WO2000014174A1 - Dispositif organique electroluminescent et derive de phenylenediamine - Google Patents

Dispositif organique electroluminescent et derive de phenylenediamine Download PDF

Info

Publication number
WO2000014174A1
WO2000014174A1 PCT/JP1999/004794 JP9904794W WO0014174A1 WO 2000014174 A1 WO2000014174 A1 WO 2000014174A1 JP 9904794 W JP9904794 W JP 9904794W WO 0014174 A1 WO0014174 A1 WO 0014174A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
general formula
bond
Prior art date
Application number
PCT/JP1999/004794
Other languages
English (en)
French (fr)
Inventor
Hisayuki Kawamura
Chishio Hosokawa
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP99940653A priority Critical patent/EP1029909A4/en
Priority to KR1020007004003A priority patent/KR100841842B1/ko
Priority to US09/530,597 priority patent/US6541129B1/en
Publication of WO2000014174A1 publication Critical patent/WO2000014174A1/ja
Priority to US11/201,263 priority patent/US7399537B2/en
Priority to US12/131,977 priority patent/US20080241591A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/58Naphthylamines; N-substituted derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/92Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the nitrogen atom of at least one of the amino groups being further bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to an organic electroluminescent device (hereinafter, referred to as an organic EL device) and a phenylenediamine derivative, and more particularly, to an organic EL device having a pair of electrodes and an organic light emitting layer sandwiched between these electrodes. And phenylenediamine derivatives used as materials for organic EL devices and the like.
  • Organic EL elements are completely solid-state devices, and are being actively studied at present because thin and low-voltage driven displays and lights can be manufactured.
  • a high-molecular-weight aromatic amine disclosed in Japanese Patent Application Laid-Open No. Hei 9-1991 Compounds also have a small ionization potential of 5.2 eV, but have the problem of insufficient hole mobility. This is presumably due to the fact that the hole mobility is lowered due to the contamination of impurities.
  • these compounds have a blue light-emitting component, if these compounds are used in the hole transport band of the blue light-emitting element, blue light cannot be obtained due to mixing of a green light-emitting component.
  • An object of the present invention is to provide an organic EL element having a long life and capable of reducing the driving voltage of the organic EL element.
  • Another object of the present invention is to provide a material having a low ionization potential and a high hole mobility when used as a layer or a region.
  • the present invention relates to an organic electroluminescence element including a pair of electrodes and an organic light emitting layer sandwiched between these electrodes, wherein the organic electroluminescence element is provided between the electrodes.
  • the hole transport zone contains a phenylenediamine derivative represented by the following general formula (I), (II) or (II) ′, and the phenylenediamine derivative is formed in a layer or zone. Hole mobility when used as
  • the organic light emitting layer is characterized by containing a charge injection auxiliary material.
  • Ar 6 is a hydrogen atom, a carbon number
  • X is a linking group, a single bond, arylene having 6 to 24 nuclear carbon atoms, alkylene having 1 to 6 carbon atoms, diphenylmethylene, ether bond, thioether bond, substituted or unsubstituted vinyl It is a bond or an aromatic heterocycle.
  • R 1 is a hydrogen atom, a carbon number
  • R 2 is an alkyl group, an alkoxy group, or a hydrogen atom having 1 to 6 carbon atoms, and may be bonded to each other to form a substituted or unsubstituted saturated 5- or 6-membered ring.
  • [A r 7 ⁇ A r 1 2 is a hydrogen atom, an alkyl group or an alkoxy group of from 1 to 6 carbon, Ariru group having ring carbon atoms (U-24, or be by connexion substituted styryl group It is an aryl group having 6 to 24 nuclear carbon atoms, Y is a linking group, a single bond, arylene having 6 to 24 nuclear carbon atoms, anolexylene having 1 to 6 carbon atoms, and dipheninole R 3 , a methylene, ether bond, thioether bond, aromatic hetero ring, or substituted or unsubstituted vinyl bond.
  • R 4 is an alkyl group, an alkoxy group, or a hydrogen atom having 1 to 6 carbon atoms, and may be bonded to each other to form a substituted or unsubstituted saturated 5- or 6-membered ring.
  • [A r A 12 represents a hydrogen atom, a C 1 to C 6 or an alkoxy group, an aryl group having a C 6 to C 24, or a C 6 carbon atom which may be substituted by a styryl group. ⁇ 24 aryl groups.
  • Y is a linking group, which is a single bond, arylene having 6 to 24 nuclear carbon atoms, anorecylene having 1 to 6 carbon atoms, dipheninolemethylene, ethylenole bond, and thio-
  • R 6 is an alkyl group, an alkoxy group, or a hydrogen atom having 1 to 6 carbon atoms, and may be bonded to each other to form a substituted or unsubstituted saturated 5-membered ring or saturated 6-ring.
  • the hole transport zone is a region of the organic EL device having a function of transporting holes injected from the anode. 1 is a function of transporting holes 0 4 to 1 0. at least 0 one 4 cm at cm of electric field is applied
  • the hole transport zone includes a hole injection layer and a hole transport layer, and may include a light emitting layer.
  • the compounds represented by the general formulas (I), (II) and (II) ′ have a low ionization potential having a phenylenediamine structure and, furthermore, have a central skeleton represented by X and Y.
  • the phenylenediamine derivative suitable as the hole injection and transport material is contained in the hole transport zone, so that the driving voltage of the organic EL device can be reduced. However, it is possible to suppress an increase in driving pressure due to continuous driving.
  • a light emitting layer containing a charge injection auxiliary material it is essential to use a light emitting layer containing a charge injection auxiliary material.
  • the charge injection auxiliary material is a compound that maintains an ionization energy smaller than the ionization energy of the main material forming the light emitting layer, and is preferably (1) .1 wt% to 20 wt. % Is a material that assists hole injection into the light emitting layer when added.
  • the addition of this charge injection auxiliary material can reduce the driving pressure and stabilize the driving pressure.
  • a charge injection auxiliary material compounds such as styrylamine derivatives, distyrylarylene derivatives, tristyrarylarylene derivatives, and diamine derivatives can be used. Particularly, a 5.0 to 5.5 eV ionization compound can be used. Compounds that carry the energy are preferred.
  • the charge injection auxiliary material may emit light in response to the recombination of holes and electrons generated in the light emitting layer, or may exhibit only the effect of assisting charge injection without emitting light. Good.
  • the above-described hole transport zone has a hole injection layer containing a phenylenediamine derivative represented by the general formula (I), the general formula ( ⁇ ) or the general formula ( ⁇ ) ′. It is desirable to be constituted.
  • the hole transport zone is defined by the general formula (I), the general formula ( ⁇ ), or It may have a hole transport layer containing a phenylenediamine derivative represented by the formula (II) ′.
  • At least one of A rr 6 in the general formula (I) is preferably a condensed aromatic ring having 10 to 24 core carbon atoms. According to this, the device can be driven at a low voltage and the life of the device can be extended.
  • [A r 1 3 ⁇ A r 1 8 represents a hydrogen atom, an alkyl group or ⁇ alkoxy group having a carbon number of 1-6, Ariru group having ring carbon number 6-24 or, in a styryl group therefore may be substituted It is an aryl group having 6 to 24 nuclear carbon atoms.
  • X is a linking group, a single bond, arylene having 6 to 24 nuclear carbon atoms, alkylene having 1 to 6 carbon atoms, diphenylmethylene, ether bond, thiotenol bond, substituted or unsubstituted It is a Bull bond or an aromatic hetero ring.
  • R 7 and R 8 are an alkyl group or an alkoxy group having 1 to 6 carbon atoms, or a hydrogen atom, which are bonded to each other to form a substituted or unsubstituted saturated 5- or 6-membered ring; Is also good. ]
  • [A r 1 9 ⁇ A r 2 4 represents a hydrogen atom, an alkyl group or ⁇ alkoxy group, ring carbon atoms 6-2 4 Ariru group of from 1 to 6 carbon, Moshiku is thus substituted by a styryl group It may be an aryl group having 6 to 24 carbon atoms.
  • Y is a linking group, a single bond, arylene having 6 to 24 nuclear carbon atoms, anolexylene having 1 to 6 carbon atoms, dipheninolemethylene, ⁇ tegre 'bond, thioleno bond, aromatic Hetero ring, or substituted or unsubstituted vinyl bond '
  • R R is an alkyl group, an alkoxy group, or a hydrogen atom having 1 to 6 carbon atoms, and may be bonded to each other to form a substituted or unsubstituted saturated 5- or 6-membered ring.
  • the compound of the present invention has the general formula (V)
  • [A r 2 5 ⁇ A r 3 0 is a hydrogen atom, an alkyl grave, ⁇ Li Ichiru group or several may ring carbon substituted by a styryl group, ring carbon number 6-24 carbon number 1-6 6 Is an aryl group having up to 24 .
  • Y is a linking S, and in the case, arylene having 6 to 24 carbon atoms, alkylene having 1 to 6 carbon atoms, diphenylmethylene, an ether bond, a thioether bond, and an aromatic hetero atom It is a ring or a substituted or unsubstituted vinyl bond.
  • R 11 R 12 is an alkyl group having 1 to 6 carbon atoms, an alkoxy group, or a hydrogen atom, and is bonded to each other to form a substituted or unsubstituted saturated 5-membered ring or saturated 6-membered ring. It may be formed.
  • FIG. 1 is a diagram showing a fluorescence spectrum of the phenamine derivative STBA-i of the present invention.
  • the phenylenediamine derivative used in the organic EL device of the present invention is a compound represented by general formulas (1), (II) and (II) ′.
  • examples of the aryl group having 6 to 24 carbon atoms include phenyl, biphenyl, naphthyl, anthranyl, t-phenyl, pyrenyl and the like. And the like. Particularly, a phenyl group and a naphthyl group are preferable.
  • alkyl group having 6 to 6 carbon atoms examples include methyl, ethyl, n-blovinole, i-furohill, n-butyl, s-butynole, L-butynole, n-pentyl, n-hexyl and the like.
  • alkoxy S having from 6 to 6 carbon atoms examples include methoxy, ethoxy, n-phenyl : lo-hydroxyphenol, i-bromophenol, n-hydroxy, s-phenyl, and x! _ 1-butoxy, n-hexyloxy, n-hexyloxy, etc .;
  • styryl group examples include 1-phenyl-2-vinyl] -1-yl, 2-phenyl-vinylinoleate, 2,2-diphenyl / lebininoleate-inole, 2-phenyl-2-yl-2- (naphthyl-1-yl) ) Bull-11,2,2-bis (diphenyl-11yl) vinyl-1-yl group.
  • a 2,2-diphenylvinyl-2-yl group is preferred.
  • X in the general formula (I), ⁇ in the general formula ( ⁇ ), and ⁇ in the general formula (II) 1 each represent a linking group, a single bond, arylene having 6 to 24 carbon atoms, carbon It is an alkylene, diphenylmethylene, ether bond, thioether bond, or aromatic hetero ring of the numbers 1 to 6.
  • arylene having 6 to 24 nuclear carbon atoms examples include phenylene and biphenylene. Len, nafti, anthranylene, turfene, pyrenylene, etc ...:
  • aromatic heterocycles include pyrrole, furan, thiophene, silolel, triazine, oxaziazole, triazole, oxazole, quinoline, quinoxaline, pyrimidine and the like.
  • Compounds of general formula (I) is preferably a phenylene Le group in which at least one is substituted condensed aromatic ring or a styryl group having ring carbon atoms 1 0-24 of A r 1 ⁇ A r 6.
  • fused aromatic rings include naphthyl, anthranyl, bienyl, and phenanthryl groups. Particularly preferred is a naphthyl group.
  • styryl groups include 1-phenylvinyl-2-yl, 2-phenylvinyl-11-yl, 2,2-diphenylvinyl-11-yl, and 2-phenyl-2-yl-2- (Naphthyl-11-yl) butyl-1] -yl, 2,2-bis (diphenyl-11-yl) vinyl-11-yl group and the like. Particularly, a 2,2-diphenylvinyl-2-yl group is preferred.
  • Such compounds of the present invention since it is contained in the hole transporting zone of the device, 1 0 4 ⁇ 1 0 6 VZc 1 0- 4 cm 2 / V ⁇ s or more hole mobility when an electric field is applied in the m It is assumed to have.
  • phenol derivative represented by the general formula (I) include compounds represented by the following chemical formulas [PD-01], [PD-59], and [STB A-1]. . Note that the present invention is not limited to these. ⁇ -Qd
  • PD-59 Further, specific examples of the phenylenediamine derivative represented by the general formula (II) include compounds represented by the following chemical formulas [PT-01] to [ ⁇ -31]. Note that the present invention is not limited to these.
  • Such compounds of the general formulas (I), (II) and (II) ′ have a low ionization potential and are liable to be contaminated by impurities, such as being oxidized during purification.
  • the hole mobility may be reduced.
  • impurities are mixed into the high molecular weight aromatic amine compound as observed in the fluorescence spectrum, sufficient holes are trapped or the like. Mobility is not obtained.
  • the present inventors have conducted intensive studies on a method for purifying a compound and found that a pure compound can be obtained by using a toluene-hexane solvent as a solvent during column purification. . According to this purification method, a compound having a higher purity can be obtained than in the method disclosed in JP-A-9-30934, which uses a halogen-based solvent for column purification.
  • the compound of the present invention is contained in the hole transport zone in such a component.
  • the amount to be contained is selected from 30 to 100 mol%.
  • the organic EL device of the present invention is manufactured on a translucent substrate.
  • the translucent substrate referred to herein is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance of 50% or more in a visible region of 400 nm to 700 nm.
  • Glass plates include soda-lime glass, barium-strontium-containing glass, and lead. Examples include glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Also, as a bolimer plate, poly-polypropylene, acryl, polyethylene terephthalate, polyethersulfate, etc. And horisulfones.
  • anode a metal, an alloy, an electrically conductive compound or a mixture thereof having a large work function (4 eV or more) is preferably used as an electrode material.
  • an electrode material include: And conductive materials such as Cu, ITO, SnO2, and Zn.
  • the anode can be made by forming a thin film from these electrode substances by a method such as evaporating, snow, or tarting.
  • the transmittance of the anode with respect to the sunlight is larger than 0%.
  • the resistance and resistance of the anode are preferably several hundreds ⁇ or less.
  • the thickness of the anode depends on the material, but is usually selected from the range of 1 () nm to] ⁇ m, preferably from 10 to 200 nm.
  • the light emitting layer of the L element has the following functions at the same time.
  • Injection function A function to inject holes from the anode or hole injection layer when applying an electric field, and to inject electrons from the cathode or electron injection layer.
  • Light-emitting function It provides a field for the recombination of electrons and holes, and has a function to link this to light emission.
  • the light-emitting material of the organic EL device is mainly an organic compound, and specific examples thereof include the following compounds depending on a desired color tone.
  • a compound represented by the following general formula can be used to obtain purple emission from the ultraviolet region.
  • n 2, 3, 4, or 5:
  • Y represents the following compound.
  • the compound represented by such a general formula includes a phenyl group, a phenylene group, a naphthyl group, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a hydroxyl group, a sulfonyl, a carbonyl group, an amino group, a dimethylamino group or
  • the diphenylamino group or the like may be single or plurally substituted.
  • phenyl, phenylene, or naphthyl group at the para-position have good binding properties and are preferable for forming a smooth vapor-deposited film. Specifically, they are the following compounds. Particularly, a p-quarterphenyl derivative and a p-quinphenyl derivative are preferred.
  • P6LP0 / 66df / LDd Orchid O In order to obtain blue to green light emission, for example, fluorescent whitening agents such as benzothiazoles, benzoimidazoles, and benzoxazoles, gold-chelated oxoxide compounds, and styrylbenzene compounds should be mentioned.
  • fluorescent whitening agents such as benzothiazoles, benzoimidazoles, and benzoxazoles, gold-chelated oxoxide compounds, and styrylbenzene compounds should be mentioned.
  • the compounds can be specifically described.
  • the compounds shown in Japanese Patent Publication No. 59-19439: 3 can be cited.
  • 2 Another useful compound is Chemis. It is listed on Tolly's Synthetic Soybean 1971, pp. 628-637 and 640.
  • Examples of the chelated oxinoxide compound include those disclosed in JP-A-63-295695. Typical examples thereof include 8-hydroxyquinoline-based metal complexes such as tris (8-quinolinol) aluminum (hereinafter abbreviated as A1q) and dilithium-ebintridione.
  • styrylbenzene-based compound for example, those mentioned in European Patent No. 0: 319881 and European Patent No. 0 373 582 can be used.
  • a distyryl virazine derivative disclosed in Japanese Patent Application Laid-Open No. 2-252793 can also be used as a material for the light emitting layer.
  • a polyphenyl compound disclosed in European Patent No. 0 387 7] 5 can also be used as a material for the light emitting layer.
  • metal chelated oxoxide compounds and styrylbenzene compounds for example, 12-phthaloperinone (J. Appl. Phys., Vol. 27, L 713 (1988)), 1,4-diphenyl-1,3-butadiene, 1,1,, 4,4-tetraphenyl-1,3-butadiene (Appl. Physs. Let et al.) t., Vol. 56, L 799 (1990)), naphthalimide derivative (Japanese Unexamined Patent Publication No.
  • a polymer compound or the like described in 99 1) can also be used as a material for the light emitting layer.
  • an aromatic dimethylidin-based compound e.g., one disclosed in European Patent No. 03887688 / Japanese Patent Publication No. 3-231970
  • an aromatic dimethylidin-based compound e.g., one disclosed in European Patent No. 03887688 / Japanese Patent Publication No. 3-231970
  • Specific examples include 4,4'-bis (2,2-di-t-butylphenylvinyl) biphenyl, (hereinafter abbreviated as DTB PBBi), 4,4'-bis (2,2-diphenyl) Nilbinyl) biphenyl (hereinafter abbreviated as D PVB i), and derivatives thereof.
  • R s -Q a compound represented by the general formula (R s -Q) 2 -A 1 -O-L described in JP-A-5-258862 and the like
  • L includes a phenyl moiety O to L are phenolate ligands
  • Q is a substituted 8-quinolinolate ligand
  • R s is an aluminum atom substituted by 8 to 8 carbon atoms.
  • —8-Quinolinos chosen to sterically hinder more than two quinolinolate ligands from binding represents a ring substituent).
  • PC-7 bis (2-methyl-8-quinolinolate) (para-fuyulphenolate) aluminum (III) (hereinafter PC-7), bis (2-methyl-8-quinolinolate) (1-naphthranitol) aluminum (III) ) (Hereinafter PC-17).
  • the host is the above-mentioned luminescent material
  • the dopant is a strong fluorescent dye from blue to green, for example, a coumarin-based fluorescent dye or a fluorescent dye similar to that used as the above-mentioned host. be able to.
  • a luminescent material having a distyrylarylene skeleton particularly preferably DPVB i
  • diphenylaminobutylarylene particularly preferably, for example, N, N-diphenylamino Vinylbenzene (DPAVB)
  • the light-emitting layer that emits white light is not particularly limited, and examples thereof include the following.
  • the light-emitting layer is divided into a plurality of layers, each of which is made of a material having a different emission wavelength (Japanese Patent Application Laid-Open No. H5-151491).
  • the blue light-emitting layer contains a blue fluorescent dye
  • the green light-emitting layer has a region containing a red fluorescent dye, and further contains a green phosphor (Japanese Unexamined Patent Publication No. 7-142169) Gazette)
  • those having the structure of 5 are preferably used.
  • red phosphor examples of the red phosphor are shown below.
  • a known method such as an evaporation method, a spin coating method, and an LB method can be applied.
  • the light emitting layer is particularly preferably a molecular deposition film.
  • the molecular deposition film is a thin film formed by deposition from a material compound in a gaseous phase or a film formed by solidification from a material compound in a solution state or a liquid phase. Can be distinguished from the thin film (molecule accumulation film) formed by the LB method by the difference in the cohesive structure, the higher-order structure, and the functional difference caused by the difference.
  • a binder such as a resin and a material compound are dissolved in a solvent to form a solution, which is then subjected to a spin coating method or the like.
  • the light emitting layer can also be formed by making the film thinner.
  • the thickness of the light emitting layer formed in this way is usually preferably in the range of 5 nm to 5 ⁇ m.
  • the light-emitting layer may be composed of one or more of the above-described materials, or may be a laminate of light-emitting layers made of a compound different from the light-emitting layer.
  • the hole injection / transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region. It has a high hole mobility and a small ionization energy of usually 5.5 eV or less. Such a hole injection is preferably made of a material which can transport holes to the emitting layer at a lower electric field intensity. Transporting layer, The hole mobility thereof is, for example, when the field is applied for 1 0 4 ⁇ 1 0 6 VZ cm , preferably equal with 1 0- 4 cm 2 / a V ⁇ sec less.
  • the hole injection / transport material it is preferable to use the phenylenediamine derivative represented by the above-mentioned general formula 0) or general formula ( ⁇ ).
  • the above-described compound of the present invention may be used alone to form the hole injecting / transporting layer, or may be used as a mixture with another material.
  • the material for forming the hole injecting / transporting layer by mixing with the compound of the present invention is not particularly limited as long as it has the above-mentioned preferable properties. Conventionally, it is commonly used as a charge transporting material for holes in photoconductive materials. And any known materials used in the hole injection layer of the EL device.
  • the above-mentioned materials can be used, and porphyrin compounds (those disclosed in JP-A-63-29556965), aromatic tertiary amine compounds and styrylamine compounds (U.S. Patent Nos. 4,127,412, JP-A-53-27033, JP-A-54-5845, JP-A-54-149634, JP-A-54-64299) Gazette, Gazette 55-79450, Gazette 55-144450, Gazette 56-1191932, Gazette 61-295558, Gazette 61-98
  • NPD 4,4′-bis (N— (1-naphthyl) -1N— Phenylamino) bibudinil
  • IT DATA Tris (N- (3-methinolephenyl) _N-phenylamino) triphenylenoleamine
  • inorganic compounds such as p-type Si and p-type SiC can also be used as a material for the hole injection layer.
  • the hole injection / transport layer can be formed by thinning the above-mentioned compound by a known method such as a vacuum evaporation method, a spin coating method, a casting method, and an LB method.
  • the thickness of the hole injection / transport layer is not particularly limited, but is usually 5 nm to 5 ⁇ .
  • the hole injection / transport layer may be composed of one or more of the above-mentioned materials as long as the compound of the present invention is contained in the hole transport zone. Alternatively, it may be a layer obtained by laminating a hole injection / transport layer made of a compound different from the transport layer:
  • the organic semiconductor layer is a layer that assists hole injection or electron injection into the light emitting layer, and preferably has a conductivity of 10 to 10 SZ cm or more.
  • Examples of the material for such an organic semiconductor layer include thiophene-containing oligomers, conductive oligomers such as arylamine-containing oligomers disclosed in Japanese Patent Application Laid-Open No. 8-19391, and arylamine-containing oligomers.
  • a conductive dendrimer such as a mindendrimer can be used.
  • the electron injection layer is a layer that assists the injection of electrons into the light emitting layer, has a high electron mobility
  • the adhesion improving layer is a layer made of a material having a particularly good adhesion to the cathode in the electron injection layer. It is.
  • a material used for the electron injection layer a metal complex of 8-hydroxyquinoline or a derivative thereof is preferable. Specific examples of the metal complex of 8-hydroxyquinoline or a derivative thereof include oxine (generally, 8-quinolinol or 8-hydroxyquinoline). And metal chelate oxoxide compounds containing the chelate (lin). For example, A1q described in the section of the light emitting material can be used as the electron injection layer.
  • examples of the oxadiazole derivative include an electron transfer compound represented by the following general formula.
  • the aryl group includes a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group and a group having 1 to 10 carbon atoms, and the like.
  • This electron transfer compound has a thin film forming property. preferable.
  • a metal, an alloy, a conductive compound, or a mixture thereof having a low work function (4 eV or less) as an electrode material is used as the cathode.
  • electrode materials include sodium, sodium-cadmium alloy, magnesium, lithium, magnesium-silver alloy, and anoremini.
  • the cathode can be manufactured by forming a thin film from these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the cathode with respect to the emitted light be greater than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ square or less, and the film thickness is usually 1 ° nm to l / _im, preferably 50 to 200 nm.
  • an organic EL device can be manufactured by forming an anode, a light-emitting layer, a hole injection layer as needed, and an electron injection layer as needed, and further forming a cathode. it can.
  • an organic EL device can be manufactured in the reverse order from the cathode to the anode.
  • a thin film made of an anode material is formed on a suitable translucent substrate to a thickness of 1 / xm or less, preferably in the range of 10 to 200 nm, by a method such as vapor deposition and sputtering. Make an anode.
  • the hole injection layer can be formed by a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like as described above, but a uniform film is easily obtained and pinholes are generated. It is preferably formed by a vacuum evaporation method from the viewpoint of difficulty.
  • the deposition conditions vary depending on the compound to be used (the material of the hole injection layer), the crystal structure and the recombination structure of the target hole injection layer, etc. Deposition source temperature 50-450 ° C, degree of vacuum 1
  • a light-emitting layer in which a light-emitting layer is provided on the hole injection layer is formed by thinning the organic light-emitting material using a desired organic light-emitting material by a method such as vacuum evaporation, sputtering, spin coating, or casting.
  • a vacuum evaporation method it is preferable to form the film by a vacuum evaporation method from the viewpoint that a uniform film is easily obtained and a pinhole is hardly generated.
  • the deposition conditions vary depending on the compound used, but can be generally selected from the same condition range as the hole injection layer.
  • an electron injecting layer is provided on the light emitting layer.
  • the film is formed by a vacuum deposition method from the viewpoint of obtaining a uniform film.
  • the deposition conditions can be selected from the same condition ranges as for the hole injection layer and the light emitting layer.
  • the compound of the present invention differs depending on whether it is contained in a layer in the hole transporting region or in a misaligned layer, but can be co-evaporated with another material when a vacuum evaporation method is used. When the spin coating method is used, it can be contained by mixing with other materials.
  • an organic EL device can be obtained by laminating a cathode.
  • the cathode is made of a metal, and can be formed by a vapor deposition method or sputtering. However, in order to protect the underlying organic layer from damage during film formation, a vacuum deposition method is preferable.
  • the fabrication of the organic EL device described so far is performed consistently from the anode to the cathode by one evacuation.
  • Formula representing the Akira Moto Seo phenylenediamine two 3 ⁇ 4 body (11]), (IV) and Examples of Ariru group having ring carbon atoms in (V) (the Hare 1-2 4 1 to 6 carbon atoms And alkyl'S and alkoxy groups, styryl groups, etc.
  • Examples of the aryl group having 6 to 24 carbon atoms include phenyl S, biphenyl group, naphthyl group, anthranyl group, t-phenyl group, A phenyl group and a naphthyl group are particularly preferable.
  • alkyl group having 6 to 6 carbon atoms examples include methyl, ethyl, n-propynole, i-furinole, n-butynole, s-butynole, t-butynole, n-bentyl, n-hexyl, and the like.
  • alkoxy groups from 6 to 6 include methoxy, ethoxy, n—bro-Hiloxy, i-single-Hiloxy, n—but'tox, s—but'tox, t—butoxy, n—, n-tinoleoxy, n —Hexyl'oxy group-
  • styryl group examples include 1-phenylvinyl-2-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinylinole 1-inole, and 2-phenyl-2-yl (naphthyl-1-yl).
  • Vininole 1-yl 2,2-bis (diphenyl 1-yl) vinyl-1-yl and the like.
  • a 2,2-diphenylvinyl-1-yl group is preferred.
  • X in the general formula ( ⁇ ⁇ ), Y in (IV) and Y in (V) each represent a linking group, a single bond, arylene having 6 to 24 carbon atoms, alkylene having 1 to 6 carbon atoms, diphenyl. It is a methylene, ether bond, tetraether bond, aromatic hetero ring, or substituted or unsubstituted vinyl bond.
  • arylene having 6 to 24 nuclear carbon atoms include phenylene, biphenylene, naphthylene, anthranylene, terfenolylene, pyrenylene and the like.
  • alkylene having 1 to 6 carbon atoms examples include methylene, isopropylene, and cyclov : pyrene.
  • Diphenylmethylene may be substituted by the above-mentioned alkyl or alkoxy group having 1 to 6 carbon atoms.
  • aromatic heterocycles include pyrrole, furan, thiophene, silole, triazine, oxaziazole, triazole, oxazole, quinoline, quinoxaline, pyrimidine and the like.
  • At least one of the general formula (III) in the A r 1 3 ⁇ A r 1 8 , or a Ariru group substituted with a styryl group having ring carbon atoms 1 0-2 4, or A gamma 1 [delta] , Ar 18 or X is a condensed aromatic ring, aromatic hetero ring or substituted or unsubstituted vinyl group having 10 to 24 core carbon atoms.
  • condensed aromatic St include naphthyl, anthranyl, pyrenyl, and phenantyryl groups, with a naphthyl group being particularly preferred.
  • styryl groups include 1-phenyl-2-vinyl 1-yl, 2-phenylvinylinole 1-yl, 2,2-diphenyl-vinyl-vinyl 1-yl, 2-phenyl-2-vinyl 1-yl, and naphthyl 1-yl.
  • Vinyl-11-yl and 2,2-bis (diphenyl-1-yl) -bul-1-1-yl groups In particular, a 2,2-diphenylvinyl 1f1 group is preferred.
  • Examples of the aromatic hetero ring include pyrrole, furan, thiophene, silole, triazine, oxaziazole, triazole, oxazolyl, quinoline, quinoxaline, and pyrimidine.
  • Preferred examples of the alkyl group as R 7 and R 8 include methylethyl, i-propyl, t-butyl and the like.
  • Examples of preferred alkoxy groups include methoxy, ethoxy, i-furoxy and L-butoxy. And so on.
  • X is a single bond ⁇ ⁇ , R 7 and R 8 ;:. ⁇ , 'Are combined, and ⁇ is a bivalent ⁇ ⁇ composed of non-commutable fluorene.
  • condensed aromatics examples include naphthyl, anthranyl, bienyl, and phenanthryl groups, with a naphthyl group being particularly preferred.
  • styryl S 1-phenyl-2-yl, 2-phenyl-vinyl, 2,2-diphenyl-2-vinyl, 1-ynole, 2--1-phenyl-2- (naphthyl-1-1 Yl) butyl-1-yl and 2,2-bis (diphenyl-11-yl) vinyl-1-yl.
  • a 2,2-diphenylvinyl-2-yl group is preferred.
  • aromatic heterocycles include virole, furan, thiophene, silole, triazine, oxaziazole, triazole, oxazonole, quinoxaline, and pyrimidine.
  • Preferred examples of the alkyl group as R 9 and R 10 include methylethyl, i-propyl, t-butyl and the like, and preferred examples of the alkoxy group include methoxy, ethoxy, dibromoboxyl, t-butoxy and the like. is there. Further, when Y is a single bond, R 9 and R 10 are bonded, and a divalent group composed of substituted or unsubstituted fluorene is also preferable. Further, the In the general formula (V), at least one of A r 2 5 ⁇ A r 3 0 , a Ariru group substituted styryl 3 ⁇ 4 of ring carbon atoms 1- () - 2 4 force,
  • Y is a condensed aromatic ⁇ having 1 () to 24 nucleus carbon atoms, a one-ring ring to an aromatic ring, or a vinyl compound W is there
  • condensed aromatics examples include naphthyl, anthranyl, hlenyl, and phenanthryl groups, with a naphthyl group being particularly preferred.
  • styryl groups include 1-phenyl-2-vinyl, 1-yl, 2-phenylvinylinole, 1-yl, 2,2-diphenylvinyl, 1-yl, and 2-phenyl-2-yl (naphthyl- ⁇ ).
  • a 2,2-diphenylvinyl-2-yl group is preferred.
  • Aromatic heterocycles include hillol, furan, thiophene, silole, triazine, oxaziazole, triazole, oxazole, quinoxalin, virimidine, etc.,:
  • R 11 and R 12 examples include methylethyl, i-propyl, t-butyl and the like.
  • preferred alkoxy groups include methoxy, ethoxy, i-propoxy and t-butyl. Butoxy and the like.
  • Y is a single bond, R 1 1 R 1 2 are bonded, preferred divalent group comprising substituted or unsubstituted fluorene.
  • phenylenediamine dimer represented by the general formula (III) include compounds represented by the following chemical formulas [PD-01 '] to [PD-56']. Note that the present invention is not limited to these. ⁇
  • Examples of the specific examples of the phenylenediamine dimer represented by the general formula (IV) include the following chemical formulas [PT-01 '] to [PT-11'] and [ ⁇ -23 ']. To [ ⁇ —31 ′]. Note that the present invention is not limited to these.
  • the fuendylenediamine derivatives represented by the general formulas (IV) and (V) were found to be particularly preferable. Since these compounds do not deteriorate during electron injection and have high fluorescence without being deteriorated, they can be used as a light emitting material. In addition, they can be used as a hole injection layer and a hole transport layer because of their electron injection resistance and long life. It turned out to be life. Next, effects of the present invention will be described based on specific examples.
  • Trifenylamine (produced by Hiroshima Wako Co., Ltd.) 125 g was dissolved in ethanol 51 by heating, 150 g of mercury oxide was added at 60 C, and then 100 g of iodine was gradually added. Was added. Thereafter, the reaction was carried out at reflux temperature for 2 hours.
  • reaction solution was filtered by heating, the residue was washed with acetone, the filtrate was cooled, and the precipitated crystals were separated by filtration.
  • N-funiniru N- (1-naphthyl) amine (Hiroshima Wako Co., Ltd.) 10 g, p-Fluoronitrobenzene (Hiroshima Wako Co., Ltd.) 20 g, lithium carbonate 2 0 g, 1 g of copper powder, and 100 ml of Nitroguchi benzene were placed in a 300 ml three-necked flask, and heated and stirred at 200 ° C. for 48 hours.
  • the inorganic substances were separated by filtration, and the solvent of the mother liquor was distilled off.
  • Fig. 1 shows the fluorescence spectrum of STBA-1.
  • the inorganic substances were separated by filtration, and the solvent of the mother liquor was distilled off.
  • An IZL device was fabricated using the above-mentioned PD-1.
  • a transparent anode of indium tin oxide coated on glass was provided.
  • the tin oxide was about 750 angstroms thick and the glass was (25 mm x 75 mm x 1.1 mm) in size. This was put into a vacuum evaporation system (manufactured by Nippon Vacuum Engineering Co., Ltd.),
  • PDO1 was deposited thereon to a thickness of 600 angstroms. The deposition rate at this time was 2 angstroms / second. Next, NPD was deposited to a thickness of 200 ⁇ . The deposition rate at this time was 2 angstroms Z seconds.
  • D PVT P a light emitting material
  • DP AVB an electron injection auxiliary material i was co-evaporated to form a light emitting layer having a thickness of 400 angstroms.
  • the deposition rate of DP VTP was 50 angstroms / sec, and the DPAVB i -speed was] .angstroms.
  • Aiq was vapor-deposited at a deposition rate of 2 angstroms / second.
  • aluminum and lithium were co-evaporated to form a cathode having a thickness of 2000 angstroms.
  • the deposition rate of aluminum was 10 angstroms / second, and the deposition rate of lithium was 0.1 onds / second.
  • the drive voltage when the resulting device was allowed to emit light at 1000 nit was 6.2 V.
  • the voltage rise after constant current drive for 100 hours was 0.4 V, the drive voltage rise after 100 hours was 0.6 V, and the half-life was 600 hours.
  • the ionization energy of DPPTVP is 5.9 eV, and the ionization energy of DPPAV Bi is 5.5 eV.
  • An organic EL device was fabricated in the same manner as in Example 8 except that P-I-O2 was used instead of PD-() 1.
  • the drive voltage was 6.0 V when the waiting element was illuminated at 100 0 11 ⁇ I.
  • An organic EL device was fabricated in the same manner as in Example 8, except that PD-03 was used instead of PD-01.
  • the drive voltage when the obtained device was allowed to emit light at 1000 nit was 6.3 V.
  • the rise in ft pressure after the t flow driving at 10:00 was 0.4 V
  • the rise in drive voltage after 10:00 h was 0.6 V.
  • An organic EL device was fabricated in the same manner as in Example 8 except that PD-04 was used instead of PD-01.
  • the driving voltage when the obtained device was caused to emit light at ________________________________________ was 6.2 V.
  • the voltage rise after constant current drive for 100 hours was 0.4 V, and the drive voltage rise after 0.7 hours was 0.7 V.
  • An organic EL device was fabricated in the same manner as in Example 8, except that PD-05 was used instead of PD-01.
  • the drive voltage when the obtained device was allowed to emit light at 1000 nit was 6. IV.
  • the voltage rise after 100-hour constant current drive was 0.5 V
  • the drive voltage rise after 1000 hours was 0.6 V
  • the half-life was 2100 hours.
  • the driving voltage when the obtained device was illuminated at 100 nit was 6.1 V. Also, at 100,000, the driving voltage was 0.4 V, and the voltage after current driving was 0.4 V.]
  • the driving voltage was U. (one, '., The half-life was j 200 hours.
  • the compound UH of the present invention had a particularly low driving pressure and a small increase in rl pressure. The life span was long. This result indicates that the compound (1 II) of the present invention has the above-mentioned excellent characteristics as compared to the compound; STBA- ⁇ .
  • a cathode was formed with a thickness of 2000 ⁇ by co-evaporation of magnesium and silver.
  • the deposition rate of magnesium was 10 angstroms Z seconds, and the deposition rate of silver was 1 angstroms / second.
  • silver was deposited as an oxidation protection film by evaporation of 1 000 ⁇ .
  • the electrode area was 5 mm X 5 mm.
  • the drive voltage when the obtained device emitted light at 100 nit was 4.8 V.
  • the voltage rise after the current drive at 100 hours was 0.8 V, and the drive voltage after 1000 hours was 0.3 V.
  • An organic LL device was produced in the same manner as in Example 8, except that P-D01 was used instead of P-D01.
  • the drive voltage was 2 V when the obtained device was caused to emit light at 000 000 n i 1 :.
  • the voltage rise after constant-current driving for 100 hours was 0.3 V, and the drive voltage rise after 0.5 hours was 0.5 V.
  • Example 8 In the same manner as in Example 8, an organic EL device was produced. However, STBA-1 was used in place of PD-01, and as a blue light-emitting material, it was disclosed in International Patent Publication WO 98/300 71 (published July 9, 1998) instead of DPVTP. DPA 2 represented by the following chemical formula was used. D PAVB i was added as a 7
  • the driving voltage at the time of light emission at lOOOnit was tt.:3V.
  • the voltage rise after constant current drive for 100 hours is 0.4 V
  • the drive voltage rise after 000 hours is 0.7 V
  • the half-life is 1,200 hours.
  • This example is an example of use as a light emitting material, and PD-05 'was vapor-deposited to a thickness of 800 angstroms on glass coated with indium tin oxide. Next, aluminum and lithium were co-deposited to form a cathode made of an aluminum-lithium alloy containing 3 wt% of lithium. When a voltage of 0 V was applied to the light-emitting element thus obtained, a light-emitting luminance of 400 n 1 t was obtained. The half life was 300 hours.
  • a light emitting device was manufactured in the same manner as in Example 17 except that PD-35 'was used instead of PD-05'.
  • a light emitting device was manufactured in the same manner as in Example 17 except that PD-36 'was used instead of PD-05'.
  • a luminescent element was prepared in the same manner as in Example 17 except that PD-38 'was used instead of PD-05'.
  • Example 1 7 In the all except using 'p D-44 instead of the' PD- 0 5 in Example 1 7 were produced in a manner similar light-emitting element c.
  • a light-emitting device was manufactured in the same manner as in Example 17 except that PD-49 'was used instead of PD-05.
  • a light emitting device was manufactured in the same manner as in Example 17 except that PD-54 'was used instead of PD-05'.
  • a light emitting device was manufactured in the same manner as in Example 17 except that PT-01 ′ was used instead of PD-05 ′.
  • Example 25 An organic EL device was produced in the same manner as in Example 17 except that PT-04 'was used instead of PD-05'.
  • Example 10 An organic EL device was produced in the same manner as in Example_7, except that P-t-08 'was used instead of P-O5'.
  • Example An organic EL device was produced in the same manner as in Example 7 except that PT-10 ′ was used instead of PD-05 ′.
  • Example 10 An organic EL device was manufactured in the same manner as in Example 7, except that PT-25 ′ was used instead of PD-05 ′.
  • An organic EL device was produced in the same manner as in Example 8, except that NPDATA was used instead of PD-01.
  • the drive voltage when the obtained device was made to emit light at 1,000 nit was 8.4 V.
  • the voltage rise after constant current drive for 100 hours was 0.5 V, and the drive voltage rise after 0.7 hours was 0.7 V.
  • An organic EL device was fabricated in the same manner as in Example 8, except that NPD was used instead of PD-01.
  • the drive voltage when the resulting device was allowed to emit light at 1000 n1 t was 11.8 V.
  • the voltage rise after constant current drive for 100 hours was 1.4 V, and the drive voltage rise after 1000 hours was 3.8 V.
  • An organic EL device was fabricated in the same manner as in Example 8, except that HI-01 was used instead of PD-01.
  • the drive voltage at the time of light emission of the obtained device at 100 ° n 1 t was 8. IV.
  • the voltage rise after constant current drive for 100 hours was 0.5 V, and the drive voltage rise after 0.8 hours was 0.8 V.
  • An organic EL device was produced in the same manner as in Example 16. However, the charge injection auxiliary material DPAVB i was not added.
  • the driving voltage when the obtained device was made to emit light at 1 000 ni was 7.0 V
  • the voltage rise after 100 hours of constant current driving was 1, 2 V
  • the rise was 2.0 V.
  • the half-life at this time was 800 hours.
  • a light emitting device was manufactured in the same manner as in Example 17 except that STBA-1 was used instead of PD-05 '.
  • the compound represented by the general formula (III) of the present invention has a half-lifetime It was found that it was hardly deteriorated by electron injection.
  • a light emitting device was produced in the same manner as in Example 1 except that P T—01 was used instead of P I!
  • the ionization potential is small.
  • a phenylenediamine derivative having high hole mobility is obtained.
  • the furylene diamine derivative is included in the hole transporting ⁇ in the organic light emitting layer between the pair of electrodes, and the organic EL element f is formed with addition of a charge injection auxiliary material. In this way, the dynamic Ei can be reduced and the element life can be extended.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

|3J¾ 糸田 ¾ 有機ェレク トロルミネッセンス素子およびフエ二レンジアミン誘導体 技術分野
本発明は、 有機エレク ト口ルミネッセンス素子 (以下、 有機 E L素子) およびフエ二レンジァミン誘導体に関し、 詳しくは、 一対の電極とこれ らの電極間に挟持された有機発光層とを備えた有機 E L素子、 および、 有機 E L素子等の材料として用いられるフエ二レンジァミン誘導体に関 する. 景技術
有機 E L 子は完全固体素子であり、 蛏 ·薄型、 低電圧駆動のディ スフ レイや 明を作製することができる為に、 現在盛んに研究が行われ ている。
この有機 E L素子をデイスブレイに応用する時の課題として、 駆動 ' 圧の低電圧化がある。
例えば、 特^平 4— 3 0 8 6 8 8号公報に |);]示されているような芳香 族ァミンのデンドリマーを正孔注入材料に用いることにより、 駆動電圧 の低 11圧化が進められている。 この化合物はフエ二レンジァミン骨格を 有するためイオン化ホテンシャルが 5 . 2 e Vと小さく、 駆動電圧を低 減する効果があった。
しかし、 フエ二レンジァミン骨格を有する化合物は、 正孔移動度が 3
X 1 0 ~ 5 c m 2 / V - s以下と小さく、 そのため高電流注入域での駆動 電圧の低減はまだ不十分であった。
また、 特開平 9 一 3 0 1 9 3 4号公報に開示の高分子量芳香族ァミン 化合物もイオン化ポテンシャルは 5 . 2 e Vと小さいが、 正孔移動度が 十分でないという問題があった。 これは、 不純物が混入して正孔移動度 が低下しているためであると予想される。
すなわち、 特開平 9 一 3 0 1 9 3 4号公報に記載された化合物の蛍光 スぺク トル (図 1 ) では、 本来あるはずのない 5 () 0 n m以上の最大蛍 光波長を有する発光成分が観測されている。 このことは、 不純物が混入 していることを示している。 また、 わずか 7 6時間の駆動で 2 . 7 Vも の電圧上昇が生じており、 低電圧化の障害となっていた。 このため、 同 公報に^示されている素子は、 不純物のため正孔移動度が低下し、 駆動 電圧が していると考えられる
さらに、 緣色の¾光成分を有しているため、 靑色発光素子の正孔輸送 帯域にこれらの化合物を用いると、 緑色の発光成分が混入して青色発光 を得ることができなかった
ところで、 国際特許公報 W O 9 8 / 3 0 0 7 1· ( 1 9 9 8年 7月 9曰公 開) 号公報には、 本願発明と類似の化合物を用いた有機エレク トロルミ ネッセンス素子が問示されているが、 荷注人補 11カ材を含有する発光層 と組み合わせたときに、 特に低電圧となる効朵は開示されていない。 発明の問示
本発明の目的は、 有機 E L素子の駆動電圧を低減できる寿命の長い有 機 E L素子を提供することにある。
本発明の他の目的は、 イオン化ポテンシャルが小さく、 かつ、 層ま たは域として使用した際に正孔移動度が大きい材料を提供することにあ る。
本発明は、 一対の電極と、 これらの電極間に挟持された有機発光層と を備えた有機エレク トロルミネッセンス素子であって、 前記電極間に設 けられた正孔輸送帯域は、 下記の一般式 (I) 、 一般式 (II) または一般 式 (II) ' で表されるフエ二レンジァミン誘導体を含有し、 このフヱニ レンジァミン誘導体は、 層または域として用いたときの正孔移動度が
1 0— 4 c m 2 /V * s以上であるとともに、 前記有機発光層は電荷注入 補助材を含有していることを特徴とする。
Figure imgf000005_0001
-般式 ( I )
〔A r i A r 6は、 水素原子、 炭素数] 〜 6のアルキル基またはアルコ キシ基、 核炭素数 6〜2 4のァリール基、 もしくは、 スチリル基によつ て置換されていてもよい核炭素数 6〜 2 4のァリ一ル基である。 Xは連 結基であり、 単結合、 核炭素数 6〜 2 4のァリ一レン、 炭素数 1〜6の アルキレン、 ジフエニルメチレン、 ェ一テル結合、 チォエーテル結合、 置換もしくは無置換のビニル結合または芳香族へテロ環である。 R 1
R 2は、 炭素数 1〜 6のアルキル基、 アルコキシ基、 又は水素原子であ つて、 互いに結合して置換もしくは無置換の飽和五員環または飽和六員 環を形成してもよい。 〕
Af1レ"、 Ar12
-般式 (II)
〔A r 7〜A r 1 2は、 水素原子、 炭素数 1〜 6のアルキル基またはアル コキシ基、 核炭素数 (う〜 24のァリール基、 もしくは、 スチリル基によ つて置換されていてもよし、核炭素数 6〜 24のァリ一ル基である。 Yは 連結基であり、 単結合、 核炭素数 6〜 24のァリ一レン、 炭素数 1〜6 のァノレキレン、 ジフエニノレメチレン、 ェ一テノレ結合、 チォェ一テル結合、 芳香族へテロ環、 または置換もしくは無置換のビニル結合である。 R 3
R4は、 炭素数 1〜 6のアルキル基、 アルコキシ基、 または水素原子で あって、 互いに結合して置換もしくは無置換の飽和五員環または飽和六 員環を形成してもよい。 〕
Figure imgf000007_0001
—般式 (Π ) '
[A r A 1 2は、 水素原子、 炭素数 1〜6 基またはアル コキシ基、 核炭素数 6〜 2 4のァリール基、 もしくはスチリル基によつ て置換されていてもよい核炭素数 6〜2 4のァリール基である。 Yは連 結基であり、 単結合、 核炭素数 6〜2 4のァリーレン、 炭素数 1〜6の ァノレキレン、 ジフエニノレメチレン、 ェ一テノレ結合、 チォエ-
5 芳香族へテロ環、 または置換または無置換のビニル結合である。 R
R 6は、 炭素数 1〜 6のアルキル基、 アルコキシ基、 または水素原子で あって、 互いに結合して置換もしくは無置換の飽和五員環または飽和六 環を形成してもよい。 〕
ここで、 正孔輸送帯域とは、 有機 E L素子において、 陽極から注入さ れた正孔を輸送する機能を持った領域のことである。 正孔を輸送する機 能とは 1 0 4〜 1 0。 c mの電界印加時に少なくとも 1 0 一 4 c m
Z V · s以上の正孔移動度を有することである。 具体的な正孔輸送帯域 としては、 例えば、 正孔注入層、 正孔輸送層等を挙げることができ、 発 光層が含まれる場合もある。 本発明において、 一般式 (I) 、 (II) および (I I) ' で表される化合 物は、フエ二レンジアミン構造を有するイオン化ポテンシャルが小さく、 その上、 X、 Yで示される中心骨格により優れた正孔移動度を確保でき る 本発明では、 この正孔注入 '輸送材料として好適なフヱニレンジァ ミン誘導体が正孔輸送帯域に含まれているので、 有機 E L素子の駆動電 圧を低減できるとともに、 速続駆動による駆動^圧の上昇を抑制できる。
さらに、 本発明において、 電荷注入補助材を含有する発光層を用いる ことが必須である。
ここで、 電荷注入補助材とは、 発光層を形成する主材料のイオン化工 ネルギ一よりも小さいイオン化エネルギーを保冇する化合物であり、 好 ましくは、 () . 1 w t %〜 2 0 w t %添加することにより発光層への正 孔注入を補助する材料のことである。 この電荷注入補助材を添加するこ とにより Mし尜 は、 駆動 ¾圧を低減できるとと この駆動^圧を安定化することができるようになった 前述したフエ二 レンジァミンの使用と ¾光 への電荷注入補助材の添加により、 従来で は得られていないような効果を発現できる。
このような電荷注入補助材としては、 スチリルァミン誘導体、 ジスチ リルァリーレン誘導体、 ト リススチリルァリ一レン誘導体、 ジァミン誘 導体などの化合物を用いることができ、 特に、 5 . 0〜 5 . 6 e Vのィ オン化工ネルギ一を保有する化合物が好ましい。 なお、 電荷注入補助材 は発光層で生じる正孔と電子の再結合に応答して光を放出してもよいし、 光を放出せずに電荷注入の補助作用のみの効果を発現してもよい。
また、 前述した正孔輸送帯域は、 前記一般式 (I) 、 一般式 (Π) また は一般式 (Π) ' で表されるフヱニレンジァミン誘導体を含有する正孔 注入層を有して構成されていることが望ましい。
或いは、 正孔輸送帯域は、 前記一般式 (I) 、 一般式 (Π) または一般 式 (II) ' で表されるフエ二レンジァミン誘導体を含有する正孔輸送層 を有して構成されていてもよい。
以上において、 前記一般式 (I) 中の A r r 6のうち、 少なくと も一つが核炭素数 1 0〜 24の縮合芳香族環であることが望ましい。 こ れによると、低電圧駆動できる上に素子の長寿命化を図ることができる。
一方、 本発明の化合物は、 下記の一般式 (III)
Figure imgf000009_0001
-般式 (ιπ)
〔A r 1 3〜A r 1 8は、 水素原子、 炭素数 1〜 6のアルキル基またはァ ルコキシ基、 核炭素数 6〜 24のァリール基、 もしくは、 スチリル基に よって置換されていてもよい核炭素数 6〜24のァリ一ル基である。 X は連結基であり、 単結合、 核炭素数 6〜 24のァリ一レン、 炭素数 1〜 6のアルキレン、 ジフエ二ルメチレン、 ェ一テノレ結合、 チォェ一テノレ結 合、 置換もしくは無置換のビュル結合、 または芳香族へテロ環である。
R7、 R8は、 炭素数 1〜6のアルキル基またはアルコキシ基、 もしくは 水素原子であって、 互いに結合して置換もしくは無置換の飽和五員環ま たは飽和六員環を形成してもよい。 〕
で表されるフエ二レンジァミン誘導体である。 また、 本発明の化合物は、 一般式 (IV)
Figure imgf000010_0001
ー裉式 ( 17;
〔A r 1 9〜A r 2 4は、 水素原子、 炭素数 1〜 6のアルキル基またはァ ルコキシ基、 核炭素数 6〜 2 4のァリール基、 もしく は、 スチリル基に よって置換されていてもよい核炭素数 6〜 2 4のァリール基である。 Y は連結基であり、 単結合、 核炭素数 6〜2 4のァリ一レン、 炭素数 1〜 6のァノレキレン、 ジフエニノレメチレン、 ェ一テグレ'結合、 チォェ一テノレ結 合、 芳香族へテロ環、 または置換もしくは無置換のビニル結'
R R は、 炭素数 1〜 6のアルキル基、 アルコキシ基、 または水素 原子であって、 互いに結合して置換もしくは無置換の飽和五員環または 飽和六員環を形成してもよい。 〕
で表されるフエ二レンジァミン誘導体である。
もしくは、 本発明の化合物は、 一般式 (V)
Figure imgf000011_0001
Ar29 Ar30
般式 (V)
〔A r 2 5〜A r 3 0は、 水素原子、 炭素数 1〜 6のアルキル墓、 核炭素 数 6〜 24のァリ一ル基、 もしくはスチリル基によって置換されていて よい核炭素数 6〜 24のァリール基である.:. Yは連結 Sであり、 合、 核炭素数 6〜 24のァリーレン、 炭素数 1〜 6のアルキレン、 ジフ エニルメチレン、 エーテル結合、 チォエーテル結合、 芳香族へテロ環、 または置換もしくは無置換のビニル結合である。 また、 R 1 1 R 1 2は、 炭素数 1〜 6のアルキル基、 アルコキシ基、 又は水素原子であって、 互 いに結合して置換もしくは無置換の飽和五員環または飽和六員環を形成 してもよレ、。 〕
で表されるフ 二レンジァミン誘導体である。 図面の簡単な説明
図 1は、 本発明のフエ二 ミン誘導体 S TB A— iの蛍光ス. ク トルを示す線図である。 発明を実施するための最良の形態 以下に本発明の実施の形態を説明する。
〔有機 E L素子〕
(Λ) フエ二レンジァミン誘導体
木発明の有機 E L素子に用いられるフエ二レンジァミン誘導体は、 一 般式 (1) (II) および (II) ' で表される化合物である。
一般式 (I) 、 (II) および (II) ! において、 核炭素数 6〜24のァ リール基の例としては、 フエニル基、 ビフエニル基、 ナフチル基、 アン トラニル基、 タ一フエニル基、 ピレニル基等が挙げられる。 特に、 フエ ニル基、 ナフチル基が好適である。
炭素数 ] 〜 6のアルキル基の例と しては、 メチル、 ェチル、 n—ブロ ビノレ、 i ーフロヒル、 n—ブチル、 s—ブチノレ、 Lーブチノレ、 n—ペン チル、 n—へキシル等が挙げられる。
また炭素数 ] 〜 6のアルコキシ Sの例と して、 メ トキシ、 エ トキシ、 n—フ :ロ ヒ ノレオキシ、 iーブロ ヒ ノレオキシ、 n—フ トキシ、 s —フ 、キ シ、 !_一ブトキシ、 n—ヘンチルォキシ、 n—へキシルォキシ基等が挙 げら; Ιτる。
スチリル基としては、 1 一フエ二ルビ二ルー ] 一ィル、 2—フエニル ビニノレー ] ーィノレ、 2 , 2—ジフエ二/レビニノレー ] ーィ ノレ、 2—フエ二 ルー 2— (ナフチルー 1 一ィル) ビュル一 1一ィル、 2, 2—ビス (ジ フエ二ルー 1一ィル) ビニルー 1ーィル基などが挙げられる。 特に、 2, 2—ジフユ二ルビ二ルー 1ーィル基が好適である。
また、 一般式 (I) における X、 一般式 (Π) における Υおよび一般式 (II) 1 における Υはそれぞれ連結基であり、 単結合、 核炭素数 6〜2 4のァリ一レン、 炭素数 1〜6のアルキレン、 ジフエニルメチレン、 ェ 一テル結合、 チォエーテル結合、 芳香族へテロ環である。
核炭素数 6〜 24のァリ一レンの例としては、 フエ二レン、 ビフエ二 レン、 ナフチ 、 アントラニレン、 ターフ ン、 ピレニレン等 が挙げられる..:
炭素数]
クロフ:ロヒ
ェニ
Figure imgf000013_0001
'基で置換されていてもよい
芳香族へテロ ¾の例としては、 ピロ一ル、 フラン、 チォフェン、 シロ —ル、 ト リァジン、 ォキサジァゾール、 ト リァゾ一ノレ、 ォキサゾ一ル、 キノリン、 キノキサリン、 ピリミジン等である。
一般式 (I) の化合物は、 A r 1〜A r 6のうち少なくともひとつが核 炭素数 1 0〜24の縮合芳香族環またはスチリル基に置換されたフエ二 ル基であることが好ましい。 そのような縮合芳香族環としては、 ナフチ ル、 アントラニル、 ビレニル、 フエナンスリル基が挙げられる力 特に 好適なのはナフチル基である。
スチリル基と しては、 1一フエ二ルビ二ルー 1—ィル、 2—フエニル ビュル一 1一ィル、 2, 2—ジフエ二ルビニル一 1一ィル、 2—フエ二 ノレ一 2— (ナフチルー 1一ィル) ビュル一 ] 一ィル、 2, 2—ビス (ジ フエ二ルー 1一ィル) ビニル一 1—ィル基などが挙げられる。 特に 2, 2—ジフエ二ルビ二ルー 1ーィル基が好適である。
このような本発明の化合物は、素子の正孔輸送帯域に含有されるため、 1 04〜1 06 VZc mの電界印加時に 1 0—4 c m2/V · s以上の正 孔移動度を有すものとされている。
そして、 前記一般式 (I) で表されるフエ ミン誘導体の具体 例としては、 以下の化学式 〔PD— 0 1〕 〔PD— 59〕 , 〔STB A— 1〕 で表される化合物が挙げられる。 なお、 本発明は、 これらに限 定されるものではない。 εο-Qd
Figure imgf000014_0001
Figure imgf000014_0002
-Qd
Figure imgf000014_0003
f6if0/66df/13d
Figure imgf000015_0001
iva — 豪 O
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000017_0002
PD-10
Figure imgf000017_0003
P0- 9ΐ
i-Od
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0003
eL>QI6(,dili d 1/00 O
Figure imgf000019_0001
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000022_0001
,8ϊ0Λ - o
Figure imgf000022_0002
Figure imgf000022_0003
f6.tO/66<ir/13d /oo OAV
Figure imgf000023_0001
82- (3d
Figure imgf000023_0002
Figure imgf000023_0003
p6LP0/66dT/lDd Klfrl/OO OAV df/13do OM -i s
Figure imgf000024_0001
O
υ
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000026_0002
9E-Qd
Figure imgf000026_0003
6 66<U7丄; 3d 厶 画 OAV 74
PCT/JP99/04794
Figure imgf000027_0001
PO-39
Figure imgf000027_0002
PD-40
Figure imgf000027_0003
PO-41 9Z
Figure imgf000028_0001
El'-Qd
Figure imgf000028_0002
- Od
Figure imgf000028_0003
t6LP0/66dT/LDd 誦 O _〇
Figure imgf000029_0001
Figure imgf000030_0001
PO-48
Figure imgf000030_0002
PD-49
Figure imgf000030_0003
PD-50
Figure imgf000031_0001
O
C
Figure imgf000032_0001
Figure imgf000033_0001
Figure imgf000033_0002
PD-58
Figure imgf000033_0003
PD-59 そして、 前記一般式 (II) で表されるフエ二レンジァミン誘導体の具 体例としては、 以下の化学式 〔PT— 01〕 〜 〔ΡΤ— 31〕 で表され る化合物が挙げられる。 なお、 本発明は、 これらに限定されるものでは なレ、。 CO
Figure imgf000034_0001
εε
90 -丄 d
Figure imgf000035_0001
Figure imgf000035_0002
V0-ld
Figure imgf000035_0003
^6Z.tO/66df/X3d
Figure imgf000036_0001
2 -ld
Figure imgf000037_0001
id
Figure imgf000037_0002
Figure imgf000037_0003
P6LPO/66d /10d /00 O
Figure imgf000038_0001
PT-13
Figure imgf000038_0002
Figure imgf000038_0003
PT-15 18
8l-id
Figure imgf000039_0001
Figure imgf000039_0002
9Hd
Figure imgf000039_0003
t6LP0/66dT/LDd KIH/OO OAV 8ε
12-id
Figure imgf000040_0001
Figure imgf000040_0002
6l-ld
Figure imgf000040_0003
6LP0/66dT/LDd PLI l/OO O
Figure imgf000041_0001
00 o /
Figure imgf000042_0001
ί-ϊό
Figure imgf000043_0001
Figure imgf000043_0002
8Z-丄 d
Figure imgf000043_0003
P6LP0/66d£/13d f^lfrl/OO OAV
Figure imgf000044_0001
PT-3 このような一般式 (I) 、 (II) および (II) ' の化合物は、 イオン化 ポテンシャルが小さいために、 精製中に酸化を受けるなど、 不純物'が混 入しやすく、 この不純物によって、 正孔移動度が小さくなる場合がある。 すなわち、 前述した特開平 9一 30 1 9 34号公報の方法では、 蛍光 スぺク トルで観測されたように、 高分子量芳香族ァミン化合物に不純物 が混入するため、 トラップ等により十分な正孔移動度が得られない。
これに対し、 本発明者らが化合物の精製方法について鋭意検討した結 果、 カラム精製の際に、 溶媒としてトルエン Ζへキサン系の溶媒を用い ることで純粋な化合物が得られることを見出した。 この精製方法によれ ば、 特開平 9— 30 1 9 34号公報に開示されたカラム精製にハロゲン 系溶媒を用いる方法よりも純度の高い化合物が得られる。
さらに、 0. 0 I mmH g以下の高真空下で昇華精製を行うことによ り、 図 1に示すようなピーク波長が 400〜480 nmの間にある蛍光 スぺク トルを備えた純粋なフエ二レンジァミンニ量体を得ることができ る。 このように、 本発明者らは、 青色ないし紫色蛍光 (ピーク波長 40 0〜480 nm)を示す本発明のフエ二レンジァミンニ量体でなければ、 正孔移動度が 1 0— 4 cm2ZV' s以上とならないことを確認している。 ( B ) 有機 E L素子の構成、 材料
本発明の化合物を含有させて有機 E L素子を作製するにあたっては、 通常有機 E L素子を作製する際に用いられる構成、 材料を用いることが 可能である。
以下、 その為の適切な構成、 材料について説明する。
〈1〉 有機 E L素子の構成
以下に本発明に用いられる有機 E L素子の代表的な構成例を示す。 も ちろん、 本発明はこれに限定されるものではない。
①陽極/発光層 Z陰極
②陽極 Z正孔注入層 Z発光層 Z陰極
③陽極 Z発光層 Z電子注入層/陰極
④陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極
⑤陽極 Z有機半導体層 Z発光層 Z陰極
⑥陽極 Z有機半導体層 Z電子障壁 Z発光層 Z陰極
⑦陽極 Z有機半導体層 Z発光層 Z付着改善層 Z陰極
⑧陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 z陰極
などの構造を挙げることができる。
これらの中で通常⑧の構成が好ましく用いられる。
本発明の化合物は、 このような構成要素中の正孔輸送帯域に含有され ている。 含有させる量は 3 0〜 1 0 0モル%から選ばれる。
( 2 ) 透光性基板
本発明の有機 E L素子は透光性の基板上に作製する。 ここでいう透光 性基板は有機 E L素子を支持する基板であり、 4 0 0〜7 0 0 n mの可 視領域の光の透過率が 5 0 %以上で、 平滑な基板が好ましい。
具体的には、 ガラス板、 ポリマ一板等が挙げられる。 ガラス板として は、 特にソ一ダ石灰ガラス、 バリウム 'ストロンチウム含有ガラス、 鉛 ガラス、 アルミノケィ酸ガラス、 ホウケィ酸ガラス、 バリウムホウケィ 酸ガラス、 石英等が挙げられる. またボリマ一板としては、 ポリ力一ポ ネー 、 了ク リル、 ホリエチレンテレフタレ一ト、 ホリエーテルサルフ アイ ド、 ホリサルフォン等を挙げることができる
:、 極
陽極としては、 仕事関数の大きい (4 e V以上) 金属、 合金、 電気伝 導性化 物またはこれらの混合物を電極物質とするものが好ましく用い られる.. このような電極物質の具体例としては、 A u等の金属、 C u し I T O , S n O 2、 Z n〇等の導電性材料が挙げられる。
陽極はこれらの電極物質を蒸若法やスノ、ッタリング法等の方法で薄膜 を形成させることにより作製することができる
このように発光屑からの発光を陽極から取り出す場合、 陽極の ¾光に 対する透過率を ] 0 %より大きくすることが好ましい。 また陽極のシ一 1、抵抗は、 数百 Ω Ζ口以下が好ましい。 陽極の 厚は材料にもよるが、 通常 1 () n m〜 ] μ m、 好ましくは 1 0〜 2 0 0 n mの範囲で選択され る。
〈4〉 有機発光層
有機!: L素子の発光層は以下の機能を併せ持つものである すなわち、
①注入機能;電界印加時に陽極または正孔注入層より正孔を注入するこ とができ、 陰極または電子注入層より電子を注入することができる機能
②輸送機能;注入した電荷 (電子と正孔) を電界の力で移動させる機能
③発光機能;電子と正孔の再結合の場を提供し、 これを発光につなげる 機能がある。
但し、 正孔の注入されやすさと電子の注入されやすさに違いがあって もよく、 また正孔と電子の移動度で表される輸送能に大小があってもよ いが、 どちらか一方の電荷を移動することが好ましい。 有機 E L素子の発光材料は主に有機化合物であり、 具体的には所望の 色調により次のような化合物が挙げられる。
まず、 紫外域から紫色の発光を得る 合には、 下記の一般式で表され る化合物が挙げられる。
ヽ Y
Figure imgf000047_0001
この一般式において、 Xは下記化合物を示す
Figure imgf000047_0002
ここで、 nは 2, 3 , 4, または 5である:
また Yは下記化合物を示す。
Figure imgf000047_0003
このような一般式で表される化合物は、 フエニル基、 フエ二レン基、 ナフチル基に、 炭素数 1〜 4のアルキル基、 アルコキシ基、 水酸基、 ス ルホニル、 カルボニル基、 アミノ基、 ジメチルァミノ基またはジフエ二 ルァミノ基等が、 単独または複数置換したものであってもよい。
また、 これらは互いに結合し、 飽和 5員環、 飽和六員環を形成しても よい。 またフエニル基、 フエ二レン基、 ナフチル基にパラ位で結合した ものは結合性が良く、 平滑な蒸着膜の形成のために好ましい。 具体的には以下の化合物である。 特に、 p —クオ一ターフェニル誘導 体、 p —クインクフヱニル誘導体が好ましい。
Figure imgf000048_0001
Figure imgf000048_0002
LP
Figure imgf000049_0001
Figure imgf000049_0002
Figure imgf000049_0003
Figure imgf000049_0004
Figure imgf000049_0005
Figure imgf000049_0006
Figure imgf000049_0007
P6LP0/66df/LDd 蘭 O また、 青色から緑色の発光を得るためには、 例えばべンゾチアゾール 系、 ベンゾィミダゾ一ル系、 ベンゾォキサゾ一ル系等の蛍光增白剤、 金 ½キレー ト化ォキシノィ ド化合物、 スチリルベンゼン系化合物を挙げ ことができる- 具体的に化合物 を示せば、 例えば、 特閗昭 5 9 - 1 94 3 9 :3 ·公 報に 1 示されているものを挙げることができる二 さらに他の有用な化合 物はケミス ト リー ' ォブ · シンセティック ' ダイズ 1 97 1, 6 28〜 6 37頁および 640頁に列挙されている。
前記キレー ト化ォキシノィ ド化合物としては、 例えば、 特開昭 6 3 - 2 9 5 6 9 5 公報に i 示されているものを川いることができる。 その 代表例と しては、 トリス (8—キノ リノール) アルミニウム (以下 A 1 qと略記する) 等の 8—ヒ ドロキシキノ リン系金属錯体ゃジリチウムェ ビントリジオン等を举げることができる。
前記スチリルベンゼン系化^物としては、 例えば、 欧州特許第 0:3 1 988 1 号明細 や欧州特許第 0 3 7 3 58 2 叨細書に問示されてレ、 るものを用いることができる。
また、 特開平 2— 252 793号公報に開示されているジスチリルビ ラジン誘導体も ¾光層の材料として用いることができる。
その他のものとして、 例えば、 欧州特許第 0 387 7 ] 5号明細書に 開示されているポリフエニル系化合物も発光層の材料として用いること もできる。
さらに、 上述した蛍光増白剤、 金属キレート化ォキシノィ ド化合物お よびスチリルベンゼン系化合物等以外に、 例えば、 1 2—フタロぺリ ノ ン (J. Ap p l . P h y s.,第 27巻, L 71 3 (1 988年) ) 、 1, 4ージフエ二ルー 1, 3—ブタジエン、 1, 1., 4, 4ーテトラフエ二 ル一 1, 3—ブタジエン (以上 A p p l . Ph y s. L e t t.,第 56卷, L 799 ( 1 990年) ) 、 ナフタルミ ド誘導体 (特開平 2— 3058
86号公報) 、 ペリ レン誘導体 (特開平 2— 1 8 98 90号公報) 、 ォ キサジァゾール誘導体 (特開平 2— 2 1 6 7 9 1号公報、 または第 38 回応用物理学関係連合講演会で浜田らによつて開示されたォキサジァゾ —ル誘導体) 、 アルダジン誘導体 (特開平 2— 220 393号公報) 、 ピラジリ ン誘導体 (特開平 2— 220394号公報) 、 シクロペンタジ ェン誘導体 (特開平 2— 2896 75号公報) 、 ピロロピロール誘導体
(特開平 2— 29689 1号公報) 、 スチリルァミン誘導体 (Ap p 1. P h y s. L e t t.,第 5卷, L 7 99 (1 990年) 、 クマリン系化合 物 (特開平 2— 1 9 1 6 94号公報) 、 国際特許公報 WO 90 1 3 1 48や A p p l . P h y s. L e t t., v l 58, 1 8, P 1 982 ( 1
99 1) に記載されているような高分子化合物等も、 発光層の材料とし て用いることができる。
本発明では特に発光層の材料として、 芳香族ジメチリディン系化合物 (欧州特許第 03 8 8 76 8号明細鲁ゃ特 | 平 3 - 2 3 1 9 70号公報 に開示のもの) を用いることが好ましい。 具体例としては、 4, 4' 一 ビス (2, 2—ジー t一ブチルフエ二ルビニル) ビフエ二ル、 (以下、 DTB P B B i と略記する) 、 4, 4 ' —ビス (2, 2—ジフエ二ルビ ニル) ビフエニル (以下 D PVB i と略記する) 等、 およびそれらの誘 導体を挙げることができる。
さらに、 特開平 5— 258862号公報等に記載されている一般式 (R s— Q) 2— A 1 — O— Lで表される化合物も挙げられる (上記式中、 L はフエニル部分を含んでなる炭素原子 6〜 24個の炭化水素であり、 O 一 Lはフエノラ一ト配位子であり、 Qは置換 8—キノ リノラ一ト配位子 を表し、 R sはアルミニウム原子に置換 8—キノリノラート配位子が 2 個を上回り結合するのを立体的に妨害するように選ばれた 8—キノリノ ラート環置換基を表す) 。
具体的には、 ビス (2—メチルー 8—キノリノラート) (パラーフエ ユルフェノラート) アルミニウム ( I I I ) (以下 PC— 7) 、 ビス (2 —メチルー 8—キノリノラート) (1—ナフトラ一ト) アルミニウム ( I I I ) (以下 PC— 1 7) 等が挙げられる。
その他、 特開平 6— 99 53号公報等による ドーピングを用いた高効 率の青色と緑色の混合発光を得る方法が挙げられる。 この場合、 ホス ト としては上記に記載した発光材料、 ドーパントとしては青色から緑色ま での強い蛍光色素、 例えば、 クマリン系あるいは上記記載のホストとし て用いられているものと同様な蛍光色素を挙げることができる。
具体的にはホス トとして、 ジスチリルァリ一レン骨格の発光材料、 特 に好ましくは D P VB i、 ド一パントとしてはジフエニルァミノビュル ァリ一レン、 特に好ましくは、 例えば、 N, N—ジフエニルアミノ ビ二 ルベンゼン (DPAVB) を挙げることができる
白色の発光を得る発光層としては特に制限はないが、 下記のものを挙 げることができる。
①有機 E L積層構造体の各層のエネルギー準位を規定し、 トンネル注入 を利用して発光させるもの (欧州特許第 039055 1号公報) ②①と同じく トンネル注入を利用する素子で実施例として白色発光素子 が記載されているもの (特開平 3 - 230584号公報)
③ニ層構造の発光層が記載されているもの (特開平 2— 220 390号 公報および特開平 2 - 21 6790号公報)
④発光層を複数に分割してそれぞれ発光波長の異なる材料で構成された もの (特開平 4一 5 149 1号公報)
⑤青色発光体 (蛍光ビーク 380〜480 nm) と緑色発光体 (480 〜580 nm) とを積層させ、 さらに赤色蛍光体を含有させた構成のも の (特開平 6— 2 0 7 1 7 0号公報)
⑥青色発光層が青色蛍光色素を含有し、 緑色発光層が赤色蛍光色素を含 有した領域を有し、 さらに緑色蛍光体を含有する構成のもの (特開平 7 - 1 4 2 1 6 9号公報)
中でも、 ⑤の構成のものが好ましく用いられる。
赤色蛍光体の例を以下に示す。
Figure imgf000053_0001
Figure imgf000053_0002
Figure imgf000054_0001
Figure imgf000054_0002
前記材料を用いて発光層を形成ずる方法としては、 例えば、 蒸着法、 スピンコ一ト法、 L B法等の公知の方法を適用することができる。
発光層は、 特に分子堆積膜であることが好ましい。 ここで分子堆積膜 とは、 気相状態の材料化合物から沈着され形成された薄膜や、 溶液状態 または液相状態の材料化合物から固体化され形成された膜のことであり、 通常この分子堆積膜は、 L B法により形成された薄膜 (分子累積膜) と は凝集構造、 高次構造の相違や、 それに起因する機能的な相違により区 分することができる。
また特開昭 5 7 - 5 1 7 8 1号公報に開示されているように、 樹脂等 の結着剤と材料化合物とを溶剤に溶かして溶液とした後、 これをスピン コ一ト法等により薄膜化することによつても、 発光層を形成することが できる。
このようにして形成される発光層の膜厚については特に制限はなく、 状況に応じて適宜選択することができるが、 通常 5 n m〜5 μ mの範囲 が好ましい。 この発光層は、 上述した材料の一種または二種以上からな る一層で構成されてもよいし、 または前記発光層とは別種の化合物から なる発光層を積層したものであってもよい。
〈5〉 正孔注入層、 正孔輸送層
正孔注入、 輸送層は発光層への正孔注入を助け、 発光領域まで輸送す る層であって、 正孔移動度が大きく、 イオン化エネルギーが通常 5. 5 e V以下と小さい。 このような正孔注入、 輸送層としてはより低い電界 強度で正孔を発光層に輸送する材料が好ましく、 さらに正孔の移動度が、 例えば 1 04〜 1 06 VZ c mの界印加時に、 少なく とも 1 0— 4 c m2 /V ·秒であれば好ましい。
ここで、 正孔注入、 輸送材料として、 前述した一般式 0) または一般 式 (Π) で表されるフエ二レンジァミン誘導体を用いることが好ましい。 この際、 前述した本発明の化合物単独で正孔注入、 輸送層を形成しても 良いし、 他の材料と混合して用いても良い。
本発明の化合物と混合して正孔注入、輸送層を形成する材料としては、 前記の好ましい性質を有するものであれば特に制限はなく、 従来、 光導 伝材料において正孔の電荷輸送材料として慣用されているものや、 E L 素子の正孔注入層に使用される公知のものの中から任意のものを選択し て用いることができる。
具体例として、 例えば、 トリァゾール誘導体 (米国特許 3, 1 1 2, 1 9 7号明細書等参照) 、 ォキサジァゾール誘導体 (米国特許 3, 1 8 9, 44 7号明細書等参照) 、 ィミダゾール誘導体 (特公昭 3 7— 1 6 0 96号公報等参照) 、 ポリアリールアルカン誘導体 (米国特許 3, 6 1 5, 40 2号明細書、 同第 3, 8 20, 9 8 9号明細書、 同第 3, 5 4 2, 544号明細書、 特公昭 4 5— 5 5 5号公報、 同 5 1— 1 0 9 8 3号公報、 特開昭 5 1— 93224号公報、 同 55— 1 7 105号公報、 同 56— 4 148号公報、 同 55— 1 086 6 7号公報、 同 5 5— 1 5 6 953号公報、 同 56— 366 56号公報等参照) 、 ピラゾリン誘導 体およびピラゾロン誘導体 (米国特許第 3, 1 80, 729号明細書、 同第 4, 278, 746号明細書、 特開昭 5 5— 88064号公報、 同 55 - 8806 5号公報、 同 49— 1 055 3 7号公報、 同 5 5— 5 1 086号公報、 同 56— 8005 1号公報、 同 56— 88 14 1号公報、 同 57— 45545号公報、 同 54— 1 1 26 3 7号公報、 同 55— 7
4546号公報等参照) 、 フエ二レンジァミン誘導体 (米国特許第 3, 6 1 5, 404号明細書、 特公昭 5 1— 1 0 1 0 5号公報、 同 46— 3 7 1 2号公報、 同 4 7— 2 5 33 6号公報、 特開昭 54— 5343 5号 公報、 同 54— 1 1 0536号公報、 同 54— 1 1 9 925号公報等参 照) 、 了リールァミン誘導体 (米国特許第 3 , 567, 450号明細書、 同第 3, 1 80, 703号明細 、 同第 3, 240, 59 7号明細書、 同第 3, 6 58, 5 20号明細翁、 同第 4, 23 2, 1 03号明細書、 同第 4, 1 75, 96 1号明細書、 同第 4, 0 1 2, 3 76号明細書、 特公昭 4 9一 35 702号公報、 同 39— 2 75 7 7号公報、 特開昭 5
5 - 1 44250号公報、 同 56— 1 1 9 1 32号公報、 同 5 6— 2 2
43 7号公報、 西独特許第 1, 1 1 0, 5 1 8号明細書等参照) 、 アミ ノ置換カルコン誘導体 (米国特許第 3, 526, 50 1号明細書等参照) 、 ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等に開示 のもの) 、 スチリルアントラセン誘導体 (特開昭 56— 46 2 34号公 報等参照) 、 フルォレノン誘導体 (特開昭 54— 1 1 08 3 7号公報等 参照) 、 ヒ ドラゾン誘導体 (米国特許第 3, 7 1 7, 46 2号明細書、 特開昭 54— 5 9 1 43号公報、 同 55— 5 206 3号公報、 同 55—
5 2064号公報、 同 55— 46 760号公報、 同 5 5— 85495号 公報、 同 5 7— ] 1 3 50号公報、 同 5 7— 148 749号公報、 特開 平 2— 3 1 1 59 1号公報等参照) 、 スチルベン誘導体 (特開昭 6 1一 2 1 036 3号公報、 同第 6 1— 22845 1号公報、 同 6 1— 1 46 42号公報、 同 6 1— 72255号公報、 同 62— 4 7646号公報、 同 62— 366 74号公報、 同 6 2— 1 06 52号公報、 同 6 2— 30
255号公報、 同 60— 93455号公報、 同 60— 9446 2号公報、 同 60— 1 74749号公報、 同 60— 1 7 50 52号公報等参照) 、 シラザン誘導体 (米国特許第 4, 9 50, 950号明細書) 、 ポリシラ ン系 (特開平 2— 2049 96号公報) 、 ァニリン系共重合体 (特開平 2 - 28 226 3号公報) 、 特開平 1一 2 1 1 3 9 9号公報に開示され ている導電性高分子オリゴマー (特にチォフェンオリゴマー) 等を挙げ ることができる。
正孔注入層の材料としては上記のものを使用することができるが、 ポ ルフィ リ ン化合物 (特開昭 63— 2956965号公報等に開示のもの) 、 芳香族第三級ァミン化合物およびスチリルァミン化合物(米国特許第 4, 1 27, 4 1 2号明細書、 特開昭 5 3— 2703 3号公報、 同 54— 5 8445号公報、 同 54— 1 496 34号公報、 同 54— 64 299号 公報、 同 55— 79450号公報、 同 55— 1 44250号公報、 同 5 6 - 1 1 9 1 32号公報、 同 6 1— 2955 58号公報、 同 6 1— 98
35 3号公報、 同 6 3— 2956 9 5号公報等参照) 、 特に芳香族第三 級アミン化合物を用いることが好ましい。
また、 米国特許第 5, 06 1 , 56 9号に記載されている 2個の縮合 芳香族環を分子内に有する、 例えば 4, 4' 一ビス (N— (1—ナフチ ル) 一 N—フエニルァミノ) ビブヱニル (以下 N PDと略記する) 、 ま た特開平 4— 308688号公報に記載されている トリフエニルァミン ユニッ トが 3つスターバース ト型に連結された 4, 4, , 4" ートリス ( N— ( 3—メチノレフエニル) _ N—フエニルァミノ) トリフエニノレア ミン (以下 IT D A T Aと略記する) 等を挙げることができる。
また、 発光層の材料として示した前述の芳香族ジメチリディン系化合 物の他、 p型 S i 、 p型 S i C等の無機化合物も正孔注入層の材料とし て使用することができる。
正孔注入、 輸送層は上述した化合物を、 例えば真空蒸着法、 スピンコ —ト法、 キャス ト法、 L B法等の公知の方法により薄膜化することによ り形成することができる。 正孔注入、 輸送層としての膜厚は特に制限は ないが、 通常は 5 n m〜 5 μ πιである。 この正孔注入、 輸送層は正孔輸 送帯域に本発明の化合物を含有していれば、 上述した材料の一種または 二種以上からなる一層で構成されてもよいし、 または前記正孔注入、 輸 送層とは別種の化合物からなる正孔注入、 輸送層を積層したものであつ てもよい::.
また、 有機半導体層は、 発光層への正孔注入または電子注入を助ける 層であって、 1 0— 1 0 S Z c m以上の導電率を有するものが好適である。 このような有機半導体層の材料としては、 含チォフェンオリゴマーゃ特 開平 8— 1 9 3 1 9 1号公報に開示してある含ァリールァミンオリゴマ 一等の導電性ォリゴマー、 含ァリールァミンデンドリマー等の導電性デ ンドリマ一等を用いることができる。
〈6〉 電子注入層
電子注入層は、 発光層への電子の注入を助ける層であって、 電子移動 度が大きく、 また付着改善層は、 この電子注入層の中で特に陰極との付 着が良い材料からなる層である。電子注入層に用いられる材料としては、 8—ヒ ドロキシキノリンまたはその誘導体の金属錯体が好適である。 上記 8—ヒ ドロキシキノリンまたはその誘導体の金属錯体の具体例と しては、 ォキシン (一般に 8—キノリノールまたは 8—ヒ ドロキシキノ リ ン) のキレートを含む金属キレートォキシノィ ド化合物が挙げられる。 例えば、 発光材料の項で記載した A 1 qを電子注入層として用いるこ とができる。
一方、 ォキサジァゾール誘導体としては、 以下の一般式で表される電 子伝達化合物が挙げられる。
A 9
Figure imgf000059_0001
(式中 A r 3 1, A r 3 2, A r 3 3, A r 3 5, A r 3 6, A r 3 9はそ れぞれ 換または無置換のァリ一ル基を示し、 それぞれ互いに同一であ つても異なっていてもよい。 また A r 34, A r 3 7, A r 3 8は置換ま たは無置換のァリ一レン基を示し、 それぞれ同一であっても異なってい てもよい)
ここで、 ァリ一ノレ基としては、 フエニル基、 ビフエ二ル基、 アントラ ニル基、 ペリ レニル基、 ピレニル基が挙げられる。 またァリ一レン基と してはフエ二レン基、 ナフチレン基、 ビフエ二レン基、 アントラニレン 基、 ペリ レニレン基、 ピレニレン基などが挙げられる。 また置換基とし ては炭素数 1〜 1 0のアルキル基、 炭素数 1〜 1 0のアルコキシ基また 基等が挙げられる。 この電子伝達化合物は薄膜形成性のものが 好ましい。
上記電子伝達性化合物の具体例としては下記のものを挙げることがで きる。
Figure imgf000060_0001
Figure imgf000060_0002
〈7〉 陰極
陰極としては、 仕事関数の小さい (4 e V以下) 金属、 合金、 電気伝 導性化合物およびこれらの混合物を電極物質とするものが用いられる。 このような電極物質の具体例としては、 ナトリウム、 ナトリウム一カリ ゥム合金、 マグネシウム、 リチウム、 マグネシウム ·銀合金、 ァノレミニ ゥム z酸化アルミニウム、 アルミニウム ' リチウム合金、 インジウム、 希土類金属などが挙げられる。
この陰極は、 これらの電極物質を蒸着やスパッタリ ング等の方法によ り薄膜を形成させることにより、 作製することができる。
ここで、 発光層からの発光を陰極から取り出す場合、 陰極の発光に対 する透過率は 1 0 %より大きくすることが好ましい。
また、 陰極としてのシート抵抗は数百 ΩΖ口以下が好ましく、 膜厚は 通常 1 ◦ nm〜l /_im、 好ましくは 50〜200 nmである。
〈8〉 有機 E L素子の作製
以上例示した材料および方法により陽極、 ¾光層、 必要に応じて正孔 注入層、 および必要に応じて電子注入層を形成し、 さらに陰極を形成す ることにより有機 E L素子を作製することができる。 また、 陰極から陽 極へ、 前記と逆の順序で有機 E L素子を作製することもできる。
以下、 透光性基板上に陽極 Z正孔注入層/発光層 Zfi!子注入層 Z陰極 が順次設けられた構成の有機 E L素子の作製例を記載する。
まず、 適当な透光性基板上に陽極材料からなる薄膜を 1 /x m以下、 好 ましくは 1 0〜200 nmの範囲の膜厚になるように蒸着ゃスパッタリ ング等の方法により形成して陽極を作製する。
次に、 この陽極上に正孔注入層を設ける。 正孔注入層の形成は、 前述 したように真空蒸着法、 スピンコート法、 キャス ト法、 L B法等の方法 により行うことができるが、 均質な膜が得られやすく、 かつピンホール が発生しにくい等の点から真空蒸着法により形成することが好ましい。 真空蒸着法により正孔注入層を形成する場合、 その蒸着条件は使用する 化合物 (正孔注入層の材料) 、 目的とする正孔注入層の結晶構造や再結 合構造等により異なるが、 一般に蒸着源温度 50〜450°C、 真空度 1
0一7〜 10— 3 t o r r、 蒸着速度 0. 0 1〜 50 n mZ秒、 基板温度 — 5 0〜 3 0 0 &C、 膜厚 5 n m〜 5 μ mの範囲で適宜選択することが好 ましい。
次に、 正孔注入層上に発光層を設ける発光層の形成も、 所望の有機発 光材料を用いて真空蒸着法、 スパッタリング、 スピンコート法、 キャス ト法等の方法により有機発光材料を薄膜化することにより形成できるが、 均質な膜が得られやすく、 かつピンホールが発生しにくい等の点から真 空蒸着法により形成することが好ましい。 真空蒸着法により発光層を形 成する場合、 その蒸着条件は使用する化合物により異なるが、 一般的に 正孔注入層と同じような条件範囲の中から選択することができる。
次に、 この発光層上に電子注入層を設ける 正孔注入層、 発光層と同 様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。 蒸着条件は正孔注入層、 発光層と同様の条件範囲から選択することがで きる。
本発明の化合物は、 正孔輸送带域のレ、ずれの層に含有させるかによつ て異なるが、 真空蒸着法を用いる場合は他の材料との共蒸着をすること ができる。 またスピンコート法を用いる場合は、 他の材料と混合するこ とによって含有させることができる。
最後に陰極を積層して有機 E L素子を得ることができる。
陰極は、 金属から構成されるもので、 蒸着法、 スパッタリングを用い ることができる。 しかし下地の有機物層を製膜時の損傷から守るために は真空蒸着法が好ましい。
これまで記載してきた有機 E L素子の作製は一回の真空引きで一貫し て陽極から陰極まで作製することが好ましい。
なお、 有機 E L素子に直流電圧を印加する場合、 陽極を十、 陰極を一 の極性にして、 5〜4 0 Vの電圧を印加すると発光が観測できる。 また 逆の極性で電圧を印加しても電流は流れず、 発光は全く生じない。 さら に、 交流電圧を印加した場合には陽極が十、 陰極が一の極性になった時 のみ均一な発光が観測される,: 印加する交流の波形は任; Eでよい c 〔フ 二レンジアミ ン誘導体〕
本 明のソヱニレンジアミンニ ¾体を表す一般式 (11 ] ) 、 (IV) およ び (V) における核炭素数 (う〜 2 4のァリール基の例としては、 炭素数 1 〜 6のアルキル' Sおよびアルコキシ ¾、 スチリル基等が举げ れる。 核炭素数 6 〜 2 4のァリール基の例としては、 フエニル S、 ビフエ二 ル基、 ナフチル基、 アントラニル基、 タ一フエニル基、 ヒレニル基等が 挙げられ、 特に、 フエニル基、 ナフチル基が好適である。
炭素数 ] 〜 6のアルキル基の例として、 メチル、 ェチル、 n —プロピ ノレ、 i 一フロ ヒノレ、 n—ブチノレ、 s —ブチノレ、 tーブチノレ、 n —ベンチ ル、 n —へキシル等が挙げられる。
また炭素数!〜 6のアルコキシ基の例として、 メ トキシ、 エトキシ、 n —ブロ ヒルォキシ、 i 一つ口 ヒルォキシ、 n—ブ' トキシ、 s —ブ' トキ シ、 t —ブ 卜キシ、 n — 、ンチノレォキシ、 n —へキシル'ォキシ基-等力 挙 げられる。
スチリル基としては、 1 一フエ二ルビ二ルー 1 一ィル、 2—フエニル ビニルー 1 一ィル、 2 , 2—ジフエ二ルビニノレー 1 —ィノレ、 2 —フエ二 ルー 2— (ナフチルー 1 一ィル) ビニノレー 1 一ィル、 2 , 2—ビス (ジ フエ二ルー 1—ィル) ビニルー 1 ーィル基などが挙げられる。 特に、 2, 2—ジフエ二ルビ二ルー 1 ーィル基が好適である。
一般式(Π Ι) における X、 (IV) における Yおよび (V) における Yは それぞれ連結基であり、 単結合、 核炭素数 6 〜 2 4のァリーレン、 炭素 数 1 〜 6のアルキレン、 ジフエニルメチレン、 エーテル結合、 チォェ一 テル結合、 芳香族へテロ環、 または置換または無置換のビニル結合であ る。 核炭素数 6〜 2 4のァリ一レンの例としては、 フエ二レン、 ビフエ二 レン、 ナフチレン、 アントラニレン、 ターフェ二ノレレン、 ピレニレン等 が挙げられる。
炭素数 1〜6のアルキレンとしては、 メチレン、 イソプロピレン、 シ クロフ :口ビレン等が挙げられる。
ジフエニルメチレンは前述の炭素数 1〜6のアルキルまたはアルコキ シ基で置換されていてもよい。
芳香族へテロ環の例としては、 ピロ一ル、 フラン、 チォフェン、 シロ ール、 トリァジン、 ォキサジァゾ一ル、 トリァゾ一ル、 ォキサゾ一ル、 キノリン、 キノキサリン、 ピリ ミジン等である。
また、 一般式 (I I I) 中の A r 1 3〜A r 1 8のうち少なくともひとつ は、核炭素数 1 0〜 2 4のスチリル基で置換されたァリール基であるか、 または A Γ 1 δ , A r 1 8、 Xのいずれかが核炭素数 1 0〜2 4の縮合芳 香族環、 芳香族へテロ環、 または置換もしくは無置換のビニル基である。 そのような縮合芳香族 Stの例としては、 ナフチル、 アントラニル、 ピ レニル、 フエナンスチリル基が挙げられるが、 特に好適なのはナフチル 基である。
スチリル基としては、 1 一フエ二ルビ二ルー 1 一ィル、 2—フエニル ビニノレー 1 一ィル、 2 , 2—ジフエニノレビ二ルー 1 ーィノレ、 2 —フエ二 ノレ一 2— (ナフチルー 1 一ィル) ビニルー 1 一ィル、 2, 2—ビス (ジ フエニル— 1—ィル) ビュル一 1 —ィル基などが挙げられる。 特に 2, 2—ジフエ二ルビ二ルー 1 f ル基が好適である。
芳香族へテロ環としては、 ピロール、 フラン、 チォフェン、 シロール、 トリアジン、 ォキサジァゾ一ル、 トリァゾール、 ォキサゾ一ル、 キノ リ ン、 キノキサリン、 ピリミジンなどである。 R 7、 R 8として、 好ましいアルキル基の例としては、 メチルェチル、 i―フ-ピル、 t 一ブチル等であり、 好ましいアルコキシ基の例としては、 メ トキシ、 エトキシ、 i一フロホキシ、 L 一ブトキシ等である。 また、 Xが単結^ ^あるときは、 R 7、 R 8 ;:.^,'合し、 换 は無 換のフルオレンからなる 2価の ¾も好ましレ、。
また、 一般式 (] V) 中の、 X 1 9〜A ]- 2 4のうち少なくともひとつ は、核炭素数 1 0〜 2 4のスチリル基で置換されたァリ一ル基であるか、
A r 1 9〜A r 2 4、 Yのいずれかが核炭素数 1 0〜 2 4の縮合芳香族環、 芳香族へテロ環、 または (1換もしくは無置換のビニル基である。
そのような縮合芳香族^の例としては、 ナフチル、 アントラニル、 ビ レニル、 フエナンスチリル基が挙げられるが、 特に好適なのはナフチル 基である。
スチリル Sと しては、 ] 一フエ二ルビ二ルー 1 一ィル、 2—フエニル ビュル一 】 ーィノレ、 2 , 2—ジフエニノレビ二ルー 1- ーィノレ、 2 —一フエ二 ルー 2— (ナフチルー 1 一ィル) ビュル一 1—ィル、 2 , 2—ビス (ジ フエ二ルー 1 一ィル) ビニルー 1 ーィル基などが挙げられる。 特に 2, 2—ジフエ二ルビ二ルー 1 ーィル基が好適である。
芳香族へテロ環としては、 ビロール、 フラン、 チォフェン、 シロール、 トリアジン、 ォキサジァゾール、 トリァゾール、 ォキサゾーノレ、 キノキ サリン、 ピリ ミジンなどである。
R 9、 R 1 0として、 好ましいアルキル基の例としては、 メチルェチ ル、 iープピル、 t—ブチル等であり、 好ましいアルコキシ基の例として は、 メ トキシ、 エトキシ、 丄ーブロボキシ、 t一ブトキシ等である。 また、 Yが単結合であるときは、 R 9、 R 1 0が結合し、 置換または 無置換のフルオレンからなる 2価の基も好ましい。 また、 一般式 (V) 中の、 A r 2 5〜A r 3 0のうち少なくともひとつ は、核炭素数 1- ()〜 2 4のスチリル¾で置換されたァリール基である力、
Λ r 2 5〜A r ()、 Yのいずれかが核炭素数 1 ()〜2 4の縮合芳香族 ί¾、 芳香族へ千口環、 または、 換 ,しくは無^换のビニ Wである
そのような縮合芳香族 の例としては、 ナフチル、 アン トラニル、 ヒ レニル、 フエナンスチリル基が挙げられるが、 特に好適なのはナフチル 基である。
スチリル基としては、 1 一フエ二ルビ二ルー 1 一ィル、 2—フエニル ビニノレー 1 一ィル、 2, 2—ジフエ二ルビ二ルー 1 一ィル、 2—フエ二 ルー 2— (ナフチルー 〗 一ィル) ビュル一 ] 一ィル、 2, 2—ビス (ジ フエ二ルー丄一ィル) ビニルー 1ーィル基などが挙げられる。 特に 2, 2—ジフエ二ルビ二ルー 1 ーィル基が好適である。
芳香族へテロ環と しては、 ヒロール、 フラン、 チォフェン、 シロール、 卜リアジン、 ォキサジァゾール、 トリァゾ一ル、 ォキサゾール、 キノキ サリン、 ビリ ミジンなどである,:
R 1 1 , R 1 2として、 好ましいアルキル基の例としては、 メチルェチ ル、 i一プロビル、 t 一ブチル等であり、 好ましいアルコキシ基の例とし ては、 メ トキシ、 エトキシ、 i—ブロポキシ、 t 一ブトキシ等である。 また、 Yが単結合であるときは、 R 1 1 R 1 2が結合し、 置換または 無置換のフルオレンからなる 2価の基も好ましい。
そして、 前記一般式 (I I I) で表されるフエ二レンジアミンニ量体の具 体例としては、 以下の化学式 〔P D— 0 1 ' 〕 〜 〔P D— 5 6 ' ] で表 される化合物が挙げられる。 なお、 本発明は、 これらに限定されるもの ではない。 υ
CD
Figure imgf000067_0001
99
Figure imgf000068_0001
Figure imgf000068_0002
Figure imgf000068_0003
ΚΙίΊ/ΟΟ OAV6^0/66<If13<i さ /66dr/l〕
o
CD
Figure imgf000069_0001
89
Figure imgf000070_0001
Figure imgf000070_0002
,01-Qd
Figure imgf000070_0003
LlPl/00 OW6LPQI66d£llDd S l-Qd
Figure imgf000071_0001
Figure imgf000071_0002
Figure imgf000071_0003
m/00 OAV f6.fO/66df/13d
Figure imgf000072_0001
Figure imgf000072_0002
Figure imgf000072_0003
PD-18' IL
Figure imgf000073_0001
Figure imgf000073_0002
Figure imgf000073_0003
t^6^0/66df/X3I 卜豪 3d
/0 o0
Figure imgf000074_0001
21
Figure imgf000075_0001
Figure imgf000075_0002
- ad
Figure imgf000075_0003
m/00 OM
^6^tO/66cIf/13I ,OE-Gd
Figure imgf000076_0001
Figure imgf000076_0002
Figure imgf000076_0003
P6L 0/66dt/ LDd PLin/00 OAV 9L
Figure imgf000077_0001
Figure imgf000077_0002
,ιε-ad
Figure imgf000077_0003
f6^tO/66df/XDd /00 OM
Figure imgf000078_0001
PO-34'
Figure imgf000078_0002
PD-35:
Figure imgf000078_0003
PD-36
I I
Figure imgf000079_0001
Figure imgf000080_0001
PD-401
Figure imgf000080_0002
PD-41*
Figure imgf000080_0003
PO-42
Figure imgf000081_0001
08
8 — Qd
Figure imgf000082_0001
Figure imgf000082_0002
Figure imgf000082_0003
^6.tO/66df/XDd 1/00 OAV
Figure imgf000083_0001
Figure imgf000084_0001
P O - 5 5
Figure imgf000085_0001
このような一般式 (II I) で表されるフエ二 ミン誘導体は、 一 般式 (I) で表される誘導体の中でも特に好ま Ό 二とが判明 した。 すなわち、 国際特許公報 WO 9 8 / 3 0 0 7 1に開示されている従 来公知ものに比べ、①スチリル基含有のァリ一ル基を保有する化合物は、 電子が注入された場合でも寿命が長く、 蛍光性も高いので、 発光材とし ても用いることができる。 ② A r 1 5、 A r 1 8および下記化学式に示さ れる基本骨格のいずれかが縮合芳香族環、 芳香族へテロ環、 置換または 無置換のビニル結合を含む化合物に電子注入がされた場合でも劣化しに くく寿命も長いなど、 従来にはない特徴が得られた。
Figure imgf000086_0001
そして、 前記一般式 (IV) で表されるフエ二レンジアミンニ量体の具 体例としては、 以下の化学式 〔PT— 0 1 ' 〕 〜 〔PT— 1 1 ' 〕 およ び 〔ΡΤ— 23 ' 〕 〜 〔ΡΤ— 3 1 ' 〕 で表される化合物が挙げられる。 なお、 本発明は、 これらに限定されるものではなレ、。
Figure imgf000087_0001
98
Figure imgf000088_0001
,50-ld
Figure imgf000088_0002
Figure imgf000088_0003
oo
Figure imgf000089_0001
, 11-ld
Figure imgf000090_0001
,01-ld
Figure imgf000090_0002
V(>L QI66d£ll d IW/OO O/W /13d ΟΛν SJ
U 00
Figure imgf000091_0001
06
,ΒΖ-ld
Figure imgf000092_0001
ZMd
Figure imgf000092_0002
Figure imgf000092_0003
f6.tO/66df/13di ο /00
Figure imgf000093_0001
Figure imgf000093_0002
また、 一般式 (IV) 、 一般式 (V) のフユ二レンジァミン誘導体は、 特 に好ましいものであることが判明した。 これらの化合物は、 電子注入の 際にも劣化せず蛍光性が高いため、 発光材としても用いることができる ほか、 正孔注入層、 正孔輸送層としても、 電子注入耐性のため、 長い寿 命が得られることが判明した。 次に、 本発明の効果を、 具体的な実施例に基づいて説明する。
〔実施例 1〕
〈4ーョ一ドトリフエニルァミンの合成〉
トリフエニルァミン (広島和光社 (株) 製) 1 2 5 gをエタノール 5 1 に加熱溶解し、 酸化水銀 1 5 0 gを 6 0 Cで添加し、 次いで、 よう素 1 0 0 gを徐々に添加した。 その後、 還流温度で 2時問反応した。
反応後、 熱濾過し、 残渣をアセ トンで洗浄し、 濾液を冷却して析出し た結晶を濾別した。
これにシリカゲルを担持したカラムを用い、 トルエンを展開溶媒にし て精製し、 5 2 gの目的物を得た。
く P D— 0 1の合成〉
4 , 4 ■■ —ジァミノ一 p —ターフェ二レン (ランカスター社製) 1 0 g、 1—ョードナフタレン (広島和光 (株) 社製) 2 0 g、 炭酸カリウム 2 0 g、 銅粉末 1 gおよび二トロベンゼン 1 0 0 m 1 を、 3 0 0 m lの三 つ口フラスコ中に入れ、 2 0 0 tで 4 8時間加熱攪拌を行なった。
反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカ ゲル (広島和光 (株) 社製 C— 2 0 0 ) を担持したカラムを用い、 ト ルェンを展開溶媒として精製したところ、 8 . 4 gの 4, 4 ·· 一ビス ( 1 —ナフチルァミノ) 一 p —ターフェ二レンが得られた。
このうちの 5 gと 4一ョ一ドトリフエニルァミン 1 5 g、 炭酸力リゥ ム 20 g、 銅粉末 1 gおよび二ト口べンゼン 1 00m l を 300m lの 三つ口フラスコ中に入れ、 200 (:で 60時問加熱した: - 反応後、 無機物を滤別し、 母液の^媒を留去した。 その残渣をシリカ ゲル (広島和光 (株) 社製 C— 200) を担持したカラムを用い、 ト ルェン 7へキサン = 1 Z2を展開溶媒として精製した。 さらにこれを 0. 0 1 mm H gの真空下で昇華精製し、 0. 8 gの淡黄色粉末を得た。
F D- Sを測定した結果、 C 74 H 54 N4 = 9 98に対し、 9 9
9 (M+ 1 ) と 499 {\/ 2 M) のピークが得られたので、 PD— 0 1 と同定した。
〔実施例 2〕
< P D - 02の合成〉
9, 1 0—ジァミノフヱニルアントラセン (和歌山精化工業 (株) 社製)
1 0 g、 ] ーョ一ドナフタレン (広島和光 (株) 社製) 20 g、 炭酸力 リウム 20 g、 銅粉末 ] および二 ト口ベンゼン 1 00m l を 300 m 1の三つ口フラスコ中に入れ、 200 Cで 48時間加熱傥拌を行なった。 反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残馇をシリカ ゲル (広島和光 (株) 社製 C— 200) を担持したカラムを用い、 ト ルェンを展開溶媒として精製したところ、 7. 7 gの 9, 1 0 ビス ( 1 ナフチルァミノフエニル) アントラセンが得られた。
このうちの 5 gと 4—ョ一ドトリフエニルァミン 1 5 g、 炭酸力リ ゥ ム 20 g、 銅粉末 1 gおよび二ト口べンゼン 1 00 m 1 を 300 m 1の 三つロフラスコ中に入れ、 200 °Cで 60時問加熱した。
反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカ ゲル (広島和光社製 C一 200) を担持したカラムを用い、 トルエン /へキサン = 1/2を展開溶媒として精製した。 さらに、 これを 0. 0 1 mmHgの真空下で昇華精製し、 0. 8 gの淡黄色粉末を得た。 F D—V1Sを測定した結果、 C 8 2 H 58 N4 = 1 0 9 8に対し、 1 0 9 9 (M+ Ί ) と Π 4 Π (\/ 2 ) のヒー々力 られたので、 I) I)一 U 2と同定した。
〔実施例 3〕
( P D - 0 3の合成〉
4, 4 ージアミノジフヱニルメタン (広島和光 (株) 社製) 1 0 g、 1ーョ一ドナフタレン (広島和光 (株) 社製) 2 0 g、 炭酸カリウム 2 0 g、 銅粉末 1 gおよび二ト口ベンゼン ] 0 0 m l を 30 0 m lの三つ 口フラスコ中に入れ、 200 ;Cで 48時間加熱揋拌を行なつた。
反応後、 無機物を濾別し、 S液の溶媒を留去した。 その残渣をシリカ ゲル (広島和光 (株) 社製 C— 2 00) を担持したカラムを用い、 ト ルェンを展開溶媒として精製したところ、 9. 6 gのビス (4— (ナフ チルー 1一ィル) ァミノフエ二ル) メタンが得られた c,
このうちの 5 g と 4一ョードト リフエニルァミン 1 5 g、 炭酸力リ ゥ ム 20 g、 銅粉末 1 gおよび二卜口ベンゼン 1 0 0 m l を 30 0 m 1 の 三つ口フラスコ中に入れ、 200。(:で 60時問加熱した。
反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカ ゲル (広島和光社製 C一 200) を担持したカラムを用い、 トルエン Zへキサン = 1 /2を展開溶媒として精製した。 さらにこれを 0. 0 1 mmH gの真空下で昇華精製し、 1. 2 gの淡黄色粉末を得た。
F D—MSを測定した結果、 C 6 9 H 5 2 N 4 = 9 3 6に対し、 9 3 7 (M+ 1 ) と 46 8 (1/2M) のピークが得られたので、 PD— 0 3 と同定した。
〔実施例 4〕
く PD— 04の合成〉
4, 4 'ージァミノジフエ二ルェ一テル (広島和光 (株) 社製) 1 0 g、 1 —ョ一ドナフタレン (広島和光 (株) 社製) 2 0 g、 炭酸カリウム 2 0 g、 銅粉ま ] gおよび二ト口ベンゼン 1 0 0 m 1 を: 3 0 0 m ] の三つ 口フラスコ中に入れ、 2 0 0 :Cで 4 8時問加熱傥抨を行なった:
反応後、 無機物を濾別し、 母液の溶媒を留去した: その残渣をシリカ ゲル (広島和光 (株) 社製 C— 2 0 0) を担持したカラムを用い、 ト ルェンを展開溶媒として精製したところ、 9. 2 gのビス (4 一 (ナフ チルー 1 一ィル) アミノフエ二ル) エーテルが得られた,:,
このうちの 5 gと 4一ョードトリフエニルァミン 1 5 g、 炭酸力リゥ ム 2 0 g、 銅粉末 1 gおよび二トロベンゼン 1 0 0 m l を 3 0 0 m lの 三つ口フラスコ中に入れ、 2 0 0 :じで 6 0時問加熱した。
反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカ ゲル (広島和光社製 C— 2 0 0 ) を担持したカラムを用い、 トルエン Zへキサン = ]. Z 2を展^溶媒として精製した。 さらにこれを 0. 0 1 mmH gの真空下で昇華精製し、 】 . 0 gの淡黄色粉末を得た.,
F D - Sを測定した結果、 C 6 8 H 5 0 N 4 O = 9 3 8に対し、 9 3 9 ( + 1 ) と 4 6 9 (1/ 2 ) のピークが得られたので、 P D— 0 4と同定した。
〔実施例 5〕
く N— ( 1 —ナフチル) — 4—ョ一ドジフエニルァミンの合成〉
N—フニ二ルー N— (1 一ナフチル) ァミン (広島和光 (株) 社製) 1 0 g、 p—フルォロニトロベンゼン (広島和光 (株) 社製) 2 0 g、 炭酸力リ ウム 2 0 g、 銅粉末 1 gおよび二卜口べンゼン 1 0 0 m 1 を 3 0 0 m l の三つロフラスコ中に入れ、 2 0 0 °Cで 4 8時間加熱攪拌を行 なった。
反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカ ゲル (広島和光 (株) 社製 C— 2 0 0 ) を担持したカラムを用い、 ト ルェンを展開溶媒として精製したところ、 9. O gの N—ナフチルー 4 一二トロ一ジフエニルァミンが得られた。
これをォ一トクレーブ中に入れ、 DMF 1 0 0 m l 、 5 % P d / C 5 gを加え、 水素を 5KgZcm2チャージして攪拌した。 触媒を濾別し、 飽和食塩水 3 0 0 m l 中に注入し、 析出した結晶を濾取した。 これをト ルェンで再結晶し、 6. 4 gの N—ナフチル一 4—アミノージフエ二ル ァミンが得られた。
次に濃硫酸 2 0 m 1 を 1 5°Cに冷却し、亜硝酸ナトリウム 3 gを 3 0°C 以下で加え、 溶解した後、 酢酸 1 0 0 m l を加えた。 これに水冷下で 5. 0 gの N—ナフチルー 4ーァミノ一ジフエニルを加え、 室温で ]時問掼 拌した。 別によう化カリウム 1 0 gを 7 0 Cの水に溶かし、 ここへ上述 した反応物を添加した。 7 0°Cで 3 0分攪拌した後、 1 1の水に注入し、 不溶物を濾別した。 これをシリカゲル (広島和光 (株) 社製 C一 2 0 0) を担持したカラムを用い、 トルエンを展開溶媒として精製し、 2. 7 g の N_ ( 1 —ナフチル) _ 4ーョ一ドジフエニルァミンを^ ί导た。
く P D— 0 5の合成〉
実施例 2で合成した 9, 1 0—ビス ( 1 —ナフチルァミノフエニル) ァ ントラセン l gと Ν— (1 —ナフチル) 一 4—ョードジフエニルァミン 2 g、 炭酸力リウム 5 g、 銅粉末 1 gおよび二トロベンゼン 1 0 0 m i を 3 0 0 m 1の三つロフラスコ中に入れ、 2 0 0。Cで 6 0時間加熱した。 反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカ ゲル (広島和光社製 C一 2 0 0 ) を担持したカラムを用い、 トルエン へキサン = 1 / 2を展開溶媒として精製した。 さらにこれを 0. 0 1 mmH gの真空下で昇華精製し、 0. 3 gの淡黄色粉末を得た。
FD— MSを測定した結果、 C 9 0 H 6 2 N 4 = 1 1 9 8に対し、 1 1 9 9 (M+ 1 ) と 5 9 9 (1/2M) のピークが得られたので、 PD— 05と同定した。
〔実施例 6〕
〈4一ョ一ド 3 メチルトリフエニルァミンの合成〉
実施例 5で、 N—フエニル (1—ナフチル) ァミンの代りに (3—メ チル) ジフエニルァミン (広島和光 (株) 社製) を用いた以外は同様に 反応し、 4一ョ一ド 3 —メチルトリフエニルァミンを 3. 4 g得た。
<S TB A- 1の合成〉
N, N 'ージフエ二ルー 4, 4 '—ベンジジン (東京化成社製) 1 g、
4—ョード 3 ' —メチルトリフェニルァミン 3 g、 炭酸力リウム 5 g、 銅粉末 1 gおよび二ト口ベンゼン 1 00 m 1 を 300 m 1の三つロフラ スコ中に入れ、 200 °Cで 60時問加熱攪拌を行なつた。
反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカ ゲル (広島和光 (株) 社製 C— 200) を担持したカラムを用い、 ト ルェン /へキサン: = 1 Z2を展 溶媒として精製した。 さらにこれを 0. 0 1 mmHgの真空下で昇華精製し、 0. 2 gの淡黄色粉末を得た。
F D— M Sを測定した結果、 C 60 H 46 N 4 = 8 22に対し、 8 2 3 ( + 1 ) と 4 1 1 (1/2M) のピ一クが得られたので、 STBA— 1 と同定した。 S TBA— 1の蛍光スぺク トルを図 1に示す。
〔実施例 7〕
〈4ーョ一ドー 4 ' —ニトロビフエニルの合成〉
ビフユニル (広島和光社製) 1 500 g、 オルト過よう素酸 (広島和 光社製) 444 g、 よう素 98 7 g、 酢酸 5. 1 k g、 硫酸 1 47m l および水 9 75 gを 1 0 1 コルベンに入れ、 70°Cで 2時間加熱攪拌を 行なった。
反応後、 1. 3 k gの水を加え、 析出した結晶を濾取した。 これを 5.
5 k gのェタノ一ルで再結晶し、 2◦ 10 gの結晶を得た。 これを酢酸 14 k g中に溶解し、 発煙硝酸 1. 8 1 を 80°Cにて滴下 し、 8時問攪拌した 室温まで冷却した後、 9. 5 k gのメタ ノールを 加え、 析出した結品を濾取し、 2 7 k gのトルエンで再結晶し、 580 gの 4—ョ一ドー 4 ' 一二トロビフエニルを得た。
(PT- 0 1の合成〉
ジフエ二ルァミン (広島和光社製) 2 k g、 4ーョ一ドー 4 —二ト ロビフエニルを 500 g、 無水炭酸力リウム 500 g、 銅粉末 20 gお よび二ト口ベンゼン 2 1 を 1 0 1のコルベンに入れ、 200°Cで 1 5時 問加熱攪拌した。
反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカ ゲル (広島和光社製 C 200) を担持したカラムを用い、 トルエン を展開溶媒として精製し、 340 gの結晶を得た。
これを D M F 7 1 に溶解し、 5 % P d /し' 30 gとともに 1 0 1のォ
—トクレ一ブに入れ、 水素を 25 k g / c m乙 にチヤ一ジして 50 に 昇温し.、 1 0〜25 k gZc m2に保ち 8時問掼袢した。 触媒を濾去し、 i慮液を水に投入し、 析出物を滤取した。 これをトルエン 40 1 にて再結 晶し、 283 gの結晶を得た。
この 2 50 gと、 p フルォロニトロベンゼン (広島和光社製) 28 0 g、 無水炭酸力リウム 500 g、 銅粉末 1 0 gおよび二トロベンゼン 1 1を 5 1のコルベンに入れ、 200°Cで 32時問加熱攒拌した。
反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカ ゲル (広島和光社製 C— 200) を担持したカラムを用い、 トルエン を展開溶媒として精製し、 1 94 gの結晶を得た。
これを DM F 4 1 に溶解し、 5%P dノ C 30 gとともに 5 1のォ一 レーブに入れ、 水素を 25 k g/c m 2にチャージして 50°Cに昇 温し、 1 0〜25 k gZc m2に保ち 8時間攪拌した。 触媒を濾去し、 濾液を水に投入し、 析出物を^取した.:, これをト ルエン 20 ] にて再結 品し、 1 28 gの結晶を得た
この】 00 gと、 ョ一ドベンゼン (広島和光社製) 200 g、 無水炭 酸力リウム 250 g、 銅粉末 5 gおよび二トロベンゼン ]_ 1 を 5 1 のコ ルベンに入れ、 200 Cで 48時問加熱攪拌した。
反応後、 無機物を濾別し、 母液の溶媒を留去した。 その残渣をシリカ ゲル (広島和光社製 C 200) を担持したカラムを用い、 トルエン Zへキサン = 1Z2を展問溶媒として精製した。 さらにこれを 0. 0 1 mmlHgの真空下で昇華精製し、 23 gの淡黄色粉末を得た。
F D - Sを測定した結果、 C 60 H46 N 4 = 8 22に対し、 8 2 3 (M + 1 ) と 4 1 1 (1/2 M) のピークが得られたので、 PT— 0 1 と同定した。
〔実施例 8〕
前述した PD— 1を用いて冇機 IZ L素子を作製した。
すなわち、 まず、 ガラスに被膜されたインジウム · スズ酸化物の透明 性ァノ一ドを設けた。 ィンジゥム . スズ酸化物は約 7 50オングス ト口 ームの厚さであり、 ガラスは ( 25 mm X 7 5 mm X 1. l mm) のサ ィズであった。 これを真空蒸着装置 (日本真空技術 (株) 社製) に入れて、 約 1 0—
° t o r rに減圧した。 これに PD O 1を 600オングス 卜ロームの 厚さで蒸着した。 この際の蒸着速度は 2オングス トロ一ム/秒であった。 次に N PDを 200オングストロームの厚さで蒸着した。 この際の蒸 着速度は 2オングストローム Z秒であった。
次に発光材である D PVT Pおよび電子注入補助材である D P AVB i とを同時蒸着して 400オングストロームの厚さの発光層を形成した。 この際の D P VT Pの蒸着速度は 5 0オングス 卜ローム/秒であり、 D P A V B i -速度は ].オングス卜ロー. 'つに
さらに A i qを蒸着速度 2オングス トローム/秒で蒸^した 最後に アルミニウムとリチウムとを同時蒸着することにより、 陰極を 2 00 0 オングス トロームの厚さで形成した。 この際のアルミニウムの蒸着速度 は 1 0オングス トローム/秒であり、 リチウムの蒸着速度は 0. 1オン ダス トロ一ム /秒であった。
得られた素子を 1 0 00 n i tで発光させた時の駆動電圧は 6. 2 V だった。 また 1 0 0時間定電流駆動後の電圧上昇は 0. 4 V、 1 00 0 時間後の駆動電圧上昇は 0. 6 V、 半減寿命は 6 0 0時間であつた。 な お、 D P VT Pのイオン化エネルギーは 5. 9 e V、 D PAV B iのィ オン化工ネルギ一は 5. 5 e Vである。
Figure imgf000102_0001
DPVTP
Figure imgf000102_0002
DPAVBi 〔実施例 9〕
実施例 8において P D—() 1 の代わりに Pひ一 0 2を用いた以外は同 様にして有機 E L素子を作製した
待られた素子を 1 0 0 0 11 ί Iで 光させた時の駆動電圧は 6. 0 V だった。 また 1 ϋ 0時問定電流駆動後の電)土上 は 0. 5 V、 1 0 0 0 時間後の駆動電圧上昇は 0. Ί V、 半減寿命は 2 0 0 0時問であった c 〔実施例 1 0〕
実施例 8において P D— 0 1の代わりに P D— 0 3を用いた以外は同 様にして有機 E L素子を作製した。
得られた素子を 1 0 0 0 n i tで発光させた時の駆動電圧は 6. 3 V だった。 また 1 0 0時問定 t流駆動後の ft圧上昇は 0. 4 V、 1 0 0 0 時問後の駆動電圧上昇は 0. 6 Vであった。
〔実施例 1 1〕
実施例 8において P D— 0 1 の代わりに P D— 0 4を用いた以外は同 様にして有機 E L素子を作製した。
得られた素子を ] _ 0 0 0 n 1 tで発光させた時の駆動電圧は 6. 2 V だった。 また 1 0 0時間定電流駆動後の電圧上昇は 0. 4 V、 1 0 0 0 時間後の駆動電圧上昇は 0. 7 Vであった。
〔実施例 1 2〕
実施例 8において P D— 0 1の代わりに P D— 0 5を用いた以外は同 様にして有機 E L素子を作製した。
得られた素子を 1 0 0 0 n i tで発光させた時の駆動電圧は 6. I V だった。 また 1 0 0時間定電流駆動後の電圧上昇は 0. 5 V、 1 0 0 0 時間後の駆動電圧上昇は 0. 6 V、 半減寿命は 2 1 0 0時間であった。 〔実施例 1 3〕
実施例 8において P D— 0 1の代わりに S TBA— 1を用いた以外は 同様にして有機 E L素子を作製した。
得られた素子を 1 00 n i t で 光させた時の駆動電圧は 6. 1 V だった また 1 0 0時問定 ΠΙ流駆動後の電圧上^は 0. 4 V、 ] 00 0 時間後の駆動電圧上 は U. (つ、'.、 半減寿命は j 200時問であった。 このように、 本発明の化合物 UH) は、 特に駆動' 圧が低い上に、 rl 圧上昇も小さく、 ^減寿命も長かった。 この結果は、 本発明の化合物 (1 II) 力;、 S TBA—〗 に比べて、 上記のような優れた特徴を有すること を示している。
〔実施例 1 4〕
I T〇をコートしたガラス基板 (旭硝子社製 1 5 Ω Z口 〗 5 0 0ォ ングストローム) を 2 5 mm X 2 5 mmに切り取り、 I T〇面側の中央 に S c o t c h社製のクリアテーフ (幅:! 2 mm) を気泡が入らないよ うに貼り、 これを腐食液に ^してパターン形成を行なった。
これを真空蒸着装置 (Iョ本真空技術 (株) 社製) に入れて、 約 ] . 0 t o r rに'减圧した, _ こ 3τに S Τ Β Λ— 1を 500オングストロームの 厚さで蒸着した。 この際の蒸若速度は 2オングストローム Ζ秒であった- 次に A 1 qを蒸着速度 2オングス トロ一ム Z秒で 5 00オングスト口 ーム蒸着した。
最後にマグネシウムと銀とを同時蒸着することにより、 陰極を 20 0 0オングストロ一ムの厚さで形成した。 この際のマグネシゥムの蒸着速 度は 1 0オングス トロ一ム Z秒であり、 銀の蒸着速度は 1オングストロ ーム /秒であった。
さらに酸化保護膜として銀を 1_ 000オングストロ一ム蒸着積層した。 電極面積は 5 mm X 5 mmであった。
得られた素子を 1 00 n i tで発光させた時の駆動電圧は 4. 8 Vだ つた。 また 1 00時問定電流駆動後の電圧上昇は 0. 8 V、 1 000時問後 の駆動電圧 は] . 3 Vであった
〔実施例 1 5;)
実施例 8において P D— 0 1の代わりに P丁一 0 1を用いた以外は同 様にして有機 l L素子を作製した。
得られた素 Τ·を〗 000 n i 1:で発光させた時の駆動電圧は 2 V だった。 また 1 00時間定電流駆動後の電圧上昇は 0. 3 V、 1 000 時間後の駆動電圧上昇は 0. 5 Vであった。
〔実施例 1 (う ]
実施例 8と同様に冇機 E L素子を作製した。 但し、 PD— 0 1 の代わ りに S T B A— 1 を用い、 青色発光材料として、 D P V T Pの代わりに 国際特許公報 W〇 98/300 7 1 ( 1 9 98年 7月 9日公開) 公報に 開示されている下記化学式に示された D P A 2を用いた。 また、 7||荷注 入補助材として、 D PAVB iを添加した。
この場合、 l O O O n i tで発光させた時の駆動電圧は、 tt . :3 Vで あった。 また 1 00時間定電流駆動後の電圧上昇は 0. 4 V、 】 000 時間後の駆動電圧上昇は 0. 7 Vであり、 半減寿命は 1 200時問であ つ 7こ。
電荷注入補助材 D P AVB iが添加されていない後述する比較例 4に おける有機 E L素子と本実施例の有機 E L素子とを比較したところ、 本 実施例の有機 E L素子は発光材に電荷注入補助材を添加し、 かつ一般式 (I) で表される化合物を正孔輸送帯域に用いているため、 低電圧で駆動 しながら定電流駆動後の電圧上昇も低減でき、 さらに寿命も長いという 特性が得られた。
Figure imgf000106_0001
DPAZ
〔実施例 1 7〕
本実施例は、 発光材としての使用例であり、 インジウム · スズ酸化物 で被覆されたガラス上に P D— 0 5' を 80 0オングスト口一ムの厚さ で蒸着した。 次にアルミニウムとリチウムとを同時蒸着し、 リチウムを 3 w t %含有するアルミニゥム ' リチゥム合金製の陰極を形成した。 このようにして得られた発光素子に 0 Vの電圧を印加したところ、 40 0 n 1 tの発光輝度が得られた。 また、 半減寿命は 3 00時間であ つた。
〔実施例 1 8〕
実施例 1 7における P D— 0 5' の代わりに P D— 3 5 ' を用いた以 外はすべて同様にして、 発光素子を作製した。
得られた発光素子に 5. 5 Vの電圧を印加したところ、 40 0 n i t の発光輝度が得られ、 半減寿命は 340時間であった。
〔実施例 1 9 ]
実施例 1 7における PD— 0 5' の代わりに P D— 3 6' を用いた以 外はすべて同様にして、 発光素子を作製した。
得られた発光素子に 7. 0 Vの電圧を印加したところ、 3 5 O n i t の発光輝度が得られ、 半減寿命は 2 50時間であった。 〔実施例 20〕
実施例 1 7における P D— 05 ' の代わりに P D— 38 ' を用いた以 外はすべて同様にして、 発光素了-を作製した::.
得られた ¾光¾了-に 6. 2 V I圧を印加したところ、 801 1 t の発光輝度が得られ、 半減寿命は 400時間であった.:
〔実施例 2 1〕
実施例 1 7における P D— 0 5 ' の代わりに p D— 44 ' を用いた以 外はすべて同様にして、 発光素子を作製した c.
得られた発光素子に 8. 0 Vの電圧を印加したところ、 440 n i t の発光婶度が得られ、 半減寿命は 4 (5 ()時問であった。
〔実施例 22〕
実施例 1 7における P D— 05 の代わりに P D— 49 ' を用いた以 外はすべて同様にして、 発光素子を作製した。
得られた 光素子に 4. 7 Vの ΐ|ϊ圧を印加したところ、 38 0 n i t の発光輝度が得られ、 半減寿命は 340時問であった。
〔実施例 23〕
実施例 1 7における P D— 05 ' の代わりに P D— 54 ' を用いた以 外はすべて同様にして、 発光素子を作製した。
得られた発光素子に 6. 2 Vの電圧を印加したところ、 250 n i t の発光輝度が得られ、 半減寿命は 280時間であった。
〔実施例 24 ]
実施例 1 7における PD— 05' の代わりに PT— 0 1' を用いた以 外はすべて同様にして、 発光素子を作製した。
得られた発光素子に 5. 3 Vの電圧を印加したところ、 450 n i t の発光輝度が得られ、 半減寿命は 400時間であった。
〔実施例 25〕 実施例 1 7における PD— 0 5' の代わりに P T— 04' を用いた以 外はすべて同様にして、 有機 E L素子を作製した。
得られた ¾光素了-に 5. 6 Vの電圧を印加したところ、 2 0 n i t の発光輝度が^られ、 減寿命は: 3 20時問であった。
〔実施例 26〕
実施例 ]_ 7における P D— 0 5 ' の代わりに P丁一 0 8 ' を用いた以 外はすべて同様にして、 有機 E L素子を作製した。
得られた発光素子に 4. 8 Vの電圧を印加したところ、 34 0 n i t の発光輝度が得られ、 半減寿命は 2 50時問であった。
〔実施例 2 7〕
実施例】 7における P D— 0 5 ' の代わりに P T一 1 0 ' を用いた以 外はすべて同様にして、 有機 E L素子を作製した。
得られた ¾光素子に 5. 7 Vの電圧を印加したところ、 30 () n i t の発光輝度が得られ、 半減寿命は 280時問であった。
〔実施例 28〕
実施例 ] 7における P D— 0 5 ' の代わりに P T— 2 5 ' を用いた以 外はすべて同様にして、 有機 E L素子を作製した。
得られた発光素子に 6. 2 Vの電圧を印加したところ、 3 2 0 n i t の発光輝度が得られ、 半減寿命は 360時間であった。
〔比較例 1〕
実施例 8における P D— 0 1の代わりに N P D A T Aを用いた以外は 同様にして有機 E L素子を作製した。
得られた素子を 1 000 n i tで発光させた時の駆動電圧は 8. 4 V であった。 また 1 0 0時間定電流駆動後の電圧上昇は 0. 5 V、 1 0 0 0時間後の駆動電圧上昇は 0. 7 Vであった。
Figure imgf000109_0001
NPDATA
〔比較例 2〕
実施例 8における P D— 0 1の代わりに N P Dを用いた以外は同様に して有機 E L素子を作製した。
得られた素子を 1 0 0 0 n 1 tで発光させた時の駆動電圧は 1 1. 8 Vであった。 また 1 0 0時間定電流駆動後の電圧上昇は 1. 4 V、 1 0 0 0時間後の駆動電圧上昇は 3. 8 Vであった。
〔比較例 3〕
実施例 8における PD— 0 1の代わりに H I — 0 1を用いた以外は同 様にして有機 E L素子を作製した。
得られた素子を 1 ◦ 0 0 n 1 tで発光させた時の駆動電圧は 8. I V であった。 また 1 0 0時間定電流駆動後の電圧上昇は 0. 5 V、 1 0 0 0時間後の駆動電圧上昇は 0. 8 Vであった。
Figure imgf000110_0001
HI- 01
〔比較例 4 ]
実施例 1 6と同様に有機 E L素子を作製した。 但し、 電荷注入補助材 DPAVB iは添加されていない。
この場合、 得られた素子を 1 000 n i で発光させた時の駆動電圧 は 7. 0 Vだった, また 100時間定電流駆動後の電圧上昇は 1 , 2 V、 1 000時間後の駆動電圧上昇は 2. 0 Vであった。 このときの半減寿 命は、 800時間であった。
〔比較例 5〕
実施例 1 7における P D— 05' の代わりに S T B A— 1を用いた以 外は同様にして発光素子を作製した。
得られた発光素子に 9. 4 Vの電圧を印加したところ、 I 7 0 n i t の発光輝度が得られ、 半減寿命は 20時間であった。
上記の 〔比較例 5〕 の発光素子で得られた結果と、 〔実施例 1 8〕 〜 〔実施例 23〕 の発光素子で得られた結果との比較から、 S TBA— 1 を用いた場合には発光材としては寿命がきわめて短いことがわかった。 これは、 STB A— 1に電子が注入された際に、 材料が劣化するためで める。
しかし、 本願発明の一般式 (III) で表される化合物は、 半減寿命間長 く、 電子注入に対して劣化しにくいことがわかった。
従って、 正孔輸送带域であっても電子は少景ではあるが注入されるの で、 ft!子注入に対する耐性を冇する一般式 (ΠΊ ) で表される化合物を正 孔輸送^域に用いることが好まし V \:
〔比較例 6〕
実施例 1 Ίにおける P I〕一 0 5 ' の代わりに P T— 0 1を用いた以外 は同様にして発光素子を作製した c
得られた発光素子に 8 . 9 Vの電圧を印加したところ、 1 2 0 n i t の発光輝度が得られ、 半減寿命は 3 0時間であった。
上記の 〔比較例 6〕 における発光素子で得られた結果と 〔実施例 2 4〕 〜 〔実施例 2 8〕 における発光素子で得られた結果との比較から、 P T — 0 1で示される化合物は、 ft子注入に対する耐性が認められないが、 P T - 0 1以外の一般式 (IV) および一般式 (V) で表される化合物には 電子注人に対して耐性が認められた。 ただし、 P T— 0 1を前記実施形 態のよ -)に正孔輸送帯域に川いる場合には、 t子注入 aが小さく劣化も ほとんど無いため問題にならない。 さらに、 電子注入耐性の高い一般式
( I I I ) 、 ( IV) および (V) で表される化合物を用いれ、 発光素子自体 の寿命を長くすることができる。
以上の結果から判るように、 本発明の化合物を正孔輸送帯域に用いる ことにより、 同じ輝度の発光を得るのに必要な電圧が著しく低減する長 寿命の有機 E L素子の作製が実現できた。
また不純物が入らないように精製した結果、 駆動における電圧上昇も きわめて小さくなった。 産業上の利用分野
以上に述べたように、 本発明によれば、 イオン化ポテンシャルが小さ くかつ正孔移動度が大きいフエ二レンジアミン誘導体が得られる。また、 このフ 二レンジァミン誘導体を、 一対の電極間の有機 ¾光層内の正孔 輸送^に含冇すろとともに、 電荷注入補助材を添加しながら有機 E L素 fの 機 光^を形成することで、 動 Ei の低減と素 ]'· ' β寿命化が 実現できる, -

Claims

言青 求 の 範 囲
1 . 一対の電極と、 これらの電極間に挟持された有機発光層とを備えた 有機エレク トロルミネッセンス素子であって、
前記電極間に設けられた正孔輸送帯域は、 下記の一般式 (I) 、 一般式 ( I I) または一般式 (I I) ' で表されるフエ二レンジァミン誘導体を含 有し、 このフエ二レンジァミン誘導体は、 層または域として用いたとき の正孔移動度が 1 0一4 c m 2 /V . s以上であるとともに、 前記有機発 光層は電荷注入捕助材を含有することを特徴とする有機エレク トロノレミ ネッセンス素子。
Figure imgf000113_0001
一般式 ( I )
〔八!^ ェ〜八!" 6は、 水素原子、 炭素数 1〜 6のアルキル基またはアルコ キシ基、 核炭素数 6〜 2 4のァリール基、 もしくはスチリル基によって 置換されていてもよい核炭素数 6〜2 4のァリール基である。 Xは連結 基であり、 単結合、 核炭素数 6〜 2 4のァリーレン、 炭素数 1〜6のァ ルキレン、 ジフエ二ルメチレン、 エーテル結合、 チォェ一テル結合、 置 換もしくは無置換のビュル結合または芳香族へテロ環である。 R 1 R 2 は、 炭素数 1〜 6のアルキル基、 アルコキシ基、 または水素原子であつ て、 互いに結合して置換もしくは無置換の飽和五員環または飽和六員環 を形成してもよい。 〕
Figure imgf000114_0001
[A r '〜A r 1 2は、 水素原子、 炭素数 1〜 6のアルキル基またはアル コキシ基、 核炭素数 6〜 2 4のァリール基、 もしくはスチリル基によつ て置換されていてもよい核炭素数 6〜 2 4のァリ一ル基である。 Yは連 結基であり、 単結合、 核炭素数 6〜 2 4のァリーレン、 炭素数 1〜6の ァノレキレン、 ジフエニノレメチレン、 ェ一テノレ結合、 チォェ一テノレ結合、 芳香族へテロ環、 または置換もしくは無置換のビニル結合である。 R 3
R 4は、 炭素数 1〜6のアルキル基、 アルコキシ基又は水素原子であつ て、 互いに結合して置換もしくは無置換の飽和五員環または飽和六員環 を形成してもよい。 〕
Figure imgf000115_0001
一般式 (II) ,
〔A r 7〜A r 1 2は、 水素原子、 炭素数 1〜 6のアルキル基またはアル コキシ基、 核炭素数 6〜2 4のァリール基、 もしくはスチリル基によつ て置換されていてもよい核炭素数 6〜 2 4のァリール基である。 Yは連 結基であり、 単結合、 核炭素数 6〜 2 4のァリ一レン、 炭素数 1〜6の ァノレキレン、 ジフエニルメチレン、 ェ一テノレ結合、 チォェ一テル結合、 芳香族へテロ環、 または置換または無置換のビニル結合である。 R 5
R 6は、 炭素数 1〜6のアルキル基、 アルコキシ基、 または水素原子で あって、 互いに結合して置換もしくは無置換の飽和五員環または飽和六 環を形成してもよい。 〕
2 . 請求項 1に記載した有機エレク トロルミネッセンス素子において、 前記正孔輸送帯域は、 前記一般式 (I) 、 一般式 (II) または一般式 (II) ' で表されるフユ二レンジァミン誘導体を含有する正孔注入層を 有して構成されていることを特徴とする有機エレク ト口ルミネッセンス 素子。
3 . 請求項 1に記載した有機エレク トロルミネッセンス素子において、 前記正孔輸送帯域は、 前記一般式 (I) 、 一般式 (II) または一般式
(II) ' で表されるフユ二レンジァミン誘導体を含有する正孔輸送層を 有して構成されていることを特徴とする有機エレク トロノレミネッセンス 素子。
4 . 請求項 1から請求項 3までのいずれかに記載した有機エレク トロル ミネッセンス素子において、
前記一般式 (I) 中の A r 丄〜 r 6、 (I I) 中の A r 7〜A r 1 2
(II) ' A r '〜A r 1 2のうち、 少なくともひとつが核炭素数 1 0〜2 4の縮合芳香族環であることを特徴とする有機ェレク ト口ルミネッセン ス素子。
5 . 一般式 (III)
Figure imgf000116_0001
一般式 (III)
〔A r 1 3〜A r 1 8は、 水素原子、 炭素数 1〜 6のアルキル基またはァ ルコキシ基、 核炭素数 6〜2 4のァリール基、 もしくはスチリル基によ つて置換されてもよい炭素数 6〜 2 4のァリール基である。 Xは連結基 であり、 単結合、 核炭素数 6〜2 4のァリーレン、 炭素数 1〜6のアル キレン、 ジフエニルメチレン、 エーテル結合、 チォエーテル結合、 置換 または無置換のビュル結合、 芳香族へテロ環である。 また、 R7、 R8は、 炭素数 1〜6のアルキル基、 アルコキシ基、 又は水素原子であって、 互 いに結合して置換もしくは無置換の飽和五員環または飽和六員環を形成 してもよレヽ。 但し、 A r 1 3〜A r 1 6、 Xの少なくとも 1つは、 スチリ ル基含有のァリール基であるか、 または、 A r 1 5、 A r 1 8および下記 化学式で示される基本骨格のレ、ずれかが縮合芳香族環、芳香族へテ口環、 または置換もしくは無置換のビニル結合を含む。 〕
で表されるフエ二レンジァミン誘導体。
Figure imgf000117_0001
6. 下記の一般式 (IV)
Figure imgf000117_0002
一般式 (IV) 〔A r 1 9〜A r 24は、 水素原子、 炭素数 1〜 6のアルキル基または アルコキシ基、 核炭素数 6〜24のァリール基、 もしくは、 スチリル基 によって置換されていてもよい核炭素数 6〜 24のァリール基である。 Yは連結基であり、 単結合、 核炭素数 6〜24のァリーレン、 炭素数 1 〜 6のァノレキレン、 ジフエニルメチレン、 エーテノレ結合、 チォェ一テノレ 結合、 芳香族へテロ環、 または置換もしくは無置換のビニル結合である。 また、 R9、 R1 0は、 炭素数 1〜6のアルキル基、 アルコキシ基、 水素 原子であって、 互いに結合して置換または無置換の飽和五員環または飽 和六員環を形成してもよい。 但し、 A r 1 9〜A r 24、 Yのうち少なく とも 1つは、 スチリル基含有のァリール基であるか、 または、 下記化学 式で示される基本骨格のいずれかが縮合芳香族環、 芳香族へテロ環、 置 換または無置換のビニル結合を含む。 〕
Figure imgf000118_0001
または、 一般式 (V)
Figure imgf000118_0002
〔A r 2 5〜A r 30は、 水素原子、 炭素数 1〜 6のアルキル基またはァ ルコキシ基、 核炭素数 6〜 24のァリ一ル基、 もしくは、 スチリル基に よって置換されていてもよい核炭素数 6〜 24のァリ一ル基である。 Y は連結基であり、 単結合、 核炭素数 6〜24のァリーレン、 炭素数 1〜 6のアルキレン、 ジフエニノレメチレン、 エーテル結合、 チォエーテノレ結 合、 芳香族へテロ環、 置換もしくは無置換のビュル結合である。 また、
R 1 1 R 1 2は、 炭素数 1〜6のアルキル基、 アルコキシ基、 水素原子 であって、 互いに結合して置換または無置換の飽和五員環または飽和六 員環を形成してもよい。 〕
で表されるフエ二レンジァミン誘導体。
7. 一対の電極と、 これらの電極間に挟持された有機発光層とを備えた 有機エレク トロルミネッセンス素子であって、 前記電極間に設けられた 正孔輸送带域は、 前記の一般式 (III) 、 一般式 (IV) または一般式 (V) で表されるフ 二レンジァミン誘導体を含有することを特徴とする有機 エレク トロノレミネッセンス素子。
PCT/JP1999/004794 1998-09-09 1999-09-03 Dispositif organique electroluminescent et derive de phenylenediamine WO2000014174A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP99940653A EP1029909A4 (en) 1998-09-09 1999-09-03 ORGANIC ELECTROLUMINESCENT DEVICE AND PHENYLENE DERIVATIVES
KR1020007004003A KR100841842B1 (ko) 1998-09-09 1999-09-03 유기 전자발광 소자 및 페닐렌디아민 유도체
US09/530,597 US6541129B1 (en) 1998-09-09 1999-09-03 Organic electroluminescence device and phenylenediamine derivative
US11/201,263 US7399537B2 (en) 1998-09-09 2005-08-11 Organic electroluminescence device and phenylenediamine derivative
US12/131,977 US20080241591A1 (en) 1998-09-09 2008-06-03 Organic electroluminescence device and phenylenediamine derivative

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP25556398 1998-09-09
JP10/255563 1998-09-09
JP4711099 1999-02-24
JP11/47110 1999-02-24

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/530,597 A-371-Of-International US6541129B1 (en) 1998-09-09 1999-09-03 Organic electroluminescence device and phenylenediamine derivative
US09530597 A-371-Of-International 1999-09-03
US10/331,645 Division US20030143430A1 (en) 1998-09-09 2002-12-31 Organic electroluminescence device and phenylenediamine derivative

Publications (1)

Publication Number Publication Date
WO2000014174A1 true WO2000014174A1 (fr) 2000-03-16

Family

ID=26387261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004794 WO2000014174A1 (fr) 1998-09-09 1999-09-03 Dispositif organique electroluminescent et derive de phenylenediamine

Country Status (6)

Country Link
US (4) US6541129B1 (ja)
EP (1) EP1029909A4 (ja)
KR (3) KR100805451B1 (ja)
CN (1) CN1213127C (ja)
TW (2) TWI222965B (ja)
WO (1) WO2000014174A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041774A1 (ja) * 2002-11-06 2004-05-21 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006046441A1 (ja) * 2004-10-29 2006-05-04 Idemitsu Kosan Co., Ltd. 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2006057420A1 (en) * 2004-11-26 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
JP2006179877A (ja) * 2004-11-26 2006-07-06 Semiconductor Energy Lab Co Ltd 発光素子、発光装置及び電子機器
WO2009107574A1 (ja) * 2008-02-25 2009-09-03 昭和電工株式会社 有機エレクトロルミネッセンス素子、その製造方法およびその用途
CN101180262B (zh) * 2005-04-18 2012-06-13 出光兴产株式会社 芳香族三胺化合物以及应用该化合物的有机电致发光元件
US8202630B2 (en) 2004-11-05 2012-06-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US9263681B2 (en) 2012-12-10 2016-02-16 Nitto Denko Corporation Organic light emitting host materials
US9614162B2 (en) 2012-12-17 2017-04-04 Nitto Denko Corporation Light-emitting devices comprising emissive layer

Families Citing this family (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344283B1 (en) * 1996-12-28 2002-02-05 Tdk Corporation Organic electroluminescent elements
KR100805451B1 (ko) * 1998-09-09 2008-02-20 이데미쓰 고산 가부시키가이샤 유기 전자발광 소자 및 페닐렌디아민 유도체
KR100688694B1 (ko) * 1998-12-28 2007-02-28 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자
ATE517964T1 (de) * 1999-12-20 2011-08-15 Panasonic Corp Dünnfilm elektrolumineszierende vorrichtung
KR100721656B1 (ko) 2005-11-01 2007-05-23 주식회사 엘지화학 유기 전기 소자
SG115435A1 (en) * 2000-12-28 2005-10-28 Semiconductor Energy Lab Luminescent device
TW518909B (en) * 2001-01-17 2003-01-21 Semiconductor Energy Lab Luminescent device and method of manufacturing same
CN100430515C (zh) 2001-02-01 2008-11-05 株式会社半导体能源研究所 沉积装置和沉积方法
AU2002303084B2 (en) * 2001-02-02 2006-05-25 Pharmacopiea, Inc. 3,4-di-substituted cyclobutene-1, 2 -diones as CXC chemokine receptor antagonists
GB0117377D0 (en) * 2001-07-17 2001-09-05 Opsys Ltd "Tertiary diamines containing heterocyclic groups and their use in organic electroluminescent devices"
JP2003133071A (ja) * 2001-08-13 2003-05-09 Victor Co Of Japan Ltd 有機エレクトロルミネセンス素子及びその製造方法
US6849345B2 (en) 2001-09-28 2005-02-01 Eastman Kodak Company Organic electroluminescent devices with high luminance
US6610455B1 (en) 2002-01-30 2003-08-26 Eastman Kodak Company Making electroluminscent display devices
US6872472B2 (en) 2002-02-15 2005-03-29 Eastman Kodak Company Providing an organic electroluminescent device having stacked electroluminescent units
US6771021B2 (en) 2002-05-28 2004-08-03 Eastman Kodak Company Lighting apparatus with flexible OLED area illumination light source and fixture
US6890627B2 (en) 2002-08-02 2005-05-10 Eastman Kodak Company Laser thermal transfer from a donor element containing a hole-transporting layer
US6939660B2 (en) 2002-08-02 2005-09-06 Eastman Kodak Company Laser thermal transfer donor including a separate dopant layer
US6747618B2 (en) 2002-08-20 2004-06-08 Eastman Kodak Company Color organic light emitting diode display with improved lifetime
US6911961B2 (en) * 2002-10-11 2005-06-28 Eastman Kodak Company Method of designing an OLED display with lifetime optimized primaries
US7230594B2 (en) 2002-12-16 2007-06-12 Eastman Kodak Company Color OLED display with improved power efficiency
KR101251624B1 (ko) 2003-04-18 2013-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 퀴녹살린 유도체, 그것을 이용한 유기 반도체 소자 및 전계 발광 소자
CN1829702B (zh) * 2003-07-28 2010-11-17 株式会社半导体能源研究所 喹喔啉衍生物及使用该喹喔啉衍生物的发光元件
US7221332B2 (en) 2003-12-19 2007-05-22 Eastman Kodak Company 3D stereo OLED display
DE102004020046A1 (de) * 2003-12-22 2005-07-28 Sensient Imaging Technologies Gmbh Triarylamin-Derivate und Verwendung in organischen elektrolumineszenten und elektrofotografischen Vorrichtungen
WO2005090512A1 (en) * 2004-03-19 2005-09-29 Lg Chem, Ltd. New materials for injecting or transporting holes and organic electroluminescence devices using the same
US7541099B2 (en) * 2004-05-21 2009-06-02 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative and light emitting element and light emitting device using the same
US7316756B2 (en) 2004-07-27 2008-01-08 Eastman Kodak Company Desiccant for top-emitting OLED
US9040170B2 (en) 2004-09-20 2015-05-26 Global Oled Technology Llc Electroluminescent device with quinazoline complex emitter
US7501151B2 (en) 2004-09-21 2009-03-10 Eastman Kodak Company Delivering particulate material to a vaporization zone
US7501152B2 (en) 2004-09-21 2009-03-10 Eastman Kodak Company Delivering particulate material to a vaporization zone
CN100573963C (zh) 2004-11-05 2009-12-23 株式会社半导体能源研究所 发光元件和使用它的发光器件
US9142783B2 (en) * 2004-11-30 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
KR20130016392A (ko) * 2004-12-28 2013-02-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 안트라센 유도체, 이를 사용하는 발광 소자 및 이를 사용하는 발광 장치
US7670506B1 (en) * 2004-12-30 2010-03-02 E. I. Du Pont De Nemours And Company Photoactive compositions for liquid deposition
US20110118429A1 (en) * 2004-12-30 2011-05-19 E.I. Du Pont De Nemours And Company Charge transport materials
EP1866983A4 (en) * 2005-02-28 2009-10-21 Semiconductor Energy Lab COMPOSITE MATERIAL AND ITS USE IN A LIGHT-EMITTING ELEMENT, A LIGHT-EMITTING DEVICE AND AN ELECTRONIC DEVICE
KR100799223B1 (ko) 2005-03-04 2008-01-29 에스케이씨 주식회사 정공 주입층 재료 및 이를 포함하는 유기전기발광소자
US8057916B2 (en) 2005-04-20 2011-11-15 Global Oled Technology, Llc. OLED device with improved performance
KR100739498B1 (ko) * 2005-05-07 2007-07-19 주식회사 두산 중수소화된 신규 아릴아민 유도체, 그 제조 방법 및 이를이용한 유기 전계 발광 소자
CN2821911Y (zh) * 2005-06-30 2006-09-27 鸿富锦精密工业(深圳)有限公司 通用串行总线连接器
KR100696528B1 (ko) * 2005-07-22 2007-03-19 삼성에스디아이 주식회사 트리아릴아민계 화합물, 그 제조방법 및 이를 이용한 유기발광 표시 소자
WO2007013478A1 (en) 2005-07-25 2007-02-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic appliance
CN101243038A (zh) * 2005-08-12 2008-08-13 株式会社半导体能源研究所 芳胺化合物及其合成方法
KR20130115397A (ko) * 2005-09-02 2013-10-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 안트라센 유도체
KR20080055850A (ko) * 2005-09-12 2008-06-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 퀴녹살린 유도체, 및 퀴녹살린 유도체를 사용한 발광소자,발광장치, 전자 기기
US8956738B2 (en) 2005-10-26 2015-02-17 Global Oled Technology Llc Organic element for low voltage electroluminescent devices
US9666826B2 (en) 2005-11-30 2017-05-30 Global Oled Technology Llc Electroluminescent device including an anthracene derivative
US8920941B2 (en) * 2005-12-28 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Pyrazine derivative, and light emitting element, display device, electronic device using the pyrazine derivative
EP1974590B1 (en) 2006-01-18 2020-03-04 LG Display Co., Ltd. Oled having stacked organic light-emitting units
US7799439B2 (en) 2006-01-25 2010-09-21 Global Oled Technology Llc Fluorocarbon electrode modification layer
EP2004616B1 (en) * 2006-03-21 2014-05-21 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, electronic device using the quinoxaline derivative
US9118020B2 (en) 2006-04-27 2015-08-25 Global Oled Technology Llc Electroluminescent devices including organic eil layer
EP2016633A1 (en) 2006-05-08 2009-01-21 Eastman Kodak Company Oled electron-injecting layer
KR101422864B1 (ko) 2006-06-22 2014-07-24 소니 주식회사 복소환 함유 아릴아민 유도체를 이용한 유기 전계발광 소자
US8974918B2 (en) 2006-07-04 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
GB2440368A (en) 2006-07-26 2008-01-30 Oled T Ltd Cathode coating for an electroluminescent device
TW200816860A (en) * 2006-09-22 2008-04-01 Au Optronics Corp Tandem organic electroluminescent elements and display using the same
KR101315379B1 (ko) * 2006-11-23 2013-10-10 삼성디스플레이 주식회사 디스플레이장치의 제조방법
DE102006059215A1 (de) 2006-12-13 2008-07-10 Sensient Imaging Technologies Gmbh Arylaminsubstituierte Divinylfluorene und ihre Nutzung für elektrofotografische Anwendungen und für OLEDS (Organic Light Emitting Devices)
GB0625540D0 (en) 2006-12-22 2007-01-31 Oled T Ltd Electroluminescent devices
GB0625865D0 (en) 2006-12-29 2007-02-07 Oled T Ltd Electro-optical or opto-electronic device
US8795855B2 (en) 2007-01-30 2014-08-05 Global Oled Technology Llc OLEDs having high efficiency and excellent lifetime
US8178216B2 (en) * 2007-02-28 2012-05-15 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device including quinoxaline derivative
JP2008258272A (ja) * 2007-04-02 2008-10-23 Fuji Xerox Co Ltd 有機電界発光素子及び表示装置
US7911133B2 (en) 2007-05-10 2011-03-22 Global Oled Technology Llc Electroluminescent device having improved light output
US8034465B2 (en) 2007-06-20 2011-10-11 Global Oled Technology Llc Phosphorescent oled having double exciton-blocking layers
KR101407578B1 (ko) * 2007-07-24 2014-06-13 삼성디스플레이 주식회사 페닐페녹사진 또는 페닐페노시아진계 화합물 및 이를이용한 유기 전계 발광 소자
US7812531B2 (en) 2007-07-25 2010-10-12 Global Oled Technology Llc Preventing stress transfer in OLED display components
US8628862B2 (en) 2007-09-20 2014-01-14 Basf Se Electroluminescent device
US8420229B2 (en) 2007-10-26 2013-04-16 Global OLED Technologies LLC OLED device with certain fluoranthene light-emitting dopants
US8076009B2 (en) 2007-10-26 2011-12-13 Global Oled Technology, Llc. OLED device with fluoranthene electron transport materials
US8431242B2 (en) 2007-10-26 2013-04-30 Global Oled Technology, Llc. OLED device with certain fluoranthene host
US8129039B2 (en) 2007-10-26 2012-03-06 Global Oled Technology, Llc Phosphorescent OLED device with certain fluoranthene host
US8016631B2 (en) 2007-11-16 2011-09-13 Global Oled Technology Llc Desiccant sealing arrangement for OLED devices
US8900722B2 (en) 2007-11-29 2014-12-02 Global Oled Technology Llc OLED device employing alkali metal cluster compounds
KR20130058086A (ko) 2007-12-03 2013-06-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 카바졸 유도체, 및 카바졸 유도체를 사용하는 발광 소자, 발광 장치 및 전자 기기
JP5574598B2 (ja) * 2007-12-03 2014-08-20 株式会社半導体エネルギー研究所 キノキサリン誘導体、およびキノキサリン誘導体を用いた発光素子、発光装置、電子機器
US8877350B2 (en) 2007-12-11 2014-11-04 Global Oled Technology Llc White OLED with two blue light-emitting layers
KR101563675B1 (ko) 2007-12-21 2015-10-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 트리아졸 유도체, 발광 소자, 발광 장치, 및 전자기기
GB0804469D0 (en) 2008-03-11 2008-04-16 Oled T Ltd Compounds having electroluminescent or electron transport properties
US7947974B2 (en) 2008-03-25 2011-05-24 Global Oled Technology Llc OLED device with hole-transport and electron-transport materials
JP5611538B2 (ja) * 2008-05-16 2014-10-22 株式会社半導体エネルギー研究所 ベンゾオキサゾール誘導体、およびベンゾオキサゾール誘導体を用いた発光素子、発光装置、照明装置、並びに電子機器
US8324800B2 (en) 2008-06-12 2012-12-04 Global Oled Technology Llc Phosphorescent OLED device with mixed hosts
US8247088B2 (en) 2008-08-28 2012-08-21 Global Oled Technology Llc Emitting complex for electroluminescent devices
JP5459903B2 (ja) * 2008-09-02 2014-04-02 株式会社半導体エネルギー研究所 アントラセン誘導体、発光素子、発光装置、電子機器、及び照明装置
EP2161272A1 (en) 2008-09-05 2010-03-10 Basf Se Phenanthrolines
US7931975B2 (en) 2008-11-07 2011-04-26 Global Oled Technology Llc Electroluminescent device containing a flouranthene compound
US8088500B2 (en) 2008-11-12 2012-01-03 Global Oled Technology Llc OLED device with fluoranthene electron injection materials
US7968215B2 (en) 2008-12-09 2011-06-28 Global Oled Technology Llc OLED device with cyclobutene electron injection materials
US8216697B2 (en) 2009-02-13 2012-07-10 Global Oled Technology Llc OLED with fluoranthene-macrocyclic materials
US8102114B2 (en) 2009-02-27 2012-01-24 Global Oled Technology, Llc. Method of manufacturing an inverted bottom-emitting OLED device
US8147989B2 (en) 2009-02-27 2012-04-03 Global Oled Technology Llc OLED device with stabilized green light-emitting layer
JP2010254674A (ja) 2009-03-31 2010-11-11 Semiconductor Energy Lab Co Ltd キノキサリン誘導体、キノキサリン誘導体を用いた発光素子、発光装置、照明装置及び電子機器
US8283054B2 (en) 2009-04-03 2012-10-09 Global Oled Technology Llc Tandem white OLED with efficient electron transfer
US8206842B2 (en) 2009-04-06 2012-06-26 Global Oled Technology Llc Organic element for electroluminescent devices
KR101761223B1 (ko) 2009-06-18 2017-07-25 유디씨 아일랜드 리미티드 전계 발광 소자를 위한 정공 수송 물질로서의 페난트로아졸 화합물
WO2011015265A2 (en) 2009-08-04 2011-02-10 Merck Patent Gmbh Electronic devices comprising multi cyclic hydrocarbons
JP5784608B2 (ja) 2009-09-16 2015-09-24 メルク パテント ゲーエムベーハー 電子素子製造のための調合物
EP2517278B1 (en) 2009-12-22 2019-07-17 Merck Patent GmbH Electroluminescent formulations
JP5897472B2 (ja) 2009-12-22 2016-03-30 メルク パテント ゲーエムベーハー エレクトロルミネセンス機能性界面活性剤
EP2517275B1 (en) 2009-12-22 2018-11-07 Merck Patent GmbH Formulations comprising phase-separated functional materials
JP2013522816A (ja) 2010-03-11 2013-06-13 メルク パテント ゲーエムベーハー 発光ファイバー
JP6246468B2 (ja) 2010-03-11 2017-12-13 メルク パテント ゲーエムベーハー 治療および化粧品におけるファイバー
KR101778825B1 (ko) 2010-05-03 2017-09-14 메르크 파텐트 게엠베하 제형물 및 전자 소자
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
US8586206B2 (en) * 2010-06-30 2013-11-19 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
CN103026525B (zh) 2010-07-26 2016-11-09 默克专利有限公司 在器件中的纳米晶体
DE102010055901A1 (de) 2010-12-23 2012-06-28 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
EP2675524B1 (en) 2011-02-14 2017-05-10 Merck Patent GmbH Device and method for treatment of cells and cell tissue
EP2688646A1 (en) 2011-03-24 2014-01-29 Merck Patent GmbH Organic ionic functional materials
EP2707911B1 (en) 2011-05-12 2017-07-05 Merck Patent GmbH Compositions and electronic devices
WO2012163464A1 (en) 2011-06-01 2012-12-06 Merck Patent Gmbh Hybrid ambipolar tfts
EP2737553A1 (en) 2011-07-25 2014-06-04 Merck Patent GmbH Copolymers with functionalized side chains
DE102011117422A1 (de) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperverzweigte Polymere, Verfahren zu deren Herstellung sowie deren Verwendung in elektronischen Vorrichtungen
GB201306365D0 (en) 2013-04-09 2013-05-22 Kathirgamanathan Poopathy Heterocyclic compounds and their use in electro-optical or opto-electronic devices
US10593886B2 (en) 2013-08-25 2020-03-17 Molecular Glasses, Inc. OLED devices with improved lifetime using non-crystallizable molecular glass mixture hosts
EP3118190A4 (en) * 2014-03-14 2017-11-08 Nissan Chemical Industries, Ltd. Aniline derivative and use thereof
JP6695863B2 (ja) 2014-09-05 2020-05-20 メルク パテント ゲーエムベーハー 調合物と電子素子
EP3241248A1 (de) 2014-12-30 2017-11-08 Merck Patent GmbH Formulierungen und elektronische vorrichtungen
EP3278377B1 (en) 2015-03-30 2020-08-05 Merck Patent GmbH Formulation of an organic functional material comprising a siloxane solvent
KR101671277B1 (ko) * 2015-05-08 2016-11-01 머티어리얼사이언스 주식회사 유기 전계 발광 소자용 화합물의 제조방법
CN107690720B (zh) 2015-06-12 2020-04-03 默克专利有限公司 作为用于oled制剂的溶剂的含有非芳族环的酯
EP3341981B1 (en) 2015-08-28 2020-08-19 Merck Patent GmbH Formulation of an organic functional material comprising an epoxy group containing solvent
EP3387077B1 (en) 2015-12-10 2023-10-18 Merck Patent GmbH Formulations containing ketones comprising non-aromatic cycles
CN111477768B (zh) 2015-12-15 2023-04-07 默克专利有限公司 作为用于有机电子制剂的溶剂的含芳族基团的酯
JP7438661B2 (ja) 2015-12-16 2024-02-27 メルク パテント ゲーエムベーハー 固体溶媒を含む調合物
WO2017102049A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
US10840448B2 (en) 2016-02-17 2020-11-17 Merck Patent Gmbh Formulation of an organic functional material
DE102016003104A1 (de) 2016-03-15 2017-09-21 Merck Patent Gmbh Behälter umfassend eine Formulierung enthaltend mindestens einen organischen Halbleiter
KR20170124957A (ko) * 2016-05-03 2017-11-13 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
CN109153871A (zh) 2016-06-16 2019-01-04 默克专利有限公司 有机功能材料的制剂
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
TW201815998A (zh) 2016-06-28 2018-05-01 德商麥克專利有限公司 有機功能材料之調配物
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
EP3532566B1 (en) 2016-10-31 2021-04-21 Merck Patent GmbH Formulation of an organic functional material
EP3532565B1 (en) 2016-10-31 2021-04-21 Merck Patent GmbH Formulation of an organic functional material
EP3552252B1 (en) 2016-12-06 2023-05-17 Merck Patent GmbH Preparation process for an electronic device
CN110168047B (zh) 2016-12-13 2023-08-08 默克专利有限公司 有机功能材料的制剂
CN110088925A (zh) 2016-12-22 2019-08-02 默克专利有限公司 包含至少两种有机功能化合物的混合物
TWI763772B (zh) 2017-01-30 2022-05-11 德商麥克專利有限公司 電子裝置之有機元件的形成方法
TWI791481B (zh) 2017-01-30 2023-02-11 德商麥克專利有限公司 形成有機電致發光(el)元件之方法
KR20190131554A (ko) 2017-03-31 2019-11-26 메르크 파텐트 게엠베하 유기 발광 다이오드 (oled) 를 위한 인쇄 방법
CN110494514A (zh) 2017-04-10 2019-11-22 默克专利有限公司 有机功能材料的制剂
WO2018202603A1 (en) 2017-05-03 2018-11-08 Merck Patent Gmbh Formulation of an organic functional material
KR102698061B1 (ko) 2017-07-18 2024-08-22 메르크 파텐트 게엠베하 유기 기능성 재료의 제형
CN111418081B (zh) 2017-12-15 2024-09-13 默克专利有限公司 有机功能材料的制剂
EP3518303B1 (en) 2018-01-26 2021-10-06 Samsung Display Co., Ltd. N-(4-(8-(phenyl)naphthalen-2-yl)phenyl)-n,n'-di(phenyl)-amine derivatives and related compounds for use in organic electroluminescence devices
JP7465062B2 (ja) 2018-01-26 2024-04-10 三星ディスプレイ株式會社 有機電界発光素子及び有機電界発光素子用モノアミン化合物
KR102710151B1 (ko) 2018-02-26 2024-09-25 메르크 파텐트 게엠베하 유기 기능성 재료의 포뮬레이션
KR102508497B1 (ko) 2018-03-26 2023-03-10 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
KR20210022046A (ko) 2018-06-15 2021-03-02 메르크 파텐트 게엠베하 유기 기능성 재료의 포뮬레이션
KR102628848B1 (ko) 2018-08-10 2024-01-25 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함하는 유기 발광 소자
KR20210056432A (ko) 2018-09-24 2021-05-18 메르크 파텐트 게엠베하 과립형 재료의 제조 방법
WO2020094538A1 (en) 2018-11-06 2020-05-14 Merck Patent Gmbh Method for forming an organic element of an electronic device
US11043639B2 (en) 2018-12-28 2021-06-22 Samsung Electronics Co., Ltd. Charge transport material, composition including the charge transport material, and organic light-emitting device including the composition
KR20200099249A (ko) 2019-02-13 2020-08-24 삼성디스플레이 주식회사 유기 발광 소자
KR20200113057A (ko) 2019-03-20 2020-10-06 삼성디스플레이 주식회사 아민계 화합물 및 이를 포함한 유기 발광 소자
KR20210038736A (ko) 2019-09-27 2021-04-08 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
CN111205237B (zh) * 2020-01-13 2020-12-29 长春海谱润斯科技股份有限公司 一种三胺衍生物及其有机电致发光器件
KR20230002860A (ko) 2020-04-21 2023-01-05 메르크 파텐트 게엠베하 유기 기능성 재료를 포함하는 에멀젼
CN115867426A (zh) 2020-06-23 2023-03-28 默克专利有限公司 生产混合物的方法
EP3950661B1 (en) * 2020-08-03 2024-06-19 Ecole Polytechnique Federale De Lausanne (Epfl) Hole transport material, synthesis thereof, and solar cell
CN116635491A (zh) 2020-12-08 2023-08-22 默克专利有限公司 油墨体系和用于喷墨印刷的方法
CN117355364A (zh) 2021-05-21 2024-01-05 默克专利有限公司 用于连续纯化至少一种功能材料的方法和用于连续纯化至少一种功能材料的装置
WO2023012084A1 (en) 2021-08-02 2023-02-09 Merck Patent Gmbh A printing method by combining inks
JP2024534168A (ja) 2021-08-31 2024-09-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 組成物
TW202349760A (zh) 2021-10-05 2023-12-16 德商麥克專利有限公司 電子裝置之有機元件的形成方法
TW202411366A (zh) 2022-06-07 2024-03-16 德商麥克專利有限公司 藉由組合油墨來印刷電子裝置功能層之方法
WO2024126635A1 (en) 2022-12-16 2024-06-20 Merck Patent Gmbh Formulation of an organic functional material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267749A (ja) * 1986-05-16 1987-11-20 Fuji Xerox Co Ltd 新規なベンジン化合物及びその製造方法
JPH0394262A (ja) * 1989-09-06 1991-04-19 Konica Corp 電子写真感光体
JPH0820771A (ja) * 1994-07-08 1996-01-23 Toyo Ink Mfg Co Ltd 正孔輸送材料およびその用途
WO1996022273A1 (fr) * 1995-01-19 1996-07-25 Idemitsu Kosan Co., Ltd. Elements organiques electroluminescents, films minces organiques et composes de la triamine
JPH08259934A (ja) * 1995-03-20 1996-10-08 Matsushita Electric Ind Co Ltd 電界発光素子
JPH09301934A (ja) * 1996-05-10 1997-11-25 Kemipuro Kasei Kk 高分子量芳香族アミン化合物およびそれよりなるホール輸送性材料
WO1998030071A1 (fr) * 1996-12-28 1998-07-09 Tdk Corporation Elements electroluminescents organiques
JPH1154280A (ja) * 1997-07-31 1999-02-26 Chisso Corp ナフチルアミン誘導体を用いた有機電界発光素子
JPH11167992A (ja) * 1997-12-05 1999-06-22 Mitsui Chem Inc 有機電界発光素子

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439627B1 (en) * 1989-08-18 1996-07-10 Idemitsu Kosan Company Limited Organic electroluminescent element
JP3016896B2 (ja) * 1991-04-08 2000-03-06 パイオニア株式会社 有機エレクトロルミネッセンス素子
EP1056140B1 (en) * 1992-08-28 2005-07-06 Idemitsu Kosan Company Limited Charge injection auxiliary material
JP3295088B2 (ja) * 1993-09-29 2002-06-24 出光興産株式会社 有機エレクトロルミネッセンス素子
JPH09222741A (ja) * 1995-12-11 1997-08-26 Toyo Ink Mfg Co Ltd 正孔輸送材料およびその用途
US6285039B1 (en) * 1996-08-19 2001-09-04 Tdk Corporation Organic electroluminescent device
JP3525034B2 (ja) * 1997-07-31 2004-05-10 出光興産株式会社 有機エレクトロルミネッセンス素子
US5853905A (en) * 1997-09-08 1998-12-29 Motorola, Inc. Efficient single layer electroluminescent device
US5853906A (en) * 1997-10-14 1998-12-29 Xerox Corporation Conductive polymer compositions and processes thereof
KR100582328B1 (ko) * 1998-04-09 2006-05-23 이데미쓰 고산 가부시키가이샤 유기 전자 발광 소자
TW521537B (en) * 1998-05-08 2003-02-21 Idemitsu Kosan Co Organic electroluminescence element
KR100805451B1 (ko) * 1998-09-09 2008-02-20 이데미쓰 고산 가부시키가이샤 유기 전자발광 소자 및 페닐렌디아민 유도체
CN100382354C (zh) * 1999-02-15 2008-04-16 出光兴产株式会社 有机场致发光元件及其制造方法
CN1252034C (zh) * 1999-09-30 2006-04-19 出光兴产株式会社 胺化合物和使用该化合物的有机电致发光元件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267749A (ja) * 1986-05-16 1987-11-20 Fuji Xerox Co Ltd 新規なベンジン化合物及びその製造方法
JPH0394262A (ja) * 1989-09-06 1991-04-19 Konica Corp 電子写真感光体
JPH0820771A (ja) * 1994-07-08 1996-01-23 Toyo Ink Mfg Co Ltd 正孔輸送材料およびその用途
WO1996022273A1 (fr) * 1995-01-19 1996-07-25 Idemitsu Kosan Co., Ltd. Elements organiques electroluminescents, films minces organiques et composes de la triamine
JPH08259934A (ja) * 1995-03-20 1996-10-08 Matsushita Electric Ind Co Ltd 電界発光素子
JPH09301934A (ja) * 1996-05-10 1997-11-25 Kemipuro Kasei Kk 高分子量芳香族アミン化合物およびそれよりなるホール輸送性材料
WO1998030071A1 (fr) * 1996-12-28 1998-07-09 Tdk Corporation Elements electroluminescents organiques
JPH1154280A (ja) * 1997-07-31 1999-02-26 Chisso Corp ナフチルアミン誘導体を用いた有機電界発光素子
JPH11167992A (ja) * 1997-12-05 1999-06-22 Mitsui Chem Inc 有機電界発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1029909A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041774A1 (ja) * 2002-11-06 2004-05-21 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006046441A1 (ja) * 2004-10-29 2006-05-04 Idemitsu Kosan Co., Ltd. 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
US8202630B2 (en) 2004-11-05 2012-06-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US8455114B2 (en) 2004-11-05 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
WO2006057420A1 (en) * 2004-11-26 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
JP2006179877A (ja) * 2004-11-26 2006-07-06 Semiconductor Energy Lab Co Ltd 発光素子、発光装置及び電子機器
US7646010B2 (en) 2004-11-26 2010-01-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
CN101180262B (zh) * 2005-04-18 2012-06-13 出光兴产株式会社 芳香族三胺化合物以及应用该化合物的有机电致发光元件
WO2009107574A1 (ja) * 2008-02-25 2009-09-03 昭和電工株式会社 有機エレクトロルミネッセンス素子、その製造方法およびその用途
US9263681B2 (en) 2012-12-10 2016-02-16 Nitto Denko Corporation Organic light emitting host materials
US9614162B2 (en) 2012-12-17 2017-04-04 Nitto Denko Corporation Light-emitting devices comprising emissive layer

Also Published As

Publication number Publication date
CN1213127C (zh) 2005-08-03
EP1029909A4 (en) 2007-01-10
KR20010031112A (ko) 2001-04-16
CN1277626A (zh) 2000-12-20
US7399537B2 (en) 2008-07-15
KR20070073966A (ko) 2007-07-10
TWI261583B (en) 2006-09-11
KR100805451B1 (ko) 2008-02-20
US20060082294A1 (en) 2006-04-20
KR20060085255A (ko) 2006-07-26
TWI222965B (en) 2004-11-01
US6541129B1 (en) 2003-04-01
KR100841842B1 (ko) 2008-06-27
KR100837029B1 (ko) 2008-06-10
US20080241591A1 (en) 2008-10-02
EP1029909A1 (en) 2000-08-23
US20030143430A1 (en) 2003-07-31

Similar Documents

Publication Publication Date Title
WO2000014174A1 (fr) Dispositif organique electroluminescent et derive de phenylenediamine
JP4542646B2 (ja) 有機エレクトロルミネッセンス素子およびフェニレンジアミン誘導体
KR100843819B1 (ko) 안트라센 유도체 및 이를 사용한 유기 전기발광 소자
TWI429650B (zh) Organic electroluminescent elements
JP3109896B2 (ja) 有機エレクトロルミネッセンス素子
JP4211869B2 (ja) カルバゾリル基を有するジアミノアリーレン化合物及びその用途
JP4765589B2 (ja) カルバゾリル基を有するフルオレン化合物およびその用途
JP5255296B2 (ja) 有機エレクトロルミネッセンス素子用材料および化合物
JPH08239655A (ja) 有機エレクトロルミネッセンス素子
JP2003040873A (ja) 新規キノキサリン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
WO2007043484A1 (ja) カルバゾール含有アミン化合物及びその用途
JP2009194042A (ja) カルバゾリル基を含有する有機エレクトロルミネッセンス素子用電荷輸送材料およびその用途
JP2007109988A (ja) 有機エレクトロルミネッセンス素子
JPH0688072A (ja) 有機エレクトロルミネッセンス素子
JPH09241629A (ja) 有機エレクトロルミネッセンス素子
JP2010126571A (ja) 有機エレクトロルミネッセンス素子材料および有機エレクトロルミネッセンス素子
JP4224252B2 (ja) 有機el素子用化合物、有機el素子
JP2007126439A (ja) カルバゾール含有アミン化合物およびその用途
JP2009221442A (ja) 有機エレクトロルミネッセンス素子用材料ならびに有機エレクトロルミネッセンス素子
JPH08333569A (ja) 有機エレクトロルミネッセンス素子
JP5277578B2 (ja) カルバゾリル基を有する化合物およびその用途
JP2003238501A (ja) 芳香族オリゴアミン誘導体およびそれを含有する有機エレクトロルミネッセンス素子
JP4112719B2 (ja) 芳香族炭化水素化合物およびそれを用いた有機エレクトロルミネッセンス素子
JP2000191560A (ja) 芳香族炭化水素化合物およびそれを用いた有機エレクトロルミネッセンス素子
JP4802645B2 (ja) 有機エレクトロルミネッセンス素子用材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99801522.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999940653

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007004003

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09530597

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999940653

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007004003

Country of ref document: KR