WO2004090635A1 - フォトマスクの製造方法及びフォトマスクブランク - Google Patents

フォトマスクの製造方法及びフォトマスクブランク Download PDF

Info

Publication number
WO2004090635A1
WO2004090635A1 PCT/JP2004/005139 JP2004005139W WO2004090635A1 WO 2004090635 A1 WO2004090635 A1 WO 2004090635A1 JP 2004005139 W JP2004005139 W JP 2004005139W WO 2004090635 A1 WO2004090635 A1 WO 2004090635A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
film
mask
chromium
etching
Prior art date
Application number
PCT/JP2004/005139
Other languages
English (en)
French (fr)
Inventor
Yasushi Okubo
Mutsumi Hara
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to KR1020127010641A priority Critical patent/KR101394715B1/ko
Priority to JP2005505328A priority patent/JPWO2004090635A1/ja
Priority to KR20147007705A priority patent/KR101511926B1/ko
Priority to KR1020057019196A priority patent/KR101161450B1/ko
Priority to KR1020117012354A priority patent/KR101135246B1/ko
Priority to DE112004000591.4T priority patent/DE112004000591B4/de
Publication of WO2004090635A1 publication Critical patent/WO2004090635A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/46Antireflective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/34Phase-edge PSM, e.g. chromeless PSM; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • H01L21/30655Plasma etching; Reactive-ion etching comprising alternated and repeated etching and passivation steps, e.g. Bosch process

Definitions

  • the present invention is directed to a photomask used in the manufacture of a semiconductor integrated circuit or a liquid crystal display device, and a manufacturing method thereof.
  • chromium-based materials are generally used as the light-shielding film in view of the processability of high-precision patterns.
  • Examples of such a photomask include a system LSI in which a memory and a logic circuit are mounted in a mixed manner, a D-RAM or a liquid crystal in which a memory cell or a pixel region and a peripheral circuit formed in a periphery thereof are mounted in a mixed manner.
  • Examples include photomasks that have a difference in density and that have three turns, which are used in the manufacture of display devices. You. In this photomask, for example, the aperture ratio of the light shielding pattern (the ratio of the portion where the light shielding film is not formed) differs between the memory region and the logic circuit region.
  • a desired resist pattern is first created on a chromium-based light-shielding film, and using this resist pattern as a mask, a mixed gas of Shiodin-based and Aqin-based is used.
  • the chrome-based light-shielding film is patterned by dry etching mainly using radicals. For example, if a resist pattern having the same dimension is formed in each region having a difference in aperture ratio of the light-shielding pattern and a chromium-based light-shielding film pattern having the same dimension is to be formed, a resist having the same dimension is formed.
  • Each light-shielding pattern formed by dry etching using the pattern as a mask exhibits different dimensions due to a difference in the aperture ratio of each region due to a so-called loading effect, and causes a problem that a variation in CD accuracy occurs.
  • the loading effect is a phenomenon in which the etching characteristics (etching rate, selectivity, etc.) change depending on the size of the etching area of the film to be etched, and as a result, the CD shift amount in the mask surface changes (for example, , Super LSI General Encyclopedia (Science Forum), page 865). More specifically, as the etching area increases, the etch rate decreases because the etchant utilization efficiency decreases (for example, see submicron lithography “General Technical Data”, p. 353). .
  • the pattern at etching is improved by improving the imbalance of the aperture ratio between the pattern peripheral area and the pattern center.
  • a method that does not lower the accuracy for example, refer to Japanese Patent Application Laid-Open No. 2001-183809). That is, this method is a method in which a peripheral aperture ratio adjustment pattern is provided in a non-irradiation area where light from a light source is not irradiated in an exposure step using a photomask.
  • a dummy etching pattern for dry etching rate correction is arranged in the 1S // ⁇ pattern region or outside the pattern exposure region for fabricating a shift mask.
  • phase shift masks in addition to a light-shielding film pattern formed on a transparent substrate called a pinary mask, which has been used for a long time.
  • Phase shift masks have a phase shift mask on the mask. By shifting the phase of light passing through a part of the phase shifter and the part adjacent to it by 180 °, mutual interference of light occurs at the boundary, thereby improving the contrast of the transferred image. is there.
  • Examples of the type of the phase shift mask include a Levenson type, a halftone type, and a chromeless type.
  • the phase shifter layer in the Levenson-type phase shift mask is usually formed by digging glass, or is formed of a film made of a material that shifts the phase. And a translucent phase shift material layer.
  • a light-shielding band is required to prevent exposure light from leaking to the periphery of the pattern area.
  • a chrome-based light-shielding film is usually used.
  • a blank having a light-shielding film formed on a phase-shifting material layer is usually used.
  • the phase-shifting material layer is etched using the light-shielding film pattern as an etching mask for the phase shift layer. It is manufactured by removing the light shielding film while leaving the light shielding film.
  • JP-B 6 3 - The 3 9 8 9 2 discloses, the use of a hard mask in, however, a has been described to improve the CD accuracy, in a situation where ⁇ reduction and ⁇ difference Pas evening over emissions as described above proceeds to suppress the loading effect, and a high CD accuracy It is not enough to simply use a hard mask to achieve it, and further technical improvements are needed.
  • the chromium-based light-shielding film has a predetermined light-shielding property (for example, OD (Optical density of 3.0 or more) is required, so there is a limit to thinning the light-shielding film, and as a result, there is a limit to the thinning of the resist, so there is a limit to the improvement in CD accuracy. .
  • OD Optical density of 3.0 or more
  • phase shift masks are more effective for miniaturizing patterns in semiconductor devices than binary masks.
  • the pattern is further miniaturized, stricter dimensional accuracy of the phase shift material layer is required.
  • the surface of the chromium-based light-shielding film is damaged during the etching of the phase shift material layer, and the particles generated thereby affect the etching of the phase shift material layer.
  • theta had narrowed the width of selection of etching conditions
  • the present invention has been made to solve the above problems. That is, the first object of the present invention is to have a global aperture ratio difference The problem is the variation in CD accuracy due to the flashing effect.) To provide a method that can suppress the pitting effect and obtain high CD accuracy when etching a high-precision pattern on a photomask by dry etching. Further, the second object of the present invention is to have a global difference in mouth opening rate in the mask surface (a variation in CD accuracy due to the loading effect becomes a problem). It is an object of the present invention to provide a method of manufacturing a photomask capable of forming a pattern having high CD accuracy, and a photomask plank used for the method.
  • a third object of the present invention is to provide a halftone type phase shift mask and a chromeless type phase shift mask having a phase shift layer having a global aperture ratio difference (variation in CD accuracy due to the loading effect becomes a problem).
  • An object of the present invention is to provide a method capable of suppressing a loading effect and obtaining high CD accuracy when etching a light-shielding film as an etching mask layer in the production of a semiconductor device. Disclosure of the invention
  • a method for manufacturing a photomask in which a chromium pattern having a global aperture ratio difference is formed on a translucent substrate in a plane on the translucent substrate.
  • a chromium film for forming the chromium pattern, a film for an etching mask made of an inorganic material having resistance to etching of the chromium film, and a photomask blank having at least a resist film are formed on a translucent substrate.
  • Preparing a resist pattern exposing and developing a desired pattern on the resist film to form a resist pattern, and performing a dry etching process on the etching mask film using the resist pattern as a mask to form an etching mask.
  • the photomask is characterized in that dry etching of the resist film is performed under conditions determined to cause unacceptable damage to the resist pattern when the chrome film is etched using the resist pattern as a mask.
  • the condition that the resist pattern is not allowed f is not acceptable because of the difference in dry etching. It is preferable that the conditions for enhancing the anisotropy and / or the conditions for increasing the etchant density of etching be used.
  • the photomask may be a binary mask having the chromium pattern on a translucent substrate.
  • the method may further include a step of removing the etching mask pattern after forming the chromium pattern. Further, the etching mask pattern may be left on the chromium pattern as a film having an antireflection function.
  • the photomask is a phase shift mask
  • a phase shift film is provided between the translucent substrate of the photomask blank and the chromium film
  • the step of forming the chromium pattern may include forming the phase shift pattern using the pattern as a mask.
  • the method may further include, after the step of forming the chromium pattern, forming a phase shift groove by patterning the light-transmitting substrate using the chromium pattern as a mask. .
  • a half on which a translucent phase shift film pattern having a global aperture ratio difference is formed on a translucent substrate in a plane on the translucent substrate In a method of manufacturing a photomask for manufacturing a tone-type phase shift mask, a semi-transparent phase shift film for forming the semi-transparent phase shift film pattern on a light-transmissive substrate; A step of preparing a chromium film for forming a chromium film, a film made of an inorganic material having resistance to etching of the chromium film, a film for a etching mask, and a photomask blank having at least a resist film; Exposure and development of the desired pattern Forming a etching pattern by performing a dry etching process on the etching mask film using the resist pattern as a mask, and performing the chromium dry etching using the etching mask pattern as a mask. Forming a semi-transparent phase shift film pattern by dry-etching the semi-
  • the etching mask pattern may be removed together with the dry etching of the semi-transmissive phase shift film.
  • the etching mask pattern may be left on the chromium pattern as a film having an antireflection function.
  • the translucent phase shift film may include an uppermost layer made of a material containing silicon and nitrogen and / or oxygen.
  • the semi-transparent phase shift film may be a film having a single-layer structure made of a material containing metal, silicon, and nitrogen or oxygen or oxygen.
  • a chromeless type in which a translucent phase shift pattern having a global aperture ratio difference is formed on a translucent substrate in a plane on the translucent substrate.
  • a method of manufacturing a photomask for manufacturing a phase shift mask comprising: a chromium film for forming the chromium pattern on a light-transmitting substrate; and an etching mask made of an inorganic material having resistance to etching of the chromium film. Preparing a photomask blank having at least a film for use and a resist film, forming a resist pattern by exposing and developing a desired pattern on the resist film, and using the resist pattern as a mask.
  • the method of manufacturing a photomask according to the 3 ⁇ aspect of the present invention may ⁇ also be peeled 13 with dry etching of the far-light substrate the E Tsuchingumasuku turn, having a reflection preventing function of the etching mask pattern that it may be left on the chrome / turn as film ffl
  • the photomask manufacturing method includes a step of removing the resist pattern remaining in the step of forming the etching mask pattern before the step of forming the chromium pattern. You may do it.
  • the etching mask film made of the inorganic material is preferably made of a material containing at least one of molybdenum, silicon, tantalum, and tungsten. In the step of forming the chromium pattern, it is preferable that the etching rate of the chromium film is 10 times or more as high as the etching rate of the etching mask pattern.
  • a photo as a material for manufacturing a halftone type phase shift mask in which a semi-transparent phase shift film pattern having a desired opening is formed on a translucent substrate.
  • a semi-transparent phase shift film, a chromium film, and an etching mask film made of an inorganic material having resistance to dry etching of the chromium film are sequentially laminated on a transparent substrate.
  • the translucent phase shift film may include an uppermost layer made of a material containing silicon and nitrogen and / or oxygen.
  • the semi-transmissive phase shift film may be a single-layer film made of a material containing metal, silicon, nitrogen, and Z or oxygen.
  • the etching mask for film, wherein the semi-translucent phase shift film may ⁇ the pus for etching mask comprising both exfoliation possible ⁇ in dry etching, may be a film having anti It protection .
  • the etching mask of the chromium film is used as an etching mask of the chromium film.
  • An etching mask pattern made of an inorganic material having resistance to etching is used.
  • these etch Yanto ⁇ a is carried out by reacting with an etching-one II to (C 1 2 If ⁇ E) a chlorine-based gas and an oxygen-containing gas (e.g., o 2 Dora Ye the Mogo gas), in the dry etching of the chromium film used as Chingugasu, the Delahaye Tsuchingu of ⁇ radical entity La radical is believed to react with the initiative, the radicals than ions as Etsuchanto It refers to a method of controlling the generation to a large amount and reacting them with the etching target.
  • the etching mask pattern is more effective than the chromium film pattern formed by dry etching under optimum conditions.
  • the chrome film pattern with the transferred pattern shape is less affected by the loading effect and has a smaller variation in CD accuracy than before by using a pattern with less variation in CD accuracy. Can be.
  • etching mask pattern for example, there are the following three methods.
  • the first method is to select a material for the inorganic etching mask pattern (inorganic etching mask layer) and the type and conditions of the dry etching gas, and a combination capable of performing dry etching in which ions mainly react.
  • Align the dry etching ⁇ up is ⁇ ions principal methods for the control so as ions many produce than radical as Etsu Chant, refers to a method of reacting it with etching object.
  • Ion-based dry etching As compared to dry etching radicals mainly because anisotropic etching tends to crack lines can be reduced CD shift of the pattern in the etching become ⁇ Further, dry etching ions entity, Anisotropic etching component ⁇ high cross-sectional shape ⁇ evening ⁇ formed and etched ⁇ used for such ion-based dry etching ⁇ gas is, for example, SF 6 , CF 4 3 ⁇ 4 C 2 F fluorine-based gas such as 63 ⁇ 4 CHF 3, these and H e H 2, N 23 ⁇ 4 a r, C 2 H 43 ⁇ 4 0 some mixed gas such as 2 C l 2, CH 2 C 1 of 2 such as chlorine-based gas or, these and H e, it is possible to use H 2, N 2, a r , a mixed gas such as C 2 H 4 theta
  • the etching selectivity to the resist film is selected.
  • the etching rate (the etching rate of the resist) of the chromium film pattern (chromium film) and the etching selectivity of the resist film under the optimum etching conditions of the chromium film can be exemplified.
  • the etching rate of the inorganic etching mask pattern material / the etching rate of the resist is preferably 2 or more.
  • a third method is to make the thickness of the etching mask pattern smaller than the thickness of the chromium film. Since the chromium film is basically etched by using the etching mask pattern as a mask, there is no need to consider the thickness of the resist pattern required for etching the chromium film. As a result, by making the etching mask pattern thinner, the thickness of the resist required for the etching can be reduced, and an etching mask pattern with high resolution can be obtained. That is, when the resist pattern is thin, a resist pattern having a better pattern cross section can be formed, and the CD accuracy of the etching mask pattern formed using the resist pattern can be improved.
  • dry etching of a chromium pattern is basically Can be performed using only a mask pattern, so that when etching the chromium film, the presence of a resist with only a small residual pattern of a thin resist or the absence of a resist can be achieved by performing a resist stripping process.
  • the ⁇ can be reduced when the is is the loading effect is believed that anti-Ken ⁇ of B3 ⁇ 4 radicals by the resist pattern because it can be, the thickness of the etch Ngumasuku layer is preferably set to 5 to 3 0 nm a
  • the first to third methods described above are not limited to the respective methods, and a plurality of methods may be simultaneously used.
  • the chromium film is conventionally subjected to dry etching by using the etching mask pattern having a pattern with a small influence of the loading effect and a good variation in CD accuracy as a mask.
  • the pattern accuracy (CD accuracy and its variation) of the chromium pattern is significantly improved compared to using a resist pattern as a mask, which deteriorates the pattern shape during dry etching.
  • dry etching of the chromium film is performed under conditions selected from conditions that cause unacceptable damage to the resist pattern when the chromium film is etched using the resist pattern as a mask.
  • Conditions that increase the damage to the resist pattern include conditions with high anisotropy of etching. That is, as described above, chromium is mainly etched by radicals which are considered to be an isotropic etching component. By controlling dry etching conditions, it is possible to increase ionicity. It is possible to enhance anisotropy.
  • condition for increasing the damage to the resist pattern there is a condition for increasing the etchant density.
  • a condition for increasing the etchant density there is a condition for increasing the etchant density.
  • a condition for reducing the loading effect there is a method of keeping the use efficiency of the etchant constant within the plane by adopting a dry etching condition that increases the density of the etchant.However, even under this condition, the resist pattern may be damaged.
  • This condition cannot be used in conventional etching of a chromium film using a resist pattern as a mask.
  • dry etching conditions for increasing the etchant density were never adopted because the resist pattern was significantly damaged.
  • the etching mask pattern serves as a mask, it is not necessary to consider the damage to the resist pattern, and such a condition can be adopted.
  • the condition of high anisotropy is preferably the condition of increasing ffl ionicity that can be obtained by using the condition of increasing ionicity in dry etching mainly composed of radicals.
  • the conditions are such that ionicity is increased to such an extent that ions and radicals are substantially equal.
  • various dry etching conditions for example, a pressure in a chamber, a gas flow rate, an RF power, etc. are controlled as a method of controlling an etchant when performing a dry etching mainly containing radicals with enhanced ionicity.
  • the thickness of the resist film depends on the relationship between the inorganic etching mask layer and the inorganic etching mask layer in the dry etching, and the film composition and thickness of the inorganic etching mask layer and the light shielding film are taken into consideration. May be.
  • the resist film is required to have a thickness such that the resist film remains at least at the same time as the completion of the etching of the inorganic etching mask layer (including over etching) or thereafter, and the etching of the light shielding film is completed (over).
  • the thickness may be such that the resist film remains until the etching). Specifically, it is preferably from 500 nm to 500 nm.
  • the resist pattern may be removed before forming the chromium film pattern.
  • the chromium film pattern is formed using only the inorganic etching mask pattern as a mask.
  • the chromium film has an etching selectivity to the inorganic etching mask pattern material of 10 or more in the radical-based dry etching (the etching rate of the light-shielding film is lower than that of the inorganic etching mask pattern material). from ⁇ Dora Ietsuchingu the 1 0-fold or higher) at which it is preferred ⁇ the chromium film Te, thickness of the inorganic Etsu quenching mask Pas evening Ichin depends on the thickness of the chromium film, but the At the same time as the end of the etching of the chromium film (including over-etching) or after that, the inorganic etching mask The film thickness is required to leave a mask pattern. Specifically, it is preferable that the thickness be 5 nm to 100 nm.
  • the inorganic etching mask layer is formed with a different thickness and thickness, the inorganic etching mask pattern can be used as an antireflection film without being removed. With this configuration, it is possible to effectively suppress the effect of multiple reflections on the projection system that occur during exposure.
  • an anti-reflection film may be formed between the light-transmitting substrate and the light-shielding film.
  • the light-shielding film the exposure light for example, K r F excimer laser, A r F excimer laser, or for Sehhikariko obtained by such an F 2 excimer laser, so as to exhibit a predetermined light shielding effect , Film composition and film thickness.
  • the wavelength of the KrF excimer laser is about 2488 nm
  • the wavelength of the ArF excimer laser is about 1933 nm
  • the wavelength of the F2 excimer laser is about 157 ⁇ m.
  • the light-shielding film may be any of a film having a uniform composition, and a gradient composition film in which the composition is modulated in the thickness direction.
  • the chromium film means a film composed mainly of chromium, and is not limited to a film of Cr alone, but CrO (which means containing chromium and oxygen. not intended to define the content. the same applies hereinafter.), C r N, C r C, C r CO 3 ⁇ 4 C r CN, C r ON 3 ⁇ 4 C r monolayer multiple ⁇ composition gradient layer, such as CON like also including It is a thing.
  • the dry etching gas used for etching the chromium film is usually A halogen-containing gas and an oxygen-containing gas are used.
  • Perogen-containing gas includes
  • C 1 2 is the most common, S i C 1 4, HC 1, CC 1 4, CHC 1 3 , and the like.
  • may be used a gas containing bromine iodine Qin
  • is a ® 3 ⁇ 4 o 2 ⁇ most one 3 ⁇ 4 complement as-containing gas, but co 23 ⁇ 4 CO, etc.
  • the method of manufacturing a photomask according to the method of the above structures, the method of forming the various pus limiting ⁇ -line, scan / such ⁇ type patch type, can be formed by using the evening device, permeable film formation
  • all the films on the optical substrate can be formed by the same device or by combining a plurality of devices.
  • the material of the inorganic etching mask pattern is a material containing at least one of molybdenum, silicon, tantalum and tungsten.
  • the material of the inorganic etching mask pattern for example, Mo alone, MoSi, MoSiO, MoSiN, MoSiON, Si alone, Si0, SiN, SiON, Ta alone, T a B, W, WS i, Ta Si, or amorphous carbon.
  • the present invention is not limited to a binary mask in which a light-shielding chromium pattern is formed on a light-transmitting substrate, and can be applied to a method of manufacturing a phase shift mask having a phase shift pattern etched using a chromium pattern as a mask. It is.
  • phase shift mask there is a halftone type phase shift mask in which a phase shift layer is semi-transparent.
  • the halftone phase shift mask s the single-layer type and the multilayer type and the like
  • the single-layer halftone phase shift is a translucent substrate on which a translucent phase shift pattern is formed, and a chromium film used as a mask layer when forming the translucent phase shift pattern.
  • Inorganic for pattern turn formation A system etching mask pattern can be used (Aspect A).
  • the inorganic etching mask pattern is formed with a thick composition so as to exhibit a phase shift effect, and the chromium cocoon is formed by a light beam.
  • a pus composition that exerts its effect ⁇ A two-layer phase shift mask can be manufactured by composing the pus thickness ( ⁇ B)
  • Another example of a two-layer / halftone phase shift mask has a translucent phase shift pattern composed of a phase shift layer and a thin chromium film on a substrate.
  • an inorganic etching mask pattern can be used when forming a thin chromium pattern used for forming a pattern of a lower phase shift film.
  • the multi-layer halftone phase shift mask has a translucent phase shift pattern having a multi-layer structure, and has a desired transmittance and a phase difference in combination of the multi-layers.
  • a substrate having a translucent phase shift pattern composed of a transmittance adjusting layer and a phase shift layer on a transparent substrate.
  • an inorganic etching mask pattern can be used when forming a pattern of the chromium pattern used for forming the pattern of the uppermost phase shift layer.
  • the chromium film pattern is formed with a film composition and a film thickness that exhibits a light semi-transmissive effect, and a part or all of the exposed light-transmitting substrate is exposed to a chromium pattern with a long-range light and a predetermined light.
  • a so-called digging-type phase shift mask can be manufactured by performing nutting so as to have a phase difference (Embodiment E).
  • a line & A so-called digging-type phase shift mask formed by etching one side of a translucent substrate that exposes a space-like chromium film pattern and has a predetermined phase difference from the other side of the translucent substrate (
  • a Repenson mask which can use a 13-type etching mask / evening to form a chrome / turn pattern to be used as a wisteria mask that digs into the substrate.
  • phase shift mask for example, 3 ⁇ 4 retardation on a transparent substrate ⁇ almost by half distance light chromium ⁇ Pa evening over emissions zero ⁇ b Pas evening Ichin and the auxiliary pattern near its forms is, Oite approximately 1 8 0 theta and a said mask theta is a mask substrate is dug auxiliary pattern so that the phase difference between the ⁇ b pattern is used as a mask in the etching of the substrate
  • An inorganic etching mask pattern can be used for forming a chromium pattern.
  • phase shift mask for example, an aperture pattern and an auxiliary pattern around the aperture pattern are formed on a transparent substrate by a semi-transparent phase shift film having a phase difference of about 180 °.
  • This is a mask in which the substrate of the opening pattern is dug so that the phase difference with the auxiliary pattern becomes approximately 180 °.
  • an inorganic etching mask pattern can be used to form a semi-transparent phase shift film and a chromium pattern used as a mask in etching a substrate or a substrate (aspect H).
  • phase shift mask is a so-called chromeless phase shift mask in which a light-transmitting substrate is etched so as to have a predetermined phase difference in a predetermined pattern.
  • the pattern formation of the chromium film used as a mask may be used an inorganic etching mask pattern ( ⁇ iota) theta
  • the inorganic etching mask / turn may be left as an antireflection film.
  • the use of an inorganic etching mask not only reduces the loading effect but also reduces the effect of etching the phase shift layer or the substrate.
  • FIG. 1 is a view for explaining a method of manufacturing a photomask according to the first and second embodiments of the present invention.
  • FIG. 2 is a schematic diagram of a resist pattern created in the example.
  • FIG. 3 is a view for explaining a method of manufacturing a photomask according to the third and fourth embodiments of the present invention.
  • a substrate made of quartz was mirror-polished and subjected to predetermined cleaning, thereby obtaining a light-transmitting substrate 1 having a size of 6 inches ⁇ 6 inches ⁇ 0.25 inches.
  • a light-shielding chromium film 2 was formed on the light-transmitting substrate 1 using an in-line sputtering apparatus in which a plurality of chromium (Cr) targets were placed in the same chamber (see HI (a)). ) ⁇
  • the above-mentioned CrN film, CrC film, and CrON film are continuously formed by using an in-line sputtering apparatus, and include these CrN, CrC, and CrON.
  • the light-shielding chromium film 2 is formed by continuously changing the components in the thickness direction.
  • a positive electron beam resist 4 (ZEP 7000: manufactured by Zeon Corporation) was applied onto the inorganic etching mask film 3 by spin coating so that the film thickness became 400 [nm] (FIG. 1). (c)).
  • a photomask blank 11 on which the light-shielding chromium film 2, the MoSiN-based inorganic etching mask film 3 and the resist 4 were sequentially formed on the translucent substrate 1 was prepared.
  • the created resist pattern 41 has an A portion and a B portion having the same pattern in the plane, and a region having a predetermined area including the A portion remains on the surface without removing the surrounding resist, and includes the B portion.
  • 3 ⁇ 4 mask same ⁇ (garden on a white part) of the predetermined area that 3 ⁇ 4 comparing the pattern of the resist removed by ⁇ for free-based etching mask on the surface 3 ⁇ appeared Ru ⁇ that ⁇ portion and ⁇ portion around It is possible to evaluate the CD characteristics in the case where pattern regions having global aperture ratio differences are mixed in the plane.
  • the dimensions of the obtained resist pattern 41 were measured at the A section and the B section, respectively, using CD-SEM (EMU-220) manufactured by Holon Corporation. Then, using the resist pattern 41 as a mask, the inorganic etching mask film 3 is subjected to dry etching mainly of ionicity using a mixed gas of SF6 and He under the condition of a pressure of 5 [mmTorr] to obtain an inorganic etching mask. A system etching mask pattern 31 was formed (see Fig. 1 (e)).
  • the resist pattern 41 and the inorganic-based etching mask pattern 31 as a mask, the light-shielding chromium film 2, using a mixed gas of C 1 2 0 2, pressure: at 3MmTo rr conditions, as long as the ionic Radical-based dry etching was performed to increase the ionicity (to increase the degree of ionicity to almost the same level as ions and radicals) to form a light-shielding chromium pattern 21 (see Fig. 1 (f)).
  • the resist pattern 41 and the inorganic etching mask pattern 31 were peeled off, and thereafter, a predetermined washing was performed to obtain a photomask 10 (see FIG. 1 (g)).
  • the dimensions of the obtained light-shielding chromium pattern 21 were measured at the A section and the B section using a CD-SEM in the same manner as the resist pattern 1.
  • the difference in the dimensional conversion difference between the A part and the B part was surprisingly 5 nm, and the photomask 10 was manufactured with extremely good CD characteristics. ⁇ it could be [second embodiment]
  • a method of manufacturing a photomask according to a second embodiment of the present invention will be described. Will be described.
  • the second embodiment is the same as the first embodiment except that the light-shielding chromium film 2 is etched using only the inorganic etching mask pattern 31 as a mask after the resist pattern 41 is removed.
  • a photomask was fabricated under the same conditions as described above.
  • a light-shielding chromium film 2 was formed on the light-transmitting substrate 1 using an in-line spa equipment in which a plurality of chromium (Cr) gates were arranged in the same champer (FIG. 1). (See (a)) s
  • a C film was formed.
  • the CrN film, CrC film, and CrON film described above were continuously formed by using an in-line sputtering device, and the light-shielding chromium containing CrN, CrC, and rON was used.
  • the film 2 is configured such that the component changes continuously in the thickness direction.
  • Si silicon
  • N 2 nitrogen
  • a MoSiN-based inorganic etching mask film 3 having a thickness of 92 [nm] was formed (see FIG. 1 (b)).
  • the created resist pattern 41 has an A portion and a B portion having the same pattern in the plane, and a region having a predetermined area including the A portion remains on the surface without removing the surrounding resist. In the region including the same predetermined area (white portion in the figure), the surrounding resist is removed, and the inorganic etching mask film 3 appears on the surface. In other words, by comparing the patterns of the portion A and the portion B, it is possible to evaluate the CD characteristics in a case where pattern regions having a large aperture ratio are mixed in the mask plane.
  • the dimensions of the obtained resist pattern 41 were measured in the A section and the B section using a CD-SEM (EMU-220) manufactured by Holon Corporation. Then, using the resist pattern 41 as a mask, the inorganic etching mask film 3 is subjected to dry etching mainly of ionicity using a mixed gas of SF 6 and He under the condition of a pressure of 5 [mmTorr]. An inorganic etching mask pattern 31 was formed (see Fig. 1 (e)).
  • the light-shielding chromium film 2 is formed using only the inorganic etching mask pattern 31 as a mask, using a mixed gas of C 12 and o 2 , under a condition of pressure: 3 mmTorr.
  • a light-shielding chrome pattern 21 was formed by dry etching mainly using a metal (see Fig. 1 (f)).
  • the first comparative example is a method of manufacturing a photomask without forming the inorganic etching mask film 3 in the method of manufacturing a photomask according to the first embodiment.
  • a substrate made of quartz was mirror-polished and subjected to predetermined cleaning, thereby obtaining a light-transmitting substrate 1 having a size of 6 inches ⁇ 6 inches ⁇ 0.25 inches.
  • a CrN film and a CrC film were formed on the light-transmitting substrate 1 by using an inline sputtering apparatus in which a plurality of chromium (Cr) targets were arranged in the same champer. And a light-shielding chromium film 2 made of a CrON film.
  • a resist 4 was applied on the light-shielding chromium film 2 by a spin coating method to a thickness of 400 [nm], as in the first embodiment.
  • an electron beam is drawn on the resist 4 in the same manner as in the first embodiment, developed, and a resist pattern 41 (0.4 m line & space) as shown in FIG.
  • the dimensions of the formed and obtained resist pattern 41 were measured in the A section and the B section using a CD-SEM.
  • the 3 ⁇ 4 resist pattern 41 as a mask, the light-shielding chromium film 2, using a mixed gas of C 1 2 0 2, pressure: at 8MmTo rr conditions, subjected to low conventional I on dry etching, Forming a light-shielding chrome pattern 21 was.
  • the resist pattern 41 is peeled off, and thereafter, to obtain a photomask 10 by performing a predetermined AraiKiyoshi ⁇
  • the resulting critical dimension at ⁇ its Tsumehate ⁇ portion were measured in the dimensions 3 ⁇ 4 3 ⁇ 4 Rejisutopa evening to over emissions 41 and Aircraft Te use a CD- S EM A portion and B portion and ⁇ portion of light-shielding chromium evening over emissions 21
  • the difference between the difference is 30 nm, which is significantly higher than that of the first embodiment in which the photomask was manufactured by forming the inorganic etching mask film 3.
  • the CD characteristics were also poor.
  • the suppression of the loading effect can be remarkably achieved, and the photomask having a very good CD characteristic of 1 nm which cannot be imagined conventionally can be obtained.
  • the photomask having a very good CD characteristic of 1 nm which cannot be imagined conventionally can be obtained.
  • a substrate made of quartz was mirror-polished and subjected to a predetermined cleaning to obtain a light-transmitting substrate 1 of 6 inches ⁇ 6 inches ⁇ 0.25 inches.
  • Si silicon
  • reactive sputtering is performed to obtain a MoS film having a thickness of 100 [nm].
  • i N system was formed the phase shift film 5 of semitransparent (Fig 3 (a)) 0
  • a C r N film and a C r N film were formed on the phase shift film 5 by using an in-line sputtering device in which a plurality of chromium (C r) targets were arranged in the same chamber.
  • a light-shielding chromium film 2 composed of an rC film and a CrON film was formed (FIG. 3 (b)).
  • the light-shielding chromium film 2 made of the semi-transparent phase shift pus 5 made of MoSiN-based material and the CrH material on the light-transmitting substrate 1 and the MoSiN-based material A halftone phase shift mask blank 11 (a halftone phase shift mask blank) in which an inorganic etching mask film 3 and a resist 4 were sequentially formed were prepared (FIG. 3 (d)).
  • the resist 4 is subjected to electron beam lithography and development in the same manner as in the first embodiment, and a resist pattern 41 (0.4 Am line & space) as shown in FIG. 2 is formed.
  • the dimensions of pattern 41 were measured in sections A and B using CD-SEM, respectively (Fig. 3 (e)).
  • the inorganic etching mask film 3 was dry-etched using the resist pattern 41 as a mask to form an inorganic etching mask pattern 31 (FIG. 3 (f)). .
  • the light-shielding chromium film 2 was dry-etched using the resist pattern 41 and the inorganic etching mask pattern 31 as a mask in the same manner as in the first embodiment to form a light-shielding chromium pattern 21 (FIG. 3 (g)). Then, the resist pattern 41, and an inorganic-based etching mask pattern 31, and a light-shielding chromium pattern 21 as a mask, the phase shift film 5, using a mixed gas of SF 6 and He, pressure: Doraietsuchin grayed at 5MmTo rr conditions To form a phase shift pattern 51 (FIG. 3 (h)).
  • the M0SiN-based inorganic etching mask pattern 31 is etched in a portion where the resist has receded by dry etching of the phase shift film 5, but until the phase shift film 5 is completely etched. Dry etching of the phase shift film 5 to protect the light-shielding chrome / turn from dry etching. Dust generated due to damage to the light-shielding chrome pattern due to dust can be reduced to a level at which there is no effect.
  • the dimensions of the obtained phase shift pattern 51 were measured in the A section and the B section using a CD-SEM similarly to the resist pattern 41.
  • the difference in the dimensional conversion difference between the A part and the B part is surprisingly 4 nm, and the eight-tone phase shift of extremely good CD characteristics is achieved. It was possible to manufacture a mask.
  • the fourth embodiment is similar to the third embodiment except that the light-shielding chromium film 2 is etched using only the inorganic etching mask pattern 31 as a mask after removing the resist pattern 41.
  • a photomask was manufactured under the same conditions as described above.
  • the substrate made of quartz was mirror-polished and subjected to a predetermined washing to obtain a light-transmitting substrate 1 of 6 inches ⁇ 6 inches ⁇ 0.25 inches.
  • Si silicon
  • pu thickness 100 [nm] by performing reactive spa and evening rings
  • a MoSiN-based semi-transparent phase shift film 5 was formed (FIG. 3 (a)).
  • a resist 4 was applied on the inorganic etching mask film 3 by a spin coating method to a thickness of 400 [nm] as in the first embodiment (FIG. 3 (d)). .
  • the semi-transparent phase shift film 5 made of MoSiN-based material, the light-shielding chromium film 2 made of Cr-based material, and the MoSiN-based material A halftone phase shift type photomask blank 11 (a halftone phase shift mask blank) in which a film 3 for an inorganic etching mask and a resist 4 were sequentially formed was prepared (FIG. 3 (d)).
  • the resist 4 is drawn with an electron beam in the same manner as in the first embodiment, and developed to form a resist pattern 41 (0.4 m line & space) as shown in FIG.
  • the dimensions of pattern 41 were measured at section A and section B using CD-SEM (Fig. 3 (e)).
  • the inorganic etching mask film 3 was dry-etched using the resist pattern 41 as a mask to form an inorganic etching mask pattern 31 (FIG. 3 (f)). .
  • the light-shielding chromium film 2 is dry-etched using only the inorganic etching mask pattern 31 as a mask to form the light-shielding chromium pattern 21.
  • the resist pattern 41 and the inorganic etching mask pattern 31 are peeled off, and then the light-shielding chromium pattern 21 near the transfer pattern area is peeled off (the exposure step using a photomask on the transfer pattern area is performed).
  • the light-shielding chrome pattern which should be left may be left as it is.
  • a halftone phase shift type photomask 10 is used. (Fig. 3 (i)).
  • the dimensions of the obtained phase shift pattern 51 were measured in the A section and the B section using CD-SEM similarly to the resist pattern 41.
  • the difference in the dimensional conversion difference between the A part and the B part is, surprisingly, 2 nm.
  • a tone phase shift mask could be manufactured.
  • the second comparative example is the manufacturing method of a photomask according to the third embodiment, Ru method der of manufacturing a photomask without forming an inorganic-based etching mask film 3 theta
  • the substrate made of quartz is mirror-polished and subjected to predetermined cleaning to obtain a 6-inch substrate.
  • a translucent substrate 1 having a dimension of 6 inches X 0.25 inches was obtained.
  • phase shift film 5 of the semi ⁇ of Mo S i N system having a thickness of 100 [nm] Q
  • a resist 4 was applied on the light-shielding chromium film 3 in the same manner as in the second embodiment by a spin coating method so as to have a thickness of 400 [nm].
  • the resist 4 is subjected to electron beam lithography and development in the same manner as in the second embodiment, and a resist pattern 41 (0.4 m line & space) as shown in FIG. 2 is formed.
  • the dimensions of the pattern 41 were measured in the A section and the B section using a CD-SEM.
  • the light-shielding chromium film 2 was dry-etched using the resist pattern 41 as a mask to form a light-shielding chromium pattern 21.
  • the resist pattern 41 was peeled off, and then the light-shielding chromium pattern 21 near the transfer pattern area was peeled off. Thereafter, a predetermined cleaning was performed to obtain the halftone phase shift type photomask 10.
  • the difference was 35 nm, and the CD characteristics were remarkably inferior to those of the second actual photomask produced by forming the inorganic etching mask film 3.
  • a chromium-less phase shift mask is manufactured based on the state before the inorganic etching mask in the second embodiment before the peeling, and further based on a luminous chromium chromium turn mask.
  • the substrate was etched to a depth of 180 nm where the phase difference was approximately 180 ° using the light-shielding chromium pattern 21 with the inorganic etching mask vane 31 in the photomask 10 as a mask.
  • This etching as Doraietsu Chingugasu, a mixed gas of C 1 2 0 2 and H e, was carried out under conditions of pressure 0. 3 P a.
  • the MoSiN-based inorganic etching mask pattern 31 is etched by dry etching of the substrate. Until the etching is completed, the light-shielding chromium pattern is formed by dry etching of the substrate.
  • the light-shielding chromium pattern is peeled off so that at least the light-shielding chromium film around the transfer area remains (a part of the light-shielding chrome pattern which should be left on the transfer pattern area in consideration of an exposure process using a photomask).
  • the light-shielding chromium pattern may be left behind), and after that, predetermined cleaning was performed to obtain a chromeless type phase shift mask.
  • the CD characteristics of the light-shielding chrome pattern 21 of the photomask 10 are transferred, and a chromeless phase shift mask having extremely good CD characteristics can be manufactured.
  • the inorganic etching mask is simultaneously etched in the etching of the substrate, there is no need to remove the inorganic etching mask.
  • the etching of the substrate and the etching of the inorganic etching mask were performed.
  • the material and film thickness of the inorganic etching mask pattern are selected so that the etching of the pattern finishes in the same etching time, the end point of the substrate etching can be detected by detecting the etching end point of the inorganic etching mask pattern. preferably in terms Do 3 ⁇ 4 and the cormorant and ⁇
  • a chromeless phase shift mask was manufactured by digging a substrate further using the light-shielding chromium film pattern as a mask from the state before the inorganic etching mask in the first comparative example was removed.
  • the substrate was etched to a depth of 180 nm at which the phase difference was approximately 180 °.
  • This etching as a dry etching gas, a mixed gas of CF 4 and 0 2, was carried out under conditions of pressure 0. 6 8 P a. At this time, roughness was confirmed on the surface of the digged portion of the substrate due to the influence of dust generated from damage to the light-shielding chromium pattern due to dry etching of the substrate.
  • the light-shielding chromium pattern is peeled off so that at least the light-shielding chromium film around the transfer area remains (in consideration of the exposure step using a photomask on the transfer pattern area, the light-shielding chromium pattern should be left in a portion where it is better to keep it).
  • predetermined cleaning was performed to obtain a chromeless type phase shift mask.
  • the CD characteristics were remarkably inferior to those of the fifth embodiment.
  • a mixed gas of SF 6 and He was used in dry etching mainly composed of ions, but by setting appropriate dry etching conditions, CF 4 C 2 F 6 , CHF 3 or the like of the gas or 3 ⁇ 4 these and H e, H 23 ⁇ 4 N 2, a r, even with C 2 H 4, 0 2, etc. mixed gas, the same effect can be obtained.
  • the inorganic etching mask film 0 S i N-based materials were used, but Mo alone, MoS i, MoS iO, MoS
  • a pattern having a large aperture ratio difference in the mask plane (variation in CD accuracy due to a loading effect becomes a problem) and having a high CD accuracy (over the entire mask) regardless of the region can be formed.
  • the present invention has a phase shift layer having a global aperture ratio difference (a variation in CD accuracy due to a loading effect is a problem).
  • a phase shift layer having a global aperture ratio difference a variation in CD accuracy due to a loading effect is a problem.
  • the loading effect can be suppressed, and high CD accuracy can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本発明は、ローディング効果によるCD精度の低下が問題となるフォトマスク(10)の製造に関し、ローディング効果を抑制するための手法を提供する。透光性基板(1)上に、透光性基板(1)上の面内において大域的な開口率差を有するクロムパターン(21)が形成されたフォトマスク(10)の製造方法において、クロム膜(2)のエッチングマスクとして、このクロム膜(2)のエッチングに対して耐性を有する無機系材料からなるエッチングマスクパターン(31)を用いる。レジストパターン(41)をマスクにクロム膜(2)をエッチングする場合に許容できない程度のレジストパターン(41)へのダメージが発生するような条件から選定された条件で、クロム膜(2)のドライエッチングを行う。

Description

フ才トマスクの製造方法 ¾ぴフォトマスクプランク 技 «分野
本発明は、半導体集積回路や液晶表示装置等の製造において使用されるフ ォトマスク©製造方法、 ¾ぴこれに用いられるフォトマスクプランクに闘す
背景技術
半導体集積回路や液晶表示装置等の高集積化等により、その製造工程中の 微細加工プロセスにおいて使用されるフォトマスクに対して、高いパターン 精度が要求されてきている。
現在用いられているフォトマスクは、透明基板上に遮光膜からなるパター ンを有するものであり、高精度なパターンの加工性の点から、遮光膜として 一般にクロム系材料が使用されている。
しかしながら、半導体集積回路の高集積化等によるフォトマスクのパター ンの高精度化の要求に対して、現行のレジストパターンをエッチングマスク として用いるクロム系遮光膜のパターン作成方法では、マスク面内において 大域的な開口率差を有するパターン領域が混在するフォトマスクについて、 ローディング効果による C D (critical dimension)精度のばらつきの問題 が生じることが明らかとなった。このマスク面内において大域的な開口率差 を有するパターン領域が混在するフォ卜マスクとしては、具体的には、 マス ク面内で複数種の機能デバイスを配置しているフォトマスクが挙げられる。 そのようなフォトマスクとしては、例えば、 メモリとロジック回路等を混在 して搭載するシステム L S Iや、ヌモリセル又は画素領域とその周囲に形成 した周辺回路等を混在して搭載する D— R AM又は液晶表示装置などの製 造に用いられる、蹿密差を有する Λ3ターンを有するフォトマスクが挙げられ る。 このフォトマスクでは、 例えば、 メモリ領域とロジック回路領域では遮 光パターンの開口率 (遮光膜が形成されていない部分の割合) が異なる。 こ のようなフォトマスクを作成するために現行では、まずクロム系遮光膜上に 所望のレジストパ ーンを作成し このレジストパ夕ーンをマスクとして 塩秦系と黢秦系の漏合ガス等を使用したラジカル主体のドライエッチング によりクロム系遮光膜をパターエングしている。 そして、 例えば、 遮光パ夕 ーンの開口率差を有する各領域にそれぞれ同一寸法を有するレジストパ夕 ーンを形成しそれぞれ同一寸法のクロム系遮光膜パターンを形成しようと した場合、同一寸法のレジストパターンをマスクとしてドライエッチングに より形成された各遮光パターンは、所謂ローディング効果により、各領域の 開口率の違いによって異なる寸法を示し、 C D精度にばらつきを生じるとい う問題が生じる。
ここで、 ローディング効果とは、被エッチング膜のエッチング面積の大小 により、 エッチング特性 (エッチング速度、 選択比など) が変化し、 その結 果マスク面内の C Dシフト量が変化する現象である (例えば、超 L S I総合 事典 (サイエンスフォーラム) 8 6 5頁参照)。 より具体的には、 エツチン グ面積が増加すると、 エツチャントの利用効率が低下するため、エッチング 速度が低下する現象である (例えば、 サブミクロン ·リソグラフィ 「総合技 術資料集」 3 5 3頁参照)。
一般的に、 クロムを含む材料からなる薄膜のドライエッチングには、 ドラ ィエッチングガスとして塩素と酸素が用いられ、塩化クロミルを生成させる ことによってクロムをエッチングする。 このエッチング反応においては、 ラ ジカルの寄与が大きいため、エッチング進行の方向性の制御が特に難しいと いう問題がある。
上述したローディング効果による C D精度の低下が問題となるフォトマ スクに閼する問題を解決する手段として、パターン周辺髋域とパターン中央 部との開口率の不均衡を改善することで、エッチング時のパターン精度を低 下させない方法がある(例えば、特開 2 0 0 1 - 1 8 3 8 0 9号公報参照)。 すなわち、 この方法は、 フォトマスクを使用した露光工程において光源から の光が照射されない非照射領域に、周辺開口率調整パターンを設ける方法で る ©
また 位翊シフトフォトマスクを 造する 1S、 / 夕ーン β光儀域内ある はパターン露光髖域外に ドライエッチング速度補正用のダミーエッチング パターンを配置する方法もある (例えば、特開平 8— 2 3 4 4 1 0号公報参 照) Θこの方法では ターン露光懷壤内のダミーエッチング / ターンには、 転写による解像限界以下のサイズのパターンが用いられている。
しかしながら、特開 2 0 0 1— 1 8 3 8 0 9号公報及ぴ特開平 8— 2 3 4 4 1 0号公報に記載の従来方法では、パターンの開口率に局所的な不均衡が ある場合 (すなわち異なる疎密度のパターン領域が混在する場合)、 それに 対応した調整パターンを設けるのは複雑であり、 また、 半導体集積回路の高 集積化への対応は困難であるという問題点がある。 また、本来必要の無いパ ターンを形成する必要があるため、フォトマスクの作成に使用されるパター ンデータ量の増加は避けられない。 このことは、近年の膨大な集積度の半導 体装置を作成する上で、 大きな問題となってしまう。
他のローディング効果を抑制する方法が記載された文献としては、米国特 許第 6, 4 7 2 , 1 0 7号に記載された方法がある。 この文献には、 遮光膜 のエッチングを T i、 T i W、 W、 S i 3 N 4、 S i 0 2、 T i N、 スピンォ ングラス等からなるハードマスク層を用いてエッチングすることによって、 ローディング効果が抑制できるということが記載されている。 この方法は、 上記のようなフォトマスクを製造する際に、特開 2 0 0 1— 1 8 3 8 0 9号 公報及び特開平 8— 2 3 4 4 1 0号公報のように本来必要の無いパターン を形成する必要はない。 尚、 米国特許第 6, 4 7 2 , 1 0 7号に記載された ような、ハードマスク層を用いて遮光膜をエッチングする方法自体は、 ドラ ィエッチング耐性の小さいレジストを用いたときの C D精度低下の問題を 解決する技術としても、 古くから提案されている (例えば、 特公昭 6 3 - 3 9 8 9 2号公報 4等参照)。 C D精度を向上させるという観点から見ると、 他のクロム膜パターンの C D精度を向上させる技術として、例えば、 クロム 膜及ぴその約 3倍の厚さを必要とされているレジスト膜を薄くすることに より C D精度が向上することが、特闢平 1 0— 6 9 0 5 5号公報に開示され て ?/¾る 0
ところで フ才トマスクとしては 古くから用いられて るパイナリマス クと称される透明基板上に遮光膜パターンを形成したもの以外に、位相シフ トマスクがある 位相シフトマスクは、 マスク上に位相シフ夕一部を設け 位相シフ夕一部とそれに隣接する部分を透過する光の位相を 1 8 0 ° ずら すことで、その境界部分において光の相互干渉を起こさせることにより、転 写像のコントラスト向上させるものである。位相シフトマスクの種類として は、 例えばレベンソン型、 ハーフトーン型、 クロムレス型等が挙げられる。 レベンソン型位相シフトマスクにおける位相シフタ一層は、通常ガラスを掘 りこむことにより形成されたもの、或いは位相をシフトする材料からなる膜 からなるものがあり、ハーフトーン型位相シフトマスクにおける位相シフタ 一層は、半透明な位相シフト材料層からなる。 これらの位相シフトマスクに おいては、パターン領域の周辺部に露光光が漏れるのを防止するための遮光 帯が必要とされる。 この遮光帯は通常クロム系の遮光膜が用いられる。 この ような遮光帯を有する位相シフトマスクの製造には、通常、位相シフト材料 層上に遮光膜が形成されたブランクが用いられる。 まず、遮光膜をエツチン グして所望の遮光膜パターンを形成した後、その遮光膜パターンを位相シフ ト層のエッチングマスクとして用いて位相シフト材料層をエッチングし、そ の後、少なくとも遮光帯となる遮光膜を残して遮光膜を除去することにより 製造される。 このような方法を用いることによって、 位相シフト材料層は、 レジストパターンをマスクにエッチングするよりも、高い C D精度が得られ るよつになった a
ところで、近年においては、半導体装置のさらなる高集積化が進んでおり、 その線幅も、 1 3 0 n mまでの線幅から、 9 0 n m、 6 5 n m、 さらには 4 5 n mの線幅が検討され、 パターンの高密度化も進んでいる。 そのため、 フ オトマスクのパターンも、 さらに微細化され、その C D精度についてもます ます厳しい要求値が求められている傾向にある。 また、パターンの多様化が 進んでいることから、 パターンの疎密差も大きくなるような傾向にある Θ 上述のように ¾ 上記米国特許黧 6 。 4 7 2 , 1 0 7号にほ ¾ 八一ドマスク を用いることでローディング ¾果^抑制されることが記載され、特公昭 6 3 - 3 9 8 9 2号公報には、ハードマスクを用いることで、 C D精度を向上さ せることが記載されている a しかしながら、上記のようなパ夕ーンの徽細化 及び蹿巒差が進む状況下において、 ローデイング効果を抑制し、かつ高い C D精度を得るには、単にハードマスクを用いたということでは不十分であり、 さらなる技術的向上が必要である。
一方で、 上述した状況の下、 C D精度の向上を考えた場合、 特開平 1 0— 6 9 0 5 5号公報に記載の方法においては、 クロム系遮光膜は、所定の遮光 性 (例えば O D (光学濃度) が 3 . 0以上) が必要であるため、 遮光膜の薄 膜化には限界があり、 その結果レジストの薄膜化にも限界があることから、 C D精度の向上に限界がある。
さらに、位相シフトマスクを製造する場合においては、エッチングマスク となる遮光膜のパターン形状が、位相シフト材料層のパターン形状にそのま ま反映されてしまうため、遮光膜パターンの寸法制御が非常に重要な役割を 果たす。 特に、 位相シフトマスクは、 バイナリマスクに比べ、 半導体装置に おけるパターンの微細化に効果的なマスクである。 そして、 近年において、 さらにパターンの微細化が進んでいることから、位相シフト材料層のさらに 厳しい寸法精度が要求されている。一方、位相シフト材料層のエッチング条 件によっては、クロム系遮光膜が位相シフト材料層のエッチングの際に表面 にダメージを受け、それにより発生したパーティクルが位相シフト材料層の エッチングに影響し、パターン欠陥として残存してしまうという間題もあり、 エッチング条件の選定の幅を狭めていた Θ
本発明は、 上記のような問題点を解消するためになされたものである。 すなわち、 本発明の第 1の目的は、 大域的な開口率差を有する (ローディ ング効果による C D精度のばらつきが問題となる) フォトマスクにおいて、 高精度なパターンをドライエッチングによりエッチングする際に、口一ディ ング効果を抑制し 高い C D精度を得ることができる方法を提供することに また本発明の第 2 ©目的は マスク面内にお て大域的な闘口率差を有す る (ローデイング効果による C D精度のばらつきが問題となる)、 前記領域 によらず(マスク全面で)高い C D精度を有するパターンを形成することが できるフォトマスクの製造方法、及びこれに用いられるフォトマスクプラン クを提供することにある。
さらに、 本発明の第 3の目的は、 大域的な開口率差を有する (ローデイン グ効果による C D精度のばらつきが問題となる)位相シフト層を有するハー フトーン型位相シフトマスク及びクロムレス型位相シフトマスクを製造す るにあたり、エッチングマスク層としての遮光膜のエッチングに際し、 ロー デイング効果を抑制し、高い C D精度を得ることができる方法を提供するこ とにある。 発明の開示
本発明の第 1の側面によれば、透光性基板上に、透光性基板上の面内にお いて大域的な開口率差を有するクロムパターンが形成されたフォトマスク の製造方法において、透光性基板上に、前記クロムパターンを形成するため のクロム膜、該クロム膜のエッチングに対して耐性を有する無機系材料から なるエッチングマスク用膜、及ぴレジスト膜を少なくとも有するフォトマス クブランクを準備する工程と、前記レジスト膜に所望のパターンを露光、現 像することによりレジストパターンを形成する工程と、前記レジストパター ンをマスクとして前記エッチングマスク用膜にドライエッチング処理を施 してエッチングマスクパターンを形成する工程と、前記エッチングマスクパ ターンをマスクとして、ドライエッチングを用いて前記クロム膜にドライエ ツチングを旌して前記クロムパターンを形成する工程と、 を含み、前記クロ ム膜のドライエッチングは、レジストパターンをマスクにクロム膜をエッチ ングする場合に許容できない程度のレジストパターンへのダメージが発生 するような条件から邐定された条件で行うことを特徵とするフォトマスク の製造方法 得られ ¾ Θ
上記本 ¾明の第 1 ©側面によるフォトマスクの製造方法において 前記レ ジストパターンをマスクにクロム膜をエッチングする場合にレジストパタ ーンへのダ ージ f許容できないような条件は、ドライエッチングの異方性 を高める条件及び/又はエッチングのエツチャント密度を高める条件であ ることが好ましい。 また、 前記フォトマスクが、 透光性基板上に前記クロム パターンを有するバイナリマスクであって良い。前記エッチングマスクパタ ーンを、クロムパターン形成後に剥離する工程を更に含んでも良い。さらに、 前記エッチングマスクパターンを、反射防止機能を有する膜として前記クロ ムパターン上に残存させても良い。前記フォトマスクが位相シフトマスクで あって、前記フォトマスクブランクの前記透光性基板と前記クロム膜との間 に位相シフト膜を有し、 かつ、 前記クロムパターンを形成する工程以降に、 前記クロムパターンをマスクとして前記位相シフトパターンを形成するェ 程を含んでも良い。前記フォトマスクが位相シフトマスクであって、前記ク ロムパターンを形成する工程以降に、 前記クロムパターンをマスクとして、 前記透光性基板をパターエングして位相シフト用溝を形成する工程を含ん で良い。
本発明の第 2の側面によれば、透光性基板上に、透光性基板上の面内にお いて大域的な開口率差を有する半透光性位相シフト膜パターンが形成され たハーフトーン型位相シフトマスクを製造するフォトマスクの製造方法に おいて、透光性基板上に、前記半透光性位相シフト膜パターンを形成するた めの半透光性位相シフト膜、前記クロムパターンを形成するためのクロム膜、 懿クロム膜のエッチングに対して耐性を有する無機系材料からなるェ、 チ ングマスク用膜、及びレジスト膜を少なくとも有するフォトマスクブランク を準備する工程と、前記レジスト膜に所望のパターンを露光、現像すること によりレジストパターンを形成する工程と、前記レジストパターンをマスク として前記エッチングマスク用膜にドライエッチング処理を施してエッチ ングマスクパターンを形成する工程と、前記エッチングマスクパターンをマ スクとして 前記クロム ドライエッチングを施して前記クロム 夕ーン を形成する工程と、前記クロムパターンをマスクとして前記半透光性位相シ フト膜にドライエッチングを施して半透光性位相シフト膜パターンを形成 する工程と、クロム膿パターンの所望の一部又は全部を除去する工程とを含 むことを特徵とするフォトマスクの製造方法が得られる。
上記本発明の第 2の側面によるフォトマスクの製造方法において、前記ェ ツチングマスクパターンを、前記半透光性位相シフト膜のドライエッチング と共に剥離しても良い。前記エッチングマスクパターンを、反射防止機能を 有する膜として前記クロムパターン上に残存させても良い。半透光性位相シ フト膜が、シリコンと窒素及び 又は酸素を含む材料からなる最上層を含ん でも良い。 半透光性位相シフト膜が、 金属、 シリコンと窒素及びノ又は酸素 を含む材料からなる単層構造の膜であって良い。
本発明の第 3の側面によれば、透光性基板上に、透光性基板上の面内にお いて大域的な開口率差を有する透光性位相シフトパターンが形成されたク ロムレス型位相シフトマスクを製造するフォトマスクの製造方法において、 透光性基板上に、前記クロムパターンを形成するためのクロム膜、該クロム 膜のエッチングに対して耐性を有する無機系材料からなるエッチングマス ク用膜、及びレジスト膜を少なくとも有するフォトマスクブランクを準備す る工程と、前記レジスト膜に所望のパターンを露光、現像することによりレ ジストパターンを形成する工程と、前記レジストパターンをマスクとして前 記エッチングマスク用膜にドライエッチング処理を施してエッチングマス クパターンを形成する工程と、前記エッチングマスクパターンをマスクとし て、前記クロム膿にドライエッチングを施して前記クロム Λターンを形成す る工程と、前記クロムパターンをマスクとして前記透光性基板にドライエツ チングを施して前記遠光性位相シフトパターンを形成する工程と、前記クロ ムパターンの所望の一部又は全部を除去する工程とを含むことを特徴とす るフォトマスクの製造方法が得られる。
上記本発明の第 3 ©側面によるフォトマスクの製造方法において、前記ェ ツチングマスク ターンを 前記遠光性基板のドライエッチングと共に剥 13 しても良い Θ また、 前記エッチングマスクパターンを 反射防止機能を有す る膜として前記クロム / ターン上に残存させても良い ffl
上記本発明の第 1〜第 3 ©側面によるフォトマスクの製造方法にお て 前記エッチングマスクパターンを形成する工程において残存したレジスト パターンを、前記クロムパターンを形成する工程の前に剥離する工程を有し ても良い。 前記無機系材料からなるエッチングマスク用膜は、 モリブデン、 シリコン、 タンタル、 タングステンのうち何れか一つを少なくとも含む材料 からなることが望ましい。前記クロムパターンを形成する工程において、前 記クロム膜のエッチング速度が前記エッチングマスクパターンのエツチン グ速度の 1 0倍以上であることが好ましい。
本発明の第 4の側面によれば、透光性基板上に、所望の開口を有する半透 光性位相シフト膜パターンが形成されたハーフトーン型位相シフトマスク を製造するための素材となるフォトマスクブランクにおいて、透明基板上に、 半透光性位相シフト膜と、 クロム膜と、 クロム膜のドライエッチングに対し て耐性を有する無機系材料からなるエッチングマスク用膜とが順次積層さ れていることを特徵とするフォトマスクブランクが得られる。
上記本発明の第 4の側面によるフォトマスクブランクにおいて、半透光性 位相シフト膜が、シリコンと窒素及び/又は酸素を含む材料からなる最上層 を含んでも良い。 半透光性位相シフト膜が、 金属、 シリコンと窒素及び Z又 は酸素を含む材料からなる単層構造の膜であっても良い。前記エッチングマ スク用膜が、前記半透光性位相シフト膜のドライエッチングにおいて共に剥 離可能な弒料であって良い Θ前記エッチングマスク用膿が、 反 It防止機能を 有する膜であって良い。
本発明においては、 クロム膜のエッチングマスクとして、 クロム膜のエツ チングに対して耐性を有する無機系材料からなるエッチングマスクパター ンを用いる。
通常ドライエッチングは、イオンとラジカルを発生させ、 これらのエッチ ヤントをエッチング対 と反応させることによって行われる^^一 II的に 塩素系ガス (倒えば C 1 2 ) と酸素系ガス (例えば o 2) の漏合ガスをドラ イエ、 チングガスとして用いたクロム膜のドライエッチングにおいては、ラ ジカルが主体となって反応すると考えられている Θラジカル主体のドライエ ツチングとは、エツチャントとしてイオンよりもラジカルが多く生成するよ うに制御し、 これらをエッチング対象物と反応させる方法を言う。 クロム膜 のドライエッチングにおいては、 ラジカルによる等方性エッチング成分や、 酸素ラジカル等によるレジストの等方性エッチングによる酸素ラジカルの 消費等が原因で、マスク面内の大域的な開口率差を有するマスクを製造する 際に、クロム膜のエッチング面積差及びレジストパターンの被覆率差によつ てローディング効果が生じると考えられる。一方、クロム膜のエッチングを、 この無機系材料からなるエッチングマスクパターンをマスクに行う場合、ェ ツチングマスクパターンとして、最適条件でドライエッチングして形成した クロム膜パターンに比べて、口一ディング効果の影響が少なく C D精度のば らつきが少ないパターンとすることによって、そのパターン形状が転写され たクロム膜パターンは、従来よりもローディング効果の影響が少なく C D精 度のばらつきが少ないパターンを得ることができる。このようなエッチング マスクパターンを得るためには、例えば、次のような 3つの方法が挙げられ る。
第 1の方法としては、無機系エッチングマスクパターン(無機系エツチン グマスク層)の材料とドライエッチングガスの種類及び条件の選定において、 イオンが主体となって反応するドライエッチングすることが可能な組み合 わせとする方法が攀げられる Θイオンが主体のドライエッチングとは、エツ チャントとしてラジカルよりもイオンが多く生成するように制御し、これを エッチング対象物と反応させる方法を言う。イオン主体のドライエッチング は、 ラジカル主体のドライエッチングと比較して、異方性のエッチングが行 われる傾向があるため、エッチングにおけるパターンの C Dシフト量を低減 することが可能となる Θ さらに、 イオン主体のドライエッチングは、 異方性 エッチング成分^高く れた斷面形状の Λ夕ーン^形成され エツチン グである Θ このような イオン主体のドライエッチングに用い δガスとして は、例えば、 S F 6、 C F C2F C H F 3等の弗素系ガス、 これらと H e H2、 N A r、 C 2H 02等の混合ガス 或 は C l 2、 C H2C 1 2等の 塩素系のガス又は、 これらと H e、 H2、 N2、 A r、 C 2H4等の混合ガスを 用いることができる Θ
第 2の方法として、無機系エッチングマスクパターン(無機系エッチング マスク用膜)の材料とドライエッチングガスの種類及ぴ条件の選定において、 前記レジスト膜とのエッチング選択比(無機系エッチングマスクパターン材 料のエッチング速度 Ζレジストのエッチング速度)が、 クロム膜の最適なェ ツチング条件におけるクロム膜パターン(クロム膜) とレジスト膜のエッチ ング選択比よりも大きくする方法が挙げられる。上記選択比を大きくするこ とによって、エッチングにおけるパターンの C Dシフト量を低減することが 可能となる。 この場合、 (無機系エッチングマスクパターン材料のエツチン グ速度/レジストのエッチング速度) が 2以上であることが好ましい。
第 3の方法としては、エッチングマスクパターンの膜厚を、 クロム膜の膜 厚よりも薄くする方法が挙げられる。 クロム膜は、 基本的には、 エツチンマ スクパターンをマスクにエッチングを行うため、クロム膜のエッチングに必 要なレジストパターンの厚さを考盧する必要がない。その結果、エッチング マスクパターンをより薄い膜とすることにより、そのエッチングに必要なレ ジストの膜厚を薄くすることが可能となり、解像性の高いエッチングマスク パターンが得られる。 即ち、 レジストパターンが薄いと、 より優れたパター ン斷面形状のレジストパターンを形成することができ、そのレジストパ夕一 ンを用いて形成したエッチングマスクパターンの C D精度も向上する。また、 上述のように、 クロムパターンのドライエッチングは、基本的にはエツチン グマスクパターンのみを用いて行うことができるため、クロム膜のエツチン グの際に、薄いレジストの残存パターンのみの少ないレジストの存在下、或 いはレジスト剥離工程を行うことによりレジストが無い状態とすることが できることから レジストパターンによる B¾ラジカルの消賢 厫园と考え られるローデイング効果がされに低減することができる Θ この場合、エッチ ングマスク層の膜厚は、 5〜3 0 n mとすることが好ましい a
尚 上述の第 1〜第 3の方法は それぞれの方法を採用するのみに限らず、 複数の方法を同時に採用してもよい。
このように、本発明においては、 このようなローディング効果の影響が少 なく C D精度ばらつきが良好なパターンを有するエッチングマスクパター ンをマスクとしてクロム膜にドライエッチング処理を施すことによって、従 来クロム膜のドライエッチング中にパターン形状が悪化してしまうレジス トパターンをマスクとして行うよりも、 クロムパターンのパターン精度(C D精度及びそのばらつき) が格段に向上する。
さらに、 本発明においては、 クロム膜のドライエッチングにおいて、 レジ ストパターンをマスクにクロム膜をエッチングする場合に許容できない程 度のレジストパターンへのダメージが発生するような条件から選定された 条件で行う。レジストパターンへのダメージが大きくなるような条件として は、 エッチングの異方性の高い条件が挙げられる。 即ち、 上述のように、 ク ロムは等方性エッチング成分と考えられるラジカルが主体のエッチングで あるが、 ドライエッチング条件を制御することによって、イオン性を高める ことが可能であり、 その結果、 異方性を高めることが可能である。 このよう に、異方性を高めることは、 レジストパターンにダメージを与え易くする条 件であるため、従来のレジストパターンをマスクとしたクロム膜のエツチン グにおいては採用することができなかった e しかしながら、本発明において は、エッチングマスクパターンがマスクとなるため、 レジストパターンへの ダメージを考慮する必要がなくなり、このような条件を採用することが可能 となった。異方性を高めることによって、パターン断面形状の垂直性が増す ばかりか、多少のローディング効果によりマスク面内においてエッチング速 度にばらつきが生じた場合であっても、パターンのサイドエッチングが進み 難いことから、 面内に C Dシフト量のばらつきが低減される β さらに、 クロ ム膜パターンの if面^ を ϋ直にす ¾た©に行うオーバーエッチングに対 しても パターンのサイドエツチング量が少ないため ¾ ォ一パーエッチング によるパターンの C Dシフト量を、従来に比べて著しく抑制することが可能 となる Θ
さらにまた レジストパターンへのダメージが大きくなるような条件とし ては、エツチャントの密度を増やすような条件が挙げられる。 ローデイング 効果を低減する方法として、エツチャントの密度を増やすようなドライエツ チング条件を採用することでエツチャントの利用効率を面内で一定に保つ 方法が考えられるが、 この条件についても、 レジストパターンにダメージを 与え易くする条件であるため、従来のレジストパターンをマスクとしたクロ ム膜のエッチングにおいては採用することができなかった。特に、異方性を 高めた条件において、エツチャントの密度を増やすようなドライエッチング 条件は、 レジストパターンへのダメージが著しく発生するため、絶対に採用 されなかった。本発明においては、エッチングマスクパターンがマスクとな るため、 レジストパターンへのダメージを考慮する必要がなくなり、 このよ うな条件を採用することが可能となった。
このように、 本発明においては、従来採用することができなかった、 ロー ディング効果を抑制し、 C D精度を向上させるクロム膜のドライエッチング 条件を採用することが可能となり、クロム膜のドライエッチング条件の制御 性の幅を広げることが可能となった。
尚、 クロム膜のドライエッチングにおいて、 異方性の高い条件とは、 ラジ カル主体のドライエッチングにおいて、イオン性を高める条件を用いること によって得ることができる ffl イオン性を高める条件としては、 好ましくは、 イオンとラジカルがほぼ同等となる程度までイオン性を高めた条件とする ことが好ましい。 本発明のドライエッチングにおいて、イオン性を高めたラジカル主体のド ライエッチングを行う際のエツチャントの制御方法として、種々のドライエ ツチング条件 (例えば、 チャンパ一内の圧力、 ガス流量、 R Fパワーなど) を制御す 方法 挙げられる Θすなお ¾ ¾ ガス種によってイオン主体或いは ラジカル主体のドライエッチング 浃定されるわけでは無く 同一種のガス を用いても、 ドライエッチング条件の制御により、 イオン主体 及びラジカ ル主体の両方のドライエッチングを行うことが可能である β また、エツチヤ ントの密度を高める方法としても、 種々のドライエッチング条件 (例えば、 チャンバ一内の圧力、 ガス流量、 R Fパワーなど) を制御する方法により行 うことができる。
尚、 本発明において、 レジスト膜の膜厚は、 ドライエッチングにおける前 記無機系エッチングマスク層との関係に依存するが、前記無機系エッチング マスク層および前記遮光膜の膜組成及び膜厚を考慮してもよい。前記レジス ト膜は、少なくとも前記無機系エッチングマスク層のエッチング完了(ォー バーエッチング含む)と同時あるいはそれ以後までレジスト膜が残る程度の 膜厚が必要とされ、前記遮光膜のェッチング完了(オーバーエツチング含む) 時までレジスト膜が残る程度の膜厚としても良い。具体的には、 5 0 n m〜 5 0 0 n mであることが好ましい。
前記レジストパターンは、前記クロム膜パターンの形成前に除去しても構 わない。 その場合、 前記クロム膜パターンは、 前記無機系エッチングマスク パターンのみをマスクとして形成する。
前記クロム膜は、前記ラジカル主体のドライエッチングにおいて、前記無 機系エッチングマスクパターン材料とのエッチング選択比が 1 0以上(遮光 膜のエッチング速度が、無機系エッチングマスクパターン材料のエッチング 速度と比較して 1 0倍以上)であることが好ましい Θ前記クロム膜とのドラ イエツチングの闘係から、 前記無機系エツチングマスクパ夕一ンの膜厚は、 前記クロム膜の膜厚に依存するが、前記クロム膜のエッチング終了(オーバ 一エッチング含む)と同時あるいはそれ以降まで前記無機系エッチングマス クパターンが残る程度の膜厚が必要とされ、具体的には、 5 n m〜 1 0 0 n mであることが好ましいが、 エッチングマスクの薄膜化を考慮した場合は、
5〜3 0 n mとすることが好ましい Θ
前記鏃 ¾系エ^チングマスクパ夕ーンほ クロム薦 / 夕一ンを形成後 ライエ、 チング又はゥエツトェ、 チング等の方法により除去してもよ Θま た、反射防止効果を発揮するような膜組成及び膜厚で前記無機系エッチング マスク層を構成した場合には 前記無機系エッチングマスクパターンは 除 去せずに反射防止膜として用いることも可能である。 この構成により、 露光 の際に生じる投影系での多重反射の影響を、効果的に抑制することが可能と なる。
また、前記透光性基板と前記遮光膜との間に、反射防止膜を形成しても良 い。 この構成により、 露光の際に生じる照明系での多重反射の影響を、 効果 的に抑制することが可能となる。 この場合、無機系エッチングマスクパター ンを除去する工程が不要となるという点で好ましい。
本発明において、 前記遮光膜は、 露光光例えば、 K r Fエキシマレーザ、 A r Fエキシマレーザ、 又は F2エキシマレーザなどにより得られる接光光 に対して、所定の遮光効果を発揮するように、膜組成および膜厚が構成され てなる。 ここで、 K r Fエキシマレーザの波長は約 2 4 8 n m、 A r Fェキ シマレーザの波長は約 1 9 3 n m、 F 2エキシマレーザの波長は約 1 5 7 η mである。
本発明において、 前記遮光膜は、 それぞれ均一な組成の膜、 膜厚方向で順 次組成変調する傾斜組成膜、 のいずれでも良い。
尚、前記クロム膜とは、 クロムが主体となって構成された膜であることを 意味し、 C r単体の膜に限らず、 C r O (クロム、酸素を含むことを意味し、 それらの含有率を規定するものではない。 以下、 同様。)、 C r N、 C r C、 C r C O ¾ C r C N, C r O N¾ C r C O Nなどの単層 複數層 組成傾斜 膜等も含むものである。
クロム膜のエッチングにおいて用いられるドライエッチングガスは、遛常、 ハロゲン含有ガスと酸素含有ガスが用いられる。 Λロゲン含有ガスとしては、
C 12が最も一般的であるが、 S i C 14、 HC 1、 CC 14、 CHC 13等 が挙げられる。 この他、 臭素 ヨウ秦を含むガスも用いることができる β
† ®素含有ガスとしてほ ¾ o2 ^最も一 ¾的であるが、 co CO等で
¾>よい
上記各構成の方法によるフォトマスクの製造方法において、各種膿の形成 方法は限定されない Θ インライン型、 梭葉式 パッチ式などのス /、 夕装置 を用いて形成可能であり、膜の形成を透光性基板上の全ての膜を同一の装置 で、あるいは複数の装置を組み合わせて形成することができるのは勿論であ る。
また、前記無機系エッチングマスクパターン(無機系エッチングマスク層) の材料は、 モリブデン、 シリコン、 タンタル及びタングステンのうちいずれ か 1つを少なくとも含む材料からなるフォトマスクの製造方法が提供され る。
前記無機系エッチングマスクパターンの材料として、例えば Mo単体、 M oS i、 MoS i O、 MoS iN、 MoS i ON、 S i単体、 S i 0、 S i N、 S i ON、 T a単体、 T a B、 W、 WS i、 T a S i、 或いはァモルフ ァスカーボンなどが挙げられる。
本発明においては、透光性基板上に、遮光性クロムパターンが形成された バイナリマスクに限らず、クロムパターンをマスクとしてエッチングされる 位相シフ卜パターンを有する位相シフトマスクの製造方法にも適用可能で ある。
位相シフトマスクとしては、位相シフト層を半透光性としたハーフトーン 型位相シフトマスクがある。ハーフトーン型位相シフトマスクとしては、単 層型と多層型が挙げられる s
単層型ハーフトーン型位相シフトは 透光性基板上に、半透明性位相シフ トパターンが形成されたものであり、半透明性位相シフトパターンを形成す る際にマスク層として用いられるクロム膜パターンの ターン形成に、無機 系エッチングマスクパターンを用いることができる (態様 A)。
また、多層型ハーフトーン型位相シフトマスクの製造方法としては、例え ぱ 前記無機系エッチングマスクパターンを位相シフト効果を発揮するよう な濃組成 厚で稱成し かつ 前記クロム膿 クーンを光半 S過効果を 発揮するような膿組成 ¾ぴ膿厚で構成することで 二層型位相シフトマスク を製造することができる (饞様 B )
また、二層型/、ーフトーン型位相シフトマスクの他の例として、遴明基板 上に位相シフト層と薄いクロム膜とからなる半透明位相シフトパターンを 有するものがある。 この例の場合、下層の位相シフト膜のパターン形成に用 いられる薄いクロムパターンのパターン形成の際に、無機系エッチングマス クパターンを用いることができる。 この場合、無機系エッチングマスクパタ ーンを、遮光機能を有するように選定し、遮光機能を必要とする部分につい て無機系エッチングマスクパターンが残るように部分除去することが可能 である (態様 c )。
また、多層型ハーフトーン型位相シフトマスクは、半透明位相シフトパタ ーンが多層構造であり、多層合わせて所望の透過率と位相差を有するもので あり、 二層型の例としては、 透光性基板上に、 透過率調整層と位相シフト層 からなる半透明位相シフトパターンを有するものがある。 この例の場合は、 最上層の位相シフト層のパターン形成に用いられるクロムパターンのパ夕 ーン形成の際に、 無機系エッチングマスクパターンを用いることができる
(態様 D)。
また、本発明においては、所謂基板掘り込み型の位相シフトマスクを製造 することも可能である。
例えば、前記クロム膜パターンを光半透過効果を発揮するような膜組成及 び膜厚で構成し、表出している透光性基板の一部あるいは全部を、 クロムパ ターンの遠過光と所定の位相差を有するようにェ、ヌチングすることにより、 所謂掘り込み型の位相シフトマスクを製造することができる (態様 E )。 また、所謂基板掘り込み型の位相シフトマスクの他の例として、 ライン & スペース状のクロム膜パターンの表出しかつ隣接している透光性基板の一 側を他側と所定の位相差を有するようにエッチングして形成された、所謂掘 り込み型の位相シフトマスク (レペンソンマスク) があり、基板を掘り込む 藤のマスクとして使用するクロム / ターンのパターン形成にお て 無 13系 エッチングマスク / 夕ーンを用 ることができる (饑欉
また、 位相シフトマスクの他の倒として、 例えば、 透明基板上に ¾ 位相差 ^ほぼゼロの半遠光性クロム臘パ夕ーンにより闢ロパ夕一ンとその周辺の 補助パターンとが形成され、懿麗ロパターンとの位相差がほぼ 1 8 0 Θ とな るように該補助パターンの基板が掘り込まれたマスクである Θこのマスクに おいては、基板のエッチングにおいてマスクとして使用されるクロムパター ンのパターン形成に無機系エッチングマスクパターンを用いることができ る。 この場合、 無機系エッチングマスクパターンを、 遮光機能を有するよう に選定し、遮光機能を必要とする部分について無機系エッチングマスクパタ ーンが残るように部分除去することが可能である (態様 G)。
また、 位相シフトマスクの他の例として、 例えば、 透明基板上に、 位相差 がほぼ 1 8 0 ° の半透光性位相シフト膜により、開口パターンとその周辺の 補助パターンとが形成され、該補助パターンとの位相差がほぼ 1 8 0 ° とな るように該開口パターンの基板が掘り込まれたマスクである。このマスクに おいては、半透光性位相シフト膜及びノ又は基板のエッチングにおいてマス クとして使用されるクロムパターンのパターン形成に無機系エッチングマ スクパターンを用いることができる (態様 H)。
また、 位相シフトマスクの他の例として、 例えば、 透光性基板が、 所定の パターン状に所定の位相差を有するようにエッチングされた所謂クロムレ スタイプの位相シフトマスクがあり、基板のエッチングの際にマスクとして 用いられるクロム膜のパターン形成に、無機系エッチングマスクパターンを 用いることができる (饞檬 Ι )Θ
なお、 上記態様 A, D , E, F, H, Iにおいては、 無機系エッチングマ スク / ターンは、 反射防止膜として残しても良い。 特に、ハーフトーン型位相シフトマスクとクロムレス型位相シフトマスク においては、無機系エッチングマスクを用いることで、 ローデイング効果の 低減が園れるばかりでなく、位相シフト層又は基板のエッチングの際に、無
13 エッチン マスク クロム K©傺 β層として するた ¾¾クロム 表面に受けるダヌージを低減し それにより発生したパーテイクルが位相シ フト材料層のエッチングにより転写されて パターン欠酷として残存してし まうという問題を著し《低減すること 可能である β 図面の簡単な説明
図 1は本発明の第 1および第 2実施例に係るフォトマスクの製造方法を 説明するための図である。
図 2は実施例で作成したレジストパターンの模式図である。
図 3は本発明の第 3および第 4実施例に係るフォトマスクの製造方法を 説明するための図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の実施の形態について説明するが、本発明は これらの実施例に限定されるものではない。
〔第 1実施例〕
図 1を参照して、本発明の第 1実施例によるフォトマスクの製造方法につ いて説明する。
まず、石英からなる基板を鏡面研磨し所定の洗浄を施すことにより、 6ィ ンチ Χ 6インチ Χ 0 . 2 5インチの透光性基板 1を得た。
次いで、 同一のチャンバ内に複数のクロム (C r ) ターゲットが配置され たィンラインスパッタ装置を用いて、透光性基板 1の上に遮光性クロム膜 2 を成膜した (H I ( a ) 参照) Θ
具体的には、 まず、 アルゴン (A r ) と窒素 (N2) の混合ガス雰囲気 (A r : N2= 7 2 : 2 8 [体積%]、 圧力 0 . 3 [ P a ]) 中で、 反応性スパヅ タリングを行うことにより、 膜厚 20 [nm] の C r N膜を成膜した。
続けて、 アルゴン (A r) とメタン (CH4) の混合ガス雰囲気 (A r : CH4= 9 6. 5 : 3. 5 [体積%L圧力 0. 3 [P a]) 中で、 反応性ス ^夕リングを行うことにより C rN膜の上に 膿厚 37 [nm] ©C r C膿を成膿した Θ
続けて、 アルゴン(A r) と一酸化窒素(NO)の混合ガス雰囲気(A r : NO= 8 7. 5 : 1 2. 5 [律積%] 圧力 0. 3 [P a]) 中で 反応性ス パッ夕リングを行うことにより、 C rN膜の上に、 膜厚が 1 5 [nm] の C r ON膜を成膜した a
以上の C rN膜、 C r C膜、 及び C r ON膜は、 インラインスパッタ装置 を用いて連続的に成膜されたものであり、 これら C r N、 C r C, 及び C r ONを含んでなる遮光性クロム膜 2は、その厚み方向に向かって当該成分が 連続的に変化して構成されている。
次いで、遮光性クロム膜 2の上に、 モリブデン(Mo) とシリコン(S i ) の混合夕一ゲット (Mo : S i = 20 : 80 [mo 1 %]) を用いて、 アル ゴン (A r ) と窒素 (N2) の混合ガス雰囲気 (A r : N2= 1 0 : 90 [体 積%]、圧力 0. 3 [P a])中で、反応性スパッタリングを行うことにより、 膜厚が 92 [nm]の Mo S i N系の無機系エッチングマスク用膜 3を成膜 した (図 1 (b) 参照)。
次いで、無機系エッチングマスク用膜 3の上に、ポジ型電子線レジスト 4 (ZEP 7000:日本ゼオン社製) をスピンコート法により膜厚が 40 0 [nm] となるように塗布した (図 1 (c) 参照)。
以上により、 透光性基板 1上に、 遮光性クロム膜 2と、 Mo S i N系の無 機系エッチングマスク用膜 3と、レジスト 4が順次形成されたフォトマスク ブランク 1 1を準備した。
次いで、 レジスト 4に对し、 日本電子社製の J BX 9 000によって電子 線描画し、 現像して、 図 2に示すようなレジストパターン 4 1 (0. μ.πι のライン &スペース) を形成した (図 1 (d) 参照)。 作成したレジストパターン 41は、面内に同一パターンからなる A部と B 部を有し、 A部を含む所定面積の領域は周囲のレジストが除去されずに表面 に残っており、 B部を含む同じ所定面積の髖域 (園上白色の部分) は周囲の レジスト 除去されて表面に無 系エッチングマスク用膽 3 ^現れて る Θ つまり Α部と Β部のパターンを比較す ¾ことで ¾ マスク面内にお て大域 的な開口率差を有するパターン領域が混在する場合の CD特性を評価する ことができる。
そして、得られたレジストパターン 41の寸法を、ホロン社製 CD— SE M (EMU— 220) を用いて A部おょぴ B部においてそれぞれ測定した。 次いで、 レジストパターン 41をマスクにして、無機系エッチングマスク 用膜 3を、 SF6と Heの混合ガスを用い、 圧力: 5 [mmT o r r] の条 件にてイオン性主体のドライエッチングを行い、無機系エッチングマスクパ ターン 31を形成した (図 1 (e) 参照)。
次いで、レジストパターン 41及び無機系エッチングマスクパターン 31 をマスクにして、 遮光性クロム膜 2を、 C 12 と 02の混合ガスを用い、 圧 力: 3mmTo r rの条件にて、 イオン性を限りなく高めた (=イオンとラ ジカルがほぼ同等となる程度までイオン性を高めた)ラジカル主体のドライ エッチングを行い、遮光性クロムパターン 21を形成した(図 1 (f)参照)。 次いで、レジストパターン 41及び無機系エッチングマスクパターン 31 を剥離し、しかる後、所定の洗诤を施してフォトマスク 10を得た(図 1 (g) 参照)。
そして、得られた遮光性クロムパターン 21の寸法を、 レジストパターン 1と同様に CD— S EMを用いて A部おょぴ B部においてそれぞれ測定 した。 その結果、 A部と B部における寸法変換差 (レジストパターン 41と 遮光性クロムパターン 21の寸法差)の差は、驚くべきことに 5 nmであり、 極めて良好な CD特性でフォトマスク 10を製造することができた Θ 〔第 2実施例〕
図 1を参照して、本発明の第 2実施例によるフォトマスクの製造方法につ いて説明する。 第 2実施例は、 第 1実施例において、 レジストパターン 41 を除去後に、無機系エッチングマスクパターン 31のみをマスクにして、遮 光性クロム膜 2のエッチングを行ったこと以外は、第 1実施倒と同じ条件で フォトマスクを S造した。
詳しくは まず 石英からなる基板を鱸面研磨し所定の洗狰を施すことに より、 6インチ X6インチ X0. 25インチの透光性基板 1を得た Θ
次いで、 同一のチャンパ内に複数のクロム (C r) 夕一ゲヅトが配置され たインラインスパヅ夕装置を用いて、透光性基板 1の上に遮光性クロム膜 2 を成膜した (図 1 (a) 参照) s
具体的には、 まず、 アルゴン (Ar) と窒素 (N2) の混合ガス雰囲気 (A r : N2= 72 : 28 [体積%]、 圧力 0. 3 [P a]) 中で、 反応性スパッ 夕リングを行うことにより、 膜厚 20 [nm] の CrN膜を成膜した。 続けて、 アルゴン (Ar) とメタン (CH4) の混合ガス雰囲気 (Ar :
CH4=96. 5 : 3. 5 [体積 ]、 圧力 0. 3 [Pa]) 中で、 反応性ス パッタリングを行うことにより、 C r N膜の上に、 膜厚 37 [nm] の C r
C膜を成膜した。
続けて、 アルゴン(Ar) と一酸化窒素(NO)の混合ガス雰囲気(Ar : NO=87. 5 : 12. 5 [体積 ]、 圧力 0. 3 [P a]) 中で、 反応性ス パッタリングを行うことにより、 C rN膜の上に、 膜厚 15 [nm] のじ r ON膜を成膜した。
以上の C rN膜、 C rC膜、 及ぴ Cr ON膜は、 インラインスパッ夕装置 を用いて連続的に成膜されたものであり、 これら CrN、 C rC, r ONを含んでなる遮光性クロム膜 2は、その厚み方向に向かって当該成分が 連続的に変化して構成されている。
次いで、遮光性クロム膜 2の上に、 モリブデン (Mo) とシリコン(S i ) の混合夕ーゲヅト (Mo : S i = 20 : 80 [mo 1 ]) を用いて、 アル ゴン (A r ) と窒素 (N2) の混合ガス雰囲気 (A r : N2= 10 : 90 [体 積%]、圧力 0. 3 [P a])中で、反応性ス / ッ夕リングを行うことにより、 膜厚 92 [nm]の MoS i N系の無機系エッチングマスク用膜 3を成膜し た (図 1 (b) 参照)。
次いで、 無機系エッチングマスク用膜 3の上に、ポジ型電子線レジスト 4 (ZEP? 000 =日本ゼオン社 ) をスピンコート法により膿厚 400 [nm] とな δように塗布した (國1 (c) 参照)。
以上により 透光性基板 1上に、 遮光性クロム膜 2と、 Mo S i N系の無 機蘿エッチングマスク用膜 3と、レジスト 4が順次形成されたフォトマスク プランク 11を準備した Θ
次いで、 レジスト 4に対し、 日本電子社製の J ΒΧ 9000によって電子 線描画し、 現像して、 図 2に示すようなレジストパターン 41 (0. 4 n のライン &スペース) を形成した (図 1 (d) 参照)。
作成したレジストパターン 41は、面内に同一パターンからなる A部と B 部を有し、 A部を含む所定面積の領域は周囲のレジス卜が除去されずに表面 に残っており、 B部を含む同じ所定面積の領域(図上白色の部分) は周囲の レジストが除去されて表面に無機系エッチングマスク用膜 3が現れている。 つまり、 A部と B部のパターンを比較することで、 マスク面内において大域 的な開口率差を有するパターン領域が混在する場合の CD特性を評価する ことができる。
そして、得られたレジストパターン 41の寸法を、ホロン社製 CD— S E M (EMU- 220) を用いて A部および B部においてそれぞれ測定した。 次いで、 レジストパターン 41をマスクにして、無機系エッチングマスク 用膜 3を、 SF6と Heの混合ガスを用い、 圧力: 5 [mmT o r r ] の条 件にてイオン性主体のドライエッチングを行い、無機系エッチングマスクパ ターン 31を形成した (図 1 (e) 参照)。
次いで、 レジストパターン 41を除去した後、無機系エッチングマスクパ ターン 31のみをマスクにして、 遮光性クロム膜 2を、 C 12 と o2の混合 ガスを用い、 圧力: 3mmTo r rの条件にて、 イオン性を限りなく高めた (=イオンとラジカルがほぼ同等となる程度までイオン性を高めた)ラジカ ル主体のドライエッチングを行い、 遮光性クロムパターン 21を形成した (図 1 (f) 参照)。
次いで、 無機系エッチングマスクパターン 31を剥離し ¾ しかる後 所定 の洗猙を鎰してフォトマスク 10を得た (園 1 (g) 獺) Θ
そして 得られた遮光性クロムパターン 21の寸法を、 レジストパターン 41と同様に CD— S EMを用いて A部おょぴ B部においてそれぞれ測定 した Θ その赣果 Α部と Β部におけ S寸法変換差 (レジスト / 夕一ン 41と 遮光性クロムパターン 21の寸法差) の差は、極めて驚くべきことに 1 nm であり、極めて良好な CD特性でフォトマスク 10を製造することができた。 〔第 1比較例〕
第 1比較例は、第 1実施例によるフォトマスクの製造方法において、無機 系エッチングマスク用膜 3を形成せずにフォトマスクを製造する方法であ る。
まず、石英からなる基板を鏡面研磨し所定の洗浄を施すことにより、 6ィ ンチ X6インチ X 0. 25インチの透光性基板 1を得た。
次いで、第 1実施例と同様の方法で、同一のチャンパ内に複数のクロム(C r)ターゲットが配置されたインラインスパッタ装置を用いて、透光性基板 1の上に C rN膜、 CrC膜、及び C r ON膜からなる遮光性クロム膜 2を 成膜した。
次いで、 遮光性クロム膜 2の上に、 第 1実施例と同様に、 レジスト 4をス ピンコート法により膜厚が 400 [nm] となるように塗布した。
次いで、レジスト 4に対し、第 1実施例と同様に電子線描画し、現像して、 第 1実施例と同様に図 2に示すようなレジストパターン 41 (0. 4 mの ライン &スペース) を形成し、 得られたレジストパターン 41の寸法を、 C D— S EMを用いて A部および B部においてそれぞれ測定した。
次いで ¾ レジストパターン 41をマスクにして、 遮光性クロム膜 2を、 C 12 と 02の混合ガスを用い、 圧力: 8mmTo r rの条件にて、 従来のィ オン性の低いドライエッチングを行い、遮光性クロムパターン 21を形成し た。
次いで、第 1実施例と同様に、レジストパターン 41を剥離し、しかる後、 所定の洗淨を施してフォトマスク 10を得た Θ
そして 得られ 遮光性クロム 夕ーン 21の寸法 ¾¾ レジストパ夕ーン 41と同機に CD— S EMを用 て A部および B部においてそれぞれ測定 した Θ その詰果 Α部と Β部における寸法変換差 (レジストパターン 41と 遮光性クロム / ターン 21の寸法差) の差は 30 nmであり-無機系エッチ ングマスク用膜 3を形成してフォトマスクを製造した第 1実施例と比較し て、 著しく CD特性が劣るのもであった。
本発明の第 2実施例では、 比較例 1 (従来例) と比較して、 ローデイング 効果の抑制を顕著に達成でき、 1 nmという従来では想像し得ない極めて良 好な CD特性でフォトマスク 10を製造することができた。
〔第 3実施例〕
図 3を参照して、本発明の第 3実施例によるフォトマスクの製造方法につ いて説明する。
まず、石英からなる基板を鏡面研磨し所定の洗浄を施すことにより、 6ィ ンチ X6インチ X0. 25インチの透光性基板 1を得た。
次いで、 透光性基板 1の上に、 モリブデン (Mo) とシリコン (S i) の 混合ターゲット (Mo : S i = 20 : 80 [mo 1 %]) を用いて、 ァルゴ ン(Ar)と窒素(N2)の混合ガス雰囲気(A r: N2= 10 : 90 [体積%]、 圧力 0. 3 [Pa]) 中で、 反応性スパッタリングを行うことにより、 膜厚 100 [nm] の MoS i N系の半透光性の位相シフト膜 5を成膜した (図 3 (a))0
次いで、第 1実施例と同様の方法で、同一のチャンバ内に複数のクロム(C r )ターゲットが配置されたインラインスパッ夕装置を用いて、位相シフト 膜 5の上に C r N膜、 C r C膜、及び C r ON膜からなる遮光性クロム膜 2 を成膜した (図 3 (b))。
次いで、 遮光性クロム膜 2の上に、 第 1実施例と同欉の方法で、 膜厚 92 [nm]の MoS i N系の無機系エッチングマスク用膜 3を成膜した(図 3 (c))。
次いで、 無機系エッチングマスク用膿 3の上に、 第 1実施例と同様に、 レ ジスト 4¾スピンコート法により膿厚^ 400 [nm] と ¾¾ように塗布し た (園 3 (d))0
以上により、透光性基板 1上に、 MoS i N系材料からなる半透光性の位 相シフト膿 5と C rH弒料からなる遮光性クロム膜 2と、 MoS i N系弒 料からなる無機系エッチングマスク用膜 3と、レジスト 4が順次形成された ハーフトーン位相シフト型のマスクブランク 11ひ、ーフトーン位相シフト マスクブランク) を準備した (図 3 (d))。
次いで、レジスト 4に対し、第 1実施例と同様に電子線描画し、現像して、 図 2に示すようなレジストパターン 41 (0. 4 Amのライン &スペース) を形成し、得られたレジストパターン 41の寸法を、 CD— SEMを用いて A部および B部においてそれぞれ測定した (図 3 (e))。
次いで、第 1実施例と同様の方法で、 レジストパターン 41をマスクにし て、無機系エッチングマスク用膜 3のドライエッチングを行い、無機系エツ チングマスクパターン 31を形成した (図 3 (f))。
次いで、第 1実施例と同様の方法で、 レジストパターン 41及び無機系ェ ツチングマスクパターン 31をマスクにして、遮光性クロム膜 2のドライエ ツチングを行い、 遮光性クロムパターン 21を形成した (図 3 (g))。 次いで、 レジストパターン 41、 無機系エッチングマスクパターン 31、 及び遮光性クロムパターン 21をマスクにして、 位相シフト膜 5を、 SF6 と Heの混合ガスを用い、圧力: 5mmTo r rの条件にてドライエツチン グを行い、位相シフトパターン 51を形成した (図 3 (h))。 このとき、 M 0 S i N系の無機系エッチングマスクパターン 31は、位相シフト膜 5のド ライエッチングによりレジストが後退した部分においてエッチングされる が、完全にエッチングされるまでは、位相シフト膜 5のドライエッチングか ら遮光性クロム / ターンを保護するため、位相シフト膜 5のドライエツチン グによる遮光性クロムパターンのダメージから発生する発塵を、影響のない レベルまで低減することができる。
次いで、レジストパ夕ーン 41及び無機系エッチングマスクパターン 31 ¾剥 し て ¾写 ーン镜壊付近 ©遮光性クロム ターン 21を剥 β し(転写パターン儀壩上であってフォトマスクを使用した露光工程を考慮し た際、 残した方が良い部分の遮光性クロムパターンは残しても良い)、 しか る後 所定の洗淨を施して、ハーフトーン位相シフト型のフォトマスク 10 ひ、ーフトーン位相シフトマスク) を得た (図 3 (i))s
そして、得られた位相シフトパターン 51の寸法を、 レジストパターン 4 1と同様に CD— S EMを用いて A部および B部においてそれぞれ測定し た。 その結果、 A部と B部における寸法変換差 (レジストパターン 41と位 相シフトパターン 51の寸法差) の差は、 驚くべきことに 4nmであり、 極 めて良好な CD特性の八ーフトーン位相シフトマスクを製造することがで さた。
〔第 4実施例〕
図 3を参照して、本発明の第 4実施例によるフォトマスクの製造方法につ いて説明する。第 4実施例は、 第 3実施例において、 レジストパターン 41 を除去後に、無機系エッチングマスクパターン 31のみをマスクにして、遮 光性クロム膜 2のエッチングを行ったこと以外は、第 3実施例と同じ条件で フォトマスクを製造した。
詳しくは、 まず、石英からなる基板を鏡面研磨し所定の洗净を施すことに より、 6インチ X6インチ X0. 25インチの透光性基板 1を得た。
次いで、 透光性基板 1の上に、 モリブデン (Mo) とシリコン (S i ) の 混合ターゲット (Mo : S i = 20 : 80 [mo 1 ]) を用いて、 ァルゴ ン(A r )と窒素(N2)の混合ガス雰囲気(A r: N2= 10 : 90 [体積%]、 圧力 0. 3 [Pa]) 中で 反応性スパ、 夕リングを行うことにより、 膿厚 100 [nm] の MoS i N系の半透光性の位相シフト膜 5を成膜した (図 3 (a))。 次いで、第 1実施例と同様の方法で、同一のチャンパ内に複数のクロム(C Γ )ターゲットが配置されたインラインスパッタ装置を用いて、位相シフト 膜 5の上に C r N "膿、 C r C膜、及ぴ C r ON膜からなる遮光性クロム膜 2 を成膜した (園 3 (b))Q
次 で、 遮光性クロム膜 2の上に 第 1実旒倒と同欉の方法で ¾ 膿厚 9 2 [nm] の Mo S i N系の無機系エッチングマスク用膜 3を成膿した (図 、 e ) ) ©
次いで、 無機系エッチングマスク用膜 3の上に、 第 1実施例と同様に、 レ ジスト 4をスピンコート法により膜厚が 400 [nm] となるように塗布し た (図 3 (d))。
以上により、透光性基板 1上に、 Mo S i N系材料からなる半透光性の位 相シフト膜 5と、 C r系材料からなる遮光性クロム膜 2と、 MoS i N系材 料からなる無機系エッチングマスク用膜 3と、レジスト 4が順次形成された ハーフトーン位相シフト型のフォ卜マスクブランク 1 1ひ、ーフトーン位相 シフトマスクブランク) を準備した (図 3 (d))。
次いで、レジスト 4に対し、第 1実施例と同様に電子線描画し、現像して、 図 2に示すようなレジストパターン 41 (0. 4 mのライン &スペース) を形成し、得られたレジストパターン 41の寸法を、 CD— SEMを用いて A部おょぴ B部においてそれぞれ測定した (図 3 (e))。
次いで、第 1実施例と同様の方法で、 レジストパターン 41をマスクにし て、無機系エッチングマスク用膜 3のドライエッチングを行い、無機系エツ チングマスクパターン 31を形成した (図 3 (f))。
次いで、第 2実施例と同様の方法で、レジストパターン 41を除去した後、 無機系エッチングマスクパターン 31のみをマスクにして、遮光性クロム膜 2のドライエッチングを行い、遮光性クロムパターン 21を形成した (図 3 (g)
次いで、 レジストパターン 41、 無機系エッチングマスクパターン 31、 及び遮光性クロムパターン 21をマスクにして、 位相シフト膜 5を、 S F6 と H eの混合ガスを用い、圧力: 5 mmT o r rの条件にてドライエツチン グを行い、 位相シフトパターン 5 1を形成した (図 3 ( h ) )。
次いで レジストパターン 4 1、 無機癩エッチングマスクパターン 3 1 嚴び遮光毪クロムパターン 2 1 ¾マスクにして 位相シフト濃 5を ¾ S F 6 と H e ®漏合ガスを用 圧力: 5 mmT o r rの条件にてドライエツチン を行い、位相シフトパターン 5 1を形成した(図 3 ( ) ) B このとき M o S i N系の無機系エッチングマスクパターン 3 1ほ ¾位¾シフト膜 5のド ライエッチングによりエッチングされるが 完全にエッチングされるまでは、 位相シフト膜 5のドライエッチングから遮光性クロムパターンを保護する ため、位相シフト膜 5のドライエッチングによる遮光性クロムパターンのダ メージから発生する発塵を、 影響のないレベルまで低減することができる。 次いで、レジストパターン 4 1及び無機系エッチングマスクパターン 3 1 を剥離し、続いて転写パターン領域付近の遮光性クロムパターン 2 1を剥離 し(転写パターン領域上であってフォトマスクを使用した露光工程を考慮し た際、 残した方が良い部分の遮光性クロムパターンは残しても良い)、 しか る後、所定の洗浄を施して、ハーフトーン位相シフト型のフォトマスク 1 0 ひ、ーフトーン位相シフトマスク) を得た (図 3 ( i ))。
そして、得られた位相シフトパターン 5 1の寸法を、 レジストパターン 4 1と同様に C D— S E Mを用いて A部および B部においてそれぞれ測定し た。その結果、 A部と B部における寸法変換差 (レジストパターン 4 1と位 相シフトパターン 5 1の寸法差)の差は、極めて驚くべきことに 2 n mであ り、極めて良好な C D特性でハーフトーン位相シフトマスクを製造すること ができた。
〔第 2比較例〕
第 2比較例は、第 3実施例によるフォトマスクの製造方法において、無機 系エッチングマスク用膜 3を形成せずにフォトマスクを製造する方法であ る Θ
まず、石英からなる基板を鏡面研磨し所定の洗淨を施すことにより、 6ィ ンチ X6インチ X0. 25インチの透光性基板 1を得た。
次いで、 透光性基板 1の上に、 第 2実施例と同様に、 膜厚 100 [nm] の Mo S i N系の半邋光性の位相シフト膜 5を成膜した Q
欢 で、簾 2実 M例と同機©方法で ¾同一のチヤンパ肉に ¾¾®クロム(C r)夕ーゲット^配置されたインラインスパ、ヌ夕装置を用いて ¾位相シフト 膜 5の上に C rN膜、 C r C膜、及び C r ON膜からなる遮光性クロム膜 2 をお ¾膜した Θ
次いで、 遮光性クロム膜 3の上に 第 2実施例と同様に、 レジスト 4をス ピンコート法により膜厚が 400 [nm] となるように塗布した。
次いで、レジスト 4に対し、第 2実施例と同様に電子線描画し、現像して、 図 2に示すようなレジストパターン 41 (0. 4 mのライン &スペース) を形成し、得られたレジストパターン 41の寸法を、 CD— S EMを用いて A部および B部においてそれぞれ測定した。
次いで、比較例 1と同様の方法で、レジストパターン 41をマスクにして、 遮光性クロム膜 2のドライエッチングを行い、遮光性クロムパターン 21を 形成した。
次いで、レジストパターン 41及び遮光性クロムパターン 21をマスクに して、第 2実施例と同様にドライエッチングを行い、位相シフトパターン 5 1を形成した。
次いで、 レジストパターン 41を剥離し、続いて転写パターン領域付近の 遮光性クロムパターン 21を剥離し、 しかる後、所定の洗浄を施してハーフ トーン位相シフト型のフォトマスク 10を得た。
そして、得られた位相シフトパターン 51の寸法を、 レジストパターン 4 1と同様に CD— S EMを用いて A部および B部においてそれぞれ測定し た β その結果、 Α部と Β部における寸法変換差の差は 35 nmであり、 無機 系エッチングマスク用膜 3を形成してフォトマスクを製造した第 2実旒倒 と比較して、 著しく CD特性が劣るものであった。
〔第 5実施例〕 次に、本発明の第 5実施例によるクロムレス型位相シフトマスクの製造方 法について説明する。
第 5実施例は、第 2実施例における無機系エッチングマスクの剥離前の状 錢から さらに遨光性クロム膿 ターン ¾マスクに基 ¾¾ϋり込んで クロ ムレス型位相シフトマスクを製造した倒である。
まず、第 2実施倒と同様の方法で無機系エッチングマスクの剥離前のフォ トマスクを製造した Θ
次いで、フォトマスク 1 0における無機系エッチングマスクバ夕一ン 3 1 付き遮光性クロムパターン 2 1をマスクとして、位相差が略 1 8 0 ° となる 1 8 0 n mの深さに基板をエッチングした。 このエッチングは、 ドライエツ チングガスとして、 C 1 2と 02と H eの混合ガスを用い、 圧力 0 . 3 P a の条件にて行った。 このとき、 M o S i N系の無機系エッチングマスクパタ ーン 3 1は、基板のドライエッチングによりエッチングされるが、完全にェ ツチングされるまでは、基板のドライエッチングから遮光性クロムパターン を保護するため、基板のドライエッチングによる遮光性クロムパターンのダ メージから発生する発塵を、 影響のないレベルまで低減することができる。 次いで、少なくとも転写領域周辺の遮光性クロム膜が残るように遮光性ク ロムパターンを剥離し(転写パターン領域上であってフォトマスクを使用し た露光工程を考慮した際、残した方が良い部分の遮光性クロムパターンは残 してもよい)、 しかる後、 所定の洗浄を施して、 クロムレス型位相シフトマ スクを得た。
得られたクロムレス型位相シフトマスクによれば、フォトマスク 1 0の遮 光性クロムパターン 2 1の C D特性が転写され、極めて良好な C D特性のク ロムレス型位相シフトマスクを製造することができる。
また、本実施例によれば、基板のエッチングにおいて無機系エッチングマ スクも同時にエッチングされるため、無機系エッチングマスクを剥離するェ 程を必要としない。
尚、本実施例において、基板のエッチングと無機系エッチングマスクパ夕 ーンのエッチングが、 同じエッチング時間で終了するように、無機系エッチ ングマスクパターンの材料及び膜厚を選択した場合は、無機系エッチングマ スクパターンのエッチング終点検出によって 基板のエッチングの終点検出 可能とな ¾と う点で好まし Θ
〔第 3比鞅例〕
第 3比較例は、第 1比較例における無機系エッチングマスクの剥離前の状 饞から さらに遮光性クロム膜パターンをマスクに基板を掘り込んで クロ ムレス型位相シフトマスクを製造した例である。
まず、第 2比較例と同様の方法で無機系エッチングマスクの剥離前のフォ トマスクを製造した。
次いで、このフォトマスクにおける遮光性クロムパターン 2 1をマスクと して、位相差が略 1 8 0 ° となる 1 8 0 n mの深さに基板をエッチングした。 このエッチングは、 ドライエッチングガスとして、 C F 4と 0 2の混合ガス を用い、 圧力 0 . 6 8 P aの条件にて行った。 このとき、 基板のドライエツ チングによる遮光性クロムパターンのダメージから発生する発塵の影響に より、 基板の掘り込み部表面に粗れが確認された。
次いで、少なくとも転写領域周辺の遮光性クロム膜が残るように遮光性ク ロムパターンを剥離(転写パターン領域上であってフォトマスクを使用した 露光工程を考慮した際、残した方が良い部分の遮光性クロムパターンは残し てもよい)、 しかる後、 所定の洗浄を施して、 クロムレス型位相シフトマス クを得た。
得られたクロムレス型位相シフトマスクによれば、 第 5実施例に比べて、 C D特性が著しく劣るものであった。
本発明の第 1〜第 5実施例では、イオン主体のドライエッチングにおいて S F6と H eの混合ガスを用いたが、 適切なドライエッチング条件を設定す ることで、 C F 4 C2F 6、 C H F 3等のガス 又は ¾ これらと H e、 H N 2、 A r、 C2H4、 02等の混合ガスを用いても、 同様の効果が得られる。 また、本発明の第 1〜第 5実施倒では、無機系エッチングマスク用膜に M 0 S i N系の材料を使用したが、 Mo単体、 MoS i、 MoS iO、 MoS
1 N、 Mo S i ON、 S i単体、 S i 0、 S i N、 S i ON、 Ta単体、 T aB、 W¾ WS i ¾ TaS i等を用いても同様の効果が得られる Θ
また 本蠻明 ®第 1〜篛 5実;!例でほ ¾ ラジカル主侔©ドライエッチング において C 12と 02の混合ガスを用いたが 適切なドライエッチング条件 を設定することで、 CH2C 12と 02の混合ガス、又は、 これらと He、 H N2, A r, C2H4等の混合ガスを用 ても 同機の効果が得られ δΘ 以上のように、 本発明によれば、 大域的な闘口率差を有する (ローデイン グ効果による CD精度のばらつきが問題となる) フォトマスクにおいて、高 精度なパターンをドライエッチングによりエッチングする際に、ローディン グ効果を抑制し、 高い CD精度を得ることができる。
マスク面内において大域的な開口率差を有する(ローディング効果による CD精度のばらつきが問題となる)、 前記領域によらず (マスク全面で) 髙 い CD精度を有するパターンを形成することができる。
さらに、 本発明は、 大域的な開口率差を有する (ローデイング効果による CD精度のばらつきが問題となる)位相シフト層を有する/、ーフトーン型位 相シフトマスク及びクロムレス型位相シフトマスクを製造するにあたり、ェ ツチングマスク用膜としての遮光性クロム膜のエッチングに際し、ローディ ング効果を抑制し、 高い CD精度を得ることができる。

Claims

請求の範囲
1. 透光性基板 (1)上に、 該透光性基板上の面内において大域的な開 口率差を有するクロムパターン(21)が形成されたフォトマスクの製造方 法にお て ¾
前記違光性基板(1)上に 前記クロムパターンを形成するためのクロム 膜 (2)、 該クロム膜のエッチングに対して耐性を有する無機系材料からな るエッチングマスク用膿 (3)¾ 及びレジスト膿 (4) を少なくとも有する フォトマスクプランク (11) を準備する工程と、
前記レジスト膜に所望のパターンを露光、現像することによりレジストパ ターン (41) を形成する工程と、
前記レジストパターン(41)をマスクとして前記エッチングマスク用膜 にドライエッチング処理を施してエッチングマスクパターン(31)を形成 する工程と、
前記エッチングマスクパターンをマスクとして、前記クロム膜にドライエ ツチングを施して前記クロムパターン (21) を形成する工程と、
を含み、
前記クロム膜(2)のドライエッチングは、前記レジストパターン(41) をマスクに前記クロム膜(2)をエッチングする場合に許容できない程度の 前記レジストパターン(41)へのダメージが発生するような条件から選定 された条件で行うことを特徴とするフォ卜マスクの製造方法。
2. 前記レジストパターン (41) をマスクに前記クロム膜 (2) をェ ツチングする場合に前記レジストパターン(41)へのダメージが許容でき ないような条件は、ドライエッチングの異方性を高める条件及び 又はエツ チングのエツチャント密度を高める条件であることを特徴とする請求の範 囲第 1項に記載のフォトマスクの製造方法。
3. 前記フォトマスク (10) が、 前記通光性基板 (1) 上に前記クロ ムパターン (21)を有するバイナリマスクであることを特徵とする請求の 範囲第 1項又は第 2項に記載のフオトマスクの製造方法。
4. 前記エッチングマスクパターン(31)を、前記クロムパターン(2 1)形成後に剥離する工程を更に含むことを特徵とする請求の範囲第 1項〜 第 3項のいずれか 1つに記載のフオトマスクの製造方法 s
5. 前記エッチングマスクパターン (31) を 反射防止3餾を有する 膿として前記クロムパターン(21)上に残存させることを特徴とする請求 の範囲第 1項〜第 3項のいずれか 1つに記載のフォトマスクの製造方法 Θ
6. 前記フォトマスク (10) が位相シフトマスクであって、 前記フォトマスクプランク (11) の前記透光性基板 (1) と前記クロム 膜(2) との間に位相シフト膜(5)を有し、 かつ、前記クロムパターン(2 1) を形成する工程以降に、 前記クロムパターン (21) をマスクとして位 相シフトパターン(51)を形成する工程を更に含むことを特徴とする請求 の範囲第 1項〜第 5項のいずれか 1つに記載のフォトマスクの製造方法。
7. 前記フォトマスク (10) が位相シフトマスクであって、 前記クロムパターン (21) を形成する工程以降に、 前記クロムパターン (21) をマスクとして、 前記透光性基板 (1) をパターニングして位相シ フト用溝を形成する工程を更に含むことを特徵とする請求の範囲第 1項〜 第 5項のいずれか 1つに記載のフオトマスクの製造方法。
8. 前記エッチングマスクパターン (31) を形成する工程において残 存した前記レジストパターン (41) を、 前記クロムパターン (21) を形 成する工程の前に剥離する工程を有することを特徴とする請求の範囲第 1 項〜第 7項のいずれか 1つに記載のフオトマスクの製造方法。
9. 前記無機系材料からなるエッチングマスク用膜 (3) は、 モリブデ ン、 シリコン、 タンタル、 タングステンのうち何れか一つを少なくとも含む 材料からなることを特徴とする請求の範囲第 1項〜第 8項のいずれか 1つ に記載のフォトマスクの製造方法。
10. 前記クロムパターン (21) を形成する工程において、 前記クロ ム膜 (2) のエッチング速度が前記エッチングマスクパターン (31) のェ ツチング速度の 10倍以上であることを特徵とする請求の範囲第 1項〜第 9項のいずれか 1つに記載のフォトマスクの製造方法。
11. 透光性基板 (1) 上に、 該透光性基板 (1) 上の面内において大 域的な開口率差を有する半透光性位相シフトパターン(51)が形成された ハーフトーン型位 ¾シフトマスクを疆造するフォトマスクの @遒方法にお て、
前記透光性基板 (1) 上に、 前記半透光性位相シフトパターン (51) を 形成するた の半 ¾光性位相シフト膜 (δ)、 クロム / 夕ーン (21) を形 成するためのクロム膜 (2)、 該クロム膜のエッチングに対して耐性を有す る無機系材料からなるエッチングマスク用膜 (3)、 及ぴレジスト膜 (4) を少なくとも有するフォトマスクブランク (11) を準備する工程と、 前記レジスト膜(4) に所望のパターンを露光、 現像することによりレジ ストパターン (41) を形成する工程と、
前記レジストパターン(41)をマスクとして前記エッチングマスク用膜 (3) にドライエッチング処理を施してエッチングマスクパターン (31) を形成する工程と、
前記エッチングマスクパターン(31)をマスクとして、前記クロム膜(2) にドライエッチングを施して前記クロムパターン(21)を形成する工程と、 前記クロムパターン (21) をマスクとして前記半透光性位相シフト膜 (5)にドライエッチングを施して前記半透光性位相シフトパターン(51) を形成する工程と、
前記クロムパターン (21) の所望の一部又は全部を除去する工程と を含むことを特徴とするフォトマスクの製造方法。
12. 前記エッチングマスクパターン (31) を、 前記半透光性位相シ フト膜(5)のドライエッチングと共に剥離することを特徴とする請求の範 囲第 11項に記載のフォトマスクの製造方法。
13. 前記エッチングマスクパターン (31) を、 反 It防止機能を有す る膜として前記クロムパターン(21)上に残存させることを特徴とする請 求の籠囲第 11項に記載のフォトマスクの製造方法。
14. 前記半透光性位相シフト膜(5) が、 シリコンと窒素及び/又は 酸素を含む材料からなる最上層を含むことを特徴とする請求の範囲第 11 項〜第 13項のいずれか 1つに記載のフォトマスクの製造方法 Θ
15. 前記半 ®光性位钳シフト R (5) ffi, 金愿¾ シリコンと蜜
/又ほ黢秦を含む弒料からな δ単層構造の膿であることを特徵とす S請求 の範囲第 14項に記載のフォトマスクの製造方法 s
16. 前記エッチングマスクパターン (31) を形成する工程において 残存した前記レジストパターン (41) を、 前記クロムパターン (21) を 形成する工程の前に剥離する工程を有することを特徵とする請求の範囲第 11項〜第 15項のいずれか 1つに記載のフォトマスクの製造方法。
17. 前記無機系材料からなるエッチングマスク用膜(3) は、 モリブ デン、 シリコン、 タンタル、 タングステンのうち何れか一つを少なくとも含 む材料からなることを特徴とする請求の範囲第 1 1項〜第 16項のいずれ か 1つに記載のフォトマスクの製造方法。
18. 前記クロムパターン (21) を形成する工程において、 前記クロ ム膜(2) のエッチング速度が前記エッチングマスクパターン (31) のェ ツチング速度の 10倍以上であることを特徴とする請求の範囲第 11項〜 第 17項のいずれか 1つに記載のフォトマスクの製造方法。
19. 透光性基板 (1) 上に、 該透光性基板上の面内において大域的な 開口率差を有する透光性位相シフトパターンが形成されたクロムレス型位 相シフトマスクを製造するフォトマスクの製造方法において、
前記透光性基板 (1) 上に、 クロムパターン (21) を形成するためのク ロム膜 (2)、 該クロム膜のエッチングに対して耐性を有する無機系材料か らなるエッチングマスク用膜 (3)、 及びレジスト膜 (4) を少なくとも有 するフォトマスクブランク (11) を準備する工程と、
前記レジスト膜(4) に所望のパターンを露光、 現像することによりレジ ストパターン (41) を形成する工程と、
前記レジストパターン (4 1)をマスクとして前記エッチングマスク用膜 (3) にドライエッチング処理を施してエッチングマスクパターン (31) を形成する工程と、
前記エッチングマスクパターン(31)をマスクとして,前記クロム膜(2) にドライエッチングを鎰レて前記クロム ターン(21)¾形成す ¾工程と 前記クロムパターン (21) をマスクとして前記遠光性基板 (1) にドラ ィエッチン を施して前記透光性位相シフトパターンを形成する工程と、 前記クロムパターン (21) の所望の一部又は全部を除去する工程と を含むことを特徵とするフ才トマスクの製造方法。
20. 前記エッチングマスクパターン(31)を、 前記透光性基板(1) のドライエッチングと共に剥離することを特徴とする請求の範囲第 19項 に記載のフォ卜マスクの製造方法。
21. 前記エッチングマスクパターン (31) を、 反射防止機能を有す る膜として前記クロムパターン(21)上に残存させることを特徴とする請 求の範囲第 19項に記載のフォトマスクの製造方法。
22. 前記エッチングマスクパターン (31) を形成する工程において 残存した前記レジストパターン (41) を、 前記クロムパターン (21) を 形成する工程の前に剥離する工程を有することを特徴とする請求の範囲第 19項〜第 21項のいずれか 1つに記載のフォトマスクの製造方法。
23. 前記無機系材料からなるエッチングマスク用膜 (3) は、 モリブ デン、 シリコン、 タンタル、 タングステンのうち何れか一つを少なくとも含 む材料からなることを特徴とする請求の範囲第 19項〜第 22項のいずれ か 1つに記載のフォトマスクの製造方法。
24. 前記クロム膜パターン (21) を形成する工程において、 前記ク ロム膜(2) のエッチング速度が前記エッチングマスクパターン (31) の エッチング速度の 10倍以上であることを特徵とする請求の範囲第 19項 〜第 23項のいずれか 1つに記載のフォトマスクの製造方法 Θ
25. 透光性基板 (1) 上に、 所望の開口を有する半透光性位相シフト Λ夕ーン (51) が形成されたハーフトーン型位相シフトマスク (10) を 製造するための素材となるフォトマスクブランク (11) において、 前記透明基板 (1)上に、 半透光性位相シフト膜(5) と、 クロム膜(2) と、該クロム膜のドライエッチングに対して耐性を有する無機系 料からな るエ^チングマスク用膿(3) とが顺^積層されて ることを特徽とするフ ォトマスクプランク Θ
26. 前記半透光性位相シフト膜(5) が、 シリコンと鑾秦及ぴ 又は 黢素を含む弒料からなる最上層を含むことを特黴とする請求の靝囲第 25 項に記載のフォトマスクプランク s
27. 前記半透光性位相シフト膜 (5) が、 金属、 シリコンと窒素及び Z又は酸素を含む材料からなる単層構造の膜であることを特徴とする請求 項 26に記載のフォトマスクブランク。
28. 前記エッチングマスク用膜 (3) が、 前記半透光性位相シフト膜 (5)のドライエッチングにおいて共に剥離可能な材料であることを特徴と する請求の範囲第 25項〜第 27項のいずれか 1つに記載のフォトマスク ブランク。
29. 前記エッチングマスク用膜(3) が、 反射防止機能を有する膜で あることを特徵とする請求の範囲第 25項〜第 27項のいずれか 1つに記 載のフォトマスクブランク。
PCT/JP2004/005139 2003-04-09 2004-04-09 フォトマスクの製造方法及びフォトマスクブランク WO2004090635A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020127010641A KR101394715B1 (ko) 2003-04-09 2004-04-09 포토 마스크의 제조방법 및 포토 마스크 블랭크
JP2005505328A JPWO2004090635A1 (ja) 2003-04-09 2004-04-09 フォトマスクの製造方法及びフォトマスクブランク
KR20147007705A KR101511926B1 (ko) 2003-04-09 2004-04-09 포토 마스크의 제조방법 및 포토 마스크 블랭크
KR1020057019196A KR101161450B1 (ko) 2003-04-09 2004-04-09 포토 마스크의 제조방법 및 포토 마스크 블랭크
KR1020117012354A KR101135246B1 (ko) 2003-04-09 2004-04-09 포토 마스크의 제조방법 및 포토 마스크 블랭크
DE112004000591.4T DE112004000591B4 (de) 2003-04-09 2004-04-09 Herstellungsverfahren für Photomaske

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003105921 2003-04-09
JP2003-105921 2003-04-09

Publications (1)

Publication Number Publication Date
WO2004090635A1 true WO2004090635A1 (ja) 2004-10-21

Family

ID=33156895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005139 WO2004090635A1 (ja) 2003-04-09 2004-04-09 フォトマスクの製造方法及びフォトマスクブランク

Country Status (6)

Country Link
US (3) US7314690B2 (ja)
JP (2) JPWO2004090635A1 (ja)
KR (4) KR101161450B1 (ja)
DE (1) DE112004000591B4 (ja)
TW (1) TWI259329B (ja)
WO (1) WO2004090635A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041599A (ja) * 2005-07-29 2007-02-15 Applied Materials Inc フォトマスク製造におけるプロセス集積のためのクラスターツールおよび方法
JP2007164156A (ja) * 2005-11-16 2007-06-28 Hoya Corp マスクブランク及びフォトマスク
JP2007241060A (ja) * 2006-03-10 2007-09-20 Shin Etsu Chem Co Ltd フォトマスクブランク及びフォトマスクの製造方法
DE102009015589A1 (de) 2008-04-02 2009-10-22 Hoya Corp. Phasenverschiebungsmaskenrohling und Verfahren zum Herstellen einer Phasenverschiebungsmaske
US7682518B2 (en) 2003-08-28 2010-03-23 Applied Materials, Inc. Process for etching a metal layer suitable for use in photomask fabrication
JP2010079110A (ja) * 2008-09-27 2010-04-08 Hoya Corp マスクブランク及び転写用マスクの製造方法
US7829243B2 (en) 2005-01-27 2010-11-09 Applied Materials, Inc. Method for plasma etching a chromium layer suitable for photomask fabrication
JP2012003287A (ja) * 2011-09-21 2012-01-05 Shin Etsu Chem Co Ltd フォトマスクの製造方法及びフォトマスク
JP2012032823A (ja) * 2011-09-21 2012-02-16 Shin Etsu Chem Co Ltd フォトマスクブランク及びバイナリーマスクの製造方法
US8329364B2 (en) 2008-06-25 2012-12-11 Hoya Corporation Phase shift mask blank and phase shift mask
TWI417644B (zh) * 2005-12-26 2013-12-01 Hoya Corp Mask base and mask
KR101478384B1 (ko) * 2009-03-27 2014-12-31 신에쓰 가가꾸 고교 가부시끼가이샤 포토마스크 블랭크, 그의 가공 방법 및 에칭 방법
US9005851B2 (en) 2008-06-25 2015-04-14 Hoya Corporation Phase shift mask blank and phase shift mask
JP2015135513A (ja) * 2015-03-06 2015-07-27 大日本印刷株式会社 フォトマスクブランクス
JP2015156037A (ja) * 2008-03-31 2015-08-27 Hoya株式会社 フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
JP2015194770A (ja) * 2014-03-28 2015-11-05 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、位相シフトマスク、および半導体デバイスの製造方法
JP2016167092A (ja) * 2016-05-20 2016-09-15 大日本印刷株式会社 フォトマスクブランクス
KR20160138247A (ko) 2014-03-30 2016-12-02 호야 가부시키가이샤 마스크 블랭크, 전사용 마스크의 제조 방법 및 반도체 장치의 제조 방법
KR20160138242A (ko) 2014-03-30 2016-12-02 호야 가부시키가이샤 마스크 블랭크, 전사용 마스크의 제조 방법 및 반도체 장치의 제조 방법
JPWO2016147518A1 (ja) * 2015-03-19 2017-12-28 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
US20180033592A1 (en) * 2016-07-29 2018-02-01 Nuflare Technology, Inc. Charged particle beam drawing method and charged particle beam drawing apparatus
KR20180059393A (ko) 2015-09-30 2018-06-04 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
KR20180075495A (ko) 2015-11-06 2018-07-04 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
JP2018106022A (ja) * 2016-12-27 2018-07-05 Hoya株式会社 表示装置製造用フォトマスクの製造方法および表示装置の製造方法
KR20190133006A (ko) 2017-03-31 2019-11-29 도판 인사츠 가부시키가이샤 위상 시프트 마스크 블랭크, 위상 시프트 마스크 및 위상 시프트 마스크의 제조 방법
KR20200017399A (ko) 2017-06-14 2020-02-18 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
KR20210118885A (ko) 2019-03-07 2021-10-01 호야 가부시키가이샤 마스크 블랭크, 전사용 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
KR20210136114A (ko) 2019-03-18 2021-11-16 호야 가부시키가이샤 마스크 블랭크, 전사용 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
KR20230132464A (ko) 2021-01-26 2023-09-15 호야 가부시키가이샤 마스크 블랭크, 전사용 마스크의 제조 방법, 및 반도체디바이스의 제조 방법

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4443873B2 (ja) * 2003-08-15 2010-03-31 Hoya株式会社 位相シフトマスクの製造方法
TWI375114B (en) * 2004-10-22 2012-10-21 Shinetsu Chemical Co Photomask-blank, photomask and fabrication method thereof
US20070031609A1 (en) * 2005-07-29 2007-02-08 Ajay Kumar Chemical vapor deposition chamber with dual frequency bias and method for manufacturing a photomask using the same
US7375038B2 (en) * 2005-09-28 2008-05-20 Applied Materials, Inc. Method for plasma etching a chromium layer through a carbon hard mask suitable for photomask fabrication
JP2007149768A (ja) * 2005-11-24 2007-06-14 Nec Electronics Corp 半導体装置の製造方法
JP2007171520A (ja) 2005-12-21 2007-07-05 Hoya Corp マスクブランク及びマスク
KR100864375B1 (ko) * 2006-01-03 2008-10-21 주식회사 에스앤에스텍 블랭크 마스크 및 이를 이용한 포토마스크의 제조방법
JP4823711B2 (ja) * 2006-02-16 2011-11-24 Hoya株式会社 パターン形成方法及び位相シフトマスクの製造方法
JP4509050B2 (ja) * 2006-03-10 2010-07-21 信越化学工業株式会社 フォトマスクブランク及びフォトマスク
US8615663B2 (en) * 2006-04-17 2013-12-24 Broadcom Corporation System and method for secure remote biometric authentication
JP4737426B2 (ja) 2006-04-21 2011-08-03 信越化学工業株式会社 フォトマスクブランク
KR100944846B1 (ko) * 2006-10-30 2010-03-04 어플라이드 머티어리얼스, 인코포레이티드 마스크 에칭 프로세스
KR100862869B1 (ko) * 2006-12-18 2008-10-09 동부일렉트로닉스 주식회사 반도체 소자 제조용 마스크 및 이의 제조 방법
KR100945919B1 (ko) * 2007-02-21 2010-03-05 주식회사 하이닉스반도체 반도체 소자의 포토마스크 형성방법
KR100945921B1 (ko) * 2007-05-11 2010-03-05 주식회사 하이닉스반도체 반도체 소자의 포토마스크 형성방법
TWI426343B (zh) * 2007-05-17 2014-02-11 Lg Innotek Co Ltd 一種具有多個半透射部分之半色調網點光罩及其製造方法
JP5254581B2 (ja) * 2007-08-22 2013-08-07 Hoya株式会社 フォトマスク及びフォトマスクの製造方法
JP5348866B2 (ja) * 2007-09-14 2013-11-20 Hoya株式会社 マスクの製造方法
KR100968149B1 (ko) * 2007-10-31 2010-07-06 주식회사 하이닉스반도체 바이너리 마스크 및 그 형성방법, 바이너리 마스크를 이용한 반도체소자의 미세 패턴 형성방법
JP5393972B2 (ja) * 2007-11-05 2014-01-22 Hoya株式会社 マスクブランク及び転写用マスクの製造方法
KR100895401B1 (ko) * 2007-12-28 2009-05-06 주식회사 하이닉스반도체 포토 마스크 및 반도체 소자의 형성 방법
JP5356114B2 (ja) * 2009-05-29 2013-12-04 株式会社東芝 露光用マスク及び半導体装置の製造方法
KR101656456B1 (ko) 2009-10-30 2016-09-12 삼성전자주식회사 하프톤형 위상반전 블랭크 포토마스크와 하프톤형 위상반전 포토마스크 및 그의 제조방법
JP2011215197A (ja) * 2010-03-31 2011-10-27 Hoya Corp フォトマスク及びその製造方法
JP2012099589A (ja) * 2010-11-01 2012-05-24 Hitachi High-Technologies Corp プラズマ処理方法
JP6019731B2 (ja) * 2012-05-14 2016-11-02 凸版印刷株式会社 位相シフトマスクの製造方法
JP5739375B2 (ja) 2012-05-16 2015-06-24 信越化学工業株式会社 ハーフトーン位相シフトマスクブランク及びハーフトーン位相シフトマスクの製造方法
JP5795991B2 (ja) 2012-05-16 2015-10-14 信越化学工業株式会社 フォトマスクブランク、フォトマスクの製造方法、および位相シフトマスクの製造方法
JP5700003B2 (ja) * 2012-08-31 2015-04-15 大日本印刷株式会社 高ドライエッチング耐性ポリマー層を付加したフォトマスクブランクスを用いたフォトマスクの製造方法
JP5742903B2 (ja) * 2013-09-24 2015-07-01 大日本印刷株式会社 フォトマスクブランクス
CN104952782B (zh) * 2014-03-25 2018-12-21 中芯国际集成电路制造(上海)有限公司 半导体器件的形成方法
JP6313678B2 (ja) * 2014-07-14 2018-04-18 Hoya株式会社 マスクブランクの製造方法、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP6428400B2 (ja) 2015-03-13 2018-11-28 信越化学工業株式会社 マスクブランクス及びその製造方法
WO2017038213A1 (ja) * 2015-08-31 2017-03-09 Hoya株式会社 マスクブランク、位相シフトマスクおよびその製造方法、並びに半導体デバイスの製造方法
US10115572B2 (en) * 2016-01-26 2018-10-30 Applied Materials, Inc. Methods for in-situ chamber clean in plasma etching processing chamber
US20190040516A1 (en) * 2016-02-15 2019-02-07 Hoya Corporation Mask blank, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
JP6963023B2 (ja) * 2017-03-06 2021-11-05 エル・ピー・ケー・エフ・レーザー・ウント・エレクトロニクス・アクチエンゲゼルシヤフト 技術的マスクの製造方法
JP6979337B2 (ja) * 2017-11-17 2021-12-15 芝浦メカトロニクス株式会社 フォトマスクの製造方法
JP2019020749A (ja) * 2018-10-26 2019-02-07 信越化学工業株式会社 マスクブランクス及びその製造方法
WO2022069019A1 (en) * 2020-09-29 2022-04-07 Carl Zeiss Smt Gmbh Method to produce a structured transmissive optical element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138256A (ja) * 1984-12-10 1986-06-25 Toshiba Corp マスクパタ−ンの形成方法
JPH0749558A (ja) * 1993-08-05 1995-02-21 Sony Corp 位相シフトマスクの作製方法
JP2000181049A (ja) * 1998-12-18 2000-06-30 Hoya Corp ハーフトーン型位相シフトマスクブランク及びハーフトーン型位相シフトマスク
US6472107B1 (en) * 1999-09-30 2002-10-29 Photronics, Inc. Disposable hard mask for photomask plasma etching

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695363A (ja) * 1992-09-11 1994-04-08 Toppan Printing Co Ltd フォトマスクブランク及びその製造方法並びにフォトマスク
JPH08234410A (ja) 1995-02-28 1996-09-13 Dainippon Printing Co Ltd 位相シフトフォトマスク及び位相シフトフォトマスクドライエッチング方法
JP3539652B2 (ja) 1996-08-28 2004-07-07 シャープ株式会社 フォトマスクの製造方法
JP3913319B2 (ja) * 1997-07-07 2007-05-09 Hoya株式会社 ハーフトーン位相シフトマスクの製造方法
KR100322537B1 (ko) * 1999-07-02 2002-03-25 윤종용 블랭크 마스크 및 이를 이용한 위상 반전 마스크 제조방법
US6682861B2 (en) * 1999-09-30 2004-01-27 Photronics, Inc. Disposable hard mask for phase shift photomask plasma etching
JP2001183809A (ja) 1999-12-24 2001-07-06 Nec Corp フォトマスク及びフォトマスク製造方法
US6503668B2 (en) * 2000-01-12 2003-01-07 Shin-Etsu Chemical Co., Ltd. Phase shift mask blank, phase shift mask, and method of manufacture
JP2002258458A (ja) * 2000-12-26 2002-09-11 Hoya Corp ハーフトーン型位相シフトマスク及びマスクブランク
JP4466805B2 (ja) 2001-03-01 2010-05-26 信越化学工業株式会社 位相シフトマスクブランク及び位相シフトマスク
JP4020242B2 (ja) 2001-09-28 2007-12-12 Hoya株式会社 マスクブランク、及びマスク
DE10307518B4 (de) * 2002-02-22 2011-04-14 Hoya Corp. Halbtonphasenschiebermaskenrohling, Halbtonphasenschiebermaske und Verfahren zu deren Herstellung
US7202019B2 (en) * 2002-10-25 2007-04-10 Konica Minolta Holdings, Inc. Photothermographic imaging material
US7374865B2 (en) * 2002-11-25 2008-05-20 Intel Corporation Methods to pattern contacts using chromeless phase shift masks
US20060057469A1 (en) * 2003-02-03 2006-03-16 Mitsuhiro Kureishi Photomask blank, photomask, and pattern transfer method using photomask

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138256A (ja) * 1984-12-10 1986-06-25 Toshiba Corp マスクパタ−ンの形成方法
JPH0749558A (ja) * 1993-08-05 1995-02-21 Sony Corp 位相シフトマスクの作製方法
JP2000181049A (ja) * 1998-12-18 2000-06-30 Hoya Corp ハーフトーン型位相シフトマスクブランク及びハーフトーン型位相シフトマスク
US6472107B1 (en) * 1999-09-30 2002-10-29 Photronics, Inc. Disposable hard mask for photomask plasma etching

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682518B2 (en) 2003-08-28 2010-03-23 Applied Materials, Inc. Process for etching a metal layer suitable for use in photomask fabrication
US7829243B2 (en) 2005-01-27 2010-11-09 Applied Materials, Inc. Method for plasma etching a chromium layer suitable for photomask fabrication
JP2007041599A (ja) * 2005-07-29 2007-02-15 Applied Materials Inc フォトマスク製造におけるプロセス集積のためのクラスターツールおよび方法
JP2007164156A (ja) * 2005-11-16 2007-06-28 Hoya Corp マスクブランク及びフォトマスク
TWI393998B (zh) * 2005-11-16 2013-04-21 Hoya Corp Mask base and mask
JP4726010B2 (ja) * 2005-11-16 2011-07-20 Hoya株式会社 マスクブランク及びフォトマスク
TWI417644B (zh) * 2005-12-26 2013-12-01 Hoya Corp Mask base and mask
JP2007241060A (ja) * 2006-03-10 2007-09-20 Shin Etsu Chem Co Ltd フォトマスクブランク及びフォトマスクの製造方法
JP2015156037A (ja) * 2008-03-31 2015-08-27 Hoya株式会社 フォトマスクブランク、フォトマスクおよびフォトマスクブランクの製造方法
JP2009265620A (ja) * 2008-04-02 2009-11-12 Hoya Corp 位相シフトマスクブランク及び位相シフトマスクの製造方法
US8043771B2 (en) 2008-04-02 2011-10-25 Hoya Corporation Phase shift mask blank and method of manufacturing phase shift mask
DE102009015589A1 (de) 2008-04-02 2009-10-22 Hoya Corp. Phasenverschiebungsmaskenrohling und Verfahren zum Herstellen einer Phasenverschiebungsmaske
KR20160135374A (ko) 2008-06-25 2016-11-25 호야 가부시키가이샤 위상 시프트 마스크 블랭크 및 위상 시프트 마스크
US8329364B2 (en) 2008-06-25 2012-12-11 Hoya Corporation Phase shift mask blank and phase shift mask
US9005851B2 (en) 2008-06-25 2015-04-14 Hoya Corporation Phase shift mask blank and phase shift mask
JP2010079110A (ja) * 2008-09-27 2010-04-08 Hoya Corp マスクブランク及び転写用マスクの製造方法
KR101478384B1 (ko) * 2009-03-27 2014-12-31 신에쓰 가가꾸 고교 가부시끼가이샤 포토마스크 블랭크, 그의 가공 방법 및 에칭 방법
JP2012032823A (ja) * 2011-09-21 2012-02-16 Shin Etsu Chem Co Ltd フォトマスクブランク及びバイナリーマスクの製造方法
JP2012003287A (ja) * 2011-09-21 2012-01-05 Shin Etsu Chem Co Ltd フォトマスクの製造方法及びフォトマスク
US9939723B2 (en) 2014-03-28 2018-04-10 Hoya Corporation Mask blank, method of manufacturing phase shift mask, phase shift mask, and method of manufacturing semiconductor device
JP2015194770A (ja) * 2014-03-28 2015-11-05 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、位相シフトマスク、および半導体デバイスの製造方法
KR20160105931A (ko) 2014-03-28 2016-09-07 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크의 제조 방법, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
KR20170139695A (ko) 2014-03-28 2017-12-19 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크의 제조 방법, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
KR20160138242A (ko) 2014-03-30 2016-12-02 호야 가부시키가이샤 마스크 블랭크, 전사용 마스크의 제조 방법 및 반도체 장치의 제조 방법
KR20160138247A (ko) 2014-03-30 2016-12-02 호야 가부시키가이샤 마스크 블랭크, 전사용 마스크의 제조 방법 및 반도체 장치의 제조 방법
KR20210046823A (ko) 2014-03-30 2021-04-28 호야 가부시키가이샤 마스크 블랭크, 전사용 마스크의 제조 방법 및 반도체 장치의 제조 방법
US10261409B2 (en) 2014-03-30 2019-04-16 Hoya Corporation Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
US9864268B2 (en) 2014-03-30 2018-01-09 Hoya Corporation Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
US11231645B2 (en) 2014-03-30 2022-01-25 Hoya Corporation Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
JP2015135513A (ja) * 2015-03-06 2015-07-27 大日本印刷株式会社 フォトマスクブランクス
JPWO2016147518A1 (ja) * 2015-03-19 2017-12-28 Hoya株式会社 マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法
KR20180059393A (ko) 2015-09-30 2018-06-04 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
US10481486B2 (en) 2015-09-30 2019-11-19 Hoya Corporation Mask blank, phase shift mask, and method for manufacturing semiconductor device
KR20230167149A (ko) 2015-09-30 2023-12-07 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
US10942441B2 (en) 2015-09-30 2021-03-09 Hoya Corporation Mask blank, phase shift mask, and method for manufacturing semiconductor device
KR20180075495A (ko) 2015-11-06 2018-07-04 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
KR20220025954A (ko) 2015-11-06 2022-03-03 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
KR20220066426A (ko) 2015-11-06 2022-05-24 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
US10915016B2 (en) 2015-11-06 2021-02-09 Hoya Corporation Mask blank, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
JP2016167092A (ja) * 2016-05-20 2016-09-15 大日本印刷株式会社 フォトマスクブランクス
US20180033592A1 (en) * 2016-07-29 2018-02-01 Nuflare Technology, Inc. Charged particle beam drawing method and charged particle beam drawing apparatus
US10217606B2 (en) 2016-07-29 2019-02-26 Nuflare Technology, Inc. Charged particle beam drawing method and charged particle beam drawing apparatus
JP2018106022A (ja) * 2016-12-27 2018-07-05 Hoya株式会社 表示装置製造用フォトマスクの製造方法および表示装置の製造方法
KR20190133006A (ko) 2017-03-31 2019-11-29 도판 인사츠 가부시키가이샤 위상 시프트 마스크 블랭크, 위상 시프트 마스크 및 위상 시프트 마스크의 제조 방법
US11048160B2 (en) 2017-06-14 2021-06-29 Hoya Corporation Mask blank, phase shift mask and method for manufacturing semiconductor device
KR20200017399A (ko) 2017-06-14 2020-02-18 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
KR20210118885A (ko) 2019-03-07 2021-10-01 호야 가부시키가이샤 마스크 블랭크, 전사용 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
KR20210136114A (ko) 2019-03-18 2021-11-16 호야 가부시키가이샤 마스크 블랭크, 전사용 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
KR20230132464A (ko) 2021-01-26 2023-09-15 호야 가부시키가이샤 마스크 블랭크, 전사용 마스크의 제조 방법, 및 반도체디바이스의 제조 방법

Also Published As

Publication number Publication date
KR20120055742A (ko) 2012-05-31
KR101394715B1 (ko) 2014-05-15
JP2009080510A (ja) 2009-04-16
US20050019674A1 (en) 2005-01-27
KR20050119202A (ko) 2005-12-20
US7314690B2 (en) 2008-01-01
US20100173234A1 (en) 2010-07-08
JPWO2004090635A1 (ja) 2006-07-06
KR20110067172A (ko) 2011-06-21
US20080286662A1 (en) 2008-11-20
JP4920705B2 (ja) 2012-04-18
KR101511926B1 (ko) 2015-04-13
DE112004000591T5 (de) 2006-02-09
US8048596B2 (en) 2011-11-01
TWI259329B (en) 2006-08-01
KR20140047163A (ko) 2014-04-21
US7709161B2 (en) 2010-05-04
KR101135246B1 (ko) 2012-06-07
KR101161450B1 (ko) 2012-07-20
DE112004000591B4 (de) 2020-09-10
TW200424757A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
WO2004090635A1 (ja) フォトマスクの製造方法及びフォトマスクブランク
JP5530075B2 (ja) フォトマスクブランク、フォトマスク及びこれらの製造方法
US8048594B2 (en) Photomask blank, photomask, and methods of manufacturing the same
JP5374599B2 (ja) フォトマスクブランク及びフォトマスクの製造方法、並びに半導体装置の製造方法
TWI467316B (zh) 光罩之製造方法
TWI446102B (zh) Mask blank and mask
WO2007029826A1 (ja) フォトマスクブランクとその製造方法、及びフォトマスクの製造方法、並びに半導体装置の製造方法
JP2010008868A (ja) フォトマスクブランク、フォトマスク及びその製造方法
US20140335446A1 (en) Systems and Methods for Lithography Masks
JP2009092823A (ja) フォトマスクブランクスおよびフォトマスク
JP2009205146A (ja) フォトマスクの欠陥修正方法、フォトマスクの製造方法、位相シフトマスクの製造方法、フォトマスク、位相シフトマスク、フォトマスクセット及びパターン転写方法
JP4831368B2 (ja) グレートーンマスクブランク及びグレートーンマスク
JP5829302B2 (ja) フォトマスクブランクの製造方法およびフォトマスクの製造方法
JP5362388B2 (ja) フォトマスクの製造方法及びパターン転写方法
JP4872737B2 (ja) 位相シフトマスクの製造方法および位相シフトマスク
JPH075676A (ja) 位相シフトマスク及び位相シフトマスクブランク

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505328

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057019196

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057019196

Country of ref document: KR

122 Ep: pct application non-entry in european phase