WO2006046441A1 - 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2006046441A1
WO2006046441A1 PCT/JP2005/019122 JP2005019122W WO2006046441A1 WO 2006046441 A1 WO2006046441 A1 WO 2006046441A1 JP 2005019122 W JP2005019122 W JP 2005019122W WO 2006046441 A1 WO2006046441 A1 WO 2006046441A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
aromatic amine
amine compound
Prior art date
Application number
PCT/JP2005/019122
Other languages
English (en)
French (fr)
Inventor
Masahiro Kawamura
Hisayuki Kawamura
Chishio Hosokawa
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to US11/576,892 priority Critical patent/US20070287029A1/en
Priority to JP2006543003A priority patent/JPWO2006046441A1/ja
Priority to EP05795839A priority patent/EP1806334A1/en
Publication of WO2006046441A1 publication Critical patent/WO2006046441A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • C07C211/55Diphenylamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to an aromatic amine compound and an organic electoluminescence device using the same, and in particular, exhibits various emission hues, high heat resistance, long life, high emission luminance, and high emission.
  • the present invention relates to a light-emitting organic electroluminescent device and a novel aromatic amine compound that realizes the same.
  • Non-patent Document 1 Organic electroluminescence (EL) devices using organic substances are used as light sources such as flat light emitters for wall-mounted televisions and display backlights, and are being actively developed.
  • the electroluminescence phenomenon of organic substances was observed in anthracene single crystals by Pope et al. In 1963 (Non-Patent Document 1), and in 1965, Helfinch and Schneider were solutions with good injection efficiency.
  • the use of an electrode system has succeeded in observing relatively strong injection-type EL (Non-patent Document 2).
  • organic light-emitting materials with conjugated organic host materials and conjugated organic activators with fused benzene rings, and naphthalene, anthracene, phenanthrene, tetracene, and pyrene.
  • Benzopyrene, taricene, picene, force nozonozore, funolei ren, biphenyl, tertation, triphenylen oxide, dihalobiphenyl, trans-stilbene and 1,4-diphenylbutadiene are organic host materials.
  • anthracene, tetracene, pentacene and the like were mentioned as examples of activators.
  • Non-Patent Document 3 Although the thin film was effective in reducing the driving voltage, it was extremely powerful for obtaining a high-luminance device at a practical level. Therefore, Tang et al. Considered an organic EL device in which two extremely thin films (a hole transport layer and a light-emitting layer) were laminated by vacuum evaporation between the anode and the cathode, and achieved high brightness with a low driving voltage. Realized (Non-Patent Document 4 or Patent Document 1).
  • organic EL devices have been put into practical use, such as car stereos and mobile phone displays.
  • Patent Document 2 discloses a compound represented by the following general formula (A).
  • R, R, and R may be the same or different, hydrogen atom, lower alkyl group, low
  • R represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, or
  • R represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a chlorine atom.
  • Patent Document 3 discloses a compound represented by the following general formula (B).
  • Patent Document 4 discloses a compound represented by the following general formula (C).
  • represents a phenylene group
  • a reelaminophenene group r 1, r 2, r 3 and r 4, respectively.
  • R, R, R, R, R and R are each substituted
  • Patent Document 5 discloses a compound represented by the following general formula (D).
  • R U to R 1S are groups independently selected from a hydrogen atom, a lower alkyl group and a lower alkoxy group, respectively.
  • Patent Document 6 discloses a compound represented by the following general formula (E).
  • Ar 1 to Ar 6 are substituted by a hydrogen atom, an alkyl or alkoxy group having 1 to 6 carbon atoms, an aryl group having 6 to 24 carbon atoms, or a styryl group!
  • X is a linking group, a single bond, an arylene having 6 to 24 nuclear carbon atoms, an alkylene having 1 to 6 carbon atoms, diphenylmethylene, an ether bond, a thioether bond, substituted or non-substituted
  • R 1 and R 2 are alkyl groups having 1 to 6 carbon atoms, alkoxy groups, or hydrogen atoms, which are bonded to each other to be substituted or unsubstituted. May form a five-membered or six-membered ring.
  • Patent Document 7 discloses a light emitting device using a compound represented by the following general formula (F) as a hole transport material.
  • R 11 represents an alkyl group or an aralkyl group
  • R 12 , R 1 , R ′′ and R 15 represent a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom.
  • This compound has a Tg of 100 ° C or less, and the device using this compound has a short life, has no heat resistance, and cannot be put into practical use.
  • Patent Document 8 discloses a light emitting device using, as a hole transport material, a compound represented by the following compound (G) obtained by improving the general formula (F).
  • Patent Document 9 discloses a compound represented by the following general formula (H).
  • Patent Document 1 US Patent No. 4356429
  • Patent Document 2 Japanese Patent No. 3220950
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-86595
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-156290
  • Patent Document 5 Japanese Patent Laid-Open No. 9-301934
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2000-309566
  • Patent Document 7 JP-A-5-25473
  • Patent Document 8 Japanese Patent Laid-Open No. 11 35532
  • Patent Document 9 Japanese Patent Laid-Open No. 2000-80433
  • Non-Patent Document 1 J. Chem. Phys. 38 (1963) 2042
  • Non-Patent Document 2 Phys. Rev. Lett. 14 (1965) 229
  • Non-Patent Document 3 ThinSolidFilms94 (1982) 171
  • Non-Patent Document 4 Appl. Phys. Lett. 51 (1987) 913
  • the present invention has been made to solve the above-described problems.
  • An organic EL element having various emission hues, high heat resistance, long life, high emission luminance and high emission efficiency, and
  • the object is to provide a novel aromatic amine compound that can be realized.
  • the present invention provides an aromatic amine compound represented by the following general formula (1).
  • Ar 6 -Ar 6 are each independently a substituted or unsubstituted aryl group having 5 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 50 nuclear carbon atoms. .
  • L 1 to L 3 are each independently a substituted or unsubstituted arylene group having 5 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroarylene group having 3 to 50 nuclear carbon atoms.
  • At least one of eight to eight is a substituted or unsubstituted fluorenyl-containing group.
  • L 2 and / or L 3 is a substituted or unsubstituted fluorenylene-containing group.
  • the present invention provides an organic EL device in which an organic thin film layer composed of one or more layers having at least a light emitting layer is sandwiched between a cathode and an anode, wherein at least one of the organic thin film layers is
  • the present invention provides an organic EL device containing an aromatic amine compound alone or as a component of a mixture.
  • the organic EL device using the aromatic amine compound of the present invention exhibits various luminescent hues and high heat resistance.
  • the aromatic amine compound of the present invention is a material having hole injection / transport properties. When used as, it has a long lifetime, high luminance and high luminous efficiency.
  • the aromatic amine compound of the present invention is an aromatic amine compound represented by the following general formula (1): ,
  • Ar ⁇ Ar 6 is independently a substituted or unsubstituted aryl group having 5 to 60 nuclear carbon atoms, or a substituted or unsubstituted heterocyclic group having 3 to 50 nuclear carbon atoms. Group.
  • aryl group having 8 to 8 carbon atoms those having 6 to 20 nuclear carbon atoms are preferred.
  • the 6 Teroariru group to the, preferably nuclear C6-20 instrument e.g., hula - group, Chiofu - group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, Toriazoriru group, O key Sajiazoriru Group, pyridinyl group, pyraduryl group, triazinyl group, pyrimidinyl group, benzofuranyl group, dibenzofuranyl group, benzothiol-zole group, dibenzothiolzol group, carbazolyl group, quinoxalinyl group, quinolinyl group, benzimidazolyl group, imidazopyridinyl Groups and the like.
  • nuclear C6-20 instrument e.g., hula - group, Chiofu - group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, Toriazoriru
  • L 1 to L 3 are each independently a substituted or unsubstituted arylene group having 5 to 60 nuclear carbon atoms, or a substituted or unsubstituted nuclear carbon number having 3 to 50 carbon atoms. It is a teloarylene group.
  • the arylene group of L 1 to L 3 preferably has a nuclear carbon number of 6 to 20, for example, a fluorene group, a fluorene-containing group, a phenylene group, a phenylene group, a biphenylene group, a naphthylene group.
  • a fluorene group a fluorene-containing group
  • a phenylene group a phenylene group, a biphenylene group, a naphthylene group.
  • the heteroarylene group of ⁇ preferably has 6 to 20 nuclear carbon atoms. Rene, Thiophylene, Pyrrolylene, Imidazolylene, Virazolylene, Triazolylene, Oxadiazolylene, Pyridylene, Pyrazylene, Triadylene, Pyrimidylene, Benzofuran Examples include a len group, a dibenzofurylene group, a benzothiophene group, a dibenzothiophene group, a strong rubazolylene group, a quinoxalinylene group, a quinolinylene group, a benzimidazolylene group, and an imidazolpyridylene group.
  • Examples of the substituents of 8 to 8 and L 1 to L 3 include alkyl groups (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms. Methylol, ethinole, iso-propinole, tert-butinole, n-octinole, n-decinole, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), alkenyl group (preferably carbon 2 to 20, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, and examples thereof include buryl, allyl, 2-buture, and 3-pentale.), An alkynyl group (preferably Has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms such as propargyl, 3-pentynyl, etc.), an amino group
  • more preferred Or 0 to 6 carbon atoms particularly preferably 0 to 6 carbon atoms, and examples thereof include amino-containing methylamino, dimethylamino-containing dimethylamino-containing diphenylamino-containing dibenzylamino, and the like, and alkoxy groups (preferably having 1-2 carbon atoms).
  • aryloxy group preferably 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as fluorine, 2-naphthyloxy, etc.
  • an acyl group preferably 1 to 20 carbon atoms, more preferably 1 carbon atoms
  • alkoxycarbo group preferably having 2 carbon atoms
  • alkoxycarbo group preferably having 2 carbon atoms
  • aryloxy group sulfonyl group preferably 7 to 20 carbon atoms, More preferably, it has 7 to 16 carbon atoms, particularly
  • Asilya Mino group preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms such as acetylamino-containing benzoylamino
  • alkoxy carbonylamino group preferably 2-20 carbon atoms, more preferably 2-16 carbon atoms, particularly preferably 2-12 carbon atoms, and examples thereof include methoxycarbonylamino, and aryloxycarbo-lamino groups (preferably carbon atoms).
  • Rubamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as carbamoyl, methylcarbamoyl, jet carbamoyl, phenylcarbamoyl
  • An alkylthio group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, such as methylthio, ethylthio, etc.), arylthio Group (preferably having 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio).
  • a sulfonyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, such as mesyl and tosyl).
  • Phosphoric acid amide groups preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include jetyl phosphoric acid amide and phenolic acid amide.
  • hydroxy group mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group Group, heterocyclic group ( Preferably it has 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and the hetero atom includes, for example, a nitrogen atom, an oxygen atom, and a sulfur atom, such as imidazolyl, pyridyl, quinolyl, furyl, and chenyl.
  • halogen atom eg fluorine atom, chlorine atom, bromine atom, iodine atom
  • cyano group eg fluorine atom, chlorine atom, bromine atom, iodine atom
  • sulfo group carboxyl group
  • a silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, and examples thereof include trimethylsilyl and triphenylsilyl).
  • substituents may be further substituted. When there are two or more substituents, they may be the same or different. Further, if possible, they may be connected to each other to form a ring structure.
  • cyclic structure for example, cycloalkane having 4 to 12 carbon atoms such as cyclobutane, cyclopentane, cyclohexane, adamantane, norbornane, etc.
  • the aromatic amine compound represented by the general formula (1) of the present invention satisfies the following conditions (i) and Z or (ii).
  • At least one of eight to eight is a substituted or unsubstituted fluorenyl-containing group.
  • L 2 and / or L 3 is a substituted or unsubstituted fluorenylene-containing group.
  • At least one of eight to eight is preferably a fluorenyl-containing group represented by the following general formula (1a).
  • R 1 and are each independently a hydrogen atom or a substituent, and R 1 R 2 is bonded to form a ring.
  • a shaped structure may be formed.
  • R 3 and R 4 are each independently a substituent, a is an integer from 0 to 3, and b is an integer from 0 to 4. , To form a ring structure by bonding R 4 to each other in the case Yogu R 4 to form a ring structure by bonding R 3 each other of more than in the case R 3 is plural.
  • L 4 is a single bond, a substituted or unsubstituted arylene group having 5 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroarylene group having 3 to 50 nuclear carbon atoms.
  • Examples of the arylene group and heteroarylene group of L 4 include the same examples as those described for L 1 to L 3 in the general formula (1), and the same examples can be given for the substituents.
  • the fluorenyl-containing group represented by the general formula (1a) is preferably a fluorenyl-containing group represented by the following general formula (1b).
  • R 9 is an atomic group forming a cyclic structure
  • R 3 , R 4 , a, b and L 4 are the same as described above.
  • R 9 is, for example, an ethylene group, a propylene group, an n-butylene group, an n-pentylene group, an alkylene group such as an n-hexylene group, or a carbon atom of these alkylene groups.
  • a group that forms a complex ring by replacing at least one of nitrogen atom or oxygen atom, and the like, may have a substituent, and may be further bonded to each other to form a saturated or unsaturated cyclic structure. You may form ⁇ . Examples of this substituent and cyclic structure are the same as described above.
  • L 2 and / or L 3 is preferably a fluorenylene-containing group represented by the following general formula (2-a).
  • R 5 and R are each independently a hydrogen atom or a substituent, and R 5 tR 6 may combine to form a cyclic structure.
  • R 7 and R 8 are each independently a substituent, and c and d are each an integer of 0 to 3. , To form a ring structure by bonding with each other R 8 in the case Yogu R 8 to form a ring structure by bonding R 7 each other of the plurality when R 7 is plural.
  • L 5 and L 6 are each independently a single bond, a substituted or unsubstituted arylene group having 5 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroarylene group having 3 to 50 nuclear carbon atoms.
  • Examples of the cyclic structure which may be formed and formed by R 5 and R 6 include, as examples of the cyclic structure, those listed in the general formula (1) as the substituents of 8 to 8 !: 6 and L 1 to L 3. Similar examples are given.
  • Examples of the arylene group and heteroarylene group of L 5 and L 6 include the same examples as those described for L 1 to L 3 in the general formula (1), and the same examples can be given for the substituents. It is done.
  • the fluorenylene-containing group represented by the general formula (2-a) is represented by the following general formula (2-b).
  • R 1Q is an atomic group forming a cyclic structure, C, d, L 5 and L. Is the same as above. )
  • R 1Q The atomic group forming the cyclic structure of R 1Q is the same as R 9 in the general formula (1-b).
  • Examples of the fluorenylene-containing group represented by the general formula (2-b) are shown below.
  • aromatic amine compound represented by the general formula (1) of the present invention is shown below, but are not limited to these exemplified compounds.
  • the aromatic amine compound of the present invention is preferably an organic EL device material, and is particularly suitable for a hole transport material for an organic EL device, a hole injection material for an organic EL device, and a light emitting material for an organic EL device. Yes.
  • the aromatic amine compound of the present invention can be used as a hole injection material or a hole transport material.
  • a compound having a phenylenediamine skeleton as a hole injection material and a compound having a diphenylenediamine skeleton as a hole transporting material.
  • the organic EL device of the present invention is an organic EL device in which at least one organic thin film layer having a light emitting layer or a plurality of organic thin film layers is sandwiched between a cathode and an anode. These aromatic amine compounds are contained alone or as a component of a mixture.
  • the force for which the configuration of (8) is preferably used is not limited to these.
  • the aromatic amine compound of the present invention may be used in any organic thin film layer of an organic EL device.
  • the hole transport layer and the Z or hole injection layer mainly contain the aromatic amine compound.
  • the layer containing the aromatic amine compound is in contact with the anode.
  • the main component of the layer in contact with the anode is the aromatic amine compound. Further preferred.
  • the organic thin film layer has a layer containing the aromatic amine compound and a light emitting material.
  • the organic thin film layer preferably has a hole containing the aromatic amine compound. It is also preferable to have a laminate of a transport layer and a hole injection layer containing Z or the aromatic amine compound and a light emitting layer made of a phosphorescent metal complex and a host material. The metal complex and Z or host material will be described in the light emitting layer below.
  • the organic EL device of the present invention is manufactured on a light-transmitting substrate.
  • the transparent substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include soda lime glass, norium'strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyethersulfide, and polysulfone.
  • the anode of the organic EL device of the present invention has a function of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), indium zinc oxide alloy (IZO), acid tin (NESA), gold, silver, platinum, copper, and the like.
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance for light emission of the anode Is preferably greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ or less.
  • the film thickness of the anode is a force depending on the material. Usually, it is selected in the range of 10 nm to l ⁇ m, preferably 10 to 200 nm.
  • the light emitting layer of the organic EL device has the following functions (1) to (3).
  • Injection function Function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the negative electrode or electron injection layer
  • Transport function Function to move injected charges (electrons and holes) by the force of electric field
  • Light emission function A function to provide a field for recombination of electrons and holes and connect this to light emission.However, there is no difference between the ease of hole injection and the ease of electron injection.
  • the transport capacity expressed by the mobility of holes and electrons may be large or small, but it is preferable to move one of the charges.
  • the light emitting layer may be formed by using the compound of the present invention alone, or may be used by mixing with other materials.
  • the material for forming the light emitting layer by mixing with the compound of the present invention is not particularly limited as long as it has the above-mentioned preferred properties, and any known material used for the light emitting layer of the organic EL device can be used. Any medium force can be selected and used.
  • Examples of the light emitting material or doping material that can be used in the light emitting layer together with the compound of the present invention include, for example, anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, thalene, fluorescein, perylene, lidar perylene, naphthaperic perylene, perinone, and phthalate.
  • Oral Perinone Naphtha Oral Perinone, Diphenyl Butadiene, Tetraphenyl Butadiene, Coumarin, Oxadiazole, Aldazine, Bisbenzoxazoline, Bisstyryl, Pyrazine, Cyclobentagene, Quinoline Metal Complex, Aminoquinoline Metal Complex, Benzoquinoline Metal Complex, Imine , Diphenylethylene, vinylanthracene, diaminocarbazole, pyran, thiopyran, polymethine, merocyanine, imidazole chelating oxinoid compound, quinaclide , Rubrene, fluorescent dyes and the like, but are not limited thereto.
  • the compound is predominantly used is that which is preferred instrument normal present invention, 30 of the light emitting layer: LOO mol 0/0, more preferably 50 to 99 mole 0/0.
  • the light-emitting material used in combination with the compound of the present invention is mainly an organic compound, and specific examples include the following organic compounds depending on the desired color tone.
  • X represents the following group.
  • n is an integer from 2 to 5
  • Y is
  • the phenol group, the phenol group, and the naphthyl group in this compound include an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a hydroxyl group, a sulfol, a carbonyl group, an amino group, a dimethylamino group, and a diphenylamino group.
  • One or more groups may be substituted.
  • These substituents may be bonded to each other to form a saturated 5-membered ring or 6-membered ring.
  • this substituent is preferably bonded to a phenyl group, a phenylene group, or a naphthyl group at the para position in order to form a smooth deposited film with good bonding properties.
  • the following compounds may be mentioned, and in particular, p-quater-fur derivatives and p-quater-fur derivatives are preferred! /.
  • a fluorescent whitening agent such as benzothiazole, benzimidazole, and benzoxazole, a metal chelate oxinoid compound, a styrylbenzene compound, a condensed aromatic ring, and the like.
  • a fluorescent whitening agent such as benzothiazole, benzimidazole, and benzoxazole
  • metal chelate oxinoid compound such as benzothiazole, benzimidazole, and benzoxazole
  • metal chelate oxinoid compound such as a metal chelate oxinoid compound
  • styrylbenzene compound such as a styrylbenzene compound
  • condensed aromatic ring and the like.
  • Specific examples of these compound names include, for example, Japanese Patent Application Laid-Open No. 59-194393, Chemistry, B. Synthetic Dice, pages 1971, 628-637 and 640. Disclosed! Can be mentioned.
  • Examples of the metal chelate oxinoid compound include those disclosed in JP-A-63-295695, and representative examples thereof include tris (8-quinolinol) aluminum (hereinafter abbreviated as Alq) and the like.
  • Examples of the 8-hydroxyquinoline-based metal complex include dilithium pintridione.
  • styrylbenzene compounds examples include those disclosed in European Patent No. 0319881 and European Patent No. 0373582, and distyryl disclosed in JP-A-2-25793. Virazine derivatives can also be used.
  • condensed aromatic ring compounds examples include those disclosed in JP-A-2004-59535, JP-A-2004-75567, JP-A-2004-83481, and JP-A-2004-107326. Can be mentioned.
  • polyphenylene compounds disclosed in EP 0387715 can also be used as the material of the light emitting layer.
  • metal chelate hexinoid compound and styrylbenzene compound for example, 12-lid perinone (j. Appl. Phys., Vol. 27, L713 (1988)), 1, 4—Diphenyl— 1, 3—Butadiene, 1, 1, 4, 4—Terafur ether— 1, 3—Butadiene (above Appl. Phys. Ett.
  • an aromatic dimethylidin compound (disclosed in European Patent 0 388 768 is disclosed in JP-A-3-231970), a condensed aromatic ring compound Is preferably used.
  • Specific examples include 4,4 'bis (2,2di-t-butylphenol) biphenyl (hereinafter abbreviated as DTBPBBi), 4,4, -bis (2,2 diphenylvinyl).
  • DTBPBBi 4,4 'bis (2,2di-t-butylphenol) biphenyl
  • DPVBi 4,4, -bis (2,2 diphenylvinyl
  • L (wherein L is a hydrocarbon of 6 to 24 carbon atoms comprising a phenyl moiety, O —L is a phenolate ligand, Q represents a substituted 8-quinolinolato ligand, Rs represents an 8-quinolinolato ring substituent selected so as to sterically hinder two or more substituted 8-quinolinolato ligands from being bonded to the aluminum atom.
  • Specific examples include bis (2-methyl-8 quinolinolato) (para-phenol enolate) aluminum (III), bis (2-methyl-8 quinolinolato) (1 naphtholato) aluminum (III), and the like.
  • examples of the host material include the light-emitting materials described above, and examples of the dopant include fluorescent dyes having strong blue power up to green, for example, coumarins or fluorescent dyes similar to those used as the host materials described above. it can.
  • a preferred host material in this case is a light emitting material having a distyrylarylene skeleton, particularly preferably DPVBi, and a preferred dopant is diphenylaminovinylarylene, particularly preferably N, N diphenylaminovinylbenzene (DPAVB). be able to.
  • the light emitting layer for obtaining white light emission is not particularly limited, and examples thereof include the following.
  • V A structure in which a blue phosphor (fluorescence peak 380 to 480 nm) and a green phosphor (480 to 580 nm) are laminated and a red phosphor is further contained (Japanese Patent Laid-Open No. 6-207170)
  • the blue light emitting layer contains a blue fluorescent dye
  • the green light emitting layer has a region containing a red fluorescent dye
  • further contains a green phosphor JP-A-7-142169)
  • the structure of V) is preferably used.
  • red phosphor examples of the red phosphor are shown below.
  • iPr is an isopropyl group
  • Et is an ethyl group.
  • Ar is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms.
  • Ar is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • X is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, or a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms.
  • a, b and c are each an integer of 0-4.
  • n is an integer of 1 to 3. When n is 2 or more, the values in [] may be the same or different. )
  • R 1 to R 1Q are each independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, and a substituted group. Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl having 6 to 50 carbon atoms.
  • substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted Or an unsubstituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group.
  • Ar and Ar ′ are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • L and L are each a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group.
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • L or Ar is bonded to any of the 1-5 positions of pyrene, and L or Ar, is bonded to any of the 6-10 positions of pyrene.
  • a 1 and A 2 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
  • Ar 1 and Ar 2 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
  • R 1 to R 1Q are each independently a hydrogen atom, a substituted or unsubstituted nuclear carbon number of 6 to 50 Aromatic ring group, substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted cycloalkyl group, substituted or Unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted nuclear atoms 5 A -50 allylthio group, a substituted or unsubstituted C1-C50 alkoxy carbo group, a substituted or unsubstituted silyl group, a carboxyl group, a halogen atom, a cyano group
  • Ar 1 , Ar 2 , R 9 and R 1Q may be plural or adjacent to each other to form a saturated or unsaturated cyclic structure.
  • R 1 or R 2 are R 3 R, R 5 tR 6 , R 7 , R 9 and R 1Q may be the same or different, or may be bonded to each other or R 2 may be bonded together to form a ring.
  • L 1 may be a single bond, —O—, 1 S—, —N (R) — (where R is an alkyl group or an aryl group that may be substituted). Represents an alkylene group or an arylene group.
  • R is an alkyl group or an aryl group that may be substituted.
  • R u to! ⁇ are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxyl group, an aryloxy group, an alkylamino group, an arylamino group, or a plurality of which may be substituted.
  • Cd, e and f each represent an integer of 1 to 5, and when they are 2 or more, R 11 to each other, R 12 to each other, R 16 to each other or R 17 to each other, It may be the same or different, and R 11 , R 12 , R 16, or R 17 may combine to form a ring, or R 13 and R 14 , R 18 and R 19 L 2 is a single bond, — O—, — S—, — N (R) — (R is an alkyl group or an optionally substituted aryl group. ), An alkylene group or an arylene group.
  • a 5 to A 8 are each independently a substituted or unsubstituted biphenyl group or a substituted or unsubstituted naphthyl group.
  • R 21 to R 23 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or 1 carbon atom.
  • R 21 to R 23 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or 1 carbon atom.
  • An atom, and at least one of A 9 to A 14 is a group having three or more condensed aromatic rings.
  • R and R are hydrogen atoms, substituted or unsubstituted alkyl groups, substituted or
  • Rs bonded to different fluorene groups, and Rs may be the same or different.
  • R and R bonded to the carbonyl group may be the same or different.
  • R and R are ,
  • a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group or substituted! Represents an unsubstituted heterocyclic group and is bonded to a different fluorene group Rs and Rs are the same but different
  • R and R bonded to the same fluorene group may be the same or different.
  • Ar and Ar are substituted or unsubstituted condensations with a total of 3 or more benzene rings
  • n an integer of 1 to 10.
  • an anthracene derivative is preferable, a monoanthracene derivative is more preferable, and an asymmetric anthracene is particularly preferable.
  • a phosphorescent compound can also be used as the dopant light-emitting material.
  • a compound containing a force rubazole ring as a host material is preferable.
  • the dopant is a compound capable of emitting triplet exciton force, and is not particularly limited as long as it also emits triplet exciton force, but also has Ir, Ru, Pd, Pt, Os, and Re forces.
  • Group force At least one selected A borphyrin metal complex or an ortho metal ⁇ metal complex, which is preferably a metal complex containing two metals, is preferred.
  • a host suitable for phosphorescence emission with a compound power containing a strong rubazole ring is a compound having the function of emitting a phosphorescent compound as a result of energy transfer from its excited state to the phosphorescent compound. is there.
  • the host compound is not particularly limited as long as it is a compound that can transfer the exciton energy to the phosphorescent compound, and can be appropriately selected according to the purpose. It may have an arbitrary heterocyclic ring in addition to the force rubazole ring.
  • host compounds include force rubazole derivatives, triazole derivatives, oxazole derivatives, oxaziazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, furan diamine derivatives, arylamine derivatives , Amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrins Compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiobilane dioxide derivatives, carpositimide derivatives, fluorenylidenemethane derivatives, distyrylbiazine derivatives, heterocyclic tetracarboxy
  • the light emitting layer may contain a fluorescent or phosphorescent dopant in addition to the aromatic amine compound of the present invention and Z or the light emitting material.
  • fluorescent dopant examples include arylamine compounds and Z or styryl. Ammine compounds are preferred.
  • Ar 3 is a group in which a phenyl group, a biphenyl group, a terfel group, a stilbene group, and a distyryl group are selected, and Ar 4 and Ar 5 are each a hydrogen atom or An aromatic group having a carbon number of S6 to 20 and Ar 3 to Ar 5 may be substituted p ′ is an integer of 1 to 4. More preferably, at least one of Ar 4 or Ar 5 is a styryl group Replaced with)
  • examples of the aromatic group having 6 to 20 carbon atoms include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a terfel group.
  • arylamine compound a compound represented by the following general formula (II) is preferable.
  • Ar 8 is a substituted or unsubstituted aryl group having 5 to 40 nuclear carbon atoms.
  • Q ′ is an integer of 1 to 4.
  • aryl groups having 5 to 40 nuclear carbon atoms include, for example, a phenyl group, a naphthyl group, a chrysal group, a naphthal group, an anthral group, a phenanthryl group, a pyrel group, a collo group, and the like.
  • Preferred aryl groups for this aryl group include alkyl groups having 1 to 6 carbon atoms (ethyl group, methyl group, i propyl group, n propyl group, s butyl group, t butyl group, pentyl group, hexyl group, Cyclopentyl group, cyclohexyl group, etc.), C1-C6 alkoxy group (ethoxy group, methoxy group, i-propoxy group, n-propoxy group, s-butoxy group, t-butoxy group, pentoxy group, hexoxy) Groups, cyclopentoxy groups, cyclohexyloxy groups, etc.), aryl groups having 5 to 40 nuclear atoms, amino groups substituted with aryl groups having 5 to 40 nuclear atoms, and aryl groups having 5 to 40 nuclear atoms.
  • a medium complex of Ir, Ru, Pd, Pt, Os and Re is selected as the phosphorescent dopant used in combination with the host material.
  • the ligand that is preferably a metal complex compound containing at least one metal preferably has at least one skeleton selected from a phenylpyridine skeleton, a bibilidyl skeleton, and a phenantorin skeleton.
  • Specific examples of such metal complexes include tris (2-phenol-lysine) iridium, tris (2-phenol-pyridine) ruthenium, tris (2-phenol-pyridine) palladium, bis (2-phenol-pyridine) platinum.
  • a suitable complex is selected based on the required emission color, device performance, and relationship with the host material.
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state.
  • the film can be classified from the thin film (molecular accumulation film) formed by the LB method by the difference in aggregation structure and higher order structure and the functional difference resulting from it. Further, it is disclosed in JP-A-57-51781.
  • a binder and a material compound such as a resin are dissolved in a solvent to form a solution, which is then thinned by a spin coating method or the like to emit light.
  • a layer can be formed.
  • the film thickness of the light-emitting layer formed in this manner is a force that can be appropriately selected depending on the situation where there is no particular limitation. Usually, a range of 5 nm to 5 m is preferable.
  • This light emitting layer may be composed of one or more of the materials described above, or may be a laminate of a light emitting layer made of a compound different from the above light emitting layer.
  • the aromatic amine compound of the present invention When used in a light-emitting band or a light-emitting layer, it is composed of one or more of the above materials as long as it contains the compound of the present invention! May be.
  • the hole injection / transport layer is a layer that helps the hole injection into the light emitting layer and transports it to the light emitting region, and has a high ion mobility with a high hole mobility, usually less than 5.5 eV.
  • Such a hole injection / transport layer is preferably a material that transports holes to the light-emitting layer with a lower electric field strength.
  • the mobility force of holes for example, 10 4 to: at least when an electric field of LO Zcm is applied. 10 4 cm 2 ZV 'seconds are preferred!
  • the aromatic amine compound of the present invention when used in the hole transport zone, the compound of the present invention alone may be mixed with other materials that may form a hole injection / transport layer.
  • the material for forming the hole injection and transport layer by mixing with the aromatic amine compound of the present invention is not particularly limited as long as it has the above-mentioned preferred properties. Can be selected and used from among those commonly used in the field, and hole-injection layers of organic EL devices and known materials used for transport.
  • JP 54-59143 55-52063, 55-52064, 55-46760, 55-85495, 57-11350, 57-148749, JP-A-2-311591 Stilbene derivatives (JP-A 61-210363, 61-228451, 61-14642, 61-72255) Gazette, 62-47646, 62-36674, 62-10652, 62-30255, 60-93455, 60-94462, 60-174749 No. 60-175052), silazane derivatives (US Pat. No. 4,950,950), polysilanes (JP-A-2-204996), aniline copolymers (JP-A-2). No. 282263) and Japanese Unexamined Patent Publication No.
  • conductive polymer oligomers particularly thiophene oligomers.
  • the above-mentioned materials can be used as the material for the hole injection and transport layer.
  • Volphiline compounds (disclosed in JP-A-63-29556965, etc.), aromatic tertiary amines Compound and styrylamine compound (U.S. Pat. No. 4,127,412, JP-A 53-27033, 54-58445, 54-149634, 54-64299 Gazette, 55-79450 gazette, 55-144250 gazette, 56-119132 gazette, 61-295558 gazette, 61-98353 gazette, 63-295695 gazette), etc. It is preferable to use an aromatic tertiary amine compound.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection layer.
  • the aromatic amine compound of the present invention or the above-described compound is thin-filmed by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. And can be formed.
  • the thickness of the hole injection / transport layer is not particularly limited, but is usually 5 ⁇ to 5 / ⁇ .
  • the hole injecting and transporting layer may be composed of one or more of the above-mentioned materials that are preferably contained in the hole transporting zone and containing the compound of the present invention.
  • a hole injection / transport layer made of a compound different from the hole injection / transport layer may be laminated.
  • a hole injection or electron injection organic semiconductor layer provided as a layer to help Moyogu 10- 1Q SZcm more of the conductivity of the light-emitting layer.
  • Examples of the material of such an organic semiconductor layer include thiophene oligomers, conductive oligomers such as allylamin oligomers disclosed in JP-A-8-193191, and conductive properties such as allylamin dendrimers. Dendrimers and the like can be used.
  • the electron injection / transport layer is a layer that assists the injection of electrons into the light-emitting layer, and has a high electron mobility, and the adhesion improving layer has particularly good adhesion to the cathode among the electron injection / transport layers. It is a layer consisting of materials. As a material used for the electron injection and transport layer, 8-hydroxyquinoline or a metal complex of a derivative thereof, or an oxadiazole derivative is preferable.
  • metal complex of 8-hydroxyquinoline or its derivatives include metal chelate toxinoid compounds containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline). Alq can be used as an electron injection material.
  • examples of the oxadiazole derivative include an electron transfer compound represented by the following general formula.
  • Ar 1 ′, Ar 2 ′, Ar 3 ′, Ar 5 ′, Ar 6 ′, Ar 9 ′ each represent a substituted or unsubstituted aryl group, which may be the same or different from each other.
  • Ar 4 ', Ar 7 ', and Ar 8 ' represent substituted or unsubstituted arylene groups, which may be the same or different! /
  • the aryl group includes a phenyl group, a biphenyl group, an anthryl group, a perylenyl group, and a pyrenyl group.
  • the arylene group includes a phenyl group, a naphthylene group, a biphenylene group, an anthra group. -Len group, peryleneylene group, pyrenylene group and the like. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyan group.
  • Examples of the electron injection / transport layer material include the following compounds.
  • L 1 is a single bond, an arylene group having 6 to 60 carbon atoms which may have a substituent, or a substituent, and may be a heteroarylene having 3 to 60 carbon atoms. a group or a substituent, and is also good Furuoreniren group, Ar 1 is a divalent aromatic hydrocarbon group which has carbon atoms which may 6 to 60 have a substituent, Ar 2 is , An aryl group having 6 to 60 carbon atoms which may have a substituent, or a heteroaryl group having 3 to 60 carbon atoms which may have a substituent, HAr A nitrogen-containing heterocyclic derivative represented by the formula:
  • R has a hydrogen atom, an aryl group having 6 to 60 carbon atoms which may have a substituent, a pyridyl group which may have a substituent, or a substituent. May be a quinolyl group, an alkyl group having 1 to 20 carbon atoms, a haloalkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, n is an integer of 0 to 4, and R 1 is substituted.
  • Pyridyl group which may have, quinolyl group which may have a substituent, alkyl group having 1 to 20 carbon atoms, haloalkyl group having 1 to 20 carbon atoms, carbon An alkoxy group having 1 to 20 carbon atoms, and L is an arylene group having 6 to 60 carbon atoms which may have a substituent, may have a substituent, and may be a pyridylene group or a substituent. Or may be a quinolinylene group or an optionally substituted fluorenylene group, Ar 1 may have a substituent, and is an arylene group having 6 to 60 carbon atoms. , Having a substituent!
  • Ar 2 is an alkyl group having 1 to 20 carbon atoms, 1 to carbon atoms
  • R to R and Z each independently represent a hydrogen atom, a saturated or unsaturated carbonization
  • a hydrogen group, an aromatic group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group or an aryloxy group, and X, Y and Z are each independently a saturated or unsaturated carbonization.
  • Z and Z substituents may be bonded to each other to form a condensed ring.
  • N is 1.
  • n 1 represents an integer of 2 to 3, and when n is 2 or more, Z may be different. Where n is 1, X, Y and R force S methyl
  • X and Y are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkoxy group, an alkyloxy group, a hydroxy group, a substituted or An unsubstituted aryl group, a substituted or unsubstituted hetero ring, or a structure in which X and Y are combined to form a saturated or unsaturated ring.
  • Atom substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, alkoxy group, aryloxy group, perfluoroalkyl group, perfluoroalkoxy group, amino group, alkyl Kill carbo yl group, allyl carbo yl group, alkoxy carbo yl group, aryl carbonyl group, azo group, alkyl carbo loxy group, allyl carbo oxy loxy group, alkoxy carbo l loxy group, ally loxy carbo l loxy group Sulfyl group, sulfol group, sulfol group, silyl group, strong rubamoyl group, aryl group, heterocyclic group, alkyl group, alkyl group, nitro group, formyl group, nitroso group, It is a structure in which a formyloxy group, an isocyano group, a cyanate group, an isocyanate group, a
  • Q 1 and Q 2 each independently represent a ligand represented by the following general formula [7], and L represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloa Alkyl group, substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group, OR 1 (R 1 is a hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted An unsubstituted aryl group, a substituted or unsubstituted heterocyclic group.) Or — O Ga Q 3 (Q 4 ) (Q 3 and Q 4 are the same as Q 1 and Q 2 ). To express. ]
  • rings A 1 and A 2 are 6-membered aryl rings condensed with each other which may have a substituent. ]
  • This metal complex is strong as an n-type semiconductor and has a high electron injection capability. Furthermore, since the generation energy at the time of complex formation is low, the bond between the metal and the ligand of the formed metal complex is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increasing.
  • substituents of the rings A 1 and A 2 forming the ligand of the general formula [7] include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl group, A substituted or unsubstituted alkyl group such as a propyl group, sec butyl group, tert butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group or trichloromethyl group, a phenyl group, or a naphthyl group 3-methylphenyl group, 3-methoxyphenyl group, 3-fluorophenyl group, 3-trichloromethylphenyl group, 3-trifluoromethylphenyl group, 3-- trophyl- Substituted or unsubstituted aryl groups such as thiol groups, methoxy groups, n-butoxy groups, tert-
  • heterocyclic groups such as -l group.
  • substituents may be bonded to each other to form a further 6-membered aryl ring or heterocyclic ring.
  • Residues of the general formula [7] are not limited to those having quinoline residues such as 8-hydroxyquinoline and 2-methyl-8-hydroxyquinoline.
  • R to R each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, Represents a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a halogen atom, a nitro group, a cyano group or a hydroxyl group;
  • These electron transfer compounds are preferably those capable of forming a thin film.
  • the electron injection / transport layer contains a reducing dopant.
  • a reducing dopant may be contained in a region where electrons are preferably transported or in an interface region between the cathode and the organic thin film layer.
  • the reducing dopant is defined as a substance capable of reducing an electron transporting compound. Therefore, various materials can be used as long as they have a certain reducibility, for example, alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earths.
  • a group force of at least one selected substance can be preferably used.
  • Preferable examples of reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work Function: 1. 95 eV) force at least one alkali metal selected from the group, Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function) : 2. 52 eV) Force Group force selected At least one alkaline earth metal selected, with a work function of 2.9 eV or less is particularly preferred.
  • a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs.
  • alkali metals can improve the luminance of light emission and increase the lifetime of organic EL devices by adding a relatively small amount to the electron injection region, which has a particularly high reducing ability.
  • a reducing dopant having a work function of 2.9 eV or less a combination of two or more alkali metals is also preferable.
  • a combination containing Cs, for example, Cs and Na, Cs and K, Cs and A combination of Rb or Cs, Na and ⁇ is preferred.
  • an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer.
  • an insulator an alkali metal chalcogenide, an alkaline earth metal chalcogenide, an alkali metal halide and an alkaline earth metal halide are used, and at least one metal compound selected is used. U prefer.
  • the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable because the electron injection property can be further improved.
  • preferred alkali metal chalcogenides include, for example, Li 0, LiO, Na S, Na Se, and NaO.
  • preferable alkaline earth metal chalcogenides include CaO, BaO 2, SrO, BeO, BaS, and CaSe.
  • Preferred alkali metal halides include, for example, LiF, NaF, KF, LiCl, KC1, and NaCl.
  • preferable alkaline earth metal halides include, for example, CaF, BaF, SrF,
  • Examples include fluorides such as MgF and BeF, and halides other than fluorides.
  • the electron injection layer As a semiconductor constituting the electron injection layer, at least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn is used. One kind or a combination of two or more kinds of oxides, nitrides, or oxynitrides are included.
  • the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the above-mentioned alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides.
  • the cathode in order to inject electrons into the electron injecting / transporting layer or the light emitting layer, a material having a small work function (4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof is used.
  • electrode materials include sodium, sodium 'potassium alloy, magnesium, lithium, magnesium' silver alloy, aluminum / acid aluminum, aluminum 'lithium alloy, indium, and rare earth metals. It is done.
  • This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance for the light emission of the cathode is preferably larger than 10%.
  • the sheet resistance as a cathode is several hundred ⁇ or less.
  • the preferred film thickness is usually ⁇ ! ⁇ 1 m, preferably 50 to 200 nm.
  • organic EL devices apply an electric field to ultra-thin films, pixel defects are likely to occur due to leaks and shorts. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
  • Examples of the material used for the insulating layer include acid aluminum, lithium fluoride, lithium oxide, fluorescesium, acid cesium, acid magnesium, fluoric magnesium, acid calcium, calcium fluoride, Examples thereof include aluminum nitride, titanium oxide, silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide, and a mixture or laminate thereof may be used.
  • anode By forming the anode, the light-emitting layer, the hole injection 'transport layer, and the electron injection' transport layer as necessary, and the cathode by forming the anode and the light-emitting layer, if necessary, by the materials and formation methods exemplified above, and further forming the cathode
  • An element can be manufactured.
  • An organic EL element can also be fabricated from the cathode to the anode in the reverse order.
  • an organic EL device having a configuration in which an anode, a hole injection layer, a Z light emitting layer, a Z electron injection layer, and a Z cathode are sequentially provided on a translucent substrate will be described.
  • a thin film made of an anode material is formed on a suitable translucent substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, to produce an anode.
  • a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like, but a homogeneous film can be obtained immediately and pinholes are generated. It is preferable to form by a vacuum vapor deposition method.
  • the deposition conditions vary depending on the compound used (material of the hole injection layer), the crystal structure and recombination structure of the target hole injection layer, etc.
  • the formation of the light-emitting layer in which the light-emitting layer is provided on the hole injection layer is performed using a desired organic light-emitting material. It can be formed by thinning an organic light emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting, but a homogeneous film can be obtained and pinholes are not easily generated. From the point of view, etc., it is preferable to form by vacuum evaporation method. When the light emitting layer is formed by vacuum deposition, the deposition conditions vary depending on the compound used, but can generally be selected from the same condition range as the hole injection layer.
  • an electron injection layer is provided on the light emitting layer.
  • the hole injection layer and the light emitting layer it is preferable to form by a vacuum evaporation method because it is necessary to obtain a homogeneous film.
  • the vapor deposition conditions can be selected from the same condition ranges as those for the hole injection layer and the light emitting layer.
  • the aromatic amine compound of the present invention varies depending on which layer in the emission band or the hole transport band, but can be co-deposited with other materials when using the vacuum deposition method. . Moreover, when using a spin coat method, it can be included by mixing with other materials.
  • a cathode can be stacked to obtain an organic EL device.
  • the cathode also has a metallic force, and vapor deposition and sputtering can be used. Force In order to protect the underlying organic layer from damages during film formation, vacuum deposition is preferred. It is preferable to fabricate this organic EL device from the anode to the cathode consistently by a single vacuum.
  • the method for forming each layer of the organic EL device of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the aromatic amine compound of the present invention used in the organic EL device of the present invention is prepared by a vacuum deposition method, a molecular beam deposition method (MBE method), a dating method of a solution dissolved in a solvent, or a spin. It can be formed by a known method such as a coating method, a casting method, a bar coating method, a roll coating method or the like.
  • each organic layer of the organic EL device of the present invention is not particularly limited, but in general, if the film thickness is too thin, defects such as pinholes are generated, and conversely, if it is too thick, a high applied voltage is required and efficiency is increased. Usually, the range of several nm to 1 ⁇ m is preferable because of worsening.
  • a direct current voltage When a direct current voltage is applied to the organic EL element, light emission can be observed by applying a voltage of 5 to 40 V with the anode set to + and the cathode set to one polarity. Also, apply a voltage with the opposite polarity However, no current flows and no light emission occurs. Furthermore, when AC voltage is applied, uniform light emission is observed only when the anode is + and the cathode is of the same polarity.
  • the alternating current waveform to be applied may be arbitrary.
  • the reaction vessel was placed in a water bath, and 93.8 g of 1,5-dibromopentane was charged while stirring.
  • intermediate (1 D) 4.2 g, arrine 0.98 g, tris (benzylideneaceton) dipalladium (0) 80 mg, t-butoxy sodium 1.2 g in toluene 40 ml solution in tri-1-butyl
  • a 0.66 wt% toluene solution of phosphine 43 1 was added and stirred at room temperature for 5 hours.
  • the mixture was filtered through celite, and the filtrate was extracted with toluene. This was concentrated under reduced pressure, and the resulting crude product was purified by column to obtain 4.0 g of a pale yellow powder of intermediate (1 E) (yield 93%).
  • intermediate (2-C) 5.0 g, 2-bromo-9,9-dimethylfluorene 4.4 g, tris (benzylideneacetone) dipalladium (0) 0.15 g, t-butoxy sodium 2.2 g toluene 50 ml
  • tri- 1-butylphosphine 0.66 wt% toluene solution 781
  • the mixture was stirred at room temperature for 5 hours.
  • the mixture was filtered through celite, and the filtrate was extracted with toluene. This was concentrated under reduced pressure, and the resulting crude product was purified by column to obtain 5.2 g of a light yellow powder of intermediate (2-D) (yield 71%).
  • the intermediate (3- B) 4.5g, DMSO20ml, benzyltri Echiruanmo - put Umukuroraido 80mg and 50 weight 0/0 sodium hydroxide solution 3 ml.
  • the reaction vessel was placed in a water bath, and 3.5 g of 1,4-dibromobutane was added while stirring. After 5 hours of reaction, water was added and filtered. The obtained solid was washed with methanol to obtain 4.7 g of a light yellow solid intermediate (3-C) (yield 88%).
  • intermediate (3-C) 4.7g, di-l-amine 2.9g, tris (benzylideneacetone) dipalladium (0) 0.13g, t-butoxy sodium 1.9g in toluene 30ml solution in tri-1-butylphosphine
  • a 0.66 wt% toluene solution of 69 ⁇ 1 was added and stirred at room temperature for 5 hours.
  • the mixture was filtered through celite, and the filtrate was extracted with toluene. This was concentrated under reduced pressure, and the resulting crude product was purified by column to obtain 4.0 g of a light yellow powder of intermediate (3-D) (yield 67%).
  • intermediate (5-B) 5.0 g, vanillin 1.3 g, tris (benzylideneacetone) dipalladium (0) 0.11 g, t-butoxy sodium 1.6 g in toluene 40 ml solution with tri- 1-butylphosphine 0.66
  • a weight% toluene solution 58 1 was added and the mixture was heated to reflux for 5 hours.
  • the mixture was filtered through celite, and the filtrate was extracted with toluene. This was concentrated under reduced pressure, and the resulting crude product was purified by column to obtain 4.2 g of a pale yellow powder of intermediate (5-C) (yield 74%).
  • intermediate (5-D) 5.0g, 4-bromo-4'-chlorobiphenyl 3.3g, tris (benzylideneacetone) dipalladium (0) 0.11g, t-butoxy sodium 1.7g in 50ml of toluene 60 ⁇ 1 of a 0.66 wt% toluene solution of tri-1-butylphosphine was added to the flask and stirred at room temperature for 5 hours. The mixture was filtered through celite, and the filtrate was extracted with toluene. This was concentrated under reduced pressure, and the resulting crude product was purified by column to obtain 4.8 g of a pale yellow powder of intermediate (5-—) (yield 74%).
  • intermediate (5-C) 4.0g, intermediate (5-E) 3.7g, tris (benzylideneacetone) dipalladium (0) 65mg, t-butoxy sodium 0.95g in toluene 40ml solution Tri-1 -A 0.66% by weight toluene solution of butylphosphine 35 1 was added and the mixture was heated to reflux for 5 hours. The mixture was filtered through celite, and the filtrate was extracted with toluene. This was concentrated under reduced pressure, and the resulting crude product was purified by column to obtain 4.1 g of a pale yellow powder of Compound 5 (yield 60%). As a result of mass spectral analysis, this was the target product, and its molecular weight was 964.45, and m / e 964.
  • a glass substrate with a transparent electrode having a thickness of 25 mm X 75 mm X 1.1 mm was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • a glass substrate with a transparent electrode line after cleaning is mounted on the substrate holder of a vacuum evaporation system, and a compound with a film thickness of 60 nm is first formed on the surface on which the transparent electrode line is formed so as to cover the transparent electrode.
  • One film was formed by resistance heating vapor deposition as a hole injection material. This Compound 1 film functions as a hole injection layer.
  • NPD film 4, bis [N- (1-naphthyl) -N phenolamino] bilayer film
  • AN-1 4 1 (1 naphthyl) phenol] anthracene
  • the following amine compound D-1 having a styryl group was vapor-deposited at a weight ratio of 2:40 as AN-1.
  • This film functions as a light emitting layer.
  • An Alq film having a thickness of 10 nm was formed on this film.
  • This Alq film functions as an electron injection layer.
  • Li Li source: manufactured by SAES Getter
  • Alq Alq
  • Li film thickness lOnm Li film (film thickness lOnm) was formed as an electron injection layer (cathode).
  • metal A1 was deposited to form a metal cathode, and an organic EL device was fabricated.
  • Table 1 shows the results of measuring the current density and luminous efficiency when the device was energized at a voltage of 13 (V), and the emission color. Also shows the half-life when the device was driven at a constant current at an initial luminance LOOOcdZm 2 (time) in Table 1.
  • Example 2 an organic EL device was produced in the same manner except that the compound shown in Table 1 was used instead of Compound 1 as the hole injecting material for forming the hole injecting layer.
  • Table 1 shows the results of measuring the current density and luminous efficiency when the device was energized at a voltage of 13 (V), and the emission color. Also shows the half-life when the device was driven at a constant current at an initial luminance LOOOcdZm 2 (time) in Table 1.
  • Example 1 instead of Compound 1 as a hole injection material for forming a hole injection layer, N, N, one bis (N, N, one diphenyl, one 4-aminophenol) N , N Diphenyl —4, 4, —Diamino—1, 1, —Biphenyl membrane (TPD232 membrane) (Comparative Example 1) and the following compound (A) (Comparative Example 2) were used in the same manner. An organic EL device was fabricated.
  • Table 1 shows the results of measuring the current density and luminous efficiency when the device was energized at a voltage of 13 (V), and the emission color. Also shows the half-life when the device was driven at a constant current at an initial luminance LOOOcdZm 2 (time) in Table 1.
  • an organic EL device using the compound of the present invention for the hole injection layer has a long lifetime and high emission efficiency because of its high hole injection and transportability.
  • Tg of TPD232 is 111 ° C and Tg of compound (A) is 117 ° C, whereas compounds 1, 2, 5 and 6 to 9 of the present invention have Tg of 130 ° C or higher and heat. Stable.
  • Example 1 TPD232 was used instead of Compound 1 as the hole injection material for forming the hole injection layer, and Compound 3 was used instead of NPD as the hole transport material for forming the hole transport layer.
  • An organic EL device was fabricated in the same manner except that.
  • Table 2 shows the results of measuring the current density and luminous efficiency when the device was energized at a voltage of 13 (V), and the emission color. Also shows the half-life when the device was driven at a constant current at an initial luminance LOOOcdZm 2 (time) in Table 2.
  • Example 9 an organic EL device was produced in the same manner except that Compound 4 was used instead of Compound 3 as the hole transport material for forming the hole transport layer.
  • Table 2 shows the results of measuring the current density and luminous efficiency when the device was energized at a voltage of 13 (V), and the emission color. Also shows the half-life when the device was driven at a constant current at an initial luminance LOOOcdZm 2 (time) in Table 2.
  • Example 9 NPD (Comparative Example 3), the following compound (B) (Comparative Example 4), and the following compound (C) (instead of Compound 3 as a hole transporting material for forming a hole transporting layer) Using Comparative Example 5) An organic EL device was fabricated in the same manner except that.
  • Table 2 shows the results of measuring the current density and luminous efficiency when the device was energized at a voltage of 13 (V), and the emission color. Also shows the half-life when the device was driven at a constant current at an initial luminance LOOOcdZm 2 (time) in Table 2.
  • the organic EL devices of Examples 9 to 10 using the hole transport layer of the compound of the present invention have a significantly longer lifetime than Comparative Example 4 where hole injection and transport properties are high. Long.
  • the Tg of NPD is 95 ° C and the Tg of compound (B) is 120 ° C
  • the Tg of compound 3 of the present invention is 157 ° C
  • the Tg of compound 4 is 158 ° C. Stable.
  • a glass substrate with a transparent electrode having a thickness of 25 mm X 75 mm X 1.1 mm was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • a glass substrate with a transparent electrode line after cleaning is mounted on the substrate holder of a vacuum evaporation system.
  • a TPD232 film with a thickness of 60 nm is formed so as to cover the transparent electrode on the surface where the transparent electrode line is formed.
  • This TPD232 film functions as a hole injection layer.
  • Compound 3 having a thickness of 20 nm was formed on the TPD232 film. This This film functions as a hole transport layer.
  • CBP 4,4′-bis (carbazolyl) biphenyl
  • CBP 4,4′-bis (carbazolyl) biphenyl
  • Ir (ppy) 3 tris (2-phenolidyne) iridium
  • BAlq film (1, 1, 1 bisphenol) -4-olato) bis (2-methyl-8-quinolinolato) aluminum
  • This BAlq film functions as a hole barrier layer. Further, an Alq film having a thickness of 40 nm was formed on this film. This Alq film functions as an electron injection layer. Thereafter, LiF, which is a halogenated alkali metal, was deposited to a thickness of 0.2 nm, and then aluminum was deposited to a thickness of 150 nm. This AlZLiF works as a negative electrode. In this way, an organic EL device was produced.
  • the compound of the present invention can also be used as a material for a hole transport layer of a phosphorescent light emitting device.
  • a glass substrate with a transparent electrode having a thickness of 25 mm X 75 mm X 1.1 mm was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • a polyethylene oxyphene phenopolystyrene sulphonic acid (PEDOT / PSS) used for the hole injection layer by spin coating is formed to a film thickness of lOOnm.
  • a hole transporting layer was formed on PEDOTZPSS by spin coating using a toluene solution. The film thickness at this time was lOnm.
  • the above AN-1 was deposited by resistance heating vapor deposition with a film thickness of 30 nm.
  • an amine compound D-1 having a styryl group was deposited as a light emitting molecule at a weight ratio of 2:40 with respect to AN-1.
  • This film functions as a light emitting layer.
  • An Alq film having a thickness of lOnm was formed on this film.
  • This A The lq film functions as an electron injection layer.
  • Li Li source: manufactured by Susgetter
  • Alq were vapor-deposited to form an Alq: Li film as an electron injection layer (cathode).
  • a metal cathode is formed by depositing metal A1 on this Alq: Li film to form an organic EL device.
  • the obtained device has a DC voltage of 6. OV, a current of lOmAZcm 2 flows, and emits blue light with a luminance of 280 cd / m 2 . Was observed.
  • the luminous efficiency was 2.8 cdZA.
  • the organic EL device using the aromatic amine compound of the present invention exhibits various emission hues and high heat resistance.
  • the aromatic amine compound of the present invention is hole-injected.
  • the organic EL device of the present invention is useful as a light source such as a flat light emitter of a wall-mounted television and a knock light of a display, which are highly practical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

芳香族アミンィ匕合物及びそれを用いた有機エレクト口ルミネッセンス素子 技術分野
[0001] 本発明は、芳香族アミンィ匕合物及びそれを用いた有機エレクト口ルミネッセンス素 子に関し、特に、種々の発光色相を呈し、耐熱性が高ぐ長寿命で、高発光輝度及 び高発光効率な有機エレクト口ルミネッセンス素子及びそれを実現する新規な芳香 族ァミン化合物に関するものである。
背景技術
[0002] 有機物質を使用した有機エレクト口ルミネッセンス (EL)素子は、壁掛テレビの平面 発光体やディスプレイのバックライト等の光源として使用され、盛んに開発が行われ ている。有機物質の電界発光現象は、 1963年にポープ (Pope)らによってアントラセ ン単結晶で観測され (非特許文献 1)、 1965年にヘルフリツヒ (Helfinch)とシュナイ ダー(Schneider)は注入効率のよい溶液電極系を用いることにより比較的強い注入 型 ELの観測に成功している (非特許文献 2)。それ以来報告されている様に、共役の 有機ホスト物質と縮合ベンゼン環を持つ共役の有機活性化剤とで有機発光性物質 を形成した研究が行われ、ナフタレン、アントラセン、フエナントレン、テトラセン、ピレ ン、ベンゾピレン、タリセン、ピセン、力ノレノ ゾ一ノレ、フノレ才レン、ビフエ二ノレ、ターフェ -ル、トリフエ-レンオキサイド、ジハロビフヱ-ル、トランス一スチルベン及び 1, 4 ジフエニルブタジエン等が有機ホスト物質の例として示され、アントラセン、テトラセン 及びペンタセン等が活性化剤の例として挙げられた。しかし、これらの有機発光性物 質はいずれも: L mを越える厚さを持つ単一層として存在し、発光には高電界が必 要であった。このため、真空蒸着法による薄膜素子の研究が進められた (例えば、非 特許文献 3)。しかし、薄膜ィ匕は駆動電圧の低減には有効であつたが、実用レベルの 高輝度の素子を得るには至らな力つた。そこでタン (Tang)らは、陽極と陰極との間に 2つの極めて薄い膜 (正孔輸送層と発光層)を真空蒸着で積層した有機 EL素子を考 案し、低い駆動電圧で高輝度を実現した (非特許文献 4又は特許文献 1)。その後、 正孔輸送層と発光層に用いる有機化合物の開発が十数年間進められた結果、実用 化レベルの寿命と発光効率が達成された。その結果、有機 EL素子は、カーステレオ 、携帯電話の表示部など力 実用化が開始されている。
し力しながら、実用面において、発光輝度、長時間使用に対する経時劣化の耐久 性などが十分ではなぐさらなる向上が求められている。
これらを解決する手段として、正孔注入輸送材料としてガラス転移温度 (Tg)を改良 するためにオリゴマー(3量体, 4量体)ァミンが用いられている。例えば、特許文献 2 に下記一般式 (A)で表される化合物が開示されて 、る。
[化 1]
Figure imgf000004_0001
(式中、 R、 R、 Rは同一でも異なっていても良ぐ水素原子、低級アルキル基、低
1 2 3
級アルコキシ基を表し、 Rは水素原子、低級アルキル基、低級アルコキシ基、または
4
塩素原子を表す。
Aは、
Figure imgf000004_0002
で表され、 Rは水素原子、低級アルキル基、低級アルコキシ基、塩素原子を表す。 )
5
特許文献 3には、下記一般式 (B)で表される化合物が開示されている。
[化 3]
Figure imgf000005_0001
(B)
[0005] 特許文献 4には、下記一般式 (C)で表される化合物が開示されている。
[化 4]
Figure imgf000005_0002
Figure imgf000005_0003
のいずれかを表し、 φはフエ-レン基を表し、 R 、R 、R及び R は、それぞれジァ
01 02 03 04
リールァミノフエ-レン基、 r 、r 、r 及び r は、それぞれ。〜 5の整数であり、 r +r
01 02 03 04 01 0
+r +r は 1以上である。 R 、R 、R 、R 、R 、R及び R は、それぞれ、置換ま
03 04 11 12 13 14 15 16 17
たは非置換のァリール基を表す。 )
[0006] 特許文献 5には、下記一般式 (D)で表される化合物が開示されている。
Figure imgf000006_0001
(式中、 RU〜R1Sは、それぞれ水素原子、低級アルキル基および低級アルコキシ基よ りなる群力 それぞれ独立して選ばれた基である)
さらに、特許文献 6には、下記一般式 (E)で表される化合物が開示されている。
[化 6]
Figure imgf000006_0002
( E )
(Ar1〜Ar6は、水素原子、炭素数 1〜6のアルキル基またはアルコキシ基、核炭素数 6〜24のァリール基、もしくはスチリル基によって置換されて!、てもよ!/、核炭素数 6〜 24のァリール基である。 Xは連結基であり、単結合、核炭素数 6〜24のァリーレン、 炭素数 1〜6のアルキレン、ジフエ-ルメチレン、エーテル結合、チォエーテル結合、 置換もしくは無置換のビ-ル結合または芳香族へテロ環である。 R1、 R2は、炭素数 1 〜6のアルキル基、もしくはアルコキシ基、または水素原子であって、互いに結合して 置換もしくは無置換の五員環または六員環を形成してもよ 、。 )
し力しながら、特許文献 2〜6記載の化合物では十分な正孔注入性が得られて 、な かった。 また、正孔注入性を向上させる手段としてフルォレニル基を導入したィ匕合物が用い られてきた。例えば、特許文献 7に下記一般式 (F)で示される化合物を正孔輸送材 料として用いた発光素子が開示されている。
[化 7]
Figure imgf000007_0001
(式中、 R11はアルキル基又はァラルキル基を示し、 R12、 Rl、 R"及び R15は水素原子 、アルキル基、アルコキシ基又はハロゲン原子を示す。 )
この化合物は、 Tgが 100°C以下でありこれを用いた素子は短寿命であり、耐熱性 がなく実用化することはできな力つた。
特許文献 8では一般式 (F)を改良した下記化合物 (G)で示される化合物を正孔輸 送材料として用いた発光素子が開示されている。
[化 8]
Figure imgf000007_0002
(G) この化合物はガラス転移温度の向上、正孔注入性の向上が認められる力 依然寿 命が短 、と 、う問題点があった。
さらに、特許文献 9には、下記一般式 (H)で表される化合物が開示されている。
[化 9]
Figure imgf000008_0001
この化合物においても、正孔注入性の向上は認められる力 さらなるガラス転移温 度の向上、長寿命化が求められていた。
[0011] 特許文献 1:米国特許 4356429号明細書
特許文献 2:特許第 3220950号公報
特許文献 3 :特開 2000— 86595号公報
特許文献 4:特開 2000— 156290号公報
特許文献 5:特開平 9 - 301934号公報
特許文献 6:特開 2000 - 309566号公報
特許文献 7:特開平 5 - 25473号公報
特許文献 8:特開平 11 35532公報
特許文献 9:特開 2000 - 80433号公報
非特許文献 1 :J. Chem. Phys. 38 (1963) 2042
非特許文献 2 : Phys. Rev. Lett. 14 (1965) 229
非特許文献 3 :ThinSolidFilms94 (1982) 171
非特許文献 4:Appl. Phys. Lett. 51 (1987) 913
発明の開示
発明が解決しょうとする課題
[0012] 本発明は、前記の課題を解決するためになされたもので、種々の発光色相を呈し、 耐熱性が高ぐ長寿命で、高発光輝度及び高発光効率な有機 EL素子及びそれを実 現する新規な芳香族ァミン化合物を提供することを目的とする。
課題を解決するための手段
[0013] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、少なくとも一つ のフルオレン構造を有し下記一般式(1)で表される芳香族アミンィ匕合物が前記の目 的を達成することを見出し本発明を完成したものである。
すなわち、本発明は、下記一般式 (1)で表される芳香族アミンィ匕合物を提供するも のである。
[0014] [化 10]
Figure imgf000009_0001
( 1 )
(式中、 Ar -Ar6は、それぞれ独立に、置換もしくは無置換の核炭素数 5〜60のァリ ール基、又は置換もしくは無置換の核炭素数 3〜50のへテロアリール基である。
L1〜L3は、それぞれ独立に、置換もしくは無置換の核炭素数 5〜60のァリーレン 基、又は置換もしくは無置換の核炭素数 3〜50のへテロアリーレン基である。
ただし、一般式(1)は、下記 (i)及び Z又は (ii)の条件を満たす。
(i)八 〜八 のうち少なくとも一つが置換もしくは無置換のフルォレニル含有基。
(ii) L2及び/又は L3が置換もしくは無置換のフルォレニレン含有基。 )
[0015] また、本発明は、陰極と陽極間に少なくとも発光層を有する一層又は複数層からな る有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少なくとも一 層が、前記芳香族アミンィ匕合物を単独もしくは混合物の成分として含有する有機 EL 素子を提供するものである。
発明の効果
[0016] 本発明の芳香族アミンィ匕合物を用いた有機 EL素子は、種々の発光色相を呈し、耐 熱性が高ぐ特に、本発明の芳香族ァミン化合物を正孔注入 ·輸送性が材料として用 いると、長寿命で、高発光輝度及び高発光効率である。
発明を実施するための最良の形態
[0017] 本発明の芳香族アミンィ匕合物は、下記一般式(1)で表される芳香族アミンィ匕合物 である,
[化 11]
Figure imgf000010_0001
( 1 )
[0018] 一般式(1)において、 Ar^Ar6は、それぞれ独立に、置換もしくは無置換の核炭 素数 5〜60のァリール基、又は置換もしくは無置換の核炭素数 3〜50のへテロァリ ール基である。
八 〜八 のァリール基としては、核炭素数 6〜20が好ましぐ例えば、フルォレニル 基、フルォレニル含有基、フ -ル基、ビフヱ-ル基、ターフ -ル基、ナフチル基、 アントリル基、フルオランテュル基等が挙げられる。
八 〜八!:6のへテロァリール基としては、核炭素数 6〜20が好ましぐ例えば、フラ- ル基、チォフ -ル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリァゾリル基、ォキ サジァゾリル基、ピリジニル基、ピラジュル基、トリアジニル基、ピリミジニル基、ベンゾ フラ-ル基、ジベンゾフラ -ル基、ベンゾチオフヱ-ル基、ジベンゾチオフヱ-ル基、 カルバゾリル基、キノキサリニル基、キノリニル基、ベンズイミダゾリル基、イミダゾピリジ ニル基等が挙げられる。
[0019] 一般式(1)において、 L1〜L3は、それぞれ独立に、置換もしくは無置換の核炭素 数 5〜60のァリーレン基、又は置換もしくは無置換の核炭素数 3〜50のへテロアリー レン基である。
L1〜L3のァリーレン基としては、核炭素数 6〜20が好ましぐ例えば、フルォレユレ ン基、フルォレ-レン含有基、フエ-レン基、フエ-レン基、ビフエ-レン基、ナフチレ ン基、アントリレン基、クリセ-レン基、フエナントリレン基、ビナフチレン基、ターフェ二 レン基、クォーターフエ-レン基、ジフエ-ルナフチレン基、フエ-ルナフチレン基、ベ ンゾフルォレ-レン基、ジベンゾフルォレ-レン基等が挙げられる。
〜 のへテロアリーレン基としては、核炭素数 6〜20が好ましぐ例えば、フラ- レン基、チォフエ-レン基、ピロリレン基、イミダゾリレン基、ビラゾリレン基、トリアゾリレ ン基、ォキサジァゾリレン基、ピリジ-レン基、ピラジ二レン基、トリアジ-レン基、ピリミ ジニレン基、ベンゾフラ二レン基、ジベンゾフラ二レン基、ベンゾチ才フエ二レン基、ジ ベンゾチォフエ-レン基、力ルバゾリレン基、キノキサリニレン基、キノリニレン基、ベン ズイミダゾリレン基、イミダゾピリジ-レン基等が挙げられる。
前記八 〜八 及び L1〜L3の置換基としては、例えば、アルキル基 (好ましくは炭素 数 1〜20、より好ましくは炭素数 1〜12、特に好ましくは炭素数 1〜8であり、例えばメ チノレ、ェチノレ、 iso—プロピノレ、 tert—ブチノレ、 n—ォクチノレ、 n—デシノレ、 n—へキサ デシル、シクロプロピル、シクロペンチル、シクロへキシル等が挙げられる。)、ァルケ -ル基 (好ましくは炭素数 2〜20、より好ましくは炭素数 2〜12、特に好ましくは炭素 数 2〜8であり、例えばビュル、ァリル、 2—ブテュル、 3—ペンテ-ル等が挙げられる 。)、アルキニル基 (好ましくは炭素数 2〜20、より好ましくは炭素数 2〜12、特に好ま しくは炭素数 2〜8であり、例えばプロパルギル、 3—ペンチニル等が挙げられる。)、 アミノ基 (好ましくは炭素数 0〜20、より好ましくは炭素数 0〜12、特に好ましくは炭素 数 0〜6であり、例えばアミ入メチルァミノ、ジメチルアミ入ジェチルアミ入ジフエ- ルアミ入ジベンジルァミノ等が挙げられる。)、アルコキシ基 (好ましくは炭素数 1〜2 0、より好ましくは炭素数 1〜12、特に好ましくは炭素数 1〜8であり、例えばメトキシ、 エトキシ、ブトキシ等が挙げられる。)、ァリールォキシ基 (好ましくは炭素数 6〜20、よ り好ましくは炭素数 6〜16、特に好ましくは炭素数 6〜 12であり、例えばフ 二ルォキ シ、 2—ナフチルォキシ等が挙げられる。)、ァシル基 (好ましくは炭素数 1〜20、より 好ましくは炭素数 1〜16、特に好ましくは炭素数 1〜12であり、例えばァセチル、ベ ンゾィル、ホルミル、ビバロイル等が挙げられる。)、アルコキシカルボ-ル基 (好ましく は炭素数 2〜20、より好ましくは炭素数 2〜16、特に好ましくは炭素数 2〜 12であり、 例えばメトキシカルボ-ル、エトキシカルボニル等が挙げられる。)、ァリールォキシ力 ルポニル基 (好ましくは炭素数 7〜20、より好ましくは炭素数 7〜16、特に好ましくは 炭素数 7〜10であり、例えばフエ-ルォキシカルボ-ルなどが挙げられる。)、ァシル ォキシ基 (好ましくは炭素数 2〜20、より好ましくは炭素数 2〜16、特に好ましくは炭 素数 2〜10であり、例えばァセトキシ、ベンゾィルォキシ等が挙げられる。)、ァシルァ ミノ基 (好ましくは炭素数 2〜20、より好ましくは炭素数 2〜16、特に好ましくは炭素数 2〜10であり、例えばァセチルアミ入ベンゾィルァミノ等が挙げられる。)、アルコキシ カルボニルァミノ基 (好ましくは炭素数 2〜20、より好ましくは炭素数 2〜16、特に好 ましくは炭素数 2〜12であり、例えばメトキシカルボニルァミノ等が挙げられる。)、ァリ ールォキシカルボ-ルァミノ基 (好ましくは炭素数 7〜20、より好ましくは炭素数 7〜1 6、特に好ましくは炭素数 7〜 12であり、例えばフエニルォキシカルボニルァミノ等が 挙げられる。)、スルホ -ルァミノ基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1 〜16、特に好ましくは炭素数 1〜12であり、例えばメタンスルホ-ルアミ入ベンゼン スルホニルァミノ等が挙げられる。)、スルファモイル基 (好ましくは炭素数 0〜20、より 好ましくは炭素数 0〜16、特に好ましくは炭素数 0〜 12であり、例えばスルファモイル 、メチルスルファモイル、ジメチルスルファモイル、フエ-ルスルファモイル等が挙げら れる。)、力ルバモイル基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1〜16、特 に好ましくは炭素数 1〜12であり、例えば力ルバモイル、メチルカルバモイル、ジェチ ルカルバモイル、フエ-ルカルバモイル等が挙げられる。)、アルキルチオ基 (好ましく は炭素数 1〜20、より好ましくは炭素数 1〜16、特に好ましくは炭素数 1〜12であり、 例えばメチルチオ、ェチルチオ等が挙げられる。)、ァリールチオ基 (好ましくは炭素 数 6〜20、より好ましくは炭素数 6〜16、特に好ましくは炭素数 6〜 12であり、例えば フエ二ルチオ等が挙げられる。)、スルホニル基 (好ましくは炭素数 1〜20、より好まし くは炭素数 1〜16、特に好ましくは炭素数 1〜12であり、例えばメシル、トシル等が挙 げられる。)、スルフィニル基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1〜16、 特に好ましくは炭素数 1〜12であり、例えばメタンスルフィエル、ベンゼンスルフィ- ル等が挙げられる。)、ウレイド基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1〜 16、特に好ましくは炭素数 1〜12であり、例えばウレイド、メチルウレイド、フ -ルゥ レイド等が挙げられる。)、リン酸アミド基 (好ましくは炭素数 1〜20、より好ましくは炭 素数 1〜16、特に好ましくは炭素数 1〜12であり、例えばジェチルリン酸アミド、フエ -ルリン酸アミド等が挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子 (例え ばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シァノ基、スルホ基、カルボキシ ル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基( 好ましくは炭素数 1〜30、より好ましくは炭素数 1〜12であり、ヘテロ原子としては、 例えば窒素原子、酸素原子、硫黄原子を含むものであり、例えばイミダゾリル、ピリジ ル、キノリル、フリル、チェニル、ピペリジル、モルホリ入ベンゾォキサゾリル、ベンゾィ ミダゾリル、ベンゾチアゾリル、カルバゾリル等が挙げられる。)、シリル基 (好ましくは 炭素数 3〜40、より好ましくは炭素数 3〜30、特に好ましくは炭素数 3〜24であり、例 えばトリメチルシリル、トリフエニルシリル等が挙げられる。)等が挙げられる。
[0021] これらの置換基はさらに置換されてもよい。また置換基が二つ以上ある場合は、同 一でも異なっていてもよい。また、可能な場合には互いに連結して環状構造を形成し ていてもよい。この環状構造としては、例えば、シクロブタン、シクロペンタン、シクロへ キサン、ァダマンタン、ノルボルナン等の炭素数 4〜 12のシクロアルカン、シクロブテ ン、シクロペンテン、シクロへキセン、シクロヘプテン、シクロオタテン等の炭素数 4〜1 2のシクロアノレケン、シクロへキサジェン、シクロへブタジエン、シクロォクタジェン等 の炭素数 6〜 12のシクロアルカジエン、ベンゼン、ナフタレン、フエナントレン、アント ラセン、ピレン、タリセン、ァセナフチレン等の炭素数 6〜50の芳香族環などが挙げら れる。
[0022] 本発明の一般式(1)で表される芳香族アミンィ匕合物は、下記 (i)及び Z又は (ii)の 条件を満たす。
(i)八 〜八 のうち少なくとも一つが置換もしくは無置換のフルォレニル含有基。
(ii) L2及び/又は L3が置換もしくは無置換のフルォレニレン含有基。
[0023] 前記一般式(1)において、八 〜八 のうち少なくとも一つが下記一般式(1 a)で 表されるフルォレニル含有基であると好まし 、。
[化 12]
Figure imgf000013_0001
[0024] (R1及び は、それぞれ独立に、水素原子又は置換基であり、 R1 R2が結合して環 状構造を形成してもよい。
R3及び R4は、それぞれ独立に、置換基であり、 aは 0〜3の整数、 bは 0〜4の整数 である。 R3が複数の場合には R3同士が結合して環状構造を形成してもよぐ R4が複 数の場合には R4同士が結合して環状構造を形成してもよ 、。
L4は、単結合、置換もしくは無置換の核炭素数 5〜60のァリーレン基、又は置換も しくは無置換の核炭素数 3〜50のへテロアリーレン基である。 )
R1〜R4の示す置換基及び形成してもよ 、環状構造の例としては、前記一般式( 1) において八 〜八 及び L1〜L3の置換基で挙げたものと同様の例が挙げられる。
L4のァリーレン基及びへテロアリーレン基の例としては、前記一般式(1)の L1〜L3 で挙げたものと同様の例が挙げられ、置換基も同様の例が挙げられる。
[0025] 前記一般式(1 a)で表されるフルォレニル含有基が下記一般式(1 b)で表され るフルォレニル含有基であると好まし 、。
[化 13]
Figure imgf000014_0001
( l - b )
[0026] (R9は環状構造を形成する原子団であり、 R3、 R4、 a、 b及び L4は前記と同じである。
)
R9は環状構造を形成する原子団としては、例えば、エチレン基、プロピレン基、 n- ブチレン基、 n—ペンチレン基、 n—へキシレン基等のアルキレン基、及びこれらのァ ルキレン基の炭素原子の少なくとも 1つが窒素原子又は酸素原子等に置き換わり複 素環を形成する基等が挙げられ、置換基を有していてもよぐさらに、置換基同士で 結合して飽和又は不飽和の環状構造を形成してもよ ヽ。この置換基及び環状構造の 例としては、前記と同様のものが挙げられる。
[0027] また、一般式(1 b)で表されるフルォレニル含有基の例を以下に示す。
Figure imgf000015_0001
前記一般式(1)において、 L2及び/又は L3が下記一般式(2— a)で表されるフル ォレニレン含有基であると好まし 、。
[化 15]
Figure imgf000015_0002
( 2 - a )
[0029] (R5及び R。は、それぞれ独立に、水素原子又は置換基であり、 R5 tR6が結合して環 状構造を形成してもよい。
R7及び R8は、それぞれ独立に、置換基であり、 c及び dはそれぞれ 0〜3の整数で ある。 R7が複数の場合には R7同士が結合して環状構造を形成してもよぐ R8が複数 の場合には R8同士が結合して環状構造を形成してもよ 、。
L5及び L6は、それぞれ独立に、単結合、置換もしくは無置換の核炭素数 5〜60の ァリーレン基、又は置換もしくは無置換の核炭素数 3〜50のへテロアリーレン基であ る。)
R5及び R6の示す置換基及び形成してもよ 、環状構造の例としては、前記一般式( 1)において八 〜八!:6及び L1〜L3の置換基で挙げたものと同様の例が挙げられる。 L5及び L6のァリーレン基及びへテロアリーレン基の例としては、前記一般式(1)の L1〜L3で挙げたものと同様の例が挙げられ、置換基も同様の例が挙げられる。
[0030] 前記一般式(2— a)で表されるフルォレニレン含有基が下記一般式(2— b)で表さ れるフルォレニレン含有基であると好まし!/ '
[化 16]
Figure imgf000016_0001
(R1Qは環状構造を形成する原子団であり、
Figure imgf000016_0002
C、 d、 L5及び L。は前記と同じで ある。)
R1Qの環状構造を形成する原子団としては、前記一般式(1—b)の R9と同様である。 また、一般式(2— b)で表されるフルォレニレン含有基の例を以下に示す。
[化 17]
Figure imgf000016_0003
本発明の一般式(1)で表される芳香族アミンィ匕合物の具体例を以下に示すが、 れら例示化合物に限定されるものではない。
[化 18]
Figure imgf000017_0001
Figure imgf000017_0002
[0033] [化 19] [OZ^ 0]
Figure imgf000018_0001
ZZl6T0/S00Zdf/X3d 91· T1-1-9tO/900Z OAV [ΐ^ ] [SSOO]
Figure imgf000019_0001
ZZl6lO/SOOJdT/X3d 900 OAV
Figure imgf000020_0001
Figure imgf000020_0002
[0036] [化 22]
Figure imgf000021_0001
[0037] [化 23]
Figure imgf000022_0001
[0038] [化 24]
Figure imgf000023_0001
Figure imgf000023_0002
[0039] [化 25] [9Z^ [0濯]
Figure imgf000024_0001
O/900Z OAV
Figure imgf000025_0001
[0041] [化 27]
Figure imgf000026_0001
[0042] [化 28]
Figure imgf000027_0001
[0043] [化 29]
Figure imgf000028_0001
[0044] [化 30] i i [s濯]
Figure imgf000029_0001
ZZT610/S00^df/X3d LZ
Figure imgf000030_0001
本発明の芳香族ァミン化合物は、有機 EL素子用材料であると好ましぐ特に、有機 EL素子用正孔輸送材料、有機 EL素子用正孔注入材料及び有機 EL素子用発光材 料に適している。
また、本発明の芳香族アミンィ匕合物は、正孔注入材料としても正孔輸送材料として も使用できるが、フエ-レンジァミン骨格を持つ化合物は正孔注入材料として、ジフエ 二レンジァミン骨格を持つ化合物は正孔輸送材料として用いると好まし 、。
次に、本発明の有機 EL素子について説明する。
本発明の有機 EL素子は、陰極と陽極間に少なくとも発光層を有する一層又は複数 層からなる有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少 なくとも一層が、本発明の芳香族アミンィ匕合物を単独もしくは混合物の成分として含 有する。
[0047] 以下、本発明の有機 EL素子の素子構成について説明する。
(1)有機 EL素子の構成
本発明の有機 EL素子の代表的な素子構成としては、
(1)陽極 Z発光層 Z陰極
(2)陽極 Z正孔注入層 Z発光層 Z陰極
(3)陽極 Z発光層 Z電子注入層 Z陰極
(4)陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極
(5)陽極 Z有機半導体層 Z発光層 Z陰極
(6)陽極 Z有機半導体層 Z電子障壁層 Z発光層 Z陰極
(7)陽極 Z有機半導体層 Z発光層 Z付着改善層 Z陰極
(8)陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極
(9)陽極 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(10)陽極 Z無機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(11)陽極 Z有機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(12)陽極 z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z絶縁層 Z陰極
(13)陽極 z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極 などの構造を挙げることができる。
これらの中で通常 (8)の構成が好ましく用いられる力 これらに限定されるものでは ない。
[0048] 本発明の芳香族アミンィ匕合物は、有機 EL素子のどの有機薄膜層に用いてもよい
1S 正孔輸送帯域及び Z又は正孔注入帯域に含有されていると好ましぐ正孔輸送 層及び Z又は正孔注入層に含有されているとさらに好ましぐ含有量は、通常 30〜1
00モル%から選ばれ、前記正孔輸送層及び Z又は正孔注入層が主として前記芳香 族ァミン化合物を含有すると特に好まし ヽ。
本発明の有機 EL素子は、前記芳香族ァミン化合物を含有する層が前記陽極と接 していると好ましぐ前記陽極と接している層の主成分が前記芳香族アミンィ匕合物で あるとさらに好ましい。
本発明の有機 EL素子は、前記有機薄膜層が、前記芳香族ァミン化合物と発光材 料とを含有する層を有すると好ましぐ前記有機薄膜層が、前記芳香族ァミン化合物 を含有する正孔輸送層及び Z又は前記芳香族アミンィ匕合物を含有する正孔注入層 と、りん光発光性の金属錯体及びホスト材料からなる発光層との積層を有して!/ヽても 好ましい。金属錯体及び Z又はホスト材料については、下記発光層にて説明する。
[0049] (2)透光性基板
本発明の有機 EL素子は透光性の基板上に作製する。ここで ヽぅ透光性基板は有 機 EL素子を支持する基板であり、 400〜700nmの可視領域の光の透過率が 50% 以上で、平滑な基板が好ましい。
具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ 石灰ガラス、ノリウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガラス、ホウ ケィ酸ガラス、ノリウムホウケィ酸ガラス、石英等が挙げられる。またポリマー板として は、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフアイ ド、ポリサルフォン等を挙げることができる。
[0050] (3)陽極
本発明の有機 EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する機能 を有するものであり、 4. 5eV以上の仕事関数を有することが効果的である。本発明に 用いられる陽極材料の具体例としては、酸化インジウム錫合金 (ITO)、酸化インジゥ ム亜鉛合金 (IZO)、酸ィ匕錫 (NESA)、金、銀、白金、銅等が適用できる。
陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させる こと〖こより作製することができる。
このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率 が 10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百 ΩΖ口以下が 好ましい。陽極の膜厚は材料にもよる力 通常 10nm〜l μ m、好ましくは 10〜200n mの範囲で選択される。
[0051] (4)発光層
有機 EL素子の発光層は以下 (1)〜(3)の機能を併せ持つものである。
(1)注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、陰 極又は電子注入層より電子を注入することができる機能
(2)輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
(3)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 ただし、正孔の注入されやすさと電子の注入されやすさに違いがあってもよぐまた
、正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の電 荷を移動することが好まし 、。
本発明の化合物を発光層に用いる場合、本発明の化合物単独で発光層を形成し てもよいし、他の材料と混合して用いてもよい。
[0052] 本発明の化合物と混合して発光層を形成する材料としては、前記の好ま 、性質 を有するものであれば特に制限はなぐ有機 EL素子の発光層に使用される公知のも のの中力も任意のものを選択して用いることができる。
本発明の化合物と共に発光層に使用できる発光材料又はドーピング材料としては 、例えば、アントラセン、ナフタレン、フエナントレン、ピレン、テトラセン、コロネン、タリ セン、フノレォレセイン、ペリレン、フタ口ペリレン、ナフタ口ペリレン、ペリノン、フタ口ペリ ノン、ナフタ口ペリノン、ジフエニルブタジエン、テトラフェニルブタジエン、クマリン、ォ キサジァゾール、アルダジン、ビスべンゾキサゾリン、ビススチリル、ピラジン、シクロべ ンタジェン、キノリン金属錯体、ァミノキノリン金属錯体、ベンゾキノリン金属錯体、イミ ン、ジフエニルエチレン、ビニルアントラセン、ジァミノカルバゾール、ピラン、チォピラ ン、ポリメチン、メロシアニン、イミダゾールキレートィ匕ォキシノイドィ匕合物、キナクリドン 、ルブレン及び蛍光色素等が挙げられるが、これらに限定されるものではない。
その際、本発明の化合物が主として用いられていることが好ましぐ通常、発光層中 の 30〜: LOOモル0 /0、より好ましくは 50〜99モル0 /0である。 本発明の化合物と組み合せて用いられる発光材料は主に有機化合物であり、具体 的には所望の色調により次のような有機化合物が挙げられる。
まず、紫外域から紫色の発光を得るためには、例えば、下記一般式で表される化合 物が挙げられる。
[化 32]
Figure imgf000034_0001
この一般式において、 Xは下記の基を示す。
[化 33]
Figure imgf000034_0002
nは 2〜5の整数であり、 Yは、
[化 34]
Figure imgf000034_0003
である。
この化合物におけるフエ-ル基、フエ-レン基、ナフチル基には、炭素数 1〜4のァ ルキル基、アルコキシ基、水酸基、スルホ -ル、カルボ-ル基、アミノ基、ジメチルアミ ノ基またはジフエニルァミノ基等が単数又は複数置換していてもよい。また、これらの 置換基は互いに結合し、飽和 5員環、 6員環を形成してもよい。また、この置換基は、 フエニル基、フエ二レン基、ナフチル基にパラ位で結合したものが結合性がよぐ平滑 な蒸着膜の形成のために好ましい。具体的には以下の化合物が挙げられ、特に、 p クォーターフ -ル誘導体、 p クインタフヱ-ル誘導体が好まし!/、。
Figure imgf000035_0001
[化 36]
Figure imgf000036_0001
また、青色力 緑色の発光を得るためには、例えば、ベンゾチアゾール系、ベンゾィ ミダゾール系、ベンゾォキサゾール系等の蛍光増白剤、金属キレートィ匕ォキシノイド 化合物、スチリルベンゼン系化合物、縮合芳香族環系化合物等を挙げることができる これらの具体的に化合物名としては、例えば特開昭 59— 194393号公報やケミスト リ一 ·才ブ ·シンセティック ·ダイス、1971, 628〜637頁および 640頁【こ開示されて!ヽ るものが挙げられる。
前記金属キレートィ匕ォキシノイド化合物としては、例えば、特開昭 63— 295695号 公報に開示されているものが挙げられ、その代表例としては、トリス(8—キノリノール) アルミニウム(以下 Alqと略記する)等の 8—ヒドロキシキノリン系金属錯体ゃジリチウム ェピントリジオン等を挙げることができる。
前記スチリルベンゼン系化合物としては、例えば、欧州特許第 0319881号明細書 や欧州特許第 0373582号明細書に開示されているものが挙げられ、特開平 2— 25 2793号公報に開示されているジスチリルビラジン誘導体も用いることができる。
前記縮合芳香族環系化合物としては、特開 2004— 59535号公報、特開 2004— 75567号公報、特開 2004— 83481号公報、特開 2004— 107326号公報に開示さ れて 、るものが挙げられる。
[0056] その他のものとして、例えば、欧州特許第 0387715号明細書に開示されているポ リフエ-ル系化合物も発光層の材料として用いることもできる。
さらに上述した蛍光増白剤、金属キレートィヒォキシノイド化合物およびスチリルベン ゼン系化合物等以外に、例えば、 12—フタ口ペリノン (j.Appl.Phys.,第 27卷, L713 (1988年))、 1, 4—ジフエ-ル— 1, 3—ブタジエン、 1, 1, 4, 4—テ卜ラフエ-ル— 1 , 3—ブタジエン(以上 Appl.Phys丄 ett.,第 56卷, L799 (1990年))、ナフタルイミド 誘導体 (特開平 2— 305886号公報)、ペリレン誘導体 (特開平 2— 189890号公報) 、ォキサジァゾール誘導体 (特開平 2— 216791号公報、又は第 38回応用物理学関 係連合講演会で浜田らによって開示されたォキサジァゾール誘導体)、アルダジン誘 導体 (特開平 2 - 220393号公報)、ピラジリン誘導体 (特開平 2 - 220394号公報) 、シクロペンタジェン誘導体 (特開平 2— 289675号公報)、ピロロピロール誘導体( 特開平 2— 296891号公報)、スチリルァミン誘導体 (Appl.Phys丄 ett.,第 56卷, L7 99 (1990年)、クマリン系化合物(特開平 2— 191694号公報)、国際特許公報 WO 90/13148や Appl.Phys.Lett.,vol58, 18, P1982 (1991)【こ記載されて!ヽるよう な高分子化合物等も、発光層の材料として用いることができる。
[0057] これらの中でも、本発明では、特に、芳香族ジメチリディン系化合物(欧州特許第 0 388768号明細書ゃ特開平 3— 231970号公報に開示のもの)、縮合芳香環化合物 を用いることが好ましい。具体例としては、 4, 4' ビス(2, 2 ジー t—ブチルフエ- ルビ-ル)ビフエ-ル、(以下、 DTBPBBiと略記する)、 4, 4,—ビス(2, 2 ジフエ- ルビニル)ビフ ニル(以下 DPVBiと略記する)等及びこれらの誘導体を挙げることが できる。
さらに、特開平 5— 258862号公報等に記載されている一般式 (Rs— Q) Al— O
2
L (式中、 Lはフエ-ル部分を含んでなる炭素原子 6〜24個の炭化水素であり、 O —Lはフエノラート配位子であり、 Qは置換 8—キノリノラート配位子を表し、 Rsはアル ミニゥム原子に置換 8 キノリノラート配位子が 2個を上回り結合するのを立体的に妨 害するように選ばれた 8—キノリノラート環置換基を表す)で表される化合物も挙げら れる。具体的には、ビス(2—メチル 8 キノリノラート)(パラ一フエ-ルフエノラート) アルミニウム (III)、ビス(2—メチルー 8 キノリノラート)(1 ナフトラート)アルミニウム (III)等が挙げられる。
その他、特開平 6— 9953号公報等によるドーピングを用いた高効率の青色と緑色 の混合発光を得る方法が挙げられる。この場合、ホスト材料としては上記に記載した 発光材料、ドーパントとしては青色力も緑色までの強い蛍光色素、例えばクマリン系 あるいは上記記載のホスト材料として用いられているものと同様な蛍光色素を挙げる ことができる。この場合の好ましいホスト材料は、ジスチリルァリーレン骨格の発光材 料、特に好ましくは DPVBi、好ましいドーパントは、ジフエ-ルアミノビ-ルァリーレン 、特に好ましくは N, N ジフエ-ルアミノビ-ルベンゼン(DP AVB)を挙げることが できる。
さらに、白色の発光を得る発光層としては特に制限はないが、例えば、下記のもの を挙げることができる。
(0有機 EL積層構造体の各層のエネルギー準位を規定し、トンネル注入を利用して 発光させるもの(欧州特許第 0390551号公報)
(ii) G)と同じくトンネル注入を利用する素子で実施例として白色発光素子が記載され て 、るもの(特開平 3 - 230584号公報)
(iii)二層構造の発光層が記載されているもの(特開平 2— 220390号公報及び特開 平 2— 216790号公報) (iv)発光層を複数に分割してそれぞれ発光波長の異なる材料で構成されたもの (特 開平 4 51491号公報)
(V)青色発光体(蛍光ピーク 380〜480nm)と緑色発光体(480〜580nm)とを積層 させ、さらに赤色蛍光体を含有させた構成のもの(特開平 6— 207170号公報) (vi)青色発光層が青色蛍光色素を含有し、緑色発光層が赤色蛍光色素を含有した 領域を有し、さらに緑色蛍光体を含有する構成のもの(特開平 7— 142169号公報) これらの中でも、(V)の構成のものが好ましく用いられる。
前記赤色蛍光体の例を以下に示す。
Figure imgf000040_0001
iPrはイソプロピル基、 Etはェチル基である。
本発明の芳香族アミンィ匕合物と共に発光層に使用できるホスト材料としては、下記 ( i)〜 (ix)で表される化合物が好ま 、。
Figure imgf000041_0001
下記一般式 (i)で表される非対称アントラセン。
(式中、 Arは置換もしくは無置換の核炭素数 10〜50の縮合芳香族基である。
Ar,は置換もしくは無置換の核炭素数 6〜50の芳香族基である。
Xは、置換もしくは無置換の核炭素数 6〜50の芳香族基、置換もしくは無置換の核 原子数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数 1〜50のアルキル 基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素 数 6〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ 基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の 炭素数 1〜50のアルコキシカルボ-ル基、カルボキシル基、ハロゲン原子、シァノ基 、ニトロ基、ヒドロキシル基である。
a、 b及び cは、それぞれ 0〜4の整数である。
nは 1〜3の整数である。また、 nが 2以上の場合は、 [ ]内は、同じでも異なってい てちよい。 )
下記一般式 (ii)で表される非対称モノアントラセン誘導体。
Figure imgf000041_0002
(式中、 Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の 芳香族環基であり、 m及び nは、それぞれ 1〜4の整数である。ただし、 m=n= lでか つ Ar1と Ar2のベンゼン環への結合位置が左右対称型の場合には、 Ar1と Ar2は同 一ではなぐ m又は nが 2〜4の整数の場合には mと nは異なる整数である。
R1〜R1Qは、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボ-ル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 )
下記一般式 (iii)で表される非対称ピレン誘導体。
[化 40]
Figure imgf000042_0001
[式中、 Ar及び Ar'は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。
L及び L,は、それぞれ置換もしくは無置換のフエ-レン基、置換もしくは無置換の ナフタレ-レン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無置換 のジベンゾシロリレン基である。
mは 0〜2の整数、 nは 1〜4の整数、 sは 0〜2の整数、 tは 0〜4の整数である。 また、 L又は Arは、ピレンの 1〜5位のいずれかに結合し、 L,又は Ar,は、ピレンの 6〜10位のいずれかに結合する。
ただし、 n+tが偶数の時、 Ar, Ar' , L, L'は下記 (1)又は (2)を満たす。
(1) Ar≠Ar,及び Z又は L≠L' (ここで≠は、異なる構造の基であることを示す。 )
(2) Ar = Ar,かつ L = L,の時
(2-1) m≠s及び Z又は n≠t、又は
(2-2) m=sかつ n=tの時、
(2-2-1) L及び L'、又はピレン力 それぞれ Ar及び Ar,上の異なる結合位置に 結合している力、 (2-2-2) L及び L,、又はピレン力 Ar及び Ar,上の同じ結合位置で 結合している場合、 L及び L,又は Ar及び Ar,のピレンにおける置換位置が 1位と 6位 、又は 2位と 7位である場合はない。 ]
下記一般式 Gv)で表される非対称アントラセン誘導体。
[化 41]
Figure imgf000043_0001
(式中、 A1及び A2は、それぞれ独立に、置換もしくは無置換の核炭素数 10〜20の 縮合芳香族環基である。
Ar1及び Ar2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数 6〜50の芳香族環基である。
R1〜R1Qは、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボ-ル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基である。
Ar1、 Ar2、 R9及び R1Qは、それぞれ複数であってもよぐ隣接するもの同士で飽和 もしくは不飽和の環状構造を形成して 、てもよ 、。
ただし、一般式(1)において、中心のアントラセンの 9位及び 10位に、該アントラセ ン上に示す X— Y軸に対して対称型となる基が結合する場合はない。)
下記一般式 (V)で表されるアントラセン誘導体。
[化 42]
Figure imgf000044_0001
(式中、!^1〜!^は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置 換しても良いァリール基,アルコキシル基,ァリーロキシ基,アルキルアミノ基,ァルケ -ル基,ァリールアミノ基又は置換しても良い複素環式基を示し、 a及び bは、それぞ れ 1〜5の整数を示し、それらが 2以上の場合、 R1同士又は R2同士は、それぞれに おいて、同一でも異なっていてもよぐまた 同士または R2同士が結合して環を形成 して 、てもよ 、し、 R3 R , R5 tR6 , R7と , R9と R1Qがたがいに結合して環を形成 していてもよい。 L1は単結合、—O—, 一 S—, —N (R)— (Rはアルキル基又は置換 しても良いァリール基である)、アルキレン基又はァリーレン基を示す。 ) [0065] 下記一般式 (vi)で表されるアントラセン誘導体。
[化 43]
Figure imgf000045_0001
(式中、 Ru〜! ^は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,ァリ ール基,アルコキシル基,ァリーロキシ基,アルキルアミノ基,ァリールアミノ基又は置 換しても良い複数環式基を示し、 c d, e及び fは、それぞれ 1〜5の整数を示し、それ らが 2以上の場合、 R11同士, R12同士, R16同士又は R17同士は、それぞれにおいて、 同一でも異なっていてもよぐまた R11同士, R12同士, R16同士又は R17同士が結合して 環を形成していてもよいし、 R13と R14, R18と R19がたがいに結合して環を形成していて もよい。 L2は単結合、— O— , — S— , — N (R)— (Rはアルキル基又は置換しても良 ぃァリール基である)、アルキレン基又はァリーレン基を示す。 )
[0066] 下記一般式 (vii)で表されるスピロフルオレン誘導体。
[化 44]
Figure imgf000045_0002
(式中、 A5〜A8は、それぞれ独立に、置換もしくは無置換のビフエ-ル基又は置換 もしくは無置換のナフチル基である。 ) [0067] 下記一般式 (viii)で表される縮合環含有化合物。
[化 45]
Figure imgf000046_0001
(式中、 A9〜A14は前記と同じ、 R21〜R23は、それぞれ独立に、水素原子、炭素数 1〜 6のアルキル基、炭素数 3〜6のシクロアルキル基、炭素数 1〜6のアルコキシル基、 炭素数 5〜18のァリールォキシ基、炭素数 7〜18のァラルキルォキシ基、炭素数 5 〜16のァリールアミノ基、ニトロ基、シァノ基、炭素数 1〜6のエステル基又はハロゲ ン原子を示し、 A9〜A14のうち少なくとも 1つは 3環以上の縮合芳香族環を有する基 である。 )
[0068] 下記一般式 (ix)で表されるフルオレンィ匕合物。
[化 46]
Figure imgf000046_0002
(式中、 Rおよび Rは、水素原子、置換あるいは無置換のアルキル基、置換あるい
1 2
は無置換のァラルキル基、置換あるいは無置換のァリール基,置換あるいは無置換 の複素環基、置換アミノ基、シァノ基またはハロゲン原子を表わす。異なるフルオレン 基に結合する R同士、 R同士は、同じであっても異なっていてもよぐ同じフルォレ
1 2
ン基に結合する Rおよび Rは、同じであっても異なっていてもよい。 Rおよび Rは 、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のァラルキル 基、置換あるいは無置換のァリール基または置換ある!、は無置換の複素環基を表わ し、異なるフルオレン基に結合する R 同士、 R 同士は、同じであっても異なっていて
3 4
もよぐ同じフルオレン基に結合する Rおよび R は、同じであっても異なっていてもよ
3 4
い。 Arおよび Ar は、ベンゼン環の合計が 3個以上の置換あるいは無置換の縮合
1 2
多環芳香族基またはベンゼン環と複素環の合計が 3個以上の置換あるいは無置換 の炭素でフルオレン基に結合する縮合多環複素環基を表わし、 Arおよび Ar は、
1 2 同じであっても異なっていてもよい。 nは、 1乃至 10の整数を表す。 )
[0069] 以上のホスト材料の中でも、好ましくはアントラセン誘導体、さらに好ましくはモノア ントラセン誘導体、特に好ましくは非対称アントラセンである。
また、ドーパントの発光材料としては、りん光発光性の化合物を用いることもできる。 りん光発光性の化合物としては、ホスト材料に力ルバゾール環を含む化合物が好まし い。ドーパントとしては三重項励起子力 発光することのできる化合物であり、三重項 励起子力も発光する限り特に限定されないが、 Ir、 Ru、 Pd、 Pt、 Os及び Re力もなる 群力 選択される少なくとも一つの金属を含む金属錯体であることが好ましぐボルフ ィリン金属錯体又はオルトメタルイ匕金属錯体が好ましい。
力ルバゾール環を含む化合物力 なるりん光発光に好適なホストは、その励起状態 からりん光発光性ィ匕合物へエネルギー移動が起こる結果、りん光発光性化合物を発 光させる機能を有する化合物である。ホストイ匕合物としては励起子エネルギーをりん 光発光性ィ匕合物にエネルギー移動できる化合物ならば特に制限はなぐ 目的に応じ て適宜選択することができる。力ルバゾール環以外に任意の複素環などを有して ヽ ても良い。
[0070] このようなホストイ匕合物の具体例としては、力ルバゾール誘導体、トリァゾール誘導 体、ォキサゾール誘導体、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリー ルアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フ -レンジァミン誘導体、 ァリールァミン誘導体、ァミノ置換カルコン誘導体、スチリルアントラセン誘導体、フル ォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三 ァミン化合物、スチリルアミンィ匕合物、芳香族ジメチリデン系化合物、ポルフィリン系 化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフヱ-ルキノン誘導体、チ オビランジオキシド誘導体、カルポジイミド誘導体、フルォレニリデンメタン誘導体、ジ スチリルビラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フ タロシアニン誘導体、 8-キノリノール誘導体の金属錯体ゃメタルフタロシアニン、ベン ゾォキサゾールやべンゾチアゾールを配位子とする金属錯体に代表される各種金属 錯体ポリシラン系化合物、ポリ(N-ビュルカルバゾール)誘導体、ァ-リン系共重合体 、チォフェンオリゴマー、ポリチォフェン等の導電性高分子オリゴマー、ポリチォフェン 誘導体、ポリフ 二レン誘導体、ポリフ 二レンビニレン誘導体、ポリフルオレン誘導 体等の高分子化合物等が挙げられる。ホストイ匕合物は単独で使用しても良いし、 2種 以上を併用しても良い。
具体例としては、以下のような化合物が挙げられる。
[化 47]
Figure imgf000048_0001
また、本発明の有機 EL素子は、発光層が、本発明の芳香族ァミン化合物及び Z又 は前記発光材料に加え、蛍光性又はりん光発光性のドーパントを含有して 、てもよ い。
前記蛍光性のドーパントとしては、さらにァリールアミンィ匕合物及び Z又はスチリル ァミン化合物が好ましい。
前記スチリルァミン化合物としては、下記一般式 (I)で表されるものが好ま 、。
[化 48]
Figure imgf000049_0001
(I)
[0073] (式中、 Ar3は、フエ-ル基、ビフエ-ル基、ターフェ-ル基、スチルベン基、ジスチリ ルァリール基力も選ばれる基であり、 Ar4及び Ar5は、それぞれ水素原子又は炭素数 力 S6〜20の芳香族基であり、 Ar3〜Ar5は置換されいてもよい。 p'は 1〜4の整数で ある。さらに好ましくは Ar4又は Ar5の少なくとも一方はスチリル基で置換されている。 )
ここで、炭素数が 6〜20の芳香族基としては、フエニル基、ナフチル基、アントラ- ル基、フエナンスリル基、ターフェ-ル基等が挙げられる。
[0074] 前記ァリールアミンィ匕合物としては、下記一般式 (II)で表されるものが好ま 、。
[化 49]
Figure imgf000049_0002
(式中、 Ai:。〜 Ar8は、置換もしくは無置換の核炭素数 5〜40のァリール基である。 q' は 1〜4の整数である。 )
ここで、核炭素数が 5〜40のァリール基としては、例えば、フエ-ル基、ナフチル基 、クリセ-ル基、ナフタセ-ル基、アントラ-ル基、フエナンスリル基、ピレ-ル基、コロ -ル基、ビフエ-ル基、ターフェ-ル基、ピロ一リル基、フラ-ル基、チォフエ-ル基、 ベンゾチオフ ニル基、ォキサジァゾリル基、ジフ 二ルアントラニル基、インドリル基 、カルバゾリル基、ピリジル基、ベンゾキノリル基、フルオランテュル基、ァセナフトフ ルオランテュル基、スチルベン基等が挙げられる。なお、このァリール基の好ましい 置換基としては、炭素数 1〜6のアルキル基 (ェチル基、メチル基、 i プロピル基、 n プロピル基、 s ブチル基、 t ブチル基、ペンチル基、へキシル基、シクロペンチ ル基、シクロへキシル基等)、炭素数 1〜6のアルコキシ基 (エトキシ基、メトキシ基、 i プロポキシ基、 n—プロポキシ基、 s—ブトキシ基、 t—ブトキシ基、ペントキシ基、へ キシルォキシ基、シクロペントキシ基、シクロへキシルォキシ基等)、核原子数 5〜40 のァリール基、核原子数 5〜40のァリール基で置換されたァミノ基、核原子数 5〜40 のァリール基を有するエステル基、炭素数 1〜6のアルキル基を有するエステル基、 シァノ基、ニトロ基、ハロゲン原子等が挙げられる。
[0076] また、発光層にお 、て、ホスト材料と組み合わせて用いられるりん光発光性のドー パントとしては金属錯体が好ましぐ Ir、 Ru、 Pd、 Pt、 Os及び Reの中力も選ばれる少 なくとも一つの金属を含む金属錯体ィ匕合物であることが好ましぐ配位子は、フエニル ピリジン骨格、ビビリジル骨格及びフエナント口リン骨格力 選ばれる少なくとも一つの 骨格を有することが好ましい。このような金属錯体の具体例は、トリス(2—フエ-ルビ リジン)イリジウム、トリス(2—フエ-ルビリジン)ルテニウム、トリス(2—フエ-ルビリジン )パラジウム、ビス(2—フエ-ルビリジン)白金、トリス(2—フエ-ルビリジン)オスミウム 、トリス(2—フエ-ルビリジン)レニウム、オタタエチル白金ポルフィリン、ォクタフエ- ル白金ポルフィリン、オタタエチルパラジウムポルフィリン、オタタフヱ-ルバラジウム ポルフィリン等が挙げられる力 これらに限定されるものではなぐ要求される発光色 、素子性能、ホスト材料との関係カゝら適切な錯体が選ばれる。
[0077] 本発明において、前記各種発光材料を用いて発光層を形成する方法としては、例 えば、蒸着法、スピンコート法、 LB法等の公知の方法を適用することができる。発光 層は、特に分子堆積膜であることが好ましい。ここで分子堆積膜とは、気相状態の材 料化合物から沈着され形成された薄膜や、溶液状態または液相状態の材料化合物 から固体化され形成された膜のことであり、通常この分子堆積膜は、 LB法により形成 された薄膜 (分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能 的な相違により区分することができる。また、特開昭 57— 51781号公報に開示され ているように、榭脂等の結着剤と材料ィ匕合物とを溶剤に溶カゝして溶液とした後、これ をスピンコート法等により薄膜ィ匕することによつても、発光層を形成することができる。 このようにして形成される発光層の膜厚については特に制限はなぐ状況に応じて 適宜選択することができる力 通常 5nm〜5 mの範囲が好ましい。この発光層は、 上述した材料の一種または二種以上力もなる一層で構成されてもょ 、し、または前記 発光層とは別種の化合物からなる発光層を積層したものであってもよい。
本発明の芳香族アミンィ匕合物を発光帯域又は発光層に用いる場合は、本発明の 化合物を含有して!/ヽれば、上述した材料の一種または二種以上を用いた一層で構 成されてもよい。
[0078] (5)正孔注入、輸送層
正孔注入、輸送層は発光層への正孔注入を助け、発光領域まで輸送する層であつ て、正孔移動度が大きぐイオンィ匕エネルギーが通常 5. 5eV以下と小さい。このよう な正孔注入、輸送層としてはより低 、電界強度で正孔を発光層に輸送する材料が好 ましぐさらに正孔の移動度力 例えば 104〜: LO Zcmの電界印加時に、少なくとも 10 4 cm2ZV'秒であれば好まし!/、。
本発明の芳香族ァミン化合物を正孔輸送帯域に用いる場合、本発明の化合物単 独で正孔注入、輸送層を形成してもよぐ他の材料と混合して用いてもよい。
本発明の芳香族ァミン化合物と混合して正孔注入、輸送層を形成する材料として は、前記の好ましい性質を有するものであれば特に制限はなぐ従来、光導伝材料 において正孔の電荷輸送材料として慣用されているものや、有機 EL素子の正孔注 入層、輸送に使用される公知のものの中から任意のものを選択して用いることができ る。
[0079] 具体例としては、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等参照)、ォ キサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダゾール誘導 体 (特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体 (米国特許 3, 615, 402号明細書、同第 3, 820, 989号明細書、同第 3, 542, 544号明細書、特 公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号公報、同 55 — 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55— 156953 号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体およびピラゾロン誘導体( 米国特許第 3, 180, 729号明細書、同第 4, 278, 746号明細書、特開昭 55— 880 64号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 51086号公報 、同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公報、同 54— 1 12637号公報、同 55— 74546号公報等参照)、フ -レンジァミン誘導体 (米国特 許第 3, 615, 404号明細書、特公昭 51— 10105号公報、同 46— 3712号公報、同 47— 25336号公報、特開昭 54— 53435号公報、同 54— 110536号公報、同 54— 119925号公報等参照)、ァリールァミン誘導体 (米国特許第 3, 567, 450号明細書 、同第 3, 180, 703号明細書、同第 3, 240, 597号明細書、同第 3, 658, 520号 明細書、同第 4, 232, 103号明細書、同第 4, 175, 961号明細書、同第 4, 012, 3 76号明糸田書、特公昭 49— 35702号公報、同 39— 27577号公報、特開昭 55— 14 4250号公報、同 56— 119132号公報、同 56— 22437号公報、西独特許第 1, 110 , 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明 細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等に開示の もの)、スチリルアントラセン誘導体 (特開昭 56— 46234号公報等参照)、フルォレノ ン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特許第 3, 7 17, 462号明細書、特開昭 54— 59143号公報、同 55— 52063号公報、同 55— 52 064号公報、同 55— 46760号公報、同 55— 85495号公報、同 57— 11350号公報 、同 57— 148749号公報、特開平 2— 311591号公報等参照)、スチルベン誘導体( 特開昭 61— 210363号公報、同第 61— 228451号公報、同 61— 14642号公報、 同 61— 72255号公報、同 62— 47646号公報、同 62— 36674号公報、同 62— 10 652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94462号公報 、同 60— 174749号公報、同 60— 175052号公報等参照)、シラザン誘導体 (米国 特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996号公報)、ァニリ ン系共重合体 (特開平 2— 282263号公報)、特開平 1— 211399号公報に開示され て 、る導電性高分子オリゴマー(特にチォフェンオリゴマー)等を挙げることができる。 正孔注入、輸送層の材料としては上記のものを使用することができる力 ボルフイリ ン化合物 (特開昭 63— 2956965号公報等に開示のもの)、芳香族第三級アミンィ匕 合物及びスチリルアミンィ匕合物(米国特許第 4, 127, 412号明細書、特開昭 53— 2 7033号公報、同 54— 58445号公報、同 54— 149634号公報、同 54— 64299号 公報、同 55— 79450号公報、同 55— 144250号公報、同 56— 119132号公報、同 61— 295558号公報、同 61— 98353号公報、同 63— 295695号公報等参照)、特 に芳香族第三級アミンィ匕合物を用いることが好まし 、。
また、米国特許第 5, 061, 569号に記載されている 2個の縮合芳香族環を分子内 に有する、例えば、 4, 4,一ビス(N— (1—ナフチル) N フエ-ルァミノ)ビフエ- ル (以下 NPDと略記する)、また特開平 4— 308688号公報に記載されて 、るトリフエ -ルァミンユニットが 3つスターバースト型に連結された 4, 4,, 4"—トリス(N— (3—メ チルフエ-ル)—N—フエ-ルァミノ)トリフエ-ルァミン(以下 MTDATAと略記する) 等を挙げることができる。
また、発光層の材料として示した前述の芳香族ジメチリディン系化合物に加え、 p型 Si、 p型 SiC等の無機化合物も正孔注入層の材料として使用することができる。
[0081] 正孔注入、輸送層は、本発明の芳香族ァミン化合物や上述した化合物を、例えば 、真空蒸着法、スピンコート法、キャスト法、 LB法等の公知の方法により薄膜ィヒするこ とにより形成することができる。正孔注入、輸送層としての膜厚は特に制限はないが、 通常は 5ηπι〜5 /ζ πιである。この正孔注入、輸送層は正孔輸送帯域に本発明の化 合物を含有して ヽれば好ましぐ上述した材料の一種または二種以上を用いた一層 で構成されてもよぐ前記正孔注入、輸送層とは別種の化合物からなる正孔注入、輸 送層を積層したものであってもよい。
また、発光層への正孔注入又は電子注入を助ける層として有機半導体層を設けて もよぐ 10— 1QSZcm以上の導電率を有するものが好適である。このような有機半導体 層の材料としては、含チォフェンオリゴマーゃ特開平 8— 193191号公報に開示して ある含ァリールァミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー 等の導電性デンドリマー等を用いることができる。
[0082] (6)電子注入層
電子注入、輸送層は、発光層への電子の注入を助ける層であって、電子移動度が 大きぐまた付着改善層は、この電子注入、輸送層の中で特に陰極との付着が良い 材料カゝらなる層である。電子注入、輸送層に用いられる材料としては、 8—ヒドロキシ キノリン又はその誘導体の金属錯体、ォキサジァゾール誘導体が好適である。
この 8—ヒドロキシキノリンまたはその誘導体の金属錯体の具体例としては、ォキシ ン(一般に 8—キノリノールまたは 8—ヒドロキシキノリン)のキレートを含む金属キレー トォキシノイド化合物が挙げられ、例えば、発光材料の例として挙げた Alqを電子注 入材料として用いることができる。
一方ォキサジァゾール誘導体としては、以下の一般式で表される電子伝達化合物 が挙げられる。
[化 50]
Figure imgf000054_0001
(式中 Ar1', Ar2', Ar3', Ar5', Ar6', Ar9'はそれぞれ置換もしくは無置換のァリール 基を示し、それぞれ互いに同一であっても異なっていてもよい。また、 Ar4', Ar7', Ar8 'は置換もしくは無置換のァリーレン基を示し、それぞれ同一であっても異なって!/、て ちょい)
ここでァリール基としては、フエ-ル基、ビフエ-ル基、アントラ-ル基、ペリレニル基 、ピレニル基が挙げられ、ァリーレン基としては、フエ二レン基、ナフチレン基、ビフエ 二レン基、アントラ-レン基、ペリレニレン基、ピレニレン基などが挙げられる。また置 換基としては炭素数 1〜10のアルキル基、炭素数 1〜10のアルコキシ基又はシァノ 基等が挙げられる。
また、電子注入、輸送層材料として、以下の化合物が挙げられる。 特開 2004— 002297号公報に記載の下記一般式〔1〕で表される化合物。
HAr - L1 Ar1 - Ar2 〔1〕
(式中、 L1は、単結合、置換基を有していてもよい炭素数 6〜60のァリーレン基、置 換基を有して 、てもよ 、炭素数 3〜60のへテロアリーレン基又は置換基を有して 、て もよいフルォレニレン基であり、 Ar1は、置換基を有していてもよい炭素数 6〜60の 2 価の芳香族炭化水素基であり、 Ar2は、置換基を有していてもよい炭素数 6〜60のァ リール基、又は置換基を有していてもよい炭素数 3〜60のへテロアリール基であり、 HAr下記に表される含窒素複素環である。 )で表される含窒素複素環誘導体、 [化 51]
Figure imgf000056_0001
(18) (20) (21)
Figure imgf000056_0002
C *
(25)
Figure imgf000056_0003
(303 (31) <32) 03)
Figure imgf000056_0004
下記一般式〔2〕又は〔3〕で表される化合物。
[化 52]
Figure imgf000057_0001
[0087] (式中、 Rは、水素原子、置換基を有していてもよい炭素数 6〜60のァリール基、置 換基を有していてもよいピリジル基、置換基を有していてもよいキノリル基、炭素数 1 〜20のアルキル基、炭素数 1〜20のハロアルキル基、炭素数 1〜20のアルコキシ基 であり、 nは 0〜4の整数であり、 R1は、置換基を有していてもよい炭素数 6〜60のァ リール基、置換基を有していてもよいピリジル基、置換基を有していてもよいキノリル 基、炭素数 1〜20のアルキル基、炭素数 1〜20のハロアルキル基、炭素数 1〜20の アルコキシ基であり、 R2は、水素原子、置換基を有していてもよい炭素数 6〜60のァ リール基、置換基を有していてもよいピリジル基、置換基を有していてもよいキノリル 基、炭素数 1〜20のアルキル基、炭素数 1〜20のハロアルキル基、炭素数 1〜20の アルコキシ基であり、 Lは、置換基を有していてもよい炭素数 6〜60のァリーレン基、 置換基を有して 、てもよ 、ピリジ-レン基、置換基を有して!/、てもよ 、キノリニレン基、 または置換基を有していてもよいフルォレニレン基であり、 Ar1は、置換基を有してい てもよ 、炭素数 6〜60のァリーレン基、置換基を有して!/、てもよ 、ピリジ-レン基又は 置換基を有していてもよいキノリニレン基であり、 Ar2は、炭素数 1〜20のアルキル基 、炭素数 1〜20のハロアルキル基、炭素数 1〜20のアルコキシ基、置換基を有して いてもよい炭素数 6〜60のァリール基、置換基を有していてもよいピリジル基、置換 基を有して 、てもよ 、キノリル基である)で表される含窒素複素環誘導体、
[0088] 特再 2000— 40586号公報に記載の下記一般式〔4〕で表される化合物。
[化 53]
Figure imgf000058_0001
[0089] (式中、 R〜R及び Z は、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化
1 8 2
水素基、芳香族基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又はァリ 一ルォキシ基を示し、 X、 Y及び Z は、それぞれ独立に、飽和もしくは不飽和の炭化
1
水素基、芳香族基、ヘテロ環基、置換アミノ基、アルコキシ基またはァリールォキシ基 を示し、 Z と Zの置換基は相互に結合して縮合環を形成してもよぐ nは 1
1 2 〜3の整数 を示し、 nが 2以上の場合、 Z は異なってもよい。但し、 nが 1、 X、 Y及び R力 Sメチル
1 2 基であって、 R力 水素原子又は置換ボリル基の場合、及び nが 3で Z 力 Sメチル基の
8 1
場合を含まない。)で表されるボラン誘導体。
[0090] 特開平 9— 194487号公報に記載の下記一般式〔5〕で表される化合物。
[化 54]
Figure imgf000058_0002
[0091] (式中、 X及び Yは、それぞれ独立に炭素数 1〜6の飽和若しくは不飽和の炭化水素 基、アルコキシ基、ァルケ-ルォキシ基、アルキ-ルォキシ基、ヒドロキシ基、置換若 しくは無置換のァリール基、置換若しくは無置換のへテロ環又は Xと Yが結合して飽 和又は不飽和の環を形成した構造であり、 R 、それぞれ独立に水素、ハロゲ
1〜R は
4
ン原子、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキシ基、ァリ ールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、アミノ基、アル キルカルボ-ル基、ァリールカルボ-ル基、アルコキシカルボ-ル基、ァリールォキ シカルボニル基、ァゾ基、アルキルカルボ-ルォキシ基、ァリールカルボ-ルォキシ 基、アルコキシカルボ-ルォキシ基、ァリールォキシカルボ-ルォキシ基、スルフィ- ル基、スルフォ-ル基、スルファ-ル基、シリル基、力ルバモイル基、ァリール基、へ テロ環基、ァルケ-ル基、アルキ-ル基、ニトロ基、ホルミル基、ニトロソ基、ホルミル ォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、イソチォ シァネート基もしくはシァノ基又は隣接した場合には置換若しくは無置換の環が縮合 した構造である。 )で表されるシラシクロペンタジェン誘導体。
[0092] 特開平 10— 88121号公報に記載されている下記一般式〔6〕で表される化合物。
[化 55]
Figure imgf000059_0001
[式中、 Q1及び Q2は、それぞれ独立に、下記一般式〔7〕で示される配位子を表し、 L は、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロア ルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基、 O R1 (R1は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシク 口アルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基で ある。)または— O Ga Q3 (Q4 ) (Q3及び Q4は、 Q1及び Q2と同じ)で示される配 位子を表す。 ]
[0093] [化 56]
Figure imgf000059_0002
[式中、環 A1および A2は、置換基を有してよい互いに縮合した 6員ァリール環構造 である。 ]
この金属錯体は、 n型半導体としての性質が強ぐ電子注入能力が大きい。さらに は、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子 との結合性も強固になり、発光材料としての蛍光量子効率も大きくなつている。
一般式〔7〕の配位子を形成する環 A1及び A2の置換基の具体的な例を挙げると、 塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、ェチル基、プロピル基、プチ ル基、 sec ブチル基、 tert ブチル基、ペンチル基、へキシル基、ヘプチル基、ォ クチル基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フ ェ-ル基、ナフチル基、 3—メチルフエ-ル基、 3—メトキシフエ-ル基、 3—フルォロ フエ-ル基、 3—トリクロロメチルフヱ-ル基、 3—トリフルォロメチルフヱ-ル基、 3— - トロフエ-ル基等の置換もしくは無置換のァリール基、メトキシ基、 n—ブトキシ基、 ter t—ブトキシ基、トリクロロメトキシ基、トリフルォロエトキシ基、ペンタフルォロプロポキ シ基、 2, 2, 3, 3—テ卜ラフルォロプロポキシ基、 1, 1, 1, 3, 3, 3 へキサフルォロ 2 プロポキシ基、 6 (パーフルォロェチル)へキシルォキシ基等の置換もしくは 無置換のアルコキシ基、フエノキシ基、 p -トロフエノキシ基、 p— tert ブチルフエ ノキシ基、 3—フルオロフエノキシ基、ペンタフルォロフエ-ル基、 3—トリフルォロメチ ルフエノキシ基等の置換もしくは無置換のァリールォキシ基、メチルチオ基、ェチル チォ基、 tert—ブチルチオ基、へキシルチオ基、ォクチルチオ基、トリフルォロメチル チォ基等の置換もしくは無置換のアルキルチオ基、フエ二ルチオ基、 p -トロフエ- ルチオ基、 ptert—ブチルフヱ-ルチオ基、 3—フルオロフヱ-ルチオ基、ペンタフル オロフェ-ルチオ基、 3—トリフルォロメチルフエ-ルチオ基等の置換もしくは無置換 のァリールチオ基、シァノ基、ニトロ基、アミノ基、メチルァミノ基、ジェチルァミノ基、 ェチルァミノ基、ジェチルァミノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフエ-ル アミノ基等のモノまたはジ置換アミノ基、ビス(ァセトキシメチル)アミノ基、ビス(ァセト キシェチル)アミノ基、ビスァセトキシプロピル)アミノ基、ビス(ァセトキシブチル)ァミノ 基等のァシルァミノ基、水酸基、シロキシ基、ァシル基、メチルカルバモイル基、ジメ チルカルバモイル基、ェチルカルバモイル基、ジェチルカルバモイル基、プロイピル 力ルバモイル基、ブチルカルバモイル基、フエ-ルカルバモイル基等の力ルバモイル 基、カルボン酸基、スルフォン酸基、イミド基、シクロペンタン基、シクロへキシル基等 のシクロアルキル基、フ -ル基、ナフチル基、ビフヱ-ル基、アントラ-ル基、フエナ ントリル基、フルォレニル基、ピレニル基等のァリール基、ピリジ-ル基、ビラジニル基 、ピリミジニル基、ピリダジニル基、トリアジ-ル基、インドリニル基、キノリニル基、ァク リジニル基、ピロリジ -ル基、ジォキサ-ル基、ピベリジ-ル基、モルフオリジ-ル基、 ピペラジ-ル基、トリアチュル基、カルバゾリル基、フラ-ル基、チオフヱ-ル基、ォキ サゾリル基、ォキサジァゾリル基、ベンゾォキサゾリル基、チアゾリル基、チアジアゾリ ル基、ベンゾチアゾリル基、トリァゾリル基、イミダゾリル基、ベンゾイミダゾリル基、プラ
-ル基等の複素環基等がある。また、以上の置換基同士が結合してさらなる 6員ァリ ール環もしくは複素環を形成しても良い。
一般式 [7]の残基は、 8 ヒドロキシキノリン、 2—メチル 8 ヒドロキシキノリン等の キノリン残基がある力 これらに限られるものではない。
特開 1993— 3314579号公報に記載されて 、る下記一般式〔8〕〜〔11〕で表され る化合物。
[化 57]
Figure imgf000061_0001
(式中、 R〜Rは、それぞれ独立に、水素原子、置換もしくは非置換アルキル基、置 換もしくは非置換ァリール基、置換もしくは非置換アミノ基、ハロゲン原子、ニトロ基、 シァノ基又は水酸基を表わす。 )
これらの他、さらに特開 2001— 006877号公報、特開 2002— 038141号公報、 特開平 10— 106749号公報、特開 2002— 158093号公報、国際公開 WO03Z06 0956号公報で開示されて 、る含へテロ原子化合物を用いることができる。
これらの電子伝達化合物は薄膜形成性のものが好ましい。
このような電子伝達性ィ匕合物の具体例としては下記のものを挙げることができる。
[化 58]
Figure imgf000063_0001
[0097] また、本発明の有機 EL素子は、電子注入、輸送層が還元性ドーパントを含有する と好ましぐ電子を輸送する領域又は陰極と有機薄膜層の界面領域に、還元性ドー パントを含有していてもよい。ここで、還元性ドーパントとは、電子輸送性化合物を還 元ができる物質と定義される。したがって、一定の還元性を有するものであれば、様 々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アル力 リ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アル力 リ土類金属のハロゲンィ匕物、希土類金属の酸化物、希土類金属のハロゲン化物、ァ ルカリ金属の有機錯体、アルカリ土類金属の有機錯体及び希土類金属の有機錯体 力 なる群力 選択される少なくとも一つの物質を好適に使用することができる。
[0098] 好まし!/、還元性ドーパントの具体例としては、 Na (仕事関数: 2. 36eV)、 K (仕事 関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)及び Cs (仕事関数: 1. 95eV)力 なる 群から選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV)、 Sr (仕 事関数: 2. 0〜2. 5eV)、及び Ba (仕事関数: 2. 52eV)力 なる群力 選択される 少なくとも一つのアルカリ土類金属が挙げられ、仕事関数が 2. 9eV以下のものが特 に好ましい。これらのうち、より好ましい還元性ドーパントは、 K、 Rb及び Csからなる群 力 選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rb又は Csで あり、最も好ましのは Csである。これらのアルカリ金属は、特に還元能力が高ぐ電子 注入域への比較的少量の添加により、有機 EL素子における発光輝度の向上や長寿 命化が図られる。また、仕事関数が 2. 9eV以下の還元性ドーパントとして、これら 2 種以上のアルカリ金属の組合わせも好ましぐ特に、 Csを含んだ組み合わせ、例え ば、 Csと Na、 Csと K、 Csと Rb又は Csと Naと Κとの組み合わせであることが好ましい。 Csを組み合わせて含むことにより、還元能力を効率的に発揮することができ、電子注 入城への添カ卩により、有機 EL素子における発光輝度の向上や長寿命化が図られる
[0099] 本発明の有機 EL素子は、陰極と有機層の間に絶縁体や半導体で構成される電子 注入層をさらに設けてもよい。これにより、電流のリークを有効に防止して、電子注入 性を向上させることができる。このような絶縁体としては、アルカリ金属カルコゲナイド 、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲンィ匕物及びアルカリ土類金 属のハロゲンィ匕物力 なる群力 選択される少なくとも一つの金属化合物を使用する のが好ま U、。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されて!ヽ れば、電子注入性をさらに向上させることができるため好ましい。具体的に、好ましい アルカリ金属カルコゲナイドとしては、例えば、 Li 0、 LiO、 Na S、 Na Se及び NaO
2 2 2
が挙げられ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、 CaO、 BaO 、 SrO、 BeO、 BaS及び CaSeが挙げられる。また、好ましいアルカリ金属のハロゲン 化物としては、例えば、 LiF、 NaF、 KF、 LiCl、 KC1及び NaCl等が挙げられる。また 、好ましいアルカリ土類金属のハロゲン化物としては、例えば、 CaF 、 BaF 、 SrF 、
2 2 2
MgF及び BeF といったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
2 2
[0100] また、電子注入層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sb及び Znの少なくとも一つの元素を含む酸化物、窒化物又 は酸ィ匕窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子 注入層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好 ましい。電子注入層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が 形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、この ような無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ土類金属 カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物 等が挙げられる。
[0101] (7)陰極
陰極としては、電子注入'輸送層又は発光層に電子を注入するため、仕事関数の 小さい (4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質 とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム 'カリウム合金、マグネシウム、リチウム、マグネシウム '銀合金、アルミニウム/酸ィ匕ァ ルミ-ゥム、アルミニウム 'リチウム合金、インジウム、希土類金属などが挙げられる。 この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成さ せること〖こより、作製することができる。
ここで発光層からの発光を陰極力 取り出す場合、陰極の発光に対する透過率は 1 0%より大きくすることが好ましい。
また、陰極としてのシート抵抗は数百 Ω Ζ口以下が好ましぐ膜厚は通常 ΙΟηπ!〜 1 m、好ましくは 50〜200nmである。
[0102] (8)絶縁層
有機 EL素子は超薄膜に電界を印可するために、リークやショートによる画素欠陥 が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入する ことが好ましい。
絶縁層に用いられる材料としては、例えば、酸ィ匕アルミニウム、弗化リチウム、酸化リ チウム、弗ィヒセシウム、酸ィヒセシウム、酸ィヒマグネシウム、弗ィヒマグネシウム、酸ィ匕カ ルシゥム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマ- ゥム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸ィ匕バナジウム等が 挙げられ、これらの混合物や積層物を用いてもよい。
[0103] (9)有機 EL素子の製造方法
以上例示した材料及び形成方法により陽極、発光層、必要に応じて正孔注入 '輸 送層、及び必要に応じて電子注入'輸送層を形成し、さらに陰極を形成することによ り有機 EL素子を作製することができる。また陰極から陽極へ、前記と逆の順序で有 機 EL素子を作製することもできる。
以下、透光性基板上に陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極が順次 設けられた構成の有機 EL素子の作製例を記載する。
まず、適当な透光性基板上に陽極材料からなる薄膜を 1 μ m以下、好ましくは 10〜 200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極 を作製する。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述 したように真空蒸着法、スピンコート法、キャスト法、 LB法等の方法により行うことがで きるが、均質な膜が得られやすぐかつピンホールが発生しにくい等の点力 真空蒸 着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、 その蒸着条件は使用する化合物 (正孔注入層の材料)、目的とする正孔注入層の結 晶構造や再結合構造等により異なるが、一般に蒸着源温度 50〜450°C、真空度 10— 7〜: LO— 3torr、蒸着速度 0. 01〜50nmZ秒、基板温度— 50〜300°C、膜厚 5nm〜 5 μ mの範囲で適宜選択することが好ましい。
[0104] 次に、正孔注入層上に発光層を設ける発光層の形成も、所望の有機発光材料を 用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発 光材料を薄膜ィ匕することにより形成できるが、均質な膜が得られやすぐかつピンホ ールが発生しにく 、等の点から真空蒸着法により形成することが好まし 、。真空蒸着 法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、 一般的に正孔注入層と同じような条件範囲の中から選択することができる。
次に、この発光層上に電子注入層を設ける。正孔注入層、発光層と同様、均質な 膜を得る必要から真空蒸着法により形成することが好ま ヽ。蒸着条件は正孔注入 層、発光層と同様の条件範囲から選択することができる。
本発明の芳香族ァミン化合物は、発光帯域ゃ正孔輸送帯域のいずれの層に含有 させるかによつて異なるが、真空蒸着法を用いる場合は他の材料との共蒸着をするこ とができる。また、スピンコート法を用いる場合は、他の材料と混合することによって含 有させることができる。
最後に陰極を積層して有機 EL素子を得ることができる。
陰極は金属力も構成されるもので、蒸着法、スパッタリングを用いることができる。し 力 下地の有機物層を製膜時の損傷力も守るためには真空蒸着法が好ましい。 この有機 EL素子の作製は一回の真空引きで一貫して陽極から陰極まで作製する ことが好ましい。
本発明の有機 EL素子の各層の形成方法は特に限定されない。従来公知の真空 蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有 機 EL素子に用いる、本発明の芳香族ァミン化合物を含有する有機薄膜層は、真空 蒸着法、分子線蒸着法 (MBE法)あるいは溶媒に解力した溶液のデイツビング法、ス ピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法によ る公知の方法で形成することができる。
本発明の有機 EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄 すぎるとピンホール等の欠陥が生じやすぐ逆に厚すぎると高い印加電圧が必要とな り効率が悪くなるため、通常は数 nmから 1 μ mの範囲が好ましい。
なお、有機 EL素子に直流電圧を印加する場合、陽極を +、陰極を一の極性にして 、 5〜40Vの電圧を印加すると発光が観測できる。また、逆の極性で電圧を印加して も電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が +、陰極が一の極性になった時のみ均一な発光が観測される。印加する交流の波形 は任意でよい。
実施例
次に、実施例を用いて本発明をさらに詳しく説明する。
合成実施例 1 (化合物 1の合成)
以下の反応工程にて、下記化合物 1を合成した。
[化 59]
Figure imgf000069_0001
-A DMSO 1-B t-BuONa toluene
Figure imgf000069_0002
toluene 1-E toluene
(1 1)中間体(1 B)の合成
アルゴン雰囲気下、反応容器に、 2 ブロモフルオレン(1—A) 100g、ジメチルスル フォキシド(DMSO) 1200ml、ベンジルトリェチルアンモ -ゥムクロライド 1.9g及び 50重 量%水酸化ナトリウム水溶液 130gを入れた。
この反応容器を水浴中に入れ、攪拌しながら 1, 5 ジブロモペンタン 93.8gをカロえ た。
5時間反応後 2000mlの水を加え、トルエン 1000mlで抽出した。有機層を硫酸マグネ シゥムで乾燥し、ロータリーエバポレーターで溶媒留去し、中間体(1— B)のオイル 97 gを得た (収率 76%)。
(1 2)中間体(1 C)の合成
アルゴン雰囲気下、中間体(1— B) 10g、ァニリン 3.6g、トリス(ベンジリデンアセトン) ジパラジウム (0) 0.29g、 t-ブトキシナトリウム 4.3gのトルエン 100ml溶液にトリ t-ブチルホ スフインの 0.66重量%トルエン溶液 0.16mlをカ卩えて、室温で 5時間攪拌した。この混 合物をセライト濾過し、濾液をトルエンで抽出した。これを減圧下で濃縮し、得られた 粗生成物をカラム精製し、中間体(1 C)の淡黄色粉末 9.5gが得られた (収率 91%)
(1 3)中間体(1 D)の合成
中間体(l— C) 5.0g、 4ーブロモヨードベンゼン 4.4g、ヨウ化銅 0.15g、炭酸カリウム 4.2gのキシレン 50ml溶液をアルゴン雰囲気下、 12時間加熱還流した。冷却後、混合 物に水をカ卩え、ろ過した。ろ液をロータリーエバポレーターで濃縮し、得られた粗成 生物をカラム精製し、中間体( 1 D)の淡黄色粉末 4.2gが得られた (収率 56%)。 (1 4)中間体(1 E)の合成
アルゴン雰囲気下、中間体(1 D) 4.2g、ァ-リン 0.98g、トリス(ベンジリデンァセト ン)ジパラジウム (0) 80mg、 t-ブトキシナトリウム 1.2gのトルエン 40ml溶液にトリ- 1-ブチ ルホスフィンの 0.66重量%トルエン溶液 43 1をカ卩えて、室温で 5時間攪拌した。混合 物をセライト濾過し、濾液をトルエンで抽出した。これを減圧下で濃縮し、得られた粗 生成物をカラム精製し、中間体( 1 E)の淡黄色粉末 4.0gが得られた (収率 93%)。 (1 5)化合物 1の合成 アルゴン雰囲気下、中間体(1—E) 4.0g、 4,4'-ジョードビフヱ-ル 1.5g、トリス(ベン ジリデンアセトン)ジパラジウム (0) 68mg、 t-ブトキシナトリウム l.Ogのトルエン 30ml溶液 にトリ- 1-ブチルホスフィンの 0.66重量%トルエン溶液 18 μ 1をカ卩えて、室温で 5時間攪 拌した。混合物をセライト濾過し、濾液をトルエンで抽出した。これを減圧下で濃縮し 、得られた粗生成物をカラム精製し、 2.3gの淡黄色粉末が得られた (収率 55%)。この ものは、マススペクトル分析の結果、 目的物であり、分子量 1134.56に対し、 m/e=1134 であった。
合成実施例 2 (化合物 2の合成)
以下の反応工程にて、下記化合物 2を合成した。
[化 60]
Figure imgf000072_0001
toluene
Figure imgf000072_0002
[0109] (2— 1)中間体(2— B)の合成
ジフエ-ルァミン(2—A) 10g、 4-ブロモニトロベンゼン 10g、ヨウ化銅 0.94g、酢酸ナト リウム 8.1gをアルゴン雰囲気下、 200°Cで 12時間加熱攪拌した。冷却後、混合物を水 、トルエンで抽出した。水層を除去し、有機層を硫酸マグネシウムで乾燥させた。ロー タリーエバポレーターで濃縮し、得られた粗成生物をカラム精製し、中間体 (2— B) の黄色粉末 1 lgが得られた (収率 77%)。
(2— 2)中間体 (2— C)の合成
中間体(2— B) 10gのエタノール 40mlZトルエン 40mlの溶液に、塩化スズ(II) 2水和 物 34gの濃塩酸 30ml溶液を加えて、 5時間加熱還流した。冷却後、水層を除去し、有 機層を 10重量%水酸ィ匕ナトリウム水溶液で 2回洗浄し、硫酸マグネシウムで乾燥させ た。溶媒を減圧留去し、得られた個体をカラム精製し、中間体 (2— C)の褐色粉末 5.0 gを得た (収率 56%)。
(2— 3)中間体 (2— D)の合成
アルゴン雰囲気下、中間体(2— C) 5.0g、 2-ブロモ -9,9-ジメチルフルオレン 4.4g、ト リス(ベンジリデンアセトン)ジパラジウム (0) 0.15g、 t-ブトキシナトリウム 2.2gのトルエン 50ml溶液にトリ- 1-ブチルホスフィンの 0.66重量%トルエン溶液 78 1をカ卩えて、室温 で 5時間攪拌した。混合物をセライト濾過し、濾液をトルエンで抽出した。これを減圧 下で濃縮し、得られた粗生成物をカラム精製し、中間体 (2— D)の淡黄色粉末 5.2gが 得られた (収率 71%)。
(2— 4)化合物 2の合成
アルゴン雰囲気下、中間体(2— D) 5.2g、 4,4'-ジョードビフヱ-ル 2. lg、トリス(ベン ジリデンアセトン)ジパラジウム (0) 96mg、 t-ブトキシナトリウム 1.4gのトルエン 40ml溶液 にトリ- 1-ブチルホスフィンの 0.66重量%トルエン溶液 51 μ 1をカ卩えて、室温で 5時間攪 拌した。混合物をセライト濾過し、濾液をトルエンで抽出した。これを減圧下で濃縮し 、得られた粗生成物をカラム精製し、 2.8gの淡黄色粉末が得られた (収率 52%)。この ものは、マススペクトル分析の結果、目的物であり、分子量 1054.30に対し、 m/e=1054 であった。
[0110] 合成実施例 3 (化合物 3の合成) 以下の反応工程にて、下記化合物 3を合成した。
[化 61]
Figure imgf000074_0001
[0111] (3— 1)中間体(3— B)の合成
2-ブロモフルオレン(3— A) 5.0g、 N-クロロスクシンイミド 3.3gのァセトニトリル 10ml溶 液に水冷下で濃塩酸 2.2mlを滴下し、室温で 5時間攪拌した。反応終了後、反応混 合物をろ過した。得られた個体をメタノールで洗浄し、中間体(3— B)の白色粉末 4.9 gを得た (収率 86%)。
(3— 2)中間体 (3— C)の合成
アルゴン雰囲気下、反応溶液に、中間体(3— B) 4.5g、 DMSO20ml、ベンジルトリ ェチルアンモ -ゥムクロライド 80mg及び 50重量0 /0水酸化ナトリウム水溶液 3mlを入れ た。この反応容器を水浴中に入れ、攪拌しながら 1,4-ジブロモブタン 3.5gをカ卩えた。 5 時間反応後水を加え、ろ過した。得られた個体をメタノールで洗浄し、中間体(3— C )の淡黄色固体 4.7gを得た (収率 88%)。
(3— 3)中間体 (3— D)の合成
アルゴン雰囲気下、中間体(3— C) 4.7g、ジフヱ-ルァミン 2.9g、トリス(ベンジリデン アセトン)ジパラジウム (0) 0.13g、 t-ブトキシナトリウム 1.9gのトルエン 30ml溶液にトリ- 1- ブチルホスフィンの 0.66重量%トルエン溶液 69 μ 1を加えて、室温で 5時間攪拌した。 混合物をセライト濾過し、濾液をトルエンで抽出した。これを減圧下で濃縮し、得られ た粗生成物をカラム精製し、中間体 (3— D)の淡黄色粉末 4.0gが得られた (収率 67 %)。
(3— 4)化合物 3の合成
アルゴン雰囲気下、中間体(3— D) 4.0g、 Ν,Ν'-ジフヱ-ルペンジジン 1.5g、トリス( ベンジリデンアセトン)ジパラジウム (0) 83mg、 t-ブトキシナトリウム 1.2gのトルエン 40ml 溶液にトリ- 1-ブチルホスフィンの 0.66重量%トルエン溶液 45 1を加えて、 5時間加 熱還流した。混合物をセライト濾過し、濾液をトルエンで抽出した。これを減圧下で濃 縮し、得られた粗生成物をカラム精製した後、トルエンで再結晶し、化合物 3の淡黄 色粉末 2.2gが得られた (収率 21%)。このものは、マススペクトル分析の結果、目的物 であり、分子量 1106.53に対し、 m/e=l 106であった。
[0112] 合成実施例 4 (化合物 4の合成)
以下の反応工程にて、下記化合物 4を合成した。
Figure imgf000076_0001
[0113] 合成実施例 3の(3— 2)において、 1,4-ジブロモブタンの代わりにヨウ化メチルを用 いた以外は合成実施例 3と同様にして化合物 4を合成した (ィ匕合物 (4— A)力もの収 率 18%)。このものは、マススペクトル分析の結果、 目的物であり、分子量 1054.50に 対し、 m/e=1054であった。
[0114] 合成実施例 5 (化合物 5の合成)
以下の反応工程にて、下記化合物 5を合成した。
[化 63]
Figure imgf000078_0001
toluene
5-E
[0115] (5— 1)中間体(5— C)の合成
アルゴン雰囲気下、中間体(5— B) 5.0g、ァニリン 1.3g、トリス(ベンジリデンアセトン) ジパラジウム (0) 0.11g、 t-ブトキシナトリウム 1.6gのトルエン 40ml溶液にトリ- 1-ブチル ホスフィンの 0.66重量%トルエン溶液 58 1を加えて、 5時間加熱還流した。混合物を セライト濾過し、濾液をトルエンで抽出した。これを減圧下で濃縮し、得られた粗生成 物をカラム精製し、中間体 (5— C)の淡黄色粉末 4.2gが得られた (収率 74%)。
(5— 2)中間体 (5— D)の合成
銅触媒存在下、ジフエ-ルァミンと 4-ブロモヨードベンゼンとのウルマン反応により 4 -プロモトリフエ-ルァミンを合成し、これを Pd触媒存在下、ァ-リンと反応させることに より中間体(5— D) 5.2gが得られた(4-ブロモヨードベンゼンからの収率 68%)。
(5— 3)中間体 (5— E)の合成
アルゴン雰囲気下、中間体(5— D) 5.0g、 4-ブロモ -4'-クロロビフヱ-ル 3.3g、トリス( ベンジリデンアセトン)ジパラジウム (0) 0.11g、 t-ブトキシナトリウム 1.7gのトルエン 50ml 溶液にトリ- 1-ブチルホスフィンの 0.66重量%トルエン溶液 60 μ 1をカ卩えて、室温で 5時 間攪拌した。混合物をセライト濾過し、濾液をトルエンで抽出した。これを減圧下で濃 縮し、得られた粗生成物をカラム精製し、中間体 (5— Ε)の淡黄色粉末 4.8gが得られ た (収率 74%)。
(5— 4)化合物 5の合成
アルゴン雰囲気下、中間体(5— C) 4.0g、中間体(5— E) 3.7g、トリス (ベンジリデン アセトン)ジパラジウム (0) 65mg、 t-ブトキシナトリウム 0.95gのトルエン 40ml溶液にトリ- 1 -ブチルホスフィンの 0.66重量%トルエン溶液 35 1を加えて、 5時間加熱還流した。 混合物をセライト濾過し、濾液をトルエンで抽出した。これを減圧下で濃縮し、得られ た粗生成物をカラム精製し、化合物 5の淡黄色粉末 4.1gが得られた (収率 60%)。こ のものは、マススペクトル分析の結果、 目的物であり、分子量 964.45に対し、 m/e=964 であった。
[0116] 合成実施例 6 (化合物 6の合成)
以下の反応工程にて、下記化合物 6を合成した。
[化 64]
Figure imgf000080_0001
[0117] 合成実施例 5において、化合物(5— A)の代わりに化合物(6— A)を用いた以外は 同様にして化合物 6を合成した (ィ匕合物(6— A)からの収率 15%)。このものは、マス スペクトル分析の結果、 目的物であり、分子量 938.43に対し、 m/e=938であった。
[0118] 合成実施例 7 (化合物 7の合成)
以下の反応工程にて、下記化合物 7を合成した。
[化 65]
Figure imgf000082_0001
[0119] (7— 1)中間体(7— A)の合成
アルゴン雰囲気下、中間体(2— D) 5.0g、 1-ブロモ - 4'-クロロビフヱ-ル 2.5g、トリス( ベンジリデンアセトン)ジパラジウム (0) 0.084g、 t-ブトキシナトリウム 1.2gのトルエン 40 ml溶液にトリ- 1-ブチルホスフィンの 0.66重量%トルエン溶液 45 μ 1を加えて、室温で 5時間攪拌した。混合物をセライト濾過し、濾液をトルエンで抽出した。これを減圧下 で濃縮し、得られた粗生成物をカラム精製し、中間体 (7— Α)の淡黄色粉末 4.2gが得 られた (収率 71%)。
(7— 2)化合物 7の合成
アルゴン雰囲気下、中間体(7— A) 4.2g、 Ν,Ν,Ν'-トリフ -ル- 1,4 -フ -レンジアミ ン 2.7g、トリス(ベンジリデンアセトン)ジパラジウム (0) 0.060g、 t-ブトキシナトリウム 0.88 gのトルエン 40ml溶液にトリ- 1-ブチルホスフィンの 0.66重量0 /0トルエン溶液 32 μ 1を カロえて、 5時間加熱攪拌した。混合物をセライト濾過し、濾液をトルエンで抽出した。 これを減圧下で濃縮し、得られた粗生成物をカラム精製し、化合物 7の淡黄色粉末 3. 8gが得られた (収率 61%)。このものは、マススペクトル分析の結果、目的物であり、分 子量 938.43に対し、 m/e=938であった。
[0120] 合成実施例 8 (化合物 8の合成)
以下の反応工程にて、下記化合物 8を合成した。
[化 66]
Figure imgf000084_0001
Figure imgf000084_0002
[0121] 合成実施例 2の(2— 3)において、 2-ブロモ -9,9-ジメチルフルオレンの代わりに 2 -ブロモスピロ [シクロへキサン- 1,9'-フルオレン]を用いた以外は合成実施例 2と同 様にして化合物 8を合成した (ィ匕合物(8— A)からの収率 16%)。このものは、マスス ベクトル分析の結果、 目的物であり、分子量 1035.56に対し、 m/e=1135であった。 合成実施例 9 (化合物 9の合成)
以下の反応工程にて、下記化合物 9を合成した。
[化 67]
Figure imgf000086_0001
[0123] 合成実施例 7の(7—1)において、中間体(2— D)の代わりに 2 '-ブ口モスピロ [シク 口へキサン-: 1,9'-フルオレン]を用いた以外は合成実施例 7と同様にして化合物 9を 合成した (ィ匕合物(9— A)力もの収率 12%)。このものは、マススペクトル分析の結果 、 目的物であり、分子量 978.47に対し、 m/e=978であった。
[0124] 合成実施例 10 (化合物 10の合成)
以下の反応工程にて、下記化合物 10を合成した。
[化 68]
Figure imgf000088_0001
[0125] (1)中間体(10— B)の合成
アルゴン雰囲気下、 2-ブロモ - 9,9-ジメチルフルオレン(ィ匕合物(10—A) ) 27.3g、 ァ-リン 11.2g、トリス(ベンジリデンアセトン)ジパラジウム (0) 1.83g、 t-ブトキシナトリ ゥム 13.5gのトルエン 200ml溶液にトリ t-ブチルホスフィンの 0.66重量%トルエン溶液 1 .0mlを加えて、室温で 5時間攪拌した。混合物をセライト濾過し、濾液をトルエンで抽 出した。これを減圧下で濃縮し、得られた粗生成物をカラム精製し、中間体(10— B) の白色粉末 22.8gが得られた。
(2)中間体(10— C)の合成
中間体(10— B) 14.3g、 4-ブロモヨードベンゼン 14.1g、 t-ブトキシナトリウム 7.20g 、銅粉 1.90g、キシレン 50ml溶液中に Ν,Ν,-ジメチルエチレンジァミン 8.8gをカ卩え、ァ ルゴン雰囲気下 24時間加熱還流した。室温に冷却後、濾過し、不溶物を取り除き、 濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィで精製し、中間体(10— C) l 6.5gを得た。
(3)化合物 10の合成
アルゴン雰囲気下、中間体(10— C) 9.68g、 Ν,Ν,-ジフエ-ルペンジジン 3.36g、ト リス(ベンジリデンアセトン)ジパラジウム (0) 0.366g、 t-ブトキシナトリウム 2.69gのトル ェン 50ml溶液にトリ t-ブチルホスフィンの 0.66重量0/。トルエン溶液 0.20mlを加えて、 80 °Cで 5時間攪拌した。室温まで冷却後、混合物をセライト濾過し、濾液をトルエンで 抽出した。これを減圧下で濃縮し、得られた粗生成物をカラム精製し、化合物 10の 黄色粉末 8.26gが得られた。このものは、マススペクトル分析の結果、 目的物であり、 分子量 1054.50に対し、 m/e=1054であった。
[0126] 実施例 1
25mm X 75mm X 1. 1mm厚の ITO透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホ ルダ一に装着し、まず透明電極ラインが形成されている側の面上に、前記透明電極 を覆うようにして膜厚 60nmの化合物 1膜を正孔注入材料として抵抗加熱蒸着により 成膜した。この化合物 1膜は、正孔注入層として機能する。次に、この化合物 1膜上 に膜厚 20nmの 4, 4,—ビス [N— (1—ナフチル)—N フエ-ルァミノ]ビフエ-ル膜 (以下「NPD膜」と略記する。 )を正孔輸送材料として抵抗加熱蒸着により成膜した。 この NPD膜は正孔輸送層として機能する。さらに、この NPD膜上に膜厚 40nmで 9 一(2 ナフチル) 10— [4一(1 ナフチル)フエ-ル]アントラセン(以下「AN—1」 と略記する。)とを抵抗加熱蒸着により成膜した。同時に発光分子として、下記のスチ リル基を有するァミン化合物 D— 1を AN— 1に対し重量比 2 :40で蒸着した。この膜 は、発光層として機能する。この膜上に膜厚 10nmの Alq膜を成膜した。この Alq膜 は、電子注入層として機能する。この後、還元性ドーパントである Li (Li源:サエスゲッ ター社製)と Alqを二元蒸着させ、電子注入層(陰極)として Alq :Li膜 (膜厚 lOnm) を形成した。この Alq:Li膜上に金属 A1を蒸着させ金属陰極を形成し有機 EL素子を 作製した。
得られた素子に電圧 13 (V)で通電した際の電流密度、発光効率を測定した結果 及び発光色を表 1に示す。また、この素子を初期輝度 lOOOcdZm2にて定電流駆動 させた際の半減寿命 (時間)を表 1に示す。
[0127] [化 69]
Figure imgf000090_0001
NPD AN-1
[0128] 実施例 2〜8 実施例 1にお ヽて、正孔注入層を形成する正孔注入材料として化合物 1の代わりに 、表 1に記載の化合物を用いた以外は同様にして有機 EL素子を作製した。
得られた素子に電圧 13 (V)で通電した際の電流密度、発光効率を測定した結果 及び発光色を表 1に示す。また、この素子を初期輝度 lOOOcdZm2にて定電流駆動 させた際の半減寿命 (時間)を表 1に示す。
[0129] 比較例 1〜2
実施例 1にお ヽて、正孔注入層を形成する正孔注入材料として化合物 1の代わりに ゝ下記 N, N,一ビス(N, N,一ジフエ-ル一 4—ァミノフエ-ル) N, N ジフエ-ル —4, 4,—ジァミノ— 1, 1,—ビフエ-ル膜 (TPD232膜)(比較例 1)、下記化合物( A) (比較例 2)を用いた以外は同様にして有機 EL素子を作製した。
得られた素子に電圧 13 (V)で通電した際の電流密度、発光効率を測定した結果 及び発光色を表 1に示す。また、この素子を初期輝度 lOOOcdZm2にて定電流駆動 させた際の半減寿命 (時間)を表 1に示す。
[化 70]
Figure imgf000091_0001
[0130] [表 1] a l
Figure imgf000092_0001
表 1に示したように、本発明の化合物を正孔注入層に用いた有機 EL素子は、長寿 命でかつ、正孔注入、輸送性が高いため高発光効率である。また、 TPD232の Tgは 111°C、化合物(A)の Tgは 117°Cであるのに対し、本発明の化合物 1、 2、 5及び 6 〜9では 130°C以上の Tgを有し熱的にも安定である。
[0131] 実施例 9
実施例 1にお ヽて、正孔注入層を形成する正孔注入材料として化合物 1の代わりに TPD232を用い、正孔輸送層を形成する正孔輸送材料として NPDの代わりに化合 物 3を用いた以外は同様にして有機 EL素子を作製した。
得られた素子に電圧 13 (V)で通電した際の電流密度、発光効率を測定した結果 及び発光色を表 2に示す。また、この素子を初期輝度 lOOOcdZm2にて定電流駆動 させた際の半減寿命 (時間)を表 2に示す。
実施例 10
実施例 9にお 、て、正孔輸送層を形成する正孔輸送材料として化合物 3の代わりに 、化合物 4を用いた以外は同様にして有機 EL素子を作製した。
得られた素子に電圧 13 (V)で通電した際の電流密度、発光効率を測定した結果 及び発光色を表 2に示す。また、この素子を初期輝度 lOOOcdZm2にて定電流駆動 させた際の半減寿命 (時間)を表 2に示す。
[0132] 比較例 3〜5
実施例 9にお 、て、正孔輸送層を形成する正孔輸送材料として化合物 3の代わりに 、 NPD (比較例 3)、下記化合物 (B) (比較例 4)、下記化合物 (C) (比較例 5)を用い た以外は同様にして有機 EL素子を作製した。
得られた素子に電圧 13 (V)で通電した際の電流密度、発光効率を測定した結果 及び発光色を表 2に示す。また、この素子を初期輝度 lOOOcdZm2にて定電流駆動 させた際の半減寿命 (時間)を表 2に示す。
[化 71]
Figure imgf000093_0001
[0133] [表 2] 表 2
Figure imgf000093_0002
表 2に示したように、本発明の化合物を正孔輸送層を用いた実施例 9〜10の有機 EL素子は、正孔注入、輸送性が高ぐ比較例 4に比べて、寿命が大幅に長い。また 、 NPDの Tgは 95°C、化合物(B)の Tgは 120°Cであるのに対し、本発明の化合物 3 の Tgは 157°C、化合物 4の Tgは 158°Cを有し熱的にも安定である。
[0134] 実施例 11
25mm X 75mm X 1. 1mm厚の ITO透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホ ルダ一に装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を 覆うようにして膜厚 60nmの TPD232膜を成膜した。この TPD232膜は、正孔注入 層として機能する。次に、この TPD232膜上に膜厚 20nmの化合物 3を成膜した。こ の膜は正孔輸送層として機能する。さらに膜厚 40nmの 4,4'-ビス (カルバゾリル)ビフ ニル (以下「CBP」と略記する。)を蒸着し成膜した。同時にりん光発光性の Ir金属 錯体ドーパントとしてトリス(2—フエ-ルビリジン)イリジウム(以下「Ir(ppy)3」と略記す る。)を添加した。発光層中における Ir(ppy)3の濃度は 5重量%とした。この膜上に膜 厚 lOnmの下記(1, 1,一ビスフエ-ル)ー4ーォラート)ビス(2—メチルー 8—キノリノ ラート)アルミニウム (以下、「BAlq膜」と略記する。)を成膜した。この BAlq膜は正孔 障壁層として機能する。さらにこの膜上に膜厚 40nmの Alq膜を成膜した。この Alq膜 は電子注入層として機能する。この後、ハロゲンィ匕アルカリ金属である LiFを 0. 2nm の厚さに蒸着し、次いでアルミニウムを 150nmの厚さに蒸着した。この AlZLiFは陰 極として働く。このようにして有機 EL素子を作製した。
得られた素子に電圧を印加したところ、均質な緑色発光が得られた。このように、本 発明の化合物は、りん光発光素子の正孔輸送層の材料としても用いることができる。
[0135] [化 72]
Figure imgf000094_0001
[0136] 実施例 12
25mm X 75mm X 1. 1mm厚の ITO透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。その基板の上に、スピンコート法で正孔注入層に用いるポリエチレ ンジ才キシチ才フェン Ζポリスチレンスノレホン酸 (PEDOT/PSS)を lOOnmの膜厚 で成膜し、っ 、でィ匕合物 4のトルエン溶液を用いて PEDOTZPSSの上に正孔輸送 層層をスピンコート法で成膜した。この時の膜厚は lOnmであった。この化合物 4の膜 上に膜厚 30nmで上記 AN— 1を抵抗加熱蒸着により成膜した。同時に発光分子とし て、スチリル基を有するアミンィ匕合物 D— 1を AN— 1に対し重量比 2 :40で蒸着した。 この膜は、発光層として機能する。この膜上に膜厚 lOnmの Alq膜を成膜した。この A lq膜は、電子注入層として機能する。この後、還元性ドーパントである Li (Li源:サェ スゲッター社製)と Alqを二元蒸着させ、電子注入層(陰極)として Alq: Li膜を形成し た。この Alq :Li膜上に金属 A1を蒸着させ金属陰極を形成し有機 EL素子を形成した 得られた素子は直流電圧 6. OVで lOmAZcm2の電流が流れ、発光輝度 280cd /m2の青色発光が観測された。発光効率は 2. 8cdZAであった。
産業上の利用可能性
以上詳細に説明したように、本発明の芳香族アミンィ匕合物を用いた有機 EL素子は 、種々の発光色相を呈し、耐熱性が高ぐ特に、本発明の芳香族ァミン化合物を正孔 注入、輸送材料として用いると、正孔注入、輸送性が高く高発光輝度及び高発光効 率で、長寿命である。このため、本発明の有機 EL素子は、実用性が高ぐ壁掛テレビ の平面発光体やディスプレイのノ ックライト等の光源として有用である。

Claims

請求の範囲 [1] 下記一般式(1)で表される芳香族アミンィ匕合物。 [化 1]
( 1 )
(式中、 Ar^Ar"は、それぞれ独立に、置換もしくは無置換の核炭素数 5〜60のァリ ール基、又は置換もしくは無置換の核炭素数 3〜50のへテロアリール基である。
L1〜L3は、それぞれ独立に、置換もしくは無置換の核炭素数 5〜60のァリーレン 基、又は置換もしくは無置換の核炭素数 3〜50のへテロアリーレン基である。
ただし、一般式(1)は、下記 (i)及び Z又は (ii)の条件を満たす。
(i)八 〜八 のうち少なくとも一つが置換もしくは無置換のフルォレニル含有基。
(ii) L2及び/又は L3が置換もしくは無置換のフルォレニレン含有基。 )
[2] 前記一般式(1)において、八 〜八 のうち少なくとも一つが下記一般式(1 a)で 表されるフルォレニル含有基である請求項 1に記載の芳香族ァミン化合物。
[化 2]
Figure imgf000096_0002
( 1一 a )
(R1及び R2は、それぞれ独立に、水素原子又は置換基であり、 R1 R2が結合して環 状構造を形成してもよい。
R3及び R4は、それぞれ独立に、置換基であり、 aは 0〜3の整数、 bは 0〜4の整数 である。 R3が複数の場合には R3同士が結合して環状構造を形成してもよぐ R4が複 数の場合には R4同士が結合して環状構造を形成してもよ 、。
L4は、単結合、置換もしくは無置換の核炭素数 5〜60のァリーレン基、又は置換も しくは無置換の核炭素数 3〜50のへテロアリーレン基である。 )
前記一般式(1 a)で表されるフルォレニル含有基が下記一般式(1 b)で表され るフルォレニル含有基である請求項 2に記載の芳香族ァミン化合物。
[化 3]
Figure imgf000097_0001
( 1一 b )
(R9は環状構造を形成する原子団であり、 R3、 R4、 a、 b及び L4は前記と同じである。 )
前記一般式(1)において、 L2及び/又は L3が下記一般式(2— a)で表されるフル ォレニレン含有基である請求項 1に記載の芳香族アミンィ匕合物。
[化 4]
Figure imgf000097_0002
( 2 - a )
(R5及び R6は、それぞれ独立に、水素原子又は置換基であり、 R5 tR6が結合して環 状構造を形成してもよい。
R7及び R8は、それぞれ独立に、置換基であり、 c及び dはそれぞれ 0〜3の整数で ある。 R7が複数の場合には R7同士が結合して環状構造を形成してもよぐ R8が複数 の場合には R8同士が結合して環状構造を形成してもよ 、。
L5及び L6は、それぞれ独立に、単結合、置換もしくは無置換の核炭素数 5〜60の ァリーレン基、又は置換もしくは無置換の核炭素数 3〜50のへテロアリーレン基であ る。)
前記一般式(2— a)で表されるフルォレニレン含有基が下記一般式(2— b)で表さ れるフルォレニレン含有基である請求項 3に記載の芳香族ァミン化合物。
[化 5]
Figure imgf000098_0001
( 2 - b )
(R1Qは環状構造を形成する原子団であり、
Figure imgf000098_0002
C、 d、 L5及び L6は前記と同じで ある。)
[6] 有機エレクト口ルミネッセンス素子用材料である請求項 1に記載の芳香族アミンィ匕合 物。
[7] 有機エレクト口ルミネッセンス素子用正孔輸送材料又は有機エレクト口ルミネッセン ス素子用正孔注入材料である請求項 6に記載の芳香族ァミン化合物。
[8] 有機エレクト口ルミネッセンス素子用発光材料である請求項 6に記載の芳香族ァミン 化合物。
[9] 陰極と陽極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が 挟持されている有機エレクト口ルミネッセンス素子において、該有機薄膜層の少なくと も一層が、請求項 1に記載の芳香族アミンィ匕合物を単独もしくは混合物の成分として 含有する有機エレクト口ルミネッセンス素子。
[10] 前記有機薄膜層が正孔輸送帯域及び Z又は正孔注入帯域を有し、前記芳香族ァ ミンィ匕合物が該正孔輸送帯域及び Z又は正孔注入帯域に含有されている請求項 9 に記載の有機エレクト口ルミネッセンス素子。
[11] 前記有機薄膜層が正孔輸送層及び Z又は正孔注入層を有し、前記芳香族ァミン 化合物が該正孔輸送層及び Z又は正孔注入層に含有されて 、る請求項 9に記載の 有機エレクト口ルミネッセンス素子。
[12] 前記正孔輸送層及び Z又は正孔注入層が主として前記芳香族ァミン化合物を含 有する請求項 11に記載の有機エレクト口ルミネッセンス素子。
[13] 前記芳香族アミンィ匕合物を含有する層が前記陽極と接している請求項 9に記載の 有機エレクト口ルミネッセンス素子。
[14] 前記陽極と接している層の主成分が前記芳香族アミンィ匕合物である請求項 9に記 載の有機エレクト口ルミネッセンス素子。
[15] 前記有機薄膜層が、前記芳香族ァミン化合物と発光材料とを含有する層を有する 請求項 9に記載の有機エレクト口ルミネッセンス素子。
[16] 前記有機薄膜層が、前記芳香族ァミン化合物を含有する正孔輸送層及び Z又は 前記芳香族ァミン化合物を含有する正孔注入層と、りん光発光性の金属錯体及びホ スト材料力 なる発光層との積層を有する請求項 9に記載の有機エレクト口ルミネッセ ンス素子。
PCT/JP2005/019122 2004-10-29 2005-10-18 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子 WO2006046441A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/576,892 US20070287029A1 (en) 2004-10-29 2005-10-18 Aromatic Amine Compound and Organic Electroluminescent Device Using Same
JP2006543003A JPWO2006046441A1 (ja) 2004-10-29 2005-10-18 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
EP05795839A EP1806334A1 (en) 2004-10-29 2005-10-18 Aromatic amine compound and organic electroluminescent device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004316937 2004-10-29
JP2004-316937 2004-10-29

Publications (1)

Publication Number Publication Date
WO2006046441A1 true WO2006046441A1 (ja) 2006-05-04

Family

ID=36227683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019122 WO2006046441A1 (ja) 2004-10-29 2005-10-18 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20070287029A1 (ja)
EP (1) EP1806334A1 (ja)
JP (1) JPWO2006046441A1 (ja)
KR (1) KR20070068419A (ja)
CN (1) CN101048364A (ja)
TW (1) TW200624534A (ja)
WO (1) WO2006046441A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023759A1 (fr) * 2006-08-23 2008-02-28 Idemitsu Kosan Co., Ltd. Dérivés d'amines aromatiques et dispositifs électroluminescents organiques utilisant ces mêmes amines
WO2008072400A1 (ja) * 2006-12-15 2008-06-19 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2008105294A1 (ja) * 2007-02-28 2008-09-04 Idemitsu Kosan Co., Ltd. 有機el素子
JP2009027094A (ja) * 2007-07-23 2009-02-05 Sony Corp 有機電界発光素子および表示装置
JP2009040731A (ja) * 2007-08-09 2009-02-26 Tosoh Corp 新規なベンゾ[c]フルオレン誘導体及びその用途
JP2009040730A (ja) * 2007-08-09 2009-02-26 Tosoh Corp 新規なベンゾ[c]フルオレン誘導体及びその用途
EP2031670A4 (en) * 2006-06-22 2011-05-04 Idemitsu Kosan Co A HETEROCYCLES-CONTAINING ARYLAMINE DERIVATIVE ORGANIC ELECTROLUMINESCENT DEVICE
KR101111413B1 (ko) 2011-06-29 2012-02-15 덕산하이메탈(주) 다이아릴아민 유도체를 이용하는 유기전기소자, 유기전기소자용 신규 화합물 및 조성물
US8187728B2 (en) 2007-07-23 2012-05-29 Sony Corporation Organic electroluminescent device and display device
JP2014503106A (ja) * 2010-12-20 2014-02-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 閉じ込め層およびそれを使って製造されるデバイスを製造するための方法および材料
JP5722238B2 (ja) * 2010-01-15 2015-05-20 出光興産株式会社 含窒素複素環誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
JP2016204384A (ja) * 2007-12-03 2016-12-08 株式会社半導体エネルギー研究所 化合物
WO2017086357A1 (ja) * 2015-11-17 2017-05-26 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1834946A4 (en) * 2005-01-05 2009-04-29 Idemitsu Kosan Co AROMATIC AMINE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT DEVICE USING THIS
JP5268247B2 (ja) * 2005-12-20 2013-08-21 キヤノン株式会社 4−アミノフルオレン化合物及び有機発光素子
JPWO2011090149A1 (ja) * 2010-01-21 2013-05-23 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP6088161B2 (ja) * 2012-06-29 2017-03-01 出光興産株式会社 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
CN104037339B (zh) * 2014-06-25 2016-05-18 上海道亦化工科技有限公司 一种有机电致发光器件
CN104073248B (zh) * 2014-06-25 2016-01-20 上海道亦化工科技有限公司 一种基于芴的空穴传输化合物
TWI515221B (zh) 2014-07-02 2016-01-01 國立臺灣科技大學 醇溶性共軛高分子及其應用
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US10672996B2 (en) 2015-09-03 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
TWI633327B (zh) * 2017-01-25 2018-08-21 國立高雄科技大學 含芴的化合物、製備含芴的化合物的方法、可固化組成物及固化物
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US20200075870A1 (en) 2018-08-22 2020-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US20200251664A1 (en) 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices
CN111410640B (zh) * 2020-04-10 2021-02-02 长春海谱润斯科技股份有限公司 一种联苯四胺化合物和有机电致发光器件
JP2024533249A (ja) * 2021-09-13 2024-09-12 エルジー・ケム・リミテッド 化合物、これを含むコーティング組成物、これを用いた有機発光素子、およびその製造方法
CN114920720B (zh) * 2022-06-24 2024-01-26 长春海谱润斯科技股份有限公司 一种芳香胺化合物及其有机电致发光器件

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176574A (ja) * 1997-12-10 1999-07-02 Mitsui Chem Inc 有機電界発光素子
JPH11185965A (ja) * 1997-12-18 1999-07-09 Mitsui Chem Inc 有機電界発光素子
WO2000014174A1 (fr) * 1998-09-09 2000-03-16 Idemitsu Kosan Co., Ltd. Dispositif organique electroluminescent et derive de phenylenediamine
JP2001226331A (ja) * 2000-02-14 2001-08-21 Mitsui Chemicals Inc アミン化合物および該化合物を含有する有機電界発光素子
JP2002080595A (ja) * 2000-09-08 2002-03-19 Chemiprokasei Kaisha Ltd 新規フルオレン含有アリールアミン共重合体、その製造方法およびそれを用いた有機el素子
DE10109463A1 (de) * 2001-02-27 2002-10-02 Syntec Ges Fuer Chemie Und Tec Neue Triarylamin-Tetramere und ihr Einsatz in elektrofotografischen und organischen elektroluminiszenten Vorrichtungen
JP2004109999A (ja) * 2002-08-30 2004-04-08 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2005164663A (ja) * 2003-11-28 2005-06-23 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2005208111A (ja) * 2004-01-20 2005-08-04 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2005208110A (ja) * 2004-01-20 2005-08-04 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2005221539A (ja) * 2004-02-03 2005-08-18 Konica Minolta Business Technologies Inc 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2005241973A (ja) * 2004-02-26 2005-09-08 Canon Inc 電子写真感光体、該電子写真感光体を有するプロセスカートリッジ、および電子写真装置
JP2005241975A (ja) * 2004-02-26 2005-09-08 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2005276832A (ja) * 2004-03-22 2005-10-06 Lg Electron Inc 有機電界発光素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728576A (en) * 1987-04-10 1988-03-01 Hoechst Celanese Corporation Langmuir-Blodgett coating process
WO2006103848A1 (ja) * 2005-03-25 2006-10-05 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR101267114B1 (ko) * 2005-04-18 2013-05-23 이데미쓰 고산 가부시키가이샤 방향족 트라이아민 화합물 및 그것을 이용한 유기 전기발광소자

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176574A (ja) * 1997-12-10 1999-07-02 Mitsui Chem Inc 有機電界発光素子
JPH11185965A (ja) * 1997-12-18 1999-07-09 Mitsui Chem Inc 有機電界発光素子
WO2000014174A1 (fr) * 1998-09-09 2000-03-16 Idemitsu Kosan Co., Ltd. Dispositif organique electroluminescent et derive de phenylenediamine
JP2001226331A (ja) * 2000-02-14 2001-08-21 Mitsui Chemicals Inc アミン化合物および該化合物を含有する有機電界発光素子
JP2002080595A (ja) * 2000-09-08 2002-03-19 Chemiprokasei Kaisha Ltd 新規フルオレン含有アリールアミン共重合体、その製造方法およびそれを用いた有機el素子
DE10109463A1 (de) * 2001-02-27 2002-10-02 Syntec Ges Fuer Chemie Und Tec Neue Triarylamin-Tetramere und ihr Einsatz in elektrofotografischen und organischen elektroluminiszenten Vorrichtungen
JP2004109999A (ja) * 2002-08-30 2004-04-08 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2005164663A (ja) * 2003-11-28 2005-06-23 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2005208111A (ja) * 2004-01-20 2005-08-04 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2005208110A (ja) * 2004-01-20 2005-08-04 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2005221539A (ja) * 2004-02-03 2005-08-18 Konica Minolta Business Technologies Inc 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2005241973A (ja) * 2004-02-26 2005-09-08 Canon Inc 電子写真感光体、該電子写真感光体を有するプロセスカートリッジ、および電子写真装置
JP2005241975A (ja) * 2004-02-26 2005-09-08 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2005276832A (ja) * 2004-03-22 2005-10-06 Lg Electron Inc 有機電界発光素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE CAPLUS [online] BELFIELD KD ET AL: "Synthesis and characterization of a two-photon absorbing and luminescent aminofluorenyl polymer.", XP002994913, Database accession no. (137:20673) *
POLYMER PREPRINTS., vol. 43, no. 1, 2002, pages 104 - 105 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10263192B2 (en) 2006-06-22 2019-04-16 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using aryl amine derivative containing heterocycle
US9960360B2 (en) 2006-06-22 2018-05-01 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using aryl amine derivative containing heterocycle
US11678571B2 (en) 2006-06-22 2023-06-13 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using aryl amine derivative containing heterocycle
US11152574B2 (en) 2006-06-22 2021-10-19 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using aryl amine derivative containing heterocycle
US11094888B2 (en) 2006-06-22 2021-08-17 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using aryl amine derivative containing heterocycle
US10283717B2 (en) 2006-06-22 2019-05-07 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using aryl amine derivative containing heterocycle
EP2031670A4 (en) * 2006-06-22 2011-05-04 Idemitsu Kosan Co A HETEROCYCLES-CONTAINING ARYLAMINE DERIVATIVE ORGANIC ELECTROLUMINESCENT DEVICE
US9112167B2 (en) 2006-08-23 2015-08-18 Idemitsu Kosan Company, Limited Aromatic amine derivatives and organic electroluminescent device using same
WO2008023759A1 (fr) * 2006-08-23 2008-02-28 Idemitsu Kosan Co., Ltd. Dérivés d'amines aromatiques et dispositifs électroluminescents organiques utilisant ces mêmes amines
CN101506191B (zh) * 2006-08-23 2014-06-25 出光兴产株式会社 芳香族胺衍生物及用它们形成的有机电致发光元件
US8044222B2 (en) 2006-08-23 2011-10-25 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescent device using same
TWI488848B (zh) * 2006-08-23 2015-06-21 Idemitsu Kosan Co Aromatic amine derivatives and organic electroluminescent elements using the same
WO2008072400A1 (ja) * 2006-12-15 2008-06-19 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2008105294A1 (ja) * 2007-02-28 2008-09-04 Idemitsu Kosan Co., Ltd. 有機el素子
US8187728B2 (en) 2007-07-23 2012-05-29 Sony Corporation Organic electroluminescent device and display device
JP2009027094A (ja) * 2007-07-23 2009-02-05 Sony Corp 有機電界発光素子および表示装置
JP2009040731A (ja) * 2007-08-09 2009-02-26 Tosoh Corp 新規なベンゾ[c]フルオレン誘導体及びその用途
JP2009040730A (ja) * 2007-08-09 2009-02-26 Tosoh Corp 新規なベンゾ[c]フルオレン誘導体及びその用途
US10556864B2 (en) 2007-12-03 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light-emitting element, light-emitting device, and electronic device using the carbazole derivative
JP2016204384A (ja) * 2007-12-03 2016-12-08 株式会社半導体エネルギー研究所 化合物
US12110274B2 (en) 2007-12-03 2024-10-08 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light-emitting element, light-emitting device, and electronic device using carbazole derivative
JP5722238B2 (ja) * 2010-01-15 2015-05-20 出光興産株式会社 含窒素複素環誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
JP2014503106A (ja) * 2010-12-20 2014-02-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 閉じ込め層およびそれを使って製造されるデバイスを製造するための方法および材料
KR101111413B1 (ko) 2011-06-29 2012-02-15 덕산하이메탈(주) 다이아릴아민 유도체를 이용하는 유기전기소자, 유기전기소자용 신규 화합물 및 조성물
WO2017086357A1 (ja) * 2015-11-17 2017-05-26 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
KR20070068419A (ko) 2007-06-29
EP1806334A1 (en) 2007-07-11
US20070287029A1 (en) 2007-12-13
TW200624534A (en) 2006-07-16
JPWO2006046441A1 (ja) 2008-05-22
CN101048364A (zh) 2007-10-03

Similar Documents

Publication Publication Date Title
KR101551591B1 (ko) 방향족 아민 유도체 및 그들을 이용한 유기 전기 발광 소자
WO2006046441A1 (ja) 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
US8088901B2 (en) Azaindenofluorenedione derivative, material for organic electroluminescence device and organic electroluminescence device
US7405326B2 (en) Aromatic amine derivatives and electroluminescence device using the same
JP5193295B2 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2008032631A1 (fr) Dérivé d&#39;amine aromatique et dispositif électroluminescent organique l&#39;employant
WO2006114921A1 (ja) 芳香族トリアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007080704A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008001551A1 (fr) Dérivé d&#39;amine aromatique et dispositif a électroluminescence organique utilisant celui-ci
JP3895178B2 (ja) アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007102361A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007018004A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007111263A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006001333A1 (ja) 多環芳香族系化合物、発光性塗膜形成用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2008023549A1 (fr) Dérivés d&#39;amines aromatiques et dispositifs électroluminescents organiques fabriqués à l&#39;aide de ces dérivés
WO2006073054A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008072400A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007111262A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007007464A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR20100038193A (ko) 방향족 아민 유도체 및 그것을 사용한 유기 전기 발광 소자
WO2007018007A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007142216A1 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料
WO2007063993A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008062636A1 (en) Aromatic amine derivative and organic electroluminescent element using the same
WO2006006505A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006543003

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005795839

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11576892

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580036515.6

Country of ref document: CN

Ref document number: 1020077009412

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1815/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005795839

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11576892

Country of ref document: US