CN110872727A - 反应炉及冷却方法 - Google Patents

反应炉及冷却方法 Download PDF

Info

Publication number
CN110872727A
CN110872727A CN201810994895.3A CN201810994895A CN110872727A CN 110872727 A CN110872727 A CN 110872727A CN 201810994895 A CN201810994895 A CN 201810994895A CN 110872727 A CN110872727 A CN 110872727A
Authority
CN
China
Prior art keywords
cooling water
temperature
furnace
hollow space
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810994895.3A
Other languages
English (en)
Inventor
赵海洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Naura Microelectronics Equipment Co Ltd
Original Assignee
Beijing Naura Microelectronics Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Naura Microelectronics Equipment Co Ltd filed Critical Beijing Naura Microelectronics Equipment Co Ltd
Priority to CN201810994895.3A priority Critical patent/CN110872727A/zh
Publication of CN110872727A publication Critical patent/CN110872727A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种反应炉及冷却方法,该反应炉包括炉腔、设置在炉腔内的石墨坩埚及用于加热石墨坩埚的感应线圈,炉腔包括腔壁,在腔壁中设置有中空空间,感应线圈设置在中空空间中。本发明提供的反应炉,其可以降低设备功耗,从而可以降低工艺成本。

Description

反应炉及冷却方法
技术领域
本发明涉及反应炉技术领域,具体地,涉及一种反应炉及冷却方法。
背景技术
物理气相传输(Physical Vapor Transport,以下简称PVT)法为制备碳化硅晶体的主流方法之一。PVT法生长SiC单晶的具体过程通常是将SiC晶体作为籽晶放置在石墨坩埚顶部,并将SiC粉末作为料源放置在石墨坩埚底部,然后利用感应线圈对石墨坩埚进行加热,加热温度达到2300℃左右,同时控制生长温度梯度,并向生长室内通入氩气来控制生长室气压。晶体生长过程中料源升华并在冷端的籽晶上结晶,从而获得SiC体单晶。
目前主流的碳化硅单晶炉均使用感应加热方式加热石墨坩埚,但是,由于感应线圈位于石英腔室的外部,距离石墨坩埚较远,导致存在功耗大,加热效率低的问题。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种反应炉及冷却方法,其可以降低设备功耗,从而可以降低工艺成本。
为实现本发明的目的而提供一种反应炉,包括炉腔、设置在所述炉腔内的石墨坩埚及用于加热所述石墨坩埚的感应线圈,所述炉腔包括腔壁,在所述腔壁中设置有中空空间,所述感应线圈设置在所述中空空间中。
可选的,通过向所述中空空间内通入冷却水来冷却所述感应线圈。
可选的,还包括冷却水控制器,所述冷却水控制器包括水温检测单元、水温控制单元、流量控制单元和流量调节单元,其中,
所述温度检测单元用于检测所述中空空间内的冷却水实时温度,并将所述冷却水实时温度发送至所述水温控制单元;
所述水温控制单元用于根据所述冷却水实时温度控制所述流量控制单元控制所述流量调节单元调节所述冷却水的进水流量,以使所述冷却水温度达到期望值。
可选的,所述期望值小于或者等于65℃。
可选的,所述腔壁包括内管体和外管体,所述外管体套设在所述内管体的周围,且所述外管体与所述内管体相互间隔,形成所述中空空间。
可选的,所述内管体和外管体均采用石英材料制作。
可选的,所述内管体的外径为300mm;所述外管体的外径为330mm;所述内管体和外管体的厚度均为10mm。
作为另一个技术方案,本发明还提供一种冷却方法,对本发明提供的上述反应炉的感应线圈进行冷却,所述冷却方法包括:
使用所述反应炉进行多次测试工艺,且在进行每次所述测试工艺时,将所述中空空间内的冷却水温度值提高预设调整量,直至所述冷却水温度值到达所述期望值;
记录每次所述测试工艺的工艺结果;
选取工艺结果最佳的冷却水温度值进行正常工艺。
可选的,所述预设调整量为2℃。
可选的,在进行第一次所述测试工艺之前,将所述冷却水的进水流量调节至最大值。
本发明具有以下有益效果:
本发明提供的反应炉,其通过将感应线圈设置在腔壁的中空空间中,可以缩短感应线圈与石墨坩埚之间的距离,这与现有技术相比,可以降低设备功耗,从而可以降低工艺成本。
本发明提供的冷却方法,其进行多次测试工艺,且在进行每次测试工艺时提高冷却水温度预设调整量,并记录每次测试工艺的工艺结果;然后,选取工艺结果最佳的冷却水温度值进行正常工艺,这可以提高设备的保温能力,从而可以进一步降低设备功耗。
附图说明
图1为本发明实施例提供的反应炉的剖视图;
图2为本发明实施例采用的冷却水控制器的原理框图;
图3为本发明实施例提供的冷却方法的流程框图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来对本发明提供的反应炉及冷却方法进行详细描述。
请参阅图1,本发明实施例提供的反应炉,其包括炉腔、设置在该炉腔内的石墨坩埚1及用于加热该石墨坩埚1的感应线圈4。并且,炉腔包括腔壁2,在该腔壁2中设置有中空空间3,感应线圈4设置在该中空空间3中。
通过将感应线圈4设置在中空空间3中,可以缩短感应线圈4与石墨坩埚1之间的距离,具体可以将该距离缩短至55mm左右,这与现有技术相比,可以降低设备功耗,从而可以降低工艺成本。
在本实施例中,腔壁2包括内管体22和外管体21,外管体21套设在内管体22的周围,且外管体21与内管体22相互间隔,形成中空空间3。可选的,内管体22和外管体21均采用石英材料制作,当然,在实际应用中,内管体22和外管体21还可以采用其他耐高温材料制作。
可选的,内管体22的外径为300mm;外管体21的外径为330mm;内管体22和外管体21的厚度均为10mm。
在本实施例中,通过向中空空间3内通入冷却水来冷却感应线圈4。这与现有技术中采用空心感应线圈,并通过向空心感应线圈中通入冷却水来冷却线圈相比,冷却水温度的控制更精确,从而有利于改善工艺结果。
可选的,反应炉还包括冷却水控制器,用于实现对中空空间3内的冷却水温度进行控制。具体地,在本实施例中,如图2所示,冷却水控制器包括水温检测单元7、水温控制单元8、流量控制单元9和流量调节单元6,其中,温度检测单元7用于检测中空空间3内的冷却水实时温度,并将该冷却水实时温度发送至水温控制单元8;该温度检测单元7为温度传感器。
水温控制单元8用于根据冷却水实时温度控制流量控制单元9控制流量调节单元6调节冷却水的进水流量,以使冷却水温度达到期望值。具体来说,水温控制单元8将冷却水实时温度与期望值进行比较,若冷却水实时温度高于期望值,则控制流量调节单元6增大冷却水的进水流量,以降低冷却水温度,直至其与期望值一致。若冷却水实时温度低于期望值,则控制流量调节单元6减小冷却水的进水流量,以提高冷却水温度,直至其与期望值一致。
可选的,上述期望值小于或者等于65℃。由于感应线圈4通常采用铜材质,铜材质在环境温度达到65℃以上时氧化速度会加快,因此,通过将冷却水温度控制在65℃以下,可以延长感应线圈4的使用寿命。
另外,通过控制冷却水温度,可以对炉腔起到一定的保温作用,从而可以降低热量损耗,进而可以降低使炉腔达到相同的温度时的设备功耗,从而可以降低工艺成本。
在实际应用中,上述反应炉可以应用于采用物理气相传输法制备碳化硅晶体。
作为另一个技术方案,本发明实施例提供一种冷却方法,其对本发明实施例提供的上述反应炉的感应线圈进行冷却,该冷却方法包括:
使用反应炉进行多次测试工艺,且在进行每次测试工艺时,将中空空间内的冷却水温度值提高预设调整量,直至冷却水温度值到达期望值;
记录每次测试工艺的工艺结果;
选取工艺结果最佳的冷却水温度值进行正常工艺。
本发明实施例提供的冷却方法,可以提高设备的保温能力,从而可以进一步降低设备功耗。
上述工艺结果,是指使用反应炉进行工艺获得的产品性能。
可选的,上述预设调整量为2℃。当然,在实际应用中,也可以根据具体情况将上述预设调整量设定为其他任意温度值,例如1℃、3℃、4℃等等。
下面对本发明实施例提供的冷却方法的具体实施例进行详细描述。具体地,请参阅图3,该冷却方法包括以下步骤:
S1,在进行第一次测试工艺之前,将冷却水的进水流量调节至最大值。
S2,进行测试工艺,并将冷却水温度值提高预设调整量。
S3,记录测试工艺的工艺结果。
S4,重复上述步骤S2和步骤S3,直至冷却水温度值达到期望值。
S5,选取工艺结果最佳的冷却水温度值进行正常工艺。
在上述步骤S1中,通过将冷却水的进水流量调节至最大值,可以在进行第一次测试工艺之前,将冷却水温度调节至最低值。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (10)

1.一种反应炉,包括炉腔、设置在所述炉腔内的石墨坩埚及用于加热所述石墨坩埚的感应线圈,其特征在于,所述炉腔包括腔壁,在所述腔壁中设置有中空空间,所述感应线圈设置在所述中空空间中。
2.根据权利要求1所述的反应炉,其特征在于,通过向所述中空空间内通入冷却水来冷却所述感应线圈。
3.根据权利要求2所述的反应炉,其特征在于,还包括冷却水控制器,所述冷却水控制器包括水温检测单元、水温控制单元、流量控制单元和流量调节单元,其中,
所述温度检测单元用于检测所述中空空间内的冷却水实时温度,并将所述冷却水实时温度发送至所述水温控制单元;
所述水温控制单元用于根据所述冷却水实时温度控制所述流量控制单元控制所述流量调节单元调节所述冷却水的进水流量,以使所述冷却水温度达到期望值。
4.根据权利要求3所述的反应炉,其特征在于,所述期望值小于或者等于65℃。
5.根据权利要求1所述的反应炉,其特征在于,所述腔壁包括内管体和外管体,所述外管体套设在所述内管体的周围,且所述外管体与所述内管体相互间隔,形成所述中空空间。
6.根据权利要求5所述的反应炉,其特征在于,所述内管体和外管体均采用石英材料制作。
7.根据权利要求5所述的反应炉,其特征在于,所述内管体的外径为300mm;所述外管体的外径为330mm;所述内管体和外管体的厚度均为10mm。
8.一种冷却方法,其特征在于,对权利要求3-7任意一项所述反应炉的感应线圈进行冷却,所述冷却方法包括:
使用所述反应炉进行多次测试工艺,且在进行每次所述测试工艺时,将所述中空空间内的冷却水温度值提高预设调整量,直至所述冷却水温度值到达所述期望值;
记录每次所述测试工艺的工艺结果;
选取工艺结果最佳的冷却水温度值进行正常工艺。
9.根据权利要求8所述的冷却方法,其特征在于,所述预设调整量为2℃。
10.根据权利要求8所述的冷却方法,其特征在于,在进行第一次所述测试工艺之前,将所述冷却水的进水流量调节至最大值。
CN201810994895.3A 2018-08-29 2018-08-29 反应炉及冷却方法 Pending CN110872727A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810994895.3A CN110872727A (zh) 2018-08-29 2018-08-29 反应炉及冷却方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810994895.3A CN110872727A (zh) 2018-08-29 2018-08-29 反应炉及冷却方法

Publications (1)

Publication Number Publication Date
CN110872727A true CN110872727A (zh) 2020-03-10

Family

ID=69714677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810994895.3A Pending CN110872727A (zh) 2018-08-29 2018-08-29 反应炉及冷却方法

Country Status (1)

Country Link
CN (1) CN110872727A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111692885A (zh) * 2020-06-24 2020-09-22 广州汤姆逊电气有限公司 一种高温浇注一体互感三用加热功能炉

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354987A1 (en) * 2000-12-28 2003-10-22 Bridgestone Corporation Silicon carbide single crystal, and method and apparatus for producing the same
CN1991400A (zh) * 2005-12-30 2007-07-04 上海御能动力科技有限公司 具有控制与数据采集功能的测功机监控系统
JP2010076991A (ja) * 2008-09-26 2010-04-08 Bridgestone Corp 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
CN104503509A (zh) * 2014-12-04 2015-04-08 中天科技光纤有限公司 一种感应炉水温恒定自动控制系统及方法
CN105200515A (zh) * 2015-09-24 2015-12-30 山东大学 一种用于SiC单晶生长炉的感应线圈及其应用
CN106435735A (zh) * 2016-12-09 2017-02-22 河北同光晶体有限公司 一种优化碳化硅单晶生长的方法
CN206418222U (zh) * 2016-12-29 2017-08-18 山东天岳晶体材料有限公司 一种无包裹碳化硅晶体生长室
CN107142520A (zh) * 2017-05-17 2017-09-08 中国科学院电工研究所 一种控制碳化硅单晶生长装置
CN206570431U (zh) * 2017-03-09 2017-10-20 中科钢研节能科技有限公司 一种制备碳化硅单晶的装置
CN207376143U (zh) * 2017-11-02 2018-05-18 福建北电新材料科技有限公司 一种生长碳化硅单晶的精密控制温度装置
CN108286074A (zh) * 2018-01-26 2018-07-17 山东大学 一种大尺寸SiC单晶生长装置及其工作方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354987A1 (en) * 2000-12-28 2003-10-22 Bridgestone Corporation Silicon carbide single crystal, and method and apparatus for producing the same
CN1991400A (zh) * 2005-12-30 2007-07-04 上海御能动力科技有限公司 具有控制与数据采集功能的测功机监控系统
JP2010076991A (ja) * 2008-09-26 2010-04-08 Bridgestone Corp 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
CN104503509A (zh) * 2014-12-04 2015-04-08 中天科技光纤有限公司 一种感应炉水温恒定自动控制系统及方法
CN105200515A (zh) * 2015-09-24 2015-12-30 山东大学 一种用于SiC单晶生长炉的感应线圈及其应用
CN106435735A (zh) * 2016-12-09 2017-02-22 河北同光晶体有限公司 一种优化碳化硅单晶生长的方法
CN206418222U (zh) * 2016-12-29 2017-08-18 山东天岳晶体材料有限公司 一种无包裹碳化硅晶体生长室
CN206570431U (zh) * 2017-03-09 2017-10-20 中科钢研节能科技有限公司 一种制备碳化硅单晶的装置
CN107142520A (zh) * 2017-05-17 2017-09-08 中国科学院电工研究所 一种控制碳化硅单晶生长装置
CN207376143U (zh) * 2017-11-02 2018-05-18 福建北电新材料科技有限公司 一种生长碳化硅单晶的精密控制温度装置
CN108286074A (zh) * 2018-01-26 2018-07-17 山东大学 一种大尺寸SiC单晶生长装置及其工作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111692885A (zh) * 2020-06-24 2020-09-22 广州汤姆逊电气有限公司 一种高温浇注一体互感三用加热功能炉

Similar Documents

Publication Publication Date Title
KR101975735B1 (ko) 조절된 압력하에서 헬륨을 사용하는 고온 처리 방법
CN108796609B (zh) SiC单晶的制造方法和制造装置
JP4923452B2 (ja) SiC単結晶の製造方法
JP2006265025A (ja) 結晶育成用坩堝
JP2007314358A (ja) 炭化ケイ素単結晶の製造装置及びその製造方法
EP1268882B1 (en) Axial gradient transport apparatus and process for producing large size, single crystals of silicon carbide
TW201531598A (zh) 用於控制晶體成長裝置中的溫度均勻性的技術
JP7076487B2 (ja) 複数の高品質半導体単結晶を効率的に製造するシステム、およびそれを製造する方法
US10036100B2 (en) Apparatus for producing silicon single crystal
TW201120258A (en) Method for pulling a single crystal composed of silicon with a section having a diameter that remains constant
CN110872727A (zh) 反应炉及冷却方法
CN104264218A (zh) 一种用于氢化物气相外延(hvpe)生长的加热装置
CN211497867U (zh) 一种碳化硅晶体生长装置
JP2017065969A (ja) 炭化珪素単結晶インゴット製造用の黒鉛坩堝及び炭化珪素単結晶インゴットの製造方法
CN116446046A (zh) 一种热交换物理气相输运法生长碳化硅晶体的装置及方法
JP2008280206A (ja) 単結晶成長装置
CN114686963A (zh) 一种GaAs单晶生长设备及GaAs单晶生长工艺
JP2007308355A (ja) 炭化ケイ素単結晶の製造装置及びその製造方法
JP5263145B2 (ja) 炭化珪素単結晶の製造装置およびそれを用いた炭化珪素単結晶の製造方法
JP2000053493A (ja) 単結晶の製造方法および単結晶製造装置
KR101572098B1 (ko) 단결정 잉곳 제조 방법 및 장치
JP5594235B2 (ja) 炭化珪素単結晶の製造装置および製造方法
CN116575124A (zh) 一种用于磷化铟生产的生长炉
JP2004307286A (ja) 温度勾配炉
JPH01161827A (ja) 熱処理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination