JP5910442B2 - 炭化珪素単結晶製造装置 - Google Patents

炭化珪素単結晶製造装置 Download PDF

Info

Publication number
JP5910442B2
JP5910442B2 JP2012217119A JP2012217119A JP5910442B2 JP 5910442 B2 JP5910442 B2 JP 5910442B2 JP 2012217119 A JP2012217119 A JP 2012217119A JP 2012217119 A JP2012217119 A JP 2012217119A JP 5910442 B2 JP5910442 B2 JP 5910442B2
Authority
JP
Japan
Prior art keywords
heating body
coil
single crystal
silicon carbide
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012217119A
Other languages
English (en)
Other versions
JP2014069991A (ja
Inventor
淳 小島
淳 小島
英美 牧野
英美 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012217119A priority Critical patent/JP5910442B2/ja
Publication of JP2014069991A publication Critical patent/JP2014069991A/ja
Application granted granted Critical
Publication of JP5910442B2 publication Critical patent/JP5910442B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭化珪素(以下、SiCという)単結晶製造装置に関するものである。
従来より、SiC単結晶製造装置として、例えば特許文献1に示される構造の製造装置が提案されている。このSiC単結晶製造装置は、中央にSiC単結晶の成長空間を構成する中空形状の反応容器が配置されると共に反応容器の上方側の開口部に台座が設置され、反応容器の外周に配置された高周波誘導コイルにて反応容器を加熱する。高周波誘導コイルは、反応容器のうちの下方位置を加熱する下段コイルと上方位置を加熱する上段コイルを有し、反応容器のうちの下方位置が上方位置よりも高温となるような温度分布が設けられる構成とされている。このようなSiC単結晶製造装置では、台座にSiC単結晶からなる種結晶を貼り付けたのち、高周波誘導コイルにて反応容器を加熱しつつ反応容器内にSiCの原料ガスを導入して加熱分解し、種結晶に供給することで、種結晶表面にSiC単結晶を成長させている。
特開2008−230924号公報
しかしながら、高周波誘導コイルを下段コイルと上段コイルとに分けても、反応容器のうち原料ガスを加熱分解する下方位置とSiC単結晶を成長させる種結晶近辺の上方位置とで適切な温度差を設けるための温度制御が難しいという問題がある。
これは、下段コイルと上段コイルとの間での干渉が起こるためである。このような干渉は、下段コイルと上段コイルの発振周波数が同じもしくは近傍領域だと生じ易くなる。これを抑制するために、下段コイルと上段コイルの駆動周波数に差を設け、例えば一方の駆動周波数に対して他方の駆動周波数が約10倍となるようにすることで対処している。しかしながら、駆動周波数の相違により、反応容器のうちの下方位置と上方位置とで昇温効果が異なってしまい、特に高周波側とされるコイルと対応する部分において効果的に加熱できず、上記のように温度制御が難しいという問題を発生させる。
本発明は上記点に鑑みて、より温度制御を行い易くできるSiC単結晶製造装置を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、中空筒状部材の加熱体を含む容器本体(81)を有する反応容器(8)の容器本体を上下に物理的に分割して下部加熱体(81b)および上部加熱体(81c)としている。また、反応容器の外周のうち下部加熱体と対応する位置に、下部加熱体を誘導加熱する高周波誘導コイルにて構成された下段コイル(13)を配置していると共に、反応容器の外周のうち上部加熱体と対応する位置に、上部加熱体を誘導加熱する高周波誘導コイルにて構成された上段コイル(14)を配置している。そして、台座(9)に対して炭化珪素単結晶基板からなる種結晶(5)を設置し、下段コイルにて下部加熱体を誘導加熱すると共に上段コイルにて上部加熱体を誘導加熱して、反応容器の中空部を通じて種結晶の表面に炭化珪素の原料ガス(3)を供給して種結晶の表面に炭化珪素単結晶を結晶成長させるときに、下部加熱体および上部加熱体が物理的に分離されることで誘導加熱時に磁気的にも分離させられてるように構成されていることを特徴としている。
このように反応容器の容器本体を下部加熱体と上部加熱体に分割し、これらを物理的に離間させると、上下の磁場の干渉が抑制される。このため、下段コイルおよび上段コイルの駆動周波数を同じ、もしくは、一方に対して他方の駆動周波数を10倍未満としても、各コイルの周囲を囲むように形成される磁力線が繋がる数を低減することが可能となる。これにより、反応容器の上下位置において、下段コイルと上段コイルそれぞれによって加熱される下部加熱体および上部加熱体の独立制御性を向上させられ、各加熱体の温度の独立制御が行い易くなるようにできる。
また、請求項に記載の発明では、物理的に分離させられた下部加熱体と上部加熱体との間に、容器本体よりも低抵抗な材料で構成された低抵抗体(15)が備えられていることを特徴としている。
このように、低抵抗体を備えることにより、加熱時に各コイルの周囲を囲むように形成される磁場を引き込み、各コイルから徐々に範囲が広がるように形成される磁力線の広がりを収束させられる。これにより、各コイルを囲む磁力線同士の接触が抑制され、下部加熱体や上部加熱体を通過する磁力線同士が繋がらないようにすることができる。したがって、下部加熱体と上部加熱体との間の更なる磁気的な分離が可能となり、より各加熱体の温度の独立制御が行い易くなるようにできる。
また、請求項に記載の発明では、下部加熱体のうち上部加熱体側の先端と上部加熱体のうち下部加熱体側の先端のうちの少なくとも一方には、下部加熱体もしくは上部加熱体の径方向外側に張り出させた庇部(81ba、81ca)が備えられていることを特徴としている。
このように、下部加熱体や上部加熱体に庇部を備えると、磁力線が庇部に沿って導かれる。すなわち、庇部内で磁力線の広がりを収束させると共に、磁力線が各庇部に沿って導かれるようにできる。このため、各コイルを囲む磁力線同士の接触が抑制され、下部加熱体や上部加熱体を通過する磁力線同士が繋がらないようにすることができる。したがって、下部加熱体と上部加熱体との間の更なる磁気的な分離が可能となり、より各加熱体の温度の独立制御が行い易くなるようにできる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係の一例を示すものである。
本発明の第1実施形態にかかるSiC単結晶製造装置1の断面構成を示す図である。 反応容器8の容器本体81を分離しない構造での磁界分布について計算により求めた結果を示した磁界分布図である。 反応容器8の容器本体81を分離した構造での磁界分布について計算により求めた結果を示した磁界分布図である。 本発明の第2実施形態にかかるSiC単結晶製造装置1の断面構成を示す図である。 誘導加熱時に下段コイル13や上段コイル13の周りに形成される磁場と低抵抗体15との関係を示した図である。 第2実施形態の変形例にかかるSiC単結晶製造装置1の断面構成を示す図である。 第2実施形態の変形例にかかるSiC単結晶製造装置1の断面構成を示す図である。 第2実施形態の変形例にかかるSiC単結晶製造装置1での磁界分布について計算により求めた結果を示した磁界分布図である。 本発明の第3実施形態にかかるSiC単結晶製造装置1の断面構成を示す図である。 第3実施形態の変形例にかかるSiC単結晶製造装置1の断面構成を示す図である。 第3実施形態の変形例にかかるSiC単結晶製造装置1の断面構成を示す図である。 図10に示すSiC単結晶製造装置1での磁界分布について計算により求めた結果を示した磁界分布図である。 図11に示すSiC単結晶製造装置1での磁界分布について計算により求めた結果を示した磁界分布図である。 第3実施形態の変形例にかかるSiC単結晶製造装置1の断面構成を示す図である。 第3実施形態の変形例にかかるSiC単結晶製造装置1の断面構成を示す図である。 第3実施形態の変形例にかかるSiC単結晶製造装置1の断面構成を示す図である。 第3実施形態の変形例にかかるSiC単結晶製造装置1の断面構成を示す図である。 本発明の第3実施形態にかかるSiC単結晶製造装置1の断面構成を示す図である。 他の実施形態にかかるSiC単結晶製造装置1の断面構成を示す図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
本発明の第1実施形態について、図1を参照して説明する。図1に示すように、SiC単結晶製造装置1には、底部に流入口2が備えられており、この流入口2を通じて図示しない原料ガス供給源からの原料ガス3(例えば、シラン等のシラン系ガスとプロパン等の炭化水素系ガスの混合ガス)をキャリアガスと共に導入する。また、SiC単結晶製造装置1には、上部に流出口4が備えられており、この流出口4を通じて原料ガス3のうちの未反応ガスなどを排出する。そして、SiC単結晶製造装置1は、装置内に配置したSiC単結晶基板からなる種結晶5上にSiC単結晶を成長させることにより、SiC単結晶のインゴットを形成する。
SiC単結晶製造装置1には、真空容器6、断熱材7、反応容器8、台座9、外周断熱材10、回転引上機構11および高周波誘導コイル13、14が備えられている。
真空容器6は、石英ガラスなどで構成されている。この真空容器6は、中空円筒状を為しており、キャリアガスや原料ガス3の導入導出が行え、かつ、SiC単結晶製造装置1の他の構成要素を収容すると共に、その収容している内部空間の圧力を真空引きすることにより減圧できる構造とされている。この真空容器6の底部に原料ガス3の流入口2が設けられ、上部(具体的には側壁の上方位置)に原料ガス3の流出口4が設けられている。
断熱材7は、円筒形状を為しており、真空容器6に対して同軸的に配置されている。この断熱材7の中空部により原料ガス導入管7aを構成しており、この原料ガス導入管7aを通じて、流入口2から導入された原料ガス3を反応容器8側に導く。断熱材7は、例えば黒鉛などで構成されるが、断熱材7のうち原料ガス導入管7aを構成している内壁部分については、高融点金属炭化物にてコーティングすることで、熱エッチングが抑制できるようにすると好ましい。例えば、高融点金属炭化物としては、TaC(炭化タンタル)、NbC(炭化ニオブ)、ZrC(炭化ジルコニウム)、VC(炭化バナジウム)、TiC(炭化チタン)などを用いることができる。
反応容器8は、坩堝部材となる加熱容器を構成するもので、種結晶5の表面にSiC単結晶を成長させる反応室を構成する中空筒状部材を有した構成とされ、台座9よりも原料ガス3の流動経路上流側から下流側にわたって配置されている。この反応容器8により、流入口2から供給された原料ガス3を種結晶5に導くまでに、原料ガス3に含まれたパーティクルを排除しつつ、原料ガス3を加熱分解している。この反応容器8も、黒鉛などで構成される。また、半導体基板の容器8を、表面がTaC、NbC、ZrC、VC、TiCなどの高融点金属炭化物にてコーティングされた黒鉛で構成すると、熱エッチングを抑制することも可能である。
本実施形態では、反応容器8は、容器本体81と邪魔板82とを有した構造とされている。容器本体81は、筒状部を有する部材により構成され、有底円筒状部材で構成されている。容器本体81のうちの筒状部は、例えば径方向の厚みが20mm、内径寸法が320mmとされている。この容器本体81のうちの筒状部を加熱体として、高周波誘導コイル13、14による誘導加熱が行われる。容器本体81には、底部に断熱材7の中空部と連通させられるガス導入口81aが備えられ、原料ガス導入管7aを通過してきた原料ガス3がガス導入口81aを通じて反応容器8内に導入される。
また、容器本体81は、筒状部が軸方向において上下に分割されることで、下部加熱体81bと上部加熱体81cの2部位に分けられている。下部加熱体81bは、有底円筒状部材とされ、台座9よりも下方、つまり原料ガス3の流動方向上流側に配置されている。上部加熱体81cは、円筒状部材とされ、台座9の周囲からそれよりも上方、つまり原料ガス3の流動方向下流側に配置されている。このため、下部加熱体81bが容器本体81のうちの下方位置における加熱体となり、原料ガス3の加熱分解を行うと共に、上部加熱体81cが容器本体81のうちの上方位置における加熱体となり、SiC単結晶の成長表面に所望の温度分布を形成する。これら下部加熱体81bと上部加熱体81cは、物理的に離間して配置されており、加熱時に磁気的に分離させられるようになっている。
邪魔板82は、原料ガス3の流動を妨げる部材であり、原料ガス導入管7aから供給された原料ガス3が直接種結晶5の当たらないようにするために設けられている。この邪魔板82に原料ガス3が衝突することで原料ガス3の流動経路が曲げられ、原料ガス3に含まれるパーティクルの排除と原料ガス3のミキシングが行われると共に、未分解の原料ガス3が種結晶5側に供給されることが抑制されている。例えば、邪魔板82は、有底円筒状で、側壁に複数の連通孔82aが形成された構造とされ、邪魔板82の開口部側、つまり底部と反対側の端部が反応容器8の底部のガス導入口81aを向けて配置される。このような構造の場合、ガス導入口81aから導入された原料ガス3が邪魔板82の底面に衝突するため、邪魔板82に衝突したパーティクルが反応容器8の底部に落下して原料ガス3から排除される。そして、流動経路が反応容器8の軸方向と平行な方向から垂直な方向に変えられた原料ガス3が、連通孔82aを通じて反応容器8内に導かれる。
台座9は、例えば円柱形状とされており、反応容器8の中心軸と同軸的に配置されている。この台座9についても、例えば黒鉛で構成することができるが、表面がTaC、NbC、ZrC、VC、TiCなどの高融点金属炭化物にてコーティングされた黒鉛で構成すると、熱エッチングを抑制することも可能となる。この台座9に、同等寸法の径を有する種結晶5が貼り付けられ、種結晶5の表面にSiC単結晶を成長させる。
外周断熱材10は、容器本体81の筒状部と対応する筒形状で構成され、容器本体81の筒状部を囲むことで容器本体81とそれよりも外周側とを断熱する。本実施形態の場合、外周断熱材10は、例えば円筒形状で構成されており、軸方向において上下に分割されることで、下部10aと上部10bの2部位に分けられている。下部10aと上部10bは、共に円筒状部材とされ、下部10aが下部加熱体81bを囲み、上部10bが上部加熱体81cを囲んでいる。この外周断熱材10も、例えば黒鉛で構成することができ、表面がTaC、NbC、ZrC、VC、TiCなどの高融点金属炭化物にてコーティングされた黒鉛で構成すると、熱エッチングを抑制することが可能となる。
回転引上機構11は、支持シャフト11aの回転および引上げを行うものである。支持シャフト11aは、一端が台座9のうち種結晶5が貼り付けられる面と反対側の面に接続されており、他端が回転引上機構11の本体に接続されている。このような構造により、支持シャフト11aと共に台座9、種結晶5およびSiC単結晶の回転および引き上げが行える。また、SiC単結晶の成長面が所望の温度分布となるようにしつつ、SiC単結晶の成長に伴って、その成長表面の温度が常に成長に適した温度となるように調整できる。支持シャフト11aも、例えば黒鉛で構成することができ、表面がTaC、NbC、ZrC、VC、TiCなどの高融点金属炭化物にてコーティングされた黒鉛で構成すると、熱エッチングを抑制することが可能となる。なお、支持シャフト11aは回転軸や引上軸となるものであれば良いため、パイプ状ではなく単なる棒状部材などであっても良い。
高周波誘導コイル13、14は、例えば電源回路によって駆動される誘導電源からの電力供給を受けて反応容器8を誘導加熱するためのコイルによって構成され、反応容器8の周囲を囲むように配置されている。高周波誘導コイル13、14は、下部加熱体81bを加熱するための下段コイル13と、上部加熱体81cを加熱するための上段コイル14とを有した構成とされ、本実施形態では各コイル13、14の内径寸法および外径寸法を等しくしてある。
各コイル13、14は、それぞれ独立して温度制御できるように構成されている。このため、より細やかな温度制御を行うことができる。具体的には、下段コイル13は、下部加熱体81bの周囲を囲むように配置されている。上段コイル14は、上部加熱体81cの周囲を囲むように配置されている。このような配置とされているため、各コイル13、14を制御することにより、SiC単結晶の成長表面の温度分布をSiC単結晶の成長に適した温度に調整できる。
このような構造により、本実施形態にかかるSiC単結晶製造装置1が構成されている。このように構成されたSiC単結晶製造装置1を用いて、まず、下段コイル13および上段コイル14を制御し、所望の温度分布を付ける。例えば、下部加熱体81bを2300℃程度、上部加熱体81cを2100℃程度というように2000℃を超える高温に制御する。すなわち、種結晶5の表面において原料ガス3が再結晶化されることでSiC単結晶が成長しつつ、反応容器8内において再結晶化レートよりも昇華レートの方が高くなる温度となるようにする。そして、真空容器6を所望圧力にしつつ、必要に応じてArガスなどの不活性ガスによるキャリアガスや水素などのエッチングガスを導入しながら原料ガス導入管7aを通じて容器本体81内に原料ガス3を導入する。これにより、図1中の矢印で示したように、原料ガス3が流動し、種結晶5に供給されてSiC単結晶を成長させることができる。
このように構成されたSiC単結晶製造装置1では、容器本体81を下段コイル13と上段コイル14それぞれで加熱される下部加熱体81bと上部加熱体81cに分割し、これらを物理的に離間させることで加熱時に磁気的に分離されるようにしている。
例えば、従来のような反応容器8を分割しない構造について下段コイル13および上段コイル14の駆動周波数を同じにして反応容器8を誘導加熱すると、上下の磁場が干渉してしまう。このため、図2に示すように、各コイル13、14の周囲を囲むように形成される磁力線のうちの多数が反応容器8内において繋がる。これにより、反応容器8の上下位置において、下段コイル13と上段コイル14それぞれによって加熱される加熱体の独立制御性が低下し、上下の加熱体の温度を独立制御することが難しくなる。
これに対して、本実施形態のように反応容器8の容器本体81を下部加熱体81bと上部加熱体81cに分割し、これらを物理的に離間させると、上下の磁場の干渉が抑制される。このため、図3に示すように、下段コイル13および上段コイル14の駆動周波数を同じ、もしくは、一方に対して他方の駆動周波数を10倍未満としても、各コイル13、14の周囲を囲むように形成される磁力線が繋がる数を低減することが可能となる。これにより、反応容器8の上下位置において、下段コイル13と上段コイル14それぞれによって加熱される下部加熱体81bおよび上部加熱体81cの独立制御性を向上させられ、各加熱体81b、81cの温度の独立制御が行い易くなるようにできる。
以上説明したように、本実施形態のSiC単結晶製造装置1では、容器本体81を下部加熱体81bと上部加熱体81cに物理的に分割することで、加熱時に磁気的に上下に分離されるようにしている。これにより、各加熱体81b、81cの温度の独立制御が行い易くなるようにできる。
(第2実施形態)
本発明の第2実施形態について説明する。本実施形態は、第1実施形態に対してより磁気的な分離が行えるようにしたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図4に示すように、本実施形態のSiC単結晶製造装置1では、下部加熱体81bと上部加熱体81cとの間に低抵抗体15を備えた構成としている。低抵抗体15は、容器本体81よりも低抵抗で、かつ、2000℃以上の高温および原料ガス3と反応することなく耐えられる材料とされる。このような材料としては、例えば、低抵抗黒鉛、W(タングステン)、Ta(タンタル)、Mo(モリブデン)、Nb(ニオブ)のような高融点金属や当該高融点金属の化合物などを適用できる。本実施形態では、低抵抗体15を台座9の周囲を囲む枠状部材、つまり、図5に示すように誘導加熱時に下段コイル13や上段コイル13の周りに形成される磁場に対する垂直方向に一周する形状で構成しており、例えば円環状で構成している。低抵抗体15の寸法については例えば容器本体81の筒状部もしくは高周波誘導コイル13、14の寸法に合わせて設定してある。例えば、径方向の厚みおよび内径寸法については容器本体81の筒状部と等しくしており、径方向の厚みを20mm、内径寸法を320mmにしてあり、高さ(軸方向の厚み)については30mmとしてある。
この低抵抗体15により、加熱時に各コイル13、14の周囲を囲むように形成される磁場を引き込み、各コイル13、14から徐々に範囲が広がるように形成される磁力線の広がりを収束させる。これにより、各コイル13、14を囲む磁力線同士の接触が抑制され、下部加熱体81bや上部加熱体81cを通過する磁力線同士が繋がらないようにすることができる。したがって、下部加熱体81bと上部加熱体81cとの間の更なる磁気的な分離が可能となり、より各加熱体81b、81cの温度の独立制御が行い易くなるようにできる。
(第2実施形態の変形例)
上記第2実施形態に対して、低抵抗体15の径方向寸法を更に大きくすることができる。例えば、図6に示すように、低抵抗体15の内径寸法を容器本体81の筒状部内径寸法と同じにしておき、外径寸法を高周波誘導コイル13、14の外径寸法と等しくすることができる。また、図7に示すように、低抵抗体15の内径寸法を容器本体81の筒状部内径寸法と同じにしておき、外径寸法を高周波誘導コイル13、14の外径寸法よりも大きくすることもできる。
このように、低抵抗体15の外径寸法を拡大し、より外周側まで低抵抗体15を介在させることにより、図8に示すように、低抵抗体15の拡大方向に沿って下部加熱体81bや上部加熱体81cを通過する磁力線を容器本体81の径方向に導ける。したがって、より各コイル13、14を囲む磁力線同士の接触が抑制され、下部加熱体81bや上部加熱体81cを通過する磁力線同士が繋がらないようにすることができる。これにより、下部加熱体81bと上部加熱体81cとの間の磁気的な分離がより一層可能となり、更に各加熱体81b、81cの温度の独立制御が行い易くなるようにできる。
なお、低抵抗体15の外径寸法を高周波誘導コイル13、14の外径寸法と等しいもしくはそれより大きくする場合において、コイル外径が一定でない場合もある。例えば、下段コイル13と上段コイル14とでコイル外径が異なっていたり、徐々にコイル外径が大きくなる場合などがある。その場合には、コイル巻回中心軸方向から見て高周波誘導コイル13、14の外径寸法が最も大きくなるときの外径と低抵抗体15の外径寸法を同じもしくはそれより大きくなるようにすれば良い。
(第3実施形態)
本発明の第3実施形態について説明する。本実施形態は、第1実施形態に対して下部加熱体81bおよび上部加熱体81cの形状や寸法などを変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図9に示すように、本実施形態のSiC単結晶製造装置1では、下部加熱体81bおよび上部加熱体81cを第1実施形態に対して変更している。具体的には、下部加熱体81bのうち上部加熱体81c側の先端に庇部81baおよび上部加熱体81cのうち下部加熱体81b側の先端に庇部81caを備えている。各庇部81ba、81caは、下部加熱体81bや上部加熱体81cを先端において外径を拡大し、径方向外方に向けて張り出させた構造とされている。
また、本実施形態では、下部加熱体81bの内径寸法を上部加熱体81cの内径寸法よりも小さくしてあり、例えば下部加熱体81bの内径寸法を100mm、上部加熱体81cの内径寸法を320mmとしてある。下部加熱体81bおよび上部加熱体81cの径方向の厚みについては等しくしてあり、20mmとしてある。そして、各庇部81ba、81caについては、下部加熱体81bおよび上部加熱体81cの他の部分より50mm張り出した状態にしてあり、庇部81baの外径を240mm、庇部81caの外径を460mmとしてある。
さらに、下部加熱体81bおよび上部加熱体81cの形状に合わせて、外周断熱材10についても、下部10aのうち上部10b側の先端に庇部10aa、上部10bのうち下部10a側の先端に庇部10baを備えてある。これら庇部10aa、10baも、下部10aおよび上部10bを先端部において外径を拡大し、径方向外方に向けて張り出させた構造とされている。各庇部10aa、10baの張り出した先端位置も、各庇部81ba、81caと一致させてある。
ただし、庇部81baおよび庇部10aaの張り出した先端位置での外径は下段コイル13の内径(例えば260mm)よりも小さくしてある。また、庇部81caおよび庇部10baの張り出した先端位置での外径も上段コイル14の内径(例えば480mm)よりも小さくしてある。
このように、下部加熱体81bおよび上部加熱体81cに庇部81ba、81caを備えると、磁力線が各庇部81ba、81caに沿って導かれる。すなわち、庇部81ba、81caが第2実施形態で説明した低抵抗体15と同様の役割を果たし、庇部81ba、81ca内で磁力線の広がりを収束させると共に、磁力線が各庇部81ba、81caに沿って導かれるようにできる。このため、各コイル13、14を囲む磁力線同士の接触が抑制され、下部加熱体81bや上部加熱体81cを通過する磁力線同士が繋がらないようにすることができる。したがって、下部加熱体81bと上部加熱体81cとの間の更なる磁気的な分離が可能となり、より各加熱体81b、81cの温度の独立制御が行い易くなるようにできる。
(第3実施形態の変形例)
上記第3実施形態に対して、各庇部81ba、81caおよび各庇部10aa、10baの張り出した先端位置と各コイル13、14の寸法関係を変更しても良い。
例えば、図10に示すように、各庇部81baおよび各庇部10aaの張り出した先端位置での外径と下段コイル13の外径を一致させたり、庇部81caおよび各庇部10baの張り出した先端位置での外径と上段コイル14の外径が一致させたりできる。図10の例では、例えば、各庇部81baおよび各庇部10aaの張り出した先端位置での外径と下段コイル13の外径を300mmにしている。また、庇部81caおよび各庇部10baの張り出した先端位置での外径と上段コイル14の外径を520mmとしている。
また、図11に示すように、各庇部81baおよび各庇部10aaの張り出した先端位置での外径を下段コイル13の外径よりも大きくしたり、庇部81caおよび各庇部10baの張り出した先端位置での外径を上段コイル14の外径より大きくしたりできる。図11の例では、例えば、各庇部81baおよび各庇部10aaの張り出した先端位置での外径を340mm、下段コイル13の外径を300mmにしている。また、庇部81caおよび各庇部10baの張り出した先端位置での外径を560mm、上段コイル14の外径を520mmとしている。
このように、庇部81ba、81caの張り出した先端位置での外径を大きくするほど、より径方向外方まで磁力線が導かれる。例えば、図10の構造の場合には図12に示すような磁界分布となり、図11の構造の場合には図13に示すような磁界分布となる。したがって、より各コイル13、14を囲む磁力線同士の接触が抑制され、更に各加熱体81b、81cの温度の独立制御が行い易くなるようにできる。具体的には、下段コイル13および上段コイル14のコイル巻回中心軸方向から見て下段コイル13および上段コイル14の外径寸法が最も大きくなるときの外径と庇部81ba、81caの外径寸法が等しいか、それよりも大きくされることで、上記効果が得られる。
また、各庇部81ba、81caおよび各庇部10aa、10baの張り出した先端位置を一致させることもできる。
例えば、図14に示すように、下部加熱体81bの内径寸法を上部加熱体81cの内径寸法よりも小さくする場合に、庇部81baや庇部10aaの張り出し量を庇部81caや庇部10baの張り出し量よりも大きくする。これにより、各庇部81ba、81caおよび各庇部10aa、10baの張り出した先端位置を一致させることができる。
また、図15に示すように、下部加熱体81bの内径寸法を上部加熱体81cの内径寸法と等しく場合には、庇部81baや庇部10aaの張り出し量を庇部81caや庇部10baの張り出し量と等しくする。これにより、各庇部81ba、81caおよび各庇部10aa、10baの張り出した先端位置を一致させることができる。
さらに、図16に示すように、下部加熱体81bの内径寸法よりも上部加熱体81cの内径寸法を小さくする場合に、庇部81baや庇部10aaの張り出し量よりも庇部81caや庇部10baの張り出し量を大きくする。これにより、各庇部81ba、81caおよび各庇部10aa、10baの張り出した先端位置を一致させることができる。
また、庇部81baおよび庇部10aaの張り出した先端位置の方が庇部81caおよび庇部10baの張り出した先端位置よりも径方向外方に位置するようにすることもできる。例えば、図17に示すように、下部加熱体81bの内径寸法よりも上部加熱体81cの内径寸法を小さくする場合に、庇部81baや庇部10aaの張り出し量を庇部81caや庇部10baの張り出し量以上にすることができる。
(第4実施形態)
本発明の第4実施形態について説明する。本実施形態は、第3実施形態およびその変形例に対して下部加熱体81bおよび上部加熱体81cの形状などを変更したものであり、その他については第3実施形態などと同様であるため、第3実施形態と異なる部分についてのみ説明する。
図18に示すように、本実施形態のSiC単結晶製造装置1では、下部加熱体81bと上部加熱体81cに備えた各庇部81ba、81caに、径方向外方の先端位置において軸方向に沿って折り返した折返部81bb、81cbを備えている。例えば、庇部81baの外径を500mm、庇部81caの外径を720mmとし、折返部81bb、81cbの高さを100mmとしている。
このように、庇部81ba、81caに対して更に折返部81bb、81cbを備えると、磁力線が各庇部81ba、81caおよび折返部81bb、81cbに沿って導かれる。すなわち、庇部81ba、81caや折返部81bb、81cbが第2実施形態で説明した低抵抗体15と同様の役割を果たし、庇部81ba、81caや折返部81bb、81cb内で磁力線の広がりを収束させる。このため、各コイル13、14を囲む磁力線同士の接触が抑制され、下部加熱体81bや上部加熱体81cを通過する磁力線同士が繋がらないようにすることができる。したがって、下部加熱体81bと上部加熱体81cとの間の更なる磁気的な分離が可能となり、より各加熱体81b、81cの温度の独立制御が行い易くなるようにできる。
(他の実施形態)
上記各実施形態では、SiC単結晶製造装置1の構成の一例を示したが、適宜設計変更可能である。
例えば、図19に示すように、高周波コイル13、14の断面形状を円形状ではなく四角形状としても良い。また、回転引上機構11により台座9を回転させながら引上げられる構造としたが、単なる引上機構であっても良い。また、上記第3、第4実施形態では、下部加熱体81bおよび上部加熱体81cの双方に庇部81ba、81caを備えた構成としたが、一方にのみ備えられた構造であっても良い。
さらに、上記各実施形態では、SiC単結晶製造装置1の下方から原料ガス3を導入し、上方から未反応ガスなどを排出させるいわゆるアップフロー方式を採用した例を挙げた。これに対して、下部加熱体81bと上部加熱体81cの間を排出口として、未反応ガスを下部加熱体81bと上部加熱体81cの間から排出させるサイドフローに対しても本発明を適用することができる。
1 SiC単結晶製造装置
3 原料ガス
5 種結晶
8 反応容器
81 容器本体
81b、81c 下部加熱体
81ba、81ca 庇部
81bb、81cb 折返部
9 台座
13、14 高周波誘導コイル(下段コイル、上段コイル)
15 低抵抗体

Claims (8)

  1. 中空筒状部材の加熱体を含む容器本体(81)を有し、前記容器本体が上下に物理的に分割された下部加熱体(81b)および上部加熱体(81c)とされた反応容器(8)と、
    前記反応容器内に配置された台座(9)と、
    前記反応容器の外周のうち前記下部加熱体と対応する位置に配置され、前記下部加熱体を誘導加熱する高周波誘導コイルにて構成された下段コイル(13)と、
    前記反応容器の外周のうち前記上部加熱体と対応する位置に配置され、前記上部加熱体を誘導加熱する高周波誘導コイルにて構成された上段コイル(14)と、を備え、
    前記台座に対して炭化珪素単結晶基板からなる種結晶(5)を設置し、前記下段コイルにて前記下部加熱体を誘導加熱すると共に前記上段コイルにて前記上部加熱体を誘導加熱し、前記反応容器の中空部を通じて前記種結晶の表面に炭化珪素の原料ガス(3)を供給することで前記種結晶の表面に炭化珪素単結晶を結晶成長させるものであり、前記下部加熱体および前記上部加熱体が物理的に分離されることで誘導加熱時に磁気的にも分離させられており、
    物理的に分離させられた前記下部加熱体と前記上部加熱体との間に、前記容器本体よりも低抵抗な材料で構成された低抵抗体(15)が備えられていることを特徴とする炭化珪素単結晶製造装置。
  2. 前記低抵抗体は、前記誘導加熱時に前記下段コイルや前記上段コイルの周りに形成される磁場に対する垂直方向に一周する形状とされていることを特徴とする請求項に記載の炭化珪素単結晶製造装置。
  3. 前記低抵抗体と前記下段コイルおよび前記上段コイルは円環状とされ、
    前記下段コイルおよび前記上段コイルのコイル巻回中心軸方向から見て前記下段コイルおよび前記上段コイルの外径寸法が最も大きくなるときの外径と前記低抵抗体の外径寸法が等しい、もしくは、それよりも大きくされていることを特徴とする請求項に記載の炭化珪素単結晶製造装置。
  4. 前記低抵抗体は、低抵抗黒鉛と高融点金属および高融点金属の化合物のうちのいずれかによって構成されていることを特徴とする請求項ないしのいずれか1つに記載の炭化珪素単結晶製造装置。
  5. 中空筒状部材の加熱体を含む容器本体(81)を有し、前記容器本体が上下に物理的に分割された下部加熱体(81b)および上部加熱体(81c)とされた反応容器(8)と、
    前記反応容器内に配置された台座(9)と、
    前記反応容器の外周のうち前記下部加熱体と対応する位置に配置され、前記下部加熱体を誘導加熱する高周波誘導コイルにて構成された下段コイル(13)と、
    前記反応容器の外周のうち前記上部加熱体と対応する位置に配置され、前記上部加熱体を誘導加熱する高周波誘導コイルにて構成された上段コイル(14)と、を備え、
    前記台座に対して炭化珪素単結晶基板からなる種結晶(5)を設置し、前記下段コイルにて前記下部加熱体を誘導加熱すると共に前記上段コイルにて前記上部加熱体を誘導加熱し、前記反応容器の中空部を通じて前記種結晶の表面に炭化珪素の原料ガス(3)を供給することで前記種結晶の表面に炭化珪素単結晶を結晶成長させるものであり、前記下部加熱体および前記上部加熱体が物理的に分離されることで誘導加熱時に磁気的にも分離させられており、
    前記下部加熱体のうち前記上部加熱体側の先端と前記上部加熱体のうち前記下部加熱体側の先端のうちの少なくとも一方には、前記下部加熱体もしくは前記上部加熱体の径方向外側に張り出させた庇部(81ba、81ca)が備えられていることを特徴とする炭化珪素単結晶製造装置。
  6. 前記下段コイルおよび前記上段コイルは円環状とされ、
    前記下段コイルおよび前記上段コイルのコイル巻回中心軸方向から見て前記下段コイルおよび前記上段コイルの外径寸法が最も大きくなるときの外径と前記庇部の外径寸法が等しい、もしくは、それよりも大きくされていることを特徴とする請求項に記載の炭化珪素単結晶製造装置。
  7. 前記庇部は、前記下部加熱体のうち前記上部加熱体側の先端と前記上部加熱体のうち前記下部加熱体側の先端の両方に設けられており、
    前記下部加熱体のうち前記上部加熱体側の先端に設けられた前記庇部(81ba)の先端位置と前記上部加熱体のうち前記下部加熱体側の先端に設けられた前記庇部(81ca)の先端位置とが一致させられていることを特徴とする請求項またはに記載の炭化珪素単結晶製造装置。
  8. 前記庇部における径方向外方の先端位置には、前記下部加熱体もしくは前記上部加熱体の軸方向に沿って折り返した折返部(81bb、81cb)が備えられていることを特徴とする請求項ないしのいずれか1つに記載の炭化珪素単結晶製造装置。
JP2012217119A 2012-09-28 2012-09-28 炭化珪素単結晶製造装置 Active JP5910442B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012217119A JP5910442B2 (ja) 2012-09-28 2012-09-28 炭化珪素単結晶製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012217119A JP5910442B2 (ja) 2012-09-28 2012-09-28 炭化珪素単結晶製造装置

Publications (2)

Publication Number Publication Date
JP2014069991A JP2014069991A (ja) 2014-04-21
JP5910442B2 true JP5910442B2 (ja) 2016-04-27

Family

ID=50745543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012217119A Active JP5910442B2 (ja) 2012-09-28 2012-09-28 炭化珪素単結晶製造装置

Country Status (1)

Country Link
JP (1) JP5910442B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098954B2 (ja) * 2014-09-25 2017-03-22 パナソニックIpマネジメント株式会社 Iii族窒化物結晶の製造装置及び製造方法
JP6094605B2 (ja) 2015-01-20 2017-03-15 トヨタ自動車株式会社 単結晶製造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4903946B2 (ja) * 2000-12-28 2012-03-28 株式会社ブリヂストン 炭化ケイ素単結晶の製造方法及び製造装置
US7449065B1 (en) * 2006-12-02 2008-11-11 Ohio Aerospace Institute Method for the growth of large low-defect single crystals
JP4992965B2 (ja) * 2009-12-25 2012-08-08 株式会社デンソー 炭化珪素単結晶の製造装置

Also Published As

Publication number Publication date
JP2014069991A (ja) 2014-04-21

Similar Documents

Publication Publication Date Title
KR101447476B1 (ko) 탄화규소 단결정 제조 장치
JP4992965B2 (ja) 炭化珪素単結晶の製造装置
EP2339053B1 (en) Manufacturing apparatus and manufacturing method of silicon carbide single crystal
JP5556761B2 (ja) 炭化珪素単結晶製造装置
JP5910442B2 (ja) 炭化珪素単結晶製造装置
JP4962074B2 (ja) 炭化珪素単結晶の製造装置および製造方法
JP4535116B2 (ja) 炭化珪素単結晶の製造装置および製造方法
EP2465980B1 (en) Apparatus and method for manufacturing silicon carbide single crystal
JP5381957B2 (ja) 炭化珪素単結晶の製造装置および製造方法
JP5278302B2 (ja) 炭化珪素単結晶の製造方法および製造装置
JP5648604B2 (ja) 炭化珪素単結晶製造装置
JP6052051B2 (ja) 炭化珪素単結晶の製造装置
JP5831339B2 (ja) 炭化珪素単結晶の製造方法
JP2014055077A (ja) 炭化珪素単結晶の製造装置およびそれを用いたSiC単結晶の製造方法
JP4941475B2 (ja) 炭化珪素単結晶の製造方法およびそれに適した製造装置
JP5407899B2 (ja) 炭化珪素単結晶の製造装置および製造方法
JP5867335B2 (ja) 炭化珪素単結晶の製造装置および製造方法
JP6187372B2 (ja) 炭化珪素単結晶製造装置
JP5594235B2 (ja) 炭化珪素単結晶の製造装置および製造方法
JP5578146B2 (ja) 炭化珪素単結晶製造装置
WO2019225697A1 (ja) 炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法
JP2016216303A (ja) 炭化珪素単結晶製造装置
JP2014111546A (ja) 炭化珪素単結晶の製造装置
JP5842725B2 (ja) 炭化珪素単結晶製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R151 Written notification of patent or utility model registration

Ref document number: 5910442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250