WO2002053813A1 - Monocristal de carbure de silicium et procede et dispositif pour le produire - Google Patents

Monocristal de carbure de silicium et procede et dispositif pour le produire Download PDF

Info

Publication number
WO2002053813A1
WO2002053813A1 PCT/JP2001/011270 JP0111270W WO02053813A1 WO 2002053813 A1 WO2002053813 A1 WO 2002053813A1 JP 0111270 W JP0111270 W JP 0111270W WO 02053813 A1 WO02053813 A1 WO 02053813A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
single crystal
carbide single
sublimation
producing
Prior art date
Application number
PCT/JP2001/011270
Other languages
English (en)
French (fr)
Inventor
Takayuki Maruyama
Shigeki Endo
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to US10/450,151 priority Critical patent/US7048798B2/en
Priority to EP01272835.8A priority patent/EP1354987B1/en
Publication of WO2002053813A1 publication Critical patent/WO2002053813A1/ja
Priority to US11/133,308 priority patent/US20050205003A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention relates to a silicon carbide single crystal and a method and apparatus for producing the same.
  • the present invention relates to a silicon carbide single crystal particularly suitable as an electronic device, an optical device, and the like, and a method and an apparatus capable of efficiently producing the silicon carbide single crystal.
  • Silicon carbide has a larger band gap than gay silicon, and has excellent dielectric breakdown characteristics, heat resistance, radiation resistance, etc., so it is used as a small, high-output electronic device material for semiconductors, etc. Due to its excellent properties, it has been attracting attention as an optical device material.
  • the single-crystal silicon carbide has an advantage over the silicon carbide polycrystal in that it is particularly excellent in uniformity of the characteristics in a wafer when applied to a device such as a wafer.
  • any of the obtained silicon carbide single crystals may be mixed with polycrystals or polymorphs, or may have hollow pipe-like crystal defects ( There is a problem that a so-called micropipe occurs.
  • the silicon carbide single crystal manufacturing apparatus 80 is detachable from the container main body 12 and the container main body 12 capable of storing the sublimation raw material 40, and is attached to the container main body 12.
  • the graphite crucible 10 is fixed inside the quartz tube 30
  • the sublimation raw material 40 is heated by the heat.
  • the sublimation material 40 sublimates when heated to a predetermined temperature.
  • the sublimated sublimation material 40 does not recrystallize unless cooled to the recrystallization temperature.
  • the temperature of the lid 11 side is lower than that of the sublimation raw material 40 side, and the sublimation sublimation raw material 40 is in an atmosphere in which the sublimation raw material 40 can be recrystallized, the silicon carbide single crystal seed crystal 50 At the same time, silicon carbide is recrystallized and silicon carbide crystals grow.
  • the silicon carbide single crystal 60 recrystallizes and grows on the silicon carbide single crystal seed crystal 50, and the outer periphery of the silicon carbide single crystal seed crystal 50 has a large amount of silicon carbide single crystal.
  • Crystal 70 recrystallizes and grows.
  • a concave portion 71 depressed to the lid 11 side is formed in a ring shape, and foreign matters are formed in the vicinity of the concave portion 71 and the outer peripheral edge side of the lid 11. Polycrystals and polymorphs are mixed and present in a large amount. Then, the entire surface of the lid 11 facing the inside of the container body 12 is covered with silicon carbide crystal, and polycrystalline silicon carbide 70 is provided on the outer peripheral edge of the lid 11.
  • the silicon carbide single crystal 60 may be damaged, such as cracks, or may be mixed with polycrystals or polymorphs, or may have defects such as micro-mouth pipes. This is a serious problem that must be overcome in recent years when the production of large-diameter silicon carbide single crystals is required.
  • An object of the present invention is to solve the above-mentioned various problems in the related art, to meet the above-mentioned demand, and to achieve the following objects.
  • the present invention is excellent in dielectric breakdown characteristics, heat resistance, radiation resistance, and the like, and is particularly suitable for electronic devices such as semiconductor wafers, optical devices such as light emitting diodes, and the like.
  • a method for producing a silicon carbide single crystal characterized in that the silicon carbide single crystal is grown throughout its entire growth process while maintaining the entire growth surface in a convex shape.
  • ⁇ 2> The method for producing a silicon carbide single crystal according to ⁇ 1>, wherein the crystal of silicon carbide including the silicon carbide single crystal is grown in a substantially mountain shape.
  • a sublimation raw material is accommodated in a reaction vessel, and a silicon carbide single crystal seed crystal is arranged at an end of the reaction vessel substantially opposite to the sublimation raw material,
  • the growth of the crystal of silicon carbide including the silicon carbide single crystal is performed only in a region of the end portion other than the portion adjacent to the peripheral side surface portion in the reaction vessel.
  • the sublimation raw material is accommodated in a reaction vessel, and a seed crystal of the silicon carbide single crystal is disposed at an end of the reaction vessel substantially opposite to the sublimation raw material;
  • a silicon carbide single crystal characterized in that a crystal of silicon carbide including the silicon carbide single crystal is grown only in a region of the end portion other than a portion adjacent to a peripheral side surface portion in the reaction vessel. Manufacturing method.
  • ⁇ 6> The method for producing a silicon carbide single crystal according to any one of the above ⁇ 2> to ⁇ 5>, wherein the crystal of silicon carbide containing a single crystal of silicon carbide is composed of only a single crystal of silicon carbide.
  • a sublimation raw material is accommodated in one end of the reaction vessel, and a silicon carbide single crystal seed crystal is arranged in the other end of the reaction vessel.
  • a sublimation atmosphere is formed by the first heating means arranged on the one end side so that the sublimation material can be sublimated;
  • a recrystallization atmosphere is provided such that the sublimation material sublimated by the first heating means can be recrystallized only in the vicinity of the seed crystal of the silicon carbide single crystal by the second heating means disposed on the other end side.
  • the sublimation material is recrystallized on a seed crystal of the silicon carbide single crystal, wherein the method of producing a single crystal silicon carbide according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 8> The method for producing a silicon carbide single crystal according to ⁇ 7>, wherein the temperature of the recrystallization atmosphere is lower by 30 to 300 ° C than the temperature of the sublimation atmosphere in the reaction vessel.
  • T, - T 2 is the method for manufacturing the Kei Mototan crystal according to any one of increases continuously or gradually the rather 7> Karak 1 1>.
  • An induced current can be passed between the first heating means and the second heating means, and by passing the induced current, an induction current can be passed between the first heating means and the second heating means.
  • ⁇ 15> The method for producing a silicon carbide single crystal according to any one of ⁇ 7> to ⁇ 14>, wherein one end is a lower end and the other end is an upper end.
  • ⁇ 16> The method for producing a silicon carbide single crystal according to any one of ⁇ 7> to ⁇ 15>, wherein the reaction vessel is a crucible disposed in a quartz tube.
  • a region where the silicon carbide single crystal is grown, and a region located on the outer periphery of the region and adjacent to the inner peripheral side surface of the reaction vessel are formed of different members. And one end of the member forming the region where the silicon carbide single crystal is grown is exposed inside the reaction vessel, and the other end is exposed outside the reaction vessel.
  • the surface of the other end portion adjacent to the peripheral side surface portion in the reaction vessel at the other end portion may be made of glass carbide as described in any one of the above ⁇ 5> to ⁇ 17>. Manufacturing method of crystal.
  • the sublimation raw material uses at least one selected from high-purity alkoxysilane and alkoxysilane polymer as a silicon source, and uses a high-purity organic compound that generates carbon by heating as a carbon source.
  • the mixture obtained by heating and sintering the mixture obtained in the non-oxidizing atmosphere is a silicon carbide powder as described above. 8> The method for producing a silicon carbide single crystal according to any one of the above.
  • the sublimation raw material uses a high-purity alkoxysilane as a silicon source, a high-purity organic compound that generates carbon by heating as a carbon source, and uniformly mixes them to obtain a non-mixture.
  • the sublimation material is a high purity alkoxysilane and / or high purity alkoxysilane polymer as a silicon source, and a high purity organic compound that generates carbon by heating as a carbon source.
  • One or more Z or two or more selected from the group consisting of high-purity methoxysilane, high-purity ethoxysilane, high-purity propoxysilane, and high-purity butoxysilane A high purity organic compound that generates carbon by heating is used as a carbon source, and a mixture obtained by uniformly mixing these is heated and calcined in a non-oxidizing atmosphere to obtain a carbon powder.
  • the method for producing a single crystal of silicon carbide according to any one of ⁇ 1> to ⁇ 18>.
  • the sublimation raw material is one and / or two or more selected from the group consisting of high-purity methoxysilane, high-purity ethoxysilane, high-purity propoxysilane, and high-purity butoxysilane, and / or These polymers having a degree of polymerization of 2 to 15 are used as a gay element source, a high-purity organic compound that generates carbon by heating is used as a carbon source, and a mixture obtained by uniformly mixing these is placed in a non-oxidizing atmosphere.
  • the sublimation material is one and / or two or more selected from the group consisting of high-purity monoalkoxysilane, high-purity dialkoxysilane, high-purity trialkoxysilane, and high-purity tetraalkoxysilane , And Z or their polymers having a degree of polymerization of 2 to 15 are used as a silicon source and have high purity to produce carbon by heating.
  • the compound is a carbon source, and a mixture obtained by uniformly mixing them is heated and calcined in a non-oxidizing atmosphere to obtain silicon carbide powder. 3.
  • a container main body capable of storing a sublimation material, and a seed crystal of a carbon single crystal silicon single crystal arranged on a surface facing the inside of the container main body when being attached to and detachable from the container main body.
  • a first induction heating coil that is arranged in a loop around the portion of the crucible in which the sublimation material is accommodated, and that forms a sublimation atmosphere so that the sublimation material can be sublimated;
  • the seed crystal is arranged in a state of being wound around the outer periphery of the portion, and the sublimation material sublimated by the first induction heating coil is located near the seed crystal of the silicon carbide single crystal.
  • a second induction heating coil that forms a recrystallization atmosphere so that only the recrystallization can be performed, and recrystallizes the sublimation raw material on the seed crystal of the silicon carbide single crystal;
  • An apparatus for producing a single crystal of silicon carbide comprising at least:
  • the method for producing a silicon carbide single crystal according to ⁇ 1> is a method for producing a silicon carbide single crystal wherein a sublimated raw material for sublimation is recrystallized to grow the silicon carbide single crystal.
  • a silicon single crystal is grown throughout the entire growth process while maintaining the entire growth surface in a convex shape.
  • the depressed concave portion is not formed in a ring shape in the direction opposite to the growth direction on the entire growth surface of the growing silicon carbide single crystal.
  • the recessed concave portion does not exist at all in the direction opposite to the growth direction. For this reason, a high-quality silicon carbide single crystal which is free from the above-mentioned various problems in the related art, that is, is free from breakage such as cracks and free from inclusion of polycrystals and polymorphs and crystal defects such as micropipes is produced.
  • the method for producing a silicon carbide single crystal according to ⁇ 4> wherein in any one of ⁇ 1> to ⁇ 3>, the sublimation material is contained in a reaction vessel, and the sublimation material in the reaction vessel is contained.
  • a seed crystal of the above-mentioned silicon carbide single crystal is arranged at an end substantially facing the raw material, and the growth of the silicon carbide crystal containing the above-mentioned silicon carbide single crystal is performed at the end in the reaction vessel. This is performed only in the region excluding the portion adjacent to the peripheral side surface portion.
  • the depressed concave portion is not formed in a ring shape in the direction opposite to the growth direction, and the silicon carbide single crystal is formed at the end portion by the reaction. It does not grow in contact with the peripheral side surface inside the container. Therefore, when the grown silicon carbide single crystal is cooled to room temperature, stress based on the difference in thermal expansion is not concentrated and applied from the silicon carbide polycrystal side to the carbon carbide single crystal side. Defects such as cracks do not occur in the obtained silicon carbide single crystal.
  • the method for producing a silicon carbide single crystal according to the above ⁇ 5> is a method for producing a silicon carbide single crystal in which a sublimated raw material for sublimation is recrystallized to grow the silicon carbide single crystal.
  • the sublimation raw material is accommodated in the reaction vessel, and a seed crystal of the silicon carbide single crystal is arranged at an end substantially opposite to the sublimation raw material in the reaction vessel, wherein the silicon carbide single crystal includes the silicon carbide single crystal.
  • the crystal is grown only in a region of the end except for a portion adjacent to the peripheral side surface in the reaction vessel. Therefore, the polycrystalline silicon carbide does not grow in a state of being in contact with the peripheral side surface in the reaction vessel at the end.
  • the method for producing a silicon carbide single crystal according to ⁇ 7> wherein in any one of ⁇ 1> to ⁇ 6>, the sublimation raw material is accommodated at one end side in the reaction vessel; A seed crystal of the silicon carbide single crystal is arranged on the other end side, and a sublimation atmosphere is formed by first heating means arranged on the one end side so that the sublimation material can be sublimated.
  • the second heating means arranged on the other end side the sublimation material sublimated by the first heating means is re-crystallized so that it can be recrystallized only in the vicinity of the seed crystal of the silicon carbide single crystal.
  • a crystal atmosphere is formed, and the sublimation raw material is Recrystallized on a silicon single crystal seed crystal.
  • heating for forming a sublimation atmosphere is performed by the first heating means so that the sublimation raw material can be sublimated.
  • the recrystallization can be selectively performed only on or near the seed crystal of the silicon carbide single crystal.
  • the polycrystalline silicon carbide does not grow while being in contact with the peripheral side surface of the end portion in the reaction vessel.
  • a temperature of a recrystallization atmosphere may be 30 to 3 higher than a temperature of the sublimation atmosphere. 0 0 Low. Therefore, the recrystallization is easily and smoothly performed in the vicinity of the silicon carbide single crystal seed crystal Ueno.
  • the first heating means and the second heating means are coils capable of induction heating. Therefore, the temperature control of the first heating means for forming the sublimation atmosphere and the temperature control of the second heating means for forming the recrystallization atmosphere are easily and easily performed by the induction heating by the coil. It is done reliably.
  • the current value of the induction heating current in the first heating means is larger than the current value of the induction heating current in the second heating means. For this reason, the temperature of the recrystallization atmosphere near the seed crystal is maintained lower than the temperature of the sublimation atmosphere, and recrystallization is easily performed.
  • the method for producing a silicon carbide single crystal according to ⁇ 13> the method according to any one of ⁇ 9> to ⁇ 12>, wherein an induction is provided between the first heating unit and the second heating unit.
  • An electric current can be supplied, and interference preventing means for preventing interference between the first heating means and the second heating means by supplying the induced current is arranged. For this reason, when the induction heating by the first heating means and the second heating means is performed at the same time, an induction current flows through the interference prevention means, and the interference prevention means Minimize and prevent interference.
  • the interference prevention unit is a coil that can be cooled. Even if an induction current flows through the coil and the coil is heated, the coil is cooled, so that the coil does not heat the reaction vessel. Therefore, temperature control of the reaction vessel is easy.
  • the one end is a lower end, and the other end is an upper end. .
  • the sublimation raw material is accommodated in the lower part of the reaction vessel, the sublimation of the sublimation raw material is performed smoothly, and the silicon carbide single crystal is directed downward, that is, in the direction of gravity. It grows without any extra load towards it.
  • the reaction vessel is a crucible arranged in a quartz tube. Therefore, the sublimation and recrystallization of the sublimation raw material and the growth of the silicon carbide single crystal are performed in a closed system in the quartz tube, so that these controls are easy.
  • a region where the growth of the silicon carbide single crystal is performed, and a region located on the outer periphery of the region and adjacent to the inner peripheral side surface of the reaction vessel are formed by different members And one end of a member forming a region where the silicon carbide single crystal is grown is exposed inside the reaction vessel, and the other end is exposed outside the reaction vessel.
  • the region where the silicon carbide single crystal is grown (the inner region) and the region located on the outer periphery of the region and adjacent to the inner peripheral side surface of the reaction vessel (the outer region) are formed by different members. Therefore, when heating is performed by the second heating unit, the outer region located on the second heating unit side is easily heated, but the inner region is in contact with the outer region.
  • the recrystallization of the silicon carbide is easily performed. As a result, the silicon carbide single crystal hardly grows in the outer region, and the silicon carbide single crystal selectively recrystallizes and grows only in the inner region.
  • the sublimation raw material is a high-purity alkoxysilane and an alkoxysilane.
  • At least one selected from silane polymers is used as a silicon source, a high-purity organic compound that generates carbon by heating is used as a carbon source, and a mixture obtained by uniformly mixing these is heated under a non-oxidizing atmosphere.
  • This is a silicon carbide powder obtained by heating and firing. Since the raw material for sublimation is a high-purity silicon carbide powder, when growing the silicon carbide single crystal, there is no polycrystal or polymorph in the silicon carbide single crystal, and the silicon carbide single crystal is smoothly mixed. The single crystal grows, and no defects such as micropipes occur in the obtained silicon carbide single crystal.
  • the method for producing a silicon carbide single crystal according to 25> wherein in any one of ⁇ 19> to ⁇ 24>, the silicon source is a tetraalkoxysilane polymer, and the carbon source is It is a phenolic resin. Therefore, the sublimation raw material can be easily obtained at low cost.
  • the method for producing a silicon carbide single crystal according to the above ⁇ 26>, wherein the content of each of the impurity elements in the silicon carbide powder is 0.5 ppm in any one of the ⁇ 19> It is as follows. For this reason, the raw material for sublimation has extremely high purity, and the incorporation of polycrystals and polymorphs into the above-mentioned silicon carbide single crystal and the generation of crystal defects are effectively suppressed.
  • the silicon carbide single crystal according to ⁇ 27> is manufactured by the method for manufacturing a silicon carbide single crystal according to any one of ⁇ 1> to ⁇ 26>. Therefore, the obtained silicon carbide single crystal is extremely high in quality, free of breakage such as cracks, free of polycrystals and polymorphs, and free of crystal defects such as microphone opening pipes. It has excellent heat resistance and radiation resistance, and is particularly suitable for electronic devices such as semiconductor wafers and optical devices such as light emitting diodes.
  • the non-destructive optically image-detected hollow pipe-shaped crystal defects in the above ⁇ 2>> are not more than 100 / cm ⁇ 2 >. Therefore, the silicon carbide single crystal has extremely high quality, and is particularly excellent in dielectric breakdown characteristics, heat resistance, radiation resistance, and the like, and is particularly suitable for electronic devices such as semiconductor wafers and optical devices such as light emitting diodes. It is.
  • the silicon carbide single crystal according to the above ⁇ 29> the total content of the impurity elements in the ⁇ 27> or ⁇ 28> is 1 Oppm or less. Therefore, the silicon carbide single crystal has extremely high quality.
  • the apparatus for producing a silicon carbide single crystal according to the above item ⁇ 30> is an apparatus for producing a silicon carbide single crystal that recrystallizes a sublimated material for sublimation to grow a silicon carbide single crystal.
  • the apparatus for producing a silicon carbide single crystal includes at least a crucible provided with a container body and a lid, a first induction heating coil, and a second induction heating coil.
  • the container body stores the sublimation raw material.
  • the lid is detachable from the container body.
  • a seed crystal of a silicon carbide single crystal is arranged on a surface facing the inside of the container body when the lid is attached to the container body.
  • the first invitation The induction heating coil is disposed in a state of being wound around the outer periphery of a portion of the crucible in which the sublimation material is accommodated, which forms a sublimation atmosphere so that the sublimation material can be sublimated.
  • the material for sublimation is sublimated.
  • the second induction heating coil is arranged in a state of being wound around the portion of the crucible on which the seed crystal is disposed, and is sublimated by the first induction heating coil.
  • FIG. 1 is a schematic diagram for explaining an initial state in the method for producing a silicon carbide single crystal of the present invention.
  • FIG. 2 is a schematic diagram for explaining a state in which a silicon carbide single crystal is manufactured by the method for manufacturing a silicon carbide single crystal of the present invention.
  • FIG. 3 is a schematic view of the silicon carbide single crystal of the present invention manufactured by the method of manufacturing a silicon carbide single crystal of the present invention.
  • FIG. 4 is a schematic explanatory view showing one example of a crucible used in the method for producing a silicon carbide single crystal of the present invention.
  • FIG. 5 is a schematic explanatory view showing another example of the crucible used in the method for producing a silicon carbide single crystal of the present invention.
  • FIG. 6 is a schematic view of the silicon carbide single crystal of the present invention manufactured by the method for manufacturing a silicon carbide single crystal of the present invention.
  • FIG. 7 is a schematic view of the silicon carbide single crystal of the present invention produced by the method for producing a silicon carbide single crystal of the present invention.
  • FIG. 8 is a schematic diagram for explaining a state in which a silicon carbide single crystal is manufactured by a conventional silicon carbide single crystal manufacturing method.
  • FIG. 9 is a schematic view of a silicon carbide single crystal manufactured by a conventional method of manufacturing a silicon carbide single crystal.
  • the method for producing a silicon carbide single crystal according to the present invention is a method for producing a silicon carbide single crystal, wherein the sublimated material for sublimation is recrystallized on a seed crystal of the silicon carbide single crystal to grow the silicon carbide single crystal. It is.
  • the following first to third aspects are exemplified, and among these, the third aspect includes the first aspect and the second aspect.
  • the silicon carbide single crystal is grown through the entire growth process while maintaining the entire growth surface in a convex shape.
  • the sublimation raw material is accommodated in a reaction vessel, and a seed crystal of a silicon carbide single crystal is arranged at an end of the reaction vessel substantially opposite to the sublimation raw material.
  • a silicon single crystal is grown only in a region other than the end portion adjacent to the peripheral side surface portion in the reaction vessel.
  • the raw material for sublimation is accommodated in a reaction vessel, and a seed crystal of a single crystal of silicon carbide is disposed at an end of the reaction vessel substantially opposite to the raw material for sublimation.
  • the reaction vessel is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the reaction vessel can accommodate the sublimation raw material therein, and the carbonization casing is provided at a position substantially opposed to the sublimation raw material. It preferably has an end portion on which a seed crystal of an elementary single crystal can be arranged.
  • the shape of the end portion is not particularly limited, but is preferably, for example, a substantially planar shape.
  • the edge is substantially opposite to the edge on which the seed crystal of the silicon carbide single crystal can be arranged.
  • the inside of the reaction vessel has a cylindrical shape, and the axis of the cylindrical shape may be linear or curved, and is perpendicular to the axial direction of the cylindrical shape.
  • the cross-sectional shape may be circular or polygonal.
  • Preferable examples of the circular shape include those whose axis is linear and whose cross section perpendicular to the axial direction is circular.
  • the sublimation material is accommodated at one end side, and the seed crystal of the gay carbide single crystal is arranged at the other end side.
  • the one end portion may be referred to as a “sublimation raw material storage portion”, and the other end portion may be referred to as a “seed crystal arrangement portion”.
  • the shape of the one end portion is not particularly limited, and may be a planar shape, or a structure (for example, a convex portion or the like) for promoting uniform temperature may be appropriately provided. .
  • the other end (seed crystal disposing portion) side is designed to be detachable.
  • the grown silicon carbide single crystal can be easily separated from the reaction vessel simply by detaching the other end (seed crystal disposition portion).
  • a container main body capable of storing a sublimation material is detachable from the container main body, and the sublimation accommodated in the container main body when mounted on the container main body.
  • Seed of silicon carbide single crystal at approximately the center of the surface facing the raw material A reaction container provided with a lid on which crystals can be placed is preferably used.
  • the positional relationship between the one end portion (sublimation material storage portion) and the other end portion (seed crystal disposition portion) is not particularly limited and may be appropriately selected depending on the intended purpose.
  • (Sublimation raw material storage part) is a lower end part
  • the other end part (seed crystal disposition part) is an upper end part, that is, the one end part (sublimation raw material storage part) and the other end part (seed connection) are preferably located in the direction of gravity.
  • the sublimation of the raw material for sublimation is smoothly performed, and the growth of the silicon carbide single crystal is performed in a downward direction, that is, in a state where no extra load is applied in the direction of gravity. .
  • a member formed of a material having excellent heat conductivity may be disposed on the one end portion (sublimation material storage portion) side for the purpose of efficiently sublimating the sublimation material.
  • an inverted weight whose outer periphery can be in close contact with the peripheral side surface portion in the reaction vessel and whose inside gradually increases in diameter as approaching the other end portion (seed crystal disposition portion).
  • a member having a shape or an inverted truncated pyramid shape is preferably cited.
  • the portion exposed to the outside of the reaction vessel may be provided with a thread, a concave portion for temperature measurement, or the like according to the purpose.
  • the concave portion for temperature measurement is preferably provided in at least one of the one end portion side and the other end portion side.
  • the material of the reaction vessel is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the reaction vessel is preferably formed of a material having excellent durability, heat resistance, heat conductivity, and the like. It is particularly preferable that the material is made of graphite because it is less likely that polycrystals and polymorphs are mixed due to generation of impurities, and that the control of the sublimation and recrystallization of the material for sublimation is easy.
  • the reaction vessel may be formed of a single member, or may be formed of two or more members, and can be appropriately selected according to the purpose.
  • the other end (seed crystal disposition portion) is formed of two or more members. It is preferable that the center part of the other end part (seed crystal disposition part) and the outer peripheral part thereof are formed by different members because a temperature difference or a temperature gradient can be formed. More preferred.
  • the reaction vessel has a region (inner region) as a center portion where a silicon carbide single crystal is grown, and an outer periphery of the inner region as the outer peripheral portion.
  • a region adjacent to the peripheral side surface portion is formed of another member, and one end of a member forming the inner region is exposed to the inside of the reaction vessel, and the other end is exposed to the outside of the reaction container.
  • the other end portion seed crystal disposition portion
  • the outside region is easily heated, but the inside region has a contact resistance with the outside region. It becomes difficult to heat due to resistance. Therefore, a temperature difference occurs between the outer region and the inner region, and the temperature of the inner region is maintained slightly lower than that of the outer region. Can be easily recrystallized. Further, since the other end of the member forming the inside region is exposed to the outside of the reaction vessel, the inside region easily radiates heat to the outside of the reaction container. Can make recrystallization more likely to occur in the silicon carbide than in the outer region.
  • the manner in which the other end of the member forming the inner region is exposed to the outside of the reaction vessel is not particularly limited, and the inner region is a bottom surface and is continuous toward the outside of the reaction vessel. Or a shape in which the diameter changes discontinuously (increases or decreases).
  • Such a shape include a column shape having the inner region as a bottom surface (a columnar shape, a prismatic shape, or the like, preferably a columnar shape), a frustum shape having the inner region as a bottom surface ( A truncated cone, a truncated pyramid, a truncated cone, a truncated pyramid, and the like, and a truncated cone is preferable).
  • the reaction vessel is located at an outer periphery of a region (inner region) in which the growth of the silicon carbide single crystal is performed at the other end portion (seed crystal arrangement portion), and an inner peripheral side surface portion of the reaction container It is preferable that the surface of the region (outside region) adjacent to the surface is made of vitreous carbon or amorphous carbon. In this case, the outer region is preferable because recrystallization is less likely to occur than the inner region.
  • the reaction vessel is preferably surrounded by a heat insulating material or the like.
  • the heat insulating material or the like is provided substantially at the center of the one end portion (sublimation raw material accommodating portion) and the other end portion (seed crystal disposition portion) in the reaction vessel for the purpose of forming a temperature measuring window.
  • the temperature measuring window is provided substantially at the center of the one end portion (sublimation material accommodating portion)
  • a graphite power member for preventing the heat insulating powder or the like from falling is further provided.
  • a graphite power member for preventing the heat insulating powder or the like from falling is further provided.
  • the reaction vessel is arranged in a quartz tube.
  • the loss of heating energy for sublimation and recrystallization of the raw material for sublimation is preferred.
  • a high-purity product is available for the quartz tube, and the use of a high-purity product is advantageous in that there is little contamination with metal impurities.
  • the raw material for sublimation is not particularly limited with respect to the polymorphism of the crystal, the amount used, the purity, the production method thereof, etc., as long as it is silicon carbide, and can be appropriately selected according to the purpose.
  • Examples of the polymorph of the crystal of the raw material for sublimation include 4H, 6H, 15R, and 3C, and among them, 6H and the like are preferable. These are preferably used alone or in combination of two or more.
  • the amount of the sublimation raw material to be used can be appropriately selected according to the size of the silicon carbide single crystal to be produced, the size of the reaction vessel, and the like.
  • the purity of the sublimation raw material is preferably high from the viewpoint of minimizing the incorporation of polycrystals and polymorphs into the silicon carbide single crystal to be produced as much as possible.
  • the content of each element is preferably 0.5 ppm or less.
  • the content of the impurity element is an impurity content obtained by chemical analysis. It has only a meaning as a reference value, and practically depends on whether the impurity element is uniformly distributed in the above-mentioned silicon carbide single crystal or locally unevenly distributed. Also, the evaluation will be different.
  • impurity element refers to elements belonging to Groups 1 to 17 in the Periodic Table of the revised IUPAC Inorganic Chemistry Nomenclature, 1989, and has an atomic number of 3 or more ( ⁇ , carbon atom, (Excluding oxygen and silicon atoms). Further, when a dopant element such as nitrogen or aluminum is intentionally added to impart n-type or p-type conductivity to the growing silicon carbide single crystal, these are also excluded.
  • the silicon carbide powder as the raw material for sublimation includes, for example, at least one kind of a silicon compound as a silicon source, at least one kind of an organic compound that generates carbon by heating as a carbon source, and a polymerization catalyst or It is obtained by dissolving a crosslinking catalyst in a solvent and drying and calcining the obtained powder in a non-oxidizing atmosphere.
  • a liquid compound and a solid compound can be used in combination, and at least one kind is selected from liquid compounds.
  • an alkoxysilane and an alkoxysilane polymer are preferably used.
  • alkoxysilane examples include methoxysilane, ethoxysilane, propoxysilane, butoxysilane and the like. Among them, ethoxysilane is preferable from the viewpoint of handling.
  • the alkoxysilane may be any of monoalkoxysilane, dialkoxysilane, trialkoxysilane, and tetraalkoxysilane, but is preferably tetraalkoxysilane.
  • alkoxysilane polymer examples include a low molecular weight polymer (oligomer) having a degree of polymerization of about 2 to 15 and a silicate polymer.
  • oligomer low molecular weight polymer
  • silicate polymer An example is tetraethoxysilane oligomer.
  • Examples of the solid include Si S, silica sol (colloidal ultrafine silica-containing liquid, containing OH groups and alkoxyl groups inside), silicon dioxide (silica gel, Silicon oxides such as fine silica and quartz powder).
  • the silicon compounds may be used alone or in combination of two or more.
  • an oligomer of tetraethoxysilane, a mixture of an oligomer of tetraethoxysilane and fine powdered silicic acid, etc. are preferable in terms of good homogeneity and handling property.
  • the gay compound is preferably of high purity, and the initial content of each impurity is preferably 20 pm or less, more preferably 5 pm or less.
  • a liquid compound may be used alone, or a liquid compound and a solid compound may be used in combination.
  • an organic compound having a high residual carbon ratio and capable of being polymerized or crosslinked by a catalyst or heating is preferable.
  • the organic compound include phenol resin, furan resin, polyimide, polyurethane, and polyvinyl alcohol.
  • resin monomers and prepolymers Preferred are resin monomers and prepolymers, and other examples include liquid substances such as cellulose, sucrose, pitch, and tar. Among these, those having high purity are preferred, phenol resins are more preferred, and resole phenol resins are particularly preferred.
  • the organic compound that generates carbon by heating may be used alone or in combination of two or more.
  • the purity of the organic compound that generates carbon by the heating can be appropriately selected according to the purpose, but when a high-purity silicon carbide powder is required, an organic compound not containing each metal at 5 pm or more is used. It is preferable to use
  • the polymerization catalyst and the cross-linking catalyst can be appropriately selected according to the organic compound that generates carbon by heating.
  • the organic compound that generates carbon by heating is a phenol resin or a furan resin
  • toluene sulfonic acid and toluene carboxylic acid are used.
  • Acids such as acid, acetic acid, oxalic acid, maleic acid and sulfuric acid are preferred, and maleic acid is particularly preferred. Good.
  • the ratio of carbon contained in the organic compound that produces carbon by heating to silicon contained in the gay compound (hereinafter abbreviated as “C / Si ratio”) is 100 ° C. It is defined by elemental analysis of the carbide intermediate obtained by carbonization in c. Stoichiometrically, the free carbon in the silicon carbide powder obtained when the C / Si ratio is 3.0 should be 0%, but actually, the Si Of free carbon is generated at low CZ Si ratio due to volatilization. It is preferable to determine the mixing ratio in advance so that the amount of free carbon in the obtained silicon carbide powder becomes an appropriate amount. Normally, in the case of baking at 1600 ° C. or more near 1 atm, setting the C / Si ratio to 2.0 to 2.5 can suppress free carbon. When the C / i ratio exceeds 2.5, the free carbon increases remarkably. However, when the atmosphere is fired at a low or high pressure, the C / Si ratio for obtaining pure silicon carbide powder fluctuates. is not.
  • the silicon carbide powder can also be obtained by, for example, curing a mixture of the gay compound and an organic compound that generates carbon by heating.
  • the curing method include a method of crosslinking by heating, a method of curing with a curing catalyst, and a method of electron beam or radiation.
  • the curing catalyst can be appropriately selected according to the kind of the organic compound that generates carbon by heating, and in the case of a phenol resin or a furan resin, toluene sulfonic acid, toluene carboxylic acid, acetic acid, and oxalic acid. , Hydrochloric acid, sulfuric acid, maleic acid and the like; and amine acids such as hexamine.
  • the curing catalyst is dissolved or dispersed in a solvent.
  • the catalyst include lower alcohols (for example, ethyl alcohol and the like), ethers and acetone.
  • the silicon carbide powder thus obtained is calcined in a non-oxidizing atmosphere such as nitrogen or argon at 800 to L0000 for 30 to L20 minutes.
  • the calcination turns the silicon carbide powder into a carbide, and the carbide is baked at 1350 to 2000 ° C. in a non-oxidizing atmosphere such as argon to produce a silicon carbide powder.
  • the firing temperature and time can be appropriately selected according to the particle size of the silicon carbide powder to be obtained, and the temperature is from 1600 to 1900 in terms of more effective generation of the silicon carbide powder. ° C is preferred.
  • the powder For the purpose of removing impurities and obtaining a high-purity silicon carbide powder after the calcination, for example, it is preferable to perform heat treatment at 2000 to 2400 ° C. for 3 to 8 hours. Since the powder is not uniform in size, it can be made into a desired particle size by pulverization, classification, and the like.
  • the average particle size of the silicon carbide powder is preferably from 10 to 700 m, more preferably from 100 to 400 m.
  • the average particle size is less than 1, sintering occurs rapidly at the sublimation temperature (1800 to 2700) of silicon carbide for growing a silicon carbide single crystal, so that the sublimation surface area becomes small. In some cases, the growth of silicon single crystal may be slowed, and when the silicon carbide powder is accommodated in the reaction vessel or when the pressure of the recrystallization atmosphere is changed to adjust the growth rate, Silicon powder is easily scattered. On the other hand, when the average particle size exceeds 500 m, the specific surface area of the GaN powder itself becomes small, so that the growth of GaN single crystal may also be slowed down.
  • the silicon carbide powder may be any of 4H, 6H, 15R, 3C, a mixture thereof and the like.
  • the grade of the 3 C silicon carbide powder is not particularly limited, and may be a commercially available grade, but is preferably a high purity grade.
  • nitrogen or aluminum is introduced.
  • the silicon source, the carbon source, an organic substance comprising a nitrogen source or an aluminum source, and the polymerization or crosslinking catalyst And may be uniformly mixed.
  • a carbon source such as a phenol resin
  • an organic substance including a nitrogen source such as hexamethylenetetramine
  • a polymerization or crosslinking catalyst such as maleic acid
  • a solvent such as ethanol
  • tetraethoxy is used. It is preferable to sufficiently mix with a silicon source such as an oligomer of silane.
  • the organic substance composed of the nitriding source a substance that generates nitridation by heating is preferable.
  • a polymer compound specifically, a polyimide resin, a nylon resin, or the like
  • an organic amine specifically, Hexamethylenetetramine, ammonia, triethylamine and the like, and various amines of these compounds and salts.
  • hexamethylenetetramine is preferred.
  • a phenol resin synthesized using hexamine as a catalyst and containing nitrogen derived from the synthesis process in an amount of 2.0 mm0 or more per 1 g of the resin is also considered as an organic substance composed of the nitriding source. It can be suitably used.
  • These organic substances composed of a nitriding source may be used alone or in combination of two or more.
  • the organic substance comprising the aluminum source is not particularly limited and can be appropriately selected depending on the purpose.
  • the amount of the organic substance composed of the nitrogen source is preferably lmmo1 or more per 1 g of the silicon source, It is preferably from 80 to 100 g for 1 g of the above-mentioned C source.
  • the sublimation of the sublimation raw material is performed using a heating means separate from a heating means for performing heating necessary for performing recrystallization, such as precise control of the heating means, independent control, interference prevention, etc. It is preferred in that respect.
  • the number of heating means is two or more, but two is preferred in the present invention.
  • the heating means for forming a sublimation atmosphere that enables the sublimation raw material to be sublimable is a first heating means, and the sublimated sublimation raw material is the carbonized gay material.
  • the second heating means is a heating means for forming the recrystallization atmosphere that enables recrystallization only in the vicinity of the seed crystal of the elementary single crystal.
  • the first heating means is arranged at one end (sublimation material storage section) side of the reaction vessel, forms a sublimation atmosphere so that the sublimation material can be sublimated, and heats the sublimation material. Sublimate.
  • the first heating means is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an induction heating means and a resistance heating means, but the induction heating means is easy in temperature control. Means are preferable, and among the induction heating means, a coil capable of induction heating is preferable.
  • the first heating means is a coil capable of induction heating
  • the number of turns wound therewith is not particularly limited, and the heating efficiency and temperature depend on the distance from the second heating means, the material of the reaction vessel, and the like. It can be determined that the efficiency is optimal. Growth of single crystal silicon monocarbide.
  • the growth of the silicon carbide single crystal is performed on a seed crystal of the silicon carbide single crystal arranged at the other end (seed crystal disposition portion) of the reaction vessel.
  • the polymorphism, size, and the like of the crystal can be appropriately selected according to the purpose.
  • the same polymorphism as the polymorphism of the silicon carbide single crystal is selected.
  • the temperature is lower than the temperature at which the sublimation material sublimes, and the sublimated sublimation material is regenerated only in the vicinity of the seed crystal.
  • a recrystallization atmosphere that allows crystallization in other words, an atmosphere that has a temperature distribution such that the temperature decreases in the radial direction of the surface on which the seed crystal is disposed, as the position approaches the center (the center of the inner region). Is preferably formed.
  • the formation of the recrystallization atmosphere can be suitably performed by the second heating means.
  • Such a second heating means is provided on the other end (seed crystal arrangement part) side of the reaction vessel.
  • a recrystallization atmosphere is formed such that the sublimation raw material sublimated by the first heating means can be recrystallized only in the vicinity of a seed crystal of a silicon carbide single crystal, and the sublimation raw material is carbonized. Recrystallize on the seed crystal of silicon single crystal.
  • the second heating means is not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include an induction heating means and a resistance heating means, but the induction heating means is easy in temperature control. Means are preferable, and among the induction heating means, a coil capable of induction heating is preferable.
  • the second heating means is a coil capable of induction heating
  • the number of turns wound therewith is not particularly limited, and the heating efficiency and the temperature efficiency depend on the distance from the first heating means, the material of the reaction vessel, and the like. Can be determined to be optimal.
  • the amount of the induction heating current to be supplied to the second heating means can be appropriately determined in relation to the amount of the induction heating current to be supplied to the first heating means. It is preferable that the current value of the induction heating current in the above is set to be larger than the current value of the induction heating current in the second heating means. In this case, the temperature of the recrystallization atmosphere in the vicinity of the seed crystal is maintained lower than the temperature of the atmosphere in which the sublimation raw material sublimes, which is advantageous in that recrystallization is easily performed.
  • the current value of the induction heating current in the second heating means is preferably controlled so as to decrease continuously or stepwise as the diameter of the growing carbon-carbon single crystal increases.
  • the amount of heating by the second heating means is controlled to be small as the silicon carbide single crystal grows, so that recrystallization is performed only in the vicinity of the silicon carbide single crystal that continues to grow. This is advantageous in that the generation of polycrystals around the silicon carbide single crystal is effectively suppressed.
  • the current value of the induction heating current in the second heating means is controlled to be small when the diameter of the seed crystal of the silicon carbide single crystal is large, and to be large when the diameter is small. Control tends to be preferable.
  • the second heating means is independent of the first heating means. Since the control can be performed, the heating rate of the second heating means is appropriately adjusted according to the growth rate of the silicon carbide single crystal, so that a preferable growth rate is maintained throughout the entire growth process of the silicon carbide single crystal. can do.
  • the temperature of the recrystallization atmosphere formed by the second heating means is preferably 30 to 300 ° C. lower than the temperature of the sublimation atmosphere formed by the first heating means, and 30 to 30 ° C. More preferably, it is lower by 150 ° C.
  • the pressure of the recrystallization atmosphere formed by the second heating means is preferably from 10 to 1 OOTorr (1330 to L330 Pa).
  • the pressure condition is set, it is preferable that the pressure is not reduced at normal temperature, but is heated to a set temperature and then reduced, and the pressure condition is adjusted so as to be within the predetermined numerical range. .
  • the recrystallization atmosphere is preferably an inert gas atmosphere such as an argon gas.
  • the temperature is controlled by the first heating means, the temperature at one end (sublimation raw material storage section) side of the reaction vessel, which stores the sublimation raw material, and is controlled by the second heating means.
  • the temperature of the central portion on the other end (seed crystal disposition portion) side where the seed crystal of the silicon carbide single crystal is arranged, and the inner peripheral side surface portion of the reaction vessel located outside the central portion It is preferable to control the temperature of the adjacent portion of the silicon carbide in the following relationship from the viewpoint of obtaining a large-diameter GaN single crystal.
  • the temperature of one end side accommodating a sublimation raw material, a seed crystal of carbide Kei Mototan crystal placed the other end side temperature of the T 2, at the other end portion side, of the reaction vessel when the temperature T 3 of the adjacent portion of the peripheral surface part, ⁇ 3 - ⁇ 2 and ⁇ ⁇ - ⁇ 2 is preferably controlled so as to be continuously or gradually.
  • the silicon carbide single crystal is recrystallized and grown according to the third aspect from the first aspect.
  • the silicon carbide single crystal is grown through the entire growth process while maintaining the entire growth surface in a convex shape.
  • a concave portion depressed toward the other end is not formed in a ring shape over the entire growth surface of the silicon carbide single crystal.
  • the growth of the silicon carbide single crystal is performed only in a region (an inner region) of the end portion of the reaction container other than a portion adjacent to a peripheral side surface portion in the reaction container.
  • the silicon carbide polycrystal does not grow in contact with the peripheral side surface inside the reaction vessel at the other end (seed crystal disposition portion). For this reason, when the grown silicon carbide single crystal is cooled to room temperature, stress based on the difference in thermal expansion is not concentrated and applied from the silicon carbide polycrystal side to the silicon carbide single crystal side. The resulting silicon carbide single crystal will not be broken or otherwise damaged.
  • the reaction of the silicon carbide single crystal at the end of the reaction vessel while maintaining the entire growth surface in a convex shape throughout the entire growth process thereof is performed only in the area (inside area) excluding the area adjacent to the peripheral side surface inside the container.
  • the concave portion depressed toward the other end portion (seed crystal disposition portion) side of the reaction vessel is not formed in a ring shape over the entire growth surface of the silicon carbide single crystal.
  • the polycrystal does not grow while being in contact with the peripheral side surface inside the reaction vessel at the other end (seed crystal disposition portion). Because of this, When the silicon carbide single crystal is cooled down to room temperature, stress based on the difference in thermal expansion is not applied from the silicon carbide polycrystal side to the silicon carbide single crystal side in a concentrated manner. The silicon single crystal is not broken or otherwise damaged.
  • the entire surface of the growth surface is convex toward the growth direction, and the one end (sublimation raw material accommodating portion) and the other end ( When the seed crystal arrangement portion is opposed to the sublimation material side, that is, the entire growth surface is preferably convex toward the one end portion (sublimation material storage portion) side. .
  • the shape of the silicon carbide single crystal to be grown does not have to be the convex shape as long as the entire growth surface does not include a portion that is concave on the side opposite to the growth direction. Also, a flat portion may be partially included.
  • the shape of the crystal of the silicon carbide including the single crystal of the silicon carbide is preferably substantially chevron toward the sublimation raw material side, that is, toward the one end portion, and is substantially chevron whose diameter gradually decreases. More preferably, there is.
  • polycrystalline silicon carbide and polymorphs may be mixed in a foot portion, that is, an outer peripheral portion of the substantially mountain-shaped crystal of silicon carbide. However, the mixing is caused by the thickness and size of the seed crystal.
  • the combination can be prevented by a combination of conditions such as shape, shape and the amount of heating by the second heating means. Preventing the mixing of the polycrystalline silicon carbide polymorph is preferable because the silicon carbide crystal containing the silicon carbide can be composed of only a single silicon carbide crystal.
  • a ring-shaped plate member may be fixedly arranged on the peripheral side surface portion in the reaction vessel substantially in parallel with the other end portion (seed crystal disposition portion).
  • the silicon carbide single crystal is recrystallized and grown on the seed crystal, only the silicon carbide single crystal can be recrystallized and grown on the seed crystal, and no silicon carbide polycrystal is generated.
  • it can be selectively deposited on the ring-shaped plate member.
  • the diameter of the obtained silicon carbide single crystal is limited by the ring-shaped plate member.
  • an interference prevention means for preventing interference between the first heating means and the second heating means is used. Is preferred.
  • the interference preventing means is not particularly limited and may be appropriately selected depending on the type of the first heating means and the second heating means, and examples thereof include an interference prevention coil and an interference prevention plate.
  • the first heating means and the second heating means are coils capable of induction heating, an anti-interference coil and the like are preferably used.
  • the interference prevention coil (sometimes simply referred to as “coil”) is capable of passing an induced current, and by passing the induced current, an interference between the first heating means and the second heating means is provided. It is preferable to use a material having a function of preventing
  • the interference prevention coil is disposed between the first heating means and the second heating means. In this case, when the induction heating by the first heating means and the second heating means is performed simultaneously, a dielectric current flows through the interference prevention coil, and the interference prevention coil minimizes and prevents interference between the two. I like it because I can do it.
  • the interference prevention coil is preferably designed so as not to be heated by an induced current flowing through itself, more preferably capable of cooling itself, and particularly preferably capable of flowing a cooling medium such as water. In this case, even if the induced current in the first bristle heating means and the second heating means flows through the interference prevention coil, the interference prevention coil is not heated, and thus the reaction vessel is heated. This is preferable because it does not occur.
  • the number of turns of the interference prevention coil is not particularly limited, and differs depending on the types of the first heating means and the second heating means, the amount of current supplied to these, and cannot be specified unconditionally. However, a single level is sufficient. As described above, according to the method for producing a silicon carbide single crystal of the present invention, a high-quality silicon carbide single crystal of the present invention can be efficiently produced easily and without breakage such as cracks.
  • the silicon carbide single crystal of the present invention is manufactured by the above-described method of manufacturing a silicon carbide single crystal of the present invention.
  • Carbide Gay Mototan crystal of the present invention is preferably optically image detected crystal defects shed ° Eve defect) is 1 0 0 / cm 2 or less in a non-destructive, is 5 0 Z cm 2 or less Is more preferable, and it is particularly preferable that it is 10 or less Z cm 2 .
  • the crystal defect can be detected, for example, as follows. That is, the silicon carbide single crystal was illuminated with reflected light having an appropriate amount of transmission proof added thereto, and the microscope was focused on the opening of the crystal defect (pipe defect) on the surface of the silicon carbide single crystal. At this time, the entire surface of the silicon carbide single crystal is scanned under a condition that a portion leading to the inside of the pipe defect can be connected to the opening and observed as a weaker shadow than the image of the opening. After obtaining the microscope image, the pipe defect can be detected by performing image processing on the microscope image, extracting only the characteristic shape of the pipe defect, and measuring the number thereof.
  • the pipe defect is non-destructively and accurately determined from a mixture of defects other than the pipe defect, such as a foreign substance, a polishing flaw, and a void defect, attached to the surface of the silicon carbide single crystal. And a pipe defect as small as about 0.35 m, for example, can be accurately detected.
  • a method has been performed in which the pipe defect portion is selectively etched by a melting force, and then enlarged and detected. In this method, the adjacent pipe defects are etched by each other. Coalesce with each other, resulting in the pipe defect However, there is a problem that the number is detected too small.
  • the total content of the impurity element in the silicon carbide single crystal is preferably 10 ppm or less.
  • the silicon carbide single crystal of the present invention is free of polycrystals and polymorphs, and has no crystal defects such as a microphone opening pipe, and is extremely high in quality, so that it has excellent dielectric breakdown characteristics, heat resistance, radiation resistance, etc. It is particularly suitable for electronic devices such as semiconductor wafers and optical devices such as light emitting diodes.
  • the apparatus for producing a silicon carbide single crystal of the present invention includes the steps of: recrystallizing the sublimated raw material for sublimation to grow a silicon carbide single crystal; and producing the silicon carbide single crystal of the present invention.
  • the apparatus for producing a single crystal includes at least a crucible, a first induction heating coil, and a second induction heating coil, and includes other members appropriately selected as necessary.
  • the crucible is not particularly limited and can be appropriately selected from known ones.
  • the crucible includes a container body and a lid.
  • the material of the crucible is not particularly limited and may be appropriately selected from known ones, but is preferably made of graphite.
  • the container main body is not particularly limited as long as it has a function of accommodating the sublimation raw material, and a known one can be employed.
  • the lid is preferably detachable from the container body, and a known one can be used.
  • the container body and the lid may be designed to be detachable by any of fitting, screwing, and the like, but is preferably screwed.
  • the carbonization is usually performed at substantially the center of a surface facing the sublimation material contained in the container body when the lid is attached to the container body.
  • a seed crystal of a silicon single crystal is arranged.
  • the first induction heating coil can be heated by energization to sublime the sublimation material
  • the sublimation atmosphere can be formed so as to satisfy the following conditions.
  • a coil capable of induction heating is preferably used.
  • the first induction heating coil is arranged so as to be wound around the outer periphery of a portion of the crucible in which the sublimation material is stored.
  • the second induction heating coil forms a recrystallization atmosphere such that the sublimation material sublimated by the first induction heating coil can be recrystallized only near the seed crystal of the silicon carbide.
  • the raw material can be recrystallized on the silicon carbide seed crystal, and examples thereof include a coil capable of induction heating.
  • the second induction heating coil is arranged in a state of being wound around the outer periphery of a portion of the crucible where the seed crystal of silicon carbide is arranged.
  • a sublimation atmosphere is formed so that the first induction heating coil can sublimate the sublimation material, and the sublimation material is sublimated.
  • the second induction heating coil forms a recrystallization atmosphere such that the sublimation raw material sublimated by the first induction heating coil can be recrystallized only in the vicinity of the seed crystal. Is recrystallized on the seed crystal. Therefore, in the entire growth process of the growing silicon carbide single crystal, the entire surface of the growth surface is maintained in a convex shape in the growth direction, and the concave portion depressed on the lid side is formed in a ring shape.
  • the silicon carbide polycrystal does not grow in a state of being in contact with the peripheral side surface inside the container body. For this reason, when the grown silicon carbide single crystal is cooled to room temperature, stress based on the difference in thermal expansion is not applied from the polycrystalline silicon carbide side to the silicon carbide single crystal side in a concentrated manner. The resulting silicon carbide single crystal will not be broken or otherwise damaged. As a result, high-quality single-crystal silicon carbide crystals free from the above-mentioned problems in the past, namely, no breakage such as cracks, and the absence of polycrystals and polymorphs and no crystal defects such as micropipes, can be obtained efficiently and reliably. It can be manufactured.
  • a high-quality silicon carbide single crystal of the present invention can be efficiently produced easily and without damage such as cracks. Can be.
  • examples of the present invention will be described, but the present invention is not limited to these examples.
  • a silicon carbide single crystal was manufactured using the apparatus 1 for manufacturing a silicon carbide single crystal shown in FIG.
  • the apparatus 1 for producing a silicon carbide single crystal is implemented, the method for producing a silicon carbide single crystal of the present invention is also implemented.
  • the silicon carbide single crystal manufacturing apparatus 1 can be detachably screwed to the container body 12 and the container body 12 that can hold the sublimation raw material 40, and can be attached to the container body 12 when they are mounted.
  • a graphite crucible 10 provided with a lid 11 capable of disposing a seed crystal 50 of a single crystal of silicon carbide at approximately the center of a surface facing the sublimation raw material 40 accommodated in the container body 12;
  • the sublimation raw material 40 is obtained by uniformly mixing the above-mentioned high-purity tetraethoxysilane polymer as a silicon source and a resin-type phenol resin as a carbon source under an argon atmosphere. It is a silicon carbide powder (6H (including 3C), average particle diameter is 200 m) obtained by heating and firing.
  • the seed crystal 50 of silicon carbide single crystal is 6H It is a single crystal.
  • a current was applied to the first induction heating coil 21 to heat it.
  • the heat was used to heat the sublimation raw material 40 (to 250 ° C., and then the pressure was maintained at 50 Torr (66645 Pa) in an argon gas atmosphere).
  • the sublimation raw material 40 was heated to a predetermined temperature (250 ° C.) and sublimated.
  • the sublimated sublimation raw material 40 unless cooled to the recrystallization temperature Do not recrystallize.
  • the lid 11 side is heated by the second induction heating coil 20 and has a lower temperature than the sublimation raw material 40 side (the temperature of the seed crystal is 240 ° C), and sublimation.
  • the sublimation material 40 is maintained in a recrystallization atmosphere (pressure 5 OT orr (6665 Pa)) where the sublimation raw material 40 can be recrystallized.
  • the silicon carbide recrystallized and silicon carbide crystals grew.
  • the silicon carbide single crystal 60 recrystallizes and grows on the silicon carbide single crystal seed crystal 50, and the silicon carbide single crystal seed crystal 50
  • Silicon carbide polycrystal 70 is recrystallized and grows on the outer periphery.
  • the convex shape is maintained toward the sublimation raw material 40 side in the entire growth process, and the concave portion depressed on the lid 11 side is not formed in a ring shape.
  • the silicon carbide polycrystal 70 did not grow in a state of being in contact with the peripheral side surface portion 13 in the container body 12.
  • the crystal defects of the micropipe were detected by cutting the obtained silicon carbide single crystal 60 to a thickness of 0.4 mm, making a wafer having a surface roughness of 0.4 nm by mirror polishing, and washing the surface by alkali cleaning. After removing as much foreign matter as possible, it was detected as described below. That is, when the wafer after the alkali cleaning is illuminated with a reflection certificate plus an appropriate amount of transmission certificate and the microscope is focused on the opening of the micropipe on the surface of the wafer, the wafer enters the inside of the micropipe. Under a condition in which the portion following the opening can be connected to the opening as a weaker shadow than the image of the opening and can be observed, a microscopic image is obtained by scanning the entire surface of the jerk. Image processing The micropipe was detected by extracting only the characteristic shape of the microphone mouth pipe and counting the number thereof. In this detection, even a minute microphone mouth pipe of about 0.35 m was detected accurately and nondestructively.
  • Example 1 was the same as Example 1 except that the graphite crucible 10 was changed to the graphite crucible 10 shown in FIG. As a result, the same result as in Example 1 was obtained.
  • the graphite crucible 10 shown in FIG. 1 used in Example 1 is different from the graphite crucible 10 shown in FIG. 4 only in that the lid 11 is provided with the inner region forming portion 15. Differs from 10.
  • the inner region forming portion 15 has a columnar shape with the inner region in which the seed crystal of the silicon carbide single crystal is disposed as a bottom surface, and one end of the inner region forming portion 15 is formed of a graphite crucible 10. It is exposed to the outside.
  • the material of the inner region forming portion 15 has a thermal conductivity of 11 J / s / ° C (W / mK), and the material of the lid 11 other than the inner region forming portion 15 is The thermal conductivity is 129 J / m / s /. C (W / m ⁇ K).
  • the inside region is formed of a member (the inside region forming portion 15) different from the outside region, the inside region is hardly heated due to a difference in contact resistance. Since one end of the part 15 was exposed to the outside, heat was easily radiated to the outside, so that recrystallization of silicon carbide was easily performed.
  • Example 1 was the same as Example 1 except that the graphite crucible 10 was changed to the graphite crucible 10 shown in FIG. As a result, the same result as in Example 1 was obtained.
  • the graphite crucible 10 shown in FIG. 1 used in Example 1 was different from the graphite crucible 1 shown in FIG. 5 only in that the lid 11 was provided with the inner region forming portion 15. Different from 0.
  • the inner region forming portion 15 has the inner region where the seed crystal of the silicon carbide single crystal is arranged as a bottom surface and the diameter thereof increases discontinuously in two steps toward the outer side. The bottom is a step-like shape with one end exposed to the outside.
  • the material of the inner region forming part 15 has a thermal conductivity of 1 1 7 J / mXs / ° C (W / m-K), and the material of the lid 11 other than the inner region forming portion 15 had a thermal conductivity of 129 J // s / ° C (W / mK). .
  • the inner region is formed of a member different from the outer region, it is difficult to be heated due to a difference in contact resistance, and one end of the inner region forming portion 15 is provided outside. Because it is exposed, heat is easily radiated to the outside, so recrystallization of silicon carbide was easily performed.
  • Example 1 was the same as Example 1 except for the following differences. That is, the obtained silicon carbide powder was 6H, the average particle size was 300 / xm, and the seed crystal 50 of the silicon carbide single crystal was obtained by cutting the silicon carbide single crystal of parc obtained in Example 1. This is a 15 R wafer (diameter 40 mm, thickness 0.5 mm) obtained by cutting the entire surface and mirror polishing the entire surface.
  • a current of 20 kHz was applied to the first induction heating coil 21 to heat it, and a current of 40 kHz was applied to the second induction heating coil 20 to heat the same and heated.
  • the lower part of graphite crucible 10 (storage for sublimation raw material 40) is at 2312 ° C, and the upper part of graphite crucible 10 (placement of silicon carbide single crystal seed crystal 50 in lid 11) is 2290. Heated.
  • the power supplied to the first induction heating coil 21 is 10.3 kW
  • the induction heating current (supply current to the LC circuit) is 26 OA
  • the power supplied to the second induction heating coil 20 is 4 6 kW and an induction heating current of 98 A.
  • the convex shape toward the sublimation raw material 40 side was maintained as shown in FIG.
  • a silicon carbide single crystal 60 was obtained.
  • the height of the silicon carbide single crystal 60 up to the tip of the convex shape is 12 mm, and the growth of the silicon carbide containing the silicon carbide single crystal 60 and the silicon carbide polycrystal formed around the same.
  • the diameter of the crystal was 87 mm.
  • the concave portion depressed in the direction of the lid 11 was not formed in a ring shape.
  • the silicon carbide single crystal 60 is made of graphite crucible 10 container body 12. Did not grow in a state of contact with the peripheral side surface portion 13. Furthermore, in the silicon carbide single crystal 60, only a small amount of the silicon carbide polycrystal 70 was generated around it.
  • Example 4 was the same as Example 1 except for the following differences. That is, the diameter of the silicon carbide single crystal seed crystal 50 is 20 mm in diameter and 0.5 mm in thickness, and the lower part of the graphite crucible 10 (accommodation part of the raw material 40 for sublimation) is heated to 2349 ° C. The heating temperature of the upper part of the crucible 10 (the part where the silicon carbide single crystal seed crystal 50 is disposed in the lid 11) is 231 and the power supplied to the second induction heating coil 20 is 5.5 kW. Except that the induction heating current was 118 A and the diameter of the growth crystal of the silicon carbide including the silicon carbide single crystal 60 and the polycrystalline silicon carbide formed around it was 60 mm. This is similar to Example 4, and the same good results as in Example 4 were obtained.
  • Example 1 was the same as Example 1 except for the following differences. That is, water flows inside the interference prevention coil 22, and the coolable interference prevention coil 22 is used.
  • the obtained carbon powder is 6H
  • the average particle size is 250
  • the seed crystal 50 of the silicon carbide single crystal is obtained by cutting the bulk silicon carbide single crystal obtained in Example 4, This is a direct 25mm wafer with a thickness of 2mm (6H) obtained by mirror polishing the entire surface.
  • the graphite crucible 1 The temperature of the seed crystal disposition portion of the lid 11 of 0 is set to 2 35 O r (T 2 ) over 20 hours, and the temperature of the outer periphery of the seed crystal disposition portion of the lid 11 is the estimated temperature of the calculated value. At 480 ° C. (T 3 ). At this time, when the pressure was simultaneously reduced from normal pressure to 2 OT orr (2658 Pa) over 1 hour, the convex shape toward the sublimation raw material 40 side as shown in Fig. 7 was obtained.
  • Maintained silicon carbide single crystal 60 was obtained. At this time, the height of the silicon carbide single crystal 60 up to the tip of the convex shape was 18 mm. In silicon carbide single crystal 60, no concave portion depressed in the direction of lid 11 was formed in a ring shape. Further, the silicon carbide single crystal 60 did not grow in a state of being in contact with the peripheral side surface portion 13 of the container main body 12 of the graphite crucible 10. Further, the silicon carbide single crystal 60 did not generate or grow adjacent to the silicon carbide polycrystal 70.
  • Example 1 was the same as Example 1 except for the following differences. That is, the second induction heating coil 20 and the first induction heating coil 21 are replaced with the induction heating coil 25 in the conventional silicon carbide single crystal manufacturing apparatus 80 shown in FIG.
  • the surface of the lid 11 facing the inside of the container body 12 the surface on which the silicon carbide single crystal grows
  • Only the area outside the circle with a radius of 60 mm from the center is Force thin film determined to be glassy or amorphous by X-ray diffraction
  • a thin film having a thickness of 1 to 10 m was formed by the following method. The lid 11 was placed in the vacuum chamber with only the outer region exposed, and the pressure in the chamber was adjusted to 0.23 Pa under a benzene atmosphere.
  • the lid 11 was maintained at a negative potential of 2.5 kV, and benzene was decomposed by the arc discharge plasma generated at the opposing portion between the filament and the anode.
  • the film was formed by colliding with the outer region of the lid 11.
  • Example 7 the portion of the lid 11 on the side facing the inside of the container body 12 was formed by forming a film of glassy carbon or amorphous carbon.
  • the crystal of silicon carbide did not grow, and only the central part (circular part with a diameter of 60 mm) where the film was not formed, the entire surface of the growth surface toward the sublimation material 40 side was convex.
  • the silicon carbide single crystal 60 maintained in this condition was grown. For this reason, the single crystal of silicon carbide 60 does not grow in contact with the peripheral side surface 13 of the container body 12 of the graphite crucible 10, and is broken or broken when cooled to room temperature. Did not occur.
  • a silicon carbide single crystal was manufactured in the same manner as in Example 1 except that the silicon carbide single crystal manufacturing apparatus 80 shown in FIG. 6 was used.
  • the first induction heating coil 21 and the second induction heating coil 20 arranged on the outer periphery of the quartz tube 30 and in the portion where the lid 11 is located in the graphite crucible 10 are:
  • An interference prevention coil 22 is used in place of the induction heating coil 25 arranged in a spirally wound state at substantially equal intervals around the periphery of the quartz tube 30 where the graphite crucible 10 is located.
  • the procedure was the same as in Example 1 except that there was no other.
  • Comparative Example 1 As shown in FIG. 8, the entire surface of the lid 11 facing the inside of the container body 12 was covered with silicon carbide crystals, and the outer peripheral edge of the lid 11 was formed.
  • the polycrystalline silicon carbide 70 grew while being in contact with the inner peripheral side surface of the container body 12.
  • stress based on the difference in thermal expansion is concentrated and applied from the silicon carbide polycrystal 70 side to the silicon carbide single crystal 60 side, as shown in FIG. Defects such as cracks occurred in the silicon carbide single crystal 60.
  • the present invention has excellent dielectric breakdown characteristics, heat resistance, radiation resistance, etc., is particularly suitable for electronic devices such as semiconductor wafers, optical devices such as light emitting diodes, etc., and contains polycrystals and polymorphs.
  • High-quality silicon carbide with no defects such as It is possible to provide a method and an apparatus that can efficiently produce a crystal and a high-quality silicon carbide single crystal with a large diameter without any breakage such as a crack.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Description

炭化ケィ素単結晶並びにその製造方法及び製造装置 技術分野
本発明は、 電子デバイス、 光学デバイス等として特に好適な炭化ケィ素単結 晶、 並びに、 該炭化ケィ素単結晶を効率よく製造し得る方法及び装置に関する 明
田 背景技術
炭化ケィ素は、 ゲイ素に比し、 バンドギャップが大きく、 絶縁破壊特性、 耐 熱性、 耐放射線性等に優れることから、 小型で高出力の半導体等の電子デバィ ス材料として、 また、 光学的特性に優れることから、 光学デバイス材料として 注目されてきている。 かかる炭化ケィ素の結晶の中でも、 炭化ゲイ素単結晶は 、 炭化ケィ素多結晶に比し、 ウェハ等のデバイスに応用した際にウェハ内特性 の均一性等に特に優れるという利点がある。
前記炭化ケィ素単結晶を製造する方法は、 従来、 いくつか提供されてはいる ものの、 いずれも得られる炭化ケィ素単結晶に、 多結晶や多型の混入や中空パ イブ状の結晶欠陥 (いわゆるマイクロパイプ) が生じてしまうという問題があ つた。
そこで、 力 る問題を解消した炭化ゲイ素単結晶の製造方法として、 例えば 、 F i g . 8に示すような炭化ゲイ素単結晶の製造装置を用いる方法が一般に 知られるに至っている。 この炭化ケィ素単結晶の製造装置 8 0は、 昇華用原料 4 0を収容可能な容器本体 1 2、 及び容器本体 1 2に対し着脱可能であり、 容 器本体 1 2に装着された際に容器本体 1 2内に収容された昇華用原料 4 0に対 向する面の略中央に炭化ケィ素単結晶の種結晶 5 0を配置可能な蓋体 1 1を備 えた黒鉛製坩堝 1 0と、 黒鉛製坩堝 1 0を石英管 3 0の内部に固定される支持 棒 3 1と、 石英管 3 0の外周であって黒鉛製坩堝 1 0が位置する部分に略等間 隔にかつ螺旋状に環巻された状態で配置された誘導加熱コイル 2 5とを備える 。 炭化ケィ素単結晶の製造装置 8 0において、 誘導加熱コイル 2 5に電流を通 電させこれを加熱させると、 その熱で昇華用原料 4 0が加熱される。 昇華用原 料 4 0は、 所定の温度にまで加熱されると昇華する。 昇華した昇華用原料 4 0 は、 再結晶化温度にまで冷却されない限り再結晶しない。 ここで、 蓋体 1 1側 は、 昇華用原料 4 0側よりも温度が低く、 昇華した昇華用原料 4 0が再結晶し 得る雰囲気にあるため、 炭化ケィ素単結晶の種結晶 5 0上に炭化ケィ素が再結 .晶化し、 炭化ケィ素の結晶が成長する。
このとき、 炭化ケィ素単結晶の種結晶 5 0上には炭化ケィ素単結晶 6 0が再 結晶し成長し、 炭化ケィ素単結晶の種結晶 5 0の外周縁部には炭化ケィ素多結 晶 7 0が再結晶し成長する。 最終的には、 F i g . 8に示す通り、 蓋体 1 1側 に陥没した凹部 7 1が輪状に形成され、 この凹部 7 1付近乃至蓋体 1 1の外周 縁部側は、 異物である多結晶や多型が混入しこれらが多量に存在する状態にあ る。 そして、 蓋体 1 1における、 容器本体 1 2内部と対向する側の全表面は炭 化ケィ素の結晶で覆われ、 蓋体 1 1の外周縁部に炭化ケィ素多結晶 7 0が容器 本体 1 2の内部周側面に接触した状態で成長する。 この状態において、 室温に まで冷却を行うと、 炭化ゲイ素多結晶 7 0側から炭化ゲイ素単結晶 6 0側に熱 膨張差に基づく応力が集中して印加され、 F i g . 9に示すような、 炭化ゲイ 素単結晶 6 0に割れ等の破損が生じてしまったり、 多結晶や多型の混入やマイ ク口パイプ等の欠陥が生じてしまうことがあつた。 大口径の炭化ケィ素単結晶 の製造が要求されている近時においては、 これは克服しなければならない重大 な問題となっている。
したがって、 かかる割れ等の破損がなく、 また、 多結晶や多型の混入やマイ クロパイプ等の欠陥がない高品質な炭化ケィ素単結晶、 並びに、 このような高 品質な炭化ケィ素単結晶を大口形に効率よく、 しかも容易に製造し得る方法及 び装置は未だ提供されてなく、 これら提供が要望されているのが現状である。 本発明は、 従来における前記諸問題を解決し、 前記要望に応え、 以下の目的 を達成することを課題とする。
本発明は、 絶縁破壊特性、 耐熱性、 耐放射線性等に優れ、 半導体ウェハ等の 電子デバイス、 発光ダイオード等の光学デバイスなどに特に好適であり、 多結 晶ゃ多型の混入やマイク口パイプ等の欠陥のない高品質な炭化ケィ素単結晶、 並びに、 該高品質な炭化ケィ素単結晶を効率よく、 かつ割れ等の破損がない状 態で大口径にしかも容易に製造し得る方法及び装置を提供することを目的とす る。 発明の開示
前記課題を解決するための手段は、 以下の通りである。 即ち、
く 1 > 昇華させた昇華用原料を再結晶させて炭ィ匕ケィ素単結晶を成長させる炭 化ゲイ素単結晶の製造方法であつて、
前記炭化ケィ素単結晶を、 その全成長過程を通して、 その成長面の全面を凸 形状に保持したまま成長させることを特徴とする炭化ケィ素単結晶の製造方法
< 2 > 炭化ケィ素単結晶を含む炭化ゲイ素の結晶を略山形に成長させる前記く 1 >に記載の炭化ゲイ素単結晶の製造方法。
< 3 > 炭化ケィ素単結晶を含む炭化ゲイ素の結晶を、 その全成長過程を通して 、 昇華用原料側に近づくほど径が漸次小さくなる略山形を保持したまま成長さ せる前記く 1〉又はく 2 >に記載の炭化ケィ素単結晶の製造方法。
<4 > 反応容器内に昇華用原料を収容し、 該反応容器内の該昇華用原料に略対 向する端部に炭化ケィ素単結晶の種結晶を配置し、
炭化ケィ素単結晶を含む炭化ゲイ素の結晶の成長が、 該端部における、 該反 応容器内の周側面部との隣接部を除く領域でのみ行われる前記く 1 >からく 3〉に 記載の炭化ケィ素単結晶の製造方法。
< 5 > 昇華させた昇華用原料を再結晶させて炭化ケィ素単結晶を成長させる炭 化ケィ素単結晶の製造方法であって、
反応容器内に前記昇華用原料を収容し、 該反応容器内の該昇華用原料に略対 向する端部に前記炭化ケィ素単結晶の種結晶を配置し、
前記炭化ケィ素単結晶を含む炭化ゲイ素の結晶を、 該端部における、 該反応 容器内の周側面部との隣接部を除く領域でのみ成長させることを特徴とする炭 化ケィ素単結晶の製造方法。
< 6 > 炭化ゲイ素単結晶を含む炭化ゲイ素の結晶が、 炭化ケィ素単結晶のみか らなる前記〈2 >からく 5〉のいずれかに記載の炭化ケィ素単結晶の製造方法。 く 7〉 反応容器内の一端部側に昇華用原料を収容し、 該反応容器内の他端部側 に炭化ケィ素単結晶の種結晶を配置し、
前記一端部側に配置した第一加熱手段により、 該昇華用原料を昇華可能とな るように昇華雰囲気を形成し、
前記他端部側に配置した第二加熱手段により、 前記第一加熱手段により昇華 された前記昇華用原料が前記炭化ゲイ素単結晶の種結晶近傍でのみ再結晶可能 となるように再結晶雰囲気を形成し、 該昇華用原料を前記炭化ゲイ素単結晶の 種結晶上に再結晶させる前記く 1〉からく 6 >のいずれかに記載の炭化ゲイ素単結 晶の製造方法。
< 8 > 反応容器内において、 再結晶雰囲気の温度が昇華雰囲気の温度よりも 3 0〜3 0 0 °C低い前記く 7 >に記載の炭化ケィ素単結晶の製造方法。
く 9〉 第一加熱手段及び第二加熱手段が誘導加熱可能なコイルである前記く 7 > 又はく 8 >に記載の炭化ケィ素単結晶の製造方法。
〈1 0〉 第一加熱手段における誘導加熱電流の電流値が、 第二加熱手段におけ る誘導加熱電流の電流値よりも大きい前記く 9 >に記載の炭化ケィ素単結晶の製 造方法。
く 1 1 > 第二加熱手段における誘導加熱電流の電流値を、 成長する炭化ケィ素 単結晶の径が大きくなるにつれて、 連続的又は段階的に小さくする前記く 9 >又, はく 1 0 >に記載の炭化ケィ素単結晶の製造方法。 < 1 2 > 反応容器内の、 昇華用原料を収容した一端部側の温度を T とし、 炭 化ケィ素単結晶の種結晶を配置した他端部側の温度を Τ2 とし、 該他端部側に おける、 反応容器の内周側面部との隣接部の温度 τ3 とした時、 τ3— τ2及び
Τ, — Τ2が連続的又は段階的に大きくなる前記く 7〉からく 1 1〉のいずれかに 記載の炭化ケィ素単結晶の製造方法。
く 1 3〉 第一加熱手段と第二加熱手段との間に、 誘導電流を通電可能であり、 該誘導電流を通電することにより該第一加熱手段と該第二加熱手段との間にお ける干渉を防止する干渉防止手段が配置される前記く 9 >からく 1 2〉のいずれか に記載の炭化ケィ素単結晶の製造方法。
く 1 4> 干渉防止手段が、 冷却水を流通可能なコイルである前記く 1 3 >に記載 の炭化ケィ素単結晶の製造方法。
< 1 5 > 一端部が下端部であり、 他端部が上端部である前記く 7 >からく 1 4>の いずれかに記載の炭化ケィ素単結晶の製造方法。
< 1 6 > 反応容器が、 石英管内に配置された坩堝である前記く 7〉からく 1 5 >の いずれかに記載の炭化ケィ素単結晶の製造方法。
< 1 7 > 他端部における、 炭化ケィ素単結晶の成長が行われる領域と、 該領域 の.外周に位置し反応容器の内周側面部と隣接する領域とが、 別の部材で形成さ れており、 かつ該炭化ケィ素単結晶の成長が行われる領域を形成する部材にお ける、 一端が反応容器の内部に露出し、 他端が反応容器の外部に露出している 前記く 7〉力、らく 1 6〉のいずれかに記載の炭化ゲイ素単結晶の製造方法。
< 1 8 > 他端部における、 該反応容器内の周側面部との隣接部の表面が、 ガラ ス状カーボンである前記く 5 >からく 1 7 >のいずれかに記載の炭化ケィ素単結晶 の製造方法。
< 1 9 > 昇華用原料が、 高純度のアルコキシシラン及びアルコキシシラン重合 体から選択される少なくとも 1種をケィ素源とし、 加熱により炭素を生成する 高純度の有機化合物を炭素源とし、 これらを均一に混合して得た混合物を非酸 化性雰囲気下で加熱焼成して得られた炭化ケィ素粉末である前記く 1〉からく 1 8〉のいずれかに記載の炭化ケィ素単結晶の製造方法。
く 2 0 > 昇華用原料が、 高純度のアルコキシシランをケィ素源とし、 加熱によ り炭素を生成する高純度の有機化合物を炭素源とし、 これらを均一に混合して 得た混合物を非酸化性雰囲気下で加熱焼成して得られた炭化ゲイ素粉末である 前記く 1〉からく 1 8〉のいずれかに記載の炭化ゲイ素単結晶の製造方法。
く 2 1〉 昇華用原料が、 高純度のアルコキシシラン及び/又は高純度のアルコ キシシランの重合体をケィ素源とし、 加熱により炭素を生成する高純度の有機 化合物を炭素源とし、 これらを均一に混合して得た混合物を非酸化性雰囲気下 で加熱焼成して得られた炭化ケィ素粉末である前記く 1〉からく 1 8〉のいずれか に記載の炭化ケィ素単結晶の製造方法。
く 2 2 > 昇華用原料が、 高純度のメトキシシラン、 高純度のエトキシシラン、 高純度のプロボキシシラン、 高純度のブトキシシランからなる群から選択され る 1種及び Z又は 2種以上をケィ素源とし、 加熱により炭素を生成する高純度 の有機化合物を炭素源とし、 これらを均一に混合して得た混合物を非酸化性雰 囲気下で加熱焼成して得られた炭ィ匕ケィ素粉末である前記く 1 >からく 1 8 >のい ずれかに記載の炭化ゲイ素単結晶の製造方法。
〈2 3〉 昇華用原料が、 高純度のメトキシシラン、 高純度のエトキシシラン、 高純度のプロボキシシラン、 高純度のブトキシシランからなる群から選択され る 1種及び/又は 2種以上、 及び/又は重合度が 2〜 1 5のそれらの重合体を ゲイ素源とし、 加熱により炭素を生成する高純度の有機化合物を炭素源とし、 これらを均一に混合して得た混合物を非酸化性雰囲気下で加熱焼成して得られ た炭化ケィ素粉末である前記く 1 >からく 1 8〉のいずれかに記載の炭化ゲイ素単 結晶の製造方法。
く 2 4 > 昇華用原料が、 高純度のモノアルコキシシラン、 高純度のジアルコキ シシラン、 高純度のトリアルコキシシラン、 高純度のテトラアルコキシシラン からなる群から選択される 1種及び/又は 2種以上、 及び Z又は重合度が 2〜 1 5のそれらの重合体をケィ素源とし、 加熱により炭素を生成する高純度の有 機化合物を炭素源とし、 これらを均一に混合して得た混合物を非酸化性雰囲気 下で加熱焼成して得られた炭化ケィ素粉末である前記く 1〉力 ^らく 1 8〉のいずれ かに記載の炭化ケィ素単結晶の製造方法。
く 2 5〉 ケィ素源がテトラアルコキシシラン重合体であり、 炭素源がフエノー ル樹脂である前記く 1 9〉からく 2 4>に記載の炭化ゲイ素単結晶の製造方法。 < 2 6 > 炭化ケィ素粉末の不純物元素の各含有量が 0 . 5 p p m以下である前 記く 1 9〉から〈2 5〉に記載の炭化ケィ素単結晶の製造方法。
く 2 7 > 前記〈1 >からく 2 6〉のいずれかに記載の炭化ゲイ素単結晶の製造方法 により製造されることを特徴とする炭化ケィ素単結晶。
く 2 8 > 非破壊で光学的に画像検出した中空パイプ状の結晶欠陥が 1 0 0個 Z c m2以下である前記く 2 7 >に記載の炭化ゲイ素単結晶。
く 2 9 > 不純物元素の総含有量が 1 0 p p m以下である前記く 2 7 >又はく 2 8 > に記載の炭化ケィ素単結晶。
く 3 0〉 昇華させた昇華用原料を再結晶させて炭化ゲイ素単結晶を成長させる 炭化ケィ素単結晶の製造装置であつて、
昇華用原料を収容可能な容器本体と、 該容器本体に対し着脱可能であり、 該 容器本体に装着された際に該容器本体内に臨む面に炭ィ匕ケィ素単結晶の種結晶 を配置可能な蓋体とを備えた坩堝と;
前記坩堝における、 前記昇華用原料が収容された部分の外周に環巻された状 態で配置され、 該昇華用原料を昇華可能となるように昇華雰囲気を形成する第 一誘導加熱コイルと;
前記坩堝における、 前記種結晶が配置され 部分の外周に環巻された状態で 配置され、 前記第一誘導加熱コイルにより昇華された前記昇華用原料が前記炭 化ケィ素単結晶の種結晶近傍でのみ再結晶可能となるように再結晶雰囲気を形 成し、 該昇華用原料を前記炭化ゲイ素単結晶の種結晶上に再結晶させる第二誘 導加熱コイルと;
を少なくとも備えたことを特徴とする炭化ゲイ素単結晶の製造装置。 前記 < 1 >に記載の炭化ケィ素単結晶の製造方法は、 昇華させた昇華用原料 を再結晶させて炭化ケィ素単結晶を成長させる炭化ケィ素単結晶の製造方法で あって、 前記炭化ケィ素単結晶を、 その全成長過程を通して、 その成長面の全 面を凸形状に保持したまま成長させる。 この炭化ゲイ素単結晶の製造方法にお いては、 成長する炭化ケィ素単結晶における成長面の全面において、 その成長 方向と反対方向に前記陥没した凹部が輪状に形成されることがない。 このため 、 従来における前記諸問題、 即ち、 割れ等の破損がなく、 多結晶や多型の混入 やマイクロパイプ等の結晶欠陥が存在しない高品質の炭化ケィ素単結晶が製造 される。
前記 < 2 >及びぐ 3 >に記載の炭化ケィ素単結晶の製造方法は、 前記 < 1 > において、 炭化ケィ素単結晶を含む炭化ケィ素の結晶を略山形に成長させるの で、 成長する炭化ケィ素単結晶において、 その成長方向と反対方向に前記陥没 した凹部が全く存在しない。 このため、 従来における前記諸問題、 即ち、 割れ 等の破損がなく、 多結晶や多型の混入やマイクロパイプ等の結晶欠陥が存在し ない高品質の炭化ケィ素単結晶が製造される。
前記 < 4 >に記載の炭化ケィ素単結晶の製造方法は、 前記 < 1 >から < 3 > のいずれかにおいて、 反応容器内に前記昇華用原料を収容し、 該反応容器内の 該昇華用原料に略対向する端部に前記炭化ゲイ素単結晶の種結晶を配置し、 前 記炭化ゲイ素単結晶を含む炭化ケィ素の結晶の成長が、 該端部における、 該反 応容器内の周側面部との隣接部を除く領域でのみ行われる。 このため、 成長す る炭化ゲイ素単結晶において、 その成長方向と反対方向に前記陥没した凹部が 輪状に形成されることがなく、 また、 炭化ケィ素単結晶が、 前記端部における 、 該反応容器内の周側面部に接触した状態で成長することもない。 このため、 成長した炭化ゲイ素単結晶を室温まで冷却した際に、 炭化ケィ素多結晶側から 炭ィ匕ケィ素単結晶側に熱膨張差に基づく応力が集中して印加されることがなく 、 得られる炭化ケィ素単結晶に割れ等の欠陥が生じてしまうことがない。 その 結果、 従来における前記諸問題、 即ち、 割れ等の破損がなく、 多結晶や多型の 混入やマイク口パイプ等の結晶欠陥が存在しない高品質の炭化ケィ素単結晶が 効率よくかつ確実に製造される。
前記 < 5 >に記載の炭化ケィ素単結晶の製造方法は、 昇華させた昇華用原料 を再結晶させて炭化ケィ素単結晶を成長させる炭ィヒケィ素単結晶の製造方法で あって、 反応容器内に前記昇華用原料を収容し、 該反応容器内の該昇華用原料 に略対向する端部に前記炭化ケィ素単結晶の種結晶を配置し、 前記炭化ゲイ素 単結晶を含む炭化ケィ素の結晶を、 該端部における、 該反応容器内の周側面部 との隣接部を除く領域でのみ成長させる。 このため、 前記炭化ゲイ素多結晶が 、 前記端部における、 該反応容器内の周側面部に接触した状態で成長すること がない。 成長した炭化ケィ素単結晶を室温まで冷却した際に、 炭化ケィ素多結 晶側から炭化ケィ素単結晶側に熱膨張差に基づく応力が集中して印加されるこ とがなく、 得られる炭化ゲイ素単結晶に割れ等の欠陥が生じてしまうことがな い。 その結果、 従来における前記諸問題、 即ち、 割れ等の破損がなく、 多結晶 や多型の混入やマイク口パイプ等の結晶欠陥が存在しない高品質の炭化ゲイ素 単結晶が製造される。
前記ぐ 6 >に記載の炭化ケィ素単結晶の製造方法は、 前記 < 2 >から < 5 > のいずれかにおいて、 前記炭化ケィ素単結晶を含む炭化ケィ素の結晶が、 炭化 ゲイ素単結晶のみからなる。 このため、 大きな径の炭化ゲイ素単結晶が得られ 、 該炭化ケィ素単結晶を炭化ゲイ素多結晶等から分離等する必要がない。 前記 < 7 >に記載の炭化ケィ素単結晶の製造方法は、 前記 < 1 >から < 6 > のいずれかにおいて、 前記反応容器内の一端部側に前記昇華用原料を収容し、 該反応容器内の他端部側に前記炭化ケィ素単結晶の種結晶を配置し、 前記一端 部側に配置した第一加熱手段により、 該昇華用原料を昇華可能となるように昇 華雰囲気を形成し、 前記他端部側に配置した第二加熱手段により、 前記第一加 熱手段により昇華された前記昇華用原料が炭化ゲイ素単結晶の種結晶近傍での み再結晶可能となるように再結晶雰囲気を形成し、 該昇華用原料を前記炭化ケ ィ素単結晶の種結晶上に再結晶される。
この炭化ケィ素単結晶の製造方法においては、 前記昇華用原料を昇華可能と なるように昇華雰囲気を形成するための加熱を前記第一加熱手段で行い、 前記 炭化ゲイ素単結晶の種結晶上でのみ再結晶化を可能とする再結晶雰囲気の形成 を前記第二加熱手段で行うことにより、 前記炭化ケィ素単結晶の種結晶上乃至 その近傍でのみ選択的に再結晶化を行うことができ、 前記炭化ケィ素多結晶が 、 前記端部における、 該反応容器内の周側面部に接触した状態で成長すること がない。 成長した炭化ゲイ素単結晶を室温まで冷却した際に、 炭化ケィ素単結 晶側から炭化ゲイ素単結晶側に熱膨張差に基づく応力が集中して印加されるこ とがなく、 得られる炭化ゲイ素単結晶に割れ等の欠陥が生じてしまうことがな い。 その結果、 従来における前記諸問題、 即ち、 割れ等の破損がなく、 多結晶 や多型の混入やマイク口パイプ等の結晶欠陥が存在しない高品質の炭化ケィ素 単結晶が製造される。
前記 < 8 >に記載の炭化ケィ素単結晶の製造方法においては、 前記 < 7 >に おいて、 前記反応容器内において、 再結晶雰囲気の温度が前記昇華雰囲気の温 度よりも 3 0〜3 0 0 低い。 このため、 前記炭化ケィ素単結晶の種結晶上乃 至その近傍で容易にかつ円滑に再結晶化が行われる。
' 前記 < 9 >に記載の炭化ケィ素単結晶の製造方法は、 前記 < 7〉又は < 8 > において、 前記第一加熱手段及び前記第二加熱手段が誘導加熱可能なコイルで ある。 このため、 該コイルによる誘導加熱により、 前記昇華雰囲気の形成のた めの前記第一加熱手段の温度制御、 及び前記再結晶雰囲気の形成のための前記 第二加熱手段の温度制御が容易にかつ確実に行われる。
前記 < 1 0 >に記載の炭化ケィ素単結晶の製造方法は、 前記 < 7 >から < 9
>のいずれかにおいて、 第一加熱手段における誘導加熱電流の電流値が、 第二 加熱手段における誘導加熱電流の電流値よりも大きい。 このため、 前記昇華雰 囲気の温度よりも前記種結晶上近傍での再結晶雰囲気の温度の方が低く維持さ れ、 再結晶化が容易に行われる。 前記ぐ 1 1 >に記載の炭化ゲイ素単結晶の製造方法は、 前記 < 7 >から < 1 0 >のいずれかにおいて、 前記第二加熱手段における誘導加熱電流の電流値を 、 成長する炭化ケィ素単結晶の径が大きくなるにつれて、 連続的又は段階的に 小さくする。 このため、 前記炭化ゲイ素単結晶が成長するにつれて前記第二加 熱手段による加熱量が小さく制御されるので、 成長を続ける前記炭化ゲイ素単 結晶の近傍でしか再結晶が行われず、 該炭化ケィ素単結晶の周囲に多結晶が生 じることがない。
前記 < 1 2 >に記載の炭化ケィ素単結晶の製造方法は、 前記 < 7 >から < 1 1 >のいずれかにおいて、 前記反応容器内の、 昇華用原料を収容した一端部側 の温度を T, とし、 炭化ゲイ素単結晶の種結晶を配置した他端部側の温度を T2 とし、 該他端部側における、 反応容器の内周側面部との隣接部の温度 Τ3 とし た時、 τ3 _ τ2 及び τ — τ2 が連続的又は段階的に大きくなる。 τ\ — τ2 が連続的又は段階的に大きくなると、 経時的に、 炭化ゲイ素単結晶が前記一端 部側に向かって成長を続けても、 該炭化ケィ素単結晶の結晶成長先端側は常に 再結晶が起こり易い状態に維持される。 一方、 Τ3 — Τ2が連続的又は段階的 に大きくなると、 経時的に、 炭化ケィ素単結晶が前記他端部側における外周方 向に向かって成長を続けても、 該炭化ゲイ素単結晶の結晶成長外周端側は常に 再結晶が起こり易い状態に維持される。 その結果、 炭化ケィ素多結晶の生成が 効果的に抑制され、 該炭化ゲイ素単結晶は、 その径を拡大しながらその厚みを 増す方向に成長を続け、 最終的には、 炭化ケィ素多結晶等の混入がない状態で 大径の炭化ケィ素単結晶が得られる。
前記 < 1 3 >に記載の炭化ケィ素単結晶の製造方法は、 前記 < 9 >から < 1 2 >のいずれかにおいて、 前記第一加熱手段と前記第二加熱手段との間に、 誘 導電流を通電可能であり、 該誘導電流を通電することにより該第一加熱手段と 該第二加熱手段との間における干渉を防止する干渉防止手段が配置される。 こ のため、 前記第一加熱手段及び前記第二加熱手段による誘導加熱を同時に行つ た際に、 該干渉防止手段に誘導電流が流れ、 該干渉防止手段が両者間における 干渉を極小化し防止する。
前記 < 1 4 >に記載の炭化ケィ素単結晶の製造方法は、 前記 < 1 3 >におい て、 前記干渉防止手段が、 冷却可能なコイルである。 該コイルに誘導電流が流 れ加熱されたとしても該コイルは冷却されるため、 該コイルが前記反応容器を 加熱することがない。 このため、 前記反応容器の温度制御が容易である。 前記 < 1 5 >に記載の炭化ケィ素単結晶の製造方法は、 前記 < 7 >から < 1 4 >のいずれかにおいて、 前記一端部が下端部であり、 前記他端部が上端部で ある。 このため、 前記昇華用原料が前記反応容器内の下方に収容され、 該昇華 用原料の昇華が円滑に行われ、 また、 前記炭化ケィ素単結晶は、 下方に向かつ て、 即ち重力方向に向かって余分な負荷がかからない状態で成長する。
前記 < 1 6 >に記載の炭化ケィ素単結晶の製造方法は、 前記 < 7 >から < 1
5 >のいずれかにおいて、 前記反応容器が、 石英管内に配置された坩堝である 。 このため、 該石英管内の密閉系で前記昇華用原料の昇華と再結晶、 前記炭化 ケィ素単結晶の成長が行われるので、 これらの制御が容易である。
前記 < 1 7 >に記載の炭化ケィ素単結晶の製造方法は、 前記 < 7 >から < 1
6 >のいずれかにおいて、 前記炭化ゲイ素単結晶の成長が行われる領域と、 該 領域の外周に位置し前記反応容器の内周側面部と隣接する領域とが、 別の部材 で形成されており、 かつ該炭化ケィ素単結晶の成長が行われる領域を形成する 部材における、 一端が反応容器の内部に露出し、 他端が反応容器の外部に露出 している。 前記炭化ケィ素単結晶の成長が行われる領域 (内側領域) と、 該領 域の外周に位置し前記反応容器の内周側面部と隣接する領域 (外側領域) とが 、 別の部材で形成されているため、 前記第二加熱手段により加熱を行った場合 には、 該第二加熱手段側に位置する前記外側領域は容易に加熱されるものの、 前記内側領域は、 該外側領域との接触抵抗の差により容易に加熱されることは ない。 このため、 前記第二加熱手段で加熱を行ったとしても、 前記外側領域と 前記内 領域との間で温度差が生じ、 前記内側領域の方が前記外側領域よりも 加熱され難いため、 温度が低く維持され、 前記炭化ケィ素の再結晶が容易に行 われる。 また、 前記内側領域を形成する部材における前記反応容器の内部と反 対側が、 該反応容器の外部に露出し、 該反応容器外部に熱を放熱し易いため、 前記第二加熱手段により加熱を行つた場合、 前記内側領域は前記外側領域に比 ベて加熱され難く、 前記外側領域と前記内側領域との間で温度差が生じ、 前記 内側領域の方が前記外側領域よりも温度が低く維持され、 前記炭化ケィ素の再 結晶が容易に行われる。 その結果、 前記外側領域では炭化ケィ素単結晶が成長 し難く、 該内側領域でのみ選択的に炭化ケィ素単結晶が再結晶化し成長する。 前記ぐ 1 8〉に記載の炭化ゲイ素単結晶の製造方法は、 前記 < 5 >から < 1 7 >のいずれかにおいて、 前記他端部における、 該反応容器の内周側面部との 隣接部の表面が、 ガラス状カーボンである。 このため、 前記他端部における、 該反応容器の内周側面部との隣接部は、 該隣接部以外の領域よりも再結晶化が 起こり難い。 その結果、 前記他端部における、 前記隣接部では炭化ケィ素の結 晶が成長せず、 該隣接部以外の領域でのみ選択的に炭化ケィ素単結晶が再結晶 化し成長する。
前記ぐ 1 9 >からく 2 4 >に記載の炭化ケィ素単結晶の製造方法は、 前記く 1 >から < 1 8 >のいずれかにおいて、 前記昇華用原料が、 高純度のアルコキ シシラン及びアルコキシシラン重合体から選択される少なくとも 1種をケィ素 源とし、 加熱により'炭素を生成する高純度の有機化合物を炭素源とし、 これら を均一に混合して得た混合物を非酸化性雰囲気下で加熱焼成して得られた炭化 ケィ素粉末である。 該昇華用原料は高純度炭化ケィ素粉末であるので、 炭化ケ ィ素単結晶を成長させる際に、 炭化ケィ素単結晶中への多結晶や多型の混入が なく、 円滑に炭化ケィ素単結晶が成長し、 得られた炭化ゲイ素単結晶中にマイ クロパイプ等の欠陥も生じない。
前記ぐ 2 5 >に記載の炭化ケィ素単結晶の製造方法は、 前記 < 1 9 >から < 2 4 >のいずれかにおいて、 前記ケィ素源がテトラアルコキシシラン重合体で あり、 前記炭素源がフエノール樹脂である。 このため、 前記昇華用原料が、 低 コストで容易に得られる。 前記ぐ 2 6 >に記載の炭化ゲイ素単結晶の製造方法は、 前記 < 1 9 >からぐ 2 5 >のいずれかにおいて、 前記炭化ケィ素粉末の不純物元素の各含有量が 0 . 5 p p m以下である。 このため、 前記昇華用原料は極めて高純度であり、 前 記炭化ケィ素単結晶中への多結晶や多型の混入、 結晶欠陥の発生が効果的に抑 制される。
前記 < 2 7 >に記載の炭化ゲイ素単結晶は、 前記 < 1 >から < 2 6 >のいず れかに記載の炭化ゲイ素単結晶の製造方法により製造される。 このため、 得ら れる炭化ゲイ素単結晶は、 割れ等の破損がなく、 多結晶や多型の混入やマイク 口パイプ等の結晶欠陥が存在せず、 極めて高品質であり、 絶緣破壊特性、 耐熱 性、 対放射線性等に優れ、 半導体ウェハ等の電子デバイス、 発光ダイオード等 の光学デバィスなどに特に好適である。
前記ぐ 2 8 >に記載の炭化ケィ素単結晶は、 前記ぐ 2 7 >において、 非破壊 で光学的に画像検出した中空パイプ状の結晶欠陥が 1 0 0個/ c m2以下であ る。 このため、 該炭化ケィ素単結晶は、 極めて高品質であり、 絶縁破壊特性、 耐熱性、 耐放射線性等に特に優れ、 半導体ウェハ等の電子デバイス、 発光ダイ ォード等の光学デバイスなどに特に好適である。
前記ぐ 2 9 >に記載の炭化ケィ素単結晶は、 前記 < 2 7 >又はぐ 2 8 >にお いて、 前記不純物元素の総含有量が 1 O p p m以下である。 このため、 該炭化 ゲイ素単結晶は、 極めて高品質である。
前記ぐ 3 0 >に記載の炭化ケィ素単結晶の製造装置は、 昇華させた昇華用原 料を再結晶させて炭化ケィ素単結晶を成長させる炭化ケィ素単結晶の製造装置 である。
この炭化ケィ素単結晶の製造装置は、 容器本体と蓋体とを備えた坩堝と、 第 一誘導加熱コイルと、 第二誘導加熱コイルとを少なくとも備えている。
前記坩堝における、 前記容器本体が前記昇華用原料を収容する。 前記蓋体は 、 前記容器本体に対し着脱可能である。 該蓋体が前記容器本体に装着された際 に該容器本体内に臨む面に炭化ケィ素単結晶の種結晶を配置する。 前記第一誘 導加熱コイルは、 前記坩堝における、 前記昇華用原料が収容された部分の外周 に環巻された状態で配置されており、 これが該昇華用原料を昇華可能となるよ うに昇華雰囲気を形成し、 該昇華用原料を昇華させる。 そして、 前記第二誘導 加熱コイルは、 前記坩堝における、 前記種結晶が配置された部分の外周に環巻 された状態で配置されており、 これが、 前記第一誘導加熱コイ^/により昇華さ れた前記昇華用原料が前記炭化ケィ素単結晶の種結晶近傍でのみ再結晶可能と なるように再結晶雰囲気を形成し、 該昇華用原料を前記炭化ケィ素単結晶の種 結晶上に再結晶させる。 このため、 炭化ゲイ素単結晶は、 その全成長過程を通 して、 その成長面の全面が凸形状に保持されたまま成長し、 その成長方向と反 対方向に陥没した凹部が輪状に形成されることがなく、 また、 炭化ケィ素多結 晶が、 前記容器本体内の周側面部に接触した状態で成長することもない。 この ため、 成長した炭化ケィ素単結晶を室温まで冷却した際に、 炭化ケィ素単結晶 側から炭化ゲイ素単結晶側に熱膨張差に基づく応力が集中して印加されること がなく、 得られる炭化ケィ素単結晶に割れ等の欠陥が生じてしまうことがない 。 その結果、 割れ等の破損がなく、 多結晶や多型の混入やマイクロパイプ等の 結晶欠陥が存在しない高品質の炭化ケィ素単結晶が効率よくかつ確実に製造さ れる。
本出願は、 同出願人により先にされた日本国特許出願、 すなわち、 2 0 0 0 一 4 0 2 7 3 0号 (出願日 2 0 0 0年 1 2月 2 8日) 及び 2 0 0 1 - 1 1 1 3 7 4号 (出願日 2 0 0 1年 4月 1 0日) に基づく優先権主張を伴うものであつ て、 これらの明細書を参照のためにここに組み込むものとする。 図面の簡単な説明
F i g . 1は、 本発明の炭化ケィ素単結晶の製造方法における初期状態を説 明するための概略図である。
F i g . 2は、 本発明の炭化ケィ素単結晶の製造方法により炭化ケィ素単結 晶を製造している状態を説明するための概略図である。 F i g. 3は、 本発明の炭化ゲイ素単結晶の製造方法により製造された本発 明の炭化ケィ素単結晶の概略図である。
F i g. 4は、 本発明の炭化ケィ素単結晶の製造方法に用いた坩堝の一例を 示す概略説明図である。
F i g. 5は、 本発明の炭化ケィ素単結晶の製造方法に用いた坩堝の他の例 を示す概略説明図である。
F i g. 6は、 本発明の炭化ケィ素単結晶の製造方法により製造された本発 明の炭化ゲイ素単結晶の概略図である。
F i g. 7は、 本発明の炭化ケィ素単結晶の製造方法により製造された本発 明の炭化ゲイ素単結晶の概略図である。
F i g. 8は、 従来の炭化ケィ素単結晶の製造方法により炭化ケィ素単結晶 を製造している状態を説明するための概略図である。
F i g. 9は、 従来の炭化ゲイ素単結晶の製造方法により製造された炭化ケ ィ素単結晶の概略図である。
符号の説明
1…炭化ケィ素単結晶の製造装置
l O- -黒鉛製坩堝
l l- ,蓋体
12- -容器本体
I S- -周側面部
I S- -内側領域形成部
20·· -第二誘導加熱コイル
21·· -第一誘導加熱コイル
22- '干渉防止コイル
25·· '誘導加熱コイル
30·· •石英管
31- -支持棒 4 0…昇華用原料
5 0…炭化ケィ素単結晶の種結晶
6 0…炭ィ匕ケィ素単結晶
7 0…炭化ケィ素多結晶
7 1…凹部
8 0 ···従来の炭化ケィ素単結晶の製造装置
発明を実施するための最良の形態
(炭化ケィ素単結晶の製造方法)
以下、 本発明の炭化ケィ素単結晶の製造方法について説明する。
本発明の炭化ケィ素単結晶の製造方法は、 昇華させた昇華用原料を炭化ゲイ 素単結晶の種結晶上で再結晶させて炭化ケィ素単結晶を成長させる炭化ケィ素 単結晶の製造方法である。
本発明の炭化ケィ素単結晶の製造方法においては、 以下の第一の態様から第 三の態様が挙げられ、 これらの中でも前記第三の態様は、 前記第一の態様と前 記第二の態様とをあわせた内容の好ましい態様である。
前記第一の態様においては、 前記炭化ケィ素単結晶を、 その全成長過程を通 して、 その成長面の全面を凸形状に保持したまま成長させる。
前記第二の態様においては、 反応容器内に前記昇華用原料を収容し、 該反応 容器内の該昇華用原料に略対向する端部に炭化ケィ素単結晶の種結晶を配置し 、 前記炭化ケィ素単結晶を、 該端部における、 該反応容器内の周側面部との隣 接部を除く領域でのみ成長させる。
前記第三の態様においては、 反応容器内に前記昇華用原料を収容し、 該反応 容器内の該昇華用原料に略対向する端部に炭化ゲイ素単結晶の種結晶を配置し 、 前記炭化ケィ素単結晶を、 その全成長過程を通して、 その成長面の全面を凸 形状に保持したまま、 かつ前記端部における、 前記反応容器内の周側面部との 隣接部 (外側部分) を除く領域 (内側部分) でのみ成長させる。
一反応容器一 前記反応容器としては、 特に制限はなく、 目的に応じて適宜選択することが できるが、 内部に前記昇華用原料を収容することができ、 該昇華用原料に略対 向する位置に前記炭化ケィ素単結晶の種結晶を配置可能な端部を有しているこ とが好ましい。
前記端部の形状としては、 特に制限はないが、 例えば、 略平面形状であるの が好ましい。
前記昇華用原料が収容される部位としては特に制限はないが、 前記炭化ケィ 素単結晶の種結晶を配置可能な端部に略対向する端部であるのが好ましい。 こ の場合、 前記反応容器の内部は筒形状となるが、 該筒形状の軸としては、 直線 状であってもよいし、 曲線状であってもよく、 該筒形状の軸方向に垂直な断面 形状としては、 円形であってもよいし、 多角形であってもよい。 該円形状の好 ましい例としては、 その軸が直線状であり、 かつ該軸方向に垂直な断面形状が 円形であるものが好適に挙げられる。
前記反応容器の内部に 2つの端部が存在する場合、 一端部側に前記昇華用原 料が収容され、 他端部側に前記炭化ゲイ素単結晶の種結晶が配置される。 以下 、 前記一端部を 「昇華用原料収容部」 と称することがあり、 前記他端部を 「種 結晶配置部」 と称することがある。
前記一端部 (昇華用原料収容部) の形状としては、 特に制限はなく、 平面形 状であってもよいし、 均熱化を促すための構造 (例えば凸部等) を適宜設けて もよい。
前記反応容器においては、 前記他端部 (種結晶配置部) 側が着脱可能に設計 されているのが好ましい。 この場合、 該他端部 (種結晶配置部) を脱離するだ けで、 成長した炭化ケィ素単結晶を容易に該反応容器から分離することができ る点で有利である。
このような反応容器としては、 例えば、 昇華用原料を収容可能な容器本体と 、 該容器本体に対し着脱可能であり、 該容器本体に装着された際に該容器本体 内に収容された前記昇華用原料に対向する面の略中央に炭化ケィ素単結晶の種 結晶を配置可能な蓋体とを備えた反応容器などが好適に挙げられる。
前記一端部 (昇華用原料収容部) と前記他端部 (種結晶配置部) との位置関 係としては、 特に制限はなく、 目的に応じて適宜選択することができるが、 前 記一端部 (昇華用原料収容部) が下端部であり、 前記他端部 (種結晶配置部) が上端部である態様、 即ち、 該一端部 (昇華用原料収容部) と該他端部 (種結 晶配置部) とが重力方向に位置しているのが好ましい。 この場合、 前記昇華用 原料の昇華が円滑に行われ、 また、 前記炭化ケィ素単結晶の成長が、 下方に向 かって、 即ち重力方向に向かって余分な負荷がかからない状態で行われる点で 好ましい。
なお、 前記一端部 (昇華用原料収容部) 側には、 例えば、 前記昇華用原料の 昇華を効率よく行う目的で、 伝熱性に優れた材料で形成した部材を配置しても よい。
該部材としては、 例えば、 外周が前記反応容器内の周側面部と密接可能であ り、 内部が、 前記他端部 (種結晶配置部) に近づくにつれてその径が漸次増加 するような逆錘形状もしくは逆錘台形状である部材、 などが好適に挙げられる なお、 前記反応容器の外部に露出する部分には、 目的に応じて、 ねじ切り、 測温用凹部等が設けられていてもよく、 該測温用凹部は、 前記一端部側及び前 記他端部側の少なくとも一方の部分に設けられているのが好ましい。
前記反応容器の材料としては、 特に制限はなく、 目的に応じて適宜選択する ことができるが、 耐久性、 耐熱性、 伝熱性等に優れた材料で形成されているの で好ましく、 これらに加えて更に不純物の発生による多結晶や多型の混入等が 少なく、 前記昇華用原料の昇華と再結晶の制御が容易である等の点で黒鉛製で あるのが特に好ましい。
前記反応容器は、 単独の部材で形成されていてもよいし、 2以上の部材で形 成されていてもよく、 目的に応じて適宜選択することができる。 2以上の部材 で形成されている場合としては、 前記他端部 (種結晶配置部) が 2以上の部材 で形成されているものが好ましく、 前記他端部 (種結晶配置部) の中心部とそ の外周部とが別の部材で形成されているのが、 温度差もしくは温度勾配を形成 できる点でより好ましい。 具体的には、 前記反応容器は、 該中心部としての炭 化ケィ素単結晶の成長が行われる領域 (内側領域) と、 該外周部としての前記 内側領域の外周に位置し反応容器の内周側面部と隣接する領域 (外周領域) と が別の部材で形成され、 かつ該内側領域を形成する部材における、 一端が反応 容器の内側に露出し、 他端が反応容器の外部に露出しているのが特に好ましい この場合、 前記他端部 (種結晶配置部) をその外側から加熱した場合、 前記 外側領域は容易に加熱されるものの、 前記内側領域は、 該外側領域との接触抵 抗により加熱され難くなる。 そのため、 前記外側領域と前記内側領域との間で 温度差が生じ、 該内側領域の方が該外側領域よりも若干温度が低く維持され、 該内側領域の方が該外側領域よりも炭化ケィ素が再結晶し易くすることができ る。 更に、 前記内側領域を形成する部材における前記他端が前記反応容器の外 部に露出しているので、 該内側領域は前記反応容器の外部に熱を放熱し易いた め、 該内側領域の方が該外側領域よりも炭ィ匕ゲイ素が再結晶を生じ易くさせる ことができる。
なお、 前記内側領域を形成する部材における前記他端が前記反応容器の外部 に露出している態様としては、 特に制限はなく、 該内側領域を底面とし前記反 応容器の外側に向けて連続的又は不連続的にその径が変化する (大きくなる又 は小さくなる) 形状などが挙げられる。
このような形状としては、 具体的には、 前記内側領域を底面とする柱形状 ( 円柱状、 角柱状等が挙げられ、 円柱状が好ましい) 、 前記内側領域を底面とす る錘台形状 (円錐台状、 角錐台状、 逆円錐台状、 逆角錐台状等が挙げられ、 逆 円錐台状が好ましい) などが挙げられる。
前記反応容器は、 前記他端部 (種結晶配置部) における、 前記炭化ゲイ素単 結晶の成長が行われる領域 (内側領域) の外周に位置し反応容器の内周側面部 と隣接する領域 (外側領域) の表面が、 ガラス状力一ボンもしくはァモルファ スカーボンであるのが好ましい。 この場合、 前記外側領域の方が前記内側領域 よりも再結晶化が起こり難い点で好ましい。
前記反応容器は、 断熱材等で囲まれているのが好ましい。 この場合、 前記反 応容器における前記一端部 (昇華用原料収容部) 及び前記他端部 (種結晶配置 部) の略中央は、 測温用窓を形成する目的で、 前記断熱材等が設けられていな いのが好ましい。 また、 前記一端部 (昇華用原料収容部) の略中央に前記測温 用窓が設けられている場合には、 前記断熱材粉等の落下を防ぐための黒鉛製力 パー部材等が更に設けられているのが好ましい。
前記反応容器は、 石英管内に配置されるのが好ましい。 この場合、 前記昇華 用原料の昇華及び再結晶化のための加熱エネルギーの損失が少ない点で好まし い。
なお、 前記石英管は高純度品が入手可能であり、 高純度品を用いると金属不 純物の混入が少ない点で有利である。
—昇華用原料一
前記昇華用原料としては、 炭化ケィ素である限り、 結晶の多型、 使用量、 純 度、 その製造方法等については特に制限はなく、 目的に応じて適宜選択するこ とができる。
前記昇華用原料の結晶の多型としては、 例えば、 4 H, 6 H, 1 5 R, 3 C などが挙げられ、 これらの中でも 6 Hなどが好適に挙げられる。 こららは、 1 種単独で使用されるのが好ましいが、 2種以上併用されてもよい。
前記昇華用原料の使用量としては、 製造する炭化ケィ素単結晶の大きさ、 前 記反応容器の大きさ等に応じて適宜選択することができる。
前記昇華用原料の純度としては、 製造する炭化ケィ素単結晶中への多結晶や 多型の混入を可能な限り防止する観点からは、 純度の高いことが好ましく、 具 体的には、 不純物元素の各含有量が 0 . 5 p p m以下であるのが好ましい。 ここで、 前記不純物元素の含有量は、 化学的な分析による不純物含有量であ り、 参考値としての意味を有するに過ぎず、 実用的には、 前記不純物元素が前 記炭化ケィ素単結晶中に均一に分布しているか、 局所的に偏在してしるかによ つても、 評価が異なってくる。 なお、 ここで 「不純物元素」 とは、 1 9 8 9年 I U P A C無機化学命名法改訂版の周期律表における 1族から 1 7族元素に属 しかつ原子番号 3以上 (伹し、 炭素原子、 酸素原子及びケィ素原子を除く) で ある元素をいう。 また、 成長する炭化ケィ素単結晶に n型あるいは p型の導電 性を付与するため故意にそれぞれ窒素、 アルミニウムなどのドーパント元素を 添加した場合はそれらも除くこととする。
前記昇華用原料としての炭化ケィ素粉末は、 例えば、 ケィ素源として、 ゲイ 素化合物の少なくとも 1種と、 炭素源として、 加熱により炭素を生ずる有機化 合物の少なくとも 1種と、 重合触媒又は架橋触媒とを溶媒中で溶解し乾燥して 得られた粉末を非酸化性雰囲気下で焼成することにより得られる。
前記ケィ素化合物としては、 液状のものと固体のものとを併用することがで きるが、 少なくとも 1種は液状のものから選択する。
前記液状のものとしては、 アルコキシシラン及びアルコシシシラン重合体が 好適に用いられる。
前記アルコキシシランとしては、 例えば、 メ卜キシシラン、 エトキシシラン 、 プロボキシシラン、 ブトキシシラン等が挙げられ、 これらの中でもハンドリ ングの点でェトキシシランが好ましい。
前記アルコキシシランとしては、 モノアルコキシシラン、 ジアルコキシシラ ン、 トリアルコキシシラン、 テトラアルコキシシランのいずれであってもよい が、 テトラアルコキシシランが好ましい。
前記アルコキシシラン重合体としては、 重合度が 2〜1 5程度の低分子量重 合体 (オリゴマー) 及びケィ酸ポリマーが挙げられる。 例えば、 テトラエトキ シシランオリゴマ一が挙げられる。
前記固体のものとしては、 S i〇、 シリカゾル (コロイド状超微細シリカ含 有液、 内部に OH基やアルコキシル基を含む) 、 二酸化ケイ素 (シリカゲル、 微細シリカ、 石英粉末) 等の酸化ケィ素が挙げられる。
前記ケィ素化合物は、 1種単独で使用してもよいし、 2種以上を併用しても よい。
前記ゲイ素化合物の中でも、 均質性やハンドリング性が良好な点でテトラエ トキシシランのオリゴマー、 テトラエトキシシランのオリゴマーと微粉末シリ 力との混合物、 等が好ましい。
前記ゲイ素化合物は、 高純度であるのが好ましく、 初期における各不純物の 含有量が 2 0 p m以下であるので好ましく、 5 p p m以下であるのがより好 ましい。
前記加熱により炭素を生じる有機化合物としては、 液状のものを単独で用い てもよいし、 液状のものと固体のものとを併用してもよい。
前記加熱により炭素を生ずる有機化合物としては、 残炭率が高く、 かつ触媒 若しくは加熱により重合又は架橋する有機化合物が好ましく、 例えば、 フエノ ール樹脂、 フラン樹脂、 ポリイミド、 ポリウレタン、 ポリビエルアルコール等 の樹脂のモノマーやプレボリマ一が好ましく、 その他、 セルロース、 蔗糖、 ピ ツチ、 タール等の液状物が挙げられる。 これらの中でも、 高純度のものが好ま しく、 フエノール樹脂がより好ましく、 レゾール型フエノール樹脂が特に好ま しい。
前記加熱により炭素を生ずる有機化合物は、 1種単独で用いてもよいし、 2 以上を併用してもよい。
前記加熱により炭素を生ずる有機化合物の純度としては、 目的に応じて適宜 選択することができるが、 高純度の炭化ケィ素粉末が必要な場合には各金属を 5 p m以上含有していない有機化合物を用いることが好ましい。
前記重合触媒及び架橋触媒としては、 前記加熱により炭素を生ずる有機化合 物に応じて適宜選択できるが、 前記加熱により炭素を生ずる有機化合物がフエ ノール樹脂やフラン樹脂の場合、 トルエンスルホン酸、 トルエンカルボン酸、 酢酸、 しゅう酸、 マレイン酸、 硫酸等の酸類が好ましく、 マレイン酸が特に好 ましい。
前記加熱により炭素を生ずる有機化合物に含まれる炭素と、 前記ゲイ素化合 物に含まれるケィ素との比 (以下 「C/ S i比」 と略記) は、 両者の混合物を 1 0 0 o °cにて炭化して得られる炭化物中間体を、 元素分析することにより定 義される。 化学量論的には、 前記 C/ S i比が 3 . 0の時に得られた炭化ケィ 素粉末中の遊離炭素が 0 %となるはずであるが、 実際には同時に生成する S i 〇ガスの揮散により低 CZ S i比において遊離炭素が発生する。 この得られた 炭化ケィ素粉末中の遊離炭素量が適当な量となるように予め配合比を決定して おくのが好ましい。 通常、 1気圧近傍で 1 6 0 0 °C以上での焼成では、 前記 C / S i比を 2 . 0〜2 . 5にすると遊離炭素を抑制することができる。 前記 C / i比が 2 . 5を超えると、 前記遊離炭素が顕著に増加する。 但し、 雰囲気 の圧力を低圧又は高圧で焼成する場合は、 純粋な炭化ケィ素粉末を得るための C/ S i比は変動するので、 この場合は必ずしも前記 CZ S i比の範囲に限定 するものではない。
なお、 前記炭化ケィ素粉末は、 例えば、 前記ゲイ素化合物と前記加熱により 炭素を生ずる有機化合物との混合物を硬化することによつても得られる。 前記硬化の方法としては、 加熱により架橋する方法、 硬化触媒により硬化す る方法、 電子線や放射線による方法、 などが挙げられる。
前記硬化触媒としては、 前記加熱により炭素を生ずる有機化合物の種類等に 応じて適宜選択することができ、 フエノール樹脂やフラン樹脂の場合には、 ト ルエンスルホン酸、 トルエンカルボン酸、 酢酸、 しゅう酸、 塩酸、 硫酸、 マレ イン酸等の酸類、 へキサミン等のアミン酸などが好適に挙げられる。 これらの 硬化触媒を用いる場合、 該硬化触媒は溶媒に溶解し又は分散される。 前記触媒 としては、 低級アルコール (例えばエチルアルコール等) 、 エヂルェ一テル、 ァセトンなどが挙げられる。
以上により得られた炭化ケィ素粉末は、 窒素又はアルゴン等の非酸化性雰囲 気中、 8 0 0〜: L 0 0 0 にて 3 0〜: L 2 0分間、 焼成される。 前記焼成により前記炭化ケィ素粉末が炭化物になり、 該炭化物を、 アルゴン 等の非酸化性雰囲気中、 1350〜 2000°Cで焼成することにより、 炭化ケ ィ素粉末が生成される。
前記焼成の温度と時間とは、 得ようとする炭化ケィ素粉末の粒径等に応じて 適宜選択することができ、 炭化ケィ素粉末のより効果的な生成の点で前記温度 は 1600〜 1900°Cが好ましい。
なお、 前記焼成の後に、 不純物を除去し高純度の炭化ケィ素粉末を得る目的 で、 例えば、 2000〜 2400 °Cで 3〜 8時間加熱処理を行うのが好ましい 以上により得られた炭化ケィ素粉末は、 大きさが不均一であるため、 解粉、 分級、 等を行うことにより所望の粒度にすることができる。
前記炭化ケィ素粉末の平均粒径としては、 10〜700 mが好ましく、 1 00〜400 mがより好ましい。
前記平均粒径が 1 未満であると、 炭化ゲイ素単結晶を成長させるため の炭化ケィ素の昇華温度 (1800〜 2700 ) で速やかに焼結を起こして しまうため、 昇華表面積が小さくなり、 炭化ケィ素単結晶の成長が遅くなるこ とがあり、 また、 炭化ケィ素粉末を前記反応容器内へ収容させる際や、 成長速 度調整のために再結晶雰囲気の圧力を変化させる際に、 炭化ケィ素粉末が飛散 し易くなる。 一方、 前記平均粒径が 500 mを超えると、 炭化ゲイ素粉末自 身の比表面積が小さくなるため、 やはり炭化ゲイ素単結晶の成長が遅くなるこ とがある。
前記炭化ケィ素粉末としては、 4H, 6H, 15R, 3C、 これらの混合物 等のいずれであってもよい。 なお、 前記 3 Cの炭化ケィ素粉末のグレードとし ては、 特に制限はなく、 一般に市販されているものでもよいが、 高純度のもの であることが好ましい。
なお、 該炭化ケィ素粉末を用いて成長させた炭化ケィ素単結晶に n型又は P 型の導電性を付与する目的で窒素又はアルミニウムなどをそれぞれ導入するこ とができ、 該窒素又はアルミニウムを前記炭化ケィ素粉末の製造時に導入する 場合は、 まず前記ケィ素源と、 前記炭素源と、 窒素源又はアルミニウム源から なる有機物質と、 前記重合又は架橋触媒とに均一に混合すればよい。 このとき 、 例えば、 フエノール樹脂等の炭素源と、 へキサメチレンテトラミン等の窒素 源からなる有機物質と、 マレイン酸等の重合又は架橋触媒とを、 エタノール等 の溶媒に溶解する際に、 テトラエトキシシランのオリゴマー等のケィ素源と十 分に混合することが好ましい。
前記窒化源からなる有機物質としては、 加熱により窒化を発生する物質が好 ましく、 例えば、 高分子化合物 (具体的には、 ポリイミド樹脂、 及びナイロン 樹脂等) 、 有機アミン (具体的には、 へキサメチレンテトラミン、 アンモニア 、 トリェチルァミン等、 及びこれらの化合物、 塩類) の各種アミン類が挙げら れる。 これらの中でも、 へキサメチレンテトラミンが好ましい。 また、 へキサ ミンを触媒として合成され、 その合成工程に由来する窒素を樹脂 1 gに対して 2 . O mm o 1以上含有するフエノ一ル樹脂も、 該窒化源からなる有機物質と して好適に用いることができる。 こられの窒化源からなる有機物質は、 1種単 独で使用してもよいし、 2種以上を併用してもよい。 なお、 前記アルミニウム 源からなる有機物質としては、 特に制限はなく、 目的に応じて適宜選択するこ とができる。
前記窒素源からなる有機物質の添加量としては、 前記ケィ素源と前記炭素源 とを同時に添加する場合には、 前記ケィ素源 1 g当たり窒素が l mm o 1以上 含有することが好ましく、 前記ケィ素源 1 gに対して 8 0〜1 0 0 0 gが好 ましい。 前記昇華用原料の昇華は、 再結晶化を行うのに必要な加熱を行うための加熱 手段とは別個の加熱手段を用いて行うのが、 加熱手段の精密制御、 独立制御、 干渉防止等の点で好ましい。 このような態様の場合、 加熱手段の数は、 2以上 となるが、 本発明においては 2つが好ましい。 前記加熱手段が 2つの好ましい態様の場合、 前記昇華用原料を昇華可能とす る昇華雰囲気を形成するための加熱手段が第一加熱手段であり、 昇華された前 記昇華用原料が前記炭化ゲイ素単結晶の種結晶近傍でのみ再結晶可能とする前 記再結晶雰囲気を形成するための加熱手段が第二加熱手段である。
前記第一加熱手段は、 前記反応容器の一端部 (昇華用原料収容部) 側に配置 され、 前記昇華用原料を昇華可能とするように昇華雰囲気を形成し、 前記昇華 用原料を加熱して昇華させる。
前記第一加熱手段としては、 特に制限はなく、 目的に応じて適宜選択するこ とができ、 例えば、 誘導加熱手段、 抵抗加熱手段などが挙げられるが、 温度制 御が容易な点で誘導加熱手段が好ましく、 該誘導加熱手段の中でも、 誘導加熱 可能なコイルであるのが好ましい。
前記第一加熱手段が誘導加熱可能なコイルである場合、 その環巻された卷数 としては、 特に制限はなく、 前記第二加熱手段との距離、 前記反応容器の材料 等により加熱効率や温度効率が最適となるように決定することができる。 一炭化ケィ素単結晶の成長一
前記炭化ケィ素単結晶の成長は、 前記反応容器の前記他端部 (種結晶配置部 ) に配置された炭化ケィ素単結晶の種結晶上で行われる。
前記炭化ケィ素単結晶の種結晶としては、 その結晶の多型、 大きさ等につい ては、 目的に応じて適宜選択することができるが、 前記結晶の多型としては、 通常、 得ようとする炭化ケィ素単結晶の多型と同じ多型が選択される。
前記炭化ケィ素単結晶を前記種結晶上に再結晶化し、 成長させるには、 前記 昇華用原料が昇華する温度よりも低い温度にし、 昇華した前記昇華用原料が前 記種結晶近傍でのみ再結晶可能となるような再結晶雰囲気 (換言すれば、 前記 種結晶が配置される面の径方向において、 中心部 (内側領域の中心) に近づく ほど温度が低くなるような温度分布となる雰囲気) を形成するのが好ましい。 前記再結晶雰囲気の形成は、 前記第二加熱手段により好適に行うことができ る。 このような第二加熱手段は、 前記反応容器の他端部 (種結晶配置部) 側に 配置され、 前記第一加熱手段により昇華された前記昇華用原料が炭化ゲイ素単 結晶の種結晶近傍でのみ再結晶可能となるように再結晶雰囲気を形成し、 該昇 華用原料を前記炭化ケィ素単結晶の種結晶上に再結晶させる。
前記第二加熱手段としては、 特に制限はなく、 目的に応じて適宜選択するこ とができ、 例えば、 誘導加熱手段、 抵抗加熱手段などが挙げられるが、 温度制 御が容易な点で誘導加熱手段が好ましく、 該誘導加熱手段の中でも、 誘導加熱 可能なコイルであるのが好ましい。
前記第二加熱手段が誘導加熱可能なコイルである場合、 その環巻された巻数 としては、 特に制限はなく、 前記第一加熱手段との距離、 前記反応容器の材料 等により加熱効率や温度効率が最適となるように決定することができる。 前記第二加熱手段に通電する誘導加熱電流の量は、 前記第一加熱手段に通電 する誘導加熱電流の量との関係で適宜決定することができ、 両者の関係として は、 前記第一加熱手段における誘導加熱電流の電流値が、 前記第二加熱手段に おける誘導加熱電流の電流値よりも大きくなるように設定するのが好ましい。 この場合、 前記昇華用原料が昇華する雰囲気の温度よりも前記種結晶上近傍で の再結晶雰囲気の温度の方が低く維持され、 再結晶化が容易に行われる点で有 利である。
また、 前記第二加熱手段における誘導加熱電流の電流値としては、 成長する 炭^ケィ素単結晶の径が大きくなるにつれて、 連続的又は段階的に小さくなる ように制御するのが好ましい。 この場合、 前記炭化ケィ素単結晶が成長するに つれて前記第二加熱手段による加熱量が小さく制御されるので、 成長を続ける 前記炭化ゲイ素単結晶の近傍でしか再結晶が行われず、 該炭化ケィ素単結晶の 周囲に多結晶が生ずることが効果的に抑制される点で有利である。
なお、 前記第二加熱手段における誘導加熱電流の電流値としては、 前記炭化 ケィ素単結晶の種結晶の径が大きい場合には小さくなるように制御し、 該径が 小さい場合には大きくなるように制御するのが好ましい傾向がある。
本発明においては、 前記第二加熱手段は、 前記第一加熱手段とは独立にその 制御を行うことができるので、 炭化ケィ素単結晶の成長速度に応じて、 該第二 加熱手段の加熱量を適宜調節することにより、 炭化ケィ素単結晶の全成長過程 を通して好ましい成長速度を維持することができる。
前記第二加熱手段により形成される再結晶雰囲気の温度としては、 前記第一 加熱手段により形成される前記昇華雰囲気の温度よりも、 3 0〜3 0 0 °C低い のが好ましく、 3 0〜1 5 0 °C低いのがより好ましい。
前記第二加熱手段により形成される再結晶雰囲気の圧力としては、 1 0〜1 O O T o r r ( 1 3 3 0〜; L 3 3 0 0 P a ) が好ましい。 なお、 この圧力条件 にする場合には、 常温においては減圧にせず、 設定温度にまで加熱をしてから 減圧を行い、 前記所定の数値範囲内になるように圧力条件を調整するのが好ま しい。
また、 前記再結晶雰囲気は、 アルゴンガス等の不活性ガス雰囲気にしておく のが好ましい。
本発明においては、 前記第一加熱手段により制御される、 前記反応容器内の 、 昇華用原料を収容した一端部 (昇華原料収容部) 側の温度と、 前記第二加熱 手段により制御される、 前記反応容器内の、 前記炭化ケィ素単結晶の種結晶を 配置した他端部 (種結晶配置部) 側における中心部の温度及び該中心部の外側 に位置し反応容器の内周側面部との隣接部の温度とを、 以下のような関係で制 御するのが、 大径の炭化ゲイ素単結晶を得る観点からは好ましい。 即ち、 昇華 用原料を収容した一端部側の温度を とし、 炭化ケィ素単結晶の種結晶を配 置した他端部側の温度を T2 とし、 該他端部側における、 反応容器の内周側面 部との隣接部の温度 Τ3 とした時、 Τ3 — Τ2及び Ί\ — Τ2が連続的又は段階 的に大きくなるように制御するのが好ましい。
この場合、 1 一 Τ2が連続的又は段階的に大きくなるので、 経時的に、 炭 化ケィ素単結晶が前記一端部側に向かって成長を続けても、 該炭化ケィ素単結 晶の結晶成長先端側は常に再結晶が起こり易い状態に維持される。 一方、 Τ3 一 Τ2 が連続的又は段階的に大きくなるので、 経時的に、 炭化ケィ素単結晶が 前記他端部側における外周方向に向かって成長を続けても、 該炭化ケィ素単結 晶の結晶成長外周端側は常に再結晶が起こり易い状態に維持される。 その結果 、 炭化ケィ素多結晶の生成が効果的に抑制され、 該炭化ケィ素単結晶は、 その 径を拡大しながらその厚みを増す方向に成長を続け、 最終的には、 炭化ケィ素 多結晶等の混入がなく、 大径の炭化ケィ素単結晶が得られる点で有利である。 本発明においては、 前記炭化ゲイ素単結晶は、 前記第一の態様から第三の態 様により再結晶し成長する。
前記第一に態様においては、 前記炭化ケィ素単結晶を、 その全成長過程を通 して、 その成長面の全面を凸形状に保持したまま成長させる。 この場合、 前記 炭化ケィ素単結晶の成長面の全面において、 前記他端部 (種結晶配置部) 側に 陥没した凹部が輪状に形成されることがない。
前記第二の態様においては、 前記炭化ゲイ素単結晶の成長が、 前記反応容器 の前記端部における、 該反応容器内の周側面部との隣接部を除く領域 (内側領 域) でのみ行われる。 この場合、 炭化ケィ素多結晶が、 前記他端部 (種結晶配 置部) における、 該反応容器内の周側面部に、 接触した状態で成長することが ない。 このため、 成長した炭化ゲイ素単結晶を室温まで冷却した際に、 炭化ケ ィ素多結晶側から炭化ケィ素単結晶側に熱膨張差に基づく応力が集中して印加 されることがなく、 得られる炭化ケィ素単結晶に割れ等の破損が生じてしまう ことがない。
前記第三の態様においては、 前記炭化ケィ素単結晶を、 その全成長過程を通 して、 その成長面の全面を凸形状に保持したまま、 かつ前記反応容器の前記端 部における、 該反応容器内の周側面部との隣接部を除く領域 (内側領域) での み行われる。
この場合、 前記炭化ケィ素単結晶の成長面の全面において、 前記反応容器の 前記他端部 (種結晶配置部) 側に陥没した凹部が輪状に形成されることがなく 、 また、 炭化ケィ素多結晶が、 前記他端部 (種結晶配置部) における、 該反応 容器内の周側面部に、 接触した状態で成長することがない。 このため、 成長し た炭化ケィ素単結晶を室温まで冷却した際に、 炭化ケィ素多結晶側から炭化ケ ィ素単結晶側に熱膨張差に基づく応力が集中して印加されることがなく、 得ら れる炭化ケィ素単結晶に割れ等の破損が生じてしまうことがない。
成長する前記炭化ケィ素単結晶の形状としては、 その成長面の全面がその成 長方向側に凸形状であるのが好ましく、 前記一端部 (昇華用原料収容部) と前 記他端部 (種結晶配置部) とが対向している場合には、 前記昇華用原料側、 即 ち前記一端部 (昇華用原料収容部) 側に向かってその成長面の全面が凸形状で あるのが好ましい。
この場合、 多結晶や多型の混入が多く、 熱膨張差による応力が集中し易いと 考えられるところの、 前記他端部 (種結晶配置部) 側に陥没した凹部が存在し ない点で好ましい。
なお、 成長する前記炭化ケィ素単結晶の形状としては、 その成長面の全面が その成長方向側と反対側に凹形状となっている部分を含まない限り、 前記凸形 状となっていなくても平坦な箇所が一部に含まれていてもよい。
また、 炭化ゲイ素単結晶を含む炭化ゲイ素の結晶の形状としては、 前記昇華 用原料側、 即ち前記一端部側に向かって略山形であるのが好ましく、 その径が 漸次小さくなる略山形であるのがより好ましい。 換言すると、 炭化ケィ素単結 晶を含む炭化ケィ素の結晶を、 その全成長過程を通して、 昇華用原料側に近づ くほど径が漸次小さくなる略山形を保持したまま成長させることが好ましい。 なお、 前記略山形である炭化ケィ素の結晶における裾野部分、 即ち外周部分 においては、 炭化ケィ素多結晶や多型が混入することがあるが、 この混入は、 前記種結晶の厚み、 大きさ、 形状等と、 前記第二加熱手段による加熱量との条 件の組み合わせにより、 その発生を防止することができる。 該炭化ケィ素多結 晶ゃ多型の混入を防止すると、 前記炭化ケィ素を含む炭化ケィ素の結晶が、 炭 化ケィ素単結晶のみからなるものとすることができるので好ましい。
なお、 本発明においては、 前記反応容器内の周側面部にリング状の板部材を 前記他端部 (種結晶配置部) と略平行に固定配置してもよい。 この場合、 前記 炭化ケィ素単結晶を前記種結晶上に再結晶し成長させる際、 前記種結晶上には 前記炭化ゲイ素単結晶のみを再結晶し成長させることができ、 炭化ケィ素多結 晶を発生させないか、 あるいは前記リング状の板部材上に選択的に析出させる ことができる。 なお、 この塲合、 得られる炭化ゲイ素単結晶の径は、 前記リン グ状の板部材の分だけ制約を受ける。
本発明においては、 前記炭化ケィ素単結晶の効率的な成長を行う目的で、 前 記第一加熱手段と前記第二加熱手段との間の干渉を防止するための干渉防止手 段を用いることが好ましい。
前記干渉防止手段としては、 特に制限はなく、 前記第一加熱手段及び前記第 二加熱手段の種類等に応じて適宜選択することができるが、 例えば、 干渉防止 コイル、 干渉防止板などが挙げられ、 前記第一加熱手段及び前記第二加熱手段 が前記誘導加熱可能なコィルである場合には、 干渉防止コイルなどが好適に挙 げられる。
前記干渉防止コイル (単に 「コイル」 と称することがある) は、 誘導電流を 通電可能であり、 誘導電流を通電することにより、 該第一加熱手段と該第二加 熱手段との間における干渉を防止する機能を有するものが好ましい。
前記干渉防止コィルは、 前記第一加熱手段と前記第二加熱手段との間に配置 されるのが好ましい。 この場合、 前記第一加熱手段及び前記第二加熱手段によ る誘導加熱を同時に行った際に、 該干渉防止コイルに誘電電流が流れ、 該干渉 防止コイルが両者間における干渉を極小化し防止することができる点で好まし い。
前記干渉防止コイルは、 それ自身に流れる誘導電流により加熱されないよう に設計するのが好ましく、 それ自身冷却可能であるのがより好ましく、 水等の 冷却媒体を流通可能なのが特に好ましい。 この場合、 該干渉防止コイルに前記 第一毛熱手段及び前記第二加熱手段における誘導電流が流れたとしても、 該干 渉防止コイルが加熱されることがなく、 このため前記反応容器を加熱すること もない点で好ましい。 前記干渉防止コイルの環巻された巻数としては、 特に制限はなく、 前記第一 加熱手段及び前記第二加熱手段の種類、 これらに通電される電流の量等により 異なり一概に規定することはできないが、 一重程度であっても十分である。 以上、 本発明の炭化ケィ素単結晶の製造方法によると、 高品質な本発明の炭 化ケィ素単結晶を効率よく、 かつ割れ等の破損がない状態で容易に製造するこ とができる。
(炭化ケィ素単結晶)
本発明の炭化ケィ素単結晶は、 前記本発明の炭化ゲイ素単結晶の製造方法に より製造される。
本発明の炭化ゲイ素単結晶は、 非破壊で光学的に画像検出した結晶欠陥 ひ° イブ欠陥) が 1 0 0個/ c m2以下であるのが好ましく、 5 0個 Z c m2以下 であるのがより好ましく、 1 0個 Z c m2以下であるのが特に好ましい。
前記結晶欠陥は、 例えば、 以下のようにして検出することができる。 即ち、 該炭化ケィ素単結晶に対し、 反射照明に適当量の透過証明を加えた照明を当て 、 該炭化ケィ素単結晶の表面の結晶欠陥 (パイプ欠陥) の開口部に顕微鏡焦点 を合わせた際に、 該パイプ欠陥の内部へと続く部分が該開口部の像よりも弱い 影として該開口部につながって観察することができる条件下で、 該炭化ケィ素 単結晶の全面を走査して顕微鏡画像を得た後、 該顕微鏡画像を画像処理するこ とにより、 該パイプ欠陥に特長的な形状のみを抽出してその数を計測すること により、 該パイプ欠陥を検出することができる。
なお、 上記の検出によると、 前記炭化ゲイ素単結晶の表面に付着した異物や 研磨傷、 空隙欠陥などの前記パイプ欠陥以外の欠陥が混在する中から、 前記パ イブ欠陥のみを非破壊で正確に検出することができ、 しかも、 例えば 0 . 3 5 m程度の微小な前記パイプ欠陥までも正確に検出することができる。 一方、 従来から、 溶融アル力リにより前記パイプ欠陥部分を選択的にエッチングし、 拡大して検出する方法が行われているが、 この方法の場合には、 隣接する前記 パイプ欠陥同士がエッチングにより互いに合一し、 結果として前記パイプ欠陥 の数が少なく検出されてしまうという問題がある。
前記炭化ケィ素単結晶における前記不純物元素の総含有量としては、 1 0 p p m以下であるのが、好ましい。
本発明の炭化ケィ素単結晶は、 多結晶や多型の混入やマイク口パイプ等の結 晶欠陥がなく、 極めて高品質であるので、 絶縁破壊特性、 耐熱性、 耐放射線性 等に優れ、 半導体ウェハ等の電子デバイス、 発光ダイオード等の光学デバイス などに特に好適である。
(炭化ゲイ素単結晶の製造装置)
本発明の炭化ケィ素単結晶の製造装置は、 昇華させた前記昇華用原料を再結 晶させて炭化ケィ素単結晶を成長させ、 本発明の炭化ケィ素単結晶を製造する 前記炭化ケィ素単結晶の製造装置は、 坩堝と、 第一誘導加熱コイルと、 第二 誘導加熱コイルとを少なくとも備えてなり、 必要に応じて適宜選択したその他 の部材等を備えてなる。
前記坩堝としては、 特に制限はなく、 公知のものの中から適宜選択すること ができ、 一般に容器本体と蓋体とを備える。
前記坩堝の材質としては、 特に制限はなく、 公知のものの中から適宜選択す ることができるが、 黒鉛製であるのが特に好ましい。
前記容器本体としては、 前記昇華用原料を収容することができる機能を有す る限り特に制限はなく、 公知のものを採用することができる。
前記蓋体としては、 前記容器本体に対し着脱可能であるのが好ましく、 公知 のものを採用することができる。 前記容器本体と前記蓋体とは、 嵌合、 螺合等 のいずれで着脱自在に設計されていてもよいが、 螺合によるものが好ましい。 前記炭化ケィ素単結晶の製造装置においては、 通常、 前記蓋体が前記容器本 体に装着された際に該容器本体内に収容された前記昇華用原料に対向する面の 略中央に前記炭化ケィ素単結晶の種結晶が配置される。
前記第一誘導加熱コイルは、 通電により加熱し、 前記昇華用原料を昇華可能 となるように昇華雰囲気を形成することができる限り特に制限はなぐ 誘導加 熱可能なコイルなどが好適に挙げられる。 ·
前記第一誘導加熱コイルは、 前記坩堝における、 前記昇華用原料が収容され た部分の外周に環巻された状態で配置される。
前記第二誘導加熱コイルは、 前記第一誘導加熱コイルにより昇華された前記 昇華用原料が前記炭化ケィ素の種結晶近傍でのみ再結晶可能となるように再結 晶雰囲気を形成し、 該昇華用原料を前記炭化ケィ素の種結晶上に再結晶させる ことができる限り特に制限はなく、 誘導加熱可能なコィルなどが挙げられる。 前記第二誘導加熱コイルは、 前記坩堝における、 前記炭化ケィ素の種結晶が 配置された部分の外周に環巻された状態で配置される。
前記炭化ケィ素単結晶の製造装置においては、 前記第一誘導加熱コイルが前 記昇華用原料を昇華可能となるように昇華雰囲気を形成し、 前記昇華用原料を 昇華させる。 そして、 前記第二誘導加熱コイルが、 前記第一誘導加熱コイルに より昇華された前記昇華用原料が前記種結晶近傍でのみ再結晶可能となるよう に再結晶雰囲気を形成し、 該昇華用原料を前記種結晶上に再結晶させる。 この ため、 成長する炭化ケィ素単結晶が、 その全成長過程において、 その成長面の 全面がその成長方向に向かって凸形状が維持され、 前記蓋体側に陥没した凹部 が輪状に形成されることがなく、 また、 炭化ケィ素多結晶が、 前記容器本体内 の周側面部に接触した状態で成長することもない。 このため、 成長した炭化ケ ィ素単結晶を室温まで冷却した際に、 炭化ケィ素多結晶側から炭化ケィ素単結 晶側に熱膨張差に基づく応力が集中して印加されることがなく、 得られる炭化 ケィ素単結晶に割れ等の破損が生じてしまうことがない。 その結果、 従来にお ける前記諸問題、 即ち、 割れ等の破損がなく、 多結晶や多型の混入やマイクロ パイプ等の結晶欠陥が存在しない高品質の炭化ゲイ素単結晶が効率よくかつ確 実に製造することができる。
以上、 本発明の炭化ゲイ素単結晶の製造装置によると、 高品質な本発明の炭 化ケィ素単結晶を効率よく、 かつ割れ等の破損がない状態で容易に製造するこ とができる。 以下、 本発明の実施例を説明するが、 本発明はこれらの実施例に何ら限定さ れるものではない。
(実施例 1 )
F i g . 1に示す炭化ゲイ素単結晶の製造装置 1を用いて炭化ケィ素単結晶 を製造した。 なお、 炭化ケィ素単結晶の製造装置 1を実施すると本発明の炭化 ケィ素単結晶の製造方法をも実施することになる。
炭化ケィ素単結晶の製造装置 1は、 昇華用原料 4 0を収容可能な容器本体 1 2、 及び容器本体 1 2に対し螺合により着脱可能であり、 容器本体 1 2に装着 された際に容器本体 1 2内に収容された昇華用原料 4 0に対向する面の略中央 に炭化ゲイ素単結晶の種結晶 5 0を配置可能な蓋体 1 1を備えた黒鉛製坩堝 1 0と、 黒鉛製坩堝 1 0を石英管 3 0の内部に固定させる支持棒 3 1と、 石英管 3 0の外周であって黒鉛製坩堝 1 0における昇華用原料 4 0が収容された部分 に配置された第一誘導加熱コイル 2 1と、 石英管 3 0の外周であって黒鉛製坩 堝 1 0における蓋体 1 1が位置する部分に配置された第二誘導加熱コイル 2 0 とを備える。 なお、 黒鉛製坩堝 1 0は、 断熱材 (図示せず) で覆われている。 昇華用原料 4 0は、 上述した、 高純度のテトラエトキシシラン重合体をケィ 素源とし、 レゾ一ル型フエノール樹脂を炭素源とし、 これらを均一に混合して 得た混合物をアルゴン雰囲気下で加熱焼成して得られた炭化ケィ素粉末 (6 H (一部 3 Cを含む) 、 平均粒径が 2 0 0 m) であり、 炭化ケィ素単結晶の種 結晶 5 0は、 6 Hのレ一リ一結晶である。
炭化ケィ素単結晶の製造装置 1において、 第一誘導加熱コイル 2 1に電流を 通電させこれを加熱した。 その熱で昇華用原料 4 0を加熱し (2 5 0 0 °Cにま で加熱した後、 アルゴンガス雰囲気で圧力を 5 0 T o r r ( 6 6 4 5 P a ) に 維持した) 。 昇華用原料 4 0は、 所定の温度 (2 5 0 0 °C) にまで加熱されて 昇華した。 昇華した昇華用原料 4 0は、 再結晶化温度にまで冷却されない限り 再結晶しない。 ここで、 蓋体 1 1側は、 第二誘導加熱コイル 2 0により加熱さ れており、 昇華用原料 4 0側よりも温度が低く (種結晶の温度は 2 4 0 0 °C) 、 昇華した昇華用原料 4 0が再結晶し得る再結晶雰囲気 (圧力は 5 O T o r r ( 6 6 4 5 P a ) ) に維持されているため、 炭化ケィ素単結晶の種結晶 5 0上 近傍にのみ炭化ケィ素が再結晶し、 炭化ケィ素の結晶が成長した。
このとき、 F i g . 2に示す通り、 炭化ケィ素単結晶の種結晶 5 0上には炭 化ケィ素単結晶 6 0が再結晶し成長し、 炭化ケィ素単結晶の種結晶 5 0の外周 縁部には炭化ケィ素多結晶 7 0が再結晶し成長する。 炭化ケィ素単結晶 6 0の 成長は、 その全成長過程において昇華用原料 4 0側に向かって凸形状が維持さ れ、 蓋体 1 1側に陥没した凹部が輪状に形成されることがなく、 また、 炭化ケ ィ素多結晶 7 0が、 容器本体 1 2内の周側面部 1 3に接触した状態で成長する こともなかった。
その結果、 F i g . 3に示す通り、 成長した炭化ケィ素単結晶 6 0を室温ま で冷却した際に、 炭化ケィ素多結晶 7 0側から炭化ケィ素単結晶 6 0側に熱 H彭 張差に基づく応力が集中して印加されることがなく、 得られる炭化ケィ素単結 晶 6 0に割れ等の破損が生じてしまうこともなかった。
得られた炭化ケィ素単結晶 6 0について、 評価したところ、 多結晶や多型の 結晶の混入がなく、 マイクロパイプの結晶欠陥も 4個 Z c m2 とほとんど存在 せず極めて高品質であった。
なお、 前記マイクロパイプの結晶欠陥の検出は、 得られた炭化ゲイ素単結晶 6 0を厚み 0 . 4 mmに切断し、 鏡面研磨により表面粗さ 0 . 4 nmのウェハ とし、 アルカリ洗浄により表面の異物を極力除去した後に、 後述の通り検出し た。 即ち、 アルカリ洗浄後の前記ウェハに対し、 反射証明に適当量の透過証明 を加えた照明を当て、 前記ウェハ表面のマイクロパイプの開口部に顕微鏡焦点 を合わせた際に、 該マイクロパイプの内部へと続く部分が該開口部の像よりも 弱い影として該開口部につながって観察することができる条件下で、 前記ゥェ 八の全面を走査して顕微鏡画像を得た後、 該顕微鏡画像を画像処理することに より、 該マイク口パイプに特長的な形状のみを抽出してその数を計測すること により、 該マイクロパイプを検出した。 なお、 この検出では、 0. 35 m程 度の微小なマイク口パイプまでも非破壊で正確に検出した。
(実施例 2 )
実施例 1において、 黒鉛製坩堝 1 0を F i g . 4に示す黒鉛製坩堝 1 0に変 更した以外は実施例 1と同様にした。 その結果、 実施例 1と同様の結果が得ら れた。 F i g. 4に示す黒鉛製坩堝 1 0は、 蓋体 1 1に内側領域形成部 1 5が 設けられている点でのみ、 実施例 1で使用した F i g. 1に示す黒鉛製坩堝 1 0と相違する。 内側領域形成部 1 5は、 F i g. 4に示す通り、 炭化ゲイ素単 結晶の種結晶が配置される前記内側領域を底面とする円柱状であり、 その一端 が黒鉛製坩堝 1 0の外部に露出している。 内側領域形成部 1 5の材料は、 熱伝 導度が 1 1 7 J / / s /°C (W/m · K) であり、 内側領域形成部 1 5以外 の蓋体 1 1の材料は、 熱伝導度が 1 29 J /m/ s /。C (W/m · K) であつ た。
実施例 2の場合、 前記内側領域が前記外側領域とは別の部材 (内側領域形成 部 1 5) で形成されているため、 接触抵抗の差により加熱され難くなつており 、 また、 内側領域形成部 1 5の一端が外部に露出しているので熱を外部に放熱 し易くなつているので、 炭化ケィ素の再結晶が容易に行われた。
(実施例 3)
実施例 1において、 黒鉛製坩堝 1 0を F i g. 5に示す黒鉛製坩堝 1 0に変 更した以外は実施例 1と同様にした。 その結果、 実施例 1と同様の結果が得ら れた。 F i g . 5に示す黒鉛製坩堝 1 0は、 蓋体 1 1に内側領域形成部 1 5が 設けられている点でのみ、 実施例 1で使用した F i g. 1に示す黒鉛製坩堝 1 0と相違する。 内側領域形成部 1 5は、 F i g. 5に示す通り、 炭化ケィ素単 結晶の種結晶が配置される前記内側領域を底面とし前記外側に向けて不連続的 に 2段階その径が大きくなる階段状を底面とする形状であり、 その一端が外部 に露出している。 内側領域形成部 1 5の材料は、 熱伝導度が 1 1 7 J/mXs /°C (W/m - K) であり、 内側領域形成部 15以外の蓋体 1 1の材料は、 熱 伝導度が 129 J / / s /°C (W/m · K) であった。
実施例 3の場合、 前記内側領域が前記外側領域とは別の部材で形成されてい るため、 接触抵抗の差により加熱され難くなつており、 また、 内側領域形成部 1 5の一端が外部に露出しているので熱を外部に放熱し易くなつているので、 炭化ケィ素の再結晶が容易に行われた。
(実施例 4)
実施例 1において、 以下の点が相違する以外は実施例 1と同様にした。 即ち 、 得られた炭化ケィ素粉末が、 6H、 平均粒径が 300 /xmであり、 炭化ケィ 素単結晶の種結晶 50は、 実施例 1で得られたパルクの炭化ケィ素単結晶を切 断し、 全面を鏡面研磨して得られた 15 Rのウェハ (直径 40mm,厚み 0. 5mm) によるウェハである。
そして、 第一誘導加熱コイル 21に 20 kHzの電流を通電させこれを加熱 し、 第二誘導加熱コイル 20に 40 kHzの電流を通電させこれを昇温し、 加 熱した。 黒鉛製坩堝 10の下部 (昇華用原料 40の収容部) を 2312°C、 黒 鉛製坩堝 10の上部 (蓋体 1 1における炭化ケィ素単結晶の種結晶 50の配置 部) を 2290 にそれぞれ加熱した。 このとき、 第一誘導加熱コイル 21へ の供給電力は 10. 3 kWであり、 誘導加熱電流 (LC回路への供給電流) は 26 OAであり、 第二誘導加熱コイル 20への供給電力は 4. 6 kWであり、 誘導加熱電流は 98 Aであった。 圧力を常圧から 1時間かけて 2 OTo r r ( 2658 P a) に減圧し、 20時間維持したところ、 F i g. 6に示すように 、 昇華用原料 40側に向かって凸形状が維持された炭化ケィ素単結晶 60が得 られた。 このとき、 炭化ケィ素単結晶 60における該凸形状の先端までの高さ は 12mmであり、 炭化ケィ素単結晶 60とその周囲に形成された炭化ケィ素 多結晶とを含む炭化ゲイ素の成長結晶の直径は 87 mmであった。 炭化ケィ素 単結晶 60においては、 蓋体 1 1方向に陥没する凹部が輪状に形成されること がなかった。 また、 炭化ゲイ素単結晶 60は、 黒鉛製坩堝 1 0の容器本体 12 の周側面部 13に接触した状態で成長することはなかった。 更に、 炭化ケィ素 単結晶 60は、 その周囲に炭化ゲイ素多結晶 70が僅かしか発生していなかつ た。
(実施例 5 )
実施例 4において、 以下の点が相違する以外は実施例 1と同様にした。 即ち 、 炭化ケィ素単結晶の種結晶 50の直径が 20mm ·厚み 0. 5 mmであり、 黒鉛製坩堝 10の下部 (昇華用原料 40の収容部) を 2349°Cに加熱し、 黒 鉛製坩堝 10の上部 (蓋体 11における炭化ケィ素単結晶の種結晶 50の配置 部) の加熱温度が 231 であり、 その際の第二誘導加熱コイル 20への供 給電力が 5. 5 kWであり、 誘導加熱電流が 118 Aであり、 炭化ケィ素単結 晶 60とその周囲に形成された炭化ゲイ素多結晶とを含む炭化ゲイ素の成長結 晶の直径は 60mmであったこと以外は、 実施例 4と同様であり、 実施例 4と 同様の良好な結果が得られた。
(実施例 6)
実施例 1において、 以下の点が相違する以外は実施例 1と同様にした。 即ち 、 干渉防止コイル 22を内部に水が流れ、 冷却可能な干渉防止コイル 22を用 いた。 得られた炭ィ匕ケィ素粉末が、 6H、 平均粒径が 250 であり、 炭化 ゲイ素単結晶の種結晶 50は、 実施例 4で得られたバルクの炭化ケィ素単結晶 を切断し、 全面を鏡面研磨して得られた直系 25mm ·厚み 2 mmのウェハ ( 6 H) である。
そして、 第一誘導加熱コイル 21に 20 kHzの電流を通電させこれを加熱 し、 第二誘導加熱コイル 20に 40 kHzの電流を通電させこれを加熱した。 黒鉛製坩堝 10の下部 (昇華用原料 40の収容部) 及び上部 (蓋体 11におけ る炭化ケィ素単結晶の種結晶 50の配置部) を 2510°Cまで、 それぞれ昇温 し、 1時間加熱した。 そして、 黒鉛製坩堝 10の下部は同温度 (1\ ) を維持 したまま、 第二誘導加熱コイル 20への供給電力を徐々に低下 (5. 8 kW、 120Aから 4. 2 kW、 90Aまで低下) させることにより、 黒鉛製坩堝 1 0の蓋体 1 1における種結晶配置部の温度を 2 0時間かけて 2 3 5 O r (T2 ) まで、 蓋体 1 1における種結晶配置部の外周部の温度は計算値の推定温度で 2 4 8 0 °C (T3 ) まで、 それぞれ低下させた。 このとき、 同時に圧力を常圧 から 1時間かけて 2 O T o r r ( 2 6 5 8 P a ) に減圧したところ、 F i g . 7に示すように、 昇華用原料 4 0側に向かって凸形状が維持された炭化ケィ素 単結晶 6 0が得られた。 このとき、 炭化ゲイ素単結晶 6 0における該凸形状の 先端までの高さは 1 8 mmであった。 炭化ケィ素単結晶 6 0においては、 蓋体 1 1方向に陥没する凹部が輪状に形成されることがなかった。 また、 炭化ゲイ 素単結晶 6 0は、 黒鉛製坩堝 1 0の容器本体 1 2の周側面部 1 3に接触した状 態で成長することはなかった。 更に、 炭化ケィ素単結晶 6 0は、 その周囲に炭 化ケィ素多結晶 7 0が隣接して発生もしくは成長することがなかつた。
(実施例 7 )
実施例 1において、 以下の点が相違する以外は実施例 1と同様にした。 即ち 、 第二誘導加熱コイル 2 0及び第一誘導加熱コイル 2 1を F i g . 8に示す従 来の炭化ケィ素単結晶の製造装置 8 0における誘導加熱コイル 2 5に代え、 黒 鉛製坩堝の蓋体 1 1における、 容器本体 1 2の内部と対向する側の面 (炭化ケ ィ素単結晶の成長が行われる面) の内、 中心から半径 6 0 mmの円の外側領域 のみに、 X線回折にてガラス状もしくはアモルファス状であると判断される力 一ボン薄膜を、 以下の方法により厚み 1〜1 0 mの厚みに成膜した。 蓋体 1 1における前記外側領域だけを露出した状態で真空チャンバ一内に設置し、 ベ ンゼン雰囲気下、 チャンバ一内の圧力を 0 . 2 3 P aに調節した。 その後、 蓋 体 1 1を 2 . 5 k Vの負電位に保ち、 フィラメントとアノードとの対向部分に 発生させたアーク放電プラズマでベンゼンを分解することによりプラズマ中で 生じた正イオンを高速で、 蓋体 1 1における前記外側領域に衝突させることに より、 成膜を行った。
実施例 7では、 蓋体 1 1における容器本体 1 2の内部と対向する側の面にお いて、 ガラス状カーボンもしくはアモルファス状カーボンの成膜を行った部分 には炭化ケィ素の結晶が成長せず、 成膜を行わなかった中心部分 (直径 6 0 m mの円形部分) のみに、 昇華用原料 4 0側に向かってその成長面の全面が凸形 状に維持された炭化ケィ素単結晶 6 0が成長していた。 このため、 炭化ゲイ素 単結晶 6 0は、 黒鉛製坩堝 1 0の容器本体 1 2の周側面部 1 3に接触した状態 で成長することはなく、 室温まで冷却した際に、 割れ等の破損が生ずることが なかった。
(比較例 1 )
F i g . 6に示す炭化ケィ素単結晶の製造装置 8 0を用いた以外は、 実施例 1と同様にして炭化ケィ素単結晶を製造した。
具体的には、 石英管 3 0の外周であって黒鉛製坩堝 1 0における蓋体 1 1が 位置する部分に配置された第一誘導加熱コイル 2 1及び第二誘導加熱コイル 2 0にを、 石英管 3 0の外周であって黒鉛製坩堝 1 0が位置する部分に略等間隔 に螺旋状に環巻された状態で配置された誘導加熱コイル 2 5に代え、 干渉防止 コイル 2 2を用いなかった以外は実施例 1と同様にした。
比較例 1では、 F i g . 8に示す通り、 蓋体 1 1における、 容器本体 1 2内 部と対向する側の全表面は炭化ケィ素の結晶で覆われ、 蓋体 1 1の外周縁部に 炭化ケィ素多結晶 7 0が容器本体 1 2の内部周側面に接触した状態で成長した 。 この状態において、 室温にまで冷却を行うと、 炭化ケィ素多結晶 7 0側から 炭化ケィ素単結晶 6 0側に熱膨張差に基づく応力が集中して印加され、 F i g . 8に示す通り、 炭化ゲイ素単結晶 6 0に割れ等の欠陥が生じた。
前述したところが、 この発明の好ましい実施態様であること、 多くの変更及 び修正をこの発明の精神と範囲とにそむくことなく実行できることは当業者に よって了承されよう。 本発明によると、 絶縁破壊特性、 耐熱性、 耐放射線性等に優れ、 半導体ゥェ ハ等の電子デバイス、 発光ダイォ一ド等の光学デバイスなどに特に好適であり 、 多結晶や多型の混入やマイクロパイプ等の欠陥のない高品質な炭化ゲイ素単 結晶、 並びに、 該高品質な炭化ケィ素単結晶を効率よく、 かつ割れ等の破損が ない状態で大口径にしかも容易に製造し得る方法及び装置を提供することがで きる。

Claims

請 求 の 範 囲
1 . 昇華させた昇華用原料を再結晶させて炭化ケィ素単結晶を成長させる炭 化ケィ素単結晶の製造方法であつて、
前記炭化ケィ素単結晶を、 その全成長過程を通して、 その成長面の全面を凸 形状に保持したまま成長させることを特徴とする炭ィヒケィ素単結晶の製造方法
2 . 炭化ケィ素単結晶を含む炭化ゲイ素の結晶を略山形に成長させる請求項 1に記載の炭化ケィ素単結晶の製造方法。
3 . 炭化ゲイ素単結晶を含む炭化ゲイ素の結晶を、 その全成長過程を通して 、 昇華用原料側に近づくほど径が漸次小さくなる略山形を保持したまま成長さ せる請求項 1又は 2に記載の炭化ケィ素単結晶の製造方法。
4. 反応容器内に昇華用原料を収容し、 該反応容器内の該昇華用原料に略対 向する端部に炭化ケィ素単結晶の種結晶を配置し、
炭化ケィ素単結晶を含む炭化ゲイ素の結晶の成長が、 該端部における、 該反 応容器内の周側面部との隣接部を除く領域でのみ行われる請求項 1から 3に記 載の炭化ケィ素単結晶の製造方法。
5 . 昇華させた昇華用原料を再結晶させて炭化ケィ素単結晶を成長させる炭 化ケィ素単結晶の製造方法であつて、
反応容器内に前記昇華用原料を収容し、 該反応容器内の該昇華用原料に略対 向する端部に前記炭ィ匕ケィ素単結晶の種結晶を配置し、
前記炭化ケィ素単結晶を含む炭化ケィ素の結晶を、 該端部における、 該反応 容器内の周側面部との隣接部を除く領域でのみ成長させることを特徴とする炭 化ケィ素単結晶の製造方法。
6 . 炭化ケィ素単結晶を含む炭化ケィ素の結晶が、 炭化ケィ素単結晶のみか らなる請求項 2から 5のいずれかに記載の炭化ケィ素単結晶の製造方法。
7 . 反応容器内の一端部側に昇華用原料を収容し、 該反応容器内の他端部側 に炭化ゲイ素単結晶の種結晶を配置し、
前記一端部側に配置した第一加熱手段により、 該昇華用原料を昇華可能とな るように昇華雰囲気を形成し、
前記他端部側に配置した第二加熱手段により、 前記第一加熱手段により昇華 された前記昇華用原料が前記炭化ケィ素単結晶の種結晶近傍でのみ再結晶可能 となるように再結晶雰囲気を形成し、 該昇華用原料を前記炭化ゲイ素単結晶の 種結晶上に再結晶させる請求項 1から 6いずれかに記載の炭化ケィ素単結晶の 製造方法。
8 . 反応容器内において、 再結晶雰囲気の温度が昇華雰囲気の温度よりも 3 0〜3 0 0で低い請求項 7に記載の炭化ケィ素単結晶の製造方法。
9 . 第一加熱手段及び第二加熱手段が誘導加熱可能なコイルである請求項 7 又は 8に記載の炭化ケィ素単結晶の製造方法。
1 0 . 第一加熱手段における誘導加熱電流の電流値が、 第二加熱手段におけ る誘導加熱電流の電流値よりも大きい請求項 9に記載の炭化ケィ素単結晶の製 造方法。
1 1 . 第二加熱手段における誘導加熱電流の電流値を、 成長する炭化ケィ素 単結晶の径が大きくなるにつれて、 連続的又は段階的に小さくする請求項 9又 は 1 0に記載の炭化ゲイ素単結晶の製造方法。
1 2 . 反応容器内の、 昇華用原料を収容した一端部側の温度を Τ, とし、 炭 化ケィ素単結晶の種結晶を配置した他端部側の温度を Τ2 とし、 該他端部側に おける、 反応容器の内周側面部との隣接部の温度 Τ3 とした時、 Τ3 _ Τ2及び Ύ{ _ Τ2が連続的又は段階的に大きくなる請求項 7から 1 1のいずれかに記 載の炭化ケィ素単結晶の製造方法。
1 3 . 第一加熱手段と第二加熱手段との間に、 誘導電流を通電可能であり、 該誘導電流を通電することにより該第一加熱手段と該第二加熱手段との間にお ける干渉を防止する干渉防止手段が配置される請求項 9から 1 2のいずれかに 記載の炭化ケィ素単結晶の製造方法。
1 4. 干渉防止手段が、 冷却水を流通可能なコイルである請求項 1 3に記載 の炭化ケィ素単結晶の製造方法。
1 5 . 一端部が下端部であり、 他端部が上端部である請求項 7から 1 4のい ずれかに記載の炭化ケィ素単結晶の製造方法。
1 6 . 反応容器が、 石英管内に配置された坩堝である請求項 7から 1 5のい ずれかに記載の炭化ケィ素単結晶の製造方法。
1 7 . 他端部における、 炭化ケィ素単結晶の成長が行われる領域と、 該領域 の外周に位置し反応容器の内周側面部と隣接する領域とが、 別の部材で形成さ れており、 かつ該炭化ケィ素単結晶の成長が行われる領域を形成する部材にお ける、 一端が反応容器の内部に露出し、 他端が反応容器の外部に露出している 請求項 7から 1 6のいずれかに記載の炭化ケィ素単結晶の製造方法。
1 8 . 他端部における、 該反応容器内の周側面部との隣接部の表面が、 ガラ ス状カーボンである請求項 5から 1 7のいずれかに記載の炭化ケィ素単結晶の 製造方法。
1 9 . 昇華用原料が、 高純度のアルコキシシラン及びアルコキシシラン重合 体から選択される少なくとも 1種をケィ素源とし、 加熱により炭素を生成する 高純度の有機化合物を炭素源とし、 これらを均一に混合して得た混合物を非酸 化性雰囲気下で加熱焼成して得られた炭化ケィ素粉末である請求項 1から 1 8 のいずれかに記載の炭化ケィ素単結晶の製造方法。
2 0 . 昇華用原料が、 高純度のアルコキシシランをゲイ素源とし、 加熱によ り炭素を生成する高純度の有機化合物を炭素源とし、 これらを均一に混合して 得た混合物を非酸化性雰囲気下で加熱焼成して得られた炭化ゲイ素粉末である 請求項 1力、ら 1 8のいずれかに記載の炭化ゲイ素単結晶の製造方法。
2 1 . 昇華用原料が、 高純度のアルコキシシラン及び Z又は高純度のアルコ キシシランの重合体をケィ素源とし、 加熱により炭素を生成する高純度の有機 化合物を炭素源とし、 これらを均一に混合して得た混合物を非酸化性雰囲気下 で加熱焼成して得られた炭化ケィ素粉末である請求項 1から 1 8のいずれかに 記載の炭化ケィ素単結晶の製造方法。
2 2. 昇華用原料が、 高純度のメトキシシラン、 高純度のエトキシシラン、 高純度のプロボキシシラン、 高純度のブトキシシランからなる群から選択され る 1種及ぴ Z又は 2種以上をケィ素源とし、 加熱により炭素を生成する高純度 の有機化合物を炭素源とし、 これらを均一に混合して得た混合物を非酸化性雰 囲気下で加熱焼成して得られた炭化ゲイ素粉末である請求項 1から 1 8のいず れかに記載の炭化ケィ素単結晶の製造方法。
2 3 . 昇華用原料が、 高純度のメトキシシラン、 高純度のエトキシシラン、 高純度のプロボキシシラン、 高純度のブトキシシランからなる群から選択され る 1種及び/又は 2種以上、 及び Z又は重合度が 2〜1 5のそれらの重合体を ケィ素源とし、 加熱により炭素を生成する高純度の有機化合物を炭素源とし、 これらを均一に混合して得た混合物を非酸化性雰囲気下で加熱焼成して得られ た炭化ケィ素粉末である請求項 1から 1 8のいずれかに記載の炭化ゲイ素単結 晶の製造方法。
2 4. 昇華用原料が、 高純度のモノアルコキシシラン、 高純度のジアルコキ シシラン、 高純度のトリアルコキシシラン、 高純度のテトラアルコキシシラン からなる群から選択される 1種及び Z又は 2種以上、 及び/又は重合度が 2〜 1 5のそれらの重合体をゲイ素源とし、 加熱により炭素を生成する高純度の有 機化合物を炭素源とし、 これらを均一に混合して得た混合物を非酸化性雰囲気 下で加熱焼成して得られた炭化ケィ素粉末である請求項 1から 1 8のいずれか に記載の炭化ケィ素単結晶の製造方法。
2 5 . ゲイ素源がテトラアルコキシシラン重合体であり、 炭素源がフエノー ル樹脂である請求項 1 9〜 2 4に記載の炭化ゲイ素単結晶の製造方法。
2 6. 炭化ゲイ素粉末の不純物元素の各含有量が 0. 5 p pm以下である請 求項 1 9〜 2 5に記載の炭化ケィ素単結晶の製造方法。
2 7 . 請求項 1から 2 6のいずれかに記載の炭化ケィ素単結晶の製造方法に より製造されることを特徴とする炭化ケィ素単結晶。
2 8 . 非破壊で光学的に画像検出した中空パイプ状の結晶欠陥が 1 0 0個/ c m2以下である請求項 2 7に記載の炭化ケィ素単結晶。
2 9 . 不純物元素の総含有量が 1 0 p p m以下である請求項 2 7又は 2 8に 記載の炭化ケィ素単結晶。
3 0 . 昇華させた昇華用原料を再結晶させて炭化ケィ素単結晶を成長させる 炭化ケィ素単結晶の製造装置であって、
昇華用原料を収容可能な容器本体と、 該容器本体に対し着脱可能であり、 該 容器本体に装着された際に該容器本体内に臨む面に炭化ケィ素単結晶の種結晶 を配置可能な蓋体とを備えた坩堝と;
前記坩堝における、 前記昇華用原料が収容された部分の外周に環巻された状 態で配置され、 該昇華用原料を昇華可能となるように昇華雰囲気を形成する第 一誘導加熱コイルと;
前記坩堝における、 前記種結晶が配置された部分の外周に環巻された状態で 配置され、 前記第一誘導加熱コイルにより昇華された前記昇華用原料が前記炭 化ケィ素単結晶の種結晶近傍でのみ再結晶可能となるように再結晶雰囲気を形 成し、 該昇華用原料を前記炭化ゲイ素単結晶の種結晶上に再結晶させる第二誘 導加熱コイルと;
を少なくとも備えたことを特徴とする炭化ケィ素単結晶の製造装置。
PCT/JP2001/011270 2000-12-28 2001-12-21 Monocristal de carbure de silicium et procede et dispositif pour le produire WO2002053813A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/450,151 US7048798B2 (en) 2000-12-28 2001-12-21 Silicon carbide single crystal and method and apparatus for producing the same
EP01272835.8A EP1354987B1 (en) 2000-12-28 2001-12-21 Method for producing a silicon carbide single crystal
US11/133,308 US20050205003A1 (en) 2000-12-28 2005-05-20 Silicon carbide single crystal and method and apparatus for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-402730 2000-12-28
JP2000402730 2000-12-28
JP2001111374A JP4903946B2 (ja) 2000-12-28 2001-04-10 炭化ケイ素単結晶の製造方法及び製造装置
JP2001-111374 2001-04-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/133,308 Continuation US20050205003A1 (en) 2000-12-28 2005-05-20 Silicon carbide single crystal and method and apparatus for producing the same

Publications (1)

Publication Number Publication Date
WO2002053813A1 true WO2002053813A1 (fr) 2002-07-11

Family

ID=26607195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011270 WO2002053813A1 (fr) 2000-12-28 2001-12-21 Monocristal de carbure de silicium et procede et dispositif pour le produire

Country Status (4)

Country Link
US (2) US7048798B2 (ja)
EP (2) EP2574690B1 (ja)
JP (1) JP4903946B2 (ja)
WO (1) WO2002053813A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387679B2 (en) 2003-05-30 2008-06-17 Bridgestone Corporation Silicon carbide single crystal and method and apparatus for producing the same
CN111304745A (zh) * 2018-12-12 2020-06-19 Skc株式会社 晶锭的制备装置以及碳化硅单晶锭的制备方法
CN114855281A (zh) * 2022-07-07 2022-08-05 山西中科潞安半导体技术研究院有限公司 一种基于尺寸和形状控制的AlN晶体材料制备方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6814801B2 (en) * 2002-06-24 2004-11-09 Cree, Inc. Method for producing semi-insulating resistivity in high purity silicon carbide crystals
US7601441B2 (en) * 2002-06-24 2009-10-13 Cree, Inc. One hundred millimeter high purity semi-insulating single crystal silicon carbide wafer
US20040134418A1 (en) * 2002-11-08 2004-07-15 Taisuke Hirooka SiC substrate and method of manufacturing the same
WO2006090432A1 (ja) * 2005-02-22 2006-08-31 Neomax Co., Ltd. SiC単結晶基板の製造方法
US7767021B2 (en) * 2005-09-29 2010-08-03 Neosemitech Corporation Growing method of SiC single crystal
CN101448984B (zh) * 2006-05-18 2012-02-22 昭和电工株式会社 制造碳化硅单晶的方法
US9099377B2 (en) * 2006-09-14 2015-08-04 Cree, Inc. Micropipe-free silicon carbide and related method of manufacture
RU2495163C2 (ru) 2007-12-12 2013-10-10 Доу Корнинг Корпорейшн Способ получения больших однородных кристаллов карбида кремния с использованием процессов возгонки и конденсации
JP2010138048A (ja) * 2008-12-15 2010-06-24 Bridgestone Corp 炭化珪素単結晶の製造装置及び製造方法
US8377840B2 (en) * 2009-02-13 2013-02-19 Babcock & Wilcox Technical Services Y-12, Llc Method of producing catalytic materials for fabricating nanostructures
JP4547031B2 (ja) * 2009-03-06 2010-09-22 新日本製鐵株式会社 炭化珪素単結晶製造用坩堝、並びに炭化珪素単結晶の製造装置及び製造方法
JP5403671B2 (ja) * 2009-06-10 2014-01-29 昭和電工株式会社 炭化珪素単結晶の製造装置
JP5440260B2 (ja) * 2010-03-02 2014-03-12 住友電気工業株式会社 炭化珪素結晶の製造方法およびその製造装置
DE112013002107B4 (de) 2012-04-20 2019-04-04 Toyota Jidosha Kabushiki Kaisha SiC-Einkristall-Herstellungsverfahren
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
JP5910442B2 (ja) * 2012-09-28 2016-04-27 株式会社デンソー 炭化珪素単結晶製造装置
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
WO2015021436A2 (en) * 2013-08-08 2015-02-12 Mcalister Technologies, Llc Ceramic calciner apparatus and associated systems and methods
JP5854013B2 (ja) 2013-09-13 2016-02-09 トヨタ自動車株式会社 SiC単結晶の製造方法
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
CN105658846B (zh) * 2014-09-30 2018-08-28 昭和电工株式会社 碳化硅单晶晶片、和碳化硅单晶锭的制造方法
PL238539B1 (pl) * 2015-03-25 2021-09-06 Instytut Tech Materialow Elektronicznych Sposób wytwarzania kryształów węglika krzemu
CN106119954B (zh) * 2016-08-31 2018-11-06 台州市一能科技有限公司 一种碳化硅单晶制造装置
CN108456855A (zh) * 2017-02-17 2018-08-28 京东方科技集团股份有限公司 坩埚、蒸镀准备装置、蒸镀设备及蒸镀方法
CN110872727A (zh) * 2018-08-29 2020-03-10 北京北方华创微电子装备有限公司 反应炉及冷却方法
US11856678B2 (en) * 2019-10-29 2023-12-26 Senic Inc. Method of measuring a graphite article, apparatus for a measurement, and ingot growing system
JP7266906B2 (ja) * 2020-08-31 2023-05-01 セニック・インコーポレイテッド 黒鉛含有物品の測定方法、測定装置及びインゴット成長システム
CN114574969B (zh) * 2022-05-06 2022-07-26 浙江大学杭州国际科创中心 一种生长高质量碳化硅晶体的装置与方法
CN115058768A (zh) * 2022-07-14 2022-09-16 江苏超芯星半导体有限公司 一种碳化硅单晶的制备方法
CN117265664B (zh) * 2023-09-26 2024-04-30 江苏超芯星半导体有限公司 一种碳化硅晶体的生长方法和碳化硅晶体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178698A (ja) * 1991-12-27 1993-07-20 Sharp Corp 炭化珪素バルク単結晶の製造装置及び製造方法
JPH07157307A (ja) * 1993-12-06 1995-06-20 Bridgestone Corp 炭化ケイ素単結晶製造用高純度β型炭化ケイ素粉末の製造方法
JPH10101495A (ja) * 1996-09-30 1998-04-21 Mitsubishi Materials Corp SiC単結晶の製造方法
JPH11278985A (ja) * 1998-03-26 1999-10-12 Toyota Central Res & Dev Lab Inc 単結晶の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279701A (en) * 1988-05-11 1994-01-18 Sharp Kabushiki Kaisha Method for the growth of silicon carbide single crystals
US5135885A (en) * 1989-03-27 1992-08-04 Sharp Corporation Method of manufacturing silicon carbide fets
DE4310744A1 (de) * 1993-04-01 1994-10-06 Siemens Ag Vorrichtung zum Herstellen von SiC-Einkristallen
US6110279A (en) * 1996-03-29 2000-08-29 Denso Corporation Method of producing single-crystal silicon carbide
WO1998033961A1 (en) * 1997-01-31 1998-08-06 Northrop Grumman Corporation Apparatus for growing large silicon carbide single crystals
JP4514339B2 (ja) 1998-12-25 2010-07-28 昭和電工株式会社 炭化珪素単結晶の成長方法及び装置
JP4880164B2 (ja) * 2000-02-15 2012-02-22 ザ フォックス グループ,インコーポレイティド 低欠陥密度炭化ケイ素材料
JP3959952B2 (ja) * 2000-11-10 2007-08-15 株式会社デンソー 炭化珪素単結晶の製造方法及び製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178698A (ja) * 1991-12-27 1993-07-20 Sharp Corp 炭化珪素バルク単結晶の製造装置及び製造方法
JPH07157307A (ja) * 1993-12-06 1995-06-20 Bridgestone Corp 炭化ケイ素単結晶製造用高純度β型炭化ケイ素粉末の製造方法
JPH10101495A (ja) * 1996-09-30 1998-04-21 Mitsubishi Materials Corp SiC単結晶の製造方法
JPH11278985A (ja) * 1998-03-26 1999-10-12 Toyota Central Res & Dev Lab Inc 単結晶の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1354987A4 *
TAKAHASHI J. ET AL: "Sublimation growth of SiC single crystalline ingots on faces perpendicular to the (0001) basal plane", JOURNAL OF CRYSTAL GROWTH, vol. 135, 1994, pages 61 - 70, XP002908300 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387679B2 (en) 2003-05-30 2008-06-17 Bridgestone Corporation Silicon carbide single crystal and method and apparatus for producing the same
CN111304745A (zh) * 2018-12-12 2020-06-19 Skc株式会社 晶锭的制备装置以及碳化硅单晶锭的制备方法
US11078599B2 (en) 2018-12-12 2021-08-03 Skc Co., Ltd. Apparatus for producing an ingot comprising a crucible body with a lid assembly having a movable core member and method for producing silicon carbide ingot using the apparatus
CN111304745B (zh) * 2018-12-12 2021-12-03 赛尼克公司 晶锭的制备装置以及碳化硅单晶锭的制备方法
CN114855281A (zh) * 2022-07-07 2022-08-05 山西中科潞安半导体技术研究院有限公司 一种基于尺寸和形状控制的AlN晶体材料制备方法
CN114855281B (zh) * 2022-07-07 2022-11-04 山西中科潞安半导体技术研究院有限公司 一种基于尺寸和形状控制的AlN晶体材料制备方法

Also Published As

Publication number Publication date
US7048798B2 (en) 2006-05-23
JP4903946B2 (ja) 2012-03-28
EP2574690B1 (en) 2014-05-14
US20040050320A1 (en) 2004-03-18
US20050205003A1 (en) 2005-09-22
EP1354987A1 (en) 2003-10-22
JP2002255693A (ja) 2002-09-11
EP1354987B1 (en) 2014-07-23
EP2574690A1 (en) 2013-04-03
EP1354987A4 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
WO2002053813A1 (fr) Monocristal de carbure de silicium et procede et dispositif pour le produire
JP4480349B2 (ja) 炭化ケイ素単結晶の製造方法及び製造装置
US20220002906A1 (en) SiC Single Crystal Sublimation Growth Apparatus
US7553373B2 (en) Silicon carbide single crystal and production thereof
JP4162923B2 (ja) 炭化ケイ素単結晶の製造方法
JP2001072491A (ja) 単結晶の製造方法およびその装置
US20020189536A1 (en) Silicon carbide single crystal and production thereof
JP2007223867A (ja) 粉体表面平坦化治具及び炭化ケイ素単結晶の製造方法
JP4619567B2 (ja) 炭化ケイ素単結晶及びその製造方法
JP2010090012A (ja) 炭化珪素単結晶の製造方法
JP4731766B2 (ja) 炭化ケイ素単結晶及びその製造方法
JP5171571B2 (ja) 炭化珪素単結晶の製造方法
JP4986342B2 (ja) 炭化ケイ素単結晶及びその製造方法
JP6831536B2 (ja) 窒化アルミニウム結晶の製造方法
JP2009084071A (ja) 炭化ケイ素単結晶の製造方法
JP4708746B2 (ja) 炭化ケイ素単結晶の製造方法及び製造装置
JP2007112661A (ja) 炭化ケイ素単結晶の製造方法及び製造装置
JP2012046424A (ja) 炭化ケイ素単結晶
JP2010090013A (ja) 炭化珪素単結晶の製造方法
JP2008260665A (ja) 炭化ケイ素単結晶の製造方法および製造装置
JP2010030828A (ja) 炭化ケイ素単結晶の製造方法および装置
TW575894B (en) Apparatus and process for the preparation of low-iron single crystal silicon substantially free of agglomerated intrinsic point defects
JP2010100447A (ja) 炭化ケイ素単結晶の製造装置および製造方法
JP2006321678A (ja) 炭化ケイ素単結晶の製造方法及び製造装置
JP2005112637A (ja) 炭化ケイ素単結晶製造装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10450151

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001272835

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001272835

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642