WO2003091813A1 - Querführungsunterstützung bei kraftfahrzeugen - Google Patents

Querführungsunterstützung bei kraftfahrzeugen Download PDF

Info

Publication number
WO2003091813A1
WO2003091813A1 PCT/DE2002/004540 DE0204540W WO03091813A1 WO 2003091813 A1 WO2003091813 A1 WO 2003091813A1 DE 0204540 W DE0204540 W DE 0204540W WO 03091813 A1 WO03091813 A1 WO 03091813A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
objects
vehicle
target value
location data
Prior art date
Application number
PCT/DE2002/004540
Other languages
English (en)
French (fr)
Inventor
Goetz Braeuchle
Martin Heinebrodt
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2004500125A priority Critical patent/JP4005597B2/ja
Priority to DE50209256T priority patent/DE50209256D1/de
Priority to EP02794988A priority patent/EP1502166B1/de
Priority to US10/512,593 priority patent/US7765066B2/en
Publication of WO2003091813A1 publication Critical patent/WO2003091813A1/de
Priority to US12/785,256 priority patent/US8718919B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/08Lane monitoring; Lane Keeping Systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/08Lane monitoring; Lane Keeping Systems
    • B60T2201/087Lane monitoring; Lane Keeping Systems using active steering actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position

Definitions

  • the invention relates to a method for lateral guidance support in motor vehicles, in which a target value for the transverse position of the vehicle is determined, the actual position of the vehicle is detected relative to the limits of the lane being traveled by means of a sensor device, and an off-target comparison is used to compare is calculated signal for the lateral guidance support, and a device for performing this method.
  • LLS lane keeping support
  • the actual position of the vehicle is determined relative to the lane traveled and compared with a target value that typically corresponds to the center of the lane.
  • the output signal then consists of an actuating signal for an actuator that intervenes in the steering system of the vehicle, be it to support the driver with an additional steering torque or to carry out a completely autonomous lateral guidance that no longer requires driver intervention.
  • the object of the invention is to provide a method for lateral guidance support which largely corresponds to the normal driving behavior of drivers.
  • This object is achieved according to the invention in that objects are located on at least one secondary lane and the setpoint for the transverse position is varied depending on the location data of these objects.
  • an object detection device which is able to provide the location data about the objects in the secondary lanes.
  • the hardware required for such an object detection device is generally available anyway in motor vehicles with ADAS systems.
  • the sensor device which is used to determine the actual position of the vehicle relative to the boundaries of the lane is often formed by a camera system, for example one or more video cameras in conjunction with a (stereo) image processing device.
  • the location data about the objects on the secondary tracks can also be supplied by the image processing device.
  • the ADAS system also includes a further subsystem for longitudinal guidance support, for example in the form of an ACC system (Adaptive Crulse Control).
  • ACC system Adaptive Crulse Control
  • the distances and relative speeds of vehicles traveling ahead in their own lane and also on secondary lanes are recorded with the aid of a direction-sensitive distance sensor, for example a radar or lidar sensor, and the speed of the vehicle is automatically adjusted so that this is immediate vehicle in front is followed at a reasonable safety distance.
  • the signals from such a distance sensor can then also be used to locate objects on secondary tracks, possibly in combination with the data supplied by the image processing system.
  • the traffic situation can be extrapolated very simply and precisely into the future on the basis of the measured relative speeds, so that the "evasive maneuvers" to be carried out according to the method according to the invention can be initiated in good time.
  • the extent of the shift of the setpoint from the center of the track or ideal line is preferably dependent on one or more of the following parameters: lateral distance of the located object on the secondary lane, size and type of this object, position of the object on the left or right secondary lane, object distance along the lane, speeds of your own vehicle and the detected object or relative speed of the object, width of the lane.
  • visibility and weather conditions can also be taken into account. For example, when the roadway is wet, a larger lateral offset is preferably selected so that the view is less affected by the spray whirled up by the vehicles on the secondary lanes.
  • the detection of the visibility and weather conditions and similar parameters can be done either automatically or by driver command.
  • the driver has the possibility, independently of the presence of objects in the secondary lanes, of specifying a specific target offset of his own vehicle from the middle of the lane, for example in order to be able to better look past vehicles in front.
  • the "normal" offset selected by the driver is also taken into account when determining the setpoint for the transverse position as a function of objects on the secondary lanes.
  • the parameters that determine the precise reaction of the vehicle to localized objects in the secondary lanes can also be configured within certain limits, taking safety aspects into account, using suitable configuration commands are influenced by the driver.
  • the method it is also possible to implement the method as an adaptive system that automatically adapts to the behavior of the driver.
  • the driver can override the automatic lateral control by "counter-steering" or "counter-holding”.
  • the extent of the "counteraction” by the driver then forms a feedback signal, which makes it possible to automatically adapt the behavior of the lateral guidance system to the driver's wishes and preferences.
  • Cross-guidance systems are often designed in such a way that they allow the curve to be cut to a certain extent when cornering. This can be done, for example, by calculating an ideal line that deviates from the center of the lane and / or by calculating a setpoint for the transverse position (corresponding to the center of the lane or the ideal line) for a specific point, which is a speed-dependent distance before the current position of the vehicle lies.
  • This distance (look-ahead distance) is often specified in the form of a time gap (look-ahead time), which is given by the quotient of the look-ahead distance and the absolute speed of the vehicle.
  • the intervention in the steering then takes place in such a way that the actual value for the transverse position of the vehicle is brought into agreement with the target value within the forecast time.
  • this control behavior inevitably leads to the curves being cut more or less strongly depending on the forecast.
  • the setpoint for the transverse position and / or the look-ahead distance can now be adjusted so that in the case of oncoming traffic or if there are vehicles on a left-hand lane, the cornering on left-hand bends is suppressed, and accordingly in vehicles on the right-hand lane Curve cutting is suppressed when turning right.
  • Fig. 1 is a block diagram of a cross guide system for a
  • Fig. 6 is a diagram illustrating the method when cornering.
  • FIG. 1 schematically shows a top view of a motor vehicle 10 which travels somewhat offset to the center of the lane 12 on a lane 16 defined by boundaries 14 of a multi-lane roadway.
  • the longitudinal axis 18 of the motor vehicle 10 is shown in dash-dot lines, and the lateral deviation between the longitudinal axis 18 and the track center 12 is denoted by ⁇ Y.
  • the motor vehicle 10 is equipped with an ADAS system, which as a subsystem comprises a transverse guidance system with the following components, shown in the form of a block diagram: a sensor device formed by a video camera 20 and an image processing unit 22, an object recognition device 24, a specification device 26 Specification of a target value ⁇ Y so ll for the transverse position of the motor vehicle 10, a processing device 28 and a steering actuator 30 which is controlled by an output signal A of the processing device 28 and which is incorporated into the vehicle steering system. engages to regulate the transverse position of the motor vehicle 10 to the desired value.
  • a sensor device formed by a video camera 20 and an image processing unit 22
  • an object recognition device 24
  • a specification device 26 Specification of a target value ⁇ Y so ll for the transverse position of the motor vehicle 10
  • a processing device 28 and a steering actuator 30 which is controlled by an output signal A of the processing device 28 and which is incorporated into the vehicle steering system. engages to regulate the transverse position of the motor vehicle 10 to the desired value
  • the actual position of the vehicle in the direction transverse to the longitudinal axis 18 is detected in the example shown with the sensor device formed by the video camera 20 and the image processing unit 22.
  • the image processing unit 22 evaluates the video image recorded by the camera in order to recognize the limits 14 and the position of the motor vehicle 10 relative to these limits.
  • This embodiment of the sensor device is only to be understood as an example and can be replaced, for example, by magnetic sensors which detect magnetic markings for the road boundaries. Likewise, the road boundaries could also be marked with the help of reflectors, which are detected by a radar system of the vehicle.
  • the width of lane 16 and the position of lane center 12 can also be determined from this data.
  • the sensor device is therefore able to transmit the actual position of the motor vehicle 10, expressed by an actual value ⁇ Yactual for the lateral deviation ⁇ Y, to the processing device 28.
  • the processing device 28 On the basis of a comparison of the actual value ⁇ Yi S t with the target value ⁇ Y S oll, the processing device 28 then forms the output signal A, which is transmitted to the steering actuator 30.
  • the target value ⁇ Y S0 H is also expressed as a lateral deviation from the track center 12. For example, positive values of ⁇ Ysoll correspond to a deviation to the right of the center of the track 12 and negative values correspond to a deviation to the left of the center of the track.
  • the specification device 26 contains a memory 32 in which a normal value ⁇ Y n desired by the driver for the setpoint value is stored.
  • the setting device 26 also includes an adjusting element 34 which is arranged on the steering wheel of the vehicle and by means of which the stored normal value can be changed. In this way, the driver of the motor vehicle 10 can select the lateral deviation ⁇ Y individually according to his personal preferences or needs.
  • the specification device 26 can be designed such that it modifies the setting made by the driver or limits the setting range. For example, it is expedient to limit the setting range as a function of the width of the lane measured with the aid of the sensor device and the known vehicle width so that the vehicle always maintains a sufficient safety distance from the lane boundaries.
  • the setting made using the setting element 34 does not indicate the lateral deviation ⁇ Y in a fixed length unit, but rather as a percentage value, based on the width of the lane or on the excess width of the lane, ie the difference between the lane width and the vehicle width.
  • the target value stored in the memory 32 would be adjusted automatically when the track width changes without the driver having to adjust the setting element 34.
  • the object recognition device 24 which is shown in FIG. 1 as a separate block, is part of the image processing unit 22 that is specifically designed to recognize objects on secondary tracks to the track 16 traveled by the motor vehicle 10. 1 shows a right side lane 36, on which, as object 38, another motor vehicle is traveling.
  • the object recognition device 24 extracts location data for the object 38 from the video image, which in particular indicate the position of this object and, if appropriate, its type and size.
  • these location data include the lateral distance Yr of the object 38 from the track center 12 of the track 16.
  • Y r indicates the smallest lateral distance, that is, for objects on the right-hand side track 36, the distance between the track center 12 and the left track track 12. ken vehicle limitation of object 38.
  • information about the longitudinal position of the object 38 along the track 36 and the relative speed of the object 38 relative to the motor vehicle 10 can also be extracted from the video image.
  • the motor vehicle 10 is additionally equipped with a radar sensor 40.
  • This radar sensor 40 is primarily used to detect vehicles in front on lane 16 and to regulate the distance as part of a longitudinal guidance system. However, it can also provide information about objects on the secondary tracks, in particular about the longitudinal distance and the relative speed of these objects and, if the angular resolution is sufficient, also about the lateral distance Y r . The location accuracy and security can be improved by comparing the information supplied by the video camera 20 and the radar sensor 40.
  • the location data for the object can be extrapolated on the basis of the relative speed, on the assumption that the object 38 maintains its lane position in the secondary lane 36.
  • Additional sensory components can be provided, for example additional video cameras, an all-round radar and the like.
  • objects can also be located on a left side lane, not shown in FIG. 1, with the aid of the location system.
  • the object detection device 24 supplies a set of location data, including the lateral distances Yr.i, to the specification device 26 for each detected object.
  • the specification device 26 uses this location data to calculate the setpoint value ⁇ Ysetpoint for the transverse position of the motor vehicle 10 if necessary, the normal value .DELTA.Y n stored in the memory 32 is modified such that a larger safety distance from this object is maintained when passing the object 38.
  • FIG. 2 shows motor vehicle 10 on lane 16 and, as objects on right auxiliary lane 36, a truck 42 and a car 44. Furthermore, FIG. 2 shows two lanes 46 and 48 of an oncoming lane. The lane 48 immediately adjacent to the lane 16 is only delimited from the lane 16 by a lane marking and is and is treated here as a left lane. In the example shown, it is driven on by two cars, which are also located as objects 50, 52 by the object detection device 24. In contrast, a vehicle 54 traveling on the lane 46 is no longer located as a relevant object.
  • ⁇ Y S oll becomes positive, that is to say it is shifted to the right toward the middle of the lane 12 because the right-hand side lane 36 is then free and a greater safety distance from the object 52 then coming should be maintained ,
  • the method for lateral guidance support could run approximately as follows.
  • a certain look-ahead time Ty is used to regulate the transverse position.
  • the setpoint value ⁇ Y S oll is calculated by the specification device 26 for a point on the road 16 that is reached by the motor vehicle 10 after the look-ahead time T v .
  • the output signal A is calculated by the processing device 28 so that the target-actual deviation is reduced to 0 within the look-ahead time T v .
  • the specification device 26 uses the measured longitudinal distance and the relative speed of the object to calculate the time Tpa at which the motor vehicle 10 starts to pass the object in question.
  • Tp a is the time at which the front end of the motor vehicle 10 reaches the rear edge of the truck 42.
  • a time Tpe is calculated for each object at which the passage of the object has ended. In the case of the truck 42, this is the point in time at which the rear bumper of the motor vehicle 10 is level with the front bumper of the truck 42. 2, the positions of the front bumper of the motor vehicle 10 are given for the times Tp and Tpe.
  • the motor vehicle 10 is drawn in dashed lines at the point in time at which the look-ahead time T v coincides with the calculated time Tpa. (At this point in time, however, the truck 42 does not yet have the position shown in FIG. 2, but only reaches this position after the look-ahead time T v has elapsed).
  • the specification device 26 calculates the setpoint value ⁇ Ysetpoint Consideration of the truck 42. At this time, the steering intervention is initiated via the output signal A, which leads to the fact that the position of the motor vehicle 10 at time Tp a matches the calculated target value.
  • the target value .DELTA.Y S oll for a time that is to T v later. If the car 44 were not present, the setpoint would be reduced to 0 at this point in time. The consequence would be that the motor vehicle 10 would again approach the truck 42 before the overtaking process has actually ended. According to one embodiment of the invention, this can be prevented by reducing the look-ahead time T v to a smaller value, at least in relation to the currently relevant object 42, so that the return to the center of the lane commences accordingly later. In contrast, the normal (longer) look-ahead time should continue to apply to the consideration of the other objects 44, 50 and 52. In a modified embodiment, the target value, which was calculated in relation to a specific object (here the truck 42), is maintained until this object has actually been passed, that is to say up to the time Tpe-
  • FIG. 3 shows a flow chart for this latter method variant, taking into account objects on both secondary tracks 36 and 48.
  • the program routine illustrated by the flow chart in FIG. 3 is called periodically at short time intervals, approximately every 10 ms.
  • step S1 the times Tp a and Tp e are calculated for all located objects, ie in FIG. 2 for objects 42, 44, 50 and 52, at which the passage of the relevant object begins or ends.
  • step S2 it is checked whether the conditions Tp a ⁇ T and Tp e ⁇ 0 are fulfilled for at least one object on the right side lane.
  • the first condition means that the passage of the object will begin within the time T v .
  • the second condition means that the passage of the object has not yet ended. If both conditions are met, the setpoint ⁇ Ysetpoint for the transverse position should therefore be calculated as a function of the location data of this object.
  • a value ⁇ Y r is calculated in step S3, namely as twice the function w r (Y r ) of the lateral distance Y r of the object in question.
  • the function value w r (Y r ) is a candidate for the setpoint and would be adopted as the final setpoint if the object in question on the right side lane were the only relevant object.
  • step S3 is carried out for both objects and the smaller of the two values obtained for ⁇ Y is then taken.
  • This situation could occur, for example, if the overtaking process for the truck 42 has not yet been completed, but the car 44 is already reached in less than the time T.
  • ⁇ Y r is set in step S4 to the normal value ⁇ Y n , which can be positive or negative depending on the driver's specifications, according to a desired deviation from the track average right or left.
  • steps S5, S6 and S7 are a repetition of steps S2 - S4, but now for objects on the left side lane.
  • a value ⁇ Yi is calculated as twice a function value w ⁇ (Y ⁇ ), which is also a candidate for the setpoint and forms the final setpoint if only objects in the left lane are to be taken into account.
  • step S8 the final setpoint value ⁇ Ysetpoint is then calculated by forming the mean value from the values ⁇ Y r and ⁇ Yi. This setpoint is then used as a basis in the processing device 28.
  • the driver set ⁇ Yn to 0.
  • the final setpoint ⁇ Ysetpoint is w r (Yr) - if only one relevant object has been located on the right side lane, and wifYi) if only one relevant object has been located on the left side lane. If relevant objects have been located on both secondary lanes, the final target value represents a compromise between the candidates w r (Y r ) and wi (Y ⁇ ). This compromise corresponds to the course of the course 56 in FIG. 2 while passing the cars 44 and 50th
  • the final setpoint value ⁇ Ysetpoint ⁇ Yn, ie the transverse offset of the vehicle relative to the track intersection 12 corresponds to the specification of the driver. If only the query in step S2 or only the query in step S5 had a positive result, the final target value is modified slightly in step S8 by ⁇ Y n / 2. This may well be desirable to moderate excessive vehicle lateral movements. Alternatively, the program can be modified so that ⁇ Y is completely ignored if one of the queries in Step S2 or S5 has a positive result.
  • the functions w r and w ⁇ each specify the setpoint shift depending on the relative speed V r of the object in question. Examples of these functions are shown in FIGS. 4 and 5.
  • the dependency on the relative speed takes into account the idea that the safety distance should be greater with a higher relative speed.
  • the value Wmin is of the The width of the track 16 depends and is selected so that the greatest possible distance from the object is maintained at a very high relative speed, but without the motor vehicle 10 leaving the track 16.
  • the initial value at the relative speed 0 is given by MIN ( ⁇ Y n , Yr - wo).
  • MIN ⁇ Y n , Yr - wo
  • ⁇ Yn the initial value
  • Yr - wo takes on very small negative values and can even drop below wmin. In this case, the safety distance can no longer be maintained and a collision warning should be issued to the driver.
  • FIG. 5 shows the function wifYi) constructed according to analog principles for objects on the left side lane.
  • This left side lane can be both a lane of the same directional lane and - as in FIG. 2 - a lane of the opposite lane. In the latter case, the relative speeds Vr will generally be higher.
  • the functions w r and w ⁇ can be used as function instructions with suitable parameters, as tables or as maps in the memory 32 of the default device 26 be filed. These functions can also depend on the absolute speed of the motor vehicle 10, for example in such a way that the function values and thus the corresponding transverse offsets of the vehicle are smaller in amount at a higher absolute speed, so that uncomfortably high lateral accelerations when overtaking at high speed are avoided.
  • the parameters that determine the functions w r and wi can be so be adjusted so that the target value calculated in step S8 corresponds to the driver's wish, which can be identified on the basis of the driver's steering intervention.
  • the long look-ahead time leads to a certain intersection of the curve. If there is no object on the right side lane 36, this intersection of the curve is perfectly acceptable. However, if an object 38 is on the secondary lane, this object can be approached in a questionable manner, even if the target value has been shifted to the left due to the location of the object 38. If an object is located on the inner secondary lane in a curve, it is therefore expedient to shorten the look-ahead time and thus the look-ahead distance, as indicated by an arrow 62 in FIG. 6. The resulting course 64 of the motor vehicle 10 ensures that there is always a sufficient distance from the object 38.
  • the processing operations necessary for the method according to the invention can be carried out, for example, by a microcomputer which performs the Functions of the specification device 26 and the processing device 28 in FIG. 1 are fulfilled.
  • the location data can also be obtained with the aid of radar sensor 40 or a comparable distance sensor, for example a lidar sensor.
  • the size of the located object can then be estimated at least roughly on the basis of the directional dependence and / or the strength of the echo signal, so that a distinction can be made at least between a truck 42 and a car 44.
  • Standard values for the various object classes (cars or trucks) can then be used as a basis for the length of the object that is required for determining the time Tp e .
  • echo signals can also be evaluated, if necessary, which result from reflections on the front fender or other structures of the truck.
  • a constant, sufficiently large object length can always be used as a basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

Verfahren zur Querführungsunterstützung bei Kraftfahrzeugen (10), bei dem ein Sollwert (56) für die Querposition des Fahrzeugs (10) bestimmt wird, die Ist-Position (?Yist) des Fahrzeugs relativ zu den Grenzen (14) der befahrenen Spur (16) mit einer Sensoreinrichtung erfasst wird und durch Soll-Ist-Vergleich ein Ausgangssignal für die Querführungsunterstützung berechnet wird, dadurch gekennzeichnet, dass Objekte (38, 42, 44, 50, 52) auf mindestens einer Nebenspur (36, 48) geortet werden und der Sollwert (56) für die Querposition in Abhängigkeit von Ortungsdaten dieser Objekte variiert wird.

Description

QUERFÜHRUNGSUNTERSTUTZUNG BEI KRAFTFAHRZEUGEN
STAND DER TECHNIK
Die Erfindung betrifft ein Verfahren zur Querführungsunterstutzung bei Kraftfahrzeugen, bei dem ein Sollwert für die Querposition des Fahrzeugs bestimmt wird, die Ist-Position des Fahrzeugs relativ zu den Grenzen der befahrenen Spur mit einer Sensoreinrichtung erfaßt wird und durch Soll/Ist-Vergleich ein Aus- gangssignal für die Querführungsunterstutzung berechnet wird, sowie eine Vorrichtung zur Durchführung dieses Verfahrens.
In Kraftfahrzeugen werden zunehmend Systeme eingesetzt, die den Fahrer bei der Fahrzeugführung unterstützen oder ihm spezielle Fahrmanöver erleichtern (Advanced Driver Assistance Systems; ADAS). Eine Funktion dieser Systeme ist die Querführungsunterstutzung (Lane Keeping Support; LKS). Dabei wird die Ist-Position des Fahrzeugs relativ zu der befahrenen Fahrspur ermittelt und mit einem Sollwert verglichen, der typischerweise der Mitte der Spur entspricht. Das Ausgangssignal besteht dann in einem Stellsignal für einen Aktor, der in das Lenkungssystem des Fahrzeugs eingreift, sei es um den Fahrer durch ein zusätzliches Lenkdrehmoment zu unterstützen oder um eine völlig autonome Querführung durchzuführen, die keinen Eingriff des Fahrers mehr erfordert.
AUFGABE, LOSUNG UND VORTEILE DER ERFINDUNG
Aufgabe der Erfindung ist es, ein Verfahren zur Querführungsunterstutzung zu schaffen, das weitgehend dem üblichen Fahrverhalten von Kraftfahrern entspricht.
Diese Aufgabe wird erfindungsgemäü> dadurch gelöst, daJ3 Objekte auf mindestens einer Nebenspur geortet werden und der Sollwert für die Querposition in Abhängigkeit von Ortungsdaten dieser Objekte variiert wird.
Es entspricht dem natürlichen, intuitiven Verhalten eines Kraftfahrers, daß er nicht ständig die Mitte der befahrenen Fahrspur einhält, sondern seine Spurlage in Abhängigkeit von der Verkehrssituation variiert. Beispielsweise haben viele
Kraftfahrer die Tendenz, beim Überholen eines langsameren Fahrzeuges auf der rechten Nebenspur etwas nach links versetzt zur Spurmitte zu fahren, um einen größeren Sicherheitsabstand zu dem überholten Fahrzeug einzuhalten. Ebenso neigen viele Kraftfahrer dazu, etwas nach rechts versetzt zur Spurmitte zu fahren, wenn sie selbst überholt werden, oder ihnen ein Fahrzeug entgegen kommt und die Gegenfahrbahn nicht durch Leitplanken oder dergleichen von der eigenen Fahrbahn abgetrennt ist, etwa im Baustellenbereich auf Autobahnen. Durch das erfindungsgemäße Verfahren wird dieses natürliche Verhalten von Kraftfahrern nachgebildet. Hierdurch wird nicht nur eine tatsächliche Erhöhung der Verkehrssicherheit erreicht, sondern vor allem auch dem Sicherheitsgefühl des Fahrers Rechnung getragen und damit der Komfort gesteigert und das Vertrauen des Fahrers und der Fahrzeuginsassen in das ADAS-System gestärkt und folglich die Akzeptanz solcher Systeme erhöht.
Für die Durchführung des Verfahrens wird eine Objekterfassungseinrichtung benötigt, die in der Lage ist, die Ortungsdaten über die Objekte auf den Nebenspuren bereitzustellen. Die erforderliche Hardware für eine solche Objekterfassungseinrichtung ist jedoch in Kraftfahrzeugen mit ADAS-Systemen in der Regel ohnehin verfügbar. Beispielsweise wird die Sensoreinrichtung, die zur Bestimmung der Ist-Position des Fahrzeugs relativ zu den Grenzen der Fahrspur dient, häufig durch ein Kamerasystem gebildet, beispielsweise eine oder mehrere Videokameras in Verbindung mit einer (Stereo-) Bildverarbeitungseinrichtung. In diesem Fall können auch die Ortungsdaten über die Objekte auf den Nebenspuren von der Bildverarbeitungseinrichtung geliefert werden.
In der Regel umfaßt das ADAS-System neben dem Querführungssystem auch ein weiteres Teilsystem für die Längsführungsunterstützung, beispielsweise in der Form eines ACC-Systems (Adaptive Crulse Control). Im Rahmen eines solchen Systems werden die Abstände und Relativgeschwindigkeiten vorausfahrender Fahrzeuge auf der eigenen Spur und auch auf Nebenspuren mit Hilfe eines richtungssensitiven Abstandssensors, beispielsweise eines Radar- oder Lidar- Sensors erfaßt, und die Geschwindigkeit des eigenen Fahrzeugs wird automatisch so angepaßt, daß das unmittelbar vorausfahrende Fahrzeug in einem angemessenen Sicherheitsabstand verfolgt wird. Zur Ortung von Objekten auf Nebenspuren können dann auch die Signale eines solchen Abstandssensors - ggf. in Kombination mit den vom Bildverarbeitungssystem gelieferten Daten - herangezogen werden. Da insbesondere mit Hilfe eines Abstandsradars die Relativgeschwindigkeiten vorausfahrender oder auch entgegenkommender Fahrzeuge di- rekt gemessen werden können, läßt sich die Verkehrssituation anhand der gemessenen Relativgeschwindigkeiten sehr einfach und präzise in die Zukunft extrapolieren, so daß die nach dem erfindungsgemäßen Verfahren durchzuführenden "Ausweichmanöver" zeitgerecht eingeleitet werden können.
Sofern mit Hilfe des Kamerasystems und/oder mit Hilfe eines Rückraumradars oder Rundumradars auch das Verkehrsgeschehen hinter dem eigenen Fahrzeug beobachtet wird, können auch Überholvorgänge nachfolgender Fahrzeuge rechtzeitig berücksichtigt werden.
Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
Das Ausmaß der Verschiebung des Sollwertes von der Spurmitte bzw. Ideallinie ist bevorzugt von einem oder mehreren der folgenden Parameter abhängig: Lateraler Abstand des georteten Objekts auf der Nebenspur, Größe und Art dieses Objekts, Lage des Objektes auf der linken oder rechten Nebenspur, Objektentfernung längs der Fahrspur, Geschwindigkeiten des eigenen Fahrzeugs und des erfaßten Objekts bzw. Relativgeschwindigkeit des Objekts, Breite der Fahrspur. Ggf. können auch Sicht- und Witterungsverhältnisse berücksichtigt werden. Beispielsweise wird man bei nasser Fahrbahn vorzugsweise einen größeren seitlichen Versatz wählen, damit die Sicht weniger durch die von den Fahrzeugen auf den Nebenspuren aufgewirbelte Gischt beeinträchtigt wird. Die Erfassung der Sicht- und Witterungsverhältnisse und ähnlicher Parameter kann entweder automatisch oder durch Fahrerbefehl erfolgen.
Weiterhin ist es denkbar, daß der Fahrer die Möglichkeit hat, unabhängig von dem Vorhandensein von Objekten auf den Nebenspuren einen bestimmten Soll- Versatz des eigenen Fahrzeugs von der Spurmitte vorzugeben, beispielsweise um besser an vorausfahrenden Fahrzeugen vorbeischauen zu können. In diesem Fall findet bei der Bestimmung des Sollwertes für die Querposition in Abhängigkeit von Objekten auf den Nebenspuren auch der vom Fahrer gewählte "normale" Versatz Berücksichtigung.
Die Parameter, die die genaue Reaktion des Fahrzeugs auf geortete Objekte auf den Nebenspuren bestimmen, können innerhalb gewisser Grenzen, unter Berücksichtigung von Sicherheitsaspekten, auch durch geeignete Konfigurations- befehle vom Fahrer beeinflußt werden.
Gemäß einer Weiterbildung der Erfindung ist es auch möglich, das Verfahren als ein lernfähiges System zu implementieren, das sich automatisch dem Ver- halten des Fahrers anpaßt. Dies gilt insbesondere für den Fall einer Querführungsunterstutzung im eigentlichen Sinne, d.h. für den Fall, daß der Fahrer selbst die Kontrolle über das Lenkungssystem behält und der Aktor des Quer- führungssystems lediglich unterstützend eingreift, durch Einkopplung eines ergänzenden Lenkdrehmoments in die Lenkung. In diesem Fall kann der Fahrer durch "Gegenlenken" oder "Gegenhalten" die automatische Querführung übersteuern. Das Ausmaß des "Gegenhaltens" durch den Fahrer bildet dann ein Rückkopplungssignal, das es ermöglicht, das Verhalten des Querführungssy- stems automatisch an die Wünsche und Vorlieben des Fahrers anzupassen.
Häufig sind Querführungssysteme so ausgelegt, daß sie bei Kurvenfahrten ein gewisses Schneiden der Kurve zulassen. Dies kann beispielsweise durch Berechnung einer von der Spurmitte abweichenden Ideallinie geschehen und/oder dadurch, daß ein Sollwert für die Querposition (entsprechend der Spurmitte oder der Ideallinie) jeweils für einen bestimmten Punkt berechnet wird, der um eine geschwindigkeitsabhängige Distanz vor der aktuellen Position des Fahrzeugs liegt. Diese Distanz (Vorausschauweite) wird häufig in der Form einer Zeitlücke (Vorausschauzeit) angegeben, die durch den Quotienten aus Vorausschauweite und Absolutgeschwindigkeit des Fahrzeugs gegeben ist. Der Eingriff in die Lenkung erfolgt dann in der Weise, daß der Ist-Wert für die Querposition des Fahr- zeugs innerhalb der Vorausschauzeit mit dem Sollwert in Übereinstimmung gebracht wird. Bei Kurvenfahrten führt dieses Regelverhalten zwangsläufig dazu, daß die Kurven je nach Vorausschau weite mehr oder minder stark geschnitten werden. Bei dem erfindungsgemäßen Verfahren lassen sich nun der Sollwert für die Querposition und/oder die Vorausschauweite so anpassen, daß bei Gegen- verkehr oder wenn Fahrzeuge auf einer linken Nebenspur vorhanden sind, das Kurvenschneiden bei Linkskurven unterdrückt wird und entsprechend bei Fahrzeugen auf der rechten Nebenspur das Kurvenschneiden bei Rechtskurven unterdrückt wird.
Im folgenden wird ein Ausführungsbeispiel anhand der Zeichnungen näher erläutert. KURZBESCHREIBUNG DER ZEICHNUNGEN
Es zeigen:
Fig. 1 ein Blockdiagramm eines Querführungssystems für ein
Kraftfahrzeug;
Fig. 2 ein Diagramm zur Illustration der Grundzüge des erfindungsgemäßen Verfahrens;
Fig. 3 ein Flußdiagramm zu dem eringungsgemäßen Verfahren;
Fig. 4 und 5 Beispiele für Gewichtungsfunktionen, die in dem Verfahren nach Figur 3 benutzt werden; und
Fig. 6 ein Diagramm zur Illustration des Verfahrens bei Kurvenfahrten.
BESCHREIBUNG EINES AUSFUHRUNGSBEISPIELS
In Figur 1 ist schematisch ein Kraftfahrzeug 10 in der Draufsicht dargestellt, das etwas versetzt zur Spurmitte 12 auf einer durch Grenzen 14 definierten Spur 16 einer mehrspurigen Fahrbahn fährt. Die Langsachse 18 des Kraftfahrzeugs 10 ist strichpunktiert eingezeichnet, und die laterale Abweichung zwischen der Längsachse 18 und der Spurmitte 12 ist mit ΔY bezeichnet.
Das Kraftfahrzeug 10 ist mit einem ADAS-System ausgerüstet, das als Teilsy- stem ein Querführungssystem mit den folgenden, in Form eines Blockdiagramms dargestellten Komponenten umfaßt: eine durch eine Videokamera 20 und eine Bildverarbeitungseinheit 22 gebildete Sensoreinrichtung, eine Objekterkennungseinrichtung 24, eine Vorgabeeinrichtung 26 zur Vorgabe eines Sollwertes ΔYsoll für die Querposition des Kraftfahrzeugs 10, eine Verarbeitungsein - richtung 28 und ein Lenkungsstellglied 30, das durch ein Ausgangssignal A der Verarbeitungseinrichtung 28 angesteuert wird und in die Fahrzeuglenkung ein- greift, um die Querposition des Kraftfahrzeugs 10 auf den Sollwert zu regeln.
Die Ist-Position des Fahrzeugs in der Richtung quer zur Längsachse 18 wird im gezeigten Beispiel mit der durch die Videokamera 20 und die Bildverarbeitungs- einheit 22 gebildeten Sensoreinrichtung erfaßt. Dazu wertet die Bildverarbeitungseinheit 22 das von der Kamera aufgenommene Videobild aus, um die Grenzen 14 und die Lage des Kraftfahrzeugs 10 relativ zu diesen Grenzen zu erkennen. Diese Ausführungsform der Sensoreinrichtung ist lediglich als Beispiel zu verstehen und kann beispielsweise durch Magnetsensoren ersetzt werden, die magnetische Markierungen für die Fahrbahngrenzen erfassen. Ebenso könnten die Fahrbahngrenzen auch mit Hilfe von Reflektoren markiert werden, die von einem Radarsystem des Fahrzeugs erfaßt werden.
Wenn die Lage beider Grenzen 14 relativ zum Kraftfahrzeug 10 bekannt ist, läßt sich aus diesen Daten auch die Breite der Spur 16 sowie die Lage der Spurmitte 12 ermitteln. Die Sensoreinrichtung ist daher in der Lage, die Ist-Position des Kraftfahrzeugs 10, ausgedrückt durch einen Ist-Wert ΔYist für die laterale Abweichung ΔY, an die Verarbeitungseinrichtung 28 zu übermitteln. Anhand eines Vergleichs des Ist-Wertes ΔYiSt mit dem Sollwert ΔYSoll bildet die Verarbeitungs- einrichtung 28 dann das Ausgangssignal A, das an das Lenkungsstellglied 30 übermittelt wird. Der Sollwert ΔYS0H wird ebenfalls als laterale Abweichung von der Spurmitte 12 ausgedrückt. Beispielsweise entsprechen positive Werte von ΔYsoll einer Abweichung nach rechts von der Spurmitte 12 und negative Werte einer Abweichung nach links von der Spurmitte.
Die Vorgabeeinrichtung 26 enthält einen Speicher 32, in dem ein vom Fahrer gewünschter Normalwert ΔYn für den Sollwert gespeichert ist. Zu der Vorgabeeinrichtung 26 gehört weiterhin ein am Lenkrad des Fahrzeugs angeordnetes Einstellelement 34, mit dem der gespeicherte Normalwert veränderbar ist. Auf diese Weise kann der Fahrer des Kraftfahrzeugs 10 die laterale Abweichung ΔY individuell nach seinen persönlichen Vorlieben oder Bedürfnissen wählen. Allerdings kann die Vorgabeeinrichtung 26 so ausgelegt sein, daß sie die vom Fahrer vorgenommene Einstellung modifiziert oder den Einstellbereich begrenzt. Beispielsweise ist es zweckmäßig, den Einstellbereich in Abhängigkeit von der mit Hilfe der Sensoreinrichtung gemessenen Breite der Spur und der bekannten Fahrzeugbreite so zu begrenzen, daß das Fahrzeug stets einen ausreichenden Sicherheitsabstand zu den Spurgrenzen einhält. Ebenso ist es denkbar, daß die mit Hilfe des Einstellelements 34 vorgenommene Einstellung die laterale Abweichung ΔY nicht in einer festen Längeneinheit angibt, sondern als Prozentwert, bezogen auf die Breite der Fahrspur oder auf den Breitenüberschuß der Fahrspur, d.h., die Differenz zwischen Spurbreite und Fahrzeugbreite. In diesem Fall würde der im Speicher 32 gespeicherte Sollwert automatisch angepaßt, wenn sich die Spurbreite ändert, ohne daß der Fahrer das Einstellelement 34 verstellen muß.
Bei der Objekterkennungseinrichtung 24, die in Fig. 1 als separater Block dar- gestellt ist, handelt es sich um einen Teil der Bildverarbeitungseinheit 22, der speziell dazu ausgebildet ist, Objekte auf Nebenspuren zu der von dem Kraftfahrzeug 10 befahrenen Spur 16 zu erkennen. In Fig. 1 ist eine rechte Nebenspur 36 dargestellt, auf der, als Objekt 38, ein weiteres Kraftfahrzeug fährt. Die Objekterkennungseinrichtung 24 extrahiert aus dem Videobild Ortungsdaten für das Objekt 38, die insbesondere die Position dieses Objektes sowie ggf. dessen Art und Größe angeben. Unter anderem umfassen diese Ortungsdaten den lateralen Abstand Yr des Objekts 38 von der Spurmitte 12 der Spur 16. Im gezeigten Beispiel gibt Yr den kleinsten lateralen Abstand an, für Objekte auf der rechten Nebenspur 36 also den Abstand zwischen der Spurmitte 12 und der lin- ken Fahrzeugbegrenzung des Objekts 38.
Weiterhin können aus dem Videobild auch Informationen über die Längsposition des Objekts 38 längs der Spur 36 sowie über die Relativgeschwindigkeit des Objekts 38 relativ zum Kraftfahrzeug 10 extrahiert werden. Im gezeigten Beispiel ist das Kraftfahrzeug 10 jedoch zusätzlich mit einem Radarsensor 40 ausgerüstet. Dieser Radarsensor 40 dient in erster Linie zur Erfassung von vorausfahrenden Fahrzeugen auf der Spur 16 und zur Abstandsregelung im Rahmen eines Längsführungssystems. Er kann jedoch auch Informationen über Objekte auf den Nebenspuren liefern, insbesondere über den Längsabstand und die Relativge- schwindigkeit dieser Objekte sowie, bei hinreichender Winkelauflösung, auch über den lateralen Abstand Yr. Durch Abgleich der von der Videokamera 20 und vom Radarsensor 40 gelieferten Informationen kann die Ortungsgenauigkeit und -Sicherheit verbessert werden. Wenn bei einem Überholvorgang das Objekt 38 in den toten Winkel der Videokamera 20 und des Radarsensors 40 gerät, können die Ortungsdaten für das Objekt anhand der Relativgeschwindigkeit extrapoliert werden, unter der Annahme, daß das Objekt 38 seine Spurlage in der Nebenspur 36 beibehält. Wahlweise können zur Verbesserung der Objektortung zu- sätzliche sensorische Komponenten vorgesehen sein, beispielsweise zusätzliche Videokameras, ein Rundumradar und dergleichen.
In entsprechender Weise können mit Hilfe des Ortungssystems auch Objekte auf einer in Fig. 1 nicht gezeigten linken Nebenspur geortet werden. Wenn mehrere Objekte geortet werden, liefert die Objekterkennungseinrichtung 24 für jedes erfaßte Objekt einen Satz von Ortungsdaten einschließlich der lateralen Abstände Yr.i an die Vorgabeeinrichtung 26. Anhand dieser Ortungsdaten berechnet die Vorgabeeinrichtung 26 den Sollwert ΔYsoll für die Querposition des Kraftfahr- zeugs 10. Dabei wird erforderlichenfalls der im Speicher 32 abgelegte Normal- wert ΔYn so modifiziert, daß beim Passieren des Objekts 38 ein größerer Sicherheitsabstand zu diesem Objekt eingehalten wird.
Diese Anpassung des Sollwertes und das daraus resultierende Fahrzeugverhal- ten werden in Fig. 2 anhand eines Beispiels illustriert.
Fig. 2 zeigt das Kraftfahrzeug 10 auf der Spur 16 sowie als Objekte auf der rechten Nebenspur 36 einen Lkw 42 und einen Pkw 44. Weiterhin zeigt Fig. 2 zwei Spuren 46 und 48 einer Gegenfahrbahn. Die unmittelbar an die Spur 16 an- grenzende Spur 48 ist von der Spur 16 lediglich durch eine Fahrbahnmarkierung abgegrenzt und wird und wird hier als linke Nebenspur behandelt. Sie wird im gezeigten Beispiel von zwei Pkw befahren, die ebenfalls als Objekte 50, 52 von der Objekterkennungseinrichtung 24 geortet werden. Ein auf der Spur 46 fahrendes Fahrzeug 54 wird dagegen nicht mehr als relevantes Objekt geortet.
Auf der Spur 16 ist strichpunktiert die Spurmitte 12 und gestrichelt der Kurs des Kraftfahrzeugs 10 angegeben, der durch die periodisch von der Vorgabeein- . richtung 26 bestimmten Sollwerte ΔYsoll bestimmt wird.
Es wird hier angenommen, daß der Normalwert ΔYn, vom Fahrer auf 0 gesetzt wurde, d.h. daß der Sollwert der Spurmitte 12 entspricht, sofern sich keine Objekte auf den Nebenspuren 36 und 48 befinden. Wenn sich das Kraftfahrzeug 10 dem Lkw 42 annähert, wird ΔYsoll negativ, d.h. es wird etwas nach links versetzt zur Spurmitte 12 gefahren, um einen größeren Sicherheitsabstand zu dem Lkw einzuhalten. Wenn der Llαv 42 überholt worden ist, wird als nächstes der Pkw 44 überholt. Dabei wird jedoch der seitliche Versatz des Kurses 56 wieder nahezu auf 0 reduziert, weil dann dem Kraftfahrzeug 10 das Objekt 50 auf der Gegenfahrbahn entgegenkommt. Wegen der wesentlich höheren Relativgeschwindigkeit sollte zu dem entgegenkommenden Fahrzeug ein relativ großer Sicherheitsabstand eingehalten werden. Wenn auch der Pkw 44 überholt worden ist, wird ΔYSoll positiv, d.h. , es wird nach rechts versetzt zur Spurmitte 12 ge- fahren, weil dann die rechte Nebenspur 36 frei ist und ein größerer Sicherheitsabstand zu dem dann entgegenkommenden Objekt 52 eingehalten werden soll.
Gemäß einem Ausführungsbeispiel könnte das Verfahren zur querführungsunterstutzung etwa wie folgt ablaufen. Für die Regelung der Querposition wird eine bestimmte Vorausschauzeit Ty zugrundegelegt. Der Sollwert ΔYSoll wird von der Vorgabeeinrichtung 26 jeweils für einen Punkt auf der Fahrbahn 16 berechnet, der von dem Kraftfahrzeug 10 nach der Vorausschauzeit Tv erreicht wird. Dementsprechend wird das Ausgangssignal A von der Verarbeitungseinrichtung 28 so berechnet, daß die Soll-Ist-Abweichung innerhalb der Vorausschauzeit Tv auf 0 reduziert wird.
Für jedes geortete Objekt 42, 44, 50, 52 berechnet die Vorgabeeinrichtung 26 anhand des gemessenen Längsabstands und der Relativgeschwindigkeit des Objekts den Zeitpunkt Tpa, an dem das Kraftfahrzeug 10 beginnt, das betreffende Objekt zu passieren. Im Fall des Lkw 42 ist Tpa der Zeitpunkt, an dem das vordere Ende des Kraftfahrzeugs 10 die Hinterkante des Lkw 42 eneicht. Entsprechend wird für jedes Objekt ein Zeitpunkt Tpe berechnet, an dem die Passage des Objektes beendet ist. Im Fall des Lkw 42 ist dies der Zeitpunkt, an dem die hintere Stoßstange des Kraftfahrzeugs 10 auf gleicher Höhe mit der vorderen Stoßstange des Lkw 42 ist. In Fig. 2 sind für die Zeitpunkte Tp und Tpe jeweils die Positionen der vorderen Stoßstange des Kraftfahrzeugs 10 angegeben. Gestrichelt ist das Kraftfahrzeug 10 zu dem Zeitpunkt eingezeichnet, zu dem die Vorausschauzeit Tv mit der berechneten Zeit Tpa übereinstimmt. (Der Lkw 42 hat zu diesem Zeitpunkt allerdings noch nicht die in Fig. 2 gezeigte Position, sondern erreicht diese Position erst nach Ablauf der Vorausschauzeit Tv) Wenn das Kraftfahrzeug 10 die gestrichelt eingezeichnete Position erreicht hat, berechnet die Vorgabeeinrichtung 26 den Sollwert ΔYsoll unter Berücksichtigung des Lkw 42. Zu diesem Zeitpunkt wird über das Ausgangssignal A der Lenkeingriff eingeleitet, der dazu führt, daß die Q ierposition des Kraftfahrzeugs 10 zum Zeitpunkt Tpa mit dem berechneten Sollwert übereinstimmt.
Wenn das Kraftfahrzeug 10 und der Lkw 42 auf gleicher Höhe sind, würde von der Vorgabeeinrichtung 26 der Sollwert ΔYSoll für einen Zeitpunkt berechnet, der um Tv später liegt. Wenn der Pkw 44 nicht vorhanden wäre, würde der Sollwert schon zu diesem Zeitpunkt wieder auf 0 zurückgeführt. Die Folge wäre, daß sich das Kraftfahrzeug 10 bereits wieder dem Lkw 42 annähern würde, be- vor der Überholvorgang tatsächlich beendet ist. Dies läßt sich gemäß einer Ausführungsform der Erfindung dadurch verhindern, daß die Vorausschauzeit Tv - zumindest bezogen auf das derzeit relevante Objekt 42 - auf einen kleineren Wert verringert w rd, so daß die Rückkehr zur Spurmitte entsprechend später einsetzt. Für die Berücksichtigung der übrigen Objekte 44, 50 und 52 sollte da- gegen weiterhin die normale (längere) Vorausschauzeit gelten. In einer modifizierten Ausführungsform wird der Sollwert, der in Bezug auf ein bestimmtes Objekt (hier den Lkw 42) berechnet wurde, so lange beibehalten, bis dieses Objekt tatsächlich passiert worden ist, also bis zum Zeitpunkt Tpe-
Fig. 3 zeigt ein Flußdiagramm für diese letztgenannte Verfahrensvariante, mit Berücksichtigung von Objekten auf beiden Nebenspuren 36 und 48.
Die durch das Flußdiagramm in Fig. 3 illustrierte Programmroutine wird periodisch in kurzen Zeitintervallen, etwa alle 10 ms aufgerufen. In Schritt Sl wer- den für alle georteten Objekte, in Fig. 2 also für die Objekte 42, 44, 50 und 52 die Zeitpunkte Tpa und Tpe berechnet, an denen die Passage des betreffenden Objektes beginnt bzw. endet. In Schritt S2 wird geprüft, ob für mindestens ein Objekt auf der rechten Nebenspur die Bedingungen Tpa < T und Tpe < 0 erfüllt sind. Die erste Bedingung bedeutet, daß die Objektpassage innerhalb der Zeit Tv beginnen wird. Die zweite Bedingung bedeutet, daß die Objektpassage noch nicht beendet ist. Wenn beide Bedingungen erfüllt sind, sollte folglich der Sollwert ΔYsoll für die Querposition in Abhängigkeit von den Ortungsdaten dieses Objektes berechnet werden. Dementsprechend wird in Schritt S3 ein Wert ΔYr berechnet, und zwar als das Zweifache einer Funktion wr(Yr) des lateralen Ab- Stands Yr des betreffenden Objekts. Der Funktionswert wr(Yr) ist ein Kandidat für den Sollwert, und wäre als endgültiger Sollwert zu übernehmen, wenn das betreffende Objekt auf der rechten Nebenspur das einzige relevante Objekt wäre.
Falls die in Schritt S2 abgefragten Bedingungen für zwei Objekte auf der rechten Nebenspur erfüllt sein sollten, wird der Schritt S3 für beide Objekte ausgeführt, und es wird dann der kleinere der beiden erhaltenen Werte für ΔY genommen.
(Kleinere Werte für den Sollwert entsprechen einem stärkeren Versatz nach 1'1
links.) Diese Situation könnte beispielsweise eintreten, wenn der Überholvorgang für den Lkw 42 noch nicht abgeschlossen ist, aber der Pkw 44 bereits in weniger als der Zeit T erreicht wird.
Wenn die in Schritt S2 abgefragten Bedingungen für kein Objekt auf der rechten Nebenspur erfüllt sind, wird ΔYr in Schritt S4 auf den Normalwert ΔYn gesetzt, der je nach Vorgaben des Fahrers positiv oder negativ sein kann, entsprechend einer gewünschten Abweichung von der Spurrnitte nach rechts bzw. nach links.
Bei den nachfolgenden Schritten S5, S6 und S7 handelt es sich um eine Wiederholung der Schritte S2 - S4, nun jedoch für Objekte auf der linken Nebenspur. In Schritt S6 wird als ein Wert ΔYi das Zweifache eines Funktionswertes wι(Yι) berechnet, der ebenfalls ein Kandidat für den Sollwert ist und den endgültigen Sollwert bildet, wenn nur Objekte auf der linken Fahrspur zu berücksichtigen sind.
In Schritt S8 wird dann der endgültige Sollwert ΔYsoll berechnet, indem der Mittelwert aus den Werten ΔYr und ΔYi gebildet wird. Dieser Sollwert wird dann in der Verarbeitungseinrichtung 28 zugrundegelegt.
Es soll zunächst angenommen werden, daß ΔYn vom Fahrer auf 0 gesetzt wurde. In diesem Fall ist der endgültige Sollwert ΔYsoll gleich wr(Yr)- wenn nur ein relevantes Objekt auf der rechten Nebenspur geortet wurde, und gleich wifYi), wenn nur ein relevantes Objekt auf der linken Nebenspur geortet wurde. Sofern relevante Objekte auf beiden Nebenspuren geortet wurden, stellt der endgültige Sollwert einen Kompromiß zwischen den Kandidaten wr(Yr) und wi(Yι) dar. Dieser Kompromiß entspricht dem Verlauf des Kurses 56 in Fig. 2 beim gleichzeitigen Passieren der Pkw 44 und 50.
Wenn ΔYn nicht gleich 0 ist und die in den Schritten S2 und S5 abgefragten Bedingungen weder für die linke noch für die rechte Nebenspur erfüllt sind, so ist der endgültige Sollwert ΔYsoll = ΔYn d.h. , der Querversatz des Fahrzeugs relativ zur Spurrnitte 12 entspricht der Vorgabe des Fahrers. Wenn nur die Abfrage in Schritt S2 oder nur die Abfrage in Schritt S5 ein positives Ergebnis hatte, so wird der endgültige Sollwert in Schritt S8 geringfügig, um ΔYn/2, modifiziert. Dies mag durchaus erwünscht sein, um übermäßig große Querbewegungen des Fahrzeugs zu mildem. Wahlweise kann das Programm jedoch so abgewandelt werden, daß ΔY, völlig unberücksichtigt bleibt, wenn eine der Abfragen in Schritt S2 oder S5 ein positives Ergebnis hat.
Die Funktionen wr und w\ geben jeweils die Sollwertverschiebung in Abhängigkeit von, der Relativgeschwindigkeit Vr des betreffenden Objektes an. Beispiele für diese Funktionen sind in Fig. 4 und 5 dargestellt. Die Abhängigkeit von der Relativgeschwindigkeit trägt dem Gedanken Rechnung, daß der Sicherheitsabstand bei größerer Relativgeschwindigkeit größer sein sollte. Wie Fig. 4 zeigt, beginnt die Funktion wr(Yr) bei einem bestimmten (positiven oder negativen) Anfangswert (bei Vr = 0) und nähert sich dann asymptotisch einem bestimmten Mi- nimalwert w nin- Der Wert Wmin ist von der Breite der Spur 16 abhängig und so gewählt, daß bei sehr großer Relativgeschwindigkeit ein möglichst großer Abstand zu dem Objekt eingehalten wird, ohne daß jedoch das Kraftfahrzeug 10 die Spur 16 verläßt.
Der Anfangswert bei der Relativgeschwindigkeit 0 ist gegeben durch MIN(ΔYn, Yr - wo). Darin ist wo ein minimaler Sicherheitsabstand zu dem betreffenden Objekt, der nicht unterschritten werden sollte. Wenn der laterale Abstand Yr des Objekts auf der rechten Nebenspur sehr groß ist, so ist der Anfangswert durch ΔYn gegeben, d.h., das Objekt hat keinen Einfluß auf den vom Fahrer ge- wünschten Querversatz. Nur bei einem kleineren lateralen Abstand Yr des Objekts ist der Anfangswert durch Yr - wo gegeben und so gewτählt, daß das Objekt mindestens im Abstand wo passiert wird. Wenn das geortete Objekt die Nebenspur verläßt und auf die vom Kraftfahrzeug befahrene Spur 16 wechselt, nimmt Yr - wo sehr kleine negative Werte an und kann sogar unter wmin sinken. In diesem Fall läßt sich der Sicherheitsabstand wo nicht mehr einhalten, und es sollte eine Kollisionswarnung an den Fahrer ausgegeben werden.
Fig. 5 zeigt die nach analogen Prinzipien konstruierte Funktion wifYi) für Objekte auf der linken Nebenspur. Bei dieser linken Nebenspur kann es sich sowohl um eine Spur derselben Richtungsfahrbahn als auch - wie in Fig. 2 - um eine Spur der Gegenfahrbahn handeln. Im letzteren Fall werden die Relativgeschwindigkeiten Vr generell höher sein.
Die Fnktionen wr und w\ können als Funktionsvorschriften mit geeigneten Parametern, als Tabellen oder als Kennfelder im Speicher 32 der Vorgabeeinrichtung 26 abgelegt sein. Diese Funktionen können auch von der Absolutgeschwindigkeit des Kraftfahrzeugs 10 abhängig sein, etwa dergestalt, daß bei höherer Absolutgeschwindigkeit die Funktionswerte und damit die entsprechenden Querversätze des Fahrzeugs dem Betrage nach kleiner sind, so daß unkomfortabel hohe Querbeschleunigungen beim Überholen mit hoher Geschwindigkeit vermieden werden.
Wenn der Fahrer von Hand in die Lenkung eingreift, um einen Versatz von der Spurmitte 12 zu erzwingen, der größer oder kleiner als der in Schritt S8 berech- nete Sollwert ist, so können die Parameter, die die Funktionen wr und wi bestimmen, so angepaßt werden, daß der in Schritt S8 berechnete Sollwert dem anhand des Lenkeingriffs des Fahrers erkennbaren Fahrerwunsch entspricht.
Bei dem oben beschriebenen Verfahren ist es möglich, die Vorausschauzeit Tv konstant zu halten. Bei Kurvenfahrten ist es jedoch zweckmäßig, die Vorausschauzeit und dementsprechend die Vorausschauweite, die sich durch Multiplikation der Vorausschauzeit mit der Absolutgeschwindigkeit des Kraftfahrzeugs 10 ergibt, zu variieren. Dies wird in Fig. 6 illustriert, die das Kraftfahrzeug 10 auf einem gekrümmten Fahrbahnabschnitt zeigt. Ein strichpunktierter Pfeil 58 gibt hier die Vorausschauweite an, die sich aus der regulären Vorausschauzeit Tv ergibt. Daraus ergäbe sich ein Kurs 60 des Kraftfahrzeugs 10, der in Fig. 6 durch eine gestrichelte, dünn eingezeichnete Linie angegeben ist.
Man erkennt, daß die lange Vorausschauzeit zu einem gewissen Schneiden der Kurve führt. Wenn auf der rechten Nebenspur 36 kein Objekt vorhanden ist, so ist dieses Schneiden der Kurve durchaus akzeptabel. Wenn sich jedoch ein Objekt 38 auf der Nebenspur befindet, kann es zu einer bedenklichen Annäherung an dieses Objekt kommen, selbst dann, wenn der Sollwert aufgrund der Ortung des Objekts 38 nach links versetzt worden ist. Wenn in einer Kurve ein Objekt auf der inneren Nebenspur geortet wird, ist es deshalb zweckmäßig, die Vorausschauzeit und damit die Vorausschauweite zu verkürzen, wie in Fig. 6 durch einen Pfeil 62 angegeben wird. Der sich daraus ergebende Kurs 64 des Kraftfahrzeugs 10 stellt sicher, daß stets ein ausreichender Abstand zu dem Objekt 38 eingehalten wird.
Die für das erfindungsgemäße Verfahren notwendigen Verarbeitungsvorgänge können beispielsweise von einem Mikrocomputer ausgeführt werden, der die Funktionen der Vorgabeeinrichtung 26 und der Verarbeitungseinrichtung 28 in Fig. 1 erfüllt. Wenn für die Objekterfassung kein Kamerasystem verfügbar ist, können die Ortungsdaten auch mit Hilfe des Radarsensors 40 oder eines vergleichbaren Abstandssensors, beispielsweise eines Lidar-Sensors gewonnen wer- den. Die Größe des georteten Objektes läßt sich dann zumindest grob anhand der Richtungsabhängigkeit und/oder der Stärke des Echosignals abschätzen, so daß zumindest zwischen einem Lkw 42 und einem Pkw 44 unterschieden werden kann. Für die Länge des Objektes, die für die Bestimmung des Zeitpunkts Tpe benötigt wird, können dann Standardwerte für die verschiedenen Objekt- klassen (Pkw oder Lkw) zugrundegelegt werden. Bei einem Lkw können ggf. auch Echosignale ausgewertet werden, die von Reflexionen am vorderen Kotflügel oder anderen Strukturen des Lkw herrühren. In einer vereinfachten Ausführungsform kann auch stets eine konstante, hinreichend groß bemessene Objektlänge zugrundegelegt werden.

Claims

PATENTANSPRÜCHE
1. Verfahren zur Querführungsunterstutzung bei Kraftfahrzeugen (10), bei dem ein Sollwert (ΔYsoll) für die Querposition des Fahrzeugs (10) bestimmt wird, die Ist-Position (ΔYist) des Fahrzeugs relativ zu den Grenzen (14) der befahrenen Spur (16) mit einer Sensoreinrichtung (20, 22) erfaßt wird und durch Soll -Ist- Vergleich ein Ausgangssignal (A) für die Querführungsunterstutzung berechnet wird, dadurch gekennzeichnet, daß Objekte (38, 42, 44, 50, 52) auf mindestens einer Nebenspur (36, 48) geortet werden und der Sollwert (ΔYsoll) für die Quer- position in Abhängigkeit von Ortungsdaten (Yr) dieser Objekte variiert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Ortungsdaten den lateralen Abstand (Yr) des Objekts (38) von der Spurrnitte (12) der eigenen Spur (16) oder von der Querposition des eigenen Fahrzeugs (10) umfassen und daß der Sollwert (ΔYsoll) im Sinne einer Vergrößerung dieses lateralen Ab- stands beim Passieren des Objektes variiert wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Ortung der Objekte (38, 42, 44, 50, 52) ein mit wenigstens einer Videokamera (20) aufgenommenes Videobild ausgewertet wird.
4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß Ortungsdaten der Objekte (38, 42, 44, 50, 52) mit Hilfe eines Abstandssensors (40), insbesondere eines Radar- oder Lidar-Sensors erfaßt werden.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß sowohl Objekte (38, 42, 44) auf einer rechten Nebenspur (36) als auch Objekte (50, 52) auf einer linken Nebenspur (48) geortet werden, wobei eine dieser Nebenspuren auch eine Spur (48) einer Gegenfahrbahn sein kann.
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Ortungsdaten auch den Objektabstand in Längsrichtung der Fahrspur, die Absolut- oder Relativgeschwindigkeit des Objektes und/oder die Größe des Objektes umfassen und daß die Berechnung des Sollwertes (ΔYsoll) unter Berücksichtigung einer oder mehrerer dieser Größen erfolgt.
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Berechnung des Sollwertes (ΔYsoll) in Abhängigkeit von der Abso- lutgeschwindigkeit des eigenen Fahrzeugs (10) erfolgt.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Berechnung des Sollwertes (ΔYsoll) in Abhängigkeit von einem vom Fahrer vorgebbaren Normalwert (ΔYn) erfolgt, der eine vom Fahrer gewünschte laterale Ablage des eigenen Kraftfahrzeugs (10) von der Spurmitte (12) repräsentiert.
9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß Parameter, die die Abhängigkeit des Sollwertes (ΔYsoll) von den Ortungsdaten und/oder anderen Einflußgrößen bestimmen, in Abhängigkeit von korrigierenden Eingriffen des Fahrers in die Lenkung dynamisch, im Sinne eines selbstlernenden Systems variiert werden.
10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Ausgangssignal (A) so berechnet wird, daß die Ist-Position (ΔYist) innerhalb einer fest oder variabel vorgebbaren Vorausschauzeit (Ty) auf den Sollwert (ΔYSoll) eingeregelt wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß anhand der gemessenen Relativgeschwindigkeiten der georteten Objekte die Zeitpunkte (Tpa, Tpe) vorausberechnet werden, zu denen das Kraftfahrzeug (10) voraussichtlich das betreffende Objekt passieren wird, und daß für die Berechnung des Sollwertes (ΔYsoll) die Ortungsdaten derjenigen Objekte herangezogen werden, die nach Ablauf der Vorausschauzeit (Ty) passiert werden.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß bei Überholvor- gangen die Vorausschauzeit (Ty) reduziert wird, während das Objekt überholt wird.
13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß in Kurven die Vorausschauzeit (T ) reduziert wird.
14. Vorrichtung zur Querführungsunterstutzung bei Kraftfahrzeugen (10), mit einer Einrichtung (26) zur Bestimmung eines Sollwertes (ΔYsoll) ür die Querposition des Fahrzeugs (10), einer Sensoreinrichtung (20, 22) zur Erfassung der Ist- Position (ΔYist) des Fahrzeugs relativ zu den Grenzen (14) der befahrenen Spur (16), einer Vergleichseinrichtung (28) zur Berechnung eines Ausgangssignal (A) für die Querführungsunterstutzung durch Soll-Ist-Vergleich und einem Ortungssystem, das in der Lage ist, Objekte (38, 42, 44, 50, 52) auf mindestens einer Nebenspur (36, 48) zu Orten, gekennzeichnet durch eine Einrichtung zum Variieren des Sollwertes (ΔYsoll) für die Querposition in Abhängigkeit von den Ortungsdaten (Yr) dieser Objekte.
PCT/DE2002/004540 2002-04-23 2002-12-11 Querführungsunterstützung bei kraftfahrzeugen WO2003091813A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004500125A JP4005597B2 (ja) 2002-04-23 2002-12-11 車両における横ガイド支援方法及びその装置
DE50209256T DE50209256D1 (de) 2002-04-23 2002-12-11 Querführungsunterstützung bei kraftfahrzeugen
EP02794988A EP1502166B1 (de) 2002-04-23 2002-12-11 Querführungsunterstützung bei kraftfahrzeugen
US10/512,593 US7765066B2 (en) 2002-04-23 2002-12-11 Method and device for lane keeping support in motor vehicles
US12/785,256 US8718919B2 (en) 2002-04-23 2010-05-21 Method and apparatus for lane recognition for a vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10218010A DE10218010A1 (de) 2002-04-23 2002-04-23 Verfahren und Vorrichtung zur Querführungsunterstützung bei Kraftfahrzeugen
DE10218010.5 2002-04-23

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US10512593 A-371-Of-International 2002-12-11
PCT/DE2004/002067 Continuation-In-Part WO2005040950A1 (de) 2002-04-23 2004-09-16 Verfahren und vorrichtung zur fahrspurerkennung für ein fahrzeug
US57136907A Continuation-In-Part 2004-07-12 2007-01-18
US12/785,256 Continuation-In-Part US8718919B2 (en) 2002-04-23 2010-05-21 Method and apparatus for lane recognition for a vehicle

Publications (1)

Publication Number Publication Date
WO2003091813A1 true WO2003091813A1 (de) 2003-11-06

Family

ID=28798693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/004540 WO2003091813A1 (de) 2002-04-23 2002-12-11 Querführungsunterstützung bei kraftfahrzeugen

Country Status (5)

Country Link
US (1) US7765066B2 (de)
EP (1) EP1502166B1 (de)
JP (1) JP4005597B2 (de)
DE (2) DE10218010A1 (de)
WO (1) WO2003091813A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315491A (ja) * 2005-05-11 2006-11-24 Toyota Motor Corp 車両用走行制御装置
WO2007051671A1 (de) * 2005-10-31 2007-05-10 Robert Bosch Gmbh Lks-spurhaltsystem mit modifizierter regelcharakteristik bei kurvenfahrt
EP2032406A1 (de) * 2006-06-11 2009-03-11 Volvo Technology Corporation Verfahren und vorrichtung zur verwendung eines automatisierten spurhaltesystems zur bewahrung von seitlichem fahrzeugabstand
WO2010032556A1 (ja) * 2008-09-19 2010-03-25 日立オートモティブシステムズ株式会社 車両制御装置
CN101920701A (zh) * 2009-06-16 2010-12-22 日产自动车株式会社 车辆操作支持装置
EP1790542B2 (de) 2003-11-14 2011-05-25 Nissan Motor Company Limited System zur Spurhaltung eines Fahrzeugs
EP1796950B1 (de) * 2004-10-01 2012-08-08 Robert Bosch Gmbh Verfahren und vorrichtung zur fahrerunterstützung
DE102012022111A1 (de) 2012-11-13 2013-05-08 Daimler Ag Verfahren zur Querführungsunterstützung für Fahrzeuge
US8521363B2 (en) 2006-06-07 2013-08-27 Toyota Jidosha Kabushiki Kaisha Driving assist system
WO2017144381A1 (de) * 2016-02-24 2017-08-31 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur querführungsunterstützung für ein strassengebundenes fahrzeug
US10885789B2 (en) 2016-02-24 2021-01-05 Bayerische Motoren Werke Aktiengesellschaft Device and method for lateral guidance assistance for a road vehicle
WO2022083970A1 (fr) 2020-10-22 2022-04-28 Renault S.A.S Procédé de régulation de la position latérale d'un véhicule sur une voie de circulation

Families Citing this family (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10345802A1 (de) * 2003-09-30 2005-04-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Fahrspurerkennung für ein Fahrzeug
US8718919B2 (en) * 2002-04-23 2014-05-06 Robert Bosch Gmbh Method and apparatus for lane recognition for a vehicle
JP3985748B2 (ja) * 2003-07-08 2007-10-03 日産自動車株式会社 車載用障害物検出装置
DE10351986A1 (de) 2003-11-07 2005-06-16 Audi Ag Fahrzeugführungsvorrichtung mit Querführung und Objekterkennung sowie entsprechendes Verfahren
DE102005003178A1 (de) * 2005-01-19 2006-07-27 Volkswagen Ag Vorrichtung und Verfahren zur Querführungsassistenz eines Fahrzeugs
JP2006264623A (ja) * 2005-03-25 2006-10-05 Mitsubishi Fuso Truck & Bus Corp 車線維持支援装置
JP2006264624A (ja) * 2005-03-25 2006-10-05 Daimler Chrysler Ag 車線維持支援装置
DE102005017242A1 (de) * 2005-04-14 2006-10-19 Conti Temic Microelectronic Gmbh Fahrerassistenzsystem zur Müdigkeitserkennung und/oder Aufmerksamkeitsbeurteilung eines Fahrzeugführers
US7706978B2 (en) * 2005-09-02 2010-04-27 Delphi Technologies, Inc. Method for estimating unknown parameters for a vehicle object detection system
DE102005048014A1 (de) * 2005-10-07 2007-04-12 Robert Bosch Gmbh Fahrerassistenzsystem
JP4721279B2 (ja) * 2006-03-29 2011-07-13 富士重工業株式会社 車線追従支援装置
US9387838B2 (en) * 2006-04-12 2016-07-12 Krayon Systems Inc. Vehicle braking apparatus system and method
US8970363B2 (en) 2006-09-14 2015-03-03 Crown Equipment Corporation Wrist/arm/hand mounted device for remotely controlling a materials handling vehicle
US9207673B2 (en) * 2008-12-04 2015-12-08 Crown Equipment Corporation Finger-mounted apparatus for remotely controlling a materials handling vehicle
US9645968B2 (en) 2006-09-14 2017-05-09 Crown Equipment Corporation Multiple zone sensing for materials handling vehicles
US9122276B2 (en) 2006-09-14 2015-09-01 Crown Equipment Corporation Wearable wireless remote control device for use with a materials handling vehicle
DE102006049246B4 (de) * 2006-10-19 2021-04-15 Robert Bosch Gmbh Vorrichtung zur Erkennung von Ein- und Ausscherern in einem Fahrerassistenzsystem
US7612658B2 (en) 2007-04-11 2009-11-03 Ford Global Technologies, Inc. System and method of modifying programmable blind spot detection sensor ranges with vision sensor input
WO2009030420A1 (de) * 2007-08-29 2009-03-12 Valeo Schalter Und Sensoren Gmbh Verfahren und anordnung zur auswertung von sensorbildern bei bildauswertenden umfelderkennungssystemen und einer auswertung von bahnkurven
DE102008011128B4 (de) 2008-02-26 2019-06-06 Volkswagen Ag Fahrassistenzsteuereinheit, Fahrassistenzsystem und Assistenzverfahren zum Unterstützen eines kollisionsfreien Führen eines Kraftfahrzeugs
DE102008018512B4 (de) * 2008-04-12 2012-12-13 Günter Fendt Fahrzeugführer-Assistenzsystem und dazugehöriges Verfahren
DE102008022606A1 (de) 2008-05-08 2009-11-12 Man Nutzfahrzeuge Aktiengesellschaft Spurführungssystem
US8392064B2 (en) * 2008-05-27 2013-03-05 The Board Of Trustees Of The Leland Stanford Junior University Systems, methods and devices for adaptive steering control of automotive vehicles
DE102008061649A1 (de) * 2008-06-11 2009-12-17 Volkswagen Ag Fahrerassistenzsystem und Verfahren zur Unterstützung eines Kraftfahrzeugführers
US8170739B2 (en) * 2008-06-20 2012-05-01 GM Global Technology Operations LLC Path generation algorithm for automated lane centering and lane changing control system
DE102008040627A1 (de) * 2008-07-23 2010-02-04 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betrieb eines Lenkassistenzsystems mit Adaption bei Umfeldobjektannäherung
JP5200732B2 (ja) * 2008-07-29 2013-06-05 日産自動車株式会社 走行制御装置、及び走行制御方法
JP5359516B2 (ja) * 2008-07-29 2013-12-04 日産自動車株式会社 車両運転支援装置及び車両運転支援方法
JP5255988B2 (ja) * 2008-10-22 2013-08-07 富士重工業株式会社 操舵支援装置
US9522817B2 (en) 2008-12-04 2016-12-20 Crown Equipment Corporation Sensor configuration for a materials handling vehicle
JP5158515B2 (ja) * 2008-12-24 2013-03-06 株式会社エクォス・リサーチ 車両
JP5158514B2 (ja) * 2008-12-24 2013-03-06 株式会社エクォス・リサーチ 車両
CN102348592B (zh) * 2009-04-21 2014-08-06 丰田自动车株式会社 行驶辅助装置
DE102009022054A1 (de) * 2009-05-20 2010-11-25 Audi Ag Verfahren zum Betrieb eines Fahrerassistenzsystems zur Querführung eines Kraftfahrzeugs und Kraftfahrzeug
DE102009022055A1 (de) * 2009-05-20 2010-11-25 Audi Ag Kraftfahrzeug mit einem Fahrerassistenzsystem zur Querführung des Kraftfahrzeugs und Verfahren zur Unterstützung eines Fahrers eines Kraftfahrzeugs beim Halten einer Fahrspur
DE102009034105A1 (de) 2009-07-21 2010-03-25 Daimler Ag Vorrichtung und Verfahren zur Lenkunterstützung eines Fahrers eines Fahrzeugs
JP5421019B2 (ja) * 2009-08-03 2014-02-19 トヨタ自動車株式会社 車両の走行支援装置
US8577551B2 (en) * 2009-08-18 2013-11-05 Crown Equipment Corporation Steer control maneuvers for materials handling vehicles
US8731777B2 (en) * 2009-08-18 2014-05-20 Crown Equipment Corporation Object tracking and steer maneuvers for materials handling vehicles
JP5696444B2 (ja) * 2009-12-24 2015-04-08 日産自動車株式会社 走行制御装置
DE102010010489A1 (de) * 2010-03-06 2011-10-06 Continental Teves Ag & Co. Ohg Spurhaltesystem für ein Kraftfahrzeug
EP2544941B1 (de) * 2010-03-06 2014-09-10 Continental Teves AG & Co. oHG Spurhaltesystem für ein kraftfahrzeug
KR101340779B1 (ko) 2010-03-17 2013-12-11 주식회사 만도 기준 추종 위치 설정 방법 및 차선 유지 제어 시스템
JP5080602B2 (ja) * 2010-03-19 2012-11-21 日立オートモティブシステムズ株式会社 車両制御装置
US8897948B2 (en) * 2010-09-27 2014-11-25 Toyota Systems and methods for estimating local traffic flow
JP5716343B2 (ja) * 2010-10-01 2015-05-13 トヨタ自動車株式会社 車両の物体認識システム
JP2012079118A (ja) * 2010-10-01 2012-04-19 Toyota Motor Corp 走行支援装置及び方法
US8509982B2 (en) * 2010-10-05 2013-08-13 Google Inc. Zone driving
KR101213266B1 (ko) 2010-10-14 2012-12-18 주식회사 만도 차선유지 제어를 위한 카메라센서의 인식성능 평가 시스템
US20120283911A1 (en) * 2011-05-05 2012-11-08 GM Global Technology Operations LLC System and method for adjusting smoothness for lane centering steering control
US20120283913A1 (en) * 2011-05-05 2012-11-08 GM Global Technology Operations LLC System and method for adjusting smoothness for lane centering steering control
DE102011076418A1 (de) * 2011-05-24 2012-11-29 Bayerische Motoren Werke Aktiengesellschaft Spurhalteassistenzsystem mit Querführungsunterstützung an einem nicht spurgebundenen Fahrzeug
CN103718224B (zh) * 2011-08-02 2016-01-13 日产自动车株式会社 三维物体检测装置和三维物体检测方法
US8954255B1 (en) 2011-09-16 2015-02-10 Robert J. Crawford Automobile-speed control using terrain-based speed profile
DE102012007127A1 (de) 2011-09-24 2013-03-28 Volkswagen Aktiengesellschaft Verfahren zum Bestimmen einer Bewegungsbahn für ein Fahrzeug
DE102011115138A1 (de) * 2011-09-28 2013-03-28 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren zum Betreiben eines Fahrerassistenzsystems und Fahrerassistenzsystem
DE102011115139A1 (de) * 2011-09-28 2013-03-28 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren zum Betreiben eines Fahrerassistenzsystems und Fahrerassistenzsystem
SE536571C2 (sv) * 2012-06-12 2014-02-25 En metod och ett system för körfältshjälp för ett fordon
US20140071282A1 (en) * 2012-09-13 2014-03-13 GM Global Technology Operations LLC Alert systems and methods using real-time lane information
MX2015004135A (es) * 2012-10-04 2015-07-06 Nissan Motor Dispositivo para control de la direccion.
US8473144B1 (en) 2012-10-30 2013-06-25 Google Inc. Controlling vehicle lateral lane positioning
US9165196B2 (en) * 2012-11-16 2015-10-20 Intel Corporation Augmenting ADAS features of a vehicle with image processing support in on-board vehicle platform
KR101470104B1 (ko) * 2012-12-27 2014-12-05 현대자동차주식회사 차량의 충돌방지 제어 장치 및 방법
KR101409747B1 (ko) * 2012-12-28 2014-07-02 현대모비스 주식회사 횡방향 제어 장치 및 그 제어 방법
US10347127B2 (en) 2013-02-21 2019-07-09 Waymo Llc Driving mode adjustment
DE102013009424A1 (de) * 2013-06-04 2014-12-04 Volkswagen Aktiengesellschaft Notfallassistenz ohne aktivierte Querführungsunterstützung
JP5802241B2 (ja) 2013-07-04 2015-10-28 富士重工業株式会社 車両の運転支援制御装置
EP3041720B1 (de) 2013-09-05 2019-12-04 Robert Bosch GmbH Verbesserte spurwechselwarnung mit informationen von hinteren radarsensoren
DE102013218280A1 (de) * 2013-09-12 2015-03-12 Volkswagen Aktiengesellschaft TTC-basierter Ansatz zur Bestimmung der Kollisionsgefahr
JP5920990B2 (ja) 2013-09-27 2016-05-24 富士重工業株式会社 車両のレーンキープ制御装置
CN110920609B (zh) 2013-12-04 2023-08-22 移动眼视力科技有限公司 用于模仿前车的系统和方法
US10046793B2 (en) * 2014-02-26 2018-08-14 GM Global Technology Operations LLC Methods and systems for automated driving
JP2015189404A (ja) * 2014-03-28 2015-11-02 マツダ株式会社 車線維持制御装置
US9552732B2 (en) 2014-04-02 2017-01-24 Robert Bosch Gmbh Driver assistance system including warning sensing by vehicle sensor mounted on opposite vehicle side
WO2015174943A1 (en) 2014-05-12 2015-11-19 Kutluay Emir A system for keeping and tracking lane
JP6297956B2 (ja) * 2014-05-13 2018-03-20 株式会社Soken 経路生成装置
CN104002809B (zh) * 2014-05-28 2016-08-24 长安大学 一种车辆岔口路段检测装置及检测方法
US9321461B1 (en) 2014-08-29 2016-04-26 Google Inc. Change detection using curve alignment
WO2016031036A1 (ja) * 2014-08-29 2016-03-03 日産自動車株式会社 走行制御装置および走行制御方法
WO2016048371A1 (en) * 2014-09-26 2016-03-31 Nissan North America, Inc. Method and system of assisting a driver of a vehicle
WO2016048369A1 (en) * 2014-09-26 2016-03-31 Nissan North America, Inc. Method and system of assisting a driver of a vehicle
WO2016048368A1 (en) * 2014-09-26 2016-03-31 Nissan North America, Inc. Methods and system of assisting a driver of a vehicle
US9248834B1 (en) 2014-10-02 2016-02-02 Google Inc. Predicting trajectories of objects based on contextual information
DE102014222058A1 (de) * 2014-10-29 2016-05-04 Robert Bosch Gmbh Verfahren zum Betreiben einer Fahrassistenzfunktion
JP6363517B2 (ja) * 2015-01-21 2018-07-25 株式会社デンソー 車両の走行制御装置
JP6123812B2 (ja) 2015-01-29 2017-05-10 トヨタ自動車株式会社 車線追従制御装置
DE102015004476A1 (de) * 2015-04-07 2016-10-13 Lucas Automotive Gmbh Steuerungs-System und Verfahren zum Unterstützen eines sicheren Einscherens von Kraftfahrzeugen nach einem Überholvorgang
DE102015211736A1 (de) * 2015-06-24 2016-12-29 Bayerische Motoren Werke Aktiengesellschaft Engstellenassistenzsystem in einem Kraftfahrzeug
US10503983B2 (en) * 2015-08-19 2019-12-10 Mitsubishi Electric Corporation Lane recognition apparatus and lane recognition method
US9487212B1 (en) * 2015-10-09 2016-11-08 GM Global Technology Operations LLC Method and system for controlling vehicle with automated driving system
DE102015015302A1 (de) 2015-11-27 2016-05-12 Daimler Ag Verfahren zum teil- oder vollautonomen Betrieb eines Fahrzeugs und Fahrerassistenzvorrichtung
JP6512084B2 (ja) * 2015-12-04 2019-05-15 株式会社デンソー 走行軌跡生成装置、走行軌跡生成方法
US9878711B2 (en) 2015-12-14 2018-01-30 Honda Motor Co., Ltd. Method and system for lane detection and validation
US20170183035A1 (en) * 2015-12-29 2017-06-29 Microsoft Technology Licensing, Llc Dynamic lane shift
US10909721B2 (en) * 2016-06-29 2021-02-02 Seeing Machines Limited Systems and methods for identifying pose of cameras in a scene
JP6809020B2 (ja) * 2016-07-27 2021-01-06 いすゞ自動車株式会社 操舵補助装置及び操舵補助方法
WO2018066133A1 (ja) * 2016-10-07 2018-04-12 日産自動車株式会社 車両判定方法、走行経路補正方法、車両判定装置、及び走行経路補正装置
JP6575479B2 (ja) * 2016-10-13 2019-09-18 トヨタ自動車株式会社 車線維持支援装置
JP6938903B2 (ja) * 2016-12-14 2021-09-22 株式会社デンソー 車両における衝突回避装置および衝突回避方法
KR102383427B1 (ko) * 2016-12-16 2022-04-07 현대자동차주식회사 자율주행 제어 장치 및 방법
JP6919429B2 (ja) * 2016-12-21 2021-08-18 トヨタ自動車株式会社 運転支援装置
KR20180099288A (ko) * 2017-02-28 2018-09-05 주식회사 만도 교차로 충돌 방지 시스템 및 방법
RU2664034C1 (ru) * 2017-04-05 2018-08-14 Общество С Ограниченной Ответственностью "Яндекс" Способ и система создания информации о трафике, которая будет использована в картографическом приложении, выполняемом на электронном устройстве
MX2019012242A (es) * 2017-04-14 2019-11-28 Nissan Motor Metodo de control de vehiculo y dispositivo de control de vehiculo.
FR3065933A1 (fr) * 2017-05-04 2018-11-09 Peugeot Citroen Automobiles Sa Systeme de positionnement d’un vehicule autonome sur une voie de circulation
JP2019003234A (ja) * 2017-06-09 2019-01-10 トヨタ自動車株式会社 運転支援装置
CN107358170B (zh) * 2017-06-21 2021-01-19 华南理工大学 一种基于移动机器视觉的车辆违章压线识别方法
JP6982083B2 (ja) 2017-08-25 2021-12-17 本田技研工業株式会社 走行制御装置、および車両
WO2019043847A1 (ja) * 2017-08-30 2019-03-07 本田技研工業株式会社 走行制御装置、車両および走行制御方法
US11625045B2 (en) * 2017-08-31 2023-04-11 Uatc, Llc Systems and methods for controlling an autonomous vehicle with occluded sensor zones
JP6627153B2 (ja) * 2017-09-11 2020-01-08 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP6917253B2 (ja) * 2017-09-15 2021-08-11 本田技研工業株式会社 車両制御装置、車両、車両制御装置の処理方法およびプログラム
US10571923B2 (en) * 2017-09-20 2020-02-25 Tata Consultancy Services Limited System and method for steering control during autonomous vehicle driving
DE102017010491A1 (de) 2017-11-14 2018-07-12 Daimler Ag Verfahren zum Betrieb eines Fahrzeuges
DE102017220486B4 (de) * 2017-11-16 2023-05-11 Volkswagen Aktiengesellschaft Verfahren zur Adaption einer vorbestimmten Referenzlinie für ein Kraftfahrzeug und Vorrichtung
JP2019111927A (ja) * 2017-12-22 2019-07-11 ダイムラー・アクチェンゲゼルシャフトDaimler AG 車両走行制御装置
US11077854B2 (en) 2018-04-11 2021-08-03 Hyundai Motor Company Apparatus for controlling lane change of vehicle, system having the same and method thereof
US11173910B2 (en) 2018-04-11 2021-11-16 Hyundai Motor Company Lane change controller for vehicle system including the same, and method thereof
US11597403B2 (en) 2018-04-11 2023-03-07 Hyundai Motor Company Apparatus for displaying driving state of vehicle, system including the same and method thereof
US11084491B2 (en) 2018-04-11 2021-08-10 Hyundai Motor Company Apparatus and method for providing safety strategy in vehicle
EP3552901A3 (de) 2018-04-11 2020-04-29 Hyundai Motor Company Vorrichtung und verfahren zur bereitstellung einer sicherheitsstrategie in einem fahrzeug
US11351989B2 (en) 2018-04-11 2022-06-07 Hyundai Motor Company Vehicle driving controller, system including the same, and method thereof
EP3552902A1 (de) * 2018-04-11 2019-10-16 Hyundai Motor Company Vorrichtung und verfahren zur bereitstellung eines fahrwegs an ein fahrzeug
US10843710B2 (en) 2018-04-11 2020-11-24 Hyundai Motor Company Apparatus and method for providing notification of control authority transition in vehicle
EP3569460B1 (de) 2018-04-11 2024-03-20 Hyundai Motor Company Vorrichtung und verfahren zur steuerung des fahrens in einem fahrzeug
US11334067B2 (en) 2018-04-11 2022-05-17 Hyundai Motor Company Apparatus and method for providing safety strategy in vehicle
EP3552913B1 (de) 2018-04-11 2021-08-18 Hyundai Motor Company Vorrichtung und verfahren zur steuerung für die ermöglichung eines autonomen systems in einem fahrzeug
US11084490B2 (en) 2018-04-11 2021-08-10 Hyundai Motor Company Apparatus and method for controlling drive of vehicle
US11548509B2 (en) 2018-04-11 2023-01-10 Hyundai Motor Company Apparatus and method for controlling lane change in vehicle
US10671070B2 (en) * 2018-05-23 2020-06-02 Baidu Usa Llc PID embedded LQR for autonomous driving vehicles (ADVS)
DE102018209064A1 (de) * 2018-06-07 2019-12-12 Volkswagen Aktiengesellschaft Verfahren zum Warnen eines Fahrers eines Kraftfahrzeugs vor einer Kollision
US20210122369A1 (en) * 2018-06-25 2021-04-29 Intelligent Commute Llc Extensiview and adaptive lka for adas and autonomous driving
US11926339B2 (en) 2018-09-30 2024-03-12 Great Wall Motor Company Limited Method for constructing driving coordinate system, and application thereof
CN110379155B (zh) * 2018-09-30 2021-01-26 长城汽车股份有限公司 用于确定道路目标坐标的方法及系统
KR102592826B1 (ko) * 2018-10-10 2023-10-23 현대자동차주식회사 근거리 끼어들기 차량 판단 장치 및 그의 판단 방법과 그를 이용하는 차량
DE102018125250B4 (de) * 2018-10-12 2020-10-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuereinheit zur Führung eines Fahrzeugs
DE102018217746A1 (de) 2018-10-17 2020-04-23 Audi Ag Verfahren zum Betrieb eines Fahrerassistenzsystems eines Kraftfahrzeugs und Kraftfahrzeug
US11054834B2 (en) * 2018-10-19 2021-07-06 Waymo Llc Controlling vehicles through multi-lane turns
GB2578916B (en) * 2018-11-14 2021-05-12 Jaguar Land Rover Ltd Vehicle in-lane position control system and method
DE102019201215A1 (de) * 2019-01-31 2019-12-05 Continental Teves Ag & Co. Ohg Verfahren zur Unterstützung eines Fahrers bei der Spurführung eines Ego-Fahrzeugs
EP4257405A3 (de) 2019-02-01 2023-12-20 Crown Equipment Corporation Bordeigene ladestation für eine fernsteuerungsvorrichtung
US11641121B2 (en) 2019-02-01 2023-05-02 Crown Equipment Corporation On-board charging station for a remote control device
JP6714116B1 (ja) * 2019-02-06 2020-06-24 三菱電機株式会社 車両用制御装置および車両用制御方法
CN110120151A (zh) * 2019-04-24 2019-08-13 华南理工大学 一种高速公路入口匝道合流区车辆冲突概率预测方法
FR3096948B1 (fr) * 2019-06-06 2021-05-14 Renault Sas Procédé de calcul de la position latérale d'un véhicule automobile
DE102019208915A1 (de) * 2019-06-19 2020-12-24 Robert Bosch Gmbh Verfahren zum Erkennen eines Überholvorgangs
CN112298200B (zh) * 2019-07-26 2022-12-23 魔门塔(苏州)科技有限公司 一种车辆的换道方法和装置
JP6950015B2 (ja) * 2020-02-12 2021-10-13 本田技研工業株式会社 走行制御装置、車両、走行制御方法及びプログラム
US11584371B2 (en) 2020-07-15 2023-02-21 Toyota Research Institute, Inc. Systems and methods for using R-functions and semi-analytic geometry for lane keeping in trajectory planning
CA3186028A1 (en) 2020-08-11 2022-02-17 Trisha M. Luthman Remote control device
US11623645B2 (en) 2021-03-24 2023-04-11 Denso International America, Inc. Vehicle behavior planning for overtaking vehicles
US20220371585A1 (en) * 2021-05-21 2022-11-24 Robert Bosch Gmbh Customizable lane biasing for an automated vehicle
CN113460059B (zh) * 2021-08-16 2022-08-26 吉林大学 一种基于智能方向盘的驾驶人驾驶积极性辨识装置及方法
CN114379552B (zh) * 2021-11-11 2024-03-26 重庆大学 一种基于高精度地图和车载传感器的自适应车道保持控制系统及方法
DE102021212991A1 (de) 2021-11-18 2023-05-25 Zf Friedrichshafen Ag Verfahren zum Bereitstellen einer adaptiven Quersteuerung für ein Ego-Fahrzeug
FR3129906A1 (fr) * 2021-12-08 2023-06-09 Psa Automobiles Sa Procédé et dispositif de gestion de la réalisation d’une manœuvre par un véhicule automobile
US11541910B1 (en) * 2022-01-07 2023-01-03 Plusai, Inc. Methods and apparatus for navigation of an autonomous vehicle based on a location of the autonomous vehicle relative to shouldered objects
DE102022124593A1 (de) * 2022-09-26 2024-03-28 Zf Cv Systems Global Gmbh Verfahren zum Ausrichten eines Fahrzeuges auf einem Fahrstreifen, Spurhaltesystem und Fahrzeug
HUP2200404A1 (hu) 2022-10-07 2024-04-28 Vie Tech Europe Kft Rendszer és eljárás adaptív vezetésfelügyelethez jármûben

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806336A2 (de) * 1996-05-09 1997-11-12 Honda Giken Kogyo Kabushiki Kaisha Hilfsvorrichtung für das Lenken eines Fahrzeuges
US6185492B1 (en) * 1997-07-09 2001-02-06 Toyota Jidosha Kabushiki Kaisha Vehicle steering control apparatus for assisting a steering effort to move a vehicle along a line desired by a driver
DE10018873A1 (de) * 2000-04-14 2001-12-06 Daimler Chrysler Ag Hindernisvermeidungsverfahren für das Fahrzeugverfolgen

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2271611B1 (de) * 1974-02-01 1977-03-04 Thomson Csf
US4401181A (en) * 1981-03-12 1983-08-30 Schwarz Alfred V Road vehicle control system
US4970653A (en) * 1989-04-06 1990-11-13 General Motors Corporation Vision method of detecting lane boundaries and obstacles
JP3183966B2 (ja) * 1992-04-20 2001-07-09 マツダ株式会社 車両の走行制御装置
JP3169483B2 (ja) * 1993-06-25 2001-05-28 富士通株式会社 道路環境認識装置
US6553130B1 (en) * 1993-08-11 2003-04-22 Jerome H. Lemelson Motor vehicle warning and control system and method
GB9317983D0 (en) * 1993-08-28 1993-10-13 Lucas Ind Plc A driver assistance system for a vehicle
JP3431962B2 (ja) * 1993-09-17 2003-07-28 本田技研工業株式会社 走行区分線認識装置を備えた自動走行車両
US5642093A (en) * 1995-01-27 1997-06-24 Fuji Jukogyo Kabushiki Kaisha Warning system for vehicle
DE19507956C2 (de) * 1995-03-07 2002-11-07 Daimler Chrysler Ag Einrichtung zur Bestimmung des Fahrzeugabstandes von einer seitlichen Fahrbahnmarkierung
US6720920B2 (en) * 1997-10-22 2004-04-13 Intelligent Technologies International Inc. Method and arrangement for communicating between vehicles
JP3289565B2 (ja) * 1995-08-23 2002-06-10 トヨタ自動車株式会社 自動操舵システム
JP2869888B2 (ja) * 1995-11-21 1999-03-10 本田技研工業株式会社 車両の衝突防止装置
JP3582246B2 (ja) * 1996-08-28 2004-10-27 トヨタ自動車株式会社 車両走行管理システム
DE19637245C2 (de) * 1996-09-13 2000-02-24 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung der Geschwindigkeit eines Fahrzeugs
US5979581A (en) * 1996-11-07 1999-11-09 The Regents Of The University Of California Lateral vehicle control apparatus and method for automated highway systems and intelligent cruise control
DE19722947C1 (de) * 1997-05-31 1999-02-25 Bosch Gmbh Robert Verfahren und Vorrichtung zur Bestimmung eines zukünftigen Kursbereichs eines Fahrzeugs
JPH113499A (ja) * 1997-06-10 1999-01-06 Hitachi Ltd 移動体管理システム,移動体載装置,基地局備装置および移動体管理方法
JP3358709B2 (ja) * 1997-08-11 2002-12-24 富士重工業株式会社 車両用運転支援装置
JPH1186182A (ja) * 1997-09-01 1999-03-30 Honda Motor Co Ltd 自動運転制御システム
WO1999030919A1 (de) * 1997-12-15 1999-06-24 Volkswagen Aktiengesellschaft Verfahren zur regelung von geschwindigkeit und abstand bei überholvorgängen
JP3015875B2 (ja) * 1998-05-19 2000-03-06 工業技術院長 自動車運転時の車線逸脱検出方法及び検出装置
US6269308B1 (en) * 1998-08-20 2001-07-31 Honda Giken Kogyo Kabushiki Kaisha Safety running system for vehicle
DE19860676A1 (de) * 1998-12-29 2000-07-06 Bosch Gmbh Robert Visualisierungseinrichtung für die von wenigstens einem Scheinwerfer eines Fahrzeugs bewirkte Beleuchtung vor dem Fahrzeug
JP2000302055A (ja) * 1999-04-20 2000-10-31 Honda Motor Co Ltd 車線追従制御装置
US6803736B1 (en) * 1999-05-19 2004-10-12 Robert Bosch Gmbh Control system which carries out the model-supported safety monitoring of an electronically regulated controller in the motor vehicle
JP2000357299A (ja) * 1999-06-16 2000-12-26 Honda Motor Co Ltd 車両の走行安全装置
JP3529037B2 (ja) * 1999-08-02 2004-05-24 日産自動車株式会社 車線追従装置
JP3740902B2 (ja) 1999-08-10 2006-02-01 日産自動車株式会社 車線追従装置
US6385539B1 (en) * 1999-08-13 2002-05-07 Daimlerchrysler Ag Method and system for autonomously developing or augmenting geographical databases by mining uncoordinated probe data
DE19945268A1 (de) * 1999-09-21 2001-03-22 Bosch Gmbh Robert Verfahren und Vorrichtung zur Zustandserkennung bei einem System zur automatischen Längs- und/oder Querregelung bei einem Kraftfahrzeug
JP3092804B1 (ja) * 1999-09-22 2000-09-25 富士重工業株式会社 車両用運転支援装置
JP4231910B2 (ja) * 2000-04-25 2009-03-04 日産自動車株式会社 車線維持装置
US7375728B2 (en) * 2001-10-01 2008-05-20 University Of Minnesota Virtual mirror
US6977630B1 (en) * 2000-07-18 2005-12-20 University Of Minnesota Mobility assist device
DE10036276A1 (de) * 2000-07-26 2002-02-07 Daimler Chrysler Ag Automatisches Brems- und Lenksystem für ein Fahrzeug
JP3529042B2 (ja) * 2000-10-02 2004-05-24 日産自動車株式会社 車線追従制御装置
JP3630100B2 (ja) * 2000-12-27 2005-03-16 日産自動車株式会社 車線検出装置
US6795765B2 (en) * 2001-03-22 2004-09-21 Visteon Global Technologies, Inc. Tracking of a target vehicle using adaptive cruise control
US6772062B2 (en) * 2001-05-31 2004-08-03 The Regents Of The University Of California Intelligent ultra high speed distributed sensing system and method for sensing roadway markers for intelligent vehicle guidance and control
KR20020094545A (ko) * 2001-06-12 2002-12-18 현대자동차주식회사 자동차의 차선 이탈 방지시스템 및 그 제어방법
JP3585874B2 (ja) * 2001-09-04 2004-11-04 本田技研工業株式会社 車両の走行制御装置
US6944543B2 (en) * 2001-09-21 2005-09-13 Ford Global Technologies Llc Integrated collision prediction and safety systems control for improved vehicle safety
JP3760827B2 (ja) * 2001-09-28 2006-03-29 日産自動車株式会社 車線逸脱防止装置
JP3878008B2 (ja) * 2001-12-07 2007-02-07 株式会社日立製作所 車両用走行制御装置及び地図情報データ記録媒体
US7124027B1 (en) * 2002-07-11 2006-10-17 Yazaki North America, Inc. Vehicular collision avoidance system
US6937165B2 (en) * 2002-09-23 2005-08-30 Honeywell International, Inc. Virtual rumble strip
DE10251357A1 (de) * 2002-11-05 2004-05-13 Daimlerchrysler Ag Setzen oder Abschalten eines Fahrtrichtungsanzeigers
US7510038B2 (en) * 2003-06-11 2009-03-31 Delphi Technologies, Inc. Steering system with lane keeping integration
JP3900162B2 (ja) * 2004-02-09 2007-04-04 日産自動車株式会社 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806336A2 (de) * 1996-05-09 1997-11-12 Honda Giken Kogyo Kabushiki Kaisha Hilfsvorrichtung für das Lenken eines Fahrzeuges
US6185492B1 (en) * 1997-07-09 2001-02-06 Toyota Jidosha Kabushiki Kaisha Vehicle steering control apparatus for assisting a steering effort to move a vehicle along a line desired by a driver
DE10018873A1 (de) * 2000-04-14 2001-12-06 Daimler Chrysler Ag Hindernisvermeidungsverfahren für das Fahrzeugverfolgen

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1790542B2 (de) 2003-11-14 2011-05-25 Nissan Motor Company Limited System zur Spurhaltung eines Fahrzeugs
EP1796950B1 (de) * 2004-10-01 2012-08-08 Robert Bosch Gmbh Verfahren und vorrichtung zur fahrerunterstützung
JP4507976B2 (ja) * 2005-05-11 2010-07-21 トヨタ自動車株式会社 車両用走行制御装置
JP2006315491A (ja) * 2005-05-11 2006-11-24 Toyota Motor Corp 車両用走行制御装置
US9211910B2 (en) 2005-10-31 2015-12-15 Robert Bosch Gmbh KS lateral guidance system having a modified control characteristics when cornering
WO2007051671A1 (de) * 2005-10-31 2007-05-10 Robert Bosch Gmbh Lks-spurhaltsystem mit modifizierter regelcharakteristik bei kurvenfahrt
US8521363B2 (en) 2006-06-07 2013-08-27 Toyota Jidosha Kabushiki Kaisha Driving assist system
EP2032406A4 (de) * 2006-06-11 2009-10-14 Volvo Technology Corp Verfahren und vorrichtung zur verwendung eines automatisierten spurhaltesystems zur bewahrung von seitlichem fahrzeugabstand
US8170788B2 (en) 2006-06-11 2012-05-01 Volvo Technology Corporation Method and apparatus for using an automated lane keeping system to maintain lateral vehicle spacing
EP2032406A1 (de) * 2006-06-11 2009-03-11 Volvo Technology Corporation Verfahren und vorrichtung zur verwendung eines automatisierten spurhaltesystems zur bewahrung von seitlichem fahrzeugabstand
US8600657B2 (en) 2008-09-19 2013-12-03 Hitachi Automotive Systems, Ltd. Vehicle control apparatus
WO2010032556A1 (ja) * 2008-09-19 2010-03-25 日立オートモティブシステムズ株式会社 車両制御装置
CN101959738A (zh) * 2008-09-19 2011-01-26 日立汽车系统株式会社 车辆控制装置
EP2266852A1 (de) * 2009-06-16 2010-12-29 Nissan Motor Co., Ltd. Fahrunterstützungssystem und Fahrunterstützungsverfahren für ein Fahrzeug
CN101920701A (zh) * 2009-06-16 2010-12-22 日产自动车株式会社 车辆操作支持装置
DE102012022111A1 (de) 2012-11-13 2013-05-08 Daimler Ag Verfahren zur Querführungsunterstützung für Fahrzeuge
WO2017144381A1 (de) * 2016-02-24 2017-08-31 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur querführungsunterstützung für ein strassengebundenes fahrzeug
US10885789B2 (en) 2016-02-24 2021-01-05 Bayerische Motoren Werke Aktiengesellschaft Device and method for lateral guidance assistance for a road vehicle
US11312376B2 (en) 2016-02-24 2022-04-26 Bayerische Motoren Werke Aktiengesellschaft Device for lateral guidance assistance for a road vehicle
WO2022083970A1 (fr) 2020-10-22 2022-04-28 Renault S.A.S Procédé de régulation de la position latérale d'un véhicule sur une voie de circulation
FR3115513A1 (fr) 2020-10-22 2022-04-29 Renault S.A.S. Procédé de régulation de la position latérale d'un véhicule sur une voie de circulation

Also Published As

Publication number Publication date
DE50209256D1 (de) 2007-02-22
EP1502166A1 (de) 2005-02-02
US20050228588A1 (en) 2005-10-13
DE10218010A1 (de) 2003-11-06
JP4005597B2 (ja) 2007-11-07
US7765066B2 (en) 2010-07-27
EP1502166B1 (de) 2007-01-10
JP2005524135A (ja) 2005-08-11

Similar Documents

Publication Publication Date Title
EP1502166B1 (de) Querführungsunterstützung bei kraftfahrzeugen
EP3281847B1 (de) Steuerungssystem und steuerungsverfahren zum führen eines kraftfahrzeugs entlang eines pfades
EP3281846B1 (de) Steuerungssystem und steuerungsverfahren zum führen eines kraftfahrzeugs entlang eines pfades und zum vermeiden einer kollision mit einem anderen kraftfahrzeug
DE602004000990T2 (de) Fahrassistenzsystem für Fahrzeuge
EP1777143B1 (de) Autobahnassistent
EP1888394B1 (de) Spurhalteassistent für kraftfahrzeuge
EP1867542B1 (de) Spurhalteassistent mit Spurwechselfunktion
EP3281830A1 (de) Steuerungssystem und steuerungsverfahren zum bestimmen einer trajektorie und zum erzeugen von zugehörigen signalen oder steuerbefehlen
EP3281831A1 (de) Steuerungssystem und steuerungsverfahren zum ermitteln einer wahrscheinlichkeit für einen fahrspurwechsel eines vorausfahrenden kraftfahrzeugs
DE102005062084A1 (de) Verfahren zum Lenken eines Fahrzeugs in eine Parklücke und Einparkhilfeeinrichtung
EP2252491B1 (de) Längsführungsassistent mit seitenassistenzfunktion für kraftfahrzeuge
DE102009014587A1 (de) Antriebsunterstützungssystem für ein Fahrzeug
EP2623398B1 (de) Automatische Auswahl der Zielposition in einer Parklücke durch kombinierte Auswertung von Video / USS-Objekten
DE102009040373B4 (de) Verfahren zum Durchführen eines zumindest semi-autonomen Parkvorgangs eines Fahrzeugs und Parkassistenzsystem
DE102007029483A1 (de) Abstandsregelvorrichtung für Kraftfahrzeuge, mit Erkennung von Einscherern
DE102009025328A1 (de) Verfahren zum Durchführen eines zumindest semi-autonomen Parkvorgangs eines Fahrzeugs und Parkassistenzsystem für ein Fahrzeug
WO2015120874A1 (de) Verfahren zum betrieb eines zur wenigstens teilweise automatischen fahrzeugführung ausgebildeten fahrzeugsystems und kraftfahrzeug
DE102005062086A1 (de) Verfahren zum Ermitteln der Befahrbarkeit einer Parklücke und Einparkhilfeeinrichtung
DE102006044179B4 (de) Verfahren und Vorrichtung zum Unterstützen eines Fahrers eines Kraftfahrzeugs bei der Durchführung eines Fahrmanövers
WO2009049729A1 (de) Fahrerassistenzsystem und verfahren zur unterstützung des fahrers eines fahrzeugs bei der querführung des fahrzeugs
DE102012007127A1 (de) Verfahren zum Bestimmen einer Bewegungsbahn für ein Fahrzeug
EP3213981B1 (de) Verfahren zum autonomen einparken eines kraftfahrzeugs in eine parklücke mit vorgabe eines geschwindigkeitsprofils, fahrerassistenzsystems sowie kraftfahrzeug
EP3162667B1 (de) Verfahren zum zumindest semi-autonomen manövrieren eines kraftfahrzeugs in eine parklücke mit bordstein, fahrerassistenzsystem sowie kraftfahrzeug
DE102010007598A1 (de) Verfahren und Vorrichtung zur selbsttätigen Querführung eines Fahrzeuges
WO2021089753A1 (de) STEUERUNGSSYSTEM UND STEUERUNGSVERFAHREN FÜR EIN ERKENNEN UND EINE REAKTION EINES REIßVERSCHLUSSVERFAHRENS FÜR EIN KRAFTFAHRZEUG

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002794988

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004500125

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002794988

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10512593

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002794988

Country of ref document: EP