosslinkable fluororesin composition) of the present invention is not used, even if the ordinary secondary vulcanization is performed, low friction is obtained. However, those with low tackiness cannot be obtained.
  • secondary vulcanization aims to complete the crosslinking reaction that was insufficient in primary vulcanization and gasifies low molecular components in rubber.
  • the purpose of this invention is to improve the strength and reduce the compression set, but the present invention is different from this, in that the crosslinking accelerator in the primary vulcanizate is transferred to the surface to reduce friction and adhesion, and The purpose is to harden the surface.
  • the polyol crosslinkable fluororubber composition is used in a temperature range of 150 to 300 ° C, preferably in a temperature range of 200 to 300 ° C, more preferably 24 ° C.
  • the heat treatment is performed at a temperature in the range of up to 300 ° C. for 0.1 to 48 hours, preferably 1 to 48 hours, and more preferably 10 to 48 hours.
  • the polyol crosslinkable (vulcanized) is obtained as described above in advance in the present invention.
  • the obtained crosslinked product is further subjected to a temperature range of 150 to 300 ° C, preferably a temperature range of 200 to 300 ° C, and more preferably a temperature range of 240 ° C to
  • the heat treatment may be performed at a temperature of 300 ° C. for 0.1 to 48 hours, preferably 1 to 48 hours, more preferably 10 to 48 hours.
  • the crosslinked product contains a large amount of low-molecular volatile components (outgas), when used as a stopper for an HDD device, the low-molecular component generated from the crosslinked product may cause problems such as contamination of metal parts such as disks. It is preferable that the temperature is high and the heat treatment time is long.
  • the crosslinking accelerator component and the like in the crosslinked product gradually migrates from the inside of the crosslinked product to the surface of the crosslinked product, which is a portion of the surface of the crosslinked product.
  • the crosslink density of the surface layer (for example, the surface of the crosslinked body and the range from the surface of the crosslinked body to about 100 im inside) is improved as compared with the central part, and as a result, in the crosslinked body thus heat-treated,
  • the surface (crosslinked body surface) has low adhesion, low friction, and low rebound resilience.
  • the obtained crosslinked fluororubber has excellent non-adhesiveness and excellent stability of non-adhesive regeneration.
  • a low friction fluororubber crosslinked body having both a static friction coefficient and a dynamic friction coefficient of less than 1, preferably 0.1 to 0.7 can be obtained.
  • the polyol crosslinkable fluororubber composition (uncrosslinked material) of the present invention is heat-treated under the above-mentioned conditions, that is, a temperature range of 150 to 300 ° C, preferably 200 to 300 ° C.
  • an open, vulcanizing vessel, high-frequency heating, or the like is used as a heating device during the heat treatment.
  • the heat treatment after vulcanization of the fluorororubber composition in the present invention is a treatment method similar to the secondary vulcanization step in an oven in a vulcanization step generally performed in the rubber industry.
  • the composition of the fluororubber composition used in the present invention is completely different from that of the conventional fluororubber composition, and therefore, the significance of the heat treatment after vulcanization is also different. (Vulcanized molded products) are subjected to heat treatment after vulcanization mainly for the purpose of improving tensile properties and reducing compression set.
  • an uncrosslinked fluororubber composition (or a preform thereof) having the above specific composition is used. Promote the transition to the surface in a short time, stabilize it, and The purpose is to reduce the friction and the tackiness, and such effects are obtained by the heat treatment.
  • the conventional conditions for example, as disclosed in Japanese Patent Application Laid-Open No. 7-82449: about 2 to 1 at 140 to 200 ° C.
  • primary vulcanization such as press vulcanization in a mold for only 20 minutes (primary vulcanization conditions)
  • the surface transfer of the crosslinking accelerator is insufficient, and a molded product with low friction and low adhesion is obtained.
  • the uncrosslinked fluororubber composition of the present invention may be used as a primary vulcanizer in an oven in a temperature range of 150 to 300 ° C, preferably in a temperature range of 200 to 300 ° C. Or 2 4 0.
  • crosslinking is promoted only by the primary vulcanization.
  • the transfer of the agent to the surface progresses, resulting in a low-friction, low-adhesion, low-friction fluororubber bridge, after which heat treatment under the same conditions becomes unnecessary.
  • the surface of the vulcanized molded article of the fluorine-containing elastomer contains a cross-linking agent for fluoro rubber (vulcanizing agent) and, if necessary, a vulcanization accelerating activator (cross-linking accelerating agent).
  • a solution hereinafter also referred to as a “treatment agent” is applied and impregnated, and then vulcanized again to increase the crosslink density of the rubber surface layer of the obtained fluorinated elastomer molded article, thereby increasing the fluorinated elastomer molded article.
  • a method for reducing the tackiness and reducing friction is disclosed.
  • the bridge accelerator added to the crosslinked product is transferred to the rubber surface layer by the heat treatment of the vulcanized molded product, and therefore, the closer to the surface of the molded product, The cross-linking density has been increased, making it possible to increase the cross-linking density of the rubber surface layer.
  • the crosslinked rubber molded body is subjected to a heat treatment so that the same low surface friction as that described in Japanese Patent Publication No. It is possible to manufacture crosslinked fluororubber.
  • Japanese Patent Application Laid-Open No. 2002-192482 In the gazette, 100 parts by weight of fluororubber, 0.5 to 3 parts by weight of hydroxylating water, 4 to 15 parts by weight of acid magnesium, and a total of about 10 to 50 parts by weight of thermal black and bituminous coal filler Vulcanized and molded in the presence of a polyol-based vulcanizing agent, and then heat-treated at a temperature of about 250 to 300 ° C. It is described that an excellent fluororubber vulcanized molded article is produced.
  • the ratio of the crosslinking accelerator and the crosslinking agent is small, and the amount of magnesium oxide is 4 to 15 parts by weight per 100 parts by weight of the fluororubber. Therefore, even if the heat treatment of the carosulphate (crosslinked rubber molded article) is performed in the same manner as in the present invention, the organic quaternary Phosphonium salts are less likely to migrate to the rubber surface, have high rebound resilience, and have high adhesion to metals.
  • the coefficient of friction of the surface of the crosslinked product is less than 1, preferably 0.
  • a low-friction fluororubber crosslinked product (heat-treated fluororubber crosslinked product) of 1 to 0.7 was obtained.
  • the crosslinked fluororubber has a low surface friction coefficient, low cohesion, low rebound resilience, low static friction coefficient and low dynamic friction coefficient, and moderate hardness.
  • the heat-treated crosslinked fluororubber has a coefficient of static friction (according to JIS P 8147) of less than 1, preferably in the range of 0.1 to 0.7, and has a low adhesive strength.
  • Dynamic friction coefficient [A 2 mm thick rubber sheet was measured according to JIS K7125 and P8147 using a Shinto Kagaku surface tester. The test conditions were as follows: a mating material was a friction element made of chrome-plated steel balls with a diameter of 10 mm, a moving speed of 50 mmZ, and a load of 50 g. ] Force Usually less than 1, preferably 0.1 to 0.7, low adhesive strength,
  • Adhesive strength [A metal sheet (stainless steel, weight: 16 g, Curved shape of the contact portion with rubber: 60 mm, 3 mm diameter, 1.5 mm wide cylinder). After pressing for 24 hours or 72 hours at C, press for 24 hours at 0 ° C and measure the adhesive strength between the rubber and the metal bar at 0. ] Force Usually less than 100 g, preferably less than 50 g,
  • the adhesive strength durability (measurement condition: described later) is usually 100 g or less, preferably 70 g or less.
  • the amount of the cross-linking accelerator contained in the molded body that migrates to the molded body surface decreases, and the adhesive force becomes 400 g or more. .
  • the contact area of the obtained low friction fluororubber crosslinked product with the partner material can be reduced, and a friction coefficient of less than 1 is achieved, and non-adhesion is achieved. Characteristics can be improved and stability can be improved.
  • the low friction fluorororubber crosslinked article (molded article) according to the present invention obtained as described above is excellent in low friction, low adhesiveness, low resilience, etc. in a well-balanced manner, and has a hard disk (HDD) memory.
  • Stopper parts for shock absorption such as heads for devices, stoppers for HDD devices, in-vehicle disk devices using optical disks, etc., heads for storage devices such as disk devices for video recorders, and printer heads;
  • the low friction fluororubber crosslinked product (molded product) according to the present invention is used for an HDD device.
  • the stopper parts for shock absorption represented by a stopper malfunction due to the adhesion between the shock absorbing stopper and the disk arm is significantly reduced, the damping characteristics at high temperatures are good, and the vibration of the arm is absorbed. Can be expected.
  • the rate of change of the holding torque value should be 14% or less, preferably 10% or less. Can be. If the rate of change of the holding torque value is within the above range, the malfunction of the arm in the HDD device can be stably suppressed over a long period of time, and the other characteristics required as a stopper can be satisfied in a well-balanced manner. it can.
  • the rate of change of the holding torque value which will be described in detail below, is an index for the change with time of the non-adhesiveness of the arm and the stopper, and the smaller the value, the longer the non-adhesiveness is maintained. Yes, which means that malfunction of the arm in the HDD device can be stably suppressed over a long period of time.
  • the crosslinked fluororubber made of the crosslinkable fluororubber composition having the specific composition as described above is subjected to a heat treatment.
  • the heat resistance and oil resistance of the conventional fluororubber have A crosslinked fluororubber having low adhesion, low friction and low rebound can be obtained without deteriorating excellent properties such as heat resistance and chemical resistance.
  • the crosslinkable fluororubber composition having the specific composition as described above is crosslinked, if necessary, and the obtained fluororubber crosslinked molded article is subjected to a specific ⁇ heat treatment '', or the crosslinked fluororubber composition is uncrosslinked. Is immediately subjected to a specific “heat treatment”, and the coating on the surface of the cross-linked fluororubber molded article, as in the conventional method, A stable cross-linked fluororubber with low adhesiveness and low friction (low-friction crosslinked fluororubber) can be obtained at lower cost than chemical and electron beam treatments.
  • irregularities for example, irregularities having a depth of 0.5 to 200 on the surface of the low friction fluororubber crosslinked product (crosslinked product).
  • the contact area with the mating material is reduced, a friction coefficient of less than 1 is achieved, and a stable low-adhesive, low-friction, low-friction natural fluororubber crosslinked product having low friction performance is obtained.
  • the crosslinked fluororubber obtained by the above production method has the above-mentioned properties, and is typically used as an anti-vibration rubber, belt, rubber cloth, wiper, or the like, or an o-ring, packing, or the like.
  • a rubber part for preventing fluid leakage or as a shock absorbing stopper part such as a printer head or a head control unit of a hard disk (HDD) device, and more specifically, to suppress malfunction of the reading arm in the HDD device. It can be suitably used as a stopper installed for the purpose.
  • a stopper with excellent non-adhesiveness can be produced efficiently and at low cost without adversely affecting the environment.
  • Fluoro rubber (Dupont-Dow-Elastomer), Paiton A-500 Mooney viscosity ML i + io (121 ° C) 4 5) 100 weight parts,
  • Magnesium oxide (Kyowa Mag # 150 manufactured by Kyowa Chemical Industry Co., Ltd.)
  • Calcium hydroxide (Caldick # 200, manufactured by Omi Chemical Industry Co., Ltd.
  • heat-treated product a heat-treated product of a crosslinked fluororubber
  • physical properties such as a coefficient of static friction, a coefficient of dynamic friction, a hardness, a rebound resilience, an adhesive force (1), (2), and an adhesive durability were measured.
  • Example 1 a polyol-crosslinkable fluororubber composition having the following composition was used (that is, the only difference was that in Example 1, only the amount of trifenylbenzylphosphonium chloride was changed to 9.2 parts by weight). Except used A heat-treated product was obtained in the same manner as in Example 1, and the physical properties of the obtained heat-treated product were measured in the same manner as in Example 1.
  • Fluoro rubber manufactured by Dupont Dow Elastomer Co., Ltd., Viton A-500 Mooney viscosity ML i + io (121 ° C) 45) 100 parts by weight,
  • F E F carbon black (SEAIST GSO manufactured by Tokai Carbon Co., Ltd., average particle size 43m ⁇ , specific surface area 2m2 / g)
  • Sodai Magnesium (Kyowa Mag # 150) manufactured by Kyowa Chemical Industry Co., Ltd.
  • Carnauba wax (Dupont Dow Elastomerne: h VPANo.2 melting point
  • a heat-treated product was obtained in the same manner as in Example 1 except that 40 parts by weight (phr) of PTFE was added in Example 1, and the physical properties of the obtained heat-treated product were measured in the same manner as in Example 1. .
  • Example 4 In Example 1, a heat-treated product was obtained in the same manner as in Example 1 except that a molding die subjected to surface unevenness treatment with an average depth of 20 ⁇ m was used during crosslinking molding. Physical properties were measured in the same manner as in Example 1.
  • Example 2 A heat treatment was performed in the same manner as in Example 1 except that the surface of the obtained compression-molded product was shot with glass beads (particle diameter: 10 ⁇ m ⁇ ) to roughen the surface and then heat-treated. A product was obtained, and the physical properties of the obtained heat-treated product were measured in the same manner as in Example 1. '
  • a heat-treated product was obtained in the same manner as in Example 1 except that the heat treatment conditions of the compression-molded product were set to 260 ° C. and 10 hours in Example 1, and the obtained heat-treated product was subjected to the same physical properties as in Example 1. Was measured.
  • Fluorine rubber manufactured by DuPont Dow Elastomer Co., Ltd., Viton A—500-one viscosity ML 1+ i 0 (121 ° C) 45
  • FEF carbon black manufactured by Tokai Carbon Co., Ltd.
  • Magnesium oxide (Kyowa Mag # 150 manufactured by Kyowa Chemical Industry Co., Ltd.)
  • Carnauba wax (VPA No.2 melting point manufactured by Dupont 'Dow' Elastomer Co., Ltd.)
  • the above components are kneaded with a kneader and an open roll at a temperature of 80 ° C for 20 minutes, and then subjected to compression molding at a temperature of 180 ° C for 30 minutes using a compression molding machine. After performing, the obtained molded product (compression molded product) was subjected to a heat treatment in an oven at a temperature of 230 ° C. for 24 hours.
  • the physical properties of the obtained heat-treated product were determined in the same manner as in Example 1.
  • a heat-treated product was obtained in the same manner as in Example 1 except that the blending amount of calcium hydroxide was changed to 8 parts by weight (phr), and the obtained heat-treated product was the same as in Example 1.
  • ⁇ Raw was measured.
  • a heat-treated product was obtained in the same manner as in Example 1 except that the amount of trifenylbenzylphosphonium chloride was changed to 6.9 parts by weight (phr). Physical properties were measured as in Example 1.
  • Example 1 a polyol crosslinkable fluororubber composition having the following composition was used (that is, the only difference was that in Example 1, only the amount of trifenylbenzylphospho-dimethyl chloride was changed to 2.76 parts by weight). Unless used, A heat-treated product was obtained in the same manner as in Example 1, and physical properties of the obtained heat-treated product were measured in the same manner as in Example 1.
  • Fluoro rubber manufactured by Dupont Dow Elastomer Co., Ltd., Viton A—500 Mooney viscosity ML i + 10 (121 ° C) 45 ) 100 parts by weight
  • F EF carbon black (SEAIST GSO manufactured by Tokai Carbon Co., average particle size 43m ⁇ , specific surface area 42m2 / g)
  • Magnesium oxide (Kyowa Mag # 150) manufactured by Kyowa Chemical Industry Co., Ltd.
  • Calcium hydroxide (Caldick # 200, manufactured by Omi Chemical Industry Co., Ltd.
  • Carnauba wax (Dupont Dow, VPANo.2 Melting Point, Elastomer Co., Ltd.)
  • Example 1 was the same as Example 1 except that the compounding amount of triphenylbenzylphosphonium chloride was 1.3 parts by weight (phr) and the compounding amount of calcium hydroxide was 6 parts by weight (phr).
  • a heat-treated product was obtained in the same manner, and the physical properties of the obtained heat-treated product were measured in the same manner as in Example 1.
  • Comparative Example 2 A cross-linked molded article was obtained in the same manner as in Example 1 except that the heat treatment of the cross-linked molded article (compression molded article) was not performed. Physical properties were measured.
  • Acetone (Kanto Chemical Reagent) 88 parts by weight.
  • Example 1 2 parts by weight of calcium hydroxide (phr), 8 parts by weight of magnesium oxide (phr), 1.5 parts by weight of bisphenol AF (phr), triphenylbenzylphosphonium chloride 0.1 part by weight.
  • a heat-treated product was obtained in the same manner as in Example 1 except that the amount was 5 parts by weight (phr), and physical properties of the obtained heat-treated product were measured in the same manner as in Example 1.
  • Viton GLT DuPont 'Dow' Elastomer One Co., Ltd.
  • Triallyl isocyanurate (Nippon Kasei: t®, TAIC) 2.4 parts by weight, organic peroxide crosslinking agent (Nippon Oil & Fats Co., Ltd., Perhexa 25B)-0.8 parts by weight.
  • the fluororubber composition containing the above components is kneaded with a kneader and open roll at a temperature of 80 ° C for 20 minutes, and then compression molded at a temperature of 100 ° C for 30 minutes using a compression molding machine. After that, the obtained molded product was subjected to a heat treatment in an oven at a temperature of 230 ° C. for 24 hours.
  • a heat-treated product was obtained in the same manner as in Example 1 except that the specific surface area of calcium hydroxide was changed to 48 m 2 / g in Example 1, and the obtained heat-treated product had the same physical properties as in Example 1. Was measured.
  • the sample rubber sheet was placed on an inclined plate in accordance with JIS P8147, and the inclination angle was gradually increased.
  • the tangent (tan9) of the angle at which the rubber sheet started to slide was defined as the static friction coefficient. The higher the coefficient of static friction, the higher the rubber adhesion tends to be.
  • the hardness of the sample rubber sheet was measured with a type A durometer.
  • a metal rod (made of stainless steel, weight: 16 g, curved surface shape of the portion in contact with rubber: a cylinder with a diameter of 3 mm and a width of 1.5 mm) is placed on a 2 mm thick sample rubber sheet at 60 ° C. After pressing for a time, it was kept at 0 ° C. for 24 hours, and the adhesive force between the rubber and the metal rod at 0 was measured.
  • a metal rod (made of stainless steel, weight: 16 g, curved shape of the contact portion with rubber: a cylinder with a diameter of 3 mm and a width of 1.5 mm) is placed on a 2 mm thick sample rubber sheet at 60 ° ⁇ for 72 After pressing for 0 hours, keep the temperature at 0 ° C and press for 24 hours. The adhesive strength between the rubber and the metal rod at C was measured.
  • a cylindrical outer stopper rubber (outer diameter 5 mmcp, axial length: 10 mm) washed with water and ultrasonic waves was applied to the stainless steel pins of this hard disk drive as shown in Fig. 2. Insert the rubber so that the force S almost matches the longitudinal center of the rubber axial center and the stainless steel pin (diameter 1.5 mm (p, length 20 mm, material: SUS304)).
  • the stopper rubber and the arm are hit 50,000 times at room temperature, and then held at 60 ° C for 24 hours with the stopper rubber and the arm in contact.
  • the temperature was further adjusted to 0 ° C., and the stopper rubber and the arm were kept in contact with each other for 24 hours, and the adhesive strength was measured at this temperature of 0 ° C.
  • Magnesium oxide (Kyowa Mag # 150 manufactured by Kyowa Chemical Industry Co., Ltd.)
  • Calcium hydroxide (Caldic # 2000, manufactured by Omi Chemical Industry Co., Ltd.
  • KYURATIVE VC # 30 manufactured by Dupont Dow Elastomer Co., Ltd .: 50% by weight of cross-linking agent (bisphenol A F), 50% by weight of fluoro rubber (Viton E-45))
  • Curative VC # 20 (Dupont Dow Elastomer Co., Ltd .: Contains 33 wt% of crosslinking accelerator [organic phosphonium salt], 67 wt% of fluoro rubber [Paiton E-45])
  • the above components are kneaded with a kneader and an open roll at a temperature of 80 ° C for 20 minutes, and then subjected to compression molding at 170 ° C for 20 minutes using a compression molding machine, so that a rubber sheet and a product are obtained. (Magnet folder type stopper) was obtained. Thereafter, the obtained molded product (compression molded product) was heat-treated in an oven at a temperature of 240 ° C for 10 hours. About the obtained heat-treated product (fluororubber cross-linked heat-treated product) Physical properties such as hardness, change rate of magnet adhesion test, and change rate of holding torque value were measured.
  • Table 2 shows the results. A non-adhesive effect was exhibited by combining a dihydroxy aromatic compound and an organic phosphonium salt at a specific ratio. The change rate of the holding torque value is smaller than that of the product using the conventional rubber crosslinked body ⁇ Example 12
  • Example 11 a polyol-crosslinkable fluororubber composition having the following composition was used (that is, the only difference was that in Example 11, only the amount of the curative VC # 20 was changed to 7.5 parts by weight). Except for using, a heat-treated product was obtained in the same manner as in Example 11, and physical properties of the obtained heat-treated product were measured in the same manner as in Example 11.
  • Magnesium oxide (Kyowa Mag # 150 manufactured by Kyowa Chemical Industry Co., Ltd.)
  • KYURATIVE VC # 20 (Dubon's Dow Elastomer: 33 wt% of crosslinking accelerator [organic phosphonium salt], 67 wt% of fluororubber [Baiton E-45])
  • Example 11 a heat-treated product was obtained in the same manner as in Example 11, except that only the amount of the curative VC # 20 was changed to 9.0 parts by weight. Physical properties were measured in the same manner.
  • a heat-treated product was obtained in the same manner as in Example 11 except that only the amount of the curative VC # 20 was changed to 6.0 parts by weight in Example 11, and the obtained heat-treated product was the same as in Example 11. The physical properties were measured.
  • Example 11 a heat-treated product was obtained in the same manner as in Example 11, except that only the amount of the curative VC # 20 was changed to 10.5 parts by weight, and the obtained heat-treated product was the same as in Example 11. The physical properties were measured.
  • Comparative Example 8 A heat-treated product was obtained in the same manner as in Example 11 except that only the amount of the curative VC # 20 in Example 11 was changed to 1.5 parts by weight. Physical properties were measured in the same manner as in 11.
  • Table 2 shows the results. This composition is a general-purpose fluorine rubber composition. The rate of change of the holding torque value is large.
  • Fluorine rubber manufactured by Dupont Dow Elastomer Co., Ltd., Viton A—500 Mooney viscosity ML i + i 0 (121 ° C) 45) 100 parts by weight
  • Soshi-Dani Magnesium (Kyowa Mag # 150) manufactured by Kyowa Chemical Industry Co., Ltd.
  • KYURATIVE VC # 30 (Dupont Dow Elastomer Co., Ltd .: Crosslinking agent [Bisphenol A F] 50 wt%, Fluororubber rubber E-45] 50 wt% included)
  • KYURATIVE VC # 20 (DuPont Dow Elastomer Co., Ltd .: Contains 33% by weight of a crosslinking accelerator [organic phospho-dum salt] and 67% by weight of fluororubber [Viton E-45]) 1.5 parts by weight,
  • a heat-treated product was obtained in the same manner as in Example 11, and the physical properties of the obtained heat-treated product were measured in the same manner as in Example 11.
  • Table 2 shows the results. When the shear force is included, the rate of change of the holding torque value is large.
  • a heat-treated product was obtained in the same manner as in Example 11 except that only the amount of the curative VC # 20 in Example 11 was changed to 3.0 parts by weight. Physical properties were measured in the same manner as in 11.
  • Table 2 shows the results. This composition is a general-purpose fluorine rubber composition. The rate of change of the holding torque value is large.
  • a heat-treated product was obtained in the same manner as in Example 11 except that only the amount of the curative VC # 20 in Example 11 was changed to 4.5 parts by weight. Physical properties were measured in the same manner as in Example 11.
  • Table 2 shows the results. This composition is a general-purpose fluorine rubber composition. The rate of change of the holding torque value is large.
  • Sodai Magnesium (Kyowa Mag # 150, manufactured by Kyowa Chemical Industry Co., Ltd.) 3 parts by weight, calcium hydroxide (Omi Chemical Industry Co., Ltd. Caldic # 200,
  • KYURATIVE VC # 30 (Dupont Dow Elastomer Co., Ltd .: Crosslinking agent [bisphenol AF] 50wt%, fluoro rubber [viton E-45] 50wt% included)
  • KYURATIVE VC # 20 (Dupont Dow Elastomer Co., Ltd .: Contains 33% by weight of crosslinking accelerator [organic phosphonium salt], 67% by weight of fluoro rubber [Paiton E-45])
  • a heat-treated product was obtained in the same manner as in Example 11, and the physical properties of the obtained heat-treated product were measured in the same manner as in Example 11.
  • Table 2 shows the results. When silica is contained, the change rate of the holding torque value is large.
  • the hardness of the sample rubber sheet was measured with a type A durometer according to JIS K625.
  • the metal rod was placed on the sample rubber again, and the test unit consisting of the magnet, the sample rubber and the metal rod was allowed to stand at 60 ° C and a humidity of 80% for 10 hours.
  • the test unit was returned to the condition of 23 ° C and a humidity of 50%, and the adhesive strength Fi ′ after the humidity load was measured. Using these measured values Fi and Fi, the adhesion increase rate was determined by the following equation.
  • Figure 4 shows a cross-section of the product of a magnet folder type stopper, which was fitted with a magnet and actually mounted on a hard disk drive. 2. Contact the hard disk arm with the stopper. C, and a humidity of 50%, measured load when peeling the arm from the stopper, which was used as a first period holding torque value F 2.
  • the arm was brought into contact with the stopper again, and was allowed to stand still at 60 ° C. and 80% under this condition for 10 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

 ポリオール架橋可能なフッ素ゴム、架橋促進剤、ポリオール系架橋剤、および水酸化カルシウムを含有し、かつ、上記架橋促進剤とポリオール系架橋剤との重量比が特定比率であるフッ素ゴム組成物を、特定条件で熱処理することにより、低摩擦性、低粘着性、低反発性等にバランス良く優れ、防振ゴム、ハードディスク装置用ストッパーに代表される衝撃吸収ストッパ部品等に好適に使用可能な低摩擦性フッ素ゴム架橋体を得ることができる。

Description

明 細 書 低摩擦性フッ素ゴム架橋体の製造方法
技術分野
本発明は、 低摩擦性フッ素ゴム架橋体の製造方法に関し、 さらに詳しくは、 低摩擦性、 低粘着性、 低反発性等にバランス良く優れ、 防振ゴム、 衝撃吸収ス トツパ部品、 特にハードディスク (HD D) 装置のヘッド制御部用の部品等の 製造用として好適に使用可能な低摩擦性フッ素ゴム架橋体の製造方法並びに該 方法にて得られた低摩擦性フッ素ゴム架橋体の用途に関する。
背景技術
従来よりフッ素ゴムは、 他の汎用ゴムと同様にゴム本来の特性であるゴム弾 性を有し、 しかも他の汎用ゴムに比して耐熱性、 耐油性、 耐薬品性などの特性 に優れているので、それらの特性を生かして、例えば、 o—リング、パッキン、 ガスケットなどに代表される漏洩防止用ゴム部品、 防振ゴム、 ベルト、 ゴム弓 I 布などとして、 あるいはプリンターヘッド、 ハードディスク (HD D) 装置の へッド制御部などの衝撃吸収ストッパ部品、 より具体的には、 HD D装置内の 読み取りアームの誤動作抑制等を目的として設置するストッパーなどとして 様々な用途に用いられている。
このような従来のフッ素ゴムは、ゴム表面が粘着し、摩擦係数が大きいため、 その製造に際して、 架橋ゴム表面に粘着防止処理をする場合がある。 しかし、 処理コストが高くなるという問題がある。
また、 従来のフッ素ゴムを、 例えば、 ハードディスク (HD D) の記憶装置 のストッパーなどとして用いると、 ストッパーとアームとの粘着による誤作動 が問題になる。 さらに、 そのダンピング特性の温度依存性が大きく、 高温での 反発弾性率が高く、アームの振動を吸収することができないという問題がある。 ここで、 ストッノ一とは、 先端に記録読み取り用ヘッド部を有するアームが待 機する際のヘッド部可動範囲の位置 (アーム振れ位置) を規定し、 さらに、 ァ ーム作動後、 もしくは待機する際のアーム誤動作抑制のために衝撃吸収等を行 うことを目的として設置される部分である。
また近年、 このストッパーとしては、 ゴム中に磁石を組み込み、 磁力により アームを固定するマグネットフオノレダータイプのストッパー、 あるいはアーム の両側にストッパーを配置したクラッシュストップタイプのストッパーが増加 してきている。 これらストッパーの要求機能は、 主に下記の 3項目である。
( 1 ) アーム衝突時の衝撃吸収性に優れること。
( 2 ) アーム待機時に磁力等によりゴムノアーム端部 (金属)が圧着されている 必要があるが、 粘着しないこと。
( 3 ) クリーンであること。
し力 し、 従来のフッ素ゴムを用レ、た場合は、 ( 1 ) 衝撃吸収性および( 3 ) ク リーンである点では問題が少ないものの、 粘着性が大きいため (2 ) で示す要 求性能を満たすものがないという問題があった。
従来、 この (2 ) で示す要求性能を満たす手法としては、 例えば、 特公平 4-
37094に示されるように、 フッ素ゴムの架橋剤および架橋促進剤溶液をゴム表 面に塗布含浸させ、 再架橋することにより、 表面の非粘着化を実施する方法が 提案されている。 し力 し、 この方法は溶剤を多量に使用するため、 環境に悪影 響を与えるため望ましくない。 また、 溶剤による浸透制御のため、 ストッパー として用いる場合には、 製品間での性能のばらつきがあり、 HDDの動作不良 の原因となる製品もあった。 そこで、 本発明者らは上記問題点を解決すべく鋭意研究を重ねた結果、 ポリ オール架橋性フッ素ゴムと共に、 特定の架橋剤、 架橋促進剤、 水酸ィヒカルシゥ ム、 必要によりさらに酸化マグネシゥムなどを含み、 架橋促進剤と架橋剤との 量比 (R) {架橋促進剤/架橋剤 }が、 0 . 9以上〜 5以下の範囲となるように、 架橋促進剤および架橋剤を含む未架橋フッ素ゴム組成物を、(必要によりポリオ ール架橋、予備成形等した後、)特定条件下で熱処理することにより、 フッ素ゴ ム組成物中 (あるいは予備成形物中) の架橋促進剤が表層に良好に移行して、 ゴム表面の架橋密度を向上させ、 ゴム表面を低摩擦、 低粘着化でき、 しかもフ ッ素ゴム成形体の反発弾性率を低くできることを見出した。
より具体的には、 例えば、 架橋促進剤としての有機第 4級ホスホニゥム塩と 架橋剤の添加比 (架橋促進剤 Z架橋剤) 力 0. 9以上〜 5以下の範囲であれば 大きい程、 架橋促進剤のゴム表面への移行量が増え、 ゴム成形体表面の架橋密 度は上がる一方で、 ゴム成形体全体としての架橋密度は下がり、 反発弾性率を 下げることが出来ることを本発明者らは見出した。
また、 本発明者らは、 フッ素ゴム組成物中の架橋促進剤としての有機第 4級 ホスホニゥム塩等と架橋剤の添加比 (架橋促進剤 架橋剤) をこのように従来 のフッ素ゴム組成物よりも高くすることにより、 架橋体の低摩擦性、 低粘着特 性および低反発特性の何れの特性もバランスよく向上させることができ、 O— リング、 パッキン、 ガスケットなどに代表される漏洩防止用ゴム部品、 防振ゴ ム、 ベルト、 ゴム引布、 衝撃吸収ストッパ部品、 例えば HDD装置内部のスト ッパー、 などの製造用途に好適に使用可能な低摩擦性フッ素ゴム架橋体が得ら れることなどを見出して本発明を完成するに至つた。
なお、 フッ素ゴムのポリオール加硫に関連した技術としては、 これまでに下 記のようなものが知られている。 例えば、 特公平 4一 3 7 0 9 4公報には、 含フッ素エラストマ一の加硫成形 品の表面に、 架橋剤 (加硫剤) としてのポリヒドロキシィヒ合物、 および必要に より加硫促進活性剤 (架橋促進剤) を含浸させ、 再度加硫する含フッ素エラス トマ一成形品の表面改質方法が開示され、 この含フッ素エラストマ一成形品の 表面改質法によれば、 加硫成形品の表面に非粘着性、 低摩擦性を付与させるこ とができる旨記載されている。
しかしながら、 架橋剤のポリヒドロキシ化合物、 加硫促進活性剤 (架橋促進 剤) などを含浸させる際には、 架橋剤及ぴ架橋促進剤をアセトンなどの有機溶 媒に溶解してなる表面処理液が用いられており、 有機溶剤による環境汚染の恐 れがある。 また、 加硫後に更に表面を行うため工程数が多くなり、 処理コスト が嵩むという問題点がある。
なお、 特開平 7— 3 0 9 9号公報には、 (A) フッ化ビニリデン、へキサフル ォロプロピレン、 必要によりテトラフルォロエチレンを共重合して得られるフ ッ素ゴム 1 0 0重量部、(B )有機 4級ホスホニゥム塩 0 . 0 5〜2重量部、 ( C ) 窒素含有有機化合物および Zまたはリン含有有機化合物 0 . 0 1〜 3重量部、 (D) ポリヒドロキシィ匕合物 0 . 1〜1 0重量部、 ( E)金属酸化物および Zま たは金属水酸化物 0 . 5〜3 0重量部からなるフッ素ゴム組成物が開示され、 該組成物からなる所望形状のプレフォームを金型に入れて加熱下に圧縮成形な どを行うことによりポリオール加硫して、 フッ素ゴム加硫成形品を得ることが 記載され、 得られた成形品は、 機械的特性の低下がなく、 加硫成形時に成形不 良の発生がなレヽ旨記載されている。
しかし該公報の実施例などで具体的に開示されている成形体では、 有機 4級 ホスホニゥム塩のゴム成形体表面への移行が乏しく、 摩擦係数及び粘着力が高 いなどの問題点がある。 特開平 7— 3 1 0 0号公報には、 (A) フツイヒビユリデン、へキサフルォロプ ロピレン、 必要によりテトラフルォロエチレンを共重合して得られるフッ素ゴ ム 1 0 0重量部、 (B ) 有機 4級ホスホニゥム塩 0 . 0 5〜2重量部、 (C) 有 機 4級アンモニゥム硫酸水素塩など、 0 . 0 5〜2重量部 (D) ポリヒドロキ シ化合物、 0 . 1〜1 0重量部 (E) 金属酸化物おょぴ Zまたは金属水酸化物 0 . 5〜3 0重量部などからなるフッ素ゴム組成物が開示され、 該組成物から なる所望形状のプレフォームを金型に入れて加熱下に圧縮成形などを行うこと によりポリオール加硫して、 フッ素ゴム加硫成形品を得ることが記載され、 得 られた成形品は、 加硫成形時に成形不良の発生がない旨記載されている。 しかし、 上記特許文献 2と同様に、 該公報の実施例などで具体的に開示され てレ、る成形体では、 有機 4級ホスホニゥム塩等のゴム成形体表面への移行が乏 しく、 摩擦係数及び粘着力が高いという問題点がある。
特開平 7— 8 2 4 4 9号公報には、 ポリオール加硫系フッ素ゴムにハイドロ タルサイト類縁ィ匕合物を配合したポリオール加硫系フッ素ゴム組成物が開示さ れ、 加硫は、 フッ素ゴムに加硫系成分などを混合し、 一次加硫として 1 4 0〜 2 0 0 °Cで約 2〜 1 2 0分間のプレス加硫し、 二次加硫として約 1 5 0〜 2 5 0 °Cで 0〜 3 0時間程度のオーブン加硫をすることにより、 行われることが記 載されている。 上記加硫系成分としては、 フッ素ゴム 1 0 0重量部当たり 0 . 5〜: 1 0重量部のポリヒドロキシ芳香族化合物などの加硫剤、 :!〜 2 0重量部 の二価金属の酸化物または水酸化物等の受酸剤、 1 0重量部以下の第四級アン モ-ゥム塩、第四級ホスホニゥム塩等の加硫促進剤等が挙げられている。また、 上記組成物は、 金型離型性がよく、 加硫物性がよく、 耐エンジン油性が改善さ れる旨記載されている。
しかし該公報の実施例などで具体的に開示されている成形体では、 第四級ホ スホニゥム塩等の加硫促進剤のゴム成形体表面への移行が乏しく摩擦係数及び 粘着力が高いという問題点がある。 また、 加硫促進剤例えば、 有機 4級ホスホ ニゥム塩の添加量を増加させかつ、 該公報に記載されているようにハイドロタ ルサイト類縁化合物をも添加すると、 架橋速度が速く、 プレス成形では、 型に 流し込む前に架橋してしまい、 所望形状に成形できないという問題点もある。 特開 2 0 0 0— 3 4 3 7 9号公報には、 原料フッ素ゴム、 ポリオール系加硫 剤、 有機促進剤、 加硫促進助剤およぴ受酸剤を含有し、 必要により充填剤を含 有してなるフッ素ゴム組成物であって、 加硫促進助剤として、 脂肪酸エステル 等で処理され、 その平均粒子径が 7 . 5 μ m以下であり、 比表面積が 2 0 m2 Z g以上の水酸化カルシウムを配合したものは、 加硫すると、 f圧縮永久歪み 性が良い旨記載されている。 また、 加硫としては、 1 7 0 °Cで 1 0分間の一次 加硫、 2 0 0 °Cで 2 4時間の二次加硫が挙げられている。
しかしながら、 該公報における加硫促進助剤は、 その比表面積が高く、 脂肪 酸ェステル等で処理されてレ、るためと想定されるが、 フッ素ゴム成形体の架橋 密度及び反発弾性率が高くなり、 有機 4級ホスホ-ゥム塩等の有機促進剤 (カロ 硫促進剤) のゴム成形体表面への移行が乏しく、 また、 該公報に実施例などで 具体的に開示された例では、 何れも摩擦係数及び粘着力が高いという問題点が ある。
特開 2 0 0 1— 1 9 2 4 8 2号公報には、 フッ素ゴム 1 0 0重量部、 水酸ィ匕 カルシウム 0 . 5〜 3重量部、 酸ィ匕マグネシウム 4〜1 5重量部、 サーマルプ ラックと瀝青炭フィラーとの合計約 1 0〜5 0重量部を含有するフッ素ゴム組 成物を、 ポリオール系加硫剤の存在下で加硫成形した後、 約 2 5 0〜3 0 0 °C の温度で熱処理して、 耐圧縮永久歪特性等に優れたフッ素ゴム加硫成形品を製 造することが記載されている。 上記ポリオール系加硫剤としてのポリヒドロキ シ芳香族化合物等は含フッ素ゴム 1 0 0重量部当たり約 0 . 5〜1 0重量部で、 アンモニゥム塩またはホスホニゥム塩は約 0 . 1〜3 0重量部で用いられる旨 記載されている。 また、 該フッ素ゴム組成物は、 圧縮プレス等により約 1 5 0 〜 2 3 0 °Cで約 1〜 3 0分間加硫成形し、 グロノット、 シールパッキン類では 約 2 5 0〜 3 0 0 °Cで約 5〜 4 8時間エアオーブン等で熱処理 (二次加硫) さ れる旨記載されている。
しかし、 該公報に記載の成形品では、 反発弾性率が高く、 また、 有機 4級ホ スホニゥム塩のゴム表面への移行が少なく、 摩擦係数及ぴ粘着力が高レヽという 問題点がある。
さらに、 下記のようなフッ素ゴム組成物、 あるいはその加硫成形体も、 これ までに提案されている。
特許第 3 0 6 3 1 7 2号 (特開平 4 - 2 3 6 2 5 4号公報に対応) には、 フ ッ素ゴム 1 0 0重量部、 液状ポリイソプレンゴムおよぴ水添液状ポリイソプレ ンゴムより選択される液状炭化水素系ゴム 0 . 5〜1 0重量部からなるフッ素 ゴム組成物が開示され、 押出加工性などの加工性がよく、 加硫ゴム物性もよい 旨記載されている。
特許第 3 2 2 2 0 5 4号公報 (特開平 9一 2 0 8 7 5 1号公報に対応)には、 (A) フッ素ゴムポリマー、 (B ) フッ素含有有機基を含む融点 3 0〜2 0 0 °C のワックス、 (C) ァミン、 ポリオール、パーォキサイドから選択される架橋剤 からなるゴム組成物が開示され、 (B) フッ素含有有機基を含む融点 3 0〜 2 0 0 °Cのワックス、 (C) ァミン、 ポリオール、パーォキサイドから選択される架 橋剤からなるゴム組成物が開示され、 該ゴム組成物は加工性が優れ、 混練り作 業性が優れ、 金型離型性が良く、 また得られた成形物の物性は従来品と同等で ある旨記載されている。 特許第 2 6 5 3 3 4 0号公報 (特開平 6— 2 9 3 8 5 0号公報に対応)には、 (A) ポリオール架橋系フッ素ゴム、 (B ) 液状フッ素ゴム、 (C ) 1分子中の 〇H基の少なくとも 1個がシリル化されたポリオールを配合してなるフッ素ゴ ム組成物が開示され、 該組成物を発泡の生じない 1 3 0〜1 6 0 °Cの低温で架 橋 (一次架橋) し、 1 2 0〜2 5 0 °Cの温度で二次架橋することも記載されて おり、 該組成物は、 加工性に優れ、 得られた成型品は、 低硬度であり各種用途 に使用できる旨記載されている。
特開平 5— 2 3 9 3 0 0号公報には、 (A)フッ化ビニリデン単位と少なくと も 1種の他のフッ素含有単量体単位とを有するエラストマー共重合体、 ( B )ァ ルコキシ基、 フエノキシ基などで置換されたトリフエニルホスフィン等からな る 3級ホスフィン加硫促進剤、 (C ) ポリオール架橋剤、 (D) 二価金属酸化物 または水酸化物等を含有してなるフルォ口エラストマー加硫組成物が開示され、 該組成物は、 一次加硫 (プレス加硫)、 二次加硫 (オーブン加熱) してシール材 などの加硫成形物として用いる際の一次加硫速度が速く、 加硫成形物は、 ゴム 弾性、 引張物性が良好である旨記載されている。
特開平 6— 2 4 8 1 4 5号公報には、 フッ化ビニリデン、 テトラフルォロェ チレンおょぴプロピレンを共重合してなるフッ素ゴムに酸化カルシゥムおよび ポリエチレンワックスが配合されてなるフッ素ゴム組成物が開示され、 該組成 物は、 1 0 0〜4 0 0 °Cで数秒〜 5時間加硫した後、 加硫物性を安定化させる ために 1 5 0〜 3 0 0。Cで 3 0分〜 4 8時間程度二次加硫を行つてもよい旨記 載され、該組成物は、加硫、成形の際に融合不良がない旨記載され、成形品は、 耐熱性などがよ 1/ヽ旨記載されている。
特開平 6— 3 0 6 1 8 0号公報には、 フッ化ビニリデン、 へキサフルォロプ ロピレン、 および必要によりテトラフルォロエチレンを共重合して得られるフ ッ素ゴムをポリオール加硫により金型を用いて成形を行う際に、 加硫促進剤と して有機 4級ァンモニゥム塩を用いる、 フッ素ゴム加硫成形品の製造方法が開 示され、 加硫成形時に成形不良がない旨記載されている。
しかしながら、 上記文献に記載されているフッ素ゴム組成物には、 液状炭化 水素系ゴム、 フッ素含有有機基を含む融点 3 0〜 2 0 0 °Cのワックス、 液状フ ッ素ゴム、 3級ホスフィン架橋促進剤、 酸化カルシウムおよびポリエチレンヮ ックス、 有機 4級アンモニゥム塩等が添加されており、 このようなフッ素ゴム 組成物からなる加硫成形体では、 低粘着、 低摩擦及ぴ低反発弾性の点、 あるい はそれら特性のバランスの点で充分でない。
発明の開示
本発明に係る低摩擦性フッ素ゴム架橋体の製造方法では、
ポリオール架橋可能なフッ素ゴムと、
架橋促進剤 (好ましくは有機第 4級ホスホニゥム¾)と、 ポリオール系架橋剤 (好ましくはビスフエノール類)と、 水酸化カルシゥムと、 必要により酸ィ匕マグ ネシゥムとを含有し、 力、つ、 上記架橋促進剤とポリオール系架橋剤との重量比 R {架橋促進剤/ポリオール系架橋剤 }が 0 · 9〜 5、好ましくは 0 . 9〜 3、 より好ましくは 0 . 9〜 2であるポリオール架橋可能なフッ素ゴム,祖成物を、 必要により予めポリオール架橋した後、
1 5 0〜 3 0 0 °C、 好ましくは 2 0 0〜 3 0 0 °C、 より好ましくは 2 4 0〜 3 0 0 °Cの温度範囲で 0 . 1〜4 8時間、 好ましくは 1〜4 8時間、 より好ま しくは 1 0〜 4 8時間熱処理することにより、 架橋体の表面の摩擦係数が 1未 満の低摩擦性フッ素ゴム架橋体を得ることを特徴としている。
本発明においては、 上記ポリオール架橋可能なフッ素ゴム組成物には、 該ポ リオール架橋可能なフッ素ゴム 1 0 0重量部に対して、 上記架橋促進剤が 2 . 1〜 2 0重量部、 上記ポリオール系架橋剤が 0 . 4〜 2 0重量部の量で含有さ れ、比表面積 2 0 m2/ g未満の水酸ィ匕カルシウムが 0 . 5〜1 0重量部の量で 含有されていることが好ましい。
また、 本発明では、 上記ポリオール架橋可能なフッ素ゴム組成物には、 該ポ リオール架橋可能なフッ素ゴム 1 0 0重量部に対して、 上記酸化マグネシゥム が 3 . 0重量部以下の量で含まれていることが好ましい。
本発明においては、 上記ポリオール架橋可能なフッ素ゴム組成物には、 さら に、 ポリテトラフルォロエチレン (PTFE) 力 上記ポリオール架橋可能なフ ッ素ゴム 1 0 0重量部に対して、 5〜2 0 0重量部の量で含まれていることが 好ましい。
本発明においては、 上記ポリオール架橋可能なフッ素ゴム組成物のポリォー ル架橋時に、 金型内周面が凹凸処理された圧縮成形金型を用いて、 0 . 5〜2 0 0 ^ mの平均深さの凹凸面を有する架橋体を得て、 これを上記熱処理するこ とが好ましい。
また、 上記ポリオール架橋可能なフッ素ゴム組成物から得られる架橋体をハ ードディスク (HDD) 記録装置用ストッパーとして用いる場合には、 該ポリオ ール架橋可能なフッ素ゴム 1 0 0重量部に対してポリオール系架橋剤が 1〜 1 0重量部含まれ、 上記重量比 R {架橋促進剤 Zポリオール系架橋剤 } が 0 . 9 〜 2であることも好ましい。
本発明に係る、 HD D装置用ストッパーに代表される衝撃吸収用ストッパ部 品は、 上記の何れかに記載の低摩擦性フッ素ゴム架橋体の製造方法により得ら れたことを特徴としている。
また、本発明に係る架橋体を HD D装置用ストッパーとして用いる場合には、 ホールディングトルク値の変化率が 1 4 %以下であることが望ましい。 本発明によれば、 有機溶剤を含むような表面処理液にて表面改質をしなくと も、 フッ素ゴム組成物の熱処理のみ (必要によりこの熱処理に先立ち、加硫、 予 備成形を行ってもよいが、)で製造でき、製造時に環境汚染の恐れがなく、 低摩 擦性、 低粘着性、 低反発性等にバランス良く優れ、 防振ゴム、 衝撃吸収ス トッ パ部品、 流体漏洩防止用ゴム部品、 ベルト、 ゴム引き布、 ワイパー等の製造用 途に好適に使用可能な低摩擦性フッ素ゴム架橋体の安価な製造方法が提供され る。 また、 本発明に係る低磨耗性フッ素ゴム架橋体は非粘着性が向上するとと もに安定しているので、 特に HDD装置のス トッパーとして好適に用いること ができる。
図面の簡単な説明
図 1 : 図 1は、 本発明に係る低摩擦性フッ素ゴム架橋体の製造方法で得ら れた低摩擦性フッ素ゴム架橋体の粘着力耐久性の評価を行う際に用いられる試 験装置の説明図である。
図 2 : 図 2は、 図 1の試験装置に糸且み込まれるアウターストッパーの断面 図である。
図 3 : 図 3は、 マグネット粘着試験変化率の評価を行う際に用いられる試 験装置の説明図である。
図 4 : 図 4は、 ホールディングトルク値の評価を行う際に用いられる試験 装置の説明図である。
発明を実施するための最良の形態
以下、 本発明に係る低摩擦性フッ素ゴム架橋体の製造方法について具体的に 説明する。
「低摩擦性フッ素ゴム架橋体の製造方法 1
本発明に係る低摩擦性フッ素ゴム架橋体の製造方法では、 以下に詳述するポ リオール架橋可能なフッ素ゴム組成物を、 あるいは必要により予めポリオール 架橋した後、 得られた架橋体 (フッ素ゴム架橋体) を、 1 5 0 °C〜3 0 0 °C、 好ましくは 2 0 0〜 3 0 0 ° (:、 より好ましくは 2 4 0〜 3 0 0 °Cの温度範囲で 0 . 1〜4 8時間、 好ましくは 1〜4 8時間、 より好ましくは 1 0〜4 8時間 熱処理している。
以下、 本発明で好ましく用いられるポリオール架橋可能なフッ素ゴム組成物 (ポリオール架橋系フッ素ゴム組成物)、加硫条件(一次加硫の他に、必要によ り行われる二次加硫を含む。 )、 加硫後の熱処理条件、 得られた低摩擦性フッ素 ゴム架橋体の特性などにつ!/、て順次詳説する。
くポリオール架橋系フッ素ゴム組成物 >
本発明で好ましく用いられるポリオール架橋可能なフッ素ゴム組成物 (ポリ オール架橋系フッ素ゴム組成物) は、 ポリオール架橋可能なフッ素ゴムと、 架 橋促進剤である有機第 4級ホスホニゥム塩と、 ビスフエノール類に代表される ポリオール系架橋剤と、 水酸化カルシゥムとを含有し、 必要により酸ィ匕マグネ シゥムを含有している。
ポリオール架橋可能なフッ素ゴム
ポリオール架橋可能なフッ素ゴム(ポリオール架橋系フッ素ゴム)としては、 1種または 2種以上の含フッ素ォレフィンの (共) 重合体を用いることができ る。
含フッ素ォレフィンとしては、 具体的には、 例えば、 フッ化ビニリデン、 へ キサフルォロプロピレン、ペンタフルォロプロピレン、トリフルォロエチレン、 トリフルォロクロ口エチレン、 テトラフルォロエチレン、 フッ化ビュル、 ノ ー フルォロアクリル酸エステル、 アクリル酸パーフルォロアルキル、 パーフルォ 口メチルビニルエーテル、 パーフルォロプロピルビニルエーテルなどが挙げら れる。 これらの含フッ素ォレフィンは 1種または 2種以上組み合わせて用いて よい。
このようなポリオール架橋系フッ素ゴム( (共)重合体)として、好ましくは、 フッ化ピリデン一へキサフルォロプロピレン 2元共重合体、 テトラフルォロェ チレン一プロピレン 2元共重合体、 フッ化ビリデンーテトラフルォロエチレン —へキサフルォロプロピレン 3元共重合体など、 一般的に市販されているフッ 素ゴムをそのまま使用することができる。
架橋剤
架橋剤としては、 ポリオール系架橋剤のビスフエノール類が好ましく、 具体 的には、 例えば、 2 , 2 _ビス (4ーヒ ドロキシフエ二 プロパン [ビスフ ェノール A]、 2, 2—ビス (4—ヒ ドロキシフエニル) ノヽ。—フルォロプロパン [ビスフエノーノレ A F ]、 ビス (4—ヒ ドロキシフェニ^/) ス ホン [ビスフエ ノール S ]、 ビスフエノーノレ A—ビス (ジフエニルホスフェート)、 4 , 4,一ジ ヒ ドロキシジフエ二 \ 4 , 4,ージヒ ドロキシジフェニ^^メタン、 2, 2—ビ ス (4ーヒ ドロキシフエニル) ブタンなどのポリヒ ドロキシ芳香族化合物が挙 げられ、好ましくはビスフエノール Α、ビスフエノール A Fなどが用いられる。 これらはまた、 アルカリ金属塩あるいはアルカリ土類金属塩の形であってもよ い。 また、 架橋剤として、 原料ゴムと架橋剤とを含む市販されているマスター バッチを用いてもよい。 市販されているマスターバッチとしては、 例えばキュ ラティブ VC # 3 0 (デュポン 'ダウ 'エラストマ一社製:架橋剤 〔ビスフエ ノール A F〕' 5 0 w t %含有) などが挙げられる。 これらの架橋剤は 1種また は 2種以上組み合わせて用いてもよい。
架橋促進剤
架橋促進剤としては、 有機第 4級ホスホニゥム塩、 活性水素含有芳香族化合 物一第 4級ホスホニゥム塩等モル分子化合物、 2価金属アミン錯体化合物など、 ポリオール架橋の際に一般的に用いられる架橋促進剤が挙げられ、 これらの架 橋促進剤は、 1種または 2種以上組み合わせて用いられる。 これらの架橋促進 剤のうちでは、 得られた低摩擦性フッ素ゴム架橋体からのァゥトガス量を少な くする上では、 有機第 4級ホスホニゥム塩が好ましい。
これらの架橋促進剤有機第 4級ホスホニゥム塩のうち、 具体的には、 本願出 願人が特開 2 0 0 1— 1 9 2 4 8 2号公報の 「0 0 1 0」 〜 「0 0 1 2」 欄に 記載したようなものが挙げられ、 トリフエ-ルペンジルホスホニゥムブロマイ ド、トリフエニルベンジルホスホニゥムクロライドなどが好ましく用いられる。 また、 架橋促進剤として、 原料ゴムと架橋促進剤とを含む市販されているマス ターバッチを用いてもよい。 市販されているマスターバッチとしては、 例えば キュラティブ VC# 2 0 (デュポン ·ダウ ·エラストマ一社製:架橋促進剤 〔有 機ホスホニゥム塩〕 3 3 w t %含有) などが挙げられる。
その他の配合成分
本発明で用いられるポリオール架橋系フッ素ゴム組成物には、 以上の成分以 外に、 ゴム配合剤として、 カーボンブラック、 カーボン繊維などの捕強剤; 炭酸カルシウム、 炭酸マグネシウム、 水酸化アルミニウム、 水酸化マグネシ ゥム、 ケィ酸アルミニウム、 ケィ酸マグネシウム、 ケィ酸カルシウム、 チタン 酸カリウム、 酸化チタン、 硫酸バリウム、 ほう酸アルミニウム、 ガラス繊維、 ァラミ ド繊維などの充填剤;
ワックス、 金属セッケン等の加工助剤;
酸化亜鉛などの受酸剤 (水酸化カルシウムを除く。 以下同様。) ;
老化防止剤;熱可塑性樹脂;など、 ゴム工業で一般的に使用されている配合 剤が、 本発明に使用する架橋剤および架橋促進剤の効果を損なわない範囲で、 必要に応じて適宜添加される。 尚、 配合剤としてシリカを用いると、 室温では 低粘着効果はあるが、 高湿下では金属との粘着を大きくするため、 シリカは添 加しないことが好ましい場合がある。
このポリオール架橋可能なフッ素ゴム組成物 (ポリオール架橋系フッ素ゴム 組成物) には、 ポリオール架橋可能なフッ素ゴム 1 0 0重量部に対して、 架橋 促進剤 (好ましくは有機第 4級ホスホ-ゥム塩) 1 通常、 2 . :!〜 2 0重量 部、 好ましくは 2 . 5〜: 1 0重量部の量で、
ポリオール架橋剤 (好ましくはビスフエノール類) が通常、 0 . 4〜 2 0重 量部、 好ましくは 1〜: L 0重量部の量で、
必要により、 酸ィ匕マグネシゥムは、 3重量部以下、 好ましくは 1〜 3重量部 の量で、
水酸化カルシウムが、通常、 0 . 5〜: 1 0重量部、好ましくは 1〜7重量部、 特に好ましくは 1〜 5重量部の量で含有されていることが望ましい。
架橋促進剤が上記範囲より少ないと、 ゴム表面の摩擦係数、 粘着力が高くな る傾向があり、 また、 上記範囲よりも多いと得られた低摩擦性フッ素ゴム架橋 体 (成形体) を屈曲させ、 また圧縮、 変形等させると、 成形体にクラックが生 じる傾向がある。
また、 架橋剤が上記範囲より少ないと、 成形後、 発泡を起こし、 一定の形状 の架橋体にできなくなる傾向があり、 また、 上記範囲よりも多いと同様に、 得 られた低摩擦性フッ素ゴム架橋体 (成形体) を屈曲させ、 また圧縮、 変形等さ せるとクラックが生じるとなる傾向がある。
なお、 架橋剤が上記範囲内で使用されて、 もし、 架橋成形時に発泡が生ずる ような場合には、 上記補強剤や充填剤、 受酸剤、 架橋剤をさらに増量すること により発泡をなくすことができ、 必要に応じてこれら成分の添加量を適宜調整 すればよい。
このポリオール架橋可能なフッ素ゴム組成物では、 上記有機第 4級アンモニ ゥム塩、 有機第 4級ホスホニゥム塩に代表される架橋促進剤と、 ビスフエノー ル類に代表されるポリオール系架橋剤との重量比 (R) = {架橋促進剤 Zポリ オール系架橋剤 } が通常、 0 . 9〜5、 好ましくは 0 . 9〜4、 より好ましく は約 0 . 9〜3、 特に好ましくは 0 . 9〜2である。
ポリオール架橋可能なフッ素ゴム組成物中における、 この重量比 R {架橋促 進剤/ポリオール系架橋剤) が上記範囲より小さい場合には、 架橋促進剤のゴ ム表層への移行が乏しく、 ゴム表層の架橋密度が充分に上がらず、 所望の低粘 着性、 低摩擦性が得られず、 また、 この重量比 Rがこの範囲より大きい場合に は、 ゴム表層の架橋密度は上がるが、 得られた低摩擦性フッ素ゴム架橋体 (成 形体) を屈曲させ、 また圧縮、 変形等させるとクラックが生じる傾向がある。 なお、 酸ィ匕マグネシウムは、 上記量 (すなわち未架橋フッ素ゴム 1 0 0重量 部に対して 3 . 0重量部) より多いと、 得られる成形体の反発弾性率が高く、 酸ィ匕マグネシウム自体が金属との粘着力を有することもあり、 得られるゴム成 形体と相手金属との粘着力が大きくなり、 また、 有機ホスホニゥ A塩などの架 橋促進剤の成形体表面への移行が少なく、 低摩擦係数、 低粘着力のものが得ら れない。
また、 本発明に係る低摩擦性フッ素.ゴム架橋体をハードディスク装置用スト ッパーとして用いる場合は、 フッ素上記ポリオール架橋可能なフッ素ゴム 1 0 0重量部に対して、 架橋剤の量が 0 . 4重量部以上〜 2 0重量部以下、 好まし くは 0 . 4重量部以上〜 1 0重量部以下で、 R {架橋促進剤 Zポリオール系架 橋剤 } の値が 0 . 9〜2、 好ましくは 0 . 9〜1 . 5である。 架橋剤量と の 値とが上記範囲内にあると、得られたフッ素ゴム架橋体表面の非粘着性に優れ、 非粘着性の安定性にも優れるので HD D装置のストッパーとして好適に用いる ことができる。
なお、 酸化マグネシウム量の下限値は、 未架橋フッ素ゴム 1 0 0重量部に対 して、 0重量部でもよいが、 好ましくは 1重量部以上〜 3 . 0重量部以下であ ることが架橋時に適正な架橋速度にすることができ、 発泡のない低摩擦、 低粘 着の架橋体 (成形体) が得られる点で望ましい。 なお、 酸ィ匕マグネシウム添カロ 量は、 水酸化カルシウムと同様な傾向を示す。
水酸化カルシウムは、 上記したような量で含有されていると、 架橋密度が適 度で、低反発弓攀性率となり、成形時の発泡も起きにくいなどの点から望ましい。 水酸化カルシウムは、 一般に、 その添加量が少ない程、 架橋密度が下がり、 反発弾性率は下がる傾向にあり、 また、 成形時に発泡しやすくなる。
もし、 成形時に発泡する場合には、 その他の成分の受酸剤をより多く入れる ことが望ましく、 例えば、 ポリオール架橋系フッ素ゴム 1 0 0重量部に対して 受酸剤を 0 . 5〜 1 0重量部の量で配合することができる。
一方、 水酸ィ匕カルシウム量が上記の範囲より多い場合には、 得られるゴム全 体の架橋密度が高くなり、 反発弾性率が高くなる。 また、 架橋促進剤のゴム表 面への移行が著しく低下 ·減退して、 ゴム表面が低粘着性にならないことがあ る。
なお、 この水酸ィ匕カルシウムとしては、好ましくは、比表面積 2 0 m2Z g未 満の一般的に市販されているものがそのまま使用される。
なお、用いられる水酸ィ匕カルシウムの比表面積が 2 0 m g以上の場合には、 得られるゴム全体の架橋密度が高くなり、 反発弾性率が高くなる。 また、 架橋 促進剤のゴム表面への移行が著しく低下'減退して、 ゴム表面が低粘着性にな らないことがある。 本発明においては、 上記ポリオール架橋可能なフッ素ゴム糸且成物には、 さら に、 ポリテトラフルォロエチレン (PTFE) 力 低摩擦、 低粘着、 低反発弾性 の観点から、 上記ポリオール架橋可能なフッ素ゴム 1 0 0重量部に対して、 5 〜2 0 0重量部、好ましくは約 2 0〜1 0 0重量部の量で含まれていてもよレ、。 ポリテトラフルォロエチレン (PTFE) 自身は、 低摩擦性能、 低粘着性能、 反発弾性特性が良く、 フッ素ゴム組成物調製時にこの P T F Eを添加すること により、 得られる成形体の低摩擦性能、 低粘着性能、 反発弾性特性などを向上 させることができる。
なお、 P T F Eの配合量がこの範囲より少ない割合では、 得られる成形体の 反発弾性率を下げる効果に乏しく、 一方、 この範囲より多い割合では、 得られ る成形体の硬度が過度に高くなり、 ゴム状弾性を失う傾向がある。
<ポリオール架橋可能なフッ素ゴム組成物の調製と加硫 >
上記ポリオール架橋可能なフッ素ゴム組成物の調製の際には、 例えば、 上記 各成分を上記量で含む配合物を、 インターミックス、 ニーダー、 パンバリーミ キサなどの密閉型混練機またはオープンロールなどゴム用の一般的な混練機で 混練すればよい。 該糸且成物の 「その他の調製法」 としては、 各成分を溶剤等で 溶解して、 攪拌機等で分散させる方法などが挙げられる。
上記のようにして得られたポリオール架橋可能なフッ素ゴム組成物の架橋 (加硫) 成形は、 射出成形機、 圧縮成形機、 加硫プレス機、 オープンなどを用 いて、 通常、 1 4 0〜2 3 0 °じの温度で1〜1 2 0分程度加熱 (一次加硫) す ることにより行われる。 なお、一次加硫加硫は、一定の形状を形成 (予備成形) するために、形状を維持できる程度に架橋させる工程であり、複雑な形状では、 好ましくは、 金型により成形され、 空気加熱等のオーブンでも一次加硫は可能 である。 本発明においては、 上記ポリオール架橋可能なフッ素ゴム,組成物のポリォー ル架橋時、 特に一次加硫時に、 上記加硫プレス機等として、 あるいは上記加硫 プレス機等と共に、 例えば、 低摩擦特性、 低粘着性向上の観点から、 得られる 架橋体表面に所望の深さ (例: 0 . 5〜2 0 0 μ πχ) の凹凸面が形成されるよ うに、金型内周面がほぼ対応する深さで凹凸処理された圧縮成形金型を用いて、 0 . 5〜2 0 0 μ πιの平均深さの凹凸面を有する架橋体を得るようにしてもよ レ、。
本発明では、 ポリオール架橋可能なフッ素ゴム組成物の混練後は、 被処理物 を、 後述するように圧縮成形するが、 上記混練後は、 通常、 (a ) :いったん常 温に戻し、再ぴ昇温して圧縮成形してもよく、 あるいは (b ):混練後そのまま 昇温を続けて圧縮成形してもよい。 通常、 圧縮成形機を用いる圧縮工程では、 工程上、 上記 (a ) になる。
また例えば、 ゴムホース等のフッ素ゴム成形品を製造する場合、 フッ素ゴム 組成物の混練後、 チューブ状に押し出しをして、 そのままオーブン加硫を実施 することができるが、 その場合は、 (b ) となる。
ポリオール架橋可能なフッ素ゴム組成物の加硫前に、 該組成物を一定形状に しておけば、 (a ) でも (b ) でも低摩擦、低粘着性の成形品を得ることができ る。 得られるフッ素ゴム架橋体の低摩擦、 低粘着化の程度は、 その前の熱処理 に向けた昇温パターンや昇温曲線の如何には影響されず、 本発明のフッ素樹脂 組成物は、 熱処理を行う温度と時間に左右される。
本発明の熱処理方法は、 通常の 2次加硫と同じであるが、 本発明の材料 (ポ リオール架橋性フッ素樹脂組成物) でなければ、 通常の 2次加硫を行っても、 低摩擦、 低粘着性のものは得られない。 従来のフッ素ゴムでは、 2次加硫は、 1次加硫で不足した架橋反応を完了させる目的とゴム中の低分子成分をガス化 させて、 強度向上、 圧縮永久歪み低減を目的としているが、 本発明は、 これと 異なり、 一次加硫物中の架橋促進剤をその表面に移行させて、 低摩擦、 低粘着 化すると共に、 表面を硬化させるという目的とがある。
<加硫後の熱処理〉
本発明では、 ポリオール架橋可能なフッ素ゴム組成物を、 1 5 0〜3 0 0 °C の温度範囲、好ましくは 2 0 0〜 3 0 0 °Cの温度範囲、より好ましくは 2 4◦ °C 〜3 0 0 °Cの範囲で、 0 . 1〜4 8時間、 好ましくは 1〜4 8時間、 より好ま しくは 1 0〜4 8時間熱処理している。
なお、 本発明では、 ポリオール架橋可能なフッ素ゴム組成物を、 架橋体の低 分子揮発成分 (アウトガス) 発生防止の観点から、 必要により、 上記のように 予めポリオール架橋 (加硫) した後、 得られた架橋体を、 さらに、 上記のよう に、 1 5 0〜 3 0 0 °C温度範囲、 好ましくは 2 0 0〜 3 0 0 °Cの温度範囲、 よ り好ましくは 2 4 0 °C〜3 0 0 °Cの範囲で、 0 . 1〜4 8時間、 好ましくは 1 〜4 8時間、 より好ましくは 1 0〜4 8時間熱処理してもよい。
架橋体の低分子揮発成分 (アウトガス) が多いと、 HD D装置用ストッパー 等に使用したときには、 架橋体から発生する低分子成分により、 ディスク等金 属部品の汚染などの問題があるため、 熱処理温度が高く、 熱処理時間が長いほ うが好ましい。
このように架橋体を熱処理することにより、 架橋体の内部からその表面に近 レ、部分である架橋体表層に、架橋体中の架橋促進剤成分などが次第に移行して、 架橋体の内部 (特に中心部) に比べて表層 (例えば、 架橋体の表面および架橋 体表面から 1 0 0 i m程度内部までの範囲) の架橋密度が向上し、 その結果、 このように熱処理された架橋体では、 その表面 (架橋体表面) の低粘着化、 低 摩擦化、 低反発弾性ィ匕が行われる。 また、 熱処理条件が上記条件で行うと、 特 に、 得られたフッ素ゴム架橋体表面の非粘着性に優れるとともに、 非粘着†生の 安定性に優れる点でも好ましい。
すなわち、 架橋体の上記熱処理を行うことにより、 表面の静摩擦係数と動摩 擦係数の両者が 1未満、 好ましくは 0 . 1〜0 . 7の低摩擦性フッ素ゴム架橋 体を得ることができる。
なお、 本発明のポリオール架橋可能なフッ素ゴム組成物 (未架橋物) を、 上 記条件で熱処理、 すなわち 1 5 0〜 3 0 0 °Cの温度範囲、 好ましくは 2 0 0〜
3 0 0 °Cの温度範囲、 より好ましくは 2 4 0 °C〜 3 0 0 °Cの範囲で、 0 . 1〜
4 8時間、 好ましくは 1〜 4 8時間、 より好ましくは 1 0〜 4 8時間熱処理す ると、 架橋反応と、 架橋促進剤成分の表層への移行とが同時進行的に起こり、 低粘着化、 低摩擦化、 低反発弾性化された、 低摩擦性フッ素ゴム架橋体が得ら れる。
なお、 本発明では、 予めポリオール架橋するか否かによらず、 上記の何れの 態様でも、 熱処理の際には、 加熱装置として、 オープン、 加硫釜、 高周波加熱 などが用いられる。
本発明におけるフッ素ゴム組成物の加硫後の熱処理は、 ゴム工業で一般的に 行われる加硫工程でのオーブン中での二次加硫工程と同様な処理方法である。 し力 し、 本発明で用いられるフッ素ゴム組成物と従来のものとでは、 成分組成 が全く相違しており、そのため、加硫後の熱処理の意義 '役割も相違しており、 従来のフッ素ゴム (加硫成形体) では、 主に、 引張り物性向上、 圧縮永久歪み 低減を目的として加硫後の熱処理が行われている。
これに対して、 本発明では、 上記のような特定の組成の未架橋フッ素ゴム組 成物(あるいはその予備成形体)を用いており、そのため、架橋後の熱処理は、 架橋促進剤の成形体表面への移行を短時間で促進、 安定ィ匕させ、 成形体表面を 低摩擦化、 低粘着化することを目的とし、 該熱処理によりそのような効果が得 られている。
従来のフッ素ゴム組成物では、従来のような条件、 (例えば、特開平 7-82449 号公報:特許文献 4に示されているような、 1 4 0〜 2 0 0 °Cで約 2〜 1 2 0 分間程度の一次加硫条件) で、 金型でのプレス加硫等の一次加硫を行うのみで は、 架橋促進剤の表面移行が不十分で、 低摩擦、 低粘着の成形体とならない。 本発明の未架橋フッ素ゴム組成物は、 一次加硫として、 オーブン中で、 1 5 0 - 3 0 0 °Cの温度範囲、 好ましくは 2 0 0〜 3 0 0 °Cの温度範囲、 より好ま しくは 2 4 0。C〜3 0 0 °Cの範囲で、 0 . 1〜4 8時間、 好ましくは 1〜4 8 時間、 より好ましくは 1 0〜 4 8時間の加熱を実施すると、 この一次加硫のみ で架橋促進剤の表面移行が進行し、 低摩擦、 低粘着性の低摩擦性フッ素ゴム架 橋体となり、 その後に同様な条件での熱処理は不要となる。
従来のフッ素ゴム (未架橋物)では、 一次加硫としてこれと同様な処理を行つ ても、 このような処理のみでは、 低摩擦、 低粘着性のフッ素ゴム架橋体にはな らない。
ここで、 特に、 本発明と前記特公平 4一 3 7 0 9 4公報 (特許文献 1 ) との 差異について付言すると、 特公平 4— 3 7 0 9 4公報には、 前記 「発明の技術 的背景」の項でも触れたように、含フッ素エラストマ一の加硫成形品の表面に、 フッ素ゴム用の架橋剤(加硫剤)、および必要により加硫促進活性剤(架橋促進 剤) を含む溶液 (以下、 「処理剤」 とも言う。) を塗布 ·含浸させ、 再度加硫す ることにより、 得られる含フッ素エラストマ一成形品のゴム表層の架橋密度を 上げて、 含フッ素エラストマ一成形品を非粘着化、 低摩擦化する方法が開示さ れている。
これに対して本発明では、 特公平 4 - 3 7 0 9 4公報などには示唆すらされ ていない、特定のポリオール架橋可能なフッ素ゴム糸且成物を用いることにより、 上記特公平 4一 3 7 0 9 4公報と異なり 「処理剤」 を使わずに架橋物の熱処理 のみを行うことにより、 低摩擦性を有するなど、 該公報に記載のものと同様な 表面状態の低摩擦性フッ素ゴム架橋体が製造可能となっている。
また、 本発明では、 低摩擦性フッ素ゴム架橋体の製造に際して架橋促進剤を 多く添加することにより、 得られる熱処理物の高温での反発弾性率を下げるこ とが可能である。
さらに詳説すると、 本発明では、 このように、 架橋体中に添加されている架 橋促進剤が、 加硫成形体の熱処理により、 ゴム表層に移行し、 そのため、 成形 体の表面に近づく程、 架橋密度が高くなつた状態になり、 ゴム表層の架橋密度 を上げることが可能となっている。 その結果、 本発明では、 ゴム表面にコーテ イングをしなくとも、 架橋ゴム成形体に熱処理を施すことにより、 特公平 4一 3 7 0 9 4公報に記載のものと同様な表面状態の低摩擦性フッ素ゴム架橋体を 製造可能となっている。
ここで、 特に、 本発明と前記特開 2 0 0 1— 1 9 2 4 8 2号公報 (特許文献 6 ) との差異について付言すると、 特開 2 0 0 1— 1 9 2 4 8 2号公報には、 フッ素ゴム 1 0 0重量部、 水酸化力ルシゥム 0 . 5〜 3重量部、 酸ィヒマグネシ ゥム 4〜 1 5重量部、 サーマルブラックと瀝青炭フィラーとの合計約 1 0〜 5 0重量部を含有するフッ素ゴム組成物を、 ポリオール系加硫剤の存在下で加硫 成形した後、 約 2 5 0〜 3 0 0 °Cの温度で熱処理して、 而; f圧縮永久歪特性等に 優れたフッ素ゴム加硫成形品を製造することが記載されている。 し力、し、 該公 報に記載のフッ素ゴム組成物では、架橋促進剤 架橋剤の比が小さく、さらに、 酸ィ匕マグネシウム量がフッ素ゴム 1 0 0重量部当たり 4〜1 5重量部と多いた め、 本発明と同様にカロ硫物 (架橋ゴム成形体) の熱処理を行っても、 有機 4級 ホスホニゥム塩のゴム表面への移行が少なく、 反発弾性率が高く、 金属との粘 着力が大きいものしか得られない。
<低摩擦性フッ素ゴム架橋体〉
本発明では、 上記のように特定の組成の架橋性フッ素ゴム組成物を用いてな るフッ素ゴム架橋体に 「熱処理」 を施すことにより、 架橋体の表面の摩擦係数 が 1未満、 好ましくは 0. 1〜0. 7の低摩擦性フッ素ゴム架橋体 (フッ素ゴ ム架橋体熱処理物) が得られている。 このフッ素ゴム架橋体は、 上記のように 表面の摩擦係数が低く、 し力も、 低粘着性、 低い反発弾性率、 低い静摩擦係数 および低レヽ動摩擦係数並びに適度の硬さなどを有している。
例えば、 熱処理されたフッ素ゴム架橋体は、 その静摩擦係数 (J I S P 8 147に準拠) が 1未満、 好ましくは 0. 1〜 0. 7の範囲にあり、 粘着力が 低く、
動摩擦係数 [厚さ 2 mmのゴムシ一トを J I S K7125、 P8147に準 拠し、(株)新東科学製表面性試験機により、試料ゴム表面の動摩擦係数を測定。 試験条件としては、 相手材が直径 10 mmクロムメッキ鋼球の摩擦子、 移動速 度は 50 mmZ分、荷重は 50 gで測定。 ] 力 通常 1未満、好ましくは 0. 1 〜0. 7であり、 粘着力が低く、
硬さ [J I S K6253に準拠し、 タイプ Aデュロメータで測定]力 通常 40〜 85 (単位: POINT)、好ましくは 60〜 80 (単位: POINT)であり、 反発弾性率 [J I S K6255に準拠し、厚さ 2mm、直径 29 mmのゴム シートを 6枚重ね、 リュプケ法により、 0 ^、 25 °C、 70 °Cでの反発弾性率 を測定。]力 何れの測定温度においても、通常、 50 %以下、好ましくは 40 % 以下であり、 アーム等の相手材からの振動を良好に吸収でき、
粘着力 [厚さ 2 mmのゴムシートに金属棒 (ステンレス製、 重さ: 16 g、 ゴムとの接触部分の曲面形状:直径 3 mm幅 1 · 5 mmの円柱) を 6 0。Cで 2 4時間もしくは 7 2時間押しつけた後、 0 °Cで 2 4時間押しっけ、 0 でのゴ ムと金属棒との粘着力を測定。] 力 通常、 1 0 0 g以下、好ましくは 5 0 g以 下であり、
粘着力耐久性 (測定条件:後述する。) 、 通常、 1 0 0 g以下、好ましくは 7 0 g以下である。 熱処理を行わない場合や熱処理が不足している場合には、 成形体中に含まれている架橋促進剤の成形体表面への移行量が少なくなり、 粘 着力は、 4 0 0 g以上になる。
特に、 架橋物 (架橋体) の表面に凹凸を形成することにより、 得られた低摩 擦性フッ素ゴム架橋体の相手材との接触面積を小さくでき、 摩擦係数 1未満が 達成され、 非粘着特性の向上を図り、 安定ィヒさせることができる。
「低摩擦性フッ素ゴム架橋体の用途]
上記のようにして得られた、 本発明に係る低摩擦性フッ素ゴム架橋体 (成形 体) は、 低摩擦性、 低粘着性、 低反発性等にバランス良く優れており、 ハードディスク (H D D) 記憶装置用ヘッド、 H D D装置用ストッパー、 光 ディスク等を用いる車載用ディスク装置や力メラー体型ビデオレコーダー用デ イスク装置等の記憶装置用へッド、 プリンターへッドなどの衝撃吸収用ストツ パ部品;
Oリング、 パッキン、 Vパッキン、 オイルシール、 ガスケッ ト、 角リング、 Dリング、 ダイァフラム、各種バルブ等の流体(気体などを含む。)漏洩防止用 の各種ゴム部品;
防振ゴム、 ベルト、 ゴム引布、 ワイパー等の各種ゴム部品;
などとして好適に用いられる。
特に、 本発明に係る低摩擦性フッ素ゴム架橋体 (成形体) を、 HD D装置用 ストッパーに代表される上記した衝撃吸収用ストッパ部品などとして用いると、 衝撃吸収ストツパとディスクアームとの粘着による誤作動が著しく低減され、 高温でのダンピング特性も良好であり、 アームの振動を吸収することができる という顕著な効果が期待できる。
特に、 本発明に係る製造方法により得られる架橋体は HD D装置用マグネッ トホルダータイプストッパーとして用いると、 ホールディングトルク値の変化 率は 1 4 %以下、 好ましくは 1 0 %以下の範囲とすることができる。 ホールデ ィングトルク値の変化率が上記範囲内にあると、 HD D装置内のアームの誤動 作を長期に渡って安定して抑制できるとともに、 ストッパーとして必要な他の 特性をバランスよく満たすことができる。
ここで、 ホールディングトルク値の変化率とは、 下記に詳述するが、 アーム とストッパーとの非粘着性の経時変化に対する指標であり、 この値が小さいも のほど、 非粘着性を長期間維持できる、 すなわち、 HD D装置内のアームの誤 作動を長期に渡って安定して抑制できることを意味する。
〔発明の効果〕
本発明においては、 上述したような特定の組成の架橋性フッ素ゴム組成物か らなるフッ素ゴム架橋体に熱処理を施しており、 本発明によれば、 従来のフッ 素ゴムの持つ耐熱性、 耐油性、 耐薬品性などの優れた特性を損なうことなく、 低粘着性、 低摩擦性及び低反発弾性を備えたフッ素ゴム架橋体を得ることがで きる。
本発明では、 上述したような特定の組成の架橋性フッ素ゴム組成物に、 必要 により架橋し、 得られたフッ素ゴム架橋成形体に特定の 「熱処理」 を施し、 あ るいは未架橋の上記特定のフッ素ゴム組成物に直ちに、 特定の 「熱処理」 を施 しており、従来法にあるような、フッ素ゴム架橋成形体表面へのコーティング、 化学処理、 電子線等の処理よりも、 低コストで、 安定した低粘着性、 低摩擦特 性のフッ素ゴム架橋体 (低摩擦性フッ素ゴム架橋体) が得られる。
特に、 低摩擦性フッ素ゴム架橋体を製造する際に、 上記フッ素ゴム組成物中 に P T F Eを配合したものを用いると、 低粘着性能、 低摩擦性能、 低反発弾性 特性へと特性を向上させた低摩擦性フッ素ゴム架橋体が得られる。
特に、 低摩擦性フッ素ゴム架橋体を製造する際に、 低摩擦性フッ素ゴム架橋 体 (架橋物) の表面に、 凹凸、 例えば、 0 . 5〜2 0 0 の深さの凹凸を形 成すると、 相手材との接触面積が小さくなり、 摩擦係数 1未満が達成され、 安 定した低粘着性、 低摩擦性能の低摩擦个生フッ素ゴム架橋体が得られる。
また本発明によれば、 上記製法で得られたフッ素ゴム架橋体は、 上記特性を 具備しており、 防振ゴム、 ベルト、 ゴム引布、 ワイパーなどとして、 あるいは o—リング、 パッキンなどに代表される流体漏洩防止用ゴム部品などとして、 あるいはプリンターヘッド、 ハードディスク (HD D) 装置のヘッド制御部な どの衝撃吸収ストッパ部品、 より具体的には、 HD D装置内の読み取りアーム の誤動作抑制等を目的として設置するストッパーとして好適に使用できる。 また本発明に係るゴム組成物を用いれば、 非粘着性に優れたス 'トッパーを、 環境に悪影響を与えることなく、 効率よく低コストで製造することができる。 実施例
以下、 本発明に係る低摩擦性フッ素ゴム架橋体の製造方法などにつレ、て実施例 に基づいてさらに具体的に説明するが、 本発明は係る実施例により何ら限定さ れるものではない。
実施例 1
<ポリオール架橋可能なフッ素ゴム組成物の配合組成 >
フッ素ゴム (デュポン ·ダウ ·エラストマーネ ± 、 パイ トン A—5 0 0 ムーニー粘度 ML i+io(121°C) 4 5 ) …… 1 0 0重量部、
F E Fカーボンブラック (東海カーボン社製シースト GSO、 平均粒径 43m μ μ、 比表面積 42m2/g) 2重量部、
酸化マグネシウム (協和化学工業社製キヨゥヮマグ# 1 5 0 )
3重量部、
水酸化カルシウム (近江化学工業社製カルディック # 2 0 0 0、
比表面積 1 7 m2/g) 3重量部、
ビスフエノール A F (Riedel Dehaen社製) 2 . 3重量部、 トリフエ二ノレべンジノレホスホニゥムクロライ ド
(関東化学社製試薬) …… 2 . 3重量部、
力ルナゥバワックス(デュポン'ダウ'エラストマーネ: h¾ VPA No.2融点 80°C)
1重量部。
以上の各成分をニーダー及びオープンロールにて 8 0 °Cの温度で 2◦分間混 練し、 次いで、 圧縮成形機を用いて、 1 8 0 °Cで 3 0分間の圧縮成形を行った 後、 得られた成型物 (圧縮成形物) をオーブン中で、 2 3 0 °Cの温度で 2 4時 間の熱処理した。
得られた熱処理物 (フッ素ゴム架橋体熱処理物) について、 静摩擦係数、 動 摩擦係数、 硬さ、 反発弾性率、 粘着力 (1 ), (2 )、 粘着力耐久性などの物性を 測定した。
結果を表 1に示す。
実施例 2
実施例 1において、 下記配合組成のポリオール架橋可能なフッ素ゴム組成物 (すなわち実施例 1において、 トリフエニルベンジルホスホニゥムクロライド 量のみを、 9 . 2重量部に変更した点のみ相違するもの) を用いた以外は、 実 施例 1と同様にして熱処理物を得て、 得られた熱処理物について、 実施例 1と 同様に物性を測定した。
結果を表 1に示す。
<ポリオール架橋可能なフッ素ゴム組成物の配合組成 >
フッ素ゴム (デュポン ·ダウ ·エラストマ一社製、 バイトン A—5 0 0 ムーニー粘度 ML i+io(121°C) 4 5 ) 1 0 0重量部、
F E Fカーボンブラック(東海カーボン社製シースト GSO、平均粒径 43m μ、 比表面積 2m2/g) 2重量部、
酸ィ匕マグネシゥム (協和化学工業社製、 キヨゥヮマグ # 1 5 0 )
3'重量部、
水酸化カルシウム (近江化学工業卞 カルディック # 2 0 0 0、
比表面積 1 7 m2/g) 3重量部、
ビスフエノール A F (Riedel Dehaen社製) 2. 3重量部、 トリフエ二ノレべンジノレホスホニゥムクロライ ド
(関東化学ネ環試薬) 9 . 2重量部、
カルナゥバワックス (デュポン ·ダウ ·エラストマーネ: h VPANo.2融点
80。C) 1重量部。
実施例 3
実施例 1において、 P T F Eを 4 0重量部 ( p h r ) 添加した以外は、 実施 例 1と同様にして熱処理物を得て、 得られた熱処理物について、 実施例 1と同 様に物性を測定した。
結果を表 1に示す。
実施例 4 実施例 1において、 架橋成形時に平均深さ 2 0 μ mの表面凹凸処理された成 形型を用いた以外は、 実施例 1と同様にして熱処理物を得て、 得られた熱処理 物について、 実施例 1と同様に物性を測定した。
結果を表 1に示す。
実施例 5
実施例 1において、 得られた圧縮成形物の表面にガラスビーズ (粒径: 1 0 Ο μ πχ) をショットして、 表面を荒らした後、 熱処理した以外は、 実施例 1と 同様にして熱処理物を得て、 得られた熱処理物について、 実施例 1と同様に物 性を測定した。 '
結果を表 1に示す。
実施例 6
実施例 1において、 圧縮成形物の熱処理条件を 2 6 0 °C、 1 0時間として実 施例 1と同様にして熱処理物を得て、 得られた熱処理物について、 実施例 1と 同様に物性を測定した。
結果を表 1に示す。
実施例 7
<ポリオール架橋可能なフッ素ゴム組成物の配合組成 >
フッ素ゴム (デュポン ·ダウ ·エラストマ一社製、 バイトン A— 5 0 0 ム一-一粘度 M L 1+i0(121°C) 4 5 ) 1 0 0重量部、 F E Fカーボンブラック (東海カーボン社製シースト GSO平均粒径 43m μ、 比表面積 42m2/g) 2重量部、
酸化マグネシウム (協和化学工業社製キヨゥヮマグ# 1 5 0 )
6重量部、
ビスフエノール A F (Riedel Dehaen ¾ ) 1 0重量部、 トリフエ二ノレべンジノレホスホニゥムクロライド
(関東化学社製試薬) 1 0重量部、
カルナゥバワックス (デュポン 'ダウ 'エラストマ一社製 VPA No.2融点
80°C) 1重量部。
以上の各成分をニーダー及ぴオープンロールにて 8 0 °Cの温度で 2 0分間混 練し、 次いで、 圧縮成形機を用いて、 1 8 0 °Cの温度で 3 0分間の圧縮成形を 行った後、 得られた成型物 (圧縮成形物) をオーブン中で 2 3 0 °Cの温度で 2 4時間の熱処理を行った。 得られた熱処理物について、 実施例 1と同様に物性 を彻」定した。
結果を表 1に示す。
実施例 8
実施例 1において、 水酸化カルシウムの配合量を 8重量部 ( p h r ) とした 以外は、 実施例 1と同様にして熱処理物を得て、 得られた熱処理物について、 実施例 1と同様に物†生を測定した。
結果を表 1に示す。
実施例 9
実施例 1において、 トリフエニルベンジルホスホニゥムクロライドの配合量 を 6 . 9重量部 ( p h r ) とした以外は、 実施例 1と同様にして熱処理物を得 て、 得られた熱処理物について、 実施例 1と同様に物性を測定した。
結果を表 1に示す。
実施例 1 0
実施例 1において、 下記配合組成のポリオール架橋可能なフッ素ゴム組成物 (すなわち実施例 1において、 トリフエニルベンジルホスホ-ゥムクロライド 量のみを、 2 . 7 6重量部に変更した点のみ相違するもの) を用いた以外は、 実施例 1と同様にして熱処理物を得て、 得られた熱処理物について、 実施例 1 と同様に物性を測定した。
結果を、 表 1に示す。
<ポリオール架橋可能なフッ素ゴム,袓成物の配合組成 >
フッ素ゴム (デュポン ·ダウ ·エラストマ一社製、 バイトン A— 5 0 0 ムーニー粘度 ML i+10(121°C) 4 5 ) 1 0 0重量部、
F E Fカーボンブラック(東海カーボン社製シースト GSO、平均粒径 43m μ、 比表面積 42m2/g) 2重量部、
酸化マグネシゥム (協和化学工業社製キヨゥヮマグ # 1 5 0 )
3重量部、
水酸化カルシウム (近江化学工業社製カルディック # 2 0 0 0、
比表面積 1 7 m2/g) 3重量部、
ビスフエノール A F (Riedel Dehaenネ環) 2 . 3重量部、 トリフエ二ノレべンジノレホスホニゥムクロライド
(関東化学 ί±Μ試薬) 2 . 7 6重量部、
カルナゥバワックス (デュポン · ダウ ,エラストマ一社製 VPANo.2融点
80°C) 1重量部。
比較例 1
実施例 1において、 トリフエニルベンジルホスホニゥムクロライドの配合量 を 1 . 3重量部 ( p h r ) とし、 水酸ィ匕カルシウムの配合量を 6重量部 ( p h r ) とした以外は、 実施例 1と同様にして熱処理物を得て、 得られた熱処理物 について、 実施例 1と同様に物性を測定した。
結果を表 1に示す。
比較例 2 実施例 1において、 架橋成型物 (圧縮成形物) の熱処理を行わなかった以外 は、 実施例 1と同様にして架橋成型物を得て、 得られた架橋成型物について、 実施例 1と同様に物性を測定した。
結果を表 1に示す。
比較例 3
比較例 1において、 得られた成型物 (圧縮成形物) の熱処理前に、 下記の架 橋剤と架橋促進剤を含んだ処理溶液(溶媒:アセトン)に浸漬温度: 20°Cで、 浸漬時間: 1時間の条件で浸漬した後、 溶液中より取出して 剤を乾燥 ·除去 した後、 230 °Cの温度で 24時間加熱処理を行つた。
得られた熱処理物について、 比較例 1と同様に物性を測定した。
結果を表 1に示す。
ぐ処理溶液 >
ビスフエノール AF(RiedelDehaen ^±M) 10重量部、 トリフエ二/レベンジルホスホニゥムクロライ ド
(関東化学社製試薬) 2重量部、
アセトン (関東化学社製試薬) 88重量部。
比較例 4
実施例 1において、水酸化カルシウムを 2重量部(p h r)、酸化マグネシゥ ムを 8重量部 (p h r)、 ビスフエノール AF 1. 5重量部 (p h r)、 トリフ ェ-ルベンジルホスホニゥムクロライド 0. 5重量部(p h r)とした以外は、 実施例 1と同様にして熱処理物を得て、 得られた熱処理物について、 実施例 1 と同様に物性を測定した。
結果を表 1に示す。
比較例 5 <ポリオール架橋可能なフッ素ゴム組成物の配合組成〉
バイトン GLT (デュポン 'ダウ 'エラストマ一社製ム一二一粘度 ML
1+io(l21°C) 9 0) 1 00重量部、
MTカーボン
(Huber社製 Huber N-990:平均粒径 500m μ、 比表面積 6m2/g)
1 0重量部、
水酸化カルシウム (近江化学工業社製カルディック # 2000
比表面積 1 7 m2/g) 4重量部、
トリアリルイソシァヌレート (日本化成ネ: t®、 TA I C) ·· 2. 4重量部、 有機過酸化物架橋剤 (日本油脂社製、 パーへキサ 25 B) -- 0. 8重量部。 以上の各成分を含むフッ素ゴム組成物を、 ニーダー及ぴオープンロールにて 80°Cの温度で 20分間混練し、 次いで圧縮成形機を用いて 1 Ί 0°Cの温度で 30分間の圧縮成形した後、 得られた成型物をオーブン中で 230°Cの温度で 24時間の熱処理を行った。
得られた熱処理物について、 実施例 1と同様に物性を測定した。
結果を表 1に示す。
比較例 6
実施例 1において、水酸ィ匕カルシウム比表面積 48 m2/gとした以外は、実施 例 1と同様にして熱処理物を得て、 得られた熱処理物について、 実施例 1と同 様に物性を測定した。
水酸化カルシウムは、 特開平 9一 1 00 1 1 9, 段落 〔001 6〕 の実施例 1と同様な方法で作成した。
結果を表 1に示す。
比較例 7 実 ife例 1において、 トリフエニルベンジノレホスホニゥムクロライ ド 1 3. 8 重量部 (p h r)、 水酸ィ匕カルシウム 6重量部 (p h r)、 とした以外は、 実施 例 1と同様にして熱処理物を得て、 得られた熱処理物について、 実施例 1と同 様に物性を測定した。
結果を表 1に示す。
<物性測定条件〉
なお、 実施例 1〜 10および比較例 1〜7の物性測定条件は、 以下の通り。
(1) 静摩擦係数の測定
試料ゴムシートを J I S P 8147に準じ、傾斜板上に置き、傾斜角度を次 第に大きくしてゴムシートの滑り出し開始角度の正接 (tan9) を静摩擦係数と した。 静摩擦係数が高い程、 ゴムの粘着力が高くなる傾向がある。
(2) 動摩擦係数の測定
厚さ 2 mmの試料ゴムシートを J I S K7125、 Ρ 8147に準じ、 (株) 新東科学製の表面性試験機により、 シート表面の動摩擦係数を測定した。 動摩 擦係数が高いほど、 ゴムの粘着力が高くなる傾向がある。
ぐ試験条件 >
相手材:直径 10 mmクロムメッキ鋼球の摩擦子、
移動速度: 50 mmZ分、
荷重: 50 g。
(3) 硬さの測定
J I S K6253に準じ、タイプ Aデュロメータで、試料ゴムシートの硬さ を測定した。
(4) 反発弾性率の測定
J I S K6255に準じ、厚さ 2mm、直径 29 mmの試料ゴムシートを 6 枚重ね、 リュプケ法により、 温度 0 °C、 2 5 °C、 7 0 °Cでの反発弾性率を測定 した。 反発弾性率が低いほど、 アームの振動をよく吸収する。
( 5 ) 粘着力の測定
〔粘着力 (1 ) の測定〕
厚さ 2 mmの試料ゴムシートに金属棒 (ステンレス製、 重さ : 1 6 g、 ゴム との接触部分の曲面形状:直径 3 mm幅 1 . 5 mmの円柱) を 6 0 °Cで 2 4時 間押しつけた後、 そのまま 0 °Cして、 さらに 2 4時間押しつけた状態にして、 0 でのゴムと金属棒との粘着力を測定した。
〔粘着力 (2 ) の測定〕
厚さ 2 mmの試料ゴムシートに金属棒 (ステンレス製、 重さ : 1 6 g、 ゴム との接触部分の曲面形状:直径 3 mm幅 1 . 5 mmの円柱) を6 0 °〇で7 2時 間押しつけた後、 そのまま 0 °Cして、 さらに 2 4時間押しつけた状態にして、 0。Cでのゴムと金属棒との粘着力を測定した。
( 6 ) 粘着力耐久性の評価
図 1に示すような、 3インチ径のアルミ基板スパッタ薄膜ディスク、 AlTiC 薄膜へッドアームのナノスライダ、 2つの異極性磁石が設けられたボイスコィ ルモーター VCMを装着したハードディスクドライブを準備する。
このハードディスクドライブのステンレス鋼製ピンに、 水及ぴ超音波にて洗 浄した円筒状のアウターストッパゴム (外径 5 mmcp、 軸方向長さ: 1 0 mm) を、 図 2に示すように該ゴムの軸方向中央部とステンレス鋼製のピン (径 1 . 5 mm(p、 長さ 2 0 mm、 材質: S U S 3 0 4 ) の長手方向中央部と力 Sほぼ一 致するように差し込む。
次いで、 この状態で、 ストッパゴムとアームとを、 室温で、 5万回ヒッティ ングした後、 ストッパゴムとアームが接触した状態で、 6 0 °Cで 2 4時間保持 し、 さらに 0°Cにして、 24時間ス トッパゴムとアームとを接触させた状態で 保持し、 この温度 0 °Cにて粘着力を測定した。
(7) 折り曲げ試験
J I S K5600-5-1耐屈曲性 (円筒形マンドレル法) に準ずる。 折り曲げ試験装置タイプ 1 (マンドレル直径 2 mm) ゴムシート 2 mmを室温 で 180。折り曲げて、目視及ぴ光学顕微鏡 25倍観察でクラックが確認できな い場合には A、 光学顕微鏡 25倍観察でクラックが確認できる場合 (伹、 機能 上は問題がない) は B、 目視及び光学顕微鏡 25倍観察でクラックが確認でき る場合は Cの評価を行う。
く 1 >
Figure imgf000039_0001
く注〉 (a)デュホ 'ン 'タ'ゥ'巧ストマ-社製、ホ'リオ-ル加硫系。 (b)テ'ュホ'ン'ダウ ·1ラストマ-社製、過酸化物加硫系。 (c)東海力-ホ'ン社製、補強剤,平均粒径 43m ,比表面積 42m 。 (d) Huber社製、補強剤, Huber 990.平均粒径 500m;/ .比表面積 6m2 。 (e)' Riedel Dehaen社製、ポリオール架橋剤。 (f)日本油脂社製、有機過酸化物架橋剤。 (g) 日本化成社製、商品名: TAIC。 (h)亍'ュホ ·タ ' : Eラストマ-社製、 WA No.2.mp80。C。 (0処理液 (ビスフエノ-ル Α 0部 +トリフエニルへ'ンシ'ルフォスフォニゥムクロラ仆 ·2部 +アセトン 88部)
実施例 11
<ポリォーノレ架橋可能なフッ素ゴム組成物の配合組成〉
フッ素ゴム (デュポン ·ダウ ·エラストマ一社製、 バイトン A— 500 ム一-一粘度 ML1+10(121。C) 45) 100重量部、
MTカーボン
(Huber Huber N-990:平均粒径 500m μ、 比表面積 6m2/g)
20重量部、
酸化マグネシウム (協和化学工業社製キヨゥヮマグ# 150)
3重量部、
水酸化カルシゥム (近江化学工業社製カルディック # 2000、
比表面積 17 m2/g) 3重量部、
キユラティブ VC# 30 (デュポン ·ダウ ·エラストマ一社製:架橋剤 〔ビス フエノール A F〕 50wt%、 フッ素ゴム 〔バイ トン E— 45〕 50 w t %含 有)
4. 5重量部、
キュラティブ VC# 20 (デュポン ·ダウ ·エラストマ一社製:架橋促進剤〔有 機ホスホニゥム塩〕 33wt%、 フッ素ゴム 〔パイトン E— 45〕 67 w t % 含有)
7. 0重量部、
以上の各成分をニーダー及ぴオープンロールにて 80°Cの温度で 20分間混 練し、 次いで、 圧縮成形機を用いて、 170°Cで 20分間の圧縮成形を行いゴ ムシートおよぴ製品 (マグネットフォルダータイプのストッパー) を得た。 そ の後、 得られた成型物 (圧縮成形物) をオーブン中で、 240°Cの温度で 10 時間の熱処理した。得られた熱処理物(フッ素ゴム架橋体熱処理物)について、 硬さ、 マグネット粘着試験変化率、 ホールディングトルク値の変化率などの物 性を測定した。
結果を表 2に示す。 ジヒ ドロキシ芳香族化合物と有機ホスホニゥム塩とを特 定の比率で,組み合わせることにより非粘着効果が発現した。 従来のゴム架橋体 を用レ、た製品と比較してホールディングトルク値の変化率が小さくなつている < 実施例 1 2
実施例 1 1において、 下記配合組成のポリオール架橋可能なフッ素ゴム組成 物 (すなわち実施 1 1において、 キユラティブ VC # 2 0の量のみを、 7 . 5重量部に変更した点のみ相違するもの) を用いた以外は、 実施例 1 1と同様 にして熱処理物を得て、 得られた熱処理物について、 実施例 1 1と同様に物性 を測定した。
結果を表 2に示す。
くポリオール架橋可能なフッ素ゴム組成物の配合組成 >
フッ素ゴム (デュポン ·ダウ ·エラストマ一社製、 バイトン A— 5 0 0 ムーニー粘度 M L i+io(121°C) 4 5 ) …… 1 0 0重量部、
MTカーボン
(Huber ±Μ Huber N-990:平均粒径 500m μ、 比表面積 6m2/g)
2 0重量部、
酸化マグネシウム (協和化学工業社製キヨゥヮマグ# 1 5 0 )
3重量部、
水酸化カルシウム (近江化学工業 カルディック # 2 0 0 0、
比表面積 1 7 m2/ ) 3重量部、 キユラティブ VC# 30 (デュポン ·ダウ ·エラストマ一社製:架橋剤 〔ビス フエノール AF〕 50wt%、 フッ素ゴム 〔バイ トン E— 45〕 50 w t %含 有)
4. 5重量部、
キユラティブ VC# 20 (デュボン 'ダウ ·ェラストマー社製:架橋促進剤 〔有 機ホスホニゥム塩〕 33wt%、 フッ素ゴム 〔バイ トン E— 45〕 67 w t % 含有)
8. 0重量部、
実施例 13
実施例 11において、 キユラティブ VC# 20の量のみを、 9. 0重量部に 変更した以外は、 実施例 11と同様にして熱処理物を得て、 得られた熱処理物 について、 実施例 1 1と同様に物性を測定した。
結果を表 2に示す。
実施例 14
実施例 11において、 キユラティブ VC# 20の量のみを、 6. 0重量部に 変更した以外は、 実施例 11と同様にして熱処理物を得て、 得られた熱処理物 について、 実施例 11と同様に物性を測定した。
結果を表 2に示す。
実施例 15
実施例 11において、 キユラティブ VC# 20の量のみを、 10. 5重量部 に変更した以外は、 実施例 11と同様にして熱処理物を得て、 得られた熱処理 物について、 実施例 11と同様に物性を測定した。
結果を表 2に示す。
比較例 8 実施例 1 1において、 キユラティブ VC # 2 0の量のみを、 1 . 5重量部に 変更した以外は、 実施例 1 1と同様にして熱処理物を得て、 得られた熱処理物 について、 実施例 1 1と同様に物性を測定した。
結果を表 2に示す。 本配合は汎用フッ素ゴム配合である。 ホールディングト ルク値の変化率は大きい。
比較例 9
フッ素ゴム (デュポン ·ダウ ·エラストマ一社製、 バイ トン A— 5 0 0 ムーニー粘度 ML i+i0(121°C) 4 5 ) 1 0 0重量部、
MTカーボン
(Huber社製 Huber N-990:平均粒径 500m μ、 比表面積 6m2/g)
2 0重量部、
酸ィ匕マグネシゥム (協和化学工業社製キヨウヮマグ # 1 5 0 )
3重量部、
水酸化カルシウム (近江ィヒ学工業ネ: カルディック # 2 0 0 0、
比表面積 1 7 m2/g) 3重量部、
湿式シリカ (日本シリカ工業製二ッブシール E R :平均粒径 1 1 μ ΐΆ)
1重量部、
キユラティブ VC# 3 0 (デュポン ·ダウ ·エラストマ一社製:架橋剤 〔ビス フエノール A F〕 5 0 w t %、 フッ素ゴム レ ィトン E— 4 5〕 5 0 w t %含 有)
4. 5重量部、
キユラティブ VC# 2 0 (デュポン'ダウ 'エラストマ一社製:架橋促進剤 〔有 機ホスホ-ゥム塩〕 3 3 w t %, フッ素ゴム 〔バイトン E— 4 5〕 6 7 w t % 含有) 1 . 5重量部、
実施例 1 1と同様にして熱処理物を得て、 得られた熱処理物について、 実施 例 1 1と同様に物性を測定した。
結果を表 2に示す。 シリ力が含有すると、 ホールディングトルク値の変化率 は大きい。
比較例 1 0
実施例 1 1において、 キユラティブ VC # 2 0の量のみを、 3 . 0重量部に 変更した以外は、 実施例 1 1と同様にして熱処理物を得て、 得られた熱処理物 について、 実施例 1 1と同様に物性を測定した。
結果を表 2に示す。 本配合は汎用フッ素ゴム配合である。 ホールディングト ルク値の変化率は大きい。
比較例 1 1
実施例 1 1において、 キユラティブ VC # 2 0の量のみを、 4 . 5重量部に 変更した以外は、 実施例 1 1と同様にして熱処理物を得て、 得.られた熱処理物 について、 実施例 1 1と同様に物性を測定した。
結果を表 2に示す。 本配合は汎用フッ素ゴム配合である。 ホールディングト ルク値の変化率は大きレ、。
参考例 1
フッ素ゴム (デュポン ·ダウ ·エラストマ一社製、 バイトン A—5 0 0 ムーニー粘度 M L i+io(121°C) 4 5 ) …… 1 0 0重量部、
MTカーボン
(Huber社製 Huber N-990:平均粒径 500m μ、 比表面積 6m2/g)
2 0重量部、
酸ィ匕マグネシウム (協和化学工業社製キヨゥヮマグ# 1 5 0 ) 3重量部、 水酸化カルシウム (近江化学工業社製カルディック # 2 0 0 0、
比表面積 1 7 m2/g) 3重量部、
湿式シリカ (日本シリカ工業製二ッブシール E R:平均粒径 1 1 μχα)
1重量部、
キユラティブ VC# 3 0 (デュポン ·ダウ ·エラストマ一社製:架橋剤 〔ビス フヱノール AF〕 5 0w t %、 フッ素ゴム 〔バイ トン E— 4 5〕 5 0 w t %含 有)
1. 5重量部、
キユラティブ VC# 2 0 (デュポン ·ダウ ·エラストマ一社製:架橋促進剤 〔有 機ホスホニゥム塩〕 3 3w t %、 フッ素ゴム 〔パイ トン E— 4 5〕 6 7 w t % 含有)
4重量部、
実施例 1 1と同様にして熱処理物を得て、 得られた熱処理物について、 実施 例 1 1と同様に物性を測定した。
結果を表 2に示す。 シリカが含有すると、 ホールディングトルク値の変ィヒ率 は大きい。
く物性測定条件 >
なお、 実施例 1 1〜1 5および比較例 8〜1 1の物性測定条件は、 以下の通 り。
( 1) 硬さの測定
J I S K6 2 5 3に準じ、タイプ Aデュロメータで、試料ゴムシートの硬さ を測定した。
( 2 ) マグネット粘着試験変化率 図 3に示すように下を固定した磁石 (永久磁石, 形状:厚さ 3. 6 mm, 縦 3mmX横 3mmの角柱) 上に、 厚さ 0. 4mm, 縦 3 mm X横 3 mmの試 料ゴムシートを重ねておいた。 この試料ゴムシートの上に金属棒 (SPCC (冷 間圧延鋼板) 製、 重さ : 30 g、 ゴムとの接触部分の形状: 3mmX 1 mmの 角棒) を置き、 2 3°C、 湿度 5 0%の条件下で、 ゴムと金属棒との間の初期粘 着力 P を測定した。
ついで、 試料ゴム上に再度金属棒を置き、 磁石、 試料ゴムおょぴ金属棒から なる試験ュニットを 6 0°C、 湿度 8 0%の条件下で 1 0時間静置した。
その後、 試験ユニットを 2 3°C、 湿度 5 0%の条件下に戻し、 湿度負荷後の 粘着力 Fi' を測定した。 これら測定値 Fi、 Fi を用いて下記式により粘着増 加率を求めた。
(粘着増加率) = (Fi' -Fi) /Fi 1 00
( 3 ) ホールデイングトルク値の変化率
図 4に示すマグネットフオルダ一タイプのストッパーの製品形状の架橋体を 作成し、 これにマグネットをはめ込み、 実際にハードディスク装置に取り付け た。 ハードディスクのアームを、 ストッパーに接触させ、 2 3。C、 湿度 5 0% の条件下で、 ストッパーからアームを引き剥がす際の荷重を測定し、 これを初 期ホールディングトルク値 F2とした。
次いで、 再度ストッパーにアームを接触させ、 この状態のまま 6 0°C8 0% の条件下で 1 0時間静置した。
その後、 ストッパーとアームとを 2 3° (、 湿度 5 0%の条件下に戻して、 湿 度負荷後のホールディングトルク値 F2, を測定した。 これら測定値 : F2、 F2, を用いて下記式によりホールディングトルク値の変化率を求めた。
(ホールディングトルク値の変化率) = (BV — F2) /F2X 1 00 <表 2>
Figure imgf000047_0001
(1) デュポン■ダウ■エラストマ一社製、 ポリオール架橋系。 (2) H u b e r社製、 H u b e r N-9 9 0,平均粒径 5 0 On ,比表面積 6 m2/g,補強剤。
(3) デュポン■ダウ 'エラストマ一社製、 架橋剤 〔ビスフエノール A F〕 50w t %、 フッ素ゴム 〔バイトン E— 45〕 50 w t %含有。
(4) デュポン 'ダウ 'エラストマ一社製、 架橋促進剤 〔有機ホスホニゥム塩〕 3 3 w t 、 フッ素ゴム 〔バイトン E— 45〕 67 w t %含有。

Claims

請求 の範囲
1 . ポリオール架橋可能なフッ素ゴムと、
架橋促進剤と、 ポリオール系架橋剤と、 水酸化カルシウムと、 必要により酸 化マグネシウムとを含有し、 かつ、 上記架橋促進剤とポリオール系架橋剤との 重量比 R {架橋促進剤 ポリオール系架橋剤 } が 0 . 9〜5であるポリオール 架橋可能なフッ素ゴム組成物を、
必要により予めポリオール架橋した後、
1 5 0〜3 0 0 °Cの温度範囲で 0 . 1〜4 8時間熱処理することにより、 架 橋体の表面の摩擦係数が 1未満の低摩擦性フッ素ゴム架橋体を得ることを特徴 とする低摩擦性フッ素ゴム架橋体の製造方法。
2 . 上記重量比 Rが 0 . 9〜 3であり、 上記熱処理を 2 0 0〜 3 0 0 °Cの温 度範囲で行うことを特徴とする請求項 1に記載の低摩擦性フッ素ゴム架橋体の 製造方法。
3 . 上記重量比 Rが 0 . 9〜 2であり、 上記熱処理を 2 4 0〜 3 0 0 °Cの温 度範囲で 1 0〜 4 8時間行うことを特徴とする請求項 1または 2に記載の低摩 擦性フッ素ゴム架橋体の製造方法。
4. 上記架橋促進剤が有機第 4級ホスホニゥム塩であり、 かつ上記ポリォー ル系架橋剤がビスフエノール類である請求項:!〜 3の何れかに記載の低摩擦性 フッ素ゴム架橋体の製造方法。
5 . 上記ポリオール架橋可能なフッ素ゴム 1 0 0重量部に対して、 上記架橋 促進剤が 2 . 1〜 2 0重量部、 上記ポリオール系架橋剤が 0 . 4〜 2 0重量部 の量で含まれていることを特徴とする請求項 1〜 4の何れかに記載の低摩擦性 フッ素ゴム架橋体の製造方法。
6 . 上記フッ素ゴム組成物には、 上記ポリオール架橋可能なフッ素ゴム 1 0 0重量部に対して、比表面積が 2 O m2/ g未満の水酸化カルシウムが 0 . 5 〜 1 0重量部の量で含まれていることを特徴とする請求項:!〜 5の何れかに記載 の低摩擦性フッ素ゴム架橋体の製造方法。
7 . 上記フッ素ゴム組成物には、 上記ポリオール架橋可能なフッ素ゴム 1 0 0重量部に対して、 上記酸化マグネシウムが 3 . 0重量部以下の量で含まれて いることを特徴とする請求項 1〜 6の何れかに記載の低摩擦性フッ素ゴム架橋 体の製造方法。
8 . 上記ポリオール架橋可能なフッ素ゴム組成物には、 さらに、 ポリテトラ フルォロエチレン (PTFE) 力 上記ポリオール架橋可能なフッ素ゴム 1 0 0 重量部に対して、 5 〜 2 0 0重量部の量で含まれていることを特徴とする請求 項:!〜 7の何れかに記載の低摩擦性フッ素ゴム架橋体の製造方法。
9 . 上記ポリオール架橋可能なフッ素ゴム組成物のポリオール架橋時に、 金 型内周面が凹凸処理された圧縮成形金型を用いて、 0 . 5〜 2 0 0 ^ mの平均 深さの凹凸面を有する架橋体を得て、これを上記熱処理することを特徴とする、 請求項 1 〜 8の何れかに記載の低摩擦性フッ素ゴム架橋体の製造方法。
1 0 . 熱処理後の架橋体をハードディスク装置用ストッパーとして用いる組 成物であって、 .
ポリオール架橋可能なフッ素ゴム、 ポリオール系架橋剤、 および架橋促進剤 を含み、
ポリオール架橋可能なフッ素ゴム 1 0 0重量部に対して、 ポリオール系架橋 剤 0 . 4〜 2 0重量部、
上記架橋促進剤とポリオール系架橋剤との重量比 R {架橋促進剤/ポリォー ル系架橋剤 } が 0 . 9 〜 2 . 0であることを特徴とするフッ素ゴム組成物。
1 1 . 請求項 1 〜 9の何れかに記載の低摩擦性フッ素ゴム架橋体の製造方法 により得られたことを特徴とする衝撃吸収用ストッパ部品。
1 2 . 請求項 1〜 9の何れかに記載の低摩擦性フッ素ゴム架橋体の製造方法 により得られたことを特徴とするハードディスク装置用ストツパー。
1 3 . マグネットフオルダ一タイプのストッパーとして用いた場合のホール ディングトルク値の変化率が 1 4 %以下であることを特徴とする請求項 1 2に 記載のハードディスク装置用ストッパー。
PCT/JP2004/005683 2003-04-21 2004-04-21 低摩擦性フッ素ゴム架橋体の製造方法 WO2004094479A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005505755A JP4545686B2 (ja) 2003-04-21 2004-04-21 低摩擦性フッ素ゴム架橋体の製造方法及び該方法にて得られた低摩擦性フッ素ゴム架橋体の用途
DE112004000681T DE112004000681T5 (de) 2003-04-21 2004-04-21 Verfahren zur Herstellung eines vernetzten Fluorkautschukprodukts mit geringer Reibung
US10/553,759 US7279530B2 (en) 2003-04-21 2004-04-21 Method for producing low friction fluorine rubber crosslinked body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-115490 2003-04-21
JP2003115490 2003-04-21

Publications (1)

Publication Number Publication Date
WO2004094479A1 true WO2004094479A1 (ja) 2004-11-04

Family

ID=33307955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005683 WO2004094479A1 (ja) 2003-04-21 2004-04-21 低摩擦性フッ素ゴム架橋体の製造方法

Country Status (5)

Country Link
US (1) US7279530B2 (ja)
JP (1) JP4545686B2 (ja)
CN (1) CN100354358C (ja)
DE (1) DE112004000681T5 (ja)
WO (1) WO2004094479A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120098A (ja) * 2005-10-27 2007-05-17 Saitama Rubber Kogyo Kk 振動吸収材、その製造方法及びその施工方法
WO2007058038A1 (ja) 2005-11-16 2007-05-24 Nok Corporation フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
JP2007137977A (ja) * 2005-11-16 2007-06-07 Nok Corp フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
JP2007169511A (ja) * 2005-12-22 2007-07-05 Nok Corp ゴム組成物及びフッ素ゴム架橋体の製造方法
JP2007169512A (ja) * 2005-12-22 2007-07-05 Nok Corp ゴム組成物及びフッ素ゴム架橋体の製造方法
WO2007080681A1 (ja) 2006-01-11 2007-07-19 Nok Corporation フッ素ゴム架橋体の製造方法
WO2010026912A1 (ja) 2008-09-04 2010-03-11 Nok株式会社 フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
US7816454B2 (en) * 2005-05-11 2010-10-19 Nok Corporation Polyol-crosslinkable fluoro-rubber composition
US8338520B2 (en) 2008-08-26 2012-12-25 Nok Corporation Fluororubber composition and production method of cross-linked fluororubber product
JP2013057089A (ja) * 2009-07-03 2013-03-28 Daikin Industries Ltd 架橋性フッ素ゴム組成物、フッ素ゴム成形品及びその製法
JP2014185237A (ja) * 2013-03-22 2014-10-02 Daikin Ind Ltd フッ素ゴム組成物
US9441101B2 (en) 2012-12-07 2016-09-13 Nok Corporation Fluororubber composition
JP2017030308A (ja) * 2015-08-05 2017-02-09 西川ゴム工業株式会社 制振ゴムシート及びその制振ゴムシートの製造方法
JP2020504775A (ja) * 2016-12-28 2020-02-13 スリーエム イノベイティブ プロパティズ カンパニー ケイ素含有ハロゲン化エラストマー

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842210B2 (en) * 2006-03-09 2010-11-30 Jack Chen Method and apparatus for blocking the escape of fuel vapors from a fuel tank
JP2009011097A (ja) * 2007-06-28 2009-01-15 Olympus Imaging Corp 駆動装置
KR20110008152A (ko) * 2008-03-27 2011-01-26 에누오케 가부시키가이샤 불소 고무 조성물 및 불소 고무 가교체
US9074116B2 (en) * 2009-09-14 2015-07-07 Nok Corporation Fluororubber composition
JP6001274B2 (ja) * 2012-02-15 2016-10-05 スリーエム イノベイティブ プロパティズ カンパニー フルオロポリマー組成物
CN104893186B (zh) * 2015-07-08 2018-02-06 中国兵器工业集团第五三研究所 一种低摩擦氟橡胶材料
WO2018230336A1 (ja) * 2017-06-12 2018-12-20 Nok株式会社 フッ素ゴム組成物およびフッ素ゴムシール材
US11312850B2 (en) * 2017-11-24 2022-04-26 Nok Corporation Gasket material
JP7466447B2 (ja) 2017-12-22 2024-04-12 スリーエム イノベイティブ プロパティズ カンパニー ケイ素含有表面層を有する過酸化物硬化ハロゲン化エラストマー
JP6887061B1 (ja) * 2019-06-07 2021-06-16 バンドー化学株式会社 ローエッジvベルト
CN115594929B (zh) * 2022-09-16 2023-12-08 浙江国泰萧星密封材料股份有限公司 干燥机与过滤器用高耐磨组合密封填料及其制备方法和应用
CN116082773B (zh) * 2022-11-17 2024-06-11 西华大学 一种高回弹、自润滑耐磨聚四氟乙烯油封唇片材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232137A (ja) * 1983-06-01 1984-12-26 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− 芳香族アミンを含有している硬化可能なフルオロ重合体
JPS62190244A (ja) * 1986-02-14 1987-08-20 Mitsubishi Cable Ind Ltd 難燃可とう性フツ素ゴム組成物
JPH01306454A (ja) * 1988-06-03 1989-12-11 Nippon Mektron Ltd フッ素ゴム組成物
JPH02209942A (ja) * 1989-02-10 1990-08-21 Asahi Glass Co Ltd フッ素ゴム加硫用組成物
JPH02261850A (ja) * 1989-03-31 1990-10-24 Nippon Valqua Ind Ltd フッ素ゴム成形品の製造方法
JPH03234752A (ja) * 1990-02-09 1991-10-18 Asahi Glass Co Ltd フッ素ゴム加硫用組成物
JPH05287152A (ja) * 1992-04-07 1993-11-02 Asahi Chem Ind Co Ltd フッ素ゴム加硫組成物
JPH07316376A (ja) * 1994-05-24 1995-12-05 Asahi Glass Co Ltd フッ素ゴム組成物
JPH0887842A (ja) * 1994-09-13 1996-04-02 Fujitsu Ltd 記録再生装置
JP2000017127A (ja) * 1998-06-30 2000-01-18 Asahi Glass Co Ltd 架橋性弾性共重合体組成物
JP2002212370A (ja) * 2001-01-23 2002-07-31 Nok Corp フッ素ゴム加硫成形物
JP2002293950A (ja) * 2001-03-28 2002-10-09 Nichias Corp フッ素ゴム成形体及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496682A (en) 1983-06-01 1985-01-29 E. I. Du Pont De Nemours And Company Curable fluoropolymer containing aromatic amine
JP3063172B2 (ja) 1991-01-16 2000-07-12 ダイキン工業株式会社 フッ素ゴム組成物
JPH05239300A (ja) 1992-02-26 1993-09-17 Asahi Chem Ind Co Ltd フッ素ゴム加硫組成物
US5237049A (en) * 1992-08-28 1993-08-17 E. I. Du Pont De Nemours And Company Purification and adhesion of fluoropolymers
JPH06248145A (ja) 1993-02-26 1994-09-06 Asahi Glass Co Ltd 融合不良のないフッ素ゴム用加硫組成物
JP2653340B2 (ja) 1993-04-08 1997-09-17 信越化学工業株式会社 フッ素ゴム組成物及びその架橋方法
JPH06306180A (ja) 1993-04-23 1994-11-01 Asahi Glass Co Ltd フッ素ゴム加硫成形品の製造方法
JPH073099A (ja) 1993-06-16 1995-01-06 Asahi Glass Co Ltd フッ素ゴム組成物およびその加硫成形品の製造方法
JPH073100A (ja) 1993-06-16 1995-01-06 Asahi Glass Co Ltd フッ素ゴム組成物およびその加硫成形品の製造法
JPH0782449A (ja) 1993-09-17 1995-03-28 Nok Corp ポリオ−ル加硫系フッ素ゴム組成物
JP3805815B2 (ja) 1995-10-06 2006-08-09 奥多摩工業株式会社 水酸化カルシウム乾燥粉体の製造方法
JP3222054B2 (ja) 1996-02-06 2001-10-22 信越化学工業株式会社 ゴム組成物
EP1130057B1 (en) 1998-06-16 2004-03-24 Asahi Glass Company Ltd. Crosslinkable elastic copolymer composition
JP4258933B2 (ja) 2000-01-13 2009-04-30 Nok株式会社 フッ素ゴム加硫成形品の製造法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232137A (ja) * 1983-06-01 1984-12-26 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− 芳香族アミンを含有している硬化可能なフルオロ重合体
JPS62190244A (ja) * 1986-02-14 1987-08-20 Mitsubishi Cable Ind Ltd 難燃可とう性フツ素ゴム組成物
JPH01306454A (ja) * 1988-06-03 1989-12-11 Nippon Mektron Ltd フッ素ゴム組成物
JPH02209942A (ja) * 1989-02-10 1990-08-21 Asahi Glass Co Ltd フッ素ゴム加硫用組成物
JPH02261850A (ja) * 1989-03-31 1990-10-24 Nippon Valqua Ind Ltd フッ素ゴム成形品の製造方法
JPH03234752A (ja) * 1990-02-09 1991-10-18 Asahi Glass Co Ltd フッ素ゴム加硫用組成物
JPH05287152A (ja) * 1992-04-07 1993-11-02 Asahi Chem Ind Co Ltd フッ素ゴム加硫組成物
JPH07316376A (ja) * 1994-05-24 1995-12-05 Asahi Glass Co Ltd フッ素ゴム組成物
JPH0887842A (ja) * 1994-09-13 1996-04-02 Fujitsu Ltd 記録再生装置
JP2000017127A (ja) * 1998-06-30 2000-01-18 Asahi Glass Co Ltd 架橋性弾性共重合体組成物
JP2002212370A (ja) * 2001-01-23 2002-07-31 Nok Corp フッ素ゴム加硫成形物
JP2002293950A (ja) * 2001-03-28 2002-10-09 Nichias Corp フッ素ゴム成形体及びその製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816454B2 (en) * 2005-05-11 2010-10-19 Nok Corporation Polyol-crosslinkable fluoro-rubber composition
JP2007120098A (ja) * 2005-10-27 2007-05-17 Saitama Rubber Kogyo Kk 振動吸収材、その製造方法及びその施工方法
WO2007058038A1 (ja) 2005-11-16 2007-05-24 Nok Corporation フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
JP2007137977A (ja) * 2005-11-16 2007-06-07 Nok Corp フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
US7977433B2 (en) 2005-11-16 2011-07-12 Nok Corporation Fluororubber composition and production method of cross-linked fluororubber product
JP4528713B2 (ja) * 2005-11-16 2010-08-18 Nok株式会社 フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
JP4580335B2 (ja) * 2005-12-22 2010-11-10 Nok株式会社 フッ素ゴム架橋体の製造方法
JP2007169511A (ja) * 2005-12-22 2007-07-05 Nok Corp ゴム組成物及びフッ素ゴム架橋体の製造方法
JP2007169512A (ja) * 2005-12-22 2007-07-05 Nok Corp ゴム組成物及びフッ素ゴム架橋体の製造方法
WO2007080681A1 (ja) 2006-01-11 2007-07-19 Nok Corporation フッ素ゴム架橋体の製造方法
US8721948B2 (en) 2006-01-11 2014-05-13 Nok Corporation Process for producing crosslinked fluororubber
US8338520B2 (en) 2008-08-26 2012-12-25 Nok Corporation Fluororubber composition and production method of cross-linked fluororubber product
WO2010026912A1 (ja) 2008-09-04 2010-03-11 Nok株式会社 フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
CN102203180A (zh) * 2008-09-04 2011-09-28 Nok株式会社 氟橡胶组合物及氟橡胶交联体的制造方法
JP5510328B2 (ja) * 2008-09-04 2014-06-04 Nok株式会社 フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
CN102203180B (zh) * 2008-09-04 2014-09-03 Nok株式会社 氟橡胶组合物及氟橡胶交联体的制造方法
JP2013057089A (ja) * 2009-07-03 2013-03-28 Daikin Industries Ltd 架橋性フッ素ゴム組成物、フッ素ゴム成形品及びその製法
US9441101B2 (en) 2012-12-07 2016-09-13 Nok Corporation Fluororubber composition
JP2014185237A (ja) * 2013-03-22 2014-10-02 Daikin Ind Ltd フッ素ゴム組成物
JP2017030308A (ja) * 2015-08-05 2017-02-09 西川ゴム工業株式会社 制振ゴムシート及びその制振ゴムシートの製造方法
JP2020504775A (ja) * 2016-12-28 2020-02-13 スリーエム イノベイティブ プロパティズ カンパニー ケイ素含有ハロゲン化エラストマー

Also Published As

Publication number Publication date
DE112004000681T5 (de) 2007-08-16
US20060217491A1 (en) 2006-09-28
JP4545686B2 (ja) 2010-09-15
JPWO2004094479A1 (ja) 2006-07-13
CN100354358C (zh) 2007-12-12
CN1777643A (zh) 2006-05-24
US7279530B2 (en) 2007-10-09

Similar Documents

Publication Publication Date Title
JP4545686B2 (ja) 低摩擦性フッ素ゴム架橋体の製造方法及び該方法にて得られた低摩擦性フッ素ゴム架橋体の用途
JP5061905B2 (ja) フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
KR100854943B1 (ko) 폴리올 가교 가능한 불소 고무 조성물
WO2009118860A1 (ja) フッ素ゴム組成物及びフッ素ゴム架橋体
WO2013111643A1 (ja) 自動車用オイルシール
JP5124945B2 (ja) フッ素ゴム架橋体の製造方法
KR20180097627A (ko) 불소 고무 조성물
JPWO2019070040A1 (ja) 含フッ素共重合体組成物及び金属ゴム積層体
JP4528713B2 (ja) フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
WO2010029851A1 (ja) フッ素ゴム金属積層板
JP2007169511A (ja) ゴム組成物及びフッ素ゴム架橋体の製造方法
JP2002212370A (ja) フッ素ゴム加硫成形物
JPWO2008093803A1 (ja) 回転摺動シール用フッ素ゴム架橋体及びその製造方法
JPH0485349A (ja) 潤滑性ゴム組成物
JP4580335B2 (ja) フッ素ゴム架橋体の製造方法
JP6540798B2 (ja) フッ素ゴム組成物
JP2004331764A (ja) ゴム加硫成形物の製造方法
JP4139943B2 (ja) ウォータポンプ用軸受
JP2008195947A (ja) フッ素ゴム組成物
JPH01131255A (ja) 表面改質エラストマー加硫成形体
Nudel'man Fluorine-containing rubbers: practical aspects of ionic vulcanisation
JPH0335045A (ja) 含フッ素エラストマー加硫組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505755

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006217491

Country of ref document: US

Ref document number: 10553759

Country of ref document: US

Ref document number: 20048105741

Country of ref document: CN

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10553759

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112004000681

Country of ref document: DE

Date of ref document: 20070816

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607