PL238539B1 - Sposób wytwarzania kryształów węglika krzemu - Google Patents
Sposób wytwarzania kryształów węglika krzemu Download PDFInfo
- Publication number
- PL238539B1 PL238539B1 PL411695A PL41169515A PL238539B1 PL 238539 B1 PL238539 B1 PL 238539B1 PL 411695 A PL411695 A PL 411695A PL 41169515 A PL41169515 A PL 41169515A PL 238539 B1 PL238539 B1 PL 238539B1
- Authority
- PL
- Poland
- Prior art keywords
- crystal
- power
- growth
- heater
- source material
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 128
- 238000000034 method Methods 0.000 title claims abstract description 77
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 64
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 230000012010 growth Effects 0.000 claims abstract description 95
- 239000000463 material Substances 0.000 claims abstract description 50
- 238000002425 crystallisation Methods 0.000 claims abstract description 42
- 230000008025 crystallization Effects 0.000 claims abstract description 42
- 239000011261 inert gas Substances 0.000 claims abstract description 8
- 238000005979 thermal decomposition reaction Methods 0.000 claims abstract description 6
- 210000001161 mammalian embryo Anatomy 0.000 claims description 40
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 19
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 239000012071 phase Substances 0.000 description 12
- 229910002804 graphite Inorganic materials 0.000 description 11
- 239000010439 graphite Substances 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000003698 anagen phase Effects 0.000 description 4
- 239000008710 crystal-8 Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 241000272814 Anser sp. Species 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/002—Controlling or regulating
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Przedmiotem wynalazku jest sposób wytwarzania kryształów węglika krzemu w urządzeniu obejmującym grzejnik górny (2), grzejnik dolny (3), umieszczony poniżej grzejnika górnego i komorę wzrostu, umieszczoną wewnątrz grzejnika górnego, zaopatrzoną w tygiel na materiał źródłowy i pokrywę tygla, umożliwiającą zamocowanie na niej monokrystalicznego zarodka, w którym umieszcza się monokrystaliczny zarodek w górnej części komory wzrostu, zaś materiał źródłowy w tyglu, wypełnia się komorę wzrostu gazem obojętnym, za pomocą grzejnika górnego i dolnego podgrzewa się monokrystaliczny zarodek do temperatury co najmniej 2150°C, zaś materiał źródłowy do temperatury wyższej, korzystnie co najmniej 2300°C, podczas procesu utrzymuje się materiał źródłowy w temperaturze wyższej niż zarodek i w tych warunkach prowadzi się rozkład termiczny materiału źródłowego i krystalizację węglika krzemu na monokrystalicznym zarodku uzyskując kryształ węglika krzemu, charakteryzujący się tym, że podczas krystalizacji węglika krzemu na monokrystalicznym zarodku zmienia się w czasie moc Pg dostarczaną do grzejnika górnego (2) i moc Pd dostarczaną do grzejnika dolnego (3) w zależności od grubości rosnącego kryształu.
Description
Opis wynalazku
Przedmiotem wynalazku jest sposób wytwarzania kryształów węglika krzemu (SiC), mających zastosowanie w elektronice dużych mocy i wysokich częstotliwości oraz optoelektronice jako materiał na podłoża pod struktury epitaksjalne. Monokrystaliczny węglik krzemu jest również doskonałym materiałem podłożowym do wytwarzania grafenu, który posiada wyjątkowe właściwości. Prognozuje się, że może on zrewolucjonizować wiele dziedzin techniki.
Wzrost kryształów węglika krzemu z fazy gazowej zapoczątkował Lely w 1955 roku [A. J. Lely, Ber. Deut. Keram. Ges. 32 (1955) 229.]. Metoda jego opierała się na rozkładzie termicznym (sublimacji) węglika krzemu umieszczonego wewnątrz grzejnika. W strefie cieplejszej grzejnika zachodził proces sublimacji, natomiast w chłodniejszej proces spontanicznej krystalizacji. Metoda ta do dnia dzisiejszego jest stosowana do otrzymywania kryształów węglika krzemu w postaci płytek, których rozmiar dochodzi do kilkunastu milimetrów. W 1974 roku nastąpił przełom, metoda ta została zmodyfikowana przez Tsvetkova i Tariowa, zastosowali oni monokrystaliczny zarodek w postaci płytki SiC [Y.M.Tairov, V.F.Tsvetkow, J.Crystal Growth, 43 (1978) 209]. Rozwiązanie to pozwoliło wytwarzać kryształy o coraz to większych średnicach, co przyczyniło się do dynamicznego rozwoju technologii SiC. Metoda ta również była modyfikowana, ale idea wciąż pozostała taka sama. Obecnie metodą tą otrzymywane są kryształy SiC o maksymalnej średnicy 150 mm i długości kilku centymetrów.
Sposób polegający na zastosowaniu zarodka polega na tym, że jest on umieszczony w chłodniejszym miejscu komory wzrostu zaś materiał źródłowy w miejscu cieplejszym. W wysokiej temperaturze zachodzi proces intensywnego rozkładu termicznego materiału źródłowego SiC na cząsteczki Si, Si2, Si2C, SiC2. Cząsteczki te następnie transportowane są drogą dyfuzji i konwekcji do powierzchni zarodka, gdzie następuje proces krystalizacji. Proces wzrostu kryształu trwa 50-250 h, otrzymany w ciągu tego czasu kryształ ma długość 10-40 mm.
Niektóre kryształy węglika krzemu otrzymywane są również innymi metodami, np. kryształy 3C-SiC, ze względu na to, że nie są stabilne w temperaturze powyżej 1800°C są otrzymywane z roztworu Si-C w temperaturze 1450-1800°C [T. Ujihara, R. Maekawa, R. Tanaka, K. Sasaki, K. Kurodab, Y. Takeda, J. Cryst. Growth 310 (2008) 1438.]. Z kolei kryształy o półizolujących właściwościach elektrycznych, tj. o podwyższonej rezystywności, ze względu na zanieczyszczenia jakie są w materiale źródłowym, otrzymywane są chemiczną metodą epitaksji HTCVD (z ang. High Temperature Chemical Vapor Deposition) z gazów, np. propanu i silanu o bardzo wysokiej czystości [O. Kordina, C. Hallin, A. Ellison, A. S. Bakin, I. G. Ivanov, A. Henry, R. Yakimova, M. Touminen, A. Vehanen, E. Janzen,, Appl. Phys. Lett. 69 (1996) 1456].
Dla określenia istoty obecnego wynalazku ważne jest zdefiniowanie pojęcia grubości lub długości otrzymywanego kryształu węglika krzemu. W dalszej części opisu pojęcia te sa używane zamiennie, a obydwa z nich odnoszą się do wymiaru mierzonego poprzecznie (czyli w kierunku normalnym) do powierzchni monokrystalicznego zarodka używanego w procesie wzrostu. Ponieważ używany zarodek ma kształt płaskiej płytki, to początkowo wymiar ten jest znacznie mniejszy niż pozostałe dwa wymiary płytki. Wygodnie wówczas mówić o „grubości” zarodka i „grubości” kryształu. Jednak w wyniku udanego procesu wzrostu ten wymiar zwiększa się - korzystnie nawet do ponad 60 mm. Wówczas może to być największy wymiar otrzymanego kryształu - wygodnie jest wtedy mówić o „długości”.
Wraz ze wzrostem kryształu jego front krystalizacji (powierzchnia pomiędzy rosnącym kryształem a fazą gazową) przesuwa się w cieplejszy obszar. Zwiększa się również jego grubość, co utrudnia przepływ ciepła wzdłuż osi kryształu. Czynniki te powodują wzrost temperatury na powierzchni wzrostu kryształu, co z kolei przekłada się na zmniejszenie szybkości krystalizacji. W przypadku kryształów o długości większej niż 50 mm temperatura powierzchni wzrostu kryształu jest taka sama jak temperatura materiału wsadowego [T.S Sudarshan, S. I Maximenko, Microelectronic Engineering 83 (2006) 155-159]. Powstaje wówczas układ izotermiczny i proces krystalizacji całkowicie zanika.
Odpowiednio ukształtowane i co ważniejsze zmieniające się pole temperatury podczas powiększającej się długości kryształu pozwala otrzymać kryształ o znacznie większej długości niż jest to możliwe w warunkach stacjonarnych. Pole temperatury podczas wzrostu kryształu można zmieniać poprzez zastosowanie dwóch lub więcej niezależnych źródeł ciepła. W tym wynalazku zastosowane są dwa niezależne grzejniki grafitowe, które są grzane w sposób oporowy.
Opis patentowy EP1354987 ujawnia sposób wytwarzania kryształów SiC metodą transportu fizycznego z fazy gazowej w piecu zawierającym grzejnik górny, grzejnik dolny oraz komorę wzrostu umieszczoną wewnątrz grzejnika górnego, wyposażoną w tygiel na materiał źródłowy pokrywę tygla
PL 238 539 B1 umożliwiającą umieszczenie w nim monokrystalicznego zarodka. Monokrystaliczny zarodek umieszcza się w górnej części komory wzrostu, a materiał źródłowy w tyglu. Za pomocą górnego i dolnego grzejnika, podgrzewa się zarodek monokrystaliczny do temperatury wyższej niż 2150°C. Podczas procesu materiał źródłowy utrzymuje się w temperaturze wyższej niż zarodek i w tych warunkach prowadzi się rozkład termiczny materiału źródłowego oraz krystalizację węglika krzemu na zarodku z uzyskaniem kryształu węglika krzemu. Podczas krystalizacji węglika krzemu na zarodku monokrystalicznym moc dostarczana do górnego grzejnika i moc dostarczana do dolnego grzejnika zmienia się w czasie w zależności od grubości rosnącego kryształu.
Artykuł Krzysztofa Grasza et al. [„Experimental verification of a Novel System for the Growth of SiC Single Crystals”, Materials Science Forum (Volumes 679-680) March 2011, pages 16-19] ujawnia sposób wytwarzania kryształów SiC metodą transportu fizycznego z fazy gazowej, w której podczas krystalizacji steruje się mocą grzania dostarczania do grzejnika górnego i dolnego.
Celem wynalazku jest opracowanie sposobu wytwarzania długich monokryształów węglika krzemu, z zastosowaniem pieca do monokrystalizacji SiC w którym znajdują się dwa grzejniki tj. grzejnik górny, który pełni funkcję grzejnika głównego i grzejnik dolny, który pełni funkcję grzejnika dodatkowego (fig. 1). Wewnątrz grzejnika górnego znajduje się komora wzrostu, natomiast grzejnik dolny znajduje się pod grzejnikiem górnym. Ogrzewa on komorę wzrostu od spodu. W sposób ten można zwiększyć różnicę temperatur pomiędzy materiałem źródłowym, a powierzchnią wzrostu kryształu. Ponadto za pomocą dodatkowego grzejnika można w pewnym zakresie kontrolować kształt frontu krystalizacji podczas wzrostu kryształu. Rozwiązanie takie umożliwia wysoką wydajność procesu krystalizacji, poprzez zwiększenie długości otrzymywanych kryształów.
Zgodnie z wynalazkiem sposób wytwarzania kryształów węglika krzemu w urządzeniu obejmującym grzejnik górny, grzejnik dolny, umieszczony poniżej grzejnika górnego i komorę wzrostu, umieszczoną wewnątrz grzejnika górnego, zaopatrzoną w tygiel na materiał źródłowy i pokrywę tygla, umożliwiającą zamocowanie na niej monokrystalicznego zarodka, w którym umieszcza się monokrystaliczny zarodek w górnej części komory wzrostu, oraz materiał źródłowy w tyglu, wypełnia się komorę wzrostu gazem obojętnym, w pierwszej fazie procesu za pomocą grzejnika górnego i grzejnika dolnego, podgrzewa się monokrystaliczny zarodek do temperatury wynoszącej 2150°C, zaś materiał źródłowy do temperatury wynoszącej 2300°C, podczas procesu utrzymuje się materiał źródłowy w temperaturze wyższej niż monokrystaliczny zarodek, i w tych warunkach prowadzi się rozkład termiczny materiału źródłowego oraz krystalizację węglika krzemu na monokrystalicznym zarodku z uzyskaniem kryształu węglika krzemu, przy czym proces prowadzi się przy zastosowaniu pola temperatury i pola ciśnień cząstkowych par, z których tworzy się kryształ, dostosowanych do prędkości wzrostu kryształu w zakresie 0,01-2 mm/h, charakteryzuje się tym, że tylną powierzchnię monokrystalicznego zarodka, to jest tę powierzchnię, która w procesie wzrostu zwrócona jest na zewnątrz tygla, pozostawia się odsłoniętą oraz podczas krystalizacji węglika krzemu na monokrystalicznym zarodku zmienia się w czasie moc Pg dostarczaną do grzejnika górnego i moc Pd dostarczaną do grzejnika dolnego w zależności od grubości rosnącego kryształu tak, że
a) najpierw minimalizuje się stosunek mocy Pg/Pd, przez dostarczanie do górnego grzejnika mocy Pg niższej niż w etapie kolejnym, zaś do dolnego grzejnika - mocy Pd nie wyższej niż w etapie kolejnym b), tak, że przez 30 godzin dostarcza się stałą moc Pg wynoszącą 14000 W do grzejnika górnego oraz moc Pd-wynoszącą 9000 W do grzejnika dolnego, aż do uzyskania przez rosnący kryształ grubości około 3 mm, a następnie
b) w drugim etapie wzrostu kryształu prowadzonym aż do uzyskania przez rosnący kryształ grubości około 30 mm, przez pierwsze 30 godzin zwiększa się stosunek mocy Pg/Pd, przez dostarczanie do górnego grzejnika mocy Pg wyższej niż w etapie poprzedzającym a) o 2000 W, w ramach stopniowego wzrostu w czasie, a następnie przez 70 godzin zmniejsza się dostarczaną się do górnego grzejnika moc Pg do momentu uzyskania temperatury 2200°C przez kryształ i przy utrzymaniu temperatury 2300°C materiału źródłowego.
PL 238 539 B1
c) zmniejsza się stosunek mocy grzejnika górnego do grzejnika dolnego Pg/Pd, przez dostarczanie do dolnego grzejnika mocy Pg wyższej niż w etapie poprzedzającym b) i która stopniowo zwiększa się przez 100 godzin, aż do osiągnięcia przez materiał źródłowy temperatury wynoszącej 2400°C.
Korzystnie, stosuje się zarodek w postaci płytki o wypolerowanej tylko jednej czołowej powierzchni.
Korzystnie, stosuje się zarodek ukierunkowany krystalograficznie wzdłuż kierunku zgodnego z osią krystalograficzną c.
Korzystnie, stosuje się zarodek w postaci płytki o grubości 1-2 mm.
Korzystnie, jako zarodek stosuje się płytkę 4H-SiC, korzystnie taką, której powierzchnia wzrostu, to jest ta powierzchnia, która w procesie wzrostu zwrócona jest do wewnątrz tygla, ma polarność węglową.
Korzystnie, jako zarodek stosuje się płytkę 6H-SiC, korzystnie taką, której powierzchnia wzrostu, to jest ta powierzchnia, która w procesie wzrostu zwrócona jest do wewnątrz tygla, ma polarność krzemową.
Korzystnie, jako materiał źródłowy stosuje się węglik krzemu, ewentualnie domieszkowany borem, wanadem lub aluminium, lub węglik krzemu o składzie niestechiometrycznym, zawierający nadmiar krzemu lub węgla.
Korzystnie, gaz obojętny zawiera azot lub gazem obojętnym jest azot.
Korzystnie, zarodek podgrzewa się do temperatury 2000-2300°C na jej jego tylnej powierzchni.
Sposób według wynalazku - w ujęciu najbardziej ogólnym - polega na tym, że pole temperatury w komorze wzrostu podczas procesu krystalizacji jest zmieniane w funkcji długości kryształu. W taki sposób, że dostarczana moc do grzejnika dolnego i górnego jest zmieniana w sposób płynny w zależności od długości otrzymywanego kryształu.
W celu wyjaśnienia sposobu grzania komory wzrostu wprowadzono następująco oznaczenia:
Pg - moc dostarczana do grzejnika górnego;
Pd - moc dostarczana do grzejnika dolnego.
Wynalazek stosuje się dla dwóch sposobów mocowania monokrystalicznego zarodka. W pierwszym przypadku zarodek przyklejany jest do grafitowej płytki i jego tylna powierzchnia jest całkowicie zasłonięta (fig. 2). W drugim sposobie płytka mocowana jest na krawędzi wewnętrznego otworu pokrywy tygla i jej tylna powierzchnia jest całkowicie odsłonięta (fig. 3). Sposób grzania w pierwszej fazie wzrostu kryształu w zależności od sposobu zamocowania zarodka będzie się różnił. W dalszej części procesu krystalizacji dla obu przepadków sposób grzania będzie podobny.
W pierwszym przypadku gdy tylna powierzchnia zarodka jest zasłonięta np. grafitową płytką, to korzystnie jest by w pierwszej fazie wzrostu kryształu wytworzyć znaczny gradient radialny na powierzchni wzrostu zarodka - umożliwi to wzrost kryształu z wypukłą powierzchnią wzrostu, a co ważniejsze ograniczy zjawisko tworzenia się wielu zarodków krystalizacji. Dąży się, by na wierzchołku wypukłego frontu krystalizacji znajdowało się tylko jedno źródło stopni krystalizacji, od którego równomiernie będą rozchodzić się stopnie krystalizacji od środka do brzegu kryształu. Pozwala to stabilizować rodzaj politypu, stopień domieszkowania oraz poprawia stabilność morfologii powierzchni wzrostu. Wypukłość frontu krystalizacji nie może być zbyt duża, ponieważ w krysztale będą powstawały naprężania wewnętrzne oraz będzie istniało ryzyko grupowania się stopni krystalizacji. Dąży się by front krystalizacji charakteryzował się niewielką wypukłością. Wypukłość mierzy się kątem nachylenia pomiędzy styczną poprowadzoną na powierzchni wzrostu do stycznej do powierzchni zarodka przy krawędzi kryształu. Optymalna wielkość tego kąta jest równa a ~ 3.5°.
..... ... .Pa
Największy gradient radialny zostanie uzyskany gdy będzie utrzymana największa proporcja — ^d tz. że do górnego grzejnika będzie dostarczana możliwie największa moc, a do dolnego najmniejsza moc. W celu ograniczenia powstawania naprężeń wewnętrznych w wyniku radialnego gradientu, po . . ....... ........P.a ... „ . ...
uzyskaniu przez kryształ grubości 3 mm obniżana jest wartość — w sposób płynny. Zachowując jedpd nocześnie gradient radialny, który umożliwia wzrost kryształu z wypukłym frontem krystalizacji, gdzie kąt a ~ 3.5°. Wraz ze wzrostem długości kryształu przepływ ciepła przez kryształ staje się coraz trudniejszy, powoduje to wzrost temperatury na powierzchni wzrostu kryształu. W takich warunkach szybkość krystalizacji się obniża oraz front krystalizacji staje się płaski, a nawet wklęsły. W celu utrzymania różnicy temperatur pomiędzy materiałem wsadowym a powierzchnią rosnącego kryształu korzystnie
PL 238 539 B1
..... .. Pa..... ........ . . . , jest zmniejszenie proporcji — tz. ze do dolnego grzejnika będzie dostarczana większa moc, a do gór?d nego taka sama lub mniejsza. Przedstawiony sposób pozwala otrzymać kryształy o długości większej niż 6 cm. Kryształy podczas wzrostu mają wypukły front krystalizacji, co korzystnie wpływa na ich jakość krystaliczną oraz właściwości optyczne i elektryczne.
W drugim przypadku gdy tylna powierzchnia zarodka jest odsłonięta, to wytworzenie dużego gradientu radialnego w pierwszej fazie wzrostu kryształu jest niekorzystne, ponieważ istnieje ryzyko termicznego wytrawienia się zarodka przy jego krawędzi. Z tego powodu korzystne jest utrzymanie jak . ... .. Pa . . . , ..... .... ...
najmniejszej proporcji — tz, że do górnego grzejnika dostarczana jest mniejsza moc, a do dolnego Pa większa moc niż w dalszej części procesu wzrostu. Pozwoli to ograniczyć ryzyko wytrawienia termicznego zarodka, które jest największe w pierwszej fazie wzrostu gdy grubość kryształu jest niewielka. Ponadto występuje ono głównie przy krawędzi zarodka, w związku z tym korzystnie jest utrzymanie jak najmniejszego radialnego rozkładu temperatury. Warunki takie powodują, że kształt powierzchni wzrostu jest płaski. W dalszej fazie wzrostu gdy grubość kryształu jest większa niż 3 mm w celu nadania kryształowi wypukłego kształtu korzystne jest zwiększenie grzania grzejnikiem górnym czyli zwiększenie proporcji ^·.
Następnie w celu utrzymania wypukłego frontu krystalizacji o wypukłości a ~ 3,5° konieczne jest kontrolowanie proporcji —. Podobnie jak w pierwszym przypadku w celu utrzymania różnicy tempera?d tury pomiędzy materiałem wsadowym a powierzchnią rosnącego kryształu, korzystne jest zmniejszenie .. Pa..... ........ . . . , proporcji — tz. że do dolnego grzejnika będzie dostarczana większa moc, a do górnego taka sama lub Pd mniejsza.
Przedstawiony sposób pozwala otrzymać kryształy o długości większej niż 6 cm. Poza pierwszą fazą wzrostu, kryształy podczas wzrostu mają wypukły front krystalizacji, co korzystnie wpływa na ich jakość krystaliczną oraz właściwości optyczne i elektryczne.
Korzystne skutki wynalazku
Możliwość wzrostu dłuższych kryształów korzystnie obniża koszt procesu. Z otrzymanych kryształów korzystnie uzyskuje się większą ilość płytek, które stanowią podłoża do wytwarzania urządzeń elektronicznych. Z jednego zarodka korzystnie uzyskuje się większą ilość płytek, co powoduje obniżenie kosztu wytworzenia uzyskiwanych podłoży. Procesy wzrostu kryształów składają z wielu etapów tj. z przygotowania układu, uzyskania próżni w komorze pieca, następnie nagrzania komory wzrostu do temperatury krystalizacji oraz studzenia komory wzrostu i jej wyładunku. Otrzymując dłuższe kryształy ogranicza się wpływ tych etapów, w których nie występuje wzrost kryształu na wydajność procesu. Ponadto w procesie uzyskiwania płytek z kryształu korzystne jest by miał on dłuższą długość ponieważ pozwala to uzyskać lepszą wydajność podczas jego cięcia na płytki.
W wynalazku korzystnie stosuje się monokrystaliczny zarodek w postaci płytki SiC o wypolerowanej powierzchni na której będzie odbywał się wzrost kryształu. W sposobie mocowania zarodka przez przyklejenie do płytki grafitowej stosuje się korzystnie kleje organiczne, lub pastę grafitową. W sposobie mocowania płytki z odsłoniętą tylną powierzchnią płytkę mocuje się korzystnie krawędzią na pierścieniowym występie stanowiącym integralną część pokrywy tygla. W razie potrzeby krawędź zarodka uszczelnia się korzystnie za pomocą pasty grafitowej i przykrywa się dodatkowym pierścieniem grafitowym. Przygotowanie zarodka w tym sposobie ogranicza się korzystnie do wypolerowania tylko jednej czołowej powierzchni płytki bez potrzeby utrzymania płaskości tylnej powierzchni płytki, co powoduje znaczną oszczędność czasu.
Powszechnie stosuje się korzystnie zarodek w płaszczyźnie (0001) ukierunkowanej krystalograficznie wzdłuż kierunku zgodnego z osią krystalograficzną c, ale istnieje również możliwość zastosowania zarodków o innych orientacjach krystalograficznych. Do wzrostu kryształów 4H-SiC stosuje się korzystnie węglową powierzchnię zarodka natomiast do wzrostu kryształów 6H -SiC stosuje się korzystnie krzemową powierzchnię zarodka. Stosowany zarodek w postaci płytki ma korzystnie grubość 1-2 mm.
Jako materiał źródłowy korzystnie stosuje się węglik krzemu, który zależnie od zamierzonych właściwości otrzymywanego kryształu stosuje się bez domieszek albo intencjonalnie wzbogaca się domieszkami, takimi jak bor, wanad, cer, aluminium, żelazo i/lub nadmiarowy niestechiometryczny krzem lub węgiel. Materiał źródłowy SiC ma korzystnie postać proszku, granulatu lub przekrystalizowanego materiału SiC.
PL 238 539 B1
Jako gaz, wypełniający komorę wzrostu, stosuje się przeważnie argon, azot, wodór i/lub hel.
Celem wytworzenia kryształu domieszkowanego azotem węglik krzemu, jako materiał źródłowy, umieszcza się w komorze wzrostu, wypełnionej azotem lub gazem obojętnym zawierającym azot.
Zarodek podgrzewa się korzystnie do temperatury 2000-2300°C, na jej tylnej powierzchni, zaś materiał źródłowy do temperatury 2100-2400°C.
Proces prowadzi się przy zastosowaniu pola temperatury i pola ciśnień cząstkowych par, z których tworzy się kryształ, dostosowanych do prędkości wzrostu kryształu w zakresie korzystnie 0,01-2 mm/h.
Sposób według wynalazku zapewnia dużą powtarzalność otrzymywania długich jednorodnych politypowo kryształów 4H- i 6H-SiC. Wynalazek umożliwia również kontrolowane i jednorodne domieszkowanie, umożliwiające wytworzenie kryształów o szerokim zakresie właściwości elektrycznych i optycznych. Umożliwia również zastosowanie niekonwencjonalnego kierunku krystalizacji.
Korzystne przykłady realizacji wynalazku
Korzystne przykłady realizacji wynalazku zostały opisane poniżej z odniesieniem do rysunku, na którym:
Fig. 1. Przedstawia schemat sposobu ułożenia dwóch grzejników oraz umieszczenia komory wzrostu w górnym grzejniku.
Fig. 2. Przedstawia komorę wzrostu oraz prezentuje sposób zamocowania zarodka przez przyklejenie do płytki grafitowej.
Fig. 3. Przedstawia komorę wzrostu oraz sposób zamocowania zarodka z odsłoniętą po- wierzchnią tylną.
Fig. 4. Przedstawia sposób grzania w trzech etapach wzrostu kryształu z zarodka z zasłoniętą powierzchnią tylną: I etap - początek wzrostu kryształu, II etap - wzrost kryształu od 3 do 30 mm długości, III etap - wzrost kryształu od 30-60 mm długości.
Fig. 5. Przedstawia sposób grzania w trzech etapach wzrostu kryształu z zarodka z odsłoniętą powierzchnią tylną: I etap - początek wzrostu kryształu, II etap - wzrost kryształu od 3 do 30 mm długości, III etap - wzrost kryształu 30-60 mm długości.
Fig. 6. Przedstawia zależność dostarczanej mocy do górnego i dolnego grzejnika podczas wzrostu długiego kryształu z zasłoniętą tylną powierzchnią.
Fig. 7. Przedstawia zależność dostarczanej mocy do górnego i dolnego grzejnika podczas wzrostu długiego kryształu z odsłoniętą tylną powierzchnią.
Oznaczenia użyte na rysunku:
1. Komora wzrostu
2. Grzejnik górny (główny)
3. Grzejnik dolny (dodatkowy)
4. Izolacja komory wzrostu
5. Izolacja grzejnika dolnego
6. Monokrystaliczny zarodek SiC
7. Materiał źródłowy SiC
8. Monokryształ SiC
9. Tygiel
10. Pokrywa tygla
11. Płytka przykrywająca zarodek
P r z y k ł a d 1. (zarodek z zasłoniętą tylną powierzchnią - przykład porównawczy)
Komorę wzrostu 1 umieszcza się wewnątrz górnego grzejnika 2 (fig. 1). Dolny grzejnik 3 znajduje pod grzejnikiem górnym 2 i ogrzewa od spodu jego dno. Komora wzrostu 1 obejmuje grafitowy tygiel 9 (fig. 2), w którym znajduje się materiał źródłowy 7 (fig. 2) i pokrywy tygla 10 (fig. 2) do której mocowany jest monokrystaliczny zarodek 6 4H-SiC o orientacji (000-1) (fig. 2), tak że jego tylna powierzchnia jest zasłonięta grafitową płytką 11. W pierwszej fazie wzrostu (fig. 4a i 6) zarodek 6 podgrzewa się do temperatury 2250°C, zaś materiał źródłowy 7 do temperatury 2300°C. Następnie dostarcza się stałą moc w ilości 16000 W do górnego grzejnika 2 i 8000W do dolnego grzejnika 3 przez 30 godzin. W drugiej fazie wzrostu (fig. 4b i 6) zmniejsza się ilość dostarczanej mocy do górnego grzejnika 2 o 1000 W, a zarazem kontroluje się moc dostarczaną do dolnego grzejnika 3 do momentu uzyskania temperatury 2200°C mierzonej na krysztale 8, przy utrzymaniu temperatury 2300 °C materiału źródłowego 7. W trzePL 238 539 B1 ciej fazie wzrostu (fig. 4c i 6) tj. gdy kryształ 8 ma długość większą niż 30 mm zwiększa się moc dostarczaną do dolnego grzejnika 3 do momentu uzyskania temperatury 2400°C mierzonej dla materiału źródłowego 7. Komora wzrostu 1 podczas krystalizacji jest wypełniania argonem o ciśnieniu 2 kPa.
Po upływie 240 godzin otrzymano kryształ 4H-SiC o długości 60 mm. Kryształ wykazywał przewodnictwo elektryczne typu n o koncentracji nośników n (6x1017cm-3). Kryształ rósł z prędkością 0,25 mm/h.
P r z y k ł a d 2 (zarodek z odsłoniętą tylną powierzchnią - wynalazek)
Komorę wzrostu 1 umieszczono jak w przykładzie 1 z tym, że tylna powierzchnia zarodka 6 jest odsłonięta (fig. 3). W pierwszej fazie procesu (fig. 5a i 7) zarodek 6 podgrzewa się do temperatury 2150°C, zaś materiał źródłowy 7 do temperatury 2300°C. Następnie dostarcza się stałą moc w ilości 14000 W do górnego grzejnika 2 i 9000 W do dolnego grzejnika 3 przez 30 godzin. W drugiej fazie procesu (fig. 5b i 7) zwiększa się w sposób płynny moc grzania górnego grzejnika 2 o 2000 W przez 30 godzin, a zarazem kontroluje się moc dostarczaną do dolnego grzejnika 3, następne przez 70 godzin moc dostarczana do górnego grzejnika 2 jest płynnie zmniejszana do momentu uzyskania temperatury 2200°C mierzonej na krysztale 8, przy utrzymaniu temperatury 2300°C materiału źródłowego 7. W trzeciej fazie wzrostu (fig. 5c i 7) tj. gdy kryształ 8 ma długość większą niż 30 mm zwiększa się moc grzania dolnego grzejnika 3 do momentu uzyskania temperatury 2400°C mierzonej dla materiału źródłowego 7. Komora wzrostu 1 podczas krystalizacji jest wypełniania argonem o ciśnieniu 2 kPa.
Po upływie 240 godzin otrzymano kryształ 4H-SiC o długości 60 mm. Kryształ wykazywał przewodnictwo elektryczne typu n o koncentracji nośników n (6x1017cm-3). Kryształ rósł z prędkością 0,25 mm/h.
P r z y k ł a d 3 (wzrost na polarności krzemowej - kryształ 6H-SiC - przykład porównawczy)
Komorę wzrostu 1 umieszczono jak w przykładzie 1 z tym, że zmieniono polarność zarodka 6 na krzemową (0001). Pozostałe warunki krystalizacji były również jak w przykładzie 1.
Po upływie 240 godzin otrzymano kryształ 6H-SiC o długości 60 mm. Kryształ wykazywał przewodnictwo elektryczne typu n o koncentracji nośników n (3x1017cm-3). Kryształ rósł z prędkością 0,25 mm/h.
P r z y k ł a d 4 (domieszkowanie azotem, wzrost na polarności węglowej - przykład porównawczy)
Komorę wzrostu 1 (fig. 1) i zarodek 6 (fig. 2) umieszczono jak w przykładzie 1. Jako atmosferę wzrostu zastosowano mieszaninę argonu i azotu w proporcji 90:10 o ciśnieniu 2 kPa. Warunki cieplne były takie same jak w przykładzie 1.
Po upływie 240 godzin krystalizacji otrzymano kryształ 4H-SiC o długości 60 mm. Kryształ wykazywał przewodnictwo elektryczne typu n o koncentracji nośników n (4x1019cm-3). Kryształ rósł z prędkością 0,25 mm/h.
P r z y k ł a d 5 (domieszkowanie azotem wzrost na polarności krzemowej - przykład porównawczy)
Komorę wzrostu 1 (fig. 1) umieszczono jak w przykładzie 1, natomiast zarodek 6 jak w przykładzie 3. Jako atmosferę wzrostu zastosowano mieszaninę argonu i azotu w stosunku 90:10 o ciśnieniu 2 kPa. Warunki cieplne były takie same jak w przykładzie 1.
Po upływie 240 godzin krystalizacji otrzymano kryształ 6H-SiC o długości 60 mm. Kryształ wykazywał przewodnictwo elektryczne typu n o koncentracji nośników n (2x1019cm-3). Kryształ rósł z prędkością 0,25 mm/h.
P r z y k ł a d 6 (domieszkowanie borem - przykład porównawczy)
Komorę wzrostu 1 (fig. 1) umieszczono jak w przykładzie 1, natomiast zarodek 6 jak w przykładzie 3. W tyglu grafitowym 9 umieszczono materiał źródłowy 7 w postaci proszku z węglika krzemu z domieszką boru. Pozostałe warunki krystalizacji były również jak w przykładzie 1.
Po upływie 240 godzin krystalizacji otrzymano kryształ 6H-SiC o długości 60 mm. Kryształ wykazywał przewodnictwo elektryczne typu p o koncentracji nośników n (5x1017cm-3). Kryształ rósł z prędkością 0,25 mm/h.
P r z y k ł a d 7 ( domieszkowanie wanadem - przykład porównawczy)
Komorę wzrostu 1 (fig. 1) i zarodek 6 (fig. 2) umieszczono jak w przykładzie 1. W tyglu grafitowym 9 umieszczono materiał źródłowy 7 w postaci zrekrystalizowanego węglika krzemu z domieszką wanadu. Pozostałe warunki krystalizacji były również jak w przykładzie 1.
PL 238 539 B1
Po upływie 240 godzin krystalizacji otrzymano kryształ 6H-SiC o długości 60 mm. Po upływie 240 godzin krystalizacji otrzymano kryształ SiC 4H-SiC o podwyższonej oporności, wynoszącej 1000 Ω/cm. Kryształ SiC rósł z prędkością 0,25 mm/h.
Claims (9)
- Zastrzeżenia patentowe1. Sposób wytwarzania kryształów węglika krzemu w urządzeniu obejmującym grzejnik górny (2), grzejnik dolny (3), umieszczony poniżej grzejnika górnego (2) i komorę wzrostu (1), umieszczoną wewnątrz grzejnika górnego (2), zaopatrzoną w tygiel (9) na materiał źródłowy (7) i pokrywę tygla (10), umożliwiającą zamocowanie na niej monokrystalicznego zarodka (6), w którym umieszcza się monokrystaliczny zarodek (6) w górnej części komory wzrostu (1), oraz materiał źródłowy (7) w tyglu (9), wypełnia się komorę wzrostu (1) gazem obojętnym, w pierwszej fazie procesu za pomocą grzejnika górnego (2) i grzejnika dolnego (3), podgrzewa się monokrystaliczny zarodek (6) do temperatury wynoszącej 2150°C, zaś materiał źródłowy (7) do temperatury wynoszącej 2300°C, podczas procesu utrzymuje się materiał źródłowy (7) w temperaturze wyższej niż monokrystaliczny zarodek (6), i w tych warunkach prowadzi się rozkład termiczny materiału źródłowego (7) oraz krystalizację węglika krzemu na monokrystalicznym zarodku (6) z uzyskaniem kryształu węglika krzemu (8), przy czym proces prowadzi się przy zastosowaniu pola temperatury i pola ciśnień cząstkowych par, z których tworzy się kryształ (8), dostosowanych do prędkości wzrostu kryształu (8) w zakresie 0,01-2 mm/h, znamienny tym, że tylną powierzchnię monokrystalicznego zarodka (6), to jest tę powierzchnię, która w procesie wzrostu zwrócona jest na zewnątrz tygla (9), pozostawia się odsłoniętą oraz podczas krystalizacji węglika krzemu na monokrystalicznym zarodku (6) zmienia się w czasie moc Pg dostarczaną do grzejnika górnego (2) i moc Pd dostarczaną do grzejnika dolnego (3) w zależności od grubości rosnącego kryształu (8), tak, żea) najpierw minimalizuje się stosunek mocy Pg/Pd, przez dostarczanie do górnego grzejnika (2) mocy Pg niższej niż w etapie kolejnym, zaś do dolnego grzejnika (3) - mocy Pd nie wyższej niż w etapie kolejnym b), tak, że przez 30 godzin dostarcza się stałą moc Pg wynoszącą 14000 W do grzejnika górnego (2) oraz moc Pd wynoszącą 9000 W do grzejnika dolnego (3), aż do uzyskania przez rosnący kryształ (8) grubości około 3 mm, a następnieb) w drugim etapie wzrostu kryształu prowadzonym aż do uzyskania przez rosnący kryształ (8) grubości około 30mm, przez pierwsze 30 godzin zwiększa się stosunek mocy Pg/Pd, przez dostarczanie do górnego grzejnika (2) mocy Pg wyższej niż w etapie poprzedzającym a) o 2000 W, w ramach stopniowego wzrostu w czasie, a następnie przez 70 godzin zmniejsza się dostarczaną się do górnego grzejnika (2) moc Pg do momentu uzyskania temperatury 2200°C przez kryształ (8) i przy utrzymaniu temperatury 2300°C materiału źródłowego (7).c) zmniejsza się stosunek mocy grzejnika górnego (2) do grzejnika dolnego (3) Pg/Pd, przez dostarczanie do dolnego grzejnika (3) mocy Pg wyższej niż w etapie poprzedzającym b) i która stopniowo zwiększa się przez 100 godzin, aż do osiągnięcia przez materiał źródłowy (7) temperatury wynoszącej 2400°C.
- 2. Sposób według zastrz. 1, znamienny tym, że stosuje się zarodek (6) w postaci płytki o wypolerowanej tylko jednej czołowej powierzchni.
- 3. Sposób według zastrz. 1, znamienny tym, że stosuje się zarodek (6) ukierunkowany krystalograficznie wzdłuż kierunku zgodnego z osią krystalograficzną c.
- 4. Sposób według zastrz. 1, znamienny tym, że stosuje się zarodek (6) w postaci płytki o grubości 1-2 mm.PL 238 539 B1
- 5. Sposób według zastrz. 1, znamienny tym, że jako zarodek (6) stosuje się płytkę 4H-SiC, korzystnie taką, której powierzchnia wzrostu, to jest ta powierzchnia, która w procesie wzrostu zwrócona jest do wewnątrz tygla (9), ma polarność węglową.
- 6. Sposób według zastrz. 1, znamienny tym, że jako zarodek (6) stosuje się płytkę 6H-SiC, korzystnie taką, której powierzchnia wzrostu, to jest ta powierzchnia, która w procesie wzrostu zwrócona jest do wewnątrz tygla (9), ma polarność krzemową.
- 7. Sposób według dowolnego z zastrz. od 1 do 6, znamienny tym, że jako materiał źródłowy (7) stosuje się węglik krzemu, ewentualnie domieszkowany borem, wanadem lub aluminium, lub węglik krzemu o składzie niestechiometrycznym, zawierający nadmiar krzemu lub węgla.
- 8. Sposób według dowolnego z zastrz. od 1 do 7, znamienny tym, że gaz obojętny zawiera azot lub gazem obojętnym jest azot.
- 9. Sposób według dowolnego z zastrz. od 1 do 8, znamienny tym, że zarodek (6) podgrzewa się do temperatury 2000-2300°C na jej jego tylnej powierzchni.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PL411695A PL238539B1 (pl) | 2015-03-25 | 2015-03-25 | Sposób wytwarzania kryształów węglika krzemu |
| EP15161654.7A EP3072995B1 (en) | 2015-03-25 | 2015-03-30 | Method for producing silicon carbide crystals from vapour phase |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PL411695A PL238539B1 (pl) | 2015-03-25 | 2015-03-25 | Sposób wytwarzania kryształów węglika krzemu |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| PL411695A1 PL411695A1 (pl) | 2016-09-26 |
| PL238539B1 true PL238539B1 (pl) | 2021-09-06 |
Family
ID=53191453
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PL411695A PL238539B1 (pl) | 2015-03-25 | 2015-03-25 | Sposób wytwarzania kryształów węglika krzemu |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP3072995B1 (pl) |
| PL (1) | PL238539B1 (pl) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2019156698A (ja) * | 2018-03-15 | 2019-09-19 | 信越半導体株式会社 | 炭化珪素単結晶の製造方法 |
| CN111621844B (zh) * | 2020-06-22 | 2022-02-25 | 哈尔滨化兴软控科技有限公司 | 一种旋转式双温区pvt法高质量单晶制备装置及方法 |
| CN113862789B (zh) * | 2021-12-01 | 2022-03-11 | 浙江大学杭州国际科创中心 | 一种制备p型4H-SiC单晶的坩埚结构与装置与方法 |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4903946B2 (ja) * | 2000-12-28 | 2012-03-28 | 株式会社ブリヂストン | 炭化ケイ素単結晶の製造方法及び製造装置 |
| CN101448984B (zh) * | 2006-05-18 | 2012-02-22 | 昭和电工株式会社 | 制造碳化硅单晶的方法 |
| JP2007314358A (ja) * | 2006-05-23 | 2007-12-06 | Bridgestone Corp | 炭化ケイ素単結晶の製造装置及びその製造方法 |
| DE112009003667B4 (de) * | 2008-12-08 | 2024-04-25 | Ii-Vi Inc. | Verbessertes axial-gradient-transport- (agt-) züchtungsverfahren und -apparat unter anwendung von resistivem erhitzen |
| PL234396B1 (pl) * | 2010-04-01 | 2020-02-28 | Instytut Tech Materialow Elektronicznych | Sposób wytwarzania kryształów, zwłaszcza węglika krzemu, z fazy gazowej |
-
2015
- 2015-03-25 PL PL411695A patent/PL238539B1/pl unknown
- 2015-03-30 EP EP15161654.7A patent/EP3072995B1/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| EP3072995B1 (en) | 2020-05-06 |
| EP3072995A1 (en) | 2016-09-28 |
| PL411695A1 (pl) | 2016-09-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5683507A (en) | Apparatus for growing large silicon carbide single crystals | |
| US9893152B2 (en) | Semi-insulating silicon carbide monocrystal and method of growing the same | |
| CN106894090B (zh) | 一种高质量低电阻率的p型SiC单晶制备方法 | |
| CN102268735B (zh) | 一种提高4H-SiC单晶晶型稳定性的方法 | |
| CN103696012B (zh) | 一种高均匀性、高产率半绝缘碳化硅衬底的制备方法 | |
| CN101724893A (zh) | 一种制备高纯半绝缘碳化硅晶体的方法 | |
| PL234396B1 (pl) | Sposób wytwarzania kryształów, zwłaszcza węglika krzemu, z fazy gazowej | |
| WO1997001658A1 (en) | A device and a method for epitaxially growing objects by cvd | |
| JP2018030773A (ja) | 単結晶成長に用いる装置 | |
| CN109234797B (zh) | 一种碳化硅单晶生长装置 | |
| JPWO2000039372A1 (ja) | 炭化珪素単結晶の成長方法及び装置 | |
| CN113151897B (zh) | 一种坩埚结构 | |
| CN108118394B (zh) | 一种降低碳化硅单晶中氮杂质含量的方法 | |
| TW202117107A (zh) | 碳化矽晶圓以及碳化矽晶圓之製備方法 | |
| EP0956381B1 (en) | Apparatus for growing large silicon carbide single crystals | |
| CN111819311A (zh) | 碳化硅单晶的制造方法 | |
| KR20090021144A (ko) | 단결정 SiC 및 그 제조 방법과 단결정 SiC의 제조 장치 | |
| CN108624963A (zh) | 一种用于pvt法生长的碳化硅晶体的原料烧结工艺 | |
| PL238539B1 (pl) | Sposób wytwarzania kryształów węglika krzemu | |
| JP5761264B2 (ja) | SiC基板の製造方法 | |
| JP2017154953A (ja) | 炭化珪素単結晶製造装置 | |
| CN112744816B (zh) | 用于碳化硅单晶生长的碳化硅粉体的制备方法 | |
| JP2011201756A (ja) | 単結晶炭化珪素の製造方法 | |
| CN118083983A (zh) | 含氮的碳化硅粉料的制备方法及碳化硅晶体的生长方法 | |
| TWI875366B (zh) | 一種具有多個沉積位點的長晶裝置與其製程 |