WO2010026912A1 - フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法 - Google Patents

フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法 Download PDF

Info

Publication number
WO2010026912A1
WO2010026912A1 PCT/JP2009/064952 JP2009064952W WO2010026912A1 WO 2010026912 A1 WO2010026912 A1 WO 2010026912A1 JP 2009064952 W JP2009064952 W JP 2009064952W WO 2010026912 A1 WO2010026912 A1 WO 2010026912A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororubber
parts
weight
crosslinked
polyol
Prior art date
Application number
PCT/JP2009/064952
Other languages
English (en)
French (fr)
Inventor
隆之 柏原
宏和 岩城
宗幸 渡邉
幸典 伊藤
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to EP09811438.2A priority Critical patent/EP2322575B1/en
Priority to US13/062,295 priority patent/US20110245423A1/en
Priority to CN200980143499.9A priority patent/CN102203180B/zh
Priority to JP2010527764A priority patent/JP5510328B2/ja
Publication of WO2010026912A1 publication Critical patent/WO2010026912A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols

Definitions

  • the present invention relates to a fluororubber composition and a method for producing a crosslinkable fluororubber, and more particularly, to a non-adhesive, highly clean fluororubber composition with a metal and a method for producing a crosslinkable fluororubber.
  • fluororubber like other general-purpose rubbers, has rubber elasticity that is an inherent property of rubber and is superior to other general-purpose rubbers in properties such as heat resistance, oil resistance, and chemical resistance. Therefore, taking advantage of those characteristics, for example, rubber parts for leakage prevention represented by O-rings, packings, gaskets, etc., rubbers, belts, rubber cloths, or printer heads, hard disk (HDD) devices
  • the shock absorbing stopper component such as the head control unit, and more specifically, is used for various purposes as a stopper installed for the purpose of suppressing malfunction of the reading arm in the HDD device.
  • the cross-linked rubber surface may be treated with an antiblocking agent during the production thereof.
  • the treatment cost is high, and there is a concern that the adhesive treatment agent may be dropped off, which may cause contamination around the site of use, which is not the optimum method.
  • the conventional fluororubber is used as an impact absorbing stopper component such as an HDD head control unit, for example, erroneous operation due to adhesion between the stopper and the arm becomes a problem.
  • the stopper defines the position (arm swing position) of the head movable range when the arm having the memory reading head at the tip stands by, and further, arm malfunction when the arm is activated or when it stands by It is a part installed for the purpose of performing shock absorption etc. for control.
  • this stopper a magnet folder type stopper in which a magnet is incorporated in rubber and the arm is fixed by magnetic force, or a crash stop type stopper in which the stopper is disposed on both sides of the arm is increasing.
  • the performance or physical properties required for the rubber cross-linked body for stoppers are as follows: (1) Excellent shock absorption at arm collision, (2) The arm needs to be pressure-bonded with rubber / arm (metal) by a magnetic force etc. while waiting for arm, but it does not stick (it is non-adhesive), (3) being clean, (4) Halogen free (chlorine) free There are four items.
  • Patent Document 1 has found that friction can be reduced by using a polyol AF capable of crosslinking with a polyol and using bisphenol AF as a crosslinking agent and triphenylbenzylphosphonium chloride as a crosslinking accelerator.
  • Patent Document 2 bisphenol AF as a crosslinking agent and 5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate as a crosslinking agent are used for a polyol-crosslinkable fluororubber,
  • the weight ratio X (quaternary ammonium salt / polyol crosslinking agent) of the crosslinking accelerator to the polyol crosslinking agent is 0.40 to 0.60
  • the compounding amount of the crosslinking accelerator is fluororubber 100.
  • a fluororubber composition of 0.95 to 20 parts by weight and 0.4 to 20 parts by weight of a crosslinking agent based on parts by weight has been proposed.
  • the subject of the present invention is (1) excellent shock absorption at arm collision, (2) non-adherent, (3) clean, (4) fluorine-free (chlorine) -free fluorine rubber It is an object of the present invention to provide a composition, a method for producing a cross-linked fluoro rubber and an impact absorbing stopper.
  • a fluororubber composition according to the present invention for solving the above problems contains a polyol crosslinkable fluororubber made of a fluoropolymer, a polyol crosslinking agent, and a salt having BF 4 ⁇ as a counter ion,
  • the polyol-based crosslinking agent is contained in an amount of 1.25 to 3.0 parts by weight as an active ingredient based on 100 parts by weight of the fluorine polymer, BF 4 in the counter-ions - the salt with respect to the fluoropolymer 100 parts by weight, characterized by containing from 0.700 to 0.900 parts by weight.
  • the crosslinked product obtained by the above-mentioned production method is (1)
  • the holding torque increase rate is 30% or less on average
  • Fine dust measured with a liquid particle counter is 6.0 k Count / cm 2 or less
  • the obtained crosslinked product has all of these properties.
  • the shock absorbing stopper according to the present invention which solves the above-mentioned problems, is characterized in that it is formed using the cross-linked fluoro rubber obtained by the above-mentioned manufacturing method.
  • a fluororubber composition which is excellent in shock absorption at the time of arm collision, (2) non-adherent, (3) clean and (4) halogen-free (chlorine-free) , A method for producing a cross-linked fluoro rubber, and an impact absorption stopper.
  • the fluororubber composition of the present invention contains a polyol crosslinkable fluororubber composed of a fluorine polymer, a polyol crosslinking agent, and a salt having BF 4 - as a counter ion.
  • polyol-crosslinkable fluoro rubber a polymer or copolymer of one or more fluoroolefins may be used.
  • fluorine-containing olefins include vinylidene fluoride, hexafluoropropylene, pentafluoropropylene, trifluoroethylene, trifluorochloroethylene, tetrafluoroethylene, vinyl fluoride, perfluoroacrylic acid ester, acrylic acid Perfluoroalkyl, perfluoromethylvinylether, perfluoropropylvinylether and the like can be mentioned.
  • polyol-crosslinking fluororubber preferably, vinylidene fluoride-hexafluoropropylene binary copolymer (abbreviation: VDF-HFP), tetrafluoroethylene-propylene binary copolymer (abbreviation: TFE-P) And vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer (abbreviation: VDF-HFP-TFE).
  • VDF-HFP vinylidene fluoride-hexafluoropropylene binary copolymer
  • TFE-P tetrafluoroethylene-propylene binary copolymer
  • VDF-HFP-TFE vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer
  • fluororubbers can be obtained by solution polymerization, suspension polymerization or emulsion polymerization by a conventionally known method, and can be obtained as commercial products (for example, "Viton A500” manufactured by DuPont Co., etc.).
  • ⁇ Crosslinking agent 2,2-bis (4-hydroxyphenyl) perfluoropropane [bisphenol AF] is preferably used, and may be in the form of an alkali metal salt or an alkaline earth metal salt.
  • polystyrene resin a commercially available masterbatch containing a raw material rubber and bisphenol AF may be used.
  • a commercially available masterbatch for example, Curative VC # 30 (manufactured by DuPont Dow Elastomer Co., Ltd .: containing 50 wt% of a crosslinking agent [bisphenol AF]) and the like can be mentioned.
  • R represents an alkyl group or an aralkyl group having 7 to 20 carbon atoms having 1 to 24 carbon atoms
  • X - is BF 4 - represents a group (tetrafluoroborate group).
  • Preferred quaternary ammonium salts include 5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate.
  • 5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate has a melting point of about 80 ° C. and is heated and kneaded (100 ° C.) by a roll, a kneader, Banbury, etc. Since it melts easily, it is preferable at the point which is excellent in dispersibility.
  • the salt having BF 4 - as a counter ion also has an effect of improving non-stickiness.
  • a commercially available masterbatch containing a raw material fluororubber and a quaternary ammonium salt can also be used.
  • rubber compounding agents other than the above components for example, reinforcing agents such as carbon black and carbon fibers; hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3 ), calcium carbonate, magnesium carbonate, water Fillers such as aluminum oxide, magnesium hydroxide, aluminum silicate, magnesium silicate, calcium silicate, potassium titanate, titanium oxide, barium sulfate, aluminum borate, glass fiber, aramid fiber, etc .; Processing aids for wax, metal soap, etc.
  • Additives commonly used in the rubber industry such as calcium hydroxide, magnesium oxide, zinc oxide and other acid acceptors; anti-aging agents; thermoplastic resins; etc. Can be added as needed.
  • the compounding amount of the polyol crosslinking agent is in the range of 1.25 to 3.0 parts by weight as an active ingredient with respect to 100 parts by weight of the fluorine polymer, and preferably 1.75 to 2.5 parts by weight as an active ingredient.
  • the scope of the department is in the range of 1.25 to 3.0 parts by weight as an active ingredient with respect to 100 parts by weight of the fluorine polymer, and preferably 1.75 to 2.5 parts by weight as an active ingredient.
  • the master batch when the polyol-based crosslinking agent is contained in 50% by weight in the master batch, the master batch may be 2.5 to 6.0 in order to have the active component in the range of 1.25 to 3.0 parts by weight. Blend in the range of parts by weight. In the case of a preferred range of 1.75 to 2.5 parts by weight of active ingredient, the masterbatch formulation is in the range of 3.5 to 5.0 parts by weight.
  • the counter ion is a crosslinking accelerator - the amount of salt with, relative to the fluoropolymer 100 parts by weight, from 0.700 to 0.900 parts by weight. If the amount is less than 0.700 parts by weight, the crosslinked product may be foamed and it may not be able to be molded. On the other hand, if the blending amount is more than 0.900 parts by weight, the holding torque increase rate deteriorates (increases) with the increase of the blending amount, can not satisfy 30% or less, and the non-adhesiveness is inferior.
  • the ion amount by ion chromatography also worsens (increases) with the increase of the compounding amount, does not satisfy 0.3 ⁇ g / cm 2 or less, and worsens (increases) with the increase of the compounding amount of LPC. .0 k Count / cm 2 or less can not be satisfied, and all are inferior in cleanness.
  • a predetermined amount of each of the above components may be added to a general mixer for rubber such as an internal mixer such as an intermix, a kneader or a Banbury mixer or an open roll.
  • a general mixer for rubber such as an internal mixer such as an intermix, a kneader or a Banbury mixer or an open roll.
  • distribute by a stirrer etc. are mentioned.
  • the fluorororubber composition obtained as described above is generally used at a temperature of 140 ° C. to 230 ° C. for 1 to 120 minutes using an injection molding machine, a compression molding machine, a crosslinking (vulcanization) press, an oven or the like.
  • Crosslinking (vulcanization) can be performed by heating to a certain extent (primary crosslinking (vulcanization)).
  • Primary cross-linking is a step of cross-linking to the extent that the shape can be maintained in order to form a predetermined shape (pre-forming), and primary cross-linking (vulcanization) is possible even with an oven such as air heating.
  • pre-forming pre-forming
  • vulcanization primary cross-linking
  • the object to be treated is compression molded after kneading of the fluororubber composition
  • the temperature after the above kneading, usually (a) the temperature may be once returned to normal temperature and then heated again for compression molding or (b ) After the kneading, the temperature may be continued as it is to perform compression molding.
  • the method (a) is used in the process.
  • a molded article having low friction and low tackiness can be obtained by either the method of (a) or the method of (b) it can.
  • the degree of adhesion reduction of the resulting crosslinked fluororubber is not affected by the temperature rising pattern or temperature rising curve toward the previous heat treatment, but it depends on the temperature and time of heat treatment.
  • heat treatment secondary crosslinking (vulcanization)
  • primary crosslinking vulcanization
  • This heat treatment method is the same as ordinary secondary crosslinking (vulcanization), but if the fluororubber composition of the present invention is not used, cleanness is high even if ordinary secondary crosslinking (vulcanization) is performed, And the fluororubber crosslinked body which can implement
  • the fluororubber composition (primary crosslinked body) of the present invention is to be in a temperature range of 200 ° C. to 300 ° C., preferably 250 ° C. to 260 ° C. .
  • the heat treatment time is in the range of 0.1 to 48 hours, preferably 1 to 48 hours, more preferably 10 to 48 hours.
  • the cross-linked fluoro rubber obtained in this manner has a holding torque increase rate of 30% or less on average, and is less adhesive to metals.
  • holding torque increase rate is an index related to non-stickiness, and can be measured as follows.
  • a stopper molded product (magnet holder type) was attached to an actual HDD, and after the stopper and the arm were locked by magnetic force, an environmental load (temperature 80 ° C. relative humidity 80% RH) was applied for 10 hours.
  • the peeling force when the arm was rotated and the arm was separated from the stopper was compared before and after the environmental load, and the rate of increase with respect to the peeling force before the environmental load was calculated by the following equation.
  • Holding torque increase rate (%) [(Peeling force after environmental load-Peeling force before environmental load) / Peeling force before environmental load] ⁇ 100
  • the crosslinked product obtained by the present invention not only has a small holding torque increase rate, but also has a small variation (3 ⁇ ) in the increase rate and is excellent in non-adhesiveness.
  • the crosslinked product obtained in the present invention is characterized in that fine dust measured with a liquid particle counter (residue dust measuring instrument) is 6.0 k Count / cm 2 or less, and is highly clean.
  • fine dust measured by liquid particle counter is an index relating to cleanness, and can be measured as follows.
  • the stopper molded product is placed in a glass beaker containing filtered pure water, subjected to ultrasonic cleaning for 1 minute, and particles (fine particles) of 0.5 ⁇ m or more extracted in pure water in the beaker are measured with a particle sensor in liquid taking measurement.
  • the crosslinked product obtained in the present invention is characterized in that the total amount of anions and cations measured by an ion chromatograph (residual ion measuring instrument) is 0.3 ⁇ g / cm 2 or less, and the cleanliness is high.
  • the total amount of anions and cations measured by an ion chromatograph is an index related to cleanness, and can be measured as follows.
  • the stopper molded article is immersed in ultrapure water for 10 minutes at normal temperature, and the ions contained in the immersion liquid are measured by ion chromatography.
  • the crosslinked product of the present invention is (1) excellent in shock absorbability at the time of arm collision, (2) rubber / arm (metal) needs to be pressure-bonded by magnetic force etc. at arm standby time, but does not stick Because it meets all the four conditions of being sticky), (3) clean, and (4) non-halogen substance (chlorinated), we focused on chemical contamination of HDD related components It can be used for fluoro rubber products that require cleanness such as high level elution ion, LPC (Liquid Particle Counter) etc. while contamination control is considered more and more important, especially the head control section in hard disk drive Etc. can be suitably used as a shock absorbing stopper part.
  • LPC Liquid Particle Counter
  • Example 1 100 parts by weight of fluorine rubber ("Viton A-500” manufactured by DuPont Dow Elastomers; Mooney viscosity ML 1 + 10 (121 ° C) 45) consisting of fluorine polymer MT carbon ("Huber N- 990" manufactured by Huber; average particle diameter 500 m ⁇ , Specific surface area 6 m 2 / g) 15 parts by weight Hydrotalcite (“DHT-4A” manufactured by Kyowa Chemical Co., Ltd.) 3 parts by weight Calcium hydroxide (“CARDIC # 2000” manufactured by Omi Chemical Co., Ltd.) 3 parts by weight Crosslinking agent; 5 parts by weight of bisphenol AF (master batch of 50 wt% of "Curativ VC # 30" manufactured by DuPont Dow Elastomer and 50 wt% of fluororubber (Viton E-45)) (roll input) Crosslinking accelerator; 0.700 parts by weight of 5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium
  • the above blended components (excluding the crosslinking component) were charged into a kneader, and after kneading for 20 minutes, the crosslinking component was charged by an open roll to prepare a fluororubber composition.
  • the resulting product was press-crosslinked (vulcanized) at 170 ° C. for 20 minutes to form a crosslinked product, and secondary crosslinking (vulcanization) was further performed in an oven at 260 ° C. for 10 hours to produce a fluorinated rubber crosslinked product.
  • Rubber hardness, breaking strength and breaking elongation The rubber hardness, the breaking strength and the breaking elongation were measured by the following methods for the test samples of the obtained fluororubber crosslinked product. The results are shown in Table 1. Rubber hardness: Measured with a type A durometer in accordance with JIS K6253. Breaking strength (MPa): Measured in accordance with JIS K6251. Elongation at break (%): Measured in accordance with JIS K6251.
  • Holding torque increase rate (%) [(Peeling force after environmental load-Peeling force before environmental load) / Peeling force before environmental load] ⁇ 100
  • the holding torque increase rate can be judged to be excellent in non-adhesiveness as the value is smaller, and it can be judged as non-adhesiveness is excellent as the variation (3 ⁇ ) is smaller, and is preferably 30% or less.
  • means standard deviation, and its triple value is expressed as 3 ⁇ . Usually, 99.7% or more of all the measured values are included in the average value ⁇ 3 ⁇ , and the value of 3 ⁇ is a standard indicating the variation.
  • the smaller the amount of ions, the cleaner the material, and the amount of detection per stopper is preferably 0.3 ⁇ g / cm 2 or less for both anions (cations) and cations (cations).
  • Example 2 In Example 1, except that the compounding amount of the crosslinking accelerator (5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate) is changed to 0.875 parts by weight, It evaluated similarly. The results are shown in Table 1.
  • the compounding amount of the crosslinking accelerator (5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate) is changed to 0.875 parts by weight, It evaluated similarly. The results are shown in Table 1.
  • Example 3 The procedure of Example 1 was repeated except that the compounding amount of the crosslinking accelerator (5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate) was changed to 0.900 parts by weight. It evaluated similarly. The results are shown in Table 1.
  • the crosslinking accelerator 5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate
  • Example 1 Comparative Example 1 In Example 1, except that the blending amount of the crosslinking accelerator (5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate) is changed to 0.525 parts by weight, The same procedure was followed, but the crosslinked product foamed and could not be molded due to the low amount of accelerator. The results are shown in Table 1.
  • the crosslinking accelerator 5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate
  • Comparative example 2 In Example 1, except that the compounding amount of the crosslinking accelerator (5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate) is changed to 0.950 parts by weight, It evaluated similarly. The results are shown in Table 1.
  • the compounding amount of the crosslinking accelerator (5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate) is changed to 0.950 parts by weight, It evaluated similarly. The results are shown in Table 1.
  • Comparative example 3 In Example 1, except that the compounding amount of the crosslinking accelerator (5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate) is changed to 1.050 parts by weight, It evaluated similarly. The results are shown in Table 1.
  • the compounding amount of the crosslinking accelerator (5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate) is changed to 1.050 parts by weight, It evaluated similarly. The results are shown in Table 1.
  • Comparative example 4 The procedure of Example 1 was repeated except that the compounding amount of the crosslinking accelerator (5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate) was changed to 1.225 parts by weight. It evaluated similarly. The results are shown in Table 1.
  • the crosslinking accelerator 5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate
  • Comparative example 5 In Example 1, a crosslinking accelerator (5-benzyl-1,5-diazabicyclo [4.3.0] -5-nonenium tetrafluoroborate) was added to benzyltriphenylphosphonium chloride (manufactured by DuPont Dow Elastomers). Evaluation was carried out in the same manner except that Curative VC # 20 ′ ′ was replaced by 33 wt% of benzyltriphenylphosphonium chloride and 9 wt parts of a fluororubber [Viton E-45] 67 wt% masterbatch). The results are shown in Table 1.
  • LPC which is an index of cleanness
  • ion chromatography detection ion amount was 0.3 ⁇ g / cm 2 or less in total of anions and cations.
  • Comparative Example 5 uses benzyltriphenylphosphonium chloride as a crosslinking accelerator. Although there are no problems with required properties such as the holding torque increase rate, ion chromatography, LPC, etc., chlorine is contained in the crosslinking accelerator, and halogen reduction can not be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

【課題】(1)アーム衝突時の衝撃吸収性に優れ、(2)非粘着であり、(3)クリーンであり、(4)ハロゲン物質(塩素)不含有であるフッ素ゴム組成物及びフッ素ゴム架橋体の製造方法の提供。 【解決手段】フッ素ポリマーからなるポリオール架橋可能なフッ素ゴムと、ポリオール系架橋剤と、カウンターイオンにBF を持つ塩とを含有し、前記ポリオール系架橋剤を前記フッ素ポリマー100重量部に対して有効成分で1.25~3.0重量部含有し、前記カウンターイオンにBF を持つ塩を、前記フッ素ポリマー100重量部に対して0.700~0.900重量部含有することを特徴とするフッ素ゴム組成物、及び該フッ素ゴム組成物を予めポリオール架橋した後、次いで200℃~300℃の温度範囲で0.1~48時間熱処理することにより、ホールディングトルク増加率が平均して30%以下である架橋体を得ることを特徴とするフッ素ゴム架橋体の製造方法。

Description

フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
 本発明はフッ素ゴム組成物及びフッ素ゴム架橋体の製造方法に関し、詳しくは金属に非粘着でクリーン性の高いフッ素ゴム組成物及びフッ素ゴム架橋体の製造方法に関する。
 従来より、フッ素ゴムは、他の汎用ゴムと同様にゴム本来の特性であるゴム弾性を有し、しかも他の汎用ゴムに比べて耐熱性、耐油性、耐薬品性などの特性に優れているので、それらの特性を生かして、例えば、O-リング、パッキン、ガスケットなどに代表される漏洩防止用ゴム部品、防振ゴム、ベルト、ゴム引布などとして、或いはプリンターヘッド、ハードディスク(HDD)装置のヘッド制御部などの衝撃吸収ストッパー部品、より具体的には、HDD装置内の読み取りアームの誤動作抑制等を目的として設置するストッパーなどとして様々な用途に用いられている。
 このような従来のフッ素ゴムは、ゴム表面が粘着するため、その製造に際して、架橋ゴム表面に粘着防止剤処理をする場合がある。しかし処理コストが高くなり、また粘着処理剤の脱落による使用部位周辺の汚染等の懸念があり最適な方法とはいえない。
 また従来のフッ素ゴムを、例えばHDDヘッド制御部などの衝撃吸収ストッパー部品として用いると、ストッパーとアームの粘着による誤作動が問題となる。
 ここで、ストッパーとは、先端に記憶読み取り用ヘッド部を有するアームが待機する際のヘッド部可動範囲の位置(アーム振れ位置)を規定し、さらに、アーム作動後、もしくは待機する際のアーム誤動作抑制のために衝撃吸収等を行うことを目的として設置される部分である。
 また近年、このストッパーとしては、ゴム中に磁石を組み込み、磁力によりアームを固定するマグネットフォルダータイプのストッパー、或いはアームの両側にストッパーを配置したクラッシュストップタイプのストッパーが増加している。
 さらに近年、電気・電子部品業界全体に、ハロゲン(特に塩素、臭素)低減の動きがあり、HDDヘッド制御部などの衝撃吸収ストッパー部分においてもハロゲン物質の低減が求められている。
 これらのことからすると、ストッパー用ゴム架橋体に要求される性能ないし物性としては、
 (1)アーム衝突時の衝撃吸収性に優れること、
 (2)アーム待機時に磁力などによりゴム/アーム(金属)が圧着されている必要があるが、粘着しない(非粘着性である)こと、
 (3)クリーンであること、
 (4)ハロゲン物質(塩素)不含有であること、
 の4項目が挙げられる。
 特許文献1では、ポリオール架橋可能なフッ素ゴムに、架橋剤としてビスフェノールAF、架橋促進剤としてトリフェニルベンジルホスホニウムクロライドを用い、低摩擦化できることを見出している。
 しかしながら、この手法は、(1)衝撃吸収性、(2)非粘着性、(3)クリーンであるという点では問題が少ないものの、架橋促進剤に塩素を含有するため要求を満足させることができない。
 特許文献2では、ポリオール架橋可能なフッ素ゴムに、架橋剤としてビスフェノールAF、架橋促進剤として5-ベンジル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウムテトラフルオロボレートを用い、かつ、前記架橋促進剤と前記ポリオール系架橋剤との重量比X(第4級アンモニウム塩/ポリオール系架橋剤)が0.40~0.60であり、架橋促進剤の配合量がフッ素ゴム100重量部に対して0.95~20重量部、架橋剤が0.4~20重量部のフッ素ゴム組成物が提案されている。
 しかしながら、この手法は、(1)衝撃吸収性、(4)ハロゲン不含有という点では問題が少ないものの、粘着性のバラツキが大きく、また、HDDの記録密度向上に伴ってHDD関連部材の化学汚染を中心としたコンタミネーションコントロールがますます重要視されている中において、溶出イオン、LPC(Liquid Particle Counter)等のクリーン性の点からみた高レベルの要求を満足させることができなくなってきている。
国際公開第2004/094479号 国際公開第2007/058038号
 そこで、本発明の課題は、(1)アーム衝突時の衝撃吸収性に優れ、(2)非粘着であり、(3)クリーンであり、(4)ハロゲン物質(塩素)不含有であるフッ素ゴム組成物、フッ素ゴム架橋体の製造方法及び衝撃吸収ストッパーを提供することにある。
 また本発明の他の課題は、以下の記載によって明らかになる。
 上記課題を解決する本発明に係るフッ素ゴム組成物は、フッ素ポリマーからなるポリオール架橋可能なフッ素ゴムと、ポリオール系架橋剤と、カウンターイオンにBF を持つ塩とを含有し、
 前記ポリオール系架橋剤を前記フッ素ポリマー100重量部に対して、有効成分として、1.25~3.0重量部含有し、
 前記カウンターイオンにBF を持つ塩を、前記フッ素ポリマー100重量部に対して、0.700~0.900重量部含有することを特徴とする。
 また、上記課題を解決する本発明に係るフッ素ゴム架橋体の製造方法は、上記のフッ素ゴム組成物を、予めポリオール架橋した後、次いで、200℃~300℃の温度範囲で0.1~48時間熱処理することにより、架橋体を得ることを特徴とする。
 本発明の好ましい態様は、上記の製造方法によって得られた架橋体は、
 (1)ホールディングトルク増加率が平均して30%以下であり、
 (2)リキッドパーティクルカウンター(残渣塵埃測定器)で測定した微細な塵埃が、6.0k Count/cm以下であり、
 又は、(3)イオンクロマトグラフ(残渣イオン測定器)で測定した陰イオン、陽イオンの総量がそれぞれ0.3μg/cm以下である特性を備えていることである。
 本発明において、得られた架橋体がこれらの特性を全て備えていることは、さらに好ましいことである。
 上記課題を解決する本発明に係る衝撃吸収ストッパーは、上記の製造方法によって得られたフッ素ゴム架橋体を用いて形成されることを特徴とする。
 本発明によれば、(1)アーム衝突時の衝撃吸収性に優れ、(2)非粘着であり、(3)クリーンであり、(4)ハロゲン物質(塩素)不含有であるフッ素ゴム組成物、フッ素ゴム架橋体の製造方法、及び衝撃吸収ストッパーを提供することができる。
 以下、本発明の実施の形態を説明する。
〔フッ素ゴム組成物〕
 本発明のフッ素ゴム組成物は、フッ素ポリマーからなるポリオール架橋可能なフッ素ゴムと、ポリオール系架橋剤と、カウンターイオンにBF を持つ塩とを含有する。 
<ポリオール架橋可能なフッ素ゴム>
 ポリオール架橋可能なフッ素ゴム(ポリオール架橋系フッ素ゴム)としては、1種又は2種以上の含フッ素オレフィンの重合体又は共重合体を用いることができる。 
 含フッ素オレフィンとしては、具体的には、例えば、フッ化ビニリデン、ヘキサフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロエチレン、トリフルオロクロロエチレン、テトラフルオロエチレン、フッ化ビニル、パーフルオロアクリル酸エステル、アクリル酸パーフルオロアルキル、パーフルオロメチルビニルエーテル、パーフルオロプロピルビニルエーテル等が挙げられる。
 このようなポリオール架橋系フッ素ゴムとしては、好ましくは、フッ化ビニリデン-ヘキサフルオロプロピレン2元共重合体(略称:VDF-HFP)、テトラフルオロエチレン-プロピレン2元共重合体(略称:TFE-P)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン3元共重合体(略称:VDF-HFP-TFE)等が挙げられる。
 これらのフッ素ゴムは、従来公知の方法により、溶液重合、懸濁重合または乳化重合させることにより得られ、市販品として入手できる(例えば、デュポン社製「バイトンA500」など)。
<架橋剤>
 ポリオール系架橋剤としては、2,2-ビス(4-ヒドロキシフェニル)パーフルオロプロパン[ビスフェノールAF]が好ましく用いられ、アルカリ金属塩あるいはアルカリ土類金属塩の形であってもよい。
 ポリオール系架橋剤は、原料ゴムとビスフェノールAFとを含む市販のマスターバッチを用いてもよい。市販のマスターバッチとしては、例えばキュラティブVC#30(デュポン・ダウ・エラストマー社製:架橋剤〔ビスフェノールAF〕50wt%含有)等が挙げられる。
<架橋促進剤>
 本発明において、架橋促進剤として用いられる「カウンターイオンにBF (テトラフルオロホウ酸イオン)を持つ塩」としては、下記化1で示される第4級アンモニウム塩を用いることができる。
Figure JPOXMLDOC01-appb-C000001
       

 上記式中、Rは炭素数1~24のアルキル基または炭素数7~20のアラルキル基を表わし、XはBF 基(テトラフルオロボレート基)を表わす。
 好ましい第4級アンモニウム塩としては、5-ベンジル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウムテトラフルオロボレートが挙げられる。
 5-ベンジル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウムテトラフルオロボレートは、約80℃の融点を有し、ロール、ニーダー、バンバリーなどによる加熱混練時(100℃)に容易に融解するので、分散性に優れる点で好ましい。
 本発明において、カウンターイオンにBF を持つ塩は、非粘着性を向上させる効果もある。
 本発明に用いるカウンターイオンにBF を持つ塩は、原料フッ素ゴムと第4級アンモニウム塩を含む市販のマスターバッチを使用することもできる。
<その他の配合成分> 
 本発明においては、以上の成分以外に、ゴム配合剤として、例えばカーボンブラック、カーボン繊維等の補強剤;ハイドロタルサイト(Mg6Al2(OH)16CO3)、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸カルシウム、チタン酸カリウム、酸化チタン、硫酸バリウム、硼酸アルミニウム、ガラス繊維、アラミド繊維等の充填剤;ワックス、金属セッケン等の加工助剤;水酸化カルシウム、酸化マグネシウム、酸化亜鉛等の受酸剤;老化防止剤;熱可塑性樹脂;などのようなゴム工業で一般的に使用されている配合剤を本発明の効果を損なわない範囲で必要に応じて添加できる。
<配合比>
 ポリオール系架橋剤の配合量は、前記フッ素ポリマー100重量部に対して、有効成分で1.25~3.0重量部の範囲であり、好ましくは、有効成分で1.75~2.5重量部の範囲である。
 ここで、有効成分と記載しているのは、ポリオール系架橋剤を原料ゴムと混合したマスターバッチとして使用する場合を考慮したものである。
 たとえば、ポリオール系架橋剤が、マスターバッチ中に50重量%含まれる場合には、有効成分で1.25~3.0重量部の範囲にするには、マスターバッチを2.5~6.0重量部の範囲で配合する。好ましい範囲の有効成分1.75~2.5重量部の配合の場合には、マスターバッチの配合は、3.5~5.0重量部の範囲となる。
 架橋促進剤であるカウンターイオンにBF を持つ塩の配合量は、前記フッ素ポリマー100重量部に対して、0.700~0.900重量部の範囲である。0.700重量部より少ないと、架橋物が発泡し、成形できないおそれがある。一方、0.900重量部より多く配合すると、配合量の増加に伴い、ホールディングトルク増加率が、悪化(増加)し、30%以下を満足できず、非粘着性が劣る。またイオンクロマト検出によるイオン量に関しても配合量の増加に伴い悪化(増加)し、0.3μg/cm以下を満足できず、LPCに関しても配合量の増加に伴い悪化(増加)し、LPC 6.0k Count/cm以下を満足できず、いずれもクリーン性が劣る。
<調製>
 本発明に係るフッ素ゴム組成物の調製法としては、例えば、所定量の上記各成分を、インターミックス、ニーダー、バンバリーミキサー等の密閉型混練機またはオープンロールなどゴム用の一般的な混練機で混練する手法や、各成分を溶剤等で溶解して、攪拌機等で分散させる方法などが挙げられる。
〔フッ素ゴム架橋体の製造方法〕
<一次架橋(加硫)>
 上記のようにして得られたフッ素ゴム組成物は、射出成形機、圧縮成形機、架橋(加硫)プレス機、オーブンなどを用いて、通常、140℃~230℃の温度で1~120分程度加熱(一次架橋(加硫))することにより、架橋(加硫)成形できる。
 なお、一次架橋(加硫)は、一定の形状を形成(予備成形)するために、形状を維持できる程度に架橋させる工程であり、空気加熱等のオーブンでも一次架橋(加硫)は可能であるが、複雑な形状では、金型により成形されることが好ましい。
 本発明では、フッ素ゴム組成物の混練後に被処理物を圧縮成形する場合、上記混練後は、通常、(a)一旦常温に戻し、再び昇温して圧縮成形してもよく、あるいは(b)混練後そのまま昇温を続けて圧縮成形してもよい。通常、圧縮成形機を用いる圧縮工程では、工程上、上記(a)の手法になる。
 フッ素ゴム組成物の架橋(加硫)前に、該組成物を一定形状にしておけば、(a)の手法でも(b)の手法でも、低摩擦、低粘着性の成形品を得ることができる。得られるフッ素ゴム架橋体の低粘着化の程度は、その前の熱処理に向けた昇温パターンや昇温曲線の如何には影響されず、熱処理を行う温度と時間に左右される。
<熱処理>
 本発明では、一次架橋(加硫)後に熱処理(二次架橋(加硫))を行なう。この熱処理方法は、通常の二次架橋(加硫)と同じであるが、本発明のフッ素ゴム組成物でなければ、通常の二次架橋(加硫)を行っても、クリーン性が高く、かつゴム表面が金属と非粘着であることを実現できるフッ素ゴム架橋体は得られない。
 一次架橋(加硫)後の熱処理としては、本発明のフッ素ゴム組成物(一次架橋体)を、200℃~300℃の温度範囲、好ましくは250℃~260℃の温度範囲とすることである。熱処理時間は、0.1~48時間の範囲であり、好ましくは1~48時間、更に好ましくは10~48時間の範囲である。
<フッ素ゴム架橋体の物性及び用途>
 このようにして得られたフッ素ゴム架橋体は、ホールディングトルク増加率が平均して30%以下であり、金属との粘着性が少ない。
 本明細書において、「ホールディングトルク増加率」は、非粘着性に関する指標であり、以下のようにして測定できる。
 ストッパー成形品(マグネットホルダータイプ)をHDD実機に装着し、磁力によりストッパーとアームを係止させた後、環境負荷(温度80℃ 相対湿度80%RH)を10時間与えた。アームを回転させストッパーからアームが離れる際の引き剥がし力を環境負荷前後で比較し、環境負荷前の引き剥がし力に対する増加率を以下の式で算出した。  
 ホールディングトルク増加率(%)=〔(環境負荷後の引き剥がし力-環境負荷前の引き剥がし力)/環境負荷前の引き剥がし力〕×100
  本発明で得られる架橋体は、ホールディングトルク増加率が小さいのみならず、その増加率のバラツキ(3σ)が小さく、非粘着性が優れている。
 また、本発明で得られる架橋体は、リキッドパーティクルカウンター(残渣塵埃測定器)で測定した微細な塵埃が、6.0k Count/cm以下である特徴があり、クリーン性が高い。
 本明細書において、「リキッドパーティクルカウンター(LPC;残渣塵埃測定器)で測定した微細な塵埃」は、クリーン性に関する指標であり、以下のようにして測定できる。
 ストッパー成形品をフィルターろ過された純水を入れたガラスビーカーに入れ、1分間超音波洗浄を行い、ビーカー中純水に抽出された0.5μm以上のパーティクル(微粒子)を液中パーティクルセンサーにて測定する。
 パーティクル量は少ないほどクリーンな材料であり、LPC 6.0k Count/cm以下であればクリーンな材料と言える。
 更に、本発明で得られる架橋体は、イオンクロマトグラフ(残渣イオン測定器)で測定した陰イオン、陽イオンの総量がそれぞれ0.3μg/cm以下である特徴があり、クリーン性が高い。
 本明細書において、「イオンクロマトグラフ(残渣イオン測定器)で測定した陰イオン、陽イオンの総量」は、クリーン性に関する指標であり、以下のようにして測定できる。
 ストッパー成形品を常温下、超純水に10分間浸漬し、その浸漬液中に含まれるイオンをイオンクロマトにて測定する。
 イオン量は、少ないほどクリーンな材料であり、ストッパー1個あたりの検出量が陰イオン(アニオン)、陽イオン(カチオン)ともに0.3μg/cm以下であれば、クリーンな材料と言える。
 本発明の架橋体は、(1)アーム衝突時の衝撃吸収性に優れること、(2)アーム待機時に磁力などによりゴム/アーム(金属)が圧着されている必要があるが、粘着しない(非粘着性である)こと、(3)クリーンであること、(4)ハロゲン物質(塩素)不含有であること、の4つの条件をすべて満たしているので、HDD関連部材の化学汚染を中心としたコンタミネーションコントロールがますます重要視されている中において、高レベルの溶出イオン、LPC(Liquid Particle Counter)等のクリーン性が要求されるフッ素ゴム製品に利用でき、特に、ハードディスク装置内のヘッド制御部などの衝撃吸収ストッパー部品として好適に使用できる。
 以下に本発明の実施例を説明するが、本発明はかかる実施例によって限定されない。
 実施例1
 フッ素ポリマーからなるフッ素ゴム(デュポン・ダウ・エラストマー社製「バイトンA-500」;ムーニー粘度ML1+10(121℃)45)100重量部
 MTカーボン(Huber社製「Huber N-990」;平均粒径500mμ、比表面積6m/g)15重量部
 ハイドロタルサイト(協和化学社製「DHT-4A」)3重量部
 水酸化カルシウム(近江化学工業社製「カルディック#2000」)3重量部
 架橋剤;ビスフェノールAF(デュポン・ダウ・エラストマー社製「キュラティブVC#30」50wt%とフッ素ゴム〔バイトンE-45〕50wt%のマスターバッチ)5重量部(ロール投入)
 架橋促進剤;5-ベンジル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウムテトラフルオロボレート 0.700重量部(ロール投入)
 以上の各配合成分(架橋成分除く)をニーダーに投入し、20分混練した後、オープンロールにて架橋成分を投入することで、フッ素ゴム組成物を調製した。
 これを170℃、20分プレス架橋(加硫)することで架橋品を成形し、さらにオーブンにて260℃、10時間、二次架橋(加硫)を行い、フッ素ゴム架橋体を製造した。
<評価>
 1.ゴム硬度、破断強度及び破断伸び:
 得られたフッ素ゴム架橋体の試験サンプルについて、ゴム硬度、破断強度及び破断伸びを以下の方法で測定した。その結果を表1に示す。
 ゴム硬度:JIS K6253に準拠し、タイプAデュロメーターで測定した。
 破断強度(MPa):JIS K6251に準拠して測定した。
 破断伸び(%):JIS K6251に準拠して測定した。
 2.非粘着性;粘着試験 ホールディングトルク増加率
 ストッパー成形品(マグネットホルダータイプ)をHDD実機に装着し、磁力によりストッパーとアームを係止させた後、環境負荷(温度80℃ 相対湿度80%RH)を10時間与えた。アームを回転させストッパーからアームが離れる際の引き剥がし力を環境負荷前後で比較し、環境負荷前の引き剥がし力に対する増加率を以下の式で算出した。その結果を表1に示す。
 ホールディングトルク増加率(%)=〔(環境負荷後の引き剥がし力-環境負荷前の引き剥がし力)/環境負荷前の引き剥がし力〕×100
 ホールディングトルク増加率は、値が小さいほど非粘着性が優れていると判断でき、またバラツキ(3σ)が小さいほど非粘着性が優れていると判断でき、30%以下が望ましい。
 σとは標準偏差を意味し、その3倍の値を3σと表す。通常、平均値±3σに全測定値の99.7%以上が含まれ、3σの値がバラツキを表す目安となる。
 3.クリーン性
 3-1.リキッドパーティクルカウンター(LPC;残渣塵埃測定器)による測定
 ストッパー成形品をフィルターろ過された純水を入れたガラスビーカーに入れ、1分超音波洗浄を行い、ビーカー中純水に抽出された0.5μm以上のパーティクルを液中パーティクルセンサー(リオン社製「KS-28」)にて測定した。その結果を表1に示す。
 パーティクル量は少ないほどクリーンな材料であり、6.0k Count/cm以下であることが望ましい。
 3-2.イオンクロマトグラフ(残渣イオン測定器)による測定
 ストッパー成形品を常温下、超純水に10分間浸漬し、その浸漬液中に含まれるイオンをイオンクロマト(DIONEX社製「DX-120」)にて測定した。その結果を表1に示す。
 イオン量は、少ないほどクリーンな材料であり、ストッパー1個あたりの検出量が陰イオン(アニオン)、陽イオン(カチオン)ともに0.3μg/cm以下が望ましい。
 4.ハロゲンの含有の有無
 ゴム組成物に基づく事実を表1に示す。
 実施例2
 実施例1において、架橋促進剤(5-ベンジル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウムテトラフルオロボレート)の配合量を、0.875重量部に代えた以外は、同様にして、評価した。その結果を表1に示す。
 実施例3
 実施例1において、架橋促進剤(5-ベンジル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウムテトラフルオロボレート)の配合量を、0.900重量部に代えた以外は、同様にして評価した。その結果を表1に示す。
 比較例1
 実施例1において、架橋促進剤(5-ベンジル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウムテトラフルオロボレート)の配合量を、0.525重量部に代えた以外は、同様にしたが、促進剤が少ないため、架橋物が発泡し、成形できなかった。その結果を表1に示す。
 比較例2
 実施例1において、架橋促進剤(5-ベンジル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウムテトラフルオロボレート)の配合量を、0.950重量部に代えた以外は、同様にして評価した。その結果を表1に示す。
 比較例3
 実施例1において、架橋促進剤(5-ベンジル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウムテトラフルオロボレート)の配合量を、1.050重量部に代えた以外は、同様にして評価した。その結果を表1に示す。
 比較例4
 実施例1において、架橋促進剤(5-ベンジル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウムテトラフルオロボレート)の配合量を、1.225重量部に代えた以外は、同様にして評価した。その結果を表1に示す。
 比較例5
 実施例1において、架橋促進剤(5-ベンジル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウムテトラフルオロボレート)を、ベンジルトリフェニルホスホニウムクロライド(デュポン・ダウ・エラストマー社製「キュラティブVC#20」;ベンジルトリフェニルホスホニウムクロライド33wt%とフッ素ゴム〔バイトンE-45〕67wt%のマスターバッチ 9重量部)に代えた以外は、同様にして評価した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1、2、3の結果から、5-ベンジル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウムテトラフルオロボレートが0.700~0.900重量部の範囲であれば、ホールディングトルク増加率が30%以下であり、バラツキの小さいストッパーが得られることがわかる。
 またクリーン性の指標であるLPCに関しても6.0k Count/cm以下であり、イオンクロマト検出イオン量は陰イオン、陽イオンの総量がそれぞれ0.3μg/cm以下であった。
 これに対して、5-ベンジル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウムテトラフルオロボレートを0.525重量部配合した場合(比較例1)には、促進剤が少ないため、加硫物が発泡し、成形できなかった。
 また、5-ベンジル-1,5-ジアザビシクロ[4.3.0]-5-ノネニウムテトラフルオロボレートを0.950重量部配合(比較例2)、1.050重量部配合(比較例3)、1.225重量部配合(比較例4)した場合は、配合量の増加に伴い、ホールディングトルクup率が悪化(増加)し、30%以下を満足できない。イオンクロマト検出イオン量およびLPCに関しても配合量の増加に伴い悪化(増加)し、0.3μg/cm以下、6.0k Count/cm以下を満足できないことがわかる。
 比較例5は、ベンジルトリフェニルホスホニウムクロライドを架橋促進剤として用いている。ホールディングトルク増加率、イオンクロマト、LPCなど、要求される性質は問題ないものの、架橋促進剤に塩素を含有しており、ハロゲン低減を達成できない。

Claims (7)

  1.  フッ素ポリマーからなるポリオール架橋可能なフッ素ゴムと、ポリオール系架橋剤と、カウンターイオンにBF を持つ塩とを含有し、
     前記ポリオール系架橋剤を前記フッ素ポリマー100重量部に対して、有効成分として、1.25~3.0重量部含有し、
     前記カウンターイオンにBF を持つ塩を、前記フッ素ポリマー100重量部に対して、0.700~0.900重量部含有することを特徴とするフッ素ゴム組成物。
  2.  請求項1記載のフッ素ゴム組成物を、予めポリオール架橋した後、次いで、200℃~300℃の温度範囲で0.1~48時間熱処理することにより、架橋体を得ることを特徴とするフッ素ゴム架橋体の製造方法。
  3.  請求項2記載の製造方法によって得られた架橋体は、ホールディングトルク増加率が平均して30%以下であることを特徴とするフッ素ゴム架橋体の製造方法。
  4.  請求項2記載の製造方法によって得られた架橋体は、リキッドパーティクルカウンター(残渣塵埃測定器)で測定した微細な塵埃が、6.0k Count/cm以下であることを特徴とするフッ素ゴム架橋体の製造方法。
  5.  請求項2記載の製造方法によって得られた架橋体は、イオンクロマトグラフ(残渣イオン測定器)で測定した陰イオン、陽イオンの総量がそれぞれ0.3μg/cm以下であることを特徴とするフッ素ゴム架橋体の製造方法。
  6.  請求項2記載の製造方法によって得られた架橋体は、
     (1)ホールディングトルク増加率が平均して30%以下であり、
     (2)リキッドパーティクルカウンター(残渣塵埃測定器)で測定した微細な塵埃が、6.0k Count/cm以下であり、
     且つ、(3)イオンクロマトグラフ(残渣イオン測定器)で測定した陰イオン、陽イオンの総量がそれぞれ0.3μg/cm以下であることを特徴とするフッ素ゴム架橋体の製造方法。
  7.  請求項2~6の何れかに記載の製造方法によって得られたフッ素ゴム架橋体を用いて形成された衝撃吸収ストッパー。
PCT/JP2009/064952 2008-09-04 2009-08-27 フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法 WO2010026912A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09811438.2A EP2322575B1 (en) 2008-09-04 2009-08-27 Fluororubber composition and process for producing crosslinked fluororubber
US13/062,295 US20110245423A1 (en) 2008-09-04 2009-08-27 Fluororubber composition and process for producing crosslinked fluororubber
CN200980143499.9A CN102203180B (zh) 2008-09-04 2009-08-27 氟橡胶组合物及氟橡胶交联体的制造方法
JP2010527764A JP5510328B2 (ja) 2008-09-04 2009-08-27 フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-226930 2008-09-04
JP2008226930 2008-09-04

Publications (1)

Publication Number Publication Date
WO2010026912A1 true WO2010026912A1 (ja) 2010-03-11

Family

ID=41797080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064952 WO2010026912A1 (ja) 2008-09-04 2009-08-27 フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法

Country Status (5)

Country Link
US (1) US20110245423A1 (ja)
EP (1) EP2322575B1 (ja)
JP (1) JP5510328B2 (ja)
CN (1) CN102203180B (ja)
WO (1) WO2010026912A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140163153A1 (en) * 2012-12-07 2014-06-12 Nok Corporation Fluororubber composition
JP2019085475A (ja) * 2017-11-06 2019-06-06 三菱電線工業株式会社 シール材用ゴム材料及びそれを用いたシール材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511777B (zh) 2017-12-22 2024-01-30 3M创新有限公司 具有含硅表面层的过氧化物固化的卤化弹性体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306454A (ja) * 1988-06-03 1989-12-11 Nippon Mektron Ltd フッ素ゴム組成物
WO2004094479A1 (ja) 2003-04-21 2004-11-04 Nok Corporation 低摩擦性フッ素ゴム架橋体の製造方法
WO2007058038A1 (ja) 2005-11-16 2007-05-24 Nok Corporation フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728147A (en) * 1980-07-25 1982-02-15 Daikin Ind Ltd Fluororubber and its composition
DE10112613B4 (de) * 2001-03-14 2007-04-12 Dilo Trading Ag Polymerelektrolyt für Lithium-Polymer-Batterien und dessen Verwendung
JP4412226B2 (ja) * 2005-05-11 2010-02-10 Nok株式会社 ポリオール架橋可能なフッ素ゴム組成物
JP5124945B2 (ja) * 2006-01-11 2013-01-23 Nok株式会社 フッ素ゴム架橋体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306454A (ja) * 1988-06-03 1989-12-11 Nippon Mektron Ltd フッ素ゴム組成物
WO2004094479A1 (ja) 2003-04-21 2004-11-04 Nok Corporation 低摩擦性フッ素ゴム架橋体の製造方法
WO2007058038A1 (ja) 2005-11-16 2007-05-24 Nok Corporation フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2322575A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140163153A1 (en) * 2012-12-07 2014-06-12 Nok Corporation Fluororubber composition
JP2014114349A (ja) * 2012-12-07 2014-06-26 Nok Corp フッ素ゴム組成物
US9441101B2 (en) 2012-12-07 2016-09-13 Nok Corporation Fluororubber composition
JP2019085475A (ja) * 2017-11-06 2019-06-06 三菱電線工業株式会社 シール材用ゴム材料及びそれを用いたシール材

Also Published As

Publication number Publication date
JPWO2010026912A1 (ja) 2012-02-02
EP2322575A1 (en) 2011-05-18
JP5510328B2 (ja) 2014-06-04
CN102203180A (zh) 2011-09-28
CN102203180B (zh) 2014-09-03
EP2322575B1 (en) 2014-11-26
EP2322575A4 (en) 2014-01-22
US20110245423A1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5061905B2 (ja) フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
CN111194333B (zh) 含氟共聚物组合物及金属橡胶层叠体
US7279530B2 (en) Method for producing low friction fluorine rubber crosslinked body
EP1972654B1 (en) Process for producing crosslinked fluororubber
JP5288071B2 (ja) フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
WO2010026912A1 (ja) フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
JP4528713B2 (ja) フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
EP2135912A1 (en) Crosslinked fluororubber for rotational sliding sealing and process for producing the same
JP2007169511A (ja) ゴム組成物及びフッ素ゴム架橋体の製造方法
JP2021063197A (ja) 含フッ素共重合体組成物、金属ゴム積層体及び金属ゴム積層体の製造方法
JP5422940B2 (ja) フッ素ゴム組成物及びフッ素ゴム架橋体の製造方法
JP4580335B2 (ja) フッ素ゴム架橋体の製造方法
JP2011132315A (ja) フッ素ゴム組成物及びシール材料
JPH02101487A (ja) フツ素ゴム被覆ロール
JPS63254172A (ja) 塗料用組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143499.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527764

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009811438

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13062295

Country of ref document: US