WO1996013140A1 - High-frequency heating device - Google Patents

High-frequency heating device Download PDF

Info

Publication number
WO1996013140A1
WO1996013140A1 PCT/JP1995/002145 JP9502145W WO9613140A1 WO 1996013140 A1 WO1996013140 A1 WO 1996013140A1 JP 9502145 W JP9502145 W JP 9502145W WO 9613140 A1 WO9613140 A1 WO 9613140A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
heated
electromagnetic wave
frequency heating
food
Prior art date
Application number
PCT/JP1995/002145
Other languages
English (en)
French (fr)
Inventor
Koji Yoshino
Takashi Kashimoto
Makoto Shibuya
Hirohisa Imai
Akira Ahagon
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP06255066A external-priority patent/JP3082597B2/ja
Priority claimed from JP6274997A external-priority patent/JP3063545B2/ja
Priority claimed from JP6274999A external-priority patent/JP3063546B2/ja
Priority claimed from JP07124749A external-priority patent/JP3103745B2/ja
Priority claimed from JP7175744A external-priority patent/JP2894250B2/ja
Priority claimed from JP19170095A external-priority patent/JP2853610B2/ja
Priority to KR1019970702565A priority Critical patent/KR100270747B1/ko
Priority to EP95934842A priority patent/EP0788296B1/en
Priority to BR9509398-2A priority patent/BR9509398A/pt
Priority to DE69534104T priority patent/DE69534104T2/de
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US08/809,436 priority patent/US5986249A/en
Priority to AU37096/95A priority patent/AU695236B2/en
Priority to CA002202976A priority patent/CA2202976C/en
Publication of WO1996013140A1 publication Critical patent/WO1996013140A1/ja
Priority to HK98100815A priority patent/HK1001810A1/xx
Priority to HK98101247A priority patent/HK1002218A1/xx
Priority to US09/373,644 priority patent/US6172348B1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6408Supports or covers specially adapted for use in microwave heating apparatus
    • H05B6/6411Supports or covers specially adapted for use in microwave heating apparatus the supports being rotated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/74Mode transformers or mode stirrers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/688Circuits for monitoring or control for thawing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/704Feed lines using microwave polarisers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a high-frequency heating device for heating an object to be heated such as food.
  • a microwave oven which is a typical high-frequency heating device, had a configuration as shown in FIGS.
  • the microwave oven shown in FIG. 1 has a general configuration using a turntable 1.
  • the electromagnetic wave emitted from the magnetron 2 as the electromagnetic wave radiating means is transmitted through the waveguide 3, and the shape of the heating chamber 4 and the shape of the opening 5 through which the electromagnetic wave is radiated into the heating chamber 4 in the heating chamber 4.
  • the food 6 is distributed as a standing wave determined by the position, and the food 6 generates heat according to the electric field component of the standing wave and the dielectric loss of the food 6.
  • the power P [W / m 3 ] absorbed per unit volume of the food is the applied electric field strength E [VZm], the frequency f [H z], and the relative permittivity ⁇ r of the food 6 and the dielectric loss tangent tan ⁇ Is represented by equation (1). Since the heating distribution of the food 6 is generally determined by the standing wave distribution of the electromagnetic wave, the turntable 1 is driven to rotate to achieve uniform heating distribution on concentric circles in order to suppress uneven heating distribution.
  • (5/9) ⁇ r tan 5 f-E 2 1 0 '10 0 [W / m 3 ] (1)
  • 19 is the control means
  • 22 is the motor
  • 23 is a weight sensor
  • 27 is a fan.
  • Other stabilization means include a stirrer method in which electromagnetic waves are agitated by constant rotation of a metal plate in a heating chamber, or a rotating waveguide having a coupling portion from a waveguide 3 as shown in FIG. (Emission part) 8 Some electromagnetic waves are drawn out and emitted through the emission port 9, so that the opening itself is rotated at a constant rate.
  • the rotating waveguide 8 is 96
  • the heating chamber 4 is formed on the bottom of the heat chamber 4 and is always rotated at a constant speed by the motor 10. The entire bottom of the heating chamber 4 is covered with a cover 11 made of a material through which electromagnetic waves can pass.
  • the turntable type is the most commercially available.
  • the outlet of the electromagnetic wave is switched to achieve uniformity by having a plurality of openings.
  • Fig. 3 shows a type in which two openings 5 are provided on the wall surface of the heating chamber 4 (Japanese Patent Laid-Open Publication No. Hei 4-1319287).
  • the end faces 14 of the two sub-waveguides 13 are moved at positions facing the plurality of openings 5 to switch the openings 5 where apparent electromagnetic waves are likely to be emitted, thereby aiming for uniformity.
  • FIG. 5 there is also a type in which the metal portion 12 is moved in a single waveguide 3 having a plurality of openings 5 to switch the openings 5 where an electromagnetic wave is likely to appear, thereby aiming at uniformity.
  • Japanese Unexamined Patent Publication No. Hei 3-1-1588 Japanese Unexamined Patent Publication No. Hei 5-121160.
  • Figs. 6 and 7 there is a heating chamber having a plurality of openings 5 at the upper and lower portions, and the lower opening 5 is switched to achieve uniformity. No. 793).
  • the heating proceeds from the edge It is generally known that significant uneven heating occurs in which the center remains cold. Also, as a feature of the position of the opening, if an opening is provided near the center of the bottom of the heating chamber, the bottom of the food will be heated, and if it is a liquid food with convection, it can be heated evenly. The food had a problem that the temperature rose only on the bottom. At this time, if the turntable is used, the heating distribution on the concentric circle can be made uniform, but no matter how much the turntable is rotated, the distribution in the radial direction and the distribution in the vertical direction viewed from the center of rotation are not improved. .
  • stirrers and rotating waveguides which stir electromagnetic waves
  • the electric field distribution is changed as if the openings are switched in accordance with the rotation. It has the effect of avoiding some concentration.
  • heating is performed by repeating the same electric field distribution every rotation of any food, so complete uniformity cannot be achieved.
  • the waveguide for guiding electromagnetic waves is switched by controlling the oscillation of each magnetron. For this reason, the opening from which the electromagnetic wave is emitted also switches, and there is a problem in that the force and magnetron, which are a little effective for uniform heating distribution, become expensive, and the weight becomes heavy and difficult to carry.
  • the opening 5 is located only on the side surface, and the distance from the opening 5 to the food 6 is long.
  • the heating distribution can be made uniform as compared with other conventional configurations.
  • electromagnetic waves are always emitted from the upper part, the surroundings of food are easily heated, and it is not possible to heat the part between one lower opening and the adjacent lower opening. there were.
  • what can be said in common with the conventional configurations of FIGS. 1, 3, 4, 5, 6, and 7 is that only the portion having the opening 5 can concentrate the electromagnetic waves, which may cause uneven heating. It is that there is.
  • whether the electromagnetic wave is easy or difficult to enter the heating chamber 4 is determined by matching, where the opening 5 is located in the heating chamber 4, the length of the waveguide 3 and the opening from the magnetron 2. It changes depending on the distance to 5.
  • the ease with which an electromagnetic wave is emitted from the inside of the waveguide 3 changes at a period of g g 2, where g is the guide wavelength of the electromagnetic wave. Therefore, when a plurality of openings 5 are provided, matching has to be adjusted in accordance with each of the openings 5 in order to emit electromagnetic waves equally from any of the openings 5.
  • Sensors that detect the state of food with sensors and perform feedback control include weight sensors, humidity sensors, temperature sensors, electromagnetic field detection sensors, steam detection sensors, alcohol detection sensors, etc. Some have detected a change in state from the beginning or have detected the end of heating. However, none of the sensors has actually been used for detecting heating distribution or performing feedback control so as to correct uneven heating.
  • the present invention has been made in view of such problems of the prior art, and heats an arbitrary part of an object to be heated, and combines the heating of various parts to obtain an overall heating distribution.
  • the aim is to provide a high-frequency heating device that can be made uniform.
  • the present invention heats an arbitrary portion of the object to be heated, and does not heat the portion to be heated. It is an object of the present invention to provide a high-frequency heating device capable of distinguishing parts. Another object of the present invention is to provide a high-frequency heating device that maintains or improves the heating efficiency and further enhances reliability.
  • Another object of the present invention is to provide a high-frequency heating device capable of heating an arbitrary portion of an object to be heated as set or automatically. Disclosure of the invention
  • a high-frequency heating device of the present invention includes: an electromagnetic wave radiating unit that radiates an electromagnetic wave; a local heating unit that can heat an arbitrary portion of an object to be heated with the electromagnetic wave radiated by the electromagnetic wave radiating unit; Control means for controlling the local heating means.
  • FIG. 1 is a configuration diagram of a conventional high-frequency heating device.
  • FIG. 2 is a configuration diagram of another conventional high-frequency heating device.
  • FIG. 3 is a configuration diagram of still another conventional high-frequency heating device.
  • FIG. 4 is a configuration diagram of still another conventional high-frequency heating device.
  • FIG. 5 is a configuration diagram of still another conventional high-frequency heating device.
  • FIG. 6 is a configuration diagram of still another conventional high-frequency heating device.
  • FIG. 7 is a cross-sectional view of a main part of the high-frequency heating device shown in FIG.
  • FIG. 8 is a configuration diagram of the high-frequency heating device according to the first embodiment of the present invention.
  • FIG. 9 is a configuration diagram of a main part of the high-frequency heating device shown in FIG.
  • FIG. 10 shows a rotating waveguide provided in the high-frequency heating device shown in FIG. 8 and a driving unit thereof, (a) is a plan view of the rotating waveguide, and (b) is a rotating waveguide. It is a longitudinal cross-sectional view of a wave tube and a drive part, and (c) is a figure which shows the engagement state of the cam and switch provided in the drive part.
  • FIG. 11 is a bottom view of the high-frequency heating device shown in FIG.
  • Fig. 12 shows the heating state of food stored in the heating chamber of the high-frequency heating device shown in Fig. 8. It is a figure showing a state.
  • FIG. 13 is a diagram showing a state of heating the food when the food and the rotating waveguide are rotated from the state shown in FIG.
  • FIG. 14 is a characteristic diagram showing a heating distribution of food when the states shown in FIGS. 12 and 13 are switched.
  • FIG. 15 is a diagram showing a heated state of the food when the radiation port of the rotating waveguide is inclined by 45 ° with respect to the food.
  • FIG. 16 is a view showing a heating state of the food when the radiation port of the rotating waveguide is inclined by 45 ° with respect to the food and the rotation of the food is stopped.
  • FIG. 17 is a bottom view of the turntable.
  • FIG. 18 shows a second embodiment of the present invention, and is a cross-sectional view of a heating chamber of a high-frequency heating device.
  • FIG. 19 shows a third embodiment of the present invention, in which (a) is a plan view of a rotating waveguide, and (b) is a longitudinal sectional view thereof.
  • FIG. 20 shows a fourth embodiment of the present invention, wherein (a) is a plan view of a rotating antenna and (b) is a longitudinal sectional view thereof.
  • FIG. 21 shows a fifth embodiment of the present invention, in which (a) is a plan view of a shielding member having an opening, and (b) is a longitudinal sectional view thereof.
  • FIG. 22 shows a sixth embodiment of the present invention, in which (a) is a longitudinal sectional view of a heating chamber of a high-frequency heating device, and (b) is a transverse sectional view.
  • FIG. 23 is a configuration diagram of a high-frequency heating device according to a seventh embodiment of the present invention.
  • FIG. 24 is a front view of the operation panel of the high-frequency heating device of FIG.
  • FIG. 25 is a cross-sectional view of the high-frequency heating device of FIG. 23 when the radiation port of the rotating waveguide is directed to the center.
  • FIG. 26 is a cross-sectional view of the high-frequency heating apparatus of FIG. 23 when the radiation port of the rotating waveguide faces the wall of the heating chamber.
  • FIG. 27 is a characteristic diagram showing a relationship between a heating time and a food temperature in a conventional high-frequency heating device.
  • FIG. 28 is a characteristic diagram showing the relationship between the heating time and the food temperature in the high-frequency heating device of the present invention.
  • FIG. 29 is a characteristic diagram showing switching timing of the direction of the radiation port in the high-frequency heating device of the present invention.
  • FIG. 30 is a characteristic diagram showing the relationship between the heating time and the food temperature in the high-frequency heating device according to the eighth embodiment of the present invention.
  • FIG. 31 is a temperature characteristic diagram of dielectric loss of water.
  • FIG. 32 is a characteristic diagram showing the relationship between time and heating output when thawing frozen food using a conventional high-frequency heating device.
  • FIG. 33 is a characteristic diagram showing the switching timing of the heating output in FIG.
  • FIG. 34 is a characteristic diagram showing the relationship between time and food temperature when frozen food is thawed using the high-frequency heating device of the present invention.
  • FIG. 35 is a characteristic diagram showing the switching timing of the heating output in FIG. 34.
  • FIG. 36 is a characteristic diagram showing the relationship between the time and the heating output in FIG. 34 and FIG.
  • FIG. 37 is a configuration diagram of a high-frequency heating device according to a ninth embodiment of the present invention.
  • FIG. 38 is a sectional view taken along line AA ′ in FIG.
  • FIG. 39 is a characteristic diagram showing a change in the direction of the electromagnetic wave due to the operation of the rotating waveguide in FIG.
  • FIG. 40 is a configuration diagram of a high-frequency heating device according to a tenth embodiment of the present invention.
  • FIG. 41 is a cross-sectional view of the lower part of the heating chamber of the high-frequency heating device of FIG.
  • FIG. 42 is a characteristic diagram showing a change in the direction of an electromagnetic wave due to the operation of the rotating waveguide in the configurations of FIGS. 40 and 41.
  • FIG. 43 is a longitudinal sectional view of a main part of the high-frequency heating device according to the eleventh embodiment of the present invention, showing a state where the rotary waveguide is raised.
  • FIG. 44 shows a state where the rotating waveguide is lowered in FIG.
  • FIG. 45 is a configuration diagram of a high-frequency heating device according to a 12th embodiment of the present invention.
  • FIG. 46 shows two shielding plates provided in the high-frequency heating device of FIG. 45, (a) is a plan view of a first shield plate, and (b) is a plan view of a second shield plate.
  • FIG. 47 is a configuration diagram of a high-frequency heating device according to a thirteenth embodiment of the present invention.
  • FIG. 48 is a sectional view taken along line BB ′ in FIG.
  • FIG. 49 is a diagram showing a detection position of an infrared detection element provided in the high-frequency heating device of FIG.
  • FIG. 50 is a block diagram of the high-frequency heating device of FIG.
  • FIG. 51 is a characteristic diagram showing a change in surface temperature of food and a change in temperature of a portion other than food in the high-frequency heating device of FIG.
  • FIG. 52 is a block diagram showing a modification of FIG.
  • FIG. 53 is a block diagram of a high-frequency heating device according to a fourteenth embodiment of the present invention.
  • FIG. 54 is a configuration diagram of a high-frequency heating device according to a fifteenth embodiment of the present invention.
  • FIG. 55 is a cross-sectional view of FIG. 54 taken along the line FF ′.
  • FIG. 56 is a configuration diagram of a high-frequency heating device according to a sixteenth embodiment of the present invention.
  • FIGS. 57A and 57B are cross-sectional views taken along the line GG ′ in FIG. 56.
  • FIG. 57A is a diagram illustrating a state where the first opening is shielded
  • FIG. FIG. 4 is a diagram showing a state in which is shielded.
  • FIG. 58 is a block diagram of a high-frequency heating device according to a seventeenth embodiment of the present invention.
  • FIG. 59 shows a temperature characteristic diagram for explaining the operation of the contour extracting means provided in the high-frequency heating device of FIG. 58, (a) is a diagram showing the position of the food, and (b) is a diagram showing the position of the food. It is a figure which shows the detection position of X direction, (c) is a figure which shows the detection position of Y direction, (d) is the figure which combined the detection position of X direction and the detection position of Y direction.
  • FIG. 60 is a block diagram of the high-frequency heating device of the eighteenth embodiment.
  • FIG. 61 is a block diagram of the high-frequency heating device of the ninth embodiment.
  • FIG. 62 is a configuration diagram of a high-frequency heating device according to a 20th embodiment of the present invention.
  • FIG. 63 is a longitudinal sectional view of a main part of the high-frequency heating device according to the twenty-first embodiment of the present invention, showing a state where the turntable is raised.
  • FIG. 64 shows a state in which the turntable is lowered in FIG.
  • FIG. 65 shows a turntable provided in the high-frequency heating device according to the second embodiment of the present invention. It is a bottom view of a bull.
  • FIG. 66 is a longitudinal sectional view of a main part of a high-frequency heating device according to a twenty-third embodiment of the present invention.
  • FIG. 67 is a configuration diagram of a high-frequency heating device according to a 24th embodiment of the present invention.
  • FIG. 68 is a cross-sectional view of a main part of the high-frequency heating device of the twenty-fifth embodiment of the present invention, particularly showing a distribution state of an electric field.
  • FIG. 69 is a perspective view of a main part of a high-frequency heating device according to a 26th embodiment of the present invention.
  • FIG. 70 is a configuration diagram of a main part of a high-frequency heating device according to a twenty-seventh embodiment of the present invention, in which one of two openings is shielded, and (a) is a longitudinal sectional view thereof. Yes, (b)
  • FIG. 71 shows a state in which the other of the openings is shielded in FIG. 70, (a) is a longitudinal sectional view thereof, and (b) is a plan view thereof.
  • FIG. 72 is a Rieke diagram showing operating points of the magnetron in the high-frequency heating device of FIG.
  • FIG. 73 is a characteristic diagram showing a change in the high-frequency output of the high-frequency heating device, where (a) shows the conventional output change and (b) shows the output change of the present invention.
  • FIG. 74 is a configuration diagram of a high-frequency heating device according to a twenty-eighth embodiment of the present invention.
  • FIG. 75 is a cross-sectional view along a line PP ′ in FIG.
  • FIG. 76 is a cross-sectional view corresponding to FIG. 75 of the high-frequency heating device according to the twentieth embodiment of the present invention.
  • FIG. 77 is a cross-sectional view corresponding to FIG. 75 of the high-frequency heating device of the thirtieth embodiment of the present invention.
  • Fig. 78 is a characteristic chart showing the heating efficiency of the high-frequency heating devices of the examples 28, 29, and 30.
  • the Smith chart shows the load matching state as viewed from the magneto port. is there.
  • FIG. 79 is a configuration diagram of a high-frequency heating device according to a thirty-first embodiment of the present invention.
  • FIG. 80 is a longitudinal sectional view of a main part of the high-frequency heating device of FIG. 79, showing a state where the seal portion has been lowered.
  • FIG. 81 shows a state where the seal portion has risen in FIG.
  • FIG. 82 is a perspective view of a main part of a high-frequency heating device according to a thirty-second embodiment of the present invention.
  • FIG. 83 is a characteristic diagram showing uneven heating distribution when milk is heated in the high-frequency heating device of FIG.
  • FIG. 84 is a schematic longitudinal sectional view of the high-frequency heating device under the optimum conditions of FIG.
  • FIG. 85 is a characteristic diagram showing uneven heating distribution when 100 g of frozen beef slices are defrosted in the high-frequency heating apparatus of FIG.
  • FIG. 86 is a schematic longitudinal sectional view of the high-frequency heating device under the optimum conditions of FIG.
  • FIG. 87 is a characteristic diagram showing uneven heating distribution when 300 g of frozen beef sliced meat is thawed in the high-frequency heating apparatus of FIG.
  • FIG. 88 is a schematic longitudinal sectional view of the high-frequency heating device under the optimum conditions of FIG.
  • FIG. 89 is a flowchart showing a sequence for determining an appropriate opening position and height in the initial state in the configurations of FIGS. 79 to 82.
  • FIG. 90 is a configuration diagram for simulating the electric field inside the high-frequency heating device.
  • FIG. 91 is a characteristic diagram of a simulation result when only the first opening is opened, and is a perspective view cut along a line SS ′ in FIG. 90.
  • FIG. 92 is a characteristic diagram of a simulation result when only the second opening is opened, and is a perspective view cut along a line SS ′ in FIG. 90.
  • FIG. 93 is a perspective view of a flat food heated in the high-frequency heating device of FIG. 90.c
  • FIG. 94 is a characteristic diagram of a simulation result when only the first opening is opened.
  • FIG. 90 is a perspective view of FIG. 93 cut along the line U—U ′.
  • FIG. 95 is a characteristic diagram of a simulation result when only the second opening is opened, and is a perspective view cut along a line U-U ′ in FIG. 93.
  • FIG. 96 is a vertical cross-sectional view of a main part of a high-frequency heating device for explaining propagation of an electromagnetic wave in a waveguide.
  • FIG. 97 is a configuration diagram of a high-frequency heating device according to a 33rd embodiment of the present invention.
  • FIG. 98 is a cross-sectional view of FIG. 97 taken along the line VV ′.
  • FIG. 99 is a cross-sectional view of FIG. 97 taken along the line W--W '.
  • FIG. 100 is a characteristic diagram showing how an electric field is bent in the high-frequency heating device of FIG. 97.
  • FIG. 101 is a cross-sectional view of a heating chamber for explaining how an electric field rises depending on the position of an opening in a wall surface in a certain high-frequency heating device.
  • FIG. 102 is a view similar to FIG. 101 when the position of the opening is changed.
  • FIG. 103 is similar to FIG. 101 when the position of the opening is further changed.
  • FIG. 104 is a view similar to FIG. 101 when the position of the opening is further changed.
  • FIG. 105 is a characteristic diagram showing the heating efficiency of the high-frequency heating device according to the thirty-fourth embodiment of the present invention, and is a Smith chart showing a matching state viewed from the magnetron.
  • FIG. 106 is a plan view of a plurality of screens placed on a dish.
  • FIG. 107 is a characteristic diagram showing a temperature variation when the conventional high-frequency heating apparatus heats the sashimi of FIG. 106.
  • FIG. 108 is a characteristic diagram showing a temperature variation when the high-frequency heating device of the present invention is used to heat the sashimi of FIG. 106.
  • FIG. 109 is a characteristic diagram showing a temperature variation when heating the sashimi of FIG. 106 with another high-frequency heating device of the present invention.
  • FIG. 110 is a cross-sectional view of a high-frequency heating device according to a thirty-fifth embodiment of the present invention.
  • FIG. 11 shows a characteristic diagram of the high-frequency heating device according to the thirty-sixth embodiment of the present invention, and shows a Smith chart when the alignment state at the first opening is shifted.
  • FIG. 112 is a cross-sectional view of a high-frequency heating device according to a thirty-seventh embodiment of the present invention.
  • FIG. 11 is a cross-sectional view taken along line Y—Y ′ of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 8 is a sectional configuration diagram of the high-frequency heating device according to the first embodiment of the present invention.
  • the electromagnetic wave emitted from the magnetron 2 which is a typical electromagnetic wave radiating means is radiated into the heating chamber 4 via the waveguide 3 serving as a waveguide and the power supply chamber 15, and the object to be heated in the heating chamber 4 is heated.
  • Heat food 6 which is.
  • the electromagnetic waves in the waveguide 3 are emitted from the An arbitrary part of the food 6 is locally heated by the rotating waveguide 8 which is a projection part. Therefore, the waveguide 3 and the rotating waveguide 8 are collectively referred to as local heating means 16.
  • the rotating waveguide 8 has directivity in the direction of electromagnetic wave radiation, and switches the direction of electromagnetic wave radiation by rotating to realize local heating.
  • the rotating waveguide 8 is connected to the waveguide 3 by a coupling part 7 as an electromagnetic wave coupling part for extracting an electromagnetic wave by coupling the waveguide 3 with the power supply chamber 15 (when there is no power chamber 15).
  • the structure extends to the heating chamber 4), and has a radiation port 17 for radiating the extracted electromagnetic waves.
  • the coupling section 7 is connected to a motor 18 as a driving means, and is rotatable by the motor 18, and the rotary waveguide 8 itself is rotationally driven about the coupling section 7.
  • the control means 19 controls the motor 18 so that the direction of the electromagnetic wave generated by the radiation beam 17 of the rotating waveguide 8 can be controlled, so that local heating can be controlled.
  • the food 6 is on the mounting table 20 to heat any part.
  • the mounting table 20 is placed on a glass or ceramic dish 21 serving as an electromagnetic wave transmitting section formed on a turntable 1 having a metal electromagnetic wave shielding section, and is driven by a motor 22 serving as a mounting table driving means. They are driven to rotate together.
  • the controller 19 detects the weight of the food 6 by the weight sensor 23 as the weight detecting means of the food 6 at the same time when the motor 22 is driven to rotate, and performs control according to the detection (driving of the rotating waveguide 8). Timing (control of estimating heating output and heating end time).
  • the center of rotation of the mounting table 20 at this time is located at the center 24 of the bottom surface of the heating chamber 4, so that uniform rotation in the rotation direction can be achieved by constant rotation, or stopped at a predetermined position. Things.
  • the center of rotation of the rotating waveguide 8 is shifted from the center 24 of the bottom surface of the heating chamber 4.
  • the direction of radiation of the electromagnetic wave changes depending on the direction of the radiation port 17 so that it is possible to switch between heating the center of the food 6 and heating the surroundings, that is, the radius of the mounting table 20
  • the direction of heating can be changed. Therefore, an arbitrary position on the mounting table 20 can be heated together with the rotation of the tumble table 1.
  • the center of rotation of the mounting table 20 is located at the center 24 of the bottom surface of the heating chamber 4, which allows the mounting table 20 to be large in size. , Many can be placed.
  • the center of the mounting table 20 and the center of rotation coincide with each other, and the vertical movement of the mounting surface during rotation is controlled, and stable driving is performed.
  • the food 6 is hard to vibrate and hard to spill.
  • a cover 25 is configured to cover the local heating means 16 so as to cover the local heating means 16 so that there is no unevenness compared to the bottom of the heating chamber 4.
  • the cover 25 of the present embodiment has a slightly different meaning from the conventional opening cover, and will be additionally described.
  • the conventional opening cover had a strong meaning to prevent the user from putting his hands and prevent the accumulation of dirt in the opening.
  • the rotating waveguide 8 since the food is locally heated, the rotating waveguide 8 must be controlled as intended. In other words, food chips 6 are scattered directly on the rotating waveguide 8 so that they do not move, or the food 6 chips also accumulate in the vicinity of the rotating waveguide 8 to absorb electromagnetic waves. This prevents the part from being heated. That is, there is an effect that the local heating by the local heating means 16 is not disturbed.
  • control unit 19 monitors the temperature change of the food 6 by a temperature sensor 26 which is a temperature distribution detecting means for detecting the temperature of the food 6, emits electromagnetic waves from the magnetron 2, The operation of the magnetron 2 cooling fan 27 and the operation of various heaters 28 are controlled.
  • the temperature inside heating chamber 4 rises to around 300 ° C, so the heat resistance temperature of plate 21 is limited to glass, so replace it with a metal plate.
  • a ceramic plate with a high heat-resistant temperature may be used for both purposes.
  • the temperature of the food 6 is detected from the opening 29 on the wall of 4 and the distribution of heating is detected.
  • the configuration of the temperature sensor 26 itself will be explained.
  • an infrared sensor that converts an external dose into an electric signal.
  • the infrared sensor there are a thermopile type having a hot junction and a cold junction therein, a pyroelectric type having a chisel, and the like, and either of them may be employed in the present invention.
  • FIG. 9 is a main part configuration diagram showing a positional relationship between the magnetron 2 and the rotating waveguide 8.
  • the distance ⁇ of the electromagnetic wave emitted from the antenna 30 of the magnetron 2 to reach the coupling portion 7 of the rotating waveguide 8 is such that the guide wavelength in the waveguide 3 is; It is composed. This is because the electromagnetic wave in the waveguide 3 is a standing wave that periodically repeats strength and weakness, and its wavelength is equal to Ig. Also, the antenna 30 of the magnetron 2 always has a strong electric field. Therefore, due to the configuration of the dimensional relationship described above, the coupling portion ⁇ of the rotating waveguide 8 always has a strong electric field, and the electromagnetic wave in the waveguide 3 can be efficiently guided to the outside of the waveguide 3.
  • the distance from the antenna 30 of the magnetron 2 to the end 31 of the waveguide 3 ⁇ the distance from the coupling part 7 to the end 32 of the waveguide 3 is approximately an odd multiple of g Z 4. (In this figure, 1 times), a more stable standing wave can be generated in the waveguide. This is because if a standing wave occurs, the end face is right there where the electric field tends to weaken at an odd multiple of ⁇ g Z 4 from the place where the electric field is strong. Further, in the present embodiment, even if the rotating waveguide 8 rotates, the distance from the antenna 30 of the magnetron 2 to the coupling portion 7 is always constant, and there is an effect that a stable standing wave can be generated.
  • the electromagnetic wave derived from the coupling part 7 is radiated from the coupling part 7 into the heating chamber via the radiation port 17, but the distance ⁇ here is a factor that determines the directivity, so it can be changed as necessary. I just need. However, if is set to an integer multiple of g z 2, the electric field at the outlet 17 can be increased, and the efficiency is extremely high when the food 6 is placed close to the outlet 17 according to the equation (1).
  • ⁇ in the figure is 3 ⁇ to make it easier for electromagnetic waves to travel toward the 3 side, and for ⁇ to be an odd multiple of ⁇ g / 4, it is easier to travel to the 3 side. I have.
  • the radiation direction of the electromagnetic wave is controlled. Furthermore, since the distance from the antenna 30 of the magnetron 2 to the radiation port 17 is always constant, the impedance between them is also constant at all times, and it is easy to maintain the matching state, and the effect of maintaining high heating efficiency is obtained. is there.
  • FIG. 10 is a configuration diagram of a main part of the rotating waveguide 8.
  • is the wavelength of electromagnetic waves in vacuum (or in air);
  • the rotating waveguide 8 is supported at three points by the two Teflon spacers 33 shown in (a) and (b) and the mating portion 35 provided on the shaft 34 of the motor 18. And stable rotation is possible.
  • the spacer 33 has a curved surface facing downward and has a structure that is easy to slip.
  • the spacer 33 may be made of any material that can support and rotate smoothly and has no conductivity. It is possible that this can be achieved by taking measures to prevent sparks from occurring (for example, always keeping the bottom part 36 tight so that there is no gap).
  • (c) is a diagram showing a cam 37 connected to a shaft 34 and a switch 38 as position detecting means.
  • the rotating waveguide 8 is driven to rotate by the motor 18, but the convex portion 39 of the cam 37 presses the button 40 of the switch 38 every rotation of the shaft 34, so after pressing the button 40,
  • the rotational position can be known from the drive time of the sensor, and the direction of electromagnetic wave radiation can be detected and controlled in the desired direction.
  • the control means 19 determines the rotation time of the motor 18 based on the signal from the switch 38, and controls the direction of electromagnetic wave radiation from the radiation port 17.
  • a stepping motor when finer control such as more accurate position control or changing the rotation speed is performed.
  • a reference position may be determined, and control may be performed such that the heater is moved to the reference position at the start of heating or at the end of heating.
  • Heating at the start of heating can accurately heat the target area, and heating at the end of heating can save the trouble of checking the reference position at the next heating.
  • FIG. 11 is a main part configuration diagram of the high-frequency heating device in the present embodiment, and is a diagram of the bottom surface of the heating chamber 4 in FIG. 8 as viewed from below.
  • Heaters 28A, 28B, 28C are placed in the empty space so that they can coexist with the power supply room 15 and the weight sensor 23.
  • the rotating waveguide 8 should be small and have high directivity.
  • FIGS. 12 and 13 are cross-sectional views of the main parts of the high-frequency heating device according to the present embodiment, showing the cross section of FIG.
  • a flat rectangular parallelepiped food 6 is rotated with the dish 21 at a constant speed, and the rotating waveguide 8 is stopped at the position shown in the figure, and a constant heating power is output.
  • the heating section 41 is shown as the result when heating is performed in step (1).
  • the parts that are actually hidden behind the plate 21 are also shown by solid lines.
  • FIG. 12 is a view toward the center of the plate 21, and FIG. 13 is a view toward the outside that is rotated 180 ° compared to FIG. 12.
  • the heating part 41 appears almost at the center of the food 5 due to radiation from below the electromagnetic wave 42.
  • Fig. 14 is a block diagram showing the heating distribution of food 6, and showing the results of switching between the states of Figs. 12 and 13 (switching the direction of radiation 17 at an appropriate ratio).
  • the heating section 41 appears at the center and the periphery of the food 6, and it can be seen that the heating can be considerably leveled compared to the conventional microwave oven. However, at this time, the unheated part 4 3 that is hard to heat is It is left in the surrounding intermediate area. Therefore, a method of locally heating this portion will be described below.
  • FIGS. 15 and 16 are cross-sectional views of the main parts of the high-frequency heating device according to the present embodiment, and show the cross section of FIG. 8 similarly to FIGS. 12 and 13.
  • a method for heating the unheated portion 43 in the intermediate region described in Fig. 14 if the direction of the radiation boiler 17 is selected somewhere between the center direction (0 °) and the outside direction (180 °) It is easy to imagine that it is good, but it has been found that a constant rotation of the turntable does not actually work. Even if the direction of the emission port is changed little by little, almost everything will heat the surroundings unless it heats the center. For example, when radiation 17 is 45 °, the result is as shown in Figure 15.
  • the cause is that the plate 21 rotates at a constant speed and the heating output is constant. This is because even if the intermediate region could be heated momentarily during the rotation of the food 6, the edge of the food 6 would be heated at any other time, and eventually the surroundings would be heated as an average of one cycle It will be. Therefore, in order to heat the intermediate region, it is understood that the state in which the intermediate region can be heated must be maintained and other states must be avoided.
  • Fig. 16 shows the result when the rotation of the plate 21 is stopped and the state where the intermediate region can be heated is maintained.
  • the radiation port 17 is at 45 ° and the food 6 is stopped at the position shown in the figure, and one of the unheated portions 43 in FIG. 14 that is hard to heat is heated.
  • the food 6 may be further moved by 180 °.
  • four types of operations which are obtained by moving FIG. 12, FIG. 13, and FIG. 16 by 180 °, are required.
  • the rotation of the plate 21 may not be completely stopped during the heating, but the speed may be reduced near the state where the intermediate region can be heated.
  • the heating output in a state where the intermediate region can be heated may be higher than the heating output in other states while the plate 21 is rotated at a constant speed.
  • the heating output in a state where the intermediate region can be heated is set to full power, and the heating output in other states is reduced to 0 or reduced.
  • FIG. 17 is a configuration diagram of a main part of the high-frequency heating device in the present embodiment, and shows a configuration of the turntable 1 as viewed from below.
  • the turntable 1 is made of metal to withstand the heat of the heaters 28 A, 28 B and 28 C, and consists of wheels 44 and 45, shafts 46 and 47 and bearings 48.
  • the distance 7 in the rotation direction of the gap of the turntable 1 has a length of 12 or more of the wavelength of the electromagnetic wave, and is configured to easily transmit the electromagnetic wave.
  • FIG. 18 shows a second embodiment.
  • the configuration of the rotating waveguide 8 at the corner of the heating chamber 4 has an effect of increasing the degree of freedom of slightly increasing the size of the rotating waveguide 8.
  • the drive range of the radiation port 17 is limited to the inside of the bottom of the heating chamber 4 as shown in Fig. 18. If the configuration extends to the outside of the bottom surface of the heating chamber 4, there is a problem that the size of the whole high-frequency heating device becomes large and a problem that a separate device for preventing electromagnetic waves from leaking outside is required. Therefore, in order to prevent these problems, J is used.
  • FIG. 19 shows a third embodiment. This is an example in which the same effect is obtained by changing the shape of the rotating waveguide 8.
  • (A) shows that the end face of the rotating waveguide 8 is bent in all four directions, and the electromagnetic wave is radiated from the opening 49. You. Each bent end has a circular shape to enhance spark prevention. In this case, compared to the first embodiment, the electromagnetic wave tends to be radiated directly above the opening 49.
  • the inner space 50 can be considered as a waveguide.
  • was approximately an odd multiple of I 4, 1 0; if approximately integer times the I g Z 2, the effect of Okoseru more standing waves more stable.
  • FIG. 20 shows a fourth embodiment, in which a rotating antenna is used instead of the rotating waveguide.
  • the conductive plate 53 (specifically, iron or stainless steel) connected to the coupling portion 7 has directivity, and similar effects can be expected.
  • FIG. 21 shows a fifth embodiment, in which the location for closing the opening is switched.
  • the conductive plate 54 connected to the coupling portion 7 has an opening 55 and shields other portions.
  • the aperture 55 has directivity, and the same effect can be expected. Similar effects can be expected in other configurations as long as they have directivity.
  • the configurations of the fourth embodiment and the fifth embodiment it is not as easy as in the first to third embodiments to have the intended directivity. Instead, the structure itself can be simplified, for example, without bending.
  • FIG. 22 shows a sixth embodiment.
  • the mounting table 20 is composed of a glass plate 21 and a roller ring 56, has a concave portion 57, is engaged with a shaft 58 of another part, and is held by a roller ring 56. It is configured to rotate one by one.
  • the roller ring 56 has a ring 59 and three rollers 60, both of which are made of a material that transmits electromagnetic waves.
  • the electromagnetic wave emitted from the rotating waveguide 8 enters the food 6 without being disturbed. Therefore, there is an effect that the target local portion is easily heated.
  • the bottom of the heating chamber which is a passageway, is recessed so that the roller 1 moves smoothly and does not shift.
  • FIGS. 23 to 29 show a seventh embodiment.
  • FIG. 23 shows the rotating waveguide 8 protruding into the heating chamber 4.
  • the cover 25 is formed in a box shape so as to protect the rotating waveguide 8.
  • the shape of the food 4 can be determined based on whether or not the light receiving unit 62 receives light from the light emitting unit 61, having the optical sensors 61 and 62 as shape detecting means.
  • the temperature sensor 26 cannot instantaneously determine the area where the food 6 exists, but the information of the optical sensors 61, 62 and the weight sensor 23 can be used. It becomes possible to determine the area where the food 4 exists before heating.
  • a setting means 63 is provided for the user to make input settings.
  • the location to be heated locally may be determined by itself.However, the input information and the input information and the temperature sensor 26, optical sensor 61, 62, weight sensor 23, etc. Based on the judgment of the area judgment control means (not shown) in the control means 19, the direction of the rotary waveguide 8, the rotation of the turntable 1, and the magnetron The output of 2 is controlled.
  • FIG. 24 is a configuration diagram of a main part of the high-frequency heating device in the present embodiment, and shows an operation panel 64 as setting means 63.
  • the control means 19 determines the food 6 as milk based on a signal from the operation panel 6 4, and uses the signals from the weight sensor 23, the optical sensor 6 16 2 and the temperature sensor 26 to determine the amount, shape and location of the milk. Judgment of the position and the initial temperature, determine the appropriate position of the radiation port 17, calculate how much to move from the reference position, and then drive the motor 18, and then the electromagnetic wave from the magnetron 2 Starts emitting radiation.
  • the turntable 1 is stopped and the rotating waveguide 8 is moved to control the heating just below the milk.
  • both the turntable 1 and the rotating waveguide 8 are moved, and the milk is moved. May be controlled so as to be in a positional relationship in which heating can be performed immediately below the area.
  • both the turntable 1 and the rotating waveguide 8 may be moved to sequentially heat just below the pieces of milk.
  • the heating is performed for the time determined by the weight sensor 23 and the optical sensors 61 and 62, or the heating is terminated when the temperature sensor 26 determines that the milk has reached an appropriate temperature.
  • the impedance seen from the magnetron 2 changes, and the operation may be slightly unstable. Therefore, before driving, the oscillation of the magnetron 2 is stopped or the output is reduced, and conversely, if the output is increased by oscillating the magnetron 2 after the turntable 1 and the rotating waveguide 8 are stopped, the magnetron 2 The operation state of the magnetron 2 can be stabilized, and there is an effect of reducing unnecessary radiation noise from the magnetron 2.
  • Fig. 27 is a characteristic diagram when a conventional microwave oven is used as usual.
  • the horizontal axis indicates the heating time t, and the vertical axis indicates the temperature T of the food 6.
  • the average temperature in the surrounding area of the food 6 was roughly expressed by Tout, the average temperature in the center area was roughly expressed by Tin, and the target average temperature Tref of the end of heating was 80 ° C.
  • Tout rises quickly and Tin hardly rises.
  • Tout reaches Tref after t1, and reaches the saturation temperature (boiling temperature) after t2, but when heating is stopped at that point, there is a problem that the temperature of Tin is too low. Therefore, heating is started until time t3 when T in is within an acceptable range, and finally heating is completed. At this time, the periphery of the food 6 is overheated (Tout> Tref), and the center portion is very poor because of insufficient heating (Tin and Tref).
  • FIG. 28 is a characteristic diagram of the present example, in which the effect of uniform heating was confirmed by switching the direction of the radiation beam 17 only once in the middle.
  • the direction of radiation b 17 is set to the same direction as in Fig. 12 or Fig. 25, and the center of food 6 is heated first, and at t4, the direction of radiation 17 is changed to 18 It is rotated by 0 ° and switched to the same direction as in Fig. 13 or Fig. 26.
  • T in rises rapidly in temperature until t 4, and T out does not rise easily.
  • the temperature rise rate reverses and T out tends to rise more than T in.
  • FIG. 29 is a characteristic diagram showing how to determine the switching timing of the direction of the radiation port 17 in FIG.
  • the horizontal axis is the weight m of the food 6 detected by the weight sensor 23, and the vertical axis is the time t.
  • the optimal heating time must be longer. Therefore, there is a method of calculating the switching time t4 of the radiation device 17 as a function of m in the control means 19.
  • the heating end time t5 can be similarly determined.
  • FIG. 30 of the eighth embodiment there is a method in which the switching timing of the radiation port 17 is feedback-controlled by the temperature of the food 6 itself.
  • the temperature of the food 6 is monitored in real time by the temperature sensor 26, and 1 1 1 1 is ⁇ 1 ⁇ (T k is a value determined in the control means 19,
  • T k is a value determined in the control means 19
  • T ref the temperature reaches a temperature lower than T ref
  • the emission port 17 is switched.
  • the temperature is continuously monitored thereafter, and the heating is controlled to end at the instant t6 when the temperature of the food 6 actually reaches Tref.
  • the temperature sensor 26 measures the temperature of the food 6, and it can be said that the accuracy is better than the estimation from the weight m.
  • Figs. 31 to 36 show examples of thawing food 6 in the frozen state (at 120 ° C).
  • Figure 31 shows the temperature characteristics of the dielectric loss er ⁇ tan (of water.
  • the horizontal axis shows the water temperature T, and the vertical axis shows the dielectric loss ⁇ r * tan 5.
  • T water temperature
  • ⁇ r * tan 5 Frozen water (0 ° C or lower) It can be seen that the dielectric loss is small and the temperature rises extremely when it becomes molten water (above 0 ° C) (it drastically increases to about 1000 times). As shown in equation (1), it is proportional to £ r ⁇ ⁇ 3 ⁇ (5.
  • the melted part becomes extremely easy to absorb electromagnetic waves, and if the heating is continued as it is, the place where thawing is progressing will be more and more heating In other words, if the water is partially melted and the electromagnetic wave continues to be heated with the same heating distribution, temperature unevenness will necessarily occur.
  • the control means 19 determines that the food 6 is a frozen food based on the signal from the operation panel 64, and uses the signals from the weight sensor 23 and the optical sensors 61 and 62 to determine the amount, shape, and position of the frozen food. Judging various conditions such as the position and initial temperature, determining the appropriate number of rotations of the rotating waveguide 8, driving the motor 18 to rotate it, and before and after that, the electromagnetic radiation from the magnetron 2 is emitted. Start. At this time, the turntable 1 is also rotated together with the rotating waveguide 8, so that partial concentration of the electric field is avoided as much as possible.
  • the rotating waveguide 8 is repeatedly controlled, such as by stopping the radiation port 17 so that the position of the radiation port 17 faces the low-temperature part so as to locally heat the low-temperature portion in the food.
  • the control means 19 includes a continuous control means for continuous rotation, an intermittent control means for intermittently operating, and a switching control means for switching between the two in the middle, and can be easily controlled. is there.
  • FIGS. 32 and 33 are characteristic diagrams of a conventional microwave oven.
  • FIG. 32 is a characteristic diagram showing a change in heating output by the magnetron 2 when the frozen food 6 is thawed.
  • the horizontal axis indicates time t, and the vertical axis indicates output P.
  • the heater is heated at a continuous high output.At t8, the output is reduced and the operation is switched to intermittent operation. Has been lowered. Simply put, the output is gradually reduced.
  • the temperature rise due to the heating of electromagnetic waves decreases, and the rate of temperature rise due to the heat transfer inside the food 6 and the difference between the food 6 and the ambient temperature in the heating chamber 4 increases, resulting in a slight temperature unevenness. Has the effect of improving.
  • FIG. 33 is a characteristic diagram showing how t7, t8, and t9 in FIG. 32 are determined.
  • the horizontal axis is weight m and the vertical axis is time t.
  • the point here is that the output switching timing is determined only by m regardless of the storage state of the food 6 before heating detected by the weight sensor 23. For example, if the storage temperature before heating is high, there is a possibility that part of the mixture will be melted and boiled before t7. Therefore, in actuality, it should be corrected by the output of the temperature sensor 26. Of course, it is still the same as heating with a constant heating distribution, so we cannot expect much reduction in temperature unevenness.
  • FIGS. 34 to 36 are characteristic diagrams of the high-frequency heating device of the present embodiment.
  • FIG. 7 is a temperature characteristic diagram when the operation is stopped at a time.
  • the horizontal axis is time t
  • the vertical axis is temperature T.
  • the heating area becomes a low-temperature area by the radiation port 17 and the turntable 1, and the temperature rise of T Low is faster and catches up with THI. Then, at the point of time t12 when THI ⁇ TLow Tref, the heating is terminated.
  • the effect of averaging the temperature due to the waiting time t s and the effect of switching the heating distribution can achieve extremely excellent thawing without uneven distribution.
  • FIG. 35 is a characteristic diagram showing how t s or t 11 and t 12 in FIG. 34 are determined.
  • the horizontal axis is weight m and the vertical axis is time t.
  • t s, t l l, and t 12 are determined as a function of the weight m of the food 6 detected by the weight sensor 23.
  • FIG. 36 is a characteristic diagram showing a change in the heating output by the magnetron 2 when the frozen food 6 described in FIGS. 34 and 35 is thawed.
  • the horizontal axis indicates time t, and the vertical axis indicates output P.
  • the heater is heated at a continuous high output.After that, no output is output for ts. Output has been reduced.
  • the rotating waveguide 8 is driven when the heating by the electromagnetic wave is stopped or when the output is greatly reduced, so that the rotating waveguide 8 such as a conventional stirrer or a rotating waveguide has a constant rotation. Compared to electromagnetic wave stirring, it has the effect of suppressing unnecessary radiation and the temperature rise of the magnetron 2.
  • control the local heating part after performing the arithmetic processing in the control means 19 by the setting input by the user or various sensor outputs.
  • the menu changes the switching timing of the local heating area according to the maximum temperature. Or the difference between the maximum and minimum temperatures, or the rate of change over time, and so on.
  • FIGS. 37 to 39 show a ninth embodiment, in which a fixed mounting table 20 without a turntable is provided, and the rotary waveguide 8 is controlled two-dimensionally.
  • the rotating waveguide 8 is driven to rotate by the motor 18 so as to revolve while rotating, and the mechanism is as follows.
  • the gear 70 that rotates in conjunction with the first rotating shaft 69 of the motor 18 applies a rotating force to the gear 71 with a gear ratio of 1: 1.
  • the second rotating shaft 72 rotates and rotates.
  • the waveguide 8 is rotated at the same rotation speed as the motor 18.
  • the gear 7 3 rotating in conjunction with the first rotation $ reason 6 9 applies a rotating force to the gear 75 with a gear ratio of 1:10 via the gear 74, and thus the second rotating shaft 7 2 Rotates itself around the first axis of rotation 69 9 and revolves the rotating waveguide 8 at 1/10 of the rotation speed of the motor 18 c. This means that the robot rotates 10 times.
  • the position of the radiation port 17 is determined by the number of times the switch 38 is pressed and the driving time after the switch 38 is pressed, so that the direction of electromagnetic wave radiation can be controlled.
  • the positioning can be accurately controlled by the number of drive pulses after the switch 38 is pressed.
  • the direction of the electromagnetic wave is set or detected by the cam 37 and the switch 38.
  • the operation panel 64 is a first operation key for the user to set the type of the food 6, the size of the heating output, the heating time and the heating method, and the second operation for the heating start.
  • a start key 66 is provided as a key.
  • the control means 19 drives the motor 18 by the input of the first operation key 76 and controls the rotating waveguide 8 to an appropriate position based on the output of the switch 38. Then, when the start key 66 is pressed, electromagnetic radiation from the magnetron 2 starts. Then, when heating proceeds, the motor 18 is driven, if necessary, to prevent uneven heating based on the input contents of the first operation keys 76 and the coasting information of the heating distribution of the food 6 from the temperature sensor 26. The direction of the electromagnetic wave radiation from the radiation port 17 is controlled so as to eliminate it, and the control to change the output of the magnetron 2 is performed, and heating is performed until the heating is completed.
  • the mounting table 20 for placing the food 6 also serves as a protection section for covering the rotating waveguide 8, and is configured as a partition plate made of a low-loss dielectric material that is difficult to absorb electromagnetic waves. ing.
  • FIG. 38 is a sectional view taken along line AA ′ of FIG.
  • the rotation direction of 8 operates so that it will be reversed if it goes to either end face 79 or 80 of the cut.
  • the timing of this inversion may be determined by providing a stove or by the number of times the switch 38 is pressed.
  • FIG. 39 shows how the direction of the electromagnetic wave 42 changes due to the operation of the rotating waveguide 8 in Fig. 38 by replacing the movement of the point 81 of the radiation port 17 with the movement.
  • FIG. The bottom surface of the heating chamber 4 is represented by X and y coordinates, and (0.0) is the center of the bottom surface of the heating chamber 4.
  • the distance between the first rotating shaft 69 and the second rotating shaft 72, that is, the radius of revolution of the rotating waveguide 8 is 70 mm
  • the distance from the center of the second rotating shaft 72 to the point 81 is If the distance, that is, the radius of rotation is 60 mm, and the rotation period is 1/10 times the rotation period, the coordinates of the point 81 with the rotation angle being 0 are expressed by the following equations (2) and (3).
  • the spiral behavior (cycloid) shown in Fig. 39 is shown.
  • the motor 18 has a configuration in which the motor 18 reverses if it reaches one of the end faces 79 and 80, but is neglected here for the sake of the image diagram.
  • FIGS. 40 to 42 show the tenth embodiment, which is an improvement of the ninth embodiment.
  • the rotating waveguide is composed of two stages, and the rotation ratio is set by the ratio of the number of teeth of the gear, thereby revolving while rotating.
  • the gear 82 rotates in conjunction with the first rotating shaft by the motor 18, and the gear 83 rotates by the gear 82 (rotation).
  • the gear 84 is integral with the gear 83, and operates exactly the same as the gear 83.
  • the gear 85 rotates the gear 84, the gear 83, and the second rotating shaft 72 around the gear 82. Yes (revolution).
  • the electromagnetic wave emitted from the magnetron 2 is transmitted in the order of the waveguide 3, the coupling section 87, the first rotating waveguide 86, the coupling section 89, and the second rotating waveguide 88.
  • the advantage of this embodiment is that the distance from the magnetron 2 to the coupling part 87 and the distance from the coupling part 87 to the coupling part 89 are always kept constant regardless of the rotation.
  • a stopper 90 is provided for positioning the rotary waveguide, and a gear 84 is applied to the stopper 90 so that the reference position is determined.
  • a stepping motor it is easy to reach the reference position and drive again when driving to the target position.
  • FIG. 43 and FIG. 44 are cross-sectional configuration diagrams of a main part of the high-frequency heating device according to the first embodiment of the present invention.
  • a motor 18 having a rotating shaft 91 as a driving unit, a holding unit 92, a driving shaft 93, and a mounting member 94 are provided below the waveguide 3.
  • the driving shaft 93 having a rectangular opening that is vertically movably engaged with the rotating shaft 91 having a rectangular cross section rotates.
  • a male screw 95 is provided outside the drive shaft 93
  • a female screw 96 is provided inside the holding portion 92. Therefore, depending on the rotation direction of the motor 18, the shaft is raised or lowered.
  • the direction of the electromagnetic wave 42 from the radiation port 17 of the rotating waveguide 8 can be controlled not only in the circumferential direction due to rotation but also in the vertical direction.
  • FIG. 43 shows a rising state
  • FIG. 44 shows a falling state.
  • FIG. 45 is a cross-sectional view of the configuration of the high-frequency heating device.
  • FIG. 46 is an enlarged view of a main part of the embodiment.
  • the 12th embodiment has a configuration in which an opening position changing unit is provided as a local heating unit, and no turntable is used.
  • the electromagnetic wave emitted from the magnetron 2 heats the food 6 on the plate 21 placed in the heating chamber 4 via the waveguide 3.
  • the opening for connecting the waveguide 3 and the heating chamber 4 and guiding the electromagnetic wave has an opening position determined by the first shielding plate 97 and the second shielding plate 98.
  • the first shielding plate 97 has a notch 99
  • the second shielding plate 98 has a notch 100.
  • the position where the notches 99 and 100 are combined is the opening position. .
  • the first shielding plate 97 rotates about the axis 102 by the rotation of the first steering motor 101 serving as a variable opening position means.
  • the first stepping motor 101 rotates the first rotating shaft 103, and the first rotating shaft 103 has a first gear 104 mounted thereon, and the first gear 100 4 rotates.
  • a gear is formed around the first shielding plate 97, and rotates in accordance with the rotation of the first gear 104.
  • the second steering motor 105 rotates the second rotating shaft 106, and the second rotating shaft 106 is provided with the second gear 107, and the second gear 1 0 7 rotates.
  • a gear is also formed around the second shielding plate 98 and rotates in accordance with the rotation of the second gear 107.
  • FIG. 46 is an enlarged view of the shielding plate.
  • FIG. 46 (a) shows the first shielding plate 97
  • FIG. 46 (b) shows the second shielding plate 98.
  • both shield plates are circular
  • the first shield plate 97 has a cutout portion 99 in the radial direction
  • the second shield plate 98 has a notch from the center toward the periphery.
  • a spiral cutout 100 is formed.
  • the control means 19 drives the two shielding plates 97, 98 at another cycle to perform uniform heating control, and the temperature distribution from the temperature sensor 26 reduces the temperature of the food 6 to a lower level. A portion is extracted, and the local heating control is performed by controlling the angles of the two shielding plates 97 and 98 so that the opening is located below the low-temperature portion. By repeating this control, the low-temperature part is eliminated from the food 6 and the whole is heated to a uniform temperature.
  • two motors are used to drive the two shielding plates.
  • the shielding plate may be made to move linearly instead of rotating, or the same effect can be obtained by providing a large number of openings and providing the shielding plate in each of the openings.
  • the radiation port or opening serving as the electromagnetic wave radiation position of the local heating means is provided on the bottom surface of the heating chamber 4, but this concentrates the electromagnetic waves on a part of the food. For local heating, it is effective to radiate electromagnetic waves to the heating chamber as close to the food as possible.
  • Providing a radiation port or an opening on the bottom surface of the heating chamber 4 is not limited to the present invention, and may be provided on a ceiling surface or a side surface. When installing on the ceiling surface, moving the food in the height direction, or moving the ceiling surface in the height direction, and controlling the food close to the ceiling surface has a large effect. Since there is no plate or mounting table between the opening and the food, more intensive local heating is possible.
  • the food stand is moved to the side of the rotating waveguide, or the side is moved to the direction of the food.
  • Local heating control of a tall food in the height direction is also possible.
  • two or three or more surfaces such as a bottom surface and a ceiling surface, or a bottom surface and a side surface, may be provided with radiation outlets or openings to perform variable distribution control, which is particularly effective for large foods. After all, for local heating, the radiator should be driven with the opening close to the food.
  • the temperature distribution detecting means detects the two-dimensional temperature distribution by driving one element of the infrared ray detecting element, it is inexpensive and outputs the infrared ray detecting element. There is an effect that adjustment can be made easily.
  • driving one infrared detecting element is not limited to the present invention.
  • a plurality of infrared detecting elements may be arranged two-dimensionally to detect a temperature distribution. In this case, there is an effect that the reliability can be improved without a driving unit and an effect that the temperature distribution can be detected instantaneously.
  • a linear temperature distribution may be detected by linearly arranging a plurality of infrared detecting elements, and a two-dimensional temperature distribution may be detected by combining the linear temperature distribution with the rotation of a turntable. The same effect can be obtained even if a two-dimensional temperature distribution is detected by driving and swinging the element.
  • the waveguide from the magnetron to the radiating section is guided by a single waveguide, but if it is branched in multiple directions, each has a radiating section and is switchable, more detailed local heating can be realized. effective.
  • the light may be guided by a coaxial line instead of the waveguide.
  • a semiconductor oscillation device may be used instead of the magnetron.
  • FIG. 47 is a sectional view showing the configuration of the high-frequency heating device according to the thirteenth embodiment of the present invention.
  • Reference numeral 48 is a diagram showing the detection characteristics of the physical quantity detection means of the embodiment.
  • Figure 49 is the same
  • FIG. 4 is a cross-sectional view of a main part of a physical quantity detection unit, particularly of the embodiment.
  • FIG. 50 is a block diagram for explaining a control operation in the embodiment.
  • FIG. 51 is a characteristic diagram showing characteristics of a temperature change in the example.
  • the turntable 1 is rotated at a constant period by a motor 22 as a rotating means.
  • the center of rotation of the motor 22 is substantially at the center of the bottom of the heating chamber 4, while the center of rotation of the motor 18 is offset from the center of the bottom of the heating chamber 4, substantially in the center between the center of the bottom and the periphery. It is located.
  • the heating portion in the radial direction of the turntable 1 can be changed by the rotating waveguide 8, and the rotation of the turntable 1 and an arbitrary position on the platform 21 can be heated. .
  • the temperature sensor 26 has an opening 29 in the ceiling of the heating chamber 4 to secure an optical path, and a choke structure 108 is formed near the opening 29 to prevent electromagnetic waves from leaking outside the heating chamber 4. I have.
  • FIG. 48 shows an 8-8 ′ section of FIG.
  • An opening 29 is provided in the ceiling surface 109 of the heating chamber 4, and the chalk structure is composed of two types of sheet metals 110a and 110b.
  • 110 a forms an optical path, and is a cylindrical metal part having a spread on the ceiling surface 109, and is in close contact with the ceiling surface 109.
  • Reference numeral 110b denotes a box-shaped metal part having a small hole 111, which is in close contact with the ceiling surface 109.
  • the infrared radiation from the inside of the heating chamber 4 exits through the small holes 111 due to the chuck structures 110a and 110b, but the electromagnetic waves in the heating chamber 4 are cut off and hardly leak to the outside.
  • the dimension L is designed to be 1 to 4, that is, if the frequency is 2.45 GHz, it is about 30 mm, so that the impedance at the small hole 1 1 becomes infinite. The effect of blocking electromagnetic waves is greatest.
  • reference numeral 112 denotes an output that is correlated with the amount of infrared light incident on the pyroelectric infrared detection element, that is, the temperature of a position in the heating chamber 4 that serves as a visual field.
  • the infrared ray detecting element 112 is fixed inside the fixing member 113, and the field of view is narrowed through the lens 114 attached to the fixing member 113 to detect a temperature in a narrow range.
  • the lens 114 is a Fresnel lens made of a material that transmits infrared light.
  • Reference numeral 1 15 denotes a stepping motor, and 1 16 and 1 1 8 are used as a small gear 1 17 and 1 16 as a first rotation axis. To rotate.
  • the butterfly 118 forms a slit and rotates while opening and closing the optical path leading to the infrared detecting element 112.
  • the small gear 1 17 is in contact with the large gear 1 19, and the second gear 1 20 is attached to the large gear 1 19, and the second rotating shaft 1 20 is free to rotate by the receiving part 1 21. Attached.
  • a printed circuit board 122 is mounted on the second rotating shaft 120, and an electronic circuit (not shown) such as an amplifier circuit is mounted on the printed circuit board 122 in addition to the infrared detecting element 112. Is installed. These are housed in a metal case 1 24 with a small hole 1 2 3 at the position to be the optical path of infrared rays, covered with a metal cover 1 2 5 and fixed to the chalk structure 1 10 with a metal cover 1 2 5 .
  • the stepping motor 1 15 swings the infrared detector 1 1 2 from the front to the back in Fig. 48, and at the same time both opens and closes the optical path with the butterfly 1 18 c.
  • the rotation cycle of 1 2 is set to an integral number of the rotation cycle of the motor 2 2, that is, the rotation cycle of the motor 2 2 is set to an integral multiple of the rotation cycle of the infrared detector 1 1 2, and the rotation of the motor 2 2 It is configured to detect the temperature at the same position every time.
  • Fig. 49 shows the detection positions of the infrared detectors 1 12.
  • the detection visual field of the infrared detecting element 112 is indicated by a small circle, and the locus of the detection center is indicated by a broken line.
  • the temperature detection position is changed at five locations in one way of the swing of the infrared detection element 112.
  • the combination of the swing and the rotation of the motor 22 allows the detection position to cover the entire plate 21 and detect the temperature distribution two-dimensionally.
  • the motor 22 rotates at a cycle that is an integral multiple of the swing of the infrared detector 1 1 and 2, the temperature difference from the temperature one turn before the turntable and the temperature change from the initial stage are detected at each detection position. You can do it.
  • the control means 19 controls the motor 18 based on the temperature distribution detected by the temperature distribution detection means 26.Firstly, whether the detected temperature is the temperature of the food 6 or the temperature of the wall of the plate 21 or the heating chamber 4 It is the heating object extraction means 1 2 6 that distinguishes the temperature for each detection position ⁇ What kind of size food 6 is in the initial stage of heating and where it is placed First, control the motor 18 with the uniform heating control means 1 27, The uniform heating control means 1 27 rotates electromagnetic waves into the heating chamber 4 by rotating at a period sufficiently faster than the rotation period of the motor 22, reciprocating by half a rotation, or randomly driving. Distribute evenly. While the motor 18 is controlled by the uniform heating control means 127, it is determined whether the food 6 is food or not by the temperature rise at each detection position.
  • Fig. 51 shows the surface temperature change of food 6 and the temperature change of non-food 6 such as dish 21 when the drive of motor 18 is controlled by uniform heating control means 127.
  • the horizontal axis represents the elapsed time from the start of heating, and the vertical axis represents the temperature change from the start of heating.
  • the hatched area C indicates the temperature change in the part other than food 6, such as dish 21, and the area D indicates food 6. Shows the temperature change.
  • the dish 21 has a smaller dielectric loss than the food 6, so that electromagnetic waves are hardly absorbed and the temperature hardly rises, so that the dish 21 can be clearly distinguished.
  • the temperature change calculating means 1 28 stores, for example, the temperature corresponding to each detection position in the first rotation from the start of heating of the motor 22, and then the temperature corresponding to each detection position after a lapse of t 13 hours. Then, the temperature difference ⁇ ⁇ from the temperature of the first cycle is calculated.
  • the temperature change comparing means 129 distinguishes the food 6 if the temperature difference ⁇ ⁇ calculated by the temperature change calculating means 128 is larger than a predetermined value ⁇ ⁇ 1, and the dish 21 if smaller.
  • the heating mode switching means 130 controls the motor 18 uniformly by the heating control means 1 2 Switch from 7 to local heating control means 1 3 1
  • the local heating control means 13 1 controls the location where electromagnetic waves concentrate while stopping the motor 18 at an appropriate position.
  • Reference numeral 132 denotes low-temperature partial extraction means for extracting a low-temperature portion from the detection positions determined as food 6 by the heated object extraction means 126.
  • the local heating control means 13 1 controls the drive of the motor 18 so that the electromagnetic waves are radiated to the low temperature portion extracted by the low temperature part extracting means 13 2.
  • the low-temperature partial extraction means 1 3 2 is the detection position with the lowest detection temperature among the detection positions that the object-to-be-heated extraction means 1 26 determined food 6 during one round trip of the infrared detection element 1 12 Is stored as a heating position.
  • the reciprocating swing of the infrared detecting element 112 during one rotation of the motor 222 is repeated, but the heating position in each one reciprocating swing is stored.
  • the local heating control means 13 1 adjusts the angle of the motor 18 toward the memorized heating position in the radial direction above the rotating waveguide (radiating section) 8.
  • the heating position that is, the low temperature portion of the food 6 is heated.
  • the low-temperature portion disappears from the food 6 and the food 6 is uniformly heated.
  • the detection positions of the infrared detecting elements 112 are arranged on concentric circles, and the food 6 or the dish 21 is determined in units of the circumference of each concentric circle.
  • the highest temperature in the circumference is extracted, and the circumference with the lowest maximum temperature is extracted by the low-temperature part extraction means 13 2, and the electromagnetic wave is added to the circumference.
  • the angle of the motor 18 may be adjusted so that is concentrated. In this case, there is an effect of improving the durability performance of the motor 18.
  • uniformity of the uniform heating control means 127 expresses wide-area heating with respect to local heating, and does not require that heating be performed completely and evenly.
  • the physical quantity detecting means is the temperature distribution detecting means in the description of the thirteenth embodiment
  • the present invention is not limited to this.
  • a solid-state image sensor called a CCD image sensor that can recognize the shape and color of the food 6 can be used.
  • the control means only needs to control the local heating means based on the color and its distribution that change with the progress of heating.For example, for meat, the color changes from red to light brown to whitish, and the whole is light brown.
  • the local heating means is controlled so as to obtain the desired color.
  • the control means may control the local heating means based on the change in shape. For example, if the rice cake is soft and has a swelling change, the local heating means is controlled so as to swell as a whole.
  • the control means can control the local heating means in the initial shape recognition that can be recognized by the solid-state imaging device and the plurality of light emitting elements and light receiving elements. It is also possible to control. Ma If the optimal control pattern of the local heating means is stored in advance in accordance with the menu and the weight, the weight sensor can be used as the physical quantity detecting means.
  • the control means has a configuration including the uniform heating control means, the local heating control means, and the heating mode switching means.
  • the present invention is not limited to this.
  • FIG. 52 is a block diagram illustrating the control operation of the high-frequency heating device. In this case, it is distinguished from the heating object extraction means whether the object to be heated is food 6 or dish 21.
  • the temperature change comparing means 129 compares momentarily with a predetermined temperature change determined by the elapsed heating time, and distinguishes it from the food 6 if it is larger than the predetermined temperature change and from the dish 21 if it is smaller.
  • This predetermined temperature change is a function determined by the elapsed heating time and is shown by a straight line E in FIG.
  • the temperature change of the food 6 is small and the food 6 may be erroneously distinguished from the dish 21.
  • the error is corrected as the heating progresses, it does not significantly affect the overall heating distribution.
  • Another method is to fix the motor 18 at a predetermined position at the beginning of heating.
  • food 6 is often placed in the center of the heating chamber 4, and the surroundings are often heated so that the center is not easily heated.
  • the initial optimum heating position may be erroneous, but the error is corrected as the heating progresses and does not significantly affect the overall heating distribution.
  • the initial fixed position is not the center but the periphery shown in Fig. 13 and Fig. 26 and other positions, the same effect can be obtained because the appropriate heating position is controlled according to the heating progress. .
  • FIG. 53 is a block diagram illustrating a control operation of the high-frequency heating device according to the fourteenth embodiment of the present invention.
  • the same components as those of the above-described thirteenth embodiment are denoted by the same reference numerals.
  • 1 3 3 is a menu setting means for the user to set a cooking menu.
  • Menu setting means 1 3 3 has keys corresponding to the cooking menu, for example, "warm” key 13 3 a, "decompress raw” key 13 3 b, "milk” key 13 3 c, etc. The user presses any key to set the cooking menu.
  • the selection means determines whether the motor 18 is controlled by the heating mode switching control means 1 35 or the heating mode non-switching control means 1 36 according to the cooking menu set by the menu setting means 1 3 3. Mode selection.
  • the control operation of the heating mode switching control means 13 4 is performed as in the above-described thirteenth embodiment. That is, at the beginning of the heating start, the motor 18 is controlled by the uniform heating control means 127, and the object to be heated extraction means 126 distinguishes the food 6 from the dish 21.
  • the local heating control means 13 1 controls the motor 18 in accordance with the low temperature portion detected by 32.
  • the heating mode non-switching control means 13 36 controls the motor 18 only by the local heating control means 13 1 from the beginning of heating.
  • Reheating of cold rice, reheating of boiled foods and grilled foods can be done by heating the local area intensively, changing the local position, and controlling the temperature so that the temperature distribution becomes uniform throughout.
  • liquids such as milk are heated intensively from the bottom of the container containing them, causing convection and uniform heating throughout the height. Therefore, assuming that the heater 18 is generally placed at the center of the heating chamber 4, the position of the radiator 8 may be fixed so that the center of the motor 18 is locally heated as shown in FIGS. If the rice is not picked in the center, the heated object extraction means 34 detects the position of the milk container, and the motor 18 sets the position of the radiating section 8 so that the position passes through the position of the radiating section 8.
  • the position of the radiating portion 8 may be fixed so that the position of the concentric circles is locally heated. If a plurality is placed instead of concentric circles, the motor 18 may change the direction of the radiating section 8 each time according to the position of the milk container passing near the radiating section 8.
  • the control mode selection means 1 3 4 selects the heating mode switching control means 1 3 5
  • the uniform heating control means 127 controls the motor 18, and thereafter the local heating control means 131 controls the motor 18.
  • the control mode selection means 13 4 selects the heating mode non-switching control means 1 36. In this case, the local heating control means 13 1 first controls the motor 18 so that the position of the radiating section 8 is Fix by heating locally.
  • the center is locally heated as it is, and if the position of the milk container is not the center or if there is more than one, the milk container detection position
  • the motor 18 is controlled so that the center of the radiator can be locally heated, and the position of the radiator 8 is set.
  • the magnet table may be stopped during the time period distant from the radiating section 8 by rotating the turntable so that the electromagnetic waves do not enter the heating chamber 4. good. In this case, it takes time to heat, but there is an effect that the temperature distribution can be further improved and unnecessary energy consumption is not performed.
  • sake, miso soup, coffee and the like are the same as milk, and the same effect can be obtained by adding a new menu to the menu setting means 133 set by the user.
  • FIG. 54 is a configuration sectional view of a high-frequency heating device according to a fifteenth embodiment of the present invention.
  • FIG. 55 is a sectional view of a main part of the temperature distribution detecting means of the embodiment.
  • the components having the same configuration as the above embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the fifteenth embodiment has a configuration in which a turntable motor as a rotating means is not used.
  • the electromagnetic wave emitted from the magnetron 2 is radiated into the heating chamber 4 through the waveguide 3 and the lined electric chamber 15 to heat the food 6 in the heating chamber 4.
  • a radiation section 8 is provided in the power supply chamber 15, and the radiation section 8 is configured to be rotated by a motor 18 which is a waveguide moving means.
  • 25 is a cover for covering the power supply room 15.
  • the motor 18 is a stepping motor, and rotates the first rotating shaft 13 7.
  • a large gear 1 38 is attached to the first rotating shaft 13 7.
  • Reference numeral 1339 denotes a peripheral gear, which forms a gear inside, and has a groove serving as a bearing for the small gear 140, and is fixed to the waveguide 3.
  • the small gear 14 0 contacts the large gear 13 8 and the peripheral gear 13 9, the small gear 14 0 has a second rotating shaft 14 1 attached, and the second rotating shaft 1 4 1 has the peripheral gear It is rotatably mounted using the groove provided in 139 as a bearing.
  • the radiating section 8 is attached to the second rotating shaft 14 c.
  • the second rotating shaft 14 1 Move around the gear 3 8 along.
  • Motor 18 is the original inspection
  • the initial position is adjusted by using an output switch or a stopper, and thereafter, the movement angle from the initial position is sequentially accumulated so that the rotation angle can always be known so that the position of the radiating section 8 can be adjusted. Both orientations are known.
  • FIG. 55 is a cross-sectional view of a main part of the temperature distribution detecting means, and shows a cross section taken along line FF ′ of FIG.
  • Reference numeral 115 denotes a stepping motor, which swings the infrared detecting element 112 from the front to the back in FIG. 55 and simultaneously opens and closes the optical path by the chopper 118.
  • a driving means 144 drives the entire metal case 124 including the infrared detecting element 112, and is constituted by a stepping motor.
  • Stepping motor 1 4 2 rotates the rotating shaft 1 4 3, drives the connecting portion 1 4 4 attached to the rotating shaft, and swings the infrared detecting element 1 1 2 in the left and right direction of Fig. 55. .
  • the pitching cycle of the steering motors 14 and 2 is sufficiently slower than the pitching cycle of the steering motors 1 and 5, and is driven at an integer multiple.
  • the temperature can be detected. With this configuration, the temperature of the entire region in the heating chamber 4 can be detected, and the temperature distribution can be detected two-dimensionally.
  • the temperature difference from the temperature before the reciprocation and the temperature change from the initial stage can be calculated for each detected position.
  • the control means 19 performs uniform heating control by rotating the motor 18 at a fixed cycle in the beginning, and if the food is extracted, the low-temperature portion is extracted from the extracted food, and the radiating section 8 is located at the position of the low-temperature portion.
  • the angle of the motor 18 is controlled so that it faces.
  • FIG. 56 is a sectional view showing the configuration of the high-frequency heating device according to the sixteenth embodiment of the present invention.
  • FIG. 57 is a cross-sectional view of a main part of the electromagnetic wave radiating portion of the embodiment.
  • the same components as those in the thirteenth to fifteenth embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • an aperture position varying means is provided as a distribution varying means.
  • the electromagnetic wave emitted from the magnetron 2 heats the food 6 on the dish 21 placed in the heating chamber 4 via the waveguide 3.
  • the opening that connects the waveguide 3 and the heating chamber 4 and guides the electromagnetic waves is as follows: the first opening 144 is near the center of the heating chamber 4, and the second opening 144 is around the heating chamber 4 It is configured so as to be located closer to and in the direction of the radius of rotation of the turntable 1.
  • Reference numeral 1407 is a shielding plate that shields one of the openings 1450 and 1466.
  • the structure is a semicircular metal plate, which is a rotation made of a low-loss material that is difficult to absorb electromagnetic waves.
  • Reference numeral 18 denotes an opening position changing means which is constituted by a stepping motor, and which rotates the rotary shaft 144 to close one of the openings 144 and 144 with the shielding plate 144. .
  • the position where the electromagnetic wave is radiated into the heating chamber 4 changes, and the portion of the food 6 immediately above the unblocked opening is locally heated intensively. Further, by rotating the shielding plate 147 at a constant cycle, the food 6 can be heated uniformly.
  • FIG. 57 shows a GG ′ section of FIG.
  • the openings 1 4 5 and 1 4 6 are rectangular, respectively, and the bottom surface of the rectangular heating chamber 4 is also parallel to the four sides.
  • the shielding plate 1 47 closes the first opening 1 45, and the electromagnetic wave is radiated from the second opening 1 46 into the heating chamber 4. Local heating is applied to the part of 6 that is located near the periphery of heating chamber 4.
  • the shielding plate 1 47 closes the second opening 1 46 and radiates electromagnetic waves from the first opening 1 45 into the heating chamber 4, so that the food 6 Is used to locally heat a portion located near the center of the heating chamber 4.
  • the control means 19 rotates the shielding plate 1 4 7 at a fixed cycle to perform uniform heating control, and if the food 6 is extracted from the temperature distribution detected by the temperature sensor 26, The low temperature part is extracted and stored as a heating position.
  • Rotation of the turntable 1 positions the shielding plate 1 4 7 in accordance with the heating position in the radial direction with openings 1 4 5 and 1 4 6
  • the optimum local heating control is performed by switching every moment, and by repeating this process, the low-temperature part is eliminated from the food 6 and the whole food is heated uniformly.
  • the configuration has been described as being simple and compact by providing two openings and rotating the semicircular metal plate, but these are not intended to limit the present invention, and the number of openings is increased. It is possible to control the local heating more finely, and the shielding plate may be moved linearly instead of rotating. Similar effects can be obtained by providing a shielding plate in each of the plurality of openings.
  • FIG. 58 is a block diagram illustrating the control operation.
  • FIG. 59 is a temperature characteristic diagram particularly explaining the operation of the contour extracting means.
  • the same components as those of the above-described thirteenth to sixteenth embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the local heating means 16 is controlled by the uniform heating control means 127. If it is possible to distinguish whether or not food is present at each detection position detected by the temperature distribution detecting means 26, the heated object extracting means 126 can use the heating mode switching means 130 to switch the local heating means 16 The control is switched from the uniform heating control means 127 to the local heating control means 131.
  • the object-to-be-heated extracting means 126 comprises a temperature change calculating means 128 and a contour extracting means 149.
  • the temperature change calculation means 1 28 stores the temperature corresponding to each detection position of the temperature distribution detection means 26 at the beginning of heating, and then detects the same detection position as the temperature corresponding to each detection position after a lapse of a predetermined time. The temperature difference ⁇ ⁇ from the initial temperature is calculated.
  • the contour extracting means 149 extracts the contour of the food from the initial temperature change T corresponding to each of the detection positions.
  • (a) indicates the detection positions of the temperature distribution detection means 26 in the squares, and the food 6 is indicated by the diagonal lines.
  • the temperature distribution detecting means 26 detects the temperature distribution at a matrix-like detection position by shaking the head of a plurality of infrared detecting elements arranged two-dimensionally or arranged linearly. .
  • the temperature change from the beginning of the heating of food 6 is usually larger than the temperature change in the area without food.
  • the X direction differentiating means 150 is used to detect the X direction of the detection points arranged in a matrix.
  • the difference in temperature difference between the adjacent detection position in the horizontal direction is calculated.
  • the detection position where the calculation result is larger than a predetermined value is stored.
  • the Y-direction differentiating means 151 calculates the difference in temperature difference between the Y-direction of the detection points arranged in a matrix, that is, the adjacent detection position in the vertical direction in FIG. The detection position where the calculation result is larger than a predetermined value is stored.
  • the detection position indicated by oblique lines in FIG. 59 (c) is a detection position larger than a predetermined value stored in the Y-direction differentiating means 151.
  • the shaping means 152 calculates the logical sum of the detected position stored by the X direction differentiating means 150 and the detected position stored by the Y direction differentiating means 151. That is, the detection position stored in either the X-direction differentiating means 150 or the Y-direction differentiating means 151 is determined as the contour of the food. Since there is a distribution in the temperature rise of the food, there is also a position inside the food where there is a large difference in the temperature difference from the adjacent detection position, but the shaping means 152 sets the largest circumference as the contour of the food. If a part of the surrounding outline is cut off, it is joined to form an outline.
  • the object to be heated extraction means 126 extracts the outline of the food as described above, and uses the inside surrounded by the outline as the food.
  • the low-temperature partial extraction means 13 2 extracts the low-temperature part from the food extracted by the heated object extraction means 1 26, and the local heating control means 13 1 is the temperature extracted by the low-temperature partial extraction means 13 2.
  • the local heating means 16 is controlled so that the electromagnetic wave is radiated to a place where the temperature is low. As described above, since the object to be heated is extracted and the electromagnetic wave is radiated to the object, the heating can be performed efficiently without wasting energy.
  • FIG. 60 is a block diagram illustrating a control operation of the high-frequency heating device of the present invention.
  • the same components as those in the first to thirteenth to seventeenth embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the heating range setting means 153 comprises a setting screen 154 made of liquid crystal, a cross-shaped cursor key 155, a setting key 156, and a cancel key 157.
  • the setting screen 154 serves as the bottom of the heating chamber, and the user sets the area within which heating is desired.
  • the user first presses the setting key 1 5 6 when starting the setting.
  • the first point 158 is displayed in the upper left corner of the setting screen 154.
  • the user operates the cursor key 155 to move the first point 158 in the setting screen 154.
  • the cursor keys 155 consist of the up key 155a, the down key 155b, the left key 155c and the right key 155d. Can be used to move the first point 158 up, down, left, and right to any position.
  • the user moves the first point 158 to the end of the heating range and presses the setting key 156.
  • the position of the first point 158 is fixed, and the second point 159 is displayed at the same position.
  • the user also operates the cursor key 155 to move the second point 159.
  • a rectangle 160 having a first point 158 and a second point 159 as diagonals is displayed on the setting screen 154.
  • the range indicated by this rectangle is the heating range.
  • the user moves the second point 159 to an arbitrary position on the setting screen 154, and sets a heating range with a rectangle 160.
  • the setting key 1 56 By pressing the setting key 1 56 again, the second point 15 9 and the rectangle 16 0 are fixed. If there are multiple heating ranges, the user presses the setting key 156 again to display the first point 158 on the setting screen 154 again, and then repeats the above operation.
  • the control means 19 controls the heating range so as to uniformly heat the heating range.
  • the low temperature portion extracting means 13 2 extracts a low temperature portion from the heating range set by the heating range setting means 15 3 based on the signal from the temperature distribution detecting means 26.
  • the local heating control means 13 1 controls the local heating means 16 so as to emit electromagnetic waves to the low temperature part extracted by the low temperature part extracting means 13 2.
  • the low-temperature portion disappears from the heating range, and the entire heating range can be uniformly heated. Also, do not heat outside the heating range, and cook food that should be eaten at low temperature at low temperature. It becomes possible.
  • the heating range setting means 15 3 comprises a setting screen 15 4, a cursor key 15 5, a setting key 15 6, and a cancel key 15 7, but these do not limit the present invention.
  • there are methods such as using a touch panel and using a mouse, which have the same effect. The operation is simplified by setting the heating range in a rectangle, but the same effect can be obtained by setting it in a free curve.
  • the heating range is coded and printed with a bar code or the like on the product packaging bag, and the printing range can be set by reading the print optically. In this case, even in a complicated heating range, the heating range can be set by an extremely simple operation.
  • FIG. 61 is a block diagram illustrating a control operation of the high-frequency heating device of the present invention.
  • the same components as those in the thirteenth to eighteenth embodiments are denoted by the same reference numerals for convenience, and description thereof will be omitted.
  • the types of commercial products of this type are limited at a stretch, and the position of the food in the container is the same for the same type.
  • the types of products include Makunouchi bento, Yakiniku bento, and ⁇ bento.
  • Yakiniku bento the position of rice and the position of yakiniku are determined.
  • the type is limited, the same type of product will be heated many times.
  • the heating range of each product is registered in association with a code.
  • the heating range can be called up with a code, which simplifies the operation of setting the heating range.
  • the heating range setting means 15 3 has a group of numeric keys from 1 to 1 0 1 6 1, a registration key 16 2 as registration means, and a call key 16 as registration calling means. There are three.
  • To register the heating range first use the operating method described in the 18th embodiment. Set the heating range using the cursor keys 15 5 and setting keys 15 6 Next, press the registration key 1 6 2, and press one of the numeric keys in the numeric key group 16 1.
  • the heating range a is stored in the registration storage means 16 4 together with the code pressed by the numeric keys.
  • To call the heating range first press the call key 16 3, and then press the numeric key corresponding to the product from the numeric key group 16 1.
  • the heating range stored corresponding to the numeric code pressed from the registration storage means 16 4 is displayed on the setting screen 15 4. If it is correct, press the setting key 1 5 6 to confirm. Once registered, only the call operation is performed thereafter, and the setting of the heating range can be easily performed.
  • the control means 19 controls the local heating means 16 to heat the heating range to a uniform temperature in the same manner as in the eighteenth embodiment. That is, the low-temperature portion extraction means 13 2 extracts the low-temperature portion from the heating range set by the heating range setting means 15 3 based on the signal from the temperature distribution detecting means 26, and the local heating control means 13 1 controls the local heating means 16 so as to radiate electromagnetic waves to the low-temperature part extracted by the low-temperature part extraction means 13 2.
  • the registration means and the registration call means have been described with the numeric key group 161, the registration key 162, and the call key 163, but this does not limit the present invention.
  • the operation procedure, codes, alphabets, and other codes are displayed on 15 4 and can be used as registration means and registration call means using the cursor keys 15 5 and setting keys 15 6. In this case, the number of keys is reduced, which has the effect of simplifying the configuration. It is also possible to simplify the operation by printing the code on the product packaging bag and reading it optically without using the numeric key group.
  • FIG. 62 is a cross-sectional configuration diagram of a high-frequency heating device according to a 20th embodiment of the present invention.
  • the electromagnetic wave emitted from the magnetron 2 is radiated from the waveguide 3 into the heating chamber 4 through the opening 1 65 through the application of FIG. 37 of the ninth embodiment, and the food 6 is loaded.
  • the turntable 1 to be placed operates in a spiral shape. With this configuration, the food 6 itself is positioned and driven, and the incident direction of the electromagnetic wave to the food 6 changes depending on the position, so that, for example, heating of the center of the food 6 or heating of the surroundings is performed.
  • This is a typical position switching method for switching a hot part, and it can be said that the cam 37 and the switch 38 are position detection units that detect the position of food.
  • FIGS. 63 and 64 are cross-sectional views of the main parts of the high-frequency heating device according to the 21st embodiment of the present invention.
  • the position of the food 6 is determined and driven, and unlike FIG. 62, not only the two-dimensional change due to the rotation of the turntable 1 but also the change due to the vertical movement Control in three dimensions.
  • FIG. 63 shows a state where it is raised
  • FIG. 64 shows a state where it is lowered.
  • FIG. 65 is a configuration diagram of a main part of the high-frequency heating device according to the twenty-second embodiment of the present invention, and shows a configuration of the turntable 1 as viewed from below.
  • the turntable 1 is made of a material that is hard to absorb electromagnetic waves such as ceramics and is transparent, and is composed of a disk 16 6 and a rotary bearing 48.
  • the structure is such that electromagnetic waves can be easily transmitted without gaps.
  • the turntable 1 When electromagnetic waves are applied from below, the turntable 1 becomes a path for electromagnetic waves.
  • heat resistance is improved by devising the turntable 1 as shown in Figs. 17 and 65.
  • the structure is high and easy to transmit electromagnetic waves.
  • FIG. 66 is a cross-sectional view of a main part of a high-frequency heating device according to a twenty-third embodiment of the present invention, showing the dimensional relationship between the turntable 1 and the central portion 167 of the bottom surface of the heating chamber c.
  • the radius r diameter 2 r in Fig. 66
  • the protrusion dimension of the center 1 67 on the bottom of the heating chamber 4 is radius R (straight S 2 R in Fig. 66), and 2 R> 2 r, that is, R> r In a relationship.
  • FIG. 67 is a sectional configuration view of a high-frequency heating device according to the twenty-fourth embodiment of the present invention.
  • the electromagnetic waves emitted from the magnetron 2 heat the food 6 on the turntable 1 in the heating chamber 4 via the waveguide 3.
  • the electromagnetic wave emitted from the magnetron 2 is branched from the first waveguide 3 A into the waveguides 3 B and 3 C at a branch point 16 9, and the openings 16 9 A and 16 on the bottom of the heating chamber 4 are formed. Electromagnetic waves are transmitted into the heating chamber 4 via 9B. At this time, adjacent portions of the wall surfaces of the waveguides 3B and 3C are formed of a common metal plate.
  • the branch point 168 is formed in a section (node) where the electric field is weak in the first waveguide 3A.
  • the first waveguide 3A protrudes the wall 1 ⁇ 0 facing the antenna 30 of the magnetron 2 to increase the distance between the antenna 30 and the wall 1 ⁇ 0, but the waveguide 3B Since 3C does not have a protrusion like antenna 30, the distance can be narrowed. Therefore, the cross-sectional area of the waveguides 3B and 3C may be narrower than that of the first waveguide 3A, so that a space-saving configuration can be achieved despite the overlapping of a plurality of waveguides. In the present embodiment, considering the waveguides 3B and 3C, the cross-sectional area of the first waveguide 3A is expanded by the wall surface 170.
  • the length of the waveguides 3 B and 3 C from the branch point 168 to the terminal end is almost an integral multiple of 2 of the guide wavelength 8, and the branch point 168
  • the fact that the width of is less than or equal to 14 of the guide wavelength g is described in detail in FIG.
  • the metal shield part 1 ⁇ 1 is connected to the heating chamber 4 and the projections 173 on the waveguides 3 B and 3 C by the drive part 172 while the openings 169 A and 1 By operating between the 69Bs, the openings 16A and 1669B, which facilitate transmission of electromagnetic waves, are switched. Further, the seal portion 174 prevents leakage of electromagnetic waves to the outside of the heating chamber 4 and the waveguide 3 irrespective of the position of the shield portion 1-1.
  • the control means 19 includes a temperature sensor 26 for detecting the temperature of the food 6, a weight sensor 23 connected to the turntable 1 for detecting the weight of the food 6, and a shape of the food 6 Based on the detection signals from the optical sensors 6 1 and 6 2, electromagnetic waves are emitted from the magnetron 2, the operation of the fan 27 for cooling the magnetron 2, and the driving section 1 7 2 for the shielding section 17 1 And the operation of the rotation motor 22 for rotating the turntable 1 and the operation of the height drive unit 175 for changing the height of the turntable 1 are controlled. In particular, the control is performed so that the shields 1-1 are moved when no electromagnetic waves are emitted from the magnetron 2.
  • the position of the shielding portion 17 1 and the height of the turntable 1 are controlled so that the heating distribution and the heating efficiency are improved even if the food 6 is lightweight.
  • the detection unit for example, the weight sensor 23
  • the detection unit that has a possibility of erroneous detection is controlled so as not to receive or ignore the output of the detection unit until it becomes stable.
  • the heating distribution and heating efficiency are optimized by operating the position of the shield part 17 1 and the height of the turntable 1 several times during heating (especially for large quantities).
  • the opening where electromagnetic waves are easily emitted and the opening where electromagnetic waves are hardly emitted are switched among the plurality of openings 1 69 A and 1 69 B, and the heating chamber 4
  • the electric field distribution can be switched.
  • the position of the shielding portion 1711 can be freely set in accordance with signals from various detecting portions, an appropriate electric field distribution state can be obtained according to the purpose of heating.
  • shielding part]. 71 To determine the position of 1 accurately, determine the reference point somewhere and manage the position of the shielding part 17 1 by the moving distance from the reference point It is easy to think.
  • the height h of the turntable 1 when the height h of the turntable 1 is changed by the height driver 17 5, the height of the food 6 changes, so that the heating distribution of the food 6 can be changed even with the same electric field distribution. Therefore, in the same way, if the height h of the turntable 6 is adjusted to the optimum height h according to the difference in the electric field distribution depending on the position of the shielding unit 17 1 and the signals from the various detection units, it is possible to further increase the heating of one layer. Appropriate heating distribution can be obtained according to the purpose.
  • the height may be managed by a reference point and a moving distance.
  • the turntable 1 is normally rotated to make the food 6 uniform in the concentric direction as viewed from the center of rotation, but the rotation and stop (or variable speed) can be freely set by the rotation motor 22. .
  • the heating distribution can be changed by the shield part 171 and the height drive part 175 to eliminate the uneven temperature. You can look for such a state and stop or decelerate when it becomes such a prone state so that unevenness is eliminated quickly.
  • FIG. 68 is a sectional view showing the main parts of a high-frequency heating apparatus according to a twenty-fifth embodiment of the present invention.
  • the electromagnetic wave supplied from the antenna 30 of the magnetron 2 to the waveguide 3A has the maximum electric field at the antenna 30 (the antinode of the electric field 176), and thereafter becomes weak every 1Z4 of the guide wavelength g. It is transmitted to the left and right in Fig. 68 while repeating the knotting (electric field node 17 7) and the strong knotting (electric field antinode 1776).
  • the electric fields in the waveguides 3A and 3C orderly form the antinodes of the electric field and the nodes of the electric field. I'm returning.
  • the guide wavelength; lg is determined by the distance I in the depth direction in Fig. 68, so there is a degree of freedom in the distance J in the height direction, but the distance between the antenna 30 and the opposing wall 170 is too short. (Below 5 mm) An abnormal state such as discharge may occur, so a certain distance must be maintained.
  • a branch point 168 is formed at a node 1 ⁇ 7 of the electric field.
  • the branch point 168 is considered to be an opening, so an electric field 178 A is applied so as to sandwich the branch point 168, thereby causing the waveguides 3 A, 3 C This is to prevent the electric field from being disturbed.
  • the electromagnetic wave transmitted from the branch point 1668 into the waveguide 3B forms an electric field 178B so as to sandwich the branch point 168, and the distance I in the depth direction of FIG. Since they are the same, they are transmitted left and right by the same guide wavelength g.
  • the length from the branch point 16 8 to the right end face 1 ⁇ 9 is 1/2 times the length of, and the length from the left end face 1 80 to the length is 22 times g, so that the waveguide 3 B the c field of the inner has repeatedly orderly belly 1 7 6 and section 1 7 7 of the electric field of the electric field, because there is no protruding portion, such as an antenna 3 0 the waveguide 3 in B, and the wall the Zhi
  • the distance J 2 in the height direction can be reduced within a range where no discharge occurs.
  • the cross-sectional area half as J 2 ⁇ J, Z2 is reduced to below.
  • FIG. 69 is a perspective view showing a main part of a high-frequency heating device according to a twenty-sixth embodiment of the present invention. (Each component is actually connected, but is shown differently from the actual one for easy viewing.)
  • the heating chamber 4 and the waveguide 3 each have an opening 169 and projections 173A and 173B formed by cutting a metal so as to surround the opening 169. I have. (However, the waveguide 3 has a wall-forming portion 182 and a projecting portion 183.) The projecting portion 173A and the projecting portion 173B project so as to face each other. A metal shielding part 17 1 is configured to be drivable.
  • the electromagnetic wave in the waveguide 3 is transmitted into the heating chamber 4 only when the shielding portion 171 is not on the opening 169. Further, the waveguide 3 and the heating chamber 4 are connected to each other in order to suppress the leakage of the electromagnetic waves to the outside. In particular, the electromagnetic waves in the M direction are shielded by the seal portion 13.
  • the seal portion 13 is a metal having a groove having a depth of N.
  • N ig Z4
  • no electromagnetic wave is transmitted from the upper surface 29 of the seal portion 13 in the figure to the M side.
  • the impedance indicator of difficulty in transmitting to the M side
  • No electromagnetic waves are transmitted from position 1 84 to the ⁇ side.
  • FIG. 70 and FIG. 71 are main part configuration diagrams of the high-frequency heating device in the twenty-seventh embodiment of the present invention, in which one driving section 1 ⁇ 2 and one shielding section 17 1 have a plurality of openings 16 9. ⁇ , This shows how to switch 1 6 9 B.
  • FIG. 70 shows a case where the opening 169 A is opened and the opening 169 B is shielded.
  • FIG. 70 (a) is a cross-sectional configuration view of a main part
  • FIG. 70 (b) is a view from above.
  • FIG. 7 is a configuration diagram of a portion below a shielding portion 17 1 of 70 (a). Due to the rotation of the gear-shaped drive unit 1 ⁇ 2, the shielding unit 17 11 operates while being in contact with the projections 1 ⁇ 3 between the heating chamber 4 and the waveguides 3B, 3C, and electromagnetic waves are transmitted. Switch between openings 1 69 A and 1 69 B. In this case, the opening 169 A is opened because it overlaps with the cutout 185 of the shielding portion 171, and the opening 169 B is shielded by the shielding portion 171.
  • FIG. 71 shows the case where the opening 169A is shielded and the opening 169B is open.
  • Fig. 71 (a) is a cross-sectional view of the main part, and Fig. 71 (b) is a view from above.
  • FIG. 7 is a configuration view of a portion below a shielding portion 17 1 of (a). In this case, the opening 169A is shielded by the shielding part 171, and the opening 169B is open because it is shifted from the shielding part 171.
  • FIG. 72 is a characteristic diagram of the high-frequency heating device in the present embodiment. This is called a Rieke diagram representing the operating point of the magnetron 2, and shows the ease of electromagnetic waves entering the heating chamber 4.
  • the area where electromagnetic waves are most likely to enter is area 186, and the further the outside, the less electromagnetic waves enter. Obviously, if the electromagnetic waves stop, the heating efficiency will decrease and the loss that can be converted to heat generation in the electromagnetic wave radiating section will increase.
  • the opening portion 1669A is switched from the opening portion 1669B while the electromagnetic wave is being emitted. It is assumed that the operating point is at 187 when the opening 169 A is opened and the opening 169 B is shielded. However, when the opening 1669A is gradually blocked and the opening 1669B begins to open, the operating point starts moving in the direction of the arrow, and when it is just half opened, the operating point is 1888.
  • FIG. 73 is a characteristic diagram showing the embodiment of the present invention, in which the horizontal axis represents time t and the vertical axis represents high-frequency output P.
  • t ST is unstable for a while after the electromagnetic wave starts to be emitted from the electromagnetic wave radiating section, so that noise such as high-frequency waves is likely to be generated.
  • the period of t M as shown in FIG. 7 3 (a) is detected without an electromagnetic wave, detection after the end out of the electromagnetic waves, was something to reach a stable heated state t F through t ST.
  • heating is not performed during the period of t M, so that the heating efficiency is extremely low. Therefore, as in the present invention shown in FIG.
  • FIG. 74 is a sectional configuration diagram of a high-frequency heating device according to a twenty-eighth embodiment of the present invention.
  • the electromagnetic waves emitted from the magnetron 2 heat the food 6 on the turntable 1 in the heating chamber 4 via the waveguide 3.
  • the plurality of openings 169 that guide the electromagnetic waves from the waveguide 3 into the heating chamber 4 are covered with a transparent opening cover 25 made of a low-loss material that is difficult to absorb the electromagnetic waves.
  • a metallic stirrer blade 189 as a rotating body is provided in the waveguide 3, and this is rotatably driven by a stepping motor 190. Since the stirrer blades 189 have various operation patterns according to the purpose, the moving distance from the reference point is constantly monitored by the blade position detector 191.
  • the control means 19 includes a signal from the operation panel 64 input by the user, a signal from the state sensor 192 including a weight sensor 23 or other temperature sensor, and a blade position detector 191. Control the electromagnetic wave emission from the magnetron 2, determine the operation pattern of the stirrer blades 189, control the driving of the stepping motor 190, and control the rotation of the turntable 1, The stop is determined and the drive of motor 22 is controlled. It has a body cover 193 and an openable door 194.
  • the electromagnetic The heating distribution can be switched by switching between the opening where the wave is likely to appear and the opening where the wave is less likely to emerge, and at the same time, the matching state can be switched.
  • the position and rotation of the stirrer blade 189 can be freely set in accordance with the signal from the operation panel 64 or the signal from the weight sensor 23 or other status sensor 192.
  • the distribution and matching state can be adjusted appropriately according to the conditions.
  • the rotation and stop of the turntable 1 can be freely set, depending on the food 6, the turntable 1 may be rotated to make the food 6 uniform in the concentric direction viewed from the center of rotation, or the food 6 may be milk or soup. In the case of (liquid), the turntable 1 can be stopped to improve the alignment.
  • FIG. 75 is a cross-sectional configuration view taken along the line PP ′ of FIG.
  • the waveguide 3 widens in the middle and forms a stirrer blade 189 inside. Also, since the opening cover 25 is transparent, the user can see the operation of the stirrer one blade 189 through the five openings 169.
  • FIGS. 76 and 77 are cross-sectional configuration diagrams of the high-frequency heating device in the twentieth and thirtieth embodiments of the present invention.
  • FIG. 76 shows the case where there is only an opening 169 before the stirrer blade 189
  • FIG. 77 shows the case where there is only one opening 169 before the stirrer blade 189.
  • the opening 169 may be provided at a position farther than the stirrer blade 189 when viewed from the magnetron 2,
  • the longitudinal direction of the tube 3 may be configured vertically or obliquely, the waveguide 3 may extend not only in one direction from the magnetron 2 but also in multiple directions to form a plurality of openings 169, It is also conceivable that the waveguide 3 is folded so as to extend over not only the back surface but also the side surface, the bottom surface, the top surface, or two or three of them.
  • the configuration of the stirrer blades 189 may be not only four blades but also other number of blades, and the rotating body may not be blade-shaped but may be simply plate-shaped or rod-shaped.
  • the stepping motor 190 is driven based on the signal, and at about the same time, the electromagnetic radiation from the magnetron 2 is started. At this time, the turntable 1 stabilizes the matching state while stopped, and heats efficiently. Thereafter, heating is performed for the time determined by the weight sensor 23 or the condition sensor 192, or the heating is stopped when the milk reaches an appropriate temperature. In the case of milk, if the electric field is concentrated on the bottom surface, the convection will provide a naturally well-balanced surface, and the milk can be heated in a stable and appropriate matching state, improving the efficiency.
  • the control means 19 determines the food 6 as a frozen food based on the signal from the operation panel 6 4, and the weight sensor 23 3 and the state from the signals from the state sensor 19 2 indicate various states such as the amount, shape and temperature of the frozen food. Is determined, an appropriate number of revolutions of the stirrer blade 189 is determined, and the stepping motor 190 is driven to rotate, and about the same time, radiation of electromagnetic waves from the magnetron 2 is started.
  • the turntable 1 also rotates together with the stirrer blades 189, so as to avoid partial concentration of the electric field as much as possible.
  • heating is performed for the time determined by the weight sensor 23 or the status sensor 192, or the heating is stopped when the temperature reaches an appropriate temperature (the thawing is completed).
  • the distribution problem is that the concentration of the electric field causes partial boiling, so the distribution should be improved even at the expense of some efficiency.
  • the control means 19 determines that the food 6 is to be reheated by the signal from the operation panel 64, and the amount, shape and temperature of the food 6 by the signals from the weight sensor 23 and the state sensor 19 2. For example, various states are determined. The most important thing is to judge whether the food 6 is in a liquid state, a solid state, or an intermediate state between liquid and solid.
  • One method is to rotate the turntable 1 for an initial short period of time and then stop it to apply vibration to the food 6 and detect the time change of the vibration that occurs at that time. There is a way to judge.
  • the vibration is based on the principle that if the object is a liquid, the vibration lasts for a long time, and if the object is a solid, the vibration disappears in a short time. Thereafter, the operation of the appropriate stirrer blade 1S9 is determined, and the stepping motor 190 is driven to rotate, and at about the same time, the radiation of the electromagnetic wave from the magnetron 2 is started.
  • the turntable 1 is kept stationary, the table is stabilized, and the food is efficiently heated.
  • the turntable 1 is rotated to make the concentric heating distribution uniform.
  • the turntable 1 is repeatedly rotated and stopped. Thereafter, the heating is performed for a time determined by the weight sensor 23 or the condition sensor 192, or the heating is terminated when the temperature becomes appropriate.
  • the heating is performed for a time determined by the weight sensor 23 or the condition sensor 192, or the heating is terminated when the temperature becomes appropriate.
  • the liquid food 6 even if the turntable 1 is stopped as in the case of the milk described above, if the electric field is concentrated on the bottom surface, the convection naturally produces a well-distributed result, and a stable and appropriate result is obtained. Heating can be performed in a matched state, improving efficiency.
  • FIG. 78 is a characteristic diagram showing the heating efficiency of the example.
  • Fig. 78 is a Smith chart showing the matching state of the load as viewed from the magnetron 2.
  • the shaded area is the high-efficiency area 1 95 (the area where the electromagnetic wave enters the heating chamber 4 most efficiently).
  • the alignment can be changed depending on the positions of the stirrer blades 189 and the turntable 1.
  • FIG. 79 is a cross-sectional view of a high-frequency heating device according to a thirty-first embodiment of the present invention.
  • the electromagnetic waves emitted from the magnetron 2 heat the food 6 on the turntable 1 in the heating chamber 4 via the waveguide 3.
  • a plurality of openings 16 9 for guiding electromagnetic waves from the waveguide 3 into the heating chamber 4 are formed on the bottom surface of the heating chamber 4, and the waveguide 3 has a plurality of openings 16 9 A and 16 9
  • It has a sub-waveguide 196 that branches from the position between B, and drives the seal part 197 and the seal part 197 that move in the vertical direction in the figure in the sub-waveguide 196. It comprises a seal drive section 198 or a transparent open cover 25 made of a low-loss material that does not easily absorb electromagnetic waves.
  • the control means 19 includes a signal from the operation panel 64 input by a user and a weight sensor 23 connected to the turntable 1 for detecting the weight of the food 6 or a temperature sensor 2 for detecting the temperature of the food 6. Based on the signal from 6, control the radiation of the electromagnetic wave from the magnetron 2, or send a signal to the seal drive 1 198 to move the position of the seal 197, and move the motor 2 2 for table rotation. To control the rotation of the turntable 1, apply a signal to the table height drive 1 175 to change the height of the turntable 1, and cool and heat the magnetron 2. A signal is given to a fan drive unit 199 of a fan 27 for blowing air into the chamber 4 to control the rotation operation.
  • the electromagnetic wave distribution is switched between the one from which the electromagnetic wave is likely to be emitted and the other which is difficult to be emitted among the plurality of openings 169A and 169B.
  • the seal portion can be freely adjusted according to the signal from the operation panel 64 or the signal from the weight sensor 23 or the temperature sensor 26. Since the 7 positions can be set, an appropriate electric field distribution state can be achieved according to the purpose of heating.
  • determine the reference point somewhere and manage the position of the seal part 197 according to the moving distance from the reference point Can easily be considered.
  • the height of the turntable 1 when the height of the turntable 1 is changed by the table height drive unit 175, the height of the food 6 changes, so that the heating distribution of the food 6 can be changed even with the same electric field distribution. Therefore, similarly, if the height of the turntable 1 is adjusted to the optimum height according to the difference in the electric field distribution depending on the position of the seal portion 197 and the signals from the operation panel 64, the weight sensor 23, the temperature sensor 26, the heating can be performed. Heating distribution suitable for the purpose of (1). Although not shown in FIG. 79, as in the case of the seal portion 197, in order to accurately determine the height of the turntable 1, it may be managed by a reference point and a moving distance.
  • the temperature sensor 26 A monitors the food 6 from the top surface and detects the temperature and temperature change at a plurality of locations in the horizontal direction, and the temperature sensor 26 A monitors the food 6 from the side surface and the vertical direction. It consists of a temperature sensor 26 B that detects the temperature and temperature changes at a plurality of locations in the food 6, and can generally detect the temperature distribution of the entire food 6.
  • the turntable 1 is normally rotated to make the food 6 uniform in the concentric direction as viewed from the center of rotation, but can be freely rotated and stopped (or variable speed) by the motor 22 for rotating the table.
  • the blower fan 27 cools the magnetron 2 and simultaneously blows the blown air 200 into the heating chamber 4 from the air inlet 201. Since the air blow 200 is heated by the heat of the magnetron 2, the food 6 is slightly heated when the food 6 is cold, and has the effect of cooling when the food 6 is hot. In any case, since the air blowing 200 averages the ambient temperature of the food 6, the temperature unevenness is large t, and sometimes the rotation speed is increased. To increase the air volume and achieve evenness. Then, the blower 200 makes the food 6 uniform, and then becomes the exhaust 202, which is exhausted from the outlet 203 to the outside of the heating chamber 4.
  • FIGS. 80 to 81 are main part configuration diagrams of the high-frequency heating device in the present embodiment, in which openings 169A and 169B are apparently switched by a seal portion 197 operating in the sub-waveguide tube 196.
  • FIG. 80 shows a state in which the seal portion 197 is pulled to the lowermost end in the sub-waveguide 196 by the movement of the drive shaft 204 by the seal drive portion 198.
  • the seal part 197 has a structure in which a spark preventing insulator 206 is provided around a conductive member 205.
  • Electromagnetic waves are transmitted below the seal end face 207 in the figure by using L1 2 IgZ4. Not something.
  • L3 the impedance viewed from the electromagnetic wave (the inside of the waveguide 3 comes from the right side in the figure) (Easy transmission to the left from position 208 for electromagnetic waves) changes.
  • L3 AgZ4
  • FIG. 81 shows a state where the seal portion 197 is pulled to the uppermost end in the sub-waveguide 196 by the movement of the drive shaft 204 by the seal drive portion 198.
  • the opening 196A is apparently opened and closed by the position of the seal 197.
  • the concept of the impedance in FIGS. 80 to 81 is the same as the concept of the microstrip line, and various other embodiments are also conceivable.
  • FIG. 82 shows a thirty-second embodiment of the present invention, in which the connection directions of the sub-waveguides 196 are different.
  • Fig. 82 compared to Figs. Since the width under the bottom of the heating chamber 4 can be small, the volume ratio of the inside of the storage to the external shape is increased, and there is an effect that a compact high-frequency heating device can be realized without taking up space.
  • FIG. 83 to FIG. 89 are a characteristic diagram, a main part configuration diagram, and a flow chart of the high-frequency heating device according to the present invention, and show how the heating distribution depends on the relationship between the position of the opening 16 9 and the height of the food 6. In this case.
  • FIG. 4 is a characteristic diagram showing uneven heating distribution when the temperature is measured by heating while changing the height h.
  • the horizontal axis indicates the number of the opening that is open, and the vertical axis indicates the difference between the maximum and minimum temperatures measured at multiple locations. The smaller the value, the more uniform the distribution.
  • the best conditions are an aperture of 1 69 A, a height of 1 O mni and a nonuniformity of 0 ° C.
  • Fig. 84 shows the cross-sectional view of the main part CT with the opening 1669 A and height 10 mm under the optimum conditions of Fig. 83.
  • the milk key 65 is configured as a special key, so the procedure for warming the milk is as follows. 6 Press 5, and then press the Start key 6 6. Then, the control means 19 determines the food 6 as milk based on a signal from the operation panel 64, and determines various states such as the amount, shape and temperature of the milk based on signals from the weight sensor 23 and the temperature sensor 26.
  • the electromagnetic wave is emitted from the opening 169A among the openings 169, and the height h is set to 10 so that an appropriate configuration is achieved. Electromagnetic from Start emitting waves. Thereafter, heating is performed for a time determined by the weight sensor 23 or the temperature sensor 26, or the heating is stopped when the milk reaches an appropriate temperature. This makes it easy to obtain a finish with good heating distribution.
  • FIG. 85 is a characteristic diagram in the case where 100 g of frozen beef sliced meat is used as food 6 and is thawed and cooked.
  • the best conditions are an opening of 169 A and a height of 30 mm.
  • the unevenness is about 32 to 60 ° C., which is improved by the present embodiment.
  • Beef slice meat 1 0 0 g in this case, those in Oh O 0 height (thickness t) is small weight lighter typical shape among the food 6
  • FIG. 86 is a cross-sectional view of a main part of an opening 169 A and a height of 3 O ram under the optimum conditions of FIG. 85.
  • FIG. 87 is a characteristic diagram in the case of thawing and cooking using 300 g of frozen beef sliced meat as food 6.
  • the best conditions would be an opening 1698 and a height of 1 Omni.
  • the unevenness was about 32 to 75, which was also improved by the present embodiment.
  • 300 g of beef sliced meat has a height (thickness t), a general weight, and a standard shape among the foods 6.
  • FIG. 88 is a cross-sectional view of a main part of an opening 169 B and a height of 1 Omni under the optimum conditions of FIG. 87.
  • the control means 19 determines that the food 6 is a frozen food based on the signal from the operation panel 64, and various signals such as the amount, shape and temperature of the frozen food based on the signals from the weight sensor 23 and the temperature sensor 26. While judging the state, the opening 169 and the height h are controlled so as to have an appropriate configuration. At about the same time, the radiation of the electromagnetic wave from the magnetron 2 is started. Then heat for the time determined by the weight sensor 23 or the temperature sensor 26, or stop heating when the temperature reaches the appropriate level (thawing completed).
  • the control means 19 determines that the food 6 is to be reheated by the signal from the operation panel 6 4, and the position, shape, temperature, etc. of the food 6 are determined by the signals from the weight sensor 23 and the temperature sensor 26. Determine various states. The most important thing is to determine whether the food 6 is liquid or solid.
  • the methods there is a method in which the food 6 is vibrated by rotating the turntable 1 for an initial short period of time and then stopped, and the time change of the vibration generated at that time is detected and determined.
  • the vibration lasts for a long time if the object is a liquid, and disappears in a short time if the object is a solid.
  • the opening 1 69 and the height h are controlled so as to have an appropriate configuration.
  • radiation of electromagnetic waves from the magnetron 2 is started, and the turntable 1 is rotated again to concentric heating. Uniform distribution.
  • the heating is performed for a time determined by the weight sensor 23 or the temperature sensor 26, or the heating is stopped when the temperature becomes appropriate.
  • the liquid food 6 as in the case of the milk described above, if an electric field is concentrated on the bottom surface, convection can provide a naturally well-balanced finish.
  • control unit 19 can perform control for optimal heating by comparing the output from the operation panel 64, the weight sensor 23, the temperature sensor 26, and the database with the database.
  • FIG. 89 shows an example of a flow chart in the configuration of FIG. 79 to FIG. 82 and the like, and shows a sequence for determining the optimal opening 169 position and height h.
  • Step 2 10 is a judgment by the weight sensor 23 to determine if the food 6 is liquid or not, and if the weight m is lighter than ml, or heavier than ml and lighter than m2, or heavier than m2. I do.
  • the seal section 197 is moved to an appropriate position L 3 by the seal drive section 198.
  • Steps 2 1 and 2 are determined by the temperature sensor 26 or other sensor, and the height (thickness) t of the food 6 is higher than t 1 or t 1 Determine if it is lower and higher than t2 or lower than t2.
  • step 2 13 the height of the food 6 is moved to the appropriate height h by the table height drive 1 15. From the above, an appropriate opening 1669 position and height h can be configured according to the material (whether liquid or not), the weight m, and the height (thickness) t of the food 6.
  • the opening is set to 169 A
  • the height h is set to 3 O mm
  • the food 6 is kept on standby for the light-weight food 6. Because the heating time is shorter for lighter weights, the distribution cannot be improved by the end of heating even if switching is performed halfway, or the heating time is short, but heating is started in a state of poor heating efficiency. This is to prevent the time from being extended. On the other hand, in the case of a large amount of food 6, since the time until the end of heating is long, even if it is switched on the way, there is enough room for filling. When the user actually heats the food 6, first, the radiation of the electromagnetic waves from the magnetron 2 and the rotation of the turntable 1 are started.
  • signals from the temperature sensor 26, the weight sensor 23, and other state sensors 192 are used to determine various states such as the amount, shape, and temperature of the food 6. judge.
  • the initial state it is configured for heating lightweight foods 6, so if it is determined that it is a large amount, control the opening 169 and height h to an appropriate configuration, and then use Heating is performed for a predetermined time set by the user, or the heating is terminated when the temperature becomes appropriate by various sensors.
  • FIG. 90 to FIG. 95 are configuration diagrams showing the results of simulating the electric field inside the high-frequency heating device.
  • FIG. 90 is a perspective view of a high-frequency heating device according to one embodiment of the present invention. Electromagnetic waves are excited from the antenna 30 of the magnetron 2.
  • Fig. 91 and Fig. 92 are perspective views simulating the electric field distribution (when there is no food) of the high-frequency heating device in Fig. 90 and cut along S-S ', and the electric field generated in the resonance state. Are indicated by isoelectric field strength lines. (The more complicated the annual ring pattern, the stronger the electric field (antinode).) This indicates the difference in the electric field distribution depending on the position of the opening 169.
  • Fig. 91 shows the case where only the first opening 1669A is open, four antinodes of the electric field in the X direction, three antinodes of the electric field in the Y direction, and Z inside the heating chamber 4. There is one antinode in the direction.
  • Fig. 92 shows a case where only the second opening 1669B is open, and five antinodes of the electric field in the X direction, one antinode of the electric field in the Y direction, and Z in the heating chamber 4. There is one antinode in the direction.
  • FIG. 93 is a perspective view of a flat-shaped food item 6 (such as sweet food) heated in the high-frequency heating device of FIG.
  • FIG. 2 is a perspective view cut along U—U ′. It is considered that the shaded area has a loss and the temperature rises.
  • FIG. 94 shows the case where only the first opening 169 A is open, and shows that the central bottom part 214 of the food 6 is heated.
  • FIG. 95 shows the case where only the second opening 169 B is open, and shows that the end 215 of the food 6 is heated.
  • FIG. 96 is a cross-sectional view of a main part of the high-frequency heating device, in which only the magnetron 2, the waveguide 3, the heating chamber 4, and the opening 169 are simply shown.
  • the distance L 4 between the antenna 30 of the magnetron 2 and the center 2 16 of the opening 16 9 is expressed as lg, where lg is the wavelength of the electromagnetic wave transmitted in the waveguide 3 to the left (in-tube wavelength). It is an odd multiple of the distance. This is determined by the shape of the waveguide 3 when the electromagnetic wave is transmitted through the waveguide 3. The wavelength in the whole tube; moving to the left in Fig.
  • the opening 169A is connected to the heating chamber 4 where the electric field (and magnetic field) is weak
  • the opening 169B is connected to the heating chamber 4 where the electric field (and magnetic field) is strong. This is because when the position L 3 of the seal portion 197 is 0, electromagnetic waves can enter the heating chamber 4 as smoothly as possible from the opening 169 A, and electromagnetic waves do not enter the heating chamber 4 from the opening 169 B. It is to make.
  • the end faces 14 of the two sub-waveguides 13 facing the two openings 5 are moved to open and close the two openings 5 independently.
  • the opening 16 9 A is configured to have a weak electric field
  • the opening 169 B is configured to have a strong electric field.A seal 197 is provided between them, so that the openings 169 A and 169 B can be switched even with only one seal. .
  • the depth of the waveguide 3 is represented by (:, the thickness is D, and the strength of the radio wave in the depth direction is high or low.
  • m is the number of electromagnetic waves in the thickness direction
  • n is the number of peaks and weaknesses of electromagnetic waves in the thickness direction
  • the wavelength of the electromagnetic waves in a vacuum is I ⁇ 122 mm. 0 is often used, and in this case, Equation (5) is used.
  • the electromagnetic wave in the heating chamber 4 tries to cause a resonance state, but strong electric fields 217 and 218 (solid arrows) in opposite directions sandwiching the opening 169 are generated.
  • the electric field stabilizes in a resonance state in which the electric field becomes weaker.
  • the electromagnetic wave enters the heating chamber 4 most efficiently. (However, in the resonance state, the phase of the electric field and the magnetic field are shifted by 90 °, unlike the transmission state as in the waveguide 3.)
  • the resonance state is determined by the shape of the heating chamber and the position of the opening.
  • Fig. 91 showing the electric field distribution in the heating chamber 4
  • One strong electric field is generated.
  • This is the antinode of the electric field caused by the electromagnetic wave being distributed as a standing wave in the heating chamber due to the resonance, and the number of antinodes is called mode.
  • the shape of the heating chamber 4 is represented in three dimensions, and the dimensions in each direction are x, y, and z, if the antinode of the electric field is only m, n, and p in each direction, the mode is (mnp). There is.
  • the center position of the first opening 169A is approximately aligned with the center position of the depth X and the width y of the bottom surface of the heating chamber 4, and at the same time, a strong electric field is applied so as to sandwich the opening 169. Since it is configured so that it occurs (so as to be a node at the opening 169A), an even mode (m: even number) is likely to stand in the depth X direction, and an odd mode (n ; Odd number), and other modes are difficult to stand at the same time. It is easy to see that Figure 92 is mode (511), just as Figure 91 is mode (431).
  • the electric field distribution (that is, the heating distribution) can be changed depending on the position of the opening 169.
  • the heating chamber 4 can be considered as a cavity resonator, and the dimensions of the heating chamber 4 and the opening 1 6 9
  • the possible modes can be determined by the position of.
  • the dimensions of the heating chamber 4 are x, y, and z, and the number of modes that stand in each direction is a combination of m, n, and p that satisfies Equation (6).
  • X, y, z are in mm, m, n, p are integers
  • an opening 169 should be formed near the food 6 in order to achieve the heating distribution aimed at the food 6, and in the present invention, the heating chamber 4 wall closest to the food 6, that is, the heating A plurality of openings 169 A and 169 B that cause different electric field distributions are formed on the bottom surface of the chamber 4.
  • FIG. 97 is a sectional view of a high-frequency heating device according to a thirty-third embodiment of the present invention.
  • the electromagnetic wave emitted from the magnetron 2 heats the food 6 on the dish 2 19 placed in the heating chamber 4 via the waveguide 3.
  • the openings 169 C and 169 D that connect the waveguide 3 and the heating chamber 4 and guide the electromagnetic waves have the first opening 169 C at the center of the heating chamber 4 and the second opening
  • the 169D is constructed closer to the magnetron 2 and the weak electric field (section) of the electromagnetic wave propagating in the waveguide 3 and the weak electric field of the electromagnetic wave distributed as a standing wave in the heating chamber 4 (section) Section) and are connected.
  • Electromagnetic wave transmitting part 2 21 made of low-loss material that is difficult to absorb
  • electromagnetic wave shielding part 2 made of metal
  • a rotating shaft made of a low-loss material that hardly absorbs electromagnetic waves.
  • the rotating shaft 2 2 3 penetrates through the heating chamber 4 and the waveguide 3 at a position between the openings 1 69 C and 1 69 D, and is connected to and driven by the motor 2 2 4 which is the driving line. ing.
  • the opening position through which the apparent electromagnetic wave that enters the heating chamber 4 from the waveguide 3 changes (the first opening 16C and the second opening 16D). Is switched), and the electric field distribution is changed.
  • the rotating shaft 223 is also connected to the first gear 225, and a rotation force is transmitted to the second gear 226 by the rotation of the first gear 225.
  • the second gear 2 2 6 is connected to the turntable 1, and rotates the food 6 to make the concentric direction as seen from the center of rotation by rotating the food 6. By making the number of teeth different from that of 25 (in the case of this embodiment, the number of teeth of the second gear 22 6 is increased), it is intended to achieve even more uniformity.
  • C The shape recognition sensor 222 recognizes the shape of the food 6 and sends a signal to the control means 19, and the control means 19 responds to the signal for cooling the magnetron 2, the motor 222, and the magnetron 2. The operation of the fan 27 is controlled.
  • the optimal power supply method switching pattern for opening 169C, 169D, electromagnetic radiation pattern of Manetron 2, etc.
  • the shape recognition section is set. It is switched by a signal from the sensor 227.
  • the cover 25 is configured to cover the opening shielding part 220 and the like, and the support part 228 is configured to hold the turntable 1.
  • FIG. 98 is a cross-sectional view taken along the line VV ′ of FIG.
  • the center of the bottom of heating chamber 4 (vertical center and horizontal center) has the center of the first opening 169 C, and the second opening 169 D closer to magnetron 2 .
  • the openings 169C and 169D are rectangular, respectively, and the bottom surface of the rectangular heating chamber 4 is also parallel to the four sides.
  • FIG. 99 is a sectional view taken along the line WW ′ of FIG.
  • the aperture shield 220 covers the apertures 169C and 169D, and has a semi-circular electromagnetic shield 2222 on the circular electromagnetic wave-transmitting part 222, and rotates. Rotated by axis 2 2 3.
  • the electromagnetic wave in the waveguide 3 is not It is difficult to enter the heating chamber 4 from the mouth 169 C, and easy to enter from the second opening 169 D.
  • the rotation axis 2 23 rotates half a turn, on the other hand, the electromagnetic wave in the waveguide 3 is easy to enter the heating chamber 4 from the first opening 16 9 C, and the second opening 16 9 It is difficult to enter from D. Therefore, the openings 169C and 169D are apparently switched by the rotation of the opening shielding part 220.
  • the configuration is such that both the opening shielding portion 220 and the turntable 1 are rotated by one rotation shaft 2 23.
  • a configuration may be adopted in which a separate rotating shaft is provided to achieve further uniformity.
  • the configuration is such that the opening shielding portion 220 rotates in the heating chamber 4, it may be configured to linearly move left and right in the waveguide 3.
  • the motors 224 it is the simplest configuration to rotate the motor at a constant speed with a simple AC motor. It is also possible to use a force steering motor to control the motor more frequently to achieve even more uniformity.
  • the second opening 169D is formed on the bottom surface of the heating chamber 4, it may be formed on another wall surface of the heating chamber 4.
  • the configuration is such that the control is performed based on the signal of the shape recognition sensor 227, but the detection unit may be configured by other sensing means.
  • Figure 100 shows how the electric field bends when a flat (short) food item 6 is placed near the center of the heating chamber 4 (ie, above the first opening 169 C).
  • FIG. Pressing and bending a pair of opposite strong electric fields 2 2 9 and 2 3 0 generated so that the food 6 sandwiches the opening 1 6 9 C to generate a strong electric field 2 3 1 in the food and a strong electric field 2 in the food 3 Heated by the dielectric constant of 1 and food 6 based on the electric power P shown in equation (1) c
  • a heat-generating portion 2 3 2 is formed at the lower center of food 6 and the inside of food 6 is heated without boiling. The part is heated. This results in a loss distribution similar to that shown in FIG.
  • FIGS. 101 to 104 are cross-sectional views of the heating chamber 4, and explain how the electric field rises depending on the position of the opening on the wall surface.
  • a strong electric field 23.5.236 is generated in the opposite direction so as to sandwich the opening 169E, and a mode of (22 *) is established. It is easy to imagine that the mode of (even, even, *) can be set similarly.
  • Fig. 104 the strong electric fields 2 4 1 and 2 4 2 in opposite directions are inserted so as to sandwich the opening 1 6 9 H, but the mode does not follow the equation (6) and the electric field distribution is Can't estimate. This is because the wall of the heating chamber 4 and the opening 169H are not parallel. As described above, according to the present invention, by making the wall of the heating chamber 4 and the opening 169 parallel to each other, it can be seen that the intended electric field can be generated.
  • FIG. 105 is a characteristic diagram showing the heating efficiency of the thirty-fourth embodiment of the present invention.
  • Fig. 10 Numeral 5 is a Smith chart showing the state of reflection (matching state) as viewed from the magnetron 2, and the shaded area is the high-efficiency area 1 95 (the area where electromagnetic waves enter the heating chamber 4 most efficiently).
  • the reflection characteristics when only the first opening 169 C and the second opening 169 D are open are designated as 243 and 244, respectively. There is a match so that the rated output comes out. Therefore, as described above, uniform heating can be performed, and at the same time, the heating efficiency can be increased.
  • FIG. 106 shows a plan view of a top view of the shrimps 245 on a plate 219 representing a flat food product.
  • the horizontal axis of FIG. 107 is the standing time from the end of heating, and the vertical axis is the temperature.
  • the average temperature of the four screens at the center 2 4 6 (shaded area) of the screen 2 4 5 is X
  • the surrounding area 2 4 7 of the screen 2 4 5 the area without the hatched area
  • the average temperature of Shaomai has a X 2 2
  • FIG. 108 is a characteristic diagram showing a temperature variation when the 16 screens 245 of FIG. 106 are heated by the high-frequency heating device of the present invention. If the horizontal axis is the time left after the end of heating and the vertical axis is the temperature, the average temperature X of the center of the spring 2 4 4 2 4 6 and the surrounding area of the spring 2 4 5 2 4 7 The average temperature is approximately the same as the average temperature X 2 of the 12 samples, indicating that the uniform heating has progressed from FIG.
  • FIG. 110 differs from the configuration of FIG. 98 in that the opening area of the first opening 169 C is changed to the opening area of the second opening 169 D.
  • An example is shown in which the amount of electromagnetic waves entering the heating chamber 4 from the first opening 169 C is reduced by making it smaller.
  • the characteristic shown in FIG. 109 can be optimized to the characteristic shown in FIG. 108 by suppressing the rise in the center temperature.
  • FIG. 111 shows an example in which the reflection state (matching state) at the first opening 169 C is shifted, unlike the characteristic shown in FIG. Show.
  • the characteristic 244 at the first opening 169C is shifted as shown in Fig. 11 while the characteristic 244 at the second opening 169D is kept in the high efficiency region.
  • the electromagnetic wave entering the heating chamber 4 from the first opening 1669C decreases (increases in reflection) and suppresses the rise in the center temperature, as shown in Fig. 109.
  • the characteristics can be optimized to the characteristics shown in FIG.
  • FIGS. 112 to 113 show examples in which the ratio of the open time of the openings 169 C and 169 D is changed.
  • FIG. 11 is a sectional view taken along the line Y--Y 'of FIG.
  • FIG. 112 differs from the configuration of FIG. 97 in that the electromagnetic wave shielding portion 222 is devised to have the shielding protrusion portion 248 and the shielding opening portion 249.
  • the second opening 169 D is open most of the time while the opening shield 2 220 rotates, and the shielding projection 2 48 is closed by the second opening 16 9 D
  • the first opening 169C is opened only when it is above and the shielding opening 249 is above the first opening 169C.
  • the characteristic shown in FIG. 109 can be optimized to the characteristic shown in FIG. 108 by suppressing the rise in the center temperature and promoting the rise in the ambient temperature.
  • a stepping motor is used as the motor 224, and the rotation of the opening shielding portion 220 is not constant, and the switching between the opening and closing of the openings 169C and 169D is being performed. It is conceivable to make the time as short as possible. For example, as shown in Fig. 105, it is possible to realize the characteristics 2 43 and 244 of only one of the apertures 169 C and 169 D. Even so, in the middle of the switch (for example, when the openings 169C and 169D are half open, respectively), the reflection is likely to increase and the efficiency is likely to decrease. Therefore, the opening shielding portion 220 can be operated at a high speed at the timing, and the heating efficiency can be prevented from lowering as much as possible.
  • the heating of fairly fine parts such as thawing and thawing of beef sliced meat, was explained, but it is not limited to this.For example, switching between the center of one tuna and the outside An example of local heating of a wide area may be considered.
  • the high-frequency heating device of the present invention has the following effects.
  • the local heating means can heat an arbitrary portion of the object to be heated, there is an effect that the entire heating distribution can be uniform, and a portion to be heated and a portion not to be heated can be clearly distinguished. If a protection means for protecting the local heating means is provided between the object to be heated and the local heating means, the heating of any part of the object to be heated is not hindered in any case. There is no problem that the local heating means does not move or the direction of the electromagnetic wave is affected by the absorption of the electromagnetic wave by the residue of the object to be heated, and there is an effect of not disturbing the local heating. Therefore, local heating of the target portion can be stably performed.
  • the local heating means is located below the mounting table, and if the protection means is located between the mounting table and the local heating means, the local heating means is also protected by the mounting table. In addition, if the local heating means is always located close to the object to be heated, the electromagnetic wave can be directly radiated to the target portion of the object to be heated without being reflected by another wall surface. is there.
  • the protection means places the object to be heated and the local heating means is located below the protection means, the protection means and the mounting table can be used together or integrated, so the configuration is simple and the number of parts is small. This has the effect of reducing size, weight, and cost as a whole.
  • the protection means has a dielectric at least in part, the local heating means can be protected by the dielectric and the electromagnetic wave from the local heating means can be radiated into the heating chamber via the dielectric, so that the target can be easily targeted Has the effect that it can be locally heated.
  • the local heating means has a waveguide for guiding the electromagnetic waves emitted by the electromagnetic wave radiating means, and a radiating section for radiating the electromagnetic waves guided by the waveguides into the heating chamber, and the electromagnetic waves from the electromagnetic wave radiating means to the radiating section pass therethrough. If the distance of the electromagnetic waves is almost constant, the impedance from the electromagnetic wave emitting means to the radiating section is constant for electromagnetic waves, so it is easy to maintain the matching state regardless of how the local heating means is controlled, and the heating efficiency Has the effect of being able to keep high. Higher heating efficiency also results in shorter heating time and energy savings.
  • the distance from the electromagnetic wave radiating means to the radiating section through which the electromagnetic wave passes is ⁇ g, where the wavelength in the passage of the electromagnetic wave is ⁇ g, and is approximately an integral multiple of gZ2, the electric field at the radiating section becomes strong.
  • the efficiency is extremely high.
  • the electromagnetic wave coupling part of the radiating part is connected to the driving means and the driving means is controlled so that the radiating part rotates around the electromagnetic wave coupling part, the position of the radiation of the electromagnetic wave from the radiating part is controlled by the driving means.
  • the effect is that the heating part of the object to be heated can be freely changed. Therefore, there is an effect that local heating can be easily realized.
  • the electromagnetic wave coupling part becomes an antenna and the electromagnetic wave in the waveguide is formed. Can be efficiently introduced into the heating chamber, so that the heating efficiency can be further improved.
  • the distance that the electromagnetic wave passes from the electromagnetic wave radiation means to the electromagnetic wave coupling part is the wavelength in the electromagnetic wave transmission path; if Ig is approximately an integral multiple of ⁇ gZ2, a standing wave is generated in the electromagnetic wave transmission path.
  • the electric field becomes strongest at the position of the electromagnetic wave coupling portion, and the electromagnetic wave coupling portion has the effect of most efficiently guiding the electromagnetic waves in the waveguide into the heating chamber.
  • the radiating section is located below the object to be heated, Because it is located in the area, electromagnetic waves can be radiated directly to the target portion of the object to be heated without being reflected by other wall surfaces, and this has the effect of making local heating easier.
  • the mounting table When the mounting table is provided in the heating chamber to place the object to be heated, and the center of the mounting table is located substantially at the center of the heating chamber, there is an effect that the mounting table can be enlarged and the space in the heating chamber can be effectively used. Therefore, there is an effect that a large object to be heated can be placed or a large number of objects can be placed. As a result, there is an effect that is convenient for the user.
  • the mounting table drive means By controlling the mounting table drive means to rotate the mounting table around the center of the mounting table as a center of rotation, the vertical movement of the rotating mounting table can be suppressed and stable driving can be performed. Has the effect of easy heating. Similarly, it is difficult to vibrate the object to be heated, so that it is less likely to spill during rotation.
  • control of the local heating means and the control of the mounting table driving means are performed in conjunction, it is easy to grasp and change the position of the local heating means with respect to the object to be heated. Therefore, there is an effect that local heating can be more easily performed at a target heating portion.
  • the optimal positional relationship between the local heating means and the mounting table driving means for local heating was obtained. Sometimes, that state can be maintained for a long time. There is an effect that local heating can be surely performed at the target heating area and the time for local heating can be shortened.
  • the driving means is controlled so that the range in which the radiating section is driven is inside the bottom of the heating chamber, there is an effect that the space required for driving and the space outside the heating chamber can be reduced.
  • a special seal configuration is not required.Since the configuration is simple and the number of parts is small, the effect of reducing the overall size, weight and cost can be achieved. There is.
  • the mounting table has an electromagnetic wave shielding portion made of a conductive material and an electromagnetic wave transmitting portion near the center, there is an effect that local heating can be performed near the center of the bottom surface of the object to be heated.
  • the direction of the electromagnetic wave from the radiating section is controlled to switch between the direction with the object to be heated and the direction without the object to be heated, local heating that radiates electromagnetic waves directly to the object to be heated and local heating can be avoided. It is possible to switch between heating with electromagnetic waves after reflection on the wall of the heating chamber. Therefore, depending on the purpose of use, electromagnetic waves can be concentrated or de-focused. Therefore, there is an effect that the heating distribution can be more freely changed.
  • the heating distribution of the object to be heated can be made uniform by a simple method.
  • the heating distribution can be more finely changed. If there is an intermittent control means that controls the local heating means intermittently, the heating part of the object to be heated can be intermittently switched, and the electromagnetic waves can be concentrated on a limited part, so that heating is more layer-free. There is an effect that the distribution can be changed.
  • the heating part of the object to be heated can be switched continuously, so that local concentration of heating is avoided and a wide area is uniformly heated. There is an effect that can be done.
  • the object is to provide an intermittent control means for intermittently controlling the local heating means, a continuous control means for continuously controlling the local heating means, and a switching control means for switching between the disconnected and continuous control means. Switching is easy according to
  • the local heating means is controlled by detecting at least one of the physical quantity of the object to be heated or its variation or the physical quantity indicating the state of the inside of the heating chamber or its variation as the detection quantity, and the detection quantity of the detection means controls the local heating means.
  • the local heating means is controlled by the temperature distribution detecting means for detecting the temperature distribution of the object to be heated, the local heating means is controlled based on the actual temperature information, so that there is an effect that the optimum local heating can be realized.
  • the state of the object to be heated can be determined without heating. Becomes Therefore, there is an effect that unnecessary heating can be prevented and local heating can be performed more efficiently. If there is a region determination control unit that determines the region to be heated by at least one of the shape detection unit and the weight detection unit before and after the start of heating, the region to be heated can be determined regardless of whether heating is started. In other words, there is an effect that only the object to be heated can be locally ripened efficiently.
  • electromagnetic waves are radiated only when the area to be locally heated can be heated, or electromagnetic waves can be emitted when the area not to be locally heated can be heated. More precise heating control, such as no radiation.
  • the local heating means is controlled after reducing the output by controlling the electromagnetic radiation means or setting it to 0, it is useless even if it passes through a part that does not need to be heated before the local heating means is controlled. This has the effect of eliminating the need for heating.
  • the local heating means is controlled by the position detecting means for detecting the position of the local heating means, it is possible to accurately control the local heating means to a target position, and thus the local heating can be more accurately performed.
  • the local heating means is controlled to a predetermined position at least at the start of heating or at the end of heating, it is sufficient to control the local heating means to a target position based on the predetermined position when performing the next heating. There is an effect that position control can be easily performed. Also, if the object to be heated in the heating chamber is extracted by the object to be heated extraction means, and the low-temperature part in the object to be heated is extracted by the low-temperature part extraction means to control the distribution variable means, unnecessary heating is not performed. Appropriate heating of food can reduce energy consumption.
  • the low-temperature part extraction means extracts the low-temperature part from the heating range set by the heating-range setting means and controls the distribution variable means, different types of foods with different optimum temperatures can be simultaneously processed at the respective optimum temperatures. Can be cooked.
  • the operation is simple and the usability of the user can be improved.
  • the type of object to be heated or the magnitude of heating output by electromagnetic if you start controlling the heating part switching unit between the time when you input at least one of the heating time or heating method and the time when you input the start of heating with the second operation key, the appropriate position is already set at the start of heating. It is ready for heating. Therefore, unnecessary portions are not heated, and uneven heating and uniform heating can be achieved. Similarly, since unnecessary parts are not heated, the heating time is shortened and the waiting time of the user can be reduced. Also, since unnecessary parts are not heated, the heating efficiency is improved and power consumption can be reduced. In addition, if the heating part switching unit is controlled before the start of heating, it is not necessary to control the heating part switching unit during heating, and the number of control operations can be reduced.
  • the heating part can be changed according to the purpose of heating, it is possible to operate the object to be heated evenly or to heat the specific part of the object intensively. Becomes When cooking in a microwave oven as a typical high-frequency heating device, it can be used to heat individual foods evenly or to selectively heat a wide variety of foods (for example, boiled and fried foods are cooked and cooked on a single plate). Vegetables are not heated).
  • the drive unit drives the local heating means at a fixed cycle immediately after the start of heating, and controls the drive so that the cycle is changed or stopped during the heating, the heating distribution generated immediately after the heating starts and the heating distribution during the heating can be changed.
  • the part with a delay in heating can be heated to make it uniform, in order to compensate for uneven heating that occurred during the heating.
  • the control unit controls the heating output of the electromagnetic wave radiating means to be constant immediately after the start of heating, and changes the heating output or stops heating depending on the state of the local heating means during heating. This makes it possible to change the heating distribution generated immediately after the start of heating and the heating distribution during heating. In particular, it is possible to prevent a specific part of the object to be heated from being heated during the heating, so that the part being heated is not heated so as to compensate for uneven heating that occurred during the heating, and to achieve uniformity. However, it is possible to avoid heating only those parts that you do not want to heat.
  • the waveguide and the heating room will be connected by the power supply room, and matching of the electromagnetic wave will be easily suppressed. Easy effect. Also, since the power supply switching unit does not protrude into the heating chamber, especially when the power supply switching unit is covered so that the user does not touch it, the bottom of the heating chamber including the cover can be flattened. This has the effect that the user can easily clean the heating room. Also, when covering the local heating means, the size of the cover is sufficient to cover the power supply chamber without covering the entire bottom of the heating chamber, and it is possible to reduce the size and cost of the cover.
  • the turntable is made of a metal or a conductive material and has a gap in the direction of rotation that is at least 1 to 2 times the wavelength of the electromagnetic wave, the electromagnetic wave can penetrate up and down through the gap in the turntable .
  • the heating part of the object to be heated can be easily switched.
  • the turntable is made of metal or conductive material, it can be used even when the heater is configured below the bottom of the heating chamber, such as a microwave oven with high heat resistance and a popular type of oven function.
  • the turntable is made of a material that transmits electromagnetic waves, the electromagnetic waves can be transmitted vertically through the turntable without being reflected by the electromagnetic waves. Therefore, the heating part of the object to be heated can be easily switched.
  • a circle with a radius R of radius R> r has a convex slope on the bottom of the heating chamber with the center of rotation of the turntable of radius r as the center, the liquid to be heated is placed above or around the turntable. In the event of a spill, cleaning can be performed without removing the turntable.
  • Heating has the effect of preventing overheating of the edge of the object to be heated. Therefore, there is an effect of suppressing uneven heating. If the heating unevenness is small, unnecessary heating is not required, so that the heating efficiency is good and power saving can be achieved, and the heating time is shortened, and the waiting time of the user can be reduced.
  • the center of the object to be heated is mainly heated, and then if the direction of the electromagnetic wave is directed to the outside of the bottom of the heating chamber, the object to be heated is heated. Since the surrounding area is mainly heated, uneven heating can be reduced.
  • the power supply port switching unit is driven before partial heating of the heated object occurs based on the physical quantity of the heated object and the output of the detection unit that detects the state of the inside of the heating chamber, the heating area will be switched and uneven heating will occur. Has the effect of suppressing.
  • the electromagnetic wave radiating means can be used in a stable operation region, unnecessary radiation and an increase in the temperature of the electromagnetic wave radiating means are suppressed, and noise countermeasures and a cooling configuration can be simplified.
  • the local heating means is composed of a rotating waveguide, a rotating antenna, or a stirrer, the direction of the electromagnetic wave can be easily switched with a simple configuration and driving method. Therefore, it can be realized at a low price and has high reliability as evident from past results.
  • the drive unit for driving the local heating means is constituted by a stepping motor or a combination of other motors and switches, the position of the local heating means can be controlled accurately and easily, so that the direction of the electromagnetic wave can be controlled accurately and easily. . Therefore, it is possible to switch the heating part more accurately and with a simple and low-cost configuration.
  • the suspension time of the radiation of the electromagnetic wave is determined by the output of the detecting means, the heat transfer inside the heated object and the temperature of the atmosphere between the heated object and the heating chamber are determined according to the state of the heated object or the heating chamber. The rate of temperature rise due to the difference can be determined. Therefore, appropriate heating can be performed so as to suppress uneven thawing of the object to be heated.
  • a plurality of waveguides are adjacent to each other, it can be configured in a small space and with a small number of members. Therefore, miniaturization, weight reduction and cost reduction can be achieved.
  • the electromagnetic wave is efficiently transmitted into the waveguide after branching, and is also efficiently transmitted to the heating chamber through a plurality of openings, so that the heating efficiency is high. Therefore, the heating time can be short, so that the waiting time of the user can be shortened, and unnecessary power consumption can be suppressed as much as possible, so that energy can be saved, and the loss in the electromagnetic wave radiation means is reduced, thereby improving reliability. .
  • the cross-sectional area of the plurality of waveguides after branching is reduced, it can be configured with a gouge space and a small number of members. Therefore, miniaturization, weight reduction and cost reduction can be achieved. Since the length of the branched waveguide is an integral multiple of 0 or more of 1 g 2 of the guide wavelength; lg, the electromagnetic wave can resonate at the guide wavelength lg even in the branched waveguide. Therefore, the electromagnetic wave is efficiently transmitted to the heating chamber through the plurality of openings, so that there is an effect that the heating efficiency is good.
  • the electromagnetic wave in the first waveguide in the resonance state will remain in the resonance state after the branch. It is also transmitted efficiently to the waveguide. Therefore, the electromagnetic wave is efficiently transmitted into the heating chamber through the plurality of openings, so that there is an effect that the heating efficiency is good.
  • electromagnetic waves are not transmitted from between the shielding part and the protruding part, so that complete shielding can be achieved. Therefore, since the opening from which the electromagnetic wave is emitted can be accurately switched, the heating distribution can be freely changed, and the optimal heating distribution according to the purpose can be obtained. Therefore, any food can be heated uniformly.
  • leakage of electromagnetic waves from between the shielding part and the projection to the outside can be suppressed, so that it is safe, and there is no problem with noise to external devices, and malfunctions can be prevented. it can.
  • the seal portion is formed in either the heating chamber or the waveguide or a member fixed to at least one of them, electromagnetic waves will pass between the shield portion and the openings. It is not transmitted and has the effect of suppressing leakage of electromagnetic waves to the outside.
  • the structure of the shielding part is simple and the number of parts may be small. This has the effect of reducing costs. Also, even if the shielding part becomes inoperable due to some accident, some opening is always open, and electromagnetic waves are always supplied to the heating chamber. Therefore, all openings are shielded and electromagnetic waves do not enter the heating chamber, and abnormal loss and heat generation in the electromagnetic wave radiating means and waveguide are unlikely to occur, resulting in a safe and reliable effect. There is.
  • a shielding unit that shields and opens a plurality of openings with a single drive unit has the advantages of simplifying the structure of the drive unit and reducing the number of components, and facilitating control. is there. Therefore, miniaturization, weight reduction and cost reduction can be achieved.
  • the shield is operated while the emission of electromagnetic waves is stopped, the electric field is not disturbed during the operation of the shield, and abnormal loss and generation of harmonics in the electromagnetic wave radiating means can be prevented. Therefore, it is safe and highly reliable, and can prevent malfunctions and the like with no noise problem for external devices.
  • the position of the shielding part is a lightweight object or a position suitable for short-time heating, a short-time heating of a lightweight object to be heated every time heating starts. Ready for. Therefore, there is no failure in heating when a lightweight object is inserted.
  • a large amount of heated objects, such as objects to be heated are inserted, it is sufficient to move the shield to an appropriate position after starting heating.
  • the shielding part when a light object to be heated is inserted, it is not necessary to operate the shielding part.Therefore, there is no power for moving the position of the shielding part or loss during the operation of the shielding part. Heating can be performed, which has the effect of shortening the time. Also, the position of the object to be heated is Since the drive unit is controlled so that it is at a position suitable for short-time heating or a small amount of material to be heated, the effect of being ready for short-time heating such as a lightweight object to be heated every time heating starts There is.
  • the detection means does not have to worry about erroneous detection when the electromagnetic wave in the early stage of heating is unstable, and accurate detection in a stable state it can. Therefore, the control based on the output of the detecting means is also accurate, and a highly reliable operation can be realized.
  • the control based on the output of the detecting means is also accurate, and a highly reliable operation can be realized.
  • the detecting means for the purpose of detecting the initial state of the object to be heated by the detecting means, there is no need to provide a period during which electromagnetic waves are not emitted for a while after the start, and heating can be performed efficiently from the beginning. Therefore, the waiting time of the user can be shortened.
  • the shielding part if the shielding part is rotated a plurality of times between the start of heating and the end of heating, the heating distribution changes thereby, so that appropriate heating corresponding to the state of the object to be heated can be performed. Therefore, any object to be heated can be uniformly and efficiently heated.
  • the drive unit is controlled to change the position of the object to be heated multiple times between the start of heating and the end of heating, the heating distribution changes accordingly, and the state of the object to be heated can be adjusted. Appropriate heating can be performed. Therefore, any object to be heated can be uniformly and efficiently heated.
  • the rotation of the rotating body switches among the multiple openings to the ones where electromagnetic waves are likely to come out and those that are hard to come out, and often various apparent electric fields
  • the object can be heated uniformly as a whole.
  • a driving body such as a rotator is configured inside the waveguide, it is possible to maintain the effective volume inside the heating chamber with respect to the entire size with a simple configuration without taking up space.
  • heating can be performed while switching the optimal electric field distribution according to the object to be heated or the entire heating sequence, compared with constant rotation, so that heating is further improved. It can be heated uniformly.
  • the rotating body can be stopped at the most consistent position.
  • the heating time can be shortened, and the waiting time of the user can be shortened.
  • loss can be reduced and power can be saved.
  • thermal stress in the electromagnetic wave radiation means is reduced, and reliability is increased.
  • the detection means detects the condition of the object to be heated and the state of the inside of the heating chamber, and the rotating body switches between multiple operation patterns in accordance with this, heating can be performed while switching the optimal electric field distribution according to the state of the object to be heated. Therefore, heating can be performed more uniformly.
  • the detection means does not require good distribution enough to switch the electric field distribution (for example, a liquid such as milk that becomes even if the bottom is heated by convection, the distribution will be uniform).
  • the rotating body can be stopped at the most aligned position thereafter.
  • the heating time can be shortened, and the waiting time of the user can be shortened.
  • loss can be reduced and power can be saved.
  • thermal stress in the electromagnetic wave radiation means is reduced, and reliability is increased.
  • the rotating body rotates when using frozen food (thaw cooking), so the electric field in the heating chamber constantly changes, preventing the concentration of electromagnetic waves on a part of the frozen food. Therefore, it is possible to prevent the distribution unevenness peculiar to thawing such that only a part is boiled while the whole is frozen.
  • the table does not change due to the rotation. At this time, if the table is removed, heating can be performed most efficiently. In this case, power for rotating the turntable is not required, and power can be saved.
  • liquids such as milk and soup have little effect on distribution due to the rotation or stoppage of the turntable, so there is no problem of uneven distribution.
  • the rotation does not change the alignment state. If matching is achieved at this time, heating can be performed most efficiently. In this case, electric power for rotating the food table is not required, and power can be saved. If an electromagnetic wave is guided into a heating chamber through a plurality of openings, a different electric field distribution can be generated for each opening, and the object to be heated can be heated more uniformly than with a single opening .
  • the position of the opening roughly determines where the object to be heated can be heated strongly, and it is easy to create an intended distribution.
  • an opening is provided on the bottom surface of the heating chamber, the position of the object to be heated and the opening are relatively close, and the heating efficiency is good. Therefore, the heating time can be short, so that the waiting time of the user can be shortened, and unnecessary power consumption can be suppressed as much as possible, so that energy can be saved, and the loss in the electromagnetic wave radiating means is reduced, thereby improving reliability.
  • heating distribution can be changed in, by switching the c opening freely controlled distribution, if switching the prone opening of the electromagnetic wave of the plurality of openings in accordance with the output of the input and the detection portion of the operation key In addition, it is possible to generate a heating distribution that matches the operation and detection details, and to achieve a uniform heating distribution of the object to be heated.
  • the object to be heated is liquid
  • the electromagnetic wave is easily emitted from the opening closest to the center of the bottom of the object to be heated
  • the center of the bottom of the object to be heated is concentrated.
  • the object to be heated is liquid, convection occurs and the temperature is naturally averaged in the vertical direction.There is no overheating of the upper part which is a problem peculiar to the liquid object to be heated. And a uniform heating distribution without heat can be realized.
  • the object to be heated is low to some extent or light in weight, raise the height of the object to be heated or increase the distance between the object to be heated and the conductive member below the bottom of the object to be heated. If is increased, a uniform heating distribution without local concentration of the electric field, which is a problem specific to small objects to be heated, can be realized.
  • the seal portion is movable in the sub-waveguide branched from the waveguide between the first opening and the second opening of the plurality of openings, the waveguide is apparently moved by the movement of the seal portion. It is possible to switch the opening that easily transmits the electromagnetic wave from inside to the heating chamber, and to change the heating distribution freely.
  • a heating distribution based on the operation contents and the detection contents may occur.
  • the heating distribution of the object to be heated can be made uniform.
  • the first temperature sensor detects the temperature at multiple locations in the vertical direction of the object to be heated and its temperature change
  • the second temperature sensor detects the temperature at multiple locations in the horizontal direction of the object to be heated and its temperature change
  • the temperature distribution of the object to be heated is detected by a temperature sensor, and the position of the object to be heated in the height direction is changed, or the distance between the object to be heated and the conductive member below the bottom of the object to be heated is changed. If the electromagnetic waves are concentrated in the low-temperature part or the electromagnetic waves are not concentrated in the high-temperature part, the uneven distribution of the heating can be suppressed according to the actual temperature of the object to be heated, and extremely uniform heating can be achieved.
  • a temperature sensor detects the temperature distribution of the object to be heated, and by switching the openings, switches among the multiple openings that are likely to emit electromagnetic waves so that the electromagnetic waves concentrate on the low-temperature parts or do not concentrate on the high-temperature parts By doing so, uneven heating distribution can be suppressed according to the actual temperature of the object to be heated, and extremely uniform heating can be achieved.
  • the temperature rise in the low temperature part of the heated object is large or the temperature rise in the high temperature part is small, that is, when the temperature unevenness can be improved. If the rotation of the table is stopped or decelerated, the heating distribution can be immediately improved, the uneven distribution can be eliminated, and extremely uniform heating can be realized.
  • the heating chamber and the waveguide are connected by a plurality of openings, and the heating chamber has a first opening at the center (vertical center and horizontal center) of the bottom surface, the first opening As a result, the center of the bottom surface of the object to be heated is heated, and the edge of the object to be heated is heated at the other openings, so that the entire object can be uniformly heated.
  • the strength of the opposite direction is such that the opening is sandwiched by the electromagnetic waves emitted from the electromagnetic wave radiating means.
  • An electric field is generated, and an aimed electric field distribution as a standing wave distribution is generated on the bottom of the heating chamber as calculated when the heating chamber is considered as a cavity resonator. Therefore, the mode in the heating chamber can be set as the intended mode (at least near the opening), and the object to be heated can have the intended heating distribution.
  • the distribution of standing waves generated for each unshielded opening can be switched, and various standing waves can be mixed, so that the object to be heated It is possible to make the heating distribution uniform by switching or combining them.
  • the efficiency is assured even when power is supplied from any of the openings
  • the object to be heated can be heated well. Therefore, the heating time can be shortened, which has the effect of shortening the waiting time of the user. In addition, there is an effect that power can be saved similarly. Further, similarly, the heat stress of the electromagnetic wave radiation means is reduced, and the reliability is increased.
  • the opening shielding part can be heated by stirring the electric field distribution in the heating chamber if the opening is shielded by rotating around the rotation axis at a position other than the center (vertical center and horizontal center) of the bottom of the heating chamber.
  • the heating distribution of the object can be made uniform.
  • the opening shield can be realized by a drive unit that rotates at a constant speed if the opening is shielded by a rotational motion at a constant speed. Therefore, the electric field distribution in the heating chamber can be changed with a simple configuration (an inexpensive and easy-to-make configuration), and the heating distribution of the object to be heated can be made uniform.
  • the opening is shielded by a disk-shaped opening shielding part, an opening shielding part without corners can be realized. Therefore, there is an effect that the electric field distribution in the heating chamber can be changed with a simple configuration (a configuration that is inexpensive and easy to make), and the heating distribution of the object to be heated can be made uniform. Similarly, since the opening is a corner-free shield, there is little risk of breakage due to contact with other components, and safety can be improved.
  • the opening shielding part is composed of an electromagnetic wave transmitting part such as a resin and an electromagnetic wave shielding part such as a metal, the state of transmission and blocking of the electromagnetic wave can be changed when its position is changed by the driving part. Therefore, the distribution of standing waves in the heating chamber can be switched, various standing waves can be mixed, and the electric field distribution can be agitated, so that the heating distribution of the object to be heated can be made uniform. Similarly, a spark between the opening and the electromagnetic wave blocking part can be prevented by the electromagnetic wave transmitting part, and safety can be improved.
  • the electromagnetic wave emitted from the smallest opening is the electromagnetic wave emitted from the other opening. Can be less. Therefore, the same opening area has too large an effect on the distribution than the other openings. The effect on the distribution of the openings from the bottom of the heating chamber and above the object to be heated is suppressed, and the distribution on the other openings is affected. By increasing the temperature, the heating distribution of the object to be heated can be more evenly distributed.
  • the electromagnetic waves emitted at this time Is smaller than the electromagnetic waves emitted from the other openings. Therefore, in the same matching state, the influence on the distribution is too large compared to the other openings, and the influence on the distribution of the opening closest to the center of the bottom surface of the object to be heated is suppressed, and the influence on the distribution of the other openings is suppressed.
  • the heating distribution of the object to be heated can be made even more uniform.
  • the opening shielding part blocks the opening while moving at an irregular speed, it is possible to change the opening time, the time required for the closing operation, the opening time, and the shielding time for each opening. Therefore, the time required for the electromagnetic wave to stably enter the heating chamber and the standing wave distribution to be less likely to stabilize is shortened.
  • the object to be heated can be efficiently heated by increasing the open time during which the wave distribution is established. Thus, the heating time can be shortened, which has the effect of shortening the waiting time of the user. It also has the effect of saving power. Further, similarly, there is an effect that thermal stress of the electromagnetic wave radiation means is reduced and reliability is increased.
  • the high-frequency heating device of the present invention can heat an arbitrary portion of an object to be heated, and can uniform the heating distribution of the entire object to be heated by combining heating of various portions. Because it can be used, it is suitable for use as a microwave oven for cooking various foods.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Description

明 細 書 高周波加熱装置 技術分野
本発明は、 食品などの被加熱物を加熱する高周波加熱装置に関するものである。 背景技術
代表的な高周波加熱装置である電子レンジは、 従来は図 1〜図 7に示すような 構成であった。
図 1の電子レンジはターンテーブル 1を用いた一般的な構成である。 ここでは 電磁波放射手段としてのマグネトロン 2から出た電磁波は、 導波管 3を介して伝 送され、 加熱室 4内では加熱室 4形状と電磁波が加熱室 4内に放射される開口部 5の位置で決まる定在波となつて分布し、 食品 6は定在波の電界成分と食品 6の 誘電損失に応じて発熱する。 食品の単位体積当たり吸収される電力 P [W/m3] は、 加えられる電界の強さ E [VZm] 、 周波数 f [H z ] 、 および食品 6の比 誘電率 ε r、 誘電正接 tan < により(1)式として表される。 食品 6の加熱分布は、 概ね電磁波の定在波分布によって決まるため、 加熱分布のむらを抑えるために、 ターンテーブル 1を回転駆動して同心円上の加熱分布の均一化を図っている。
Ρ = ( 5 / 9 ) · ε r · tan 5 · f - E 2 1 0 ' 1 0 [W/m3] ··· ( 1 ) 図 1中、 1 9は制御手段、 2 2はモータ、 2 3は重量センサ、 2 7はファンで ある。
また、 他の均一化の手段として、 加熱室内で金厲板の一定回転により電磁波を 授拌するスタラ一方式や、 図 2のように導波管 3から結合部 Ίを有する回転導波 管 (放射部) 8で電磁波を引き出して、 放射口 9により電磁波を放射する、 言わ ば開口部自体を一定回転させるようなものもあった。 この場合回転導波管 8は加 96 熱室 4の底面上に構成され、 モータ 1 0により常時一定回転しており、 加熱室 4 はその底面部分全体を電磁波が透過する材料からなるカバー 1 1で覆われている。 しかし実際は、 ターンテーブルタイプのものが最も多く商品化されている。
また、 複数の開口部を有することで電磁波の出口を切り替えて均一化をねらう ものもある。 図 3は二つの開口部 5を加熱室 4の壁面に設けたタイプである (特 開平 4一 3 1 9 2 8 7号公報) 。
また、 複数の開口部を構成するために、 複数のマグネトロンと複数の導波管を 有するものがある (特開昭 6 1 - 1 8 1 0 9 3号公報、 特開平 4一 3 4 5 7 8 8 号公報) 。
また、 複数の開口部を構成するために、 マグネトロンは一つであるが、 複数の 導波管を一つの導波管から多方向に分岐させるものがある (特開昭 6 1 - 2 4 0 0 2 9号公報、 実開平 1一 1 2 9 7 9 3号公報) 。
また、 図 4のように複数の開口部 5に対向する位置で二つの副導波管 1 3の端 面 1 4を動かし、 見かけ上電磁波の出やすい開口部 5を切り替えて均一化をねら うものもある (特開昭 5— 7 4 5 6 6号公報) 。
また、 図 5のように、 複数の開口部 5を有する単一の導波管 3内で金属部 1 2 を動かすことで見かけ上電磁波の出やすい開口部 5を切り替えて均一化をねらう ものもある (特開平 3— 1 1 5 8 8号公報、 特開平 5— 1 2 1 1 6 0号公報) 。 また、 図 6および図 7のように、 加熱室の上部と下部に複数の開口部 5を有し、 下部の開口部 5を切り替えて均一化をねらうものもある (実開平 1一 1 2 9 7 9 3号公報) 。
また、 各種センサで食品 6の重量、 形状、 温度、 誘電率や、 加熱室内の温度、 湿度、 電界などを検出してフィ一ドバック制御を行うものが実用化されている。
しかしながら上記従来の構成では、 導波管と加熱室を接続して電磁波を加熱室 内に入れる場合、 食品の材質や形状ごとに加熱分布を均一にする適切な開口部の 位置が異なり、一つの開口部ですべての食品を均一に加熱することはできないと いう問題があった。
例えば従来の電子レンジで平らな食品を加熱すると、 縁のほうから加熱が進み 中心は冷たいままという顕著な加熱むらが起こることが一般に知られている。 また開口部の位置による特徴として、 加熱室底面の中央付近に開口部を設ける 場合、 食品の底面が加熱され、 対流のある液体状の食品ならば均一に加熱できる カ^ 対流のない固体状の食品は底面ばかり温度が上がるという問題があった。 こ の時ターンテーブルを用いると、 同心円上の加熱分布の均一化は図れるが、 いく らターンテーブルを回転させたとしても、 回転中心から見た半径方向の分布や上 下方向の分布は改善されない。
またスタラーや回転導波管のように電磁波を攢拌するものについては、 回転に 合わせて開口部が切り替わるようなイメージで電界分布を変化させるので、 解凍 調理などできるだけ電磁波の集中を回避したいメニューで多少集中を避けるとい う効果はある。 しかしながら、 食品によらず一定回転の攪拌なので、 どんな食品 に対しても一回転する毎に同じ電界分布の繰り返しで加熱するため、 完全な均一 化はできない。
また複数の開口部を有する場合でも、 ただ開口部を同時に開け放しているだけ ではある決まった電界が立ち、 すべての食品の加熱分布を均一化することは難し く、 結果として図 1の電子レンジと図 3の電子レンジの加熱分布は大差がない。 結局各食品ごとに適切な開口部をこまめに切り替えない限り、 使用者にとって満 足のいく仕上がり状態にはできないのである。
また、 複数のマグネトロンと複数の導波管を有するものは、 各々のマグネトロ ンの発振を制御することにより電磁波を導く導波管が切り替わる。 このため電磁 波の出る開口部も切り替わることになり、 加熱分布の均一化に少しは有効である 力、 マグネトロンの個数が増えると高価格となり、 重量が重く持ち運びにくいな どの問題がある。
また、 マグネトロンは一つで、 複数の導波管を一つの導波管から多方向に分岐 させるものがあるが、 電磁波の出やすい開口部を完全には切り替えることができ ず、 電磁波を出したくない開口部からもある程度の電磁波が出てしまう問題があつ た。 また、 導波管に要する板金材料が大量に必要となるため高価格となり、 作り にくいなどの問題がある。 そこで図 4のように、 複数の開口部 5に対向する位置で副導波管 1 3の端面 1 4を動かし、 見かけ上電磁波の出やすい開口部 5を切り替える方法があり、 これ は加熱分布の均一化にとって少しは有効である。 ただし実際の構成を考えると、 複数の副導波管 1 3の占めるスペースや副導波管 1 3の端面 1 4を動かすときの 電磁波の漏洩を防ぐ複数のシールド構成のスペースが必要である。 したがって、 電子レンジ全体の大きさが大きくなるか、 もしくは全体の大きさに対する加熱室 内部の有効容積が小さくなる問題があった。 使用者にとっては、 全体の大きさが 大きくなると置き場所に困り、 有効容積が小さくなると小さな食品しか入らない と言う不満につながる。 また同様に電子レンジが重くなり、 持ち運びしにくい問 題も引き起こす。 またシールド構成を含んだ副導波管 1 3の端面 1 4を複数箇所 で動作させるにはかなりの電力を消費するおそれもある。
また、 図 5のように、 複数の開口部 5を有する単一の導波管 3内で金属部を動 かしても、 電磁波の出やすい開口部 5を完全には切り替えることができず、 電磁 波を出したくない開口部 5からもある程度の電磁波が出てしまうという問題があつ o
さらに、 図 1、 3、 4、 5の構成では、 開口部 5が側面にしかなく、 開口部 5 から食品 6までの距離が遠い。
開口部 5から食品 6までの距離が遠いと、 開口部 5から直接食品 6に入る電磁 波だけでなく、 開口部 5から加熱室 4の壁面などで反射した後に食品 6に入る電 磁波の割合が増える。 よって、 この場合、 食品 6の加熱分布は、 加熱室 4の大き さや食品 6の置かれる位置や食品 6の形状によって大きく変わってしまうという 問題があった。
また、 同様の理由で一般的な食品 6はどうしても周囲が加熱されやすくなると いう問題があった。
さらに、 図 6や図 7の構成では他の従来の構成に比べると加熱分布を均一にで きる。 ただし、 上部から常に電磁波が出ているため、 食品の周囲が加熱されやす いという点と、 下部の一つの開口と下部の隣接する開口との間にある部位を加熱 することはできないという問題があった。 ここで、 図 1、 3、 4、 5、 6、 7の従来の構成に共通して言えることは、 開 口部 5を有する部分しか電磁波を集中することができず、 加熱むらを起こす可能 性があるということである。
また、 図 3、 5ないし図 7の構成では、 マグネトロン 2から開口部 5までの距 離について述べられていない。
通常、 電磁波が加熱室 4に入りやすいか、 入りにくいかは、 整合によって決ま り、 加熱室 4のどこに開口部 5があるかという点と、 導波管 3の長さやマグネト ロン 2から開口部 5までの距離等によつて変化する。 特に導波管 3内からの電磁 波の出やすさは、 電磁波の管内波長をス gとして、 ス g Z 2の周期で変化する。 よって、 複数の開口部 5を有する場合、 どの開口部 5からも同等に電磁波を出す ためには、 それぞれの開口部 5に合わせて整合を調整しなければならないという 問題を有していた。
もし、 分布を長くするためにのみ開口部 5の位置を決めて整合を調整しないと すれば、 加熱室内に電磁波が入りにく く、 加熱効率が落ちるという問題を有して いた。 さらに、 マグネトロン 2への反射波が増えるので、 温度上昇したり、 不要 輻射ノイズを発生したりするのを防ぐための対策が必要となるという問題を有し ていた。
また、 センサで食品の状態を検出してフィードバック制御を行うものには、 重 量センサ、 湿度センサ、 温度センサ、 電磁界検出センサ、 蒸気検出センサ、 アル コール検出センサなど、 加熱初期の状態や加熱初期からの状態変化を検知するか あるいは加熱終了を検知するものがあった。 ただし、 いずれのセンサも加熱の分 布を検出したり、 加熱むらを補正するようにフィ一ドバック制御.を行うものは実 用化されていなかった。
本発明は、 従来技術の有するこのような問題点に鑑みてなされたものであり、 被加熱物の任意の部位を加熱し、 いろいろな部位の加熱を組み合わせることによつ て全体の加熱分布を均一にすることのできる高周波加熱装置を提供することを目 的としている。
また、 本発明は、 被加熱物の任意の部位を加熱し、 加熱する部位と加熱しない 部位を区別することのできる高周波加熱装置を提供することを目的としている。 また、 本発明は、 加熱効率を維持あるいは向上し、 信頼性をより一層高めた高 周波加熱装置を提供することを目的としている。
また、 本発明は、 被加熱物の任意の部位を設定どおりに、 または自動的に加熱 することのできる高周波加熱装置を提供することを目的としている。 発明の開示
上記した目的を達成するため、 本発明の高周波加熱装置は、 電磁波を放射する 電磁波放射手段と、 前記電磁波放射手段が放射した前記電磁波で被加熱物の任意 の部位を加熱できる局所加熱手段と、 前記局所加熱手段を制御する制御手段とを 備えたことを特徴とする。 図面の簡単な説明
図 1は、 従来の高周波加熱装置の構成図である。
図 2は、 従来の別の高周波加熱装置の構成図である。
図 3は、 従来の更に別の高周波加熱装置の構成図である。
図 4は、 従来の更に別の高周波加熱装置の構成図である。
図 5は、 従来の更に別の高周波加熱装置の構成図である。
図 6は、 従来の更に別の高周波加熱装置の構成図である。
図 7は、 図 6に示される高周波加熱装置の要部断面図である。
図 8は、 本発明の第 1の実施例の高周波加熱装置の構成図である。
図 9は、 図 8に示される高周波加熱装置の要部構成図である。
図 1 0は、 図 8に示される高周波加熱装置に設けられた回転導波管およびその 駆動部を示しており、 (a ) は回転導波管の平面図であり、 (b ) は回転導波管 と駆動部の縦断面図であり、 (c ) は駆動部に設けられたカムとスィッチとの係 合状態を示す図である。
図 1 1は、 図 8に示される高周波加熱装置の底面図である。
図 1 2は、 図 8に示される高周波加熱装置の加熱室に収容された食品の加熱状 態を示す図である。
図 1 3は、 図 1 2に示される状態から食品および回転導波管を回転させた時の 食品の加熱状態を示す図である。
図 1 4は、 図 1 2と図 1 3に示される状態を切り替えた場合の食品の加熱分布 を示す特性図である。
図 1 5は、 食品に対し回転導波管の放射口を 4 5 ° 傾斜させた場合の食品の加 熱状態を示す図である。
図 1 6は、 食品に対し回転導波管の放射口を 4 5 ° 傾斜させるとともに食品の 回転を停止した場合の食品の加熱状態を示す図である。
図 1 7は、 ターンテーブルの底面図である。
図 1 8は、 本発明の第 2の実施例を示しており、 高周波加熱装置の加熱室の横 断面図である。
図 1 9は、 本発明の第 3の実施例を示しており、 (a ) は回転導波管の平面図 であり、 (b ) はその縦断面図である。
図 2 0は、 本発明の第 4の実施例を示しており、 ( a ) は回転ァンテナの平面 図であり、 (b ) はその縦断面図である。
図 2 1は、 本発明の第 5の実施例を示しており、 (a ) は開口を有する遮蔽部 材の平面図であり、 (b ) はその縦断面図である。
図 2 2は、 本発明の第 6の実施例を示しており、 (a ) は高周波加熱装置の加 熱室の縦断面図であり、 (b ) は横断面図である。
図 2 3は、 本発明の第 7の実施例の高周波加熱装置の構成図である。
図 2 4は、 図 2 3の高周波加熱装置の操作パネルの正面図である。
図 2 5は、 図 2 3の高周波加熱装置において回転導波管の放射口を中央に向け た場合の横断面図である。
図 2 6は、 図 2 3の高周波加熱装置において回転導波管の放射口を加熱室壁面 に向けた場合の横断面図である。
図 2 7は、 従来の高周波加熱装置における加熱時間と食品温度との関係を示す 特性図である。 図 2 8は、 本発明の高周波加熱装置における加熱時間と食品温度との関係を示 す特性図である。
図 2 9は、 本発明の高周波加熱装置における放射口の向きの切り替えタイミン グを示す特性図である。
図 3 0は、 本発明の第 8の実施例の高周波加熱装置における加熱時間と食品温 度との関係を示す特性図である。
図 3 1は、 水の誘電損失の温度特性図である。
図 3 2は、 従来の高周波加熱装置を使用して冷凍食品を解凍するときの時間と 加熱出力との関係を示す特性図である。
図 3 3は、 図 3 2における加熱出力の切り替えタイミングを示す特性図である。 図 3 4は、 本発明の高周波加熱装置を使用して冷凍食品を解凍するときの時間 と食品温度との関係を示す特性図である。
図 3 5は、 図 3 4における加熱出力の切り替えタイミングを示す特性図である c 図 3 6は、 図 3 4と図 3 5における時間と加熱出力との関係を示す特性図であ る。
図 3 7は、 本発明の第 9の実施例の高周波加熱装置の構成図である。
図 3 8は、 図 3 7における線 A— A' に沿った断面図である。
図 3 9は、 図 3 8において回転導波管の動作による電磁波の方向の変化を示す 特性図である。
図 4 0は、 本発明の第 1 0の実施例の高周波加熱装置の構成図である。
図 4 1は、 図 4 0の高周波加熱装置の加熱室下部の横断面図である。
図 4 2は、 図 4 0および図 4 1の構成において回転導波管の動作による電磁波 の方向の変化を示す特性図である。
図 4 3は、 本発明の第 1 1の実施例の高周波加熱装置の要部縦断面図であり、 回転導波管が上昇した状態を示している。
図 4 4は、 図 4 3において回転導波管が下降した状態を示している。
図 4 5は、 本発明の第 1 2の実施例の高周波加熱装置の構成図である。
図 4 6は、 図 4 5の高周波加熱装置に設けられた二つの遮蔽板を示しており、 ( a ) は第 1の遮蔽板の平面図であり、 (b ) は第 2の遮蔽板の平面図である。 図 4 7は、 本発明の第 1 3の実施例の高周波加熱装置の構成図である。
図 4 8は、 図 4 7における線 B— B ' に沿った断面図である。
図 4 9は、 図 4 7の高周波加熱装置に設けられた赤外線検出素子の検出位置を 示す図である。
図 5 0は、 図 1 7の高周波加熱装置のブロック図である。
図 5 1は、 図 1 7の高周波加熱装置において食品の表面温度変化と食品以外の 部分の温度変化を示す特性図である。
図 5 2は、 図 5 0の変形例を示すブロック図である。
図 5 3は、 本発明の第 1 4の実施例の高周波加熱装置のプロック図である。 図 5 4は、 本発明の第 1 5の実施例の高周波加熱装置の構成図である。
図 5 5は、 図 5 4における線 F— F ' に沿った断面図である。
図 5 6は、 本発明の第 1 6の実施例の高周波加熱装置の構成図である。
図 5 7は、 図 5 6における線 G— G' に沿った断面図であり、 (a ) は第 1の 開口部を遮蔽した状態を示す図であり、 (b ) は第 2の開口部を遮蔽した状態を 示す図である。
図 5 8は、 本発明の第 1 7の実施例の高周波加熱装置のブロック図である。 図 5 9は、 図 5 8の高周波加熱装置に設けられた輪郭抽出手段の動作を説明す る温度特性図を示しており、 (a ) は食品の位置を示す図であり、 (b ) は X方 向の検出位置を示す図であり、 (c ) は Y方向の検出位置を示す図であり、 (d ) は X方向の検出位置と Y方向の検出位置を合成した図である。
図 6 0は、 第 1 8の実施例の高周波加熱装置のプロック図である。
図 6 1は、 第 1 9の実施例の高周波加熱装置のブロック図である。
図 6 2は、 本発明の第 2 0の実施例の高周波加熱装置の構成図である。
図 6 3は、 本発明の第 2 1の実施例の高周波加熱装置の要部縦断面図であり、 ターンテーブルが上昇した状態を示している。
図 6 4は、 図 6 3においてターンテーブルが下降した状態を示している。
図 6 5は、 本発明の第 2 2の実施例の高周波加熱装置に設けられたターンテー ブルの底面図である。
図 6 6は、 本発明の第 2 3の実施例の高周波加熱装置の要部縦断面図である。 図 6 7は、 本発明の第 2 4の実施例の高周波加熱装置の構成図である。
図 6 8は、 本発明の第 2 5の実施例の高周波加熱装置の要部断面図であり、 特 に電界の分布状態を示している。
図 6 9は、 本発明の第 2 6の実施例の高周波加熱装置の要部斜視図である。 図 7 0は、 本発明の第 2 7の実施例の高周波加熱装置の要部構成図で、 二つの 開口部の一方が遮蔽された状態を示しており、 (a ) はその縱断面図であり、 (b
) はその平面図である。
図 7 1は、 図 7 0において開口部の他方が遮蔽された状態を示しており、 (a ) はその縦断面図であり、 (b ) はその平面図である。
図 7 2は、 図 7 0の高周波加熱装置におけるマグネトロンの動作点を表すリー ケ線図である。
図 7 3は、 高周波加熱装置の高周波出力の変化を示す特性図であり、 ( a ) は 従来の出力変化を示し、 (b ) は本発明の出力変化を示している。
図 7 4は、 本発明の第 2 8の実施例の高周波加熱装置の構成図である。
図 7 5は、 図 7 4における線 P— P ' に沿った断面図である。
図 7 6は、 本発明の第 2 9の実施例の高周波加熱装置の図 7 5に対応する断面 図である。
図 7 7は、 本発明の第 3 0の実施例の高周波加熱装置の図 7 5に対応する断面 図である。
図 7 8は、 第 2 8 , 2 9, 3 0の実施例の高周波加熱装置の加熱効率を表す特 性図を示しており、 マグネト口ンから見た負荷の整合状態を示すスミスチャー ト である。
図 7 9は、 本発明の第 3 1の実施例の高周波加熱装置の構成図である。
図 8 0は、 図 7 9の高周波加熱装置の要部縱断面図であり、 シール部が下降し た状態を示している。
図 8 1は、 図 8 0においてシール部が上昇した状態を示している。 図 8 2は、 本発明の第 3 2の実施例の高周波加熱装置の要部斜視図である。 図 8 3は、 図 8 2の高周波加熱装置において牛乳を加熱した場合の加熱分布む らを示す特性図である。
図 8 4は、 図 8 3の最適条件における高周波加熱装置の概略縦断面図である。 図 8 5は、 図 8 2の高周波加熱装置において冷凍の牛スライス肉 1 0 0 gを解 凍した場合の加熱分布むらを示す特性図である。
図 8 6は、 図 8 5の最適条件における高周波加熱装置の概略縦断面図である。 図 8 7は、 図 8 2の高周波加熱装置において冷凍の牛スライス肉 3 0 0 gを解 凍した場合の加熱分布むらを示す特性図である。
図 8 8は、 図 8 7の最適条件における高周波加熱装置の概略縦断面図である。 図 8 9は、 図 7 9乃至図 8 2の構成において初期状態における適切な開口部位 置と高さを決定するシーケンスを示したフローチヤ一トである。
図 9 0は、 高周波加熱装置の内部の電界をシミユレーションするための構成図 である。
図 9 1は、 第一の開口部だけを開放した場合のシミュレーション結果の特性図 であり、 図 9 0の線 S— S ' で切断した斜視図である。
図 9 2は、 第二の開口部だけを開放した場合のシミュレーション結果の特性図 であり、 図 9 0の線 S— S ' で切断した斜視図である。
図 9 3は、 図 9 0の高周波加熱装置内で加熱される平らな食品の斜視図である c 図 9 4は、 第一の開口部だけを開放した場合のシミュレーション結果の特性図 であり、 図 9 3の線 U— U' で切断した斜視図である。
図 9 5は、 第二の開口部だけを開放した場合のシミュレーション結果の特性図 であり、 図 9 3の線 U— U' で切断した斜視図である。
図 9 6は、 導波管内の電磁波の伝搬を説明するための高周波加熱装置の要部縦 断面図である。
図 9 7は、 本発明の第 3 3の実施例の高周波加熱装置の構成図である。
図 9 8は、 図 9 7の線 V— V' に沿った断面図である。
図 9 9は、 図 9 7の線 W— W' に沿った断面図である。 図 1 0 0は、 図 9 7の高周波加熱装置において電界がどのように曲げられるか を示す特性図である。
図 1 0 1は、 ある高周波加熱装置において、 壁面にある開口部の位置によって 電界の立ち方がどのように変わるかを説明するための加熱室の断面図である。 図 1 0 2は、 開口部の位置を変えた場合の図 1 0 1と同様な図である。
図 1 0 3は、 開口部の位置を更に変えた場合の図 1 0 1と同様な図である。 図 1 0 4は、 開口部の位置を更に変えた場合の図 1 0 1と同様な図である。 図 1 0 5は、 本発明の第 3 4の実施例の高周波加熱装置の加熱効率を表す特性 図を示しており、 マグネトロンから見た整合状態を示すスミスチヤ一トである。 図 1 0 6は、 皿の上に載置した複数のしゅうまいの平面図である。
図 1 0 7は、 従来の高周波加熱装置で図 1 0 6のしゆうまいを加熱した場合の 温度ばらつきを示す特性図である。
図 1 0 8は、 本発明の高周波加熱装置で図 1 0 6のしゆうまいを加熱した場合 の温度ばらつきを示す特性図である。
図 1 0 9は、 本発明の別の高周波加熱装置で図 1 0 6のしゆうまいを加熱した 場合の温度ばらつきを示す特性図である。
図 1 1 0は、 本発明の第 3 5の実施例の高周波加熱装置の横断面図である。 図 1 1 1は、 本発明の第 3 6の実施例の高周波加熱装置の特性図を示しており、 第一の開口部での整合状態をずらした場合のスミスチヤ一トである。
図 1 1 2は、 本発明の第 3 7の実施例の高周波加熱装置の横断面図である。 図 1 1 3は、 図 1 1 2の線 Y— Y' に沿った断面図である。 発明を実施するための最良の形態
以下本発明の実施の形態について図面を参照して説明する。
図 8は、 本発明の第 1の実施例における高周波加熱装置の断面構成図である。 代表的な電磁波放射手段であるマグネトロン 2から出た電磁波は、 導波部とし ての導波管 3、 給電室 1 5を介して加熱室 4内に放射され、 加熱室 4内の被加熱 物である食品 6を加熱する。 導波管 3内の電磁波は給電室 1 5内に配置された放 射部である回転導波管 8により食品 6の任意の部位を局所的に加熱するものであ る。 よって、 導波管 3と回転導波管 8とを合わせて局所加熱手段 1 6と呼ぶこと にする。 回転導波管 8は電磁波の放射の方向に指向性を有しており、 回転するこ とで電磁波の放射の方向を切り替えて、 局所的な加熱を実現するものである。 こ のため回転導波管 8は、 導波管 3と結合して電磁波を引き出す電磁波結合部とし ての結合部 7を導波管 3と給電室 1 5 (辁電室 1 5のない場合は加熱室 4 ) に渡 る構成とし、 引き出した電磁波を放射する放射口 1 7を有している。
また、 結合部 7は、 駆動手段であるモータ 1 8と連結され、 モータ 1 8により 回転可能とし、 結合部 7を中心に回転導波管 8自体が回転駆動される。 さらに制 御手段 1 9がモータ 1 8を制御することで回転導波管 8の放射ロ 1 7による電磁 波の方向を制御でき、 局所的な加熱を制御できる。
食品 6は任意の部位を加熱するために、 載置台 2 0上にある。 載置台 2 0は金 属製電磁波遮蔽部のあるターンテーブル 1上に構成された電磁波透過部としての ガラスやセラミック製の皿 2 1の上に置かれ、 載置台駆動手段であるモータ 2 2 により一体に回転駆動される。 このとき制御部 1 9はモータ 2 2の回転駆動と同 時に、 食品 6の重量検出手段である重量センサ 2 3で食品 6の重量を検出しそれ に応じた制御 (回転導波管 8の駆動タイミングゃ加熱出力や加熱終了時間の推定 などの制御) を行っている。 またこのときの載置台 2 0の回転中心は加熱室 4の 底面の中央 2 4にあり、 一定回転により回転方向の加熱の均一化を図ったり、 所 定位置で停止 '減速させて局所加熱するものである。 一方、 回転導波管 8の回転 の中心は加熱室 4の底面の中央 2 4からずれた位置にある。 食品 6に対しては放 射口 1 7の向きにより電磁波の放射の方向が変わるため、 食品 6の中央を加熱し たり周囲を加熱したりを切り替えるごとができ、 言わば、 載置台 2 0の半径方向 の加熱部位を変えることができる。 よってタ ンテ一ブル 1の回転とあわせ載置 台 2 0上の任意の位置を加熱することができるのである。
ここで、 載置台 2 0の回転中心が、 加熱室 4の底面の中央 2 4にあるが、 この ことにより、 載置台 2 0のサイズを大きくでき、 食品 6についても大きな食品を 載置したり、 数多く載置したりできる。 また、 載置台 2 0の中心と回転中心は一致しており、 回転中の載置面の上下動 を制御し、 安定した駆動を行っており、 狙った加熱部位を局所加熱しやすい。 そ の上、 食品 6の振動を起こしにく く、 こぼしたりしにくい。
さらに、 一般的な電子レンジでは電磁波が入射する開口部を覆うため、 加熱室 4側から電磁波を吸収しにくい低損失の材料からなる開口カバーで覆うことが多 いが、 本実施例では給電室 1 5を覆うようにして、 局所加熱手段 1 6を保護する ための保護手段としてカバー 2 5を構成し、 加熱室 4の底面と比べて凹凸のない ようにしている。
ただし、 本実施例のカバー 2 5は、 従来の開口カバーとは少し意味合いが異な るので、 補足する。
従来の開口カバーは、 使用者が手を入れないようにとか、 開口内に汚れがたま らないようにという意味合いが強かった。 ところが本実施例では食品を局所加熱 するため、 回転導波管 8を狙い通りに制御しなければならない。 即ち、 回転導波 管 8に食品 6のかすが飛散して直擎して動かなくなつたり、 また同様に食品 6の かすが回転導波管 8の付近にたまって電磁波を吸収することで、 狙い通りの部位 を加熱できなくなるのを防ぐのである。 つまり、 局所加熱手段 1 6による局所加 熱を邪魔させない効果がある。
制御部 1 9は前述の制御以外にも、 食品 6の温度を検出する温度分布検出手段 である温度センサ 2 6により食品 6の温度変化を監視したり、 マグネトロン 2か らの電磁波の放射や、 マグネトロン 2冷却用のファン 2 7の動作や、 各種のヒー タ 2 8の動作を制御する。
—般にヒータ 2 8使用時は加熱室 4内の温度が 3 0 0 °C前後に上昇するので、 皿 2 1がガラスでは耐熱温度に限界があるため、 金属の皿に入れ替えたりするこ とが多い。 電磁波の加熱とヒータの加熱の用途に応じて皿 2 1を交換する手間が かかるのを省くために、 耐熱温度の高いセラミ ックの皿を兼用で使う場合もある 温度センサ 2 6は加熱室 4の壁面の開□ 2 9から食品 6の温度を検出し、 加熱 分布を検出しているが、 温度センサ 2 6自身の構成について説明を加える。 非接 触で温度を検出する一般的な温度センサ 2 6としては、 食品 6から放射される赤 外線量を電気信号に変換する赤外線センサがある。 赤外線センサとしては、 内部 に熱接点と冷接点を有するサーモパイル型や、 チヨツバを有する焦電型などがあ り、 本発明ではどちらを採用しても良い。
図 9は、 マグネトロン 2と回転導波管 8の位置関係を示す要部構成図である。 マグネトロン 2のアンテナ 3 0から出た電磁波が回転導波管 8の結合部 7に到 達する距離^は、 導波管 3内の管内波長を; I gとして; I 2の約整数倍となる ように構成している。 なぜならば、 導波管 3内の電磁波は強弱を周期的に繰り返 す定在波となり、 その波長が; I gに一致する。 また、 マグネトロン 2のアンテナ 3 0は必ず電界が強い。 よって上記寸法関係の構成により、 回転導波管 8の結合 部 Ίも必ず強い電界となり、 導波管 3内の電磁波を導波管 3の外側へ効率的に導 き出すことができるのである。
また、 マグネ卜ロン 2のアンテナ 3 0から導波管 3の端部 3 1までの距離ゃ桔 合部 7から導波管 3の端部 3 2までの距離をス g Z 4の約奇数倍 (この図では 1 倍) とすると、 より一層導波管内に安定した定在波を起こすことができる。 なぜならば、 もし定在波が起こった場合に、 電界の強い所から λ g Z 4の奇数 倍の位置で電界が弱くなろうとするまさにそこに丁度端面があるからである。 また、 本実施例では回転導波管 8が回転しても、 常にマグネトロン 2のアンテ ナ 3 0から結合部 7までの距離が一定であり、 安定した定在波を起こせる効果が ある。
また、 結合部 7より導き出した電磁波は結合部 7から放射口 1 7を介して加熱 室内に放射されるが、 ここでの距離 ^は、 指向性を決定する要因なので、 必要に 応じて適宜変えればよい。 ただし、 をス g Z 2の整数倍とすれば放射口 1 7で の電界を強くでき、 (1)式より放射口 1 7に食品 6を近づけて置く場合に効率が 極めて高い。
さらに図中の^、 は 3〉〉 にして、 3側に向かって電磁波が進みやすくな るようにしており、 さらに^を λ g / 4の約奇数倍にとってより一層 3側に進み やすく している。
この構成により、 電磁波の放射方向を制御している。 さらに、 結局マグネ卜ロン 2のアンテナ 3 0から放射口 1 7までの距離が常に —定となるので、 その間のインピーダンスも常に一定となり、 整合状態を維持し やすく、 加熱効率を高ヽ保つ効果がある。
図 1 0は、 回転導波管 8の要部構成図である。
( a ) は上から見た図、 (b ) は横から見た断面図である。 (a ) で^は真空 中 (或いは空気中) の電磁波の波長を; として、
> 2 . 4 5 G H zの時、 6 1 m m
とすることで、 確実に電磁波を放射させている。 実際は余裕をみて £6は 6 5 mm以 上にするのが望ましい。
また、 (a ) . ( b ) に示す 2つのテフロン製のスぺーサ 3 3と、 モータ 1 8 の軸 3 4に設けたかん合部 3 5により、 回転導波管 8は 3点で支持され、 安定し た回転ができる。
スぺーサ 3 3は下向きに曲面を有し、 すべりやすい構造である。 ただしスぺー サ 3 3の材質は、 支持の効果となめらかな回転ができるものであつて導電性の無 い材質であれば何でも良いし、 もし、 導電性の有る材質でも底部 3 6との間でス パークを起こさせないような工夫 (例えば常に底部 3 6とすきまのないように密 着させるとかの工夫) をすれば実現できる可能性がある。
( c ) は軸 3 4に接続されたカム 3 7と位置検出手段としてのスィツチ 3 8を 示す図である。 回転導波管 8はモータ 1 8により回転駆動されるが、 カム 3 7の 凸部 3 9は軸 3 4の一回転毎にスィツチ 3 8のボタン 4 0を押すので、 ボタン 4 0を押してからの駆動時間により回転位置がわかり、 電磁波の放射の方向を検出 できるとともに狙った方向に制御できる。 制御手段 1 9はスィッチ 3 8からの信 号に基づきモータ 1 8の回転時間を決め、 放射口 1 7からの電磁波の放射の方向 を制御している。 もちろんモータ 1 8の回転制御については、 より正確な位置制 御や回転速度を変えるなどのきめ細かな制御を行う場合は、 ステツビングモー夕 を使うことが考えられる。 なお、 基準の位置を決めておき加熱開始時や、 加熱終了時に、 その基準の位置 まで動かすよう制御しても良い。
加熱開始時に行えば精度良く狙った部位の加熱ができるし、 加熱終了時に行え ば次の加熱の時に基準の位置を確認する手間が省けるというそれぞれの効果があ る。
図 1 1は本実施例における高周波加熱装置の要部構成図で、 図 8の加熱室 4底 面を下側から見た図である。 給電室 1 5や重量センサ 2 3と共存できるよう、 空 いたスペースにヒータ 2 8 A、 2 8 B、 2 8 Cを配置している。
また、 このためには回転導波管 8形状を小さくする方が望ましい。 よって回転 導波管 8は小型でかつ指向性の高いものがよいと言える。
図 1 2、 図 1 3は本実施例における高周波加熱装置の要部断面構成図であり、 図 8の断面を示し、 食品 6の上から見た図である。 回転導波管 8の指向性を示す ために、 平らで直方体の形状をした食品 6を皿 2 1とともに一定回転させ、 回転 導波管 8を図の位置で停止させたまま、 一定の加熱出力で加熱した時の結果とし て加熱部 4 1を示している。 但し、 わかりやすくするため、 実際は皿 2 1に隠れ て見えないところも実線で示している。 放射□ 1 7の向き (指向性) に関して、 図 1 2は皿 2 1の中央向きで、 図 1 3は図 1 2と比べて 1 8 0 ° 回転した外側向 きの図である。
図 1 2では、 電磁波 4 2の下からの放射により加熱部 4 1が食品 5のほぼ中央 に現れている。
図 1 3では、 電磁波 4 2は加熱室 4壁面で反射した後食品 6に入るため、 加熱 部 4 1は食品 6の縁 (周囲) に現れている。 従来の電子レンジでは、 たいていの 場合、 電磁波は食品に入る前に加熱室壁面で反射するので図 1 3と似た結果にな る。
図 1 4は食品 6の加熱分布を示し、 図 1 2と図 1 3の状態を切り替えた (放射 □ 1 7の向きを適切な割合で切り替えた) 結果を示す構成図である。 加熱部 4 1 が食品 6の中央と周囲に現れており、 従来の電子レンジに比べてかなり加熱の均 —化が図れることがわかる。 但しこの時、 加熱されにくい未加熱部 4 3が中央と 周囲の中間領域に残されている。 よってこの部分を局所加熱する方法について、 以下で説明する。
図 1 5、 図 1 6は本実施例における高周波加熱装置の要部断面構成図であり、 図 1 2、 図 1 3と同じく図 8の断面を示している。 図 1 4で述べた中間領域の未 加熱部 4 3を加熱する方法として、 放射ロ 1 7の向きを中央向き (0 ° ) と外側 向き (1 8 0 ° ) の間のどこかに選べば良いというのは安易に想像されるが、 タ ーンテーブルが一定回転では実際はうまく行かないことがわかってきた。 放射口 の向きを少しずつ変えて実験しても、 中央を加熱するのでない限りほとんどのも のが周囲を加熱するようになってしまう。 例えば放射ロ 1 7が 4 5 ° の場合、 図 1 5のような結果となる。 この原因は、 皿 2 1が一定回転で、 加熱出力が一定と いう点である。 なぜならば食品 6の回転中に瞬間的に中間領域を加熱できる状態 があったとしても、 それ以外のときには食品 6のエッジを加熱してしまい、 結局 は一周期の平均としては周囲を加熱するようになってしまうのである。 よって中 間領域の加熱のためには、 中間領域を加熱できる状態を持続し、 他の状態を避け なければならないことがわかる。
図 1 6は、 皿 2 1の回転を止め、 中間領域を加熱できる状態を持続したときの 結果である。 放射口 1 7は 4 5 ° で食品 6は図の位置で停止しており、 図 1 4の 加熱されにくい未加熱部 4 3の片方が加熱されている。 また未加熱部 4 3の他方 の加熱のためには食品 6をさらに 1 8 0 ° 動かせばよい。 結局この食品 6全体を 均一に加熱するためには、 図 1 2、 図 1 3、 図 1 6を 1 8 0 ° 動かしたものの 4 種類の動作が必要となる。 ただし、 加熱途中で皿 2 1の回転を完全に止めなくと も、 中間領域を加熱できる状態付近で減速させても良い。
なお、 皿 2 1を一定回転させたまま、 中間領域を加熱できる状態での加熱出力 を、 他の状態での加熱出力よりも高くしてもよい。 実際には、 中間領域を加熱で きる状態での加熱出力をフルパワーとし、 他の状態での加熱出力を 0にするか低 下させることが考えられる。
また、 皿 2 1の回転と加熱出力の制御を組み合わせても良い。
また、 以上により任意の位置を局所加熱するためには、 回転導波管 8と、 皿 2 1とマグネ卜ロン 2の 3つの構成要素を関連づけて制御すればよいことになる。 図 1 7は本実施例における高周波加熱装置の要部構成図 で、 ターンテーブル 1の構成を下から見た図を示す。 ヒータ 2 8 A、 2 8 B、 2 8 Cの熱に耐えるた めにターンテーブル 1は金属製で、 輪 4 4、 4 5とシャフ ト 4 6、 4 7と軸受け 4 8から成る。 またターンテーブル 1の隙間の回転方向の距離 7、 は、 それぞ れ電磁波の波長の 1 2以上の長さを有しており、 電磁波が容易に透過できる構 成である。
回転導波管 8の指向性にもよるが、 食品の底面中央を加熱するためには、 図 1 7の^のように底面中央近傍の開口が必要であり、 また食品の周囲を加熱するた めには、 のように周囲の開口が必要である。 なお、 ターンテーブル 1の材質を セラミックなどの電磁波を吸収しにく く、 かつ透過性のある材質で構成すれば、 開口を設ける必要はないことは明らかである。
そのために、 下ヒータ 2 8 A、 2 8 B、 2 8 Cに耐えられる材質を選ぶか、 下 ヒータ 2 8 A、 2 8 B、 2 8 Cのかわりに底面側の温度をあまり上げなくて済む ヒータ (熱風循環式のヒータ) を使うことで、 電磁波透過性のある材質を使うこ とも可能となる。
図 1 8は、 第 2の実施例である。
加熱室 4のコーナー部分に回転導波管 8を構成することで、 回転導波管 8の寸 法をやや大きく したりする自由度が増す効果がある。
ただし、 放射口 1 7の駆動範囲は図 1 8の様に加熱室 4底面の内側のみとして いる。 もし仮に、 加熱室 4底面の外側にまで及ぶ構成にすると、 高周波加熱装置 全体の大きさが大きくなってしまう問題と、 外部に電磁波が漏れないような工夫 が別途必要になる問題がある。 よってこれらの問題を防ぐために J:記構成として いる。
図 1 9は第 3の実施例である。 これは、 回転導波管 8の形状を変えて同様の効 果を出す例で、 (a ) は回転導波管 8の端面が 4方向とも折り曲げられており、 電磁波は開口 4 9より放射される。 それぞれの折り曲げた端部は円形にしており. スパークを防ぐ効果を高める。 この場合は第 1の実施例と比べると電磁波が開口 4 9の真上に放射される傾向 がある。
また、 内部空間 5 0は、 導波管と考えることができる。
よって、 結合部 7から端面までの距離^と、 ^。とはそれぞれ λ g Z 4の 約奇数倍の距離とし、 安定して、 定在波を起こしている。
次に^を I 4の約奇数倍とし、 1 0を; I g Z 2の約整数倍とすれば、 より 一層安定した定在波を起こせる効果がある。
このことは (b ) を使って説明する。 これはある瞬間の電界の起こり方を示す 図である。 実際は周波数の逆数の周期で反転を繰り返すものである。 第 1に実矢 線は代表的な電界 5 1 aの向きを示しており、 内部空間 5 0内に定在波としての 3つの山 (電界の腹) を有している。 第 2に開口近傍では、 実矢線の電界 5 l b が起こり、 このために開口 4 9の上部で開口 4 9をはさみこむように強い電界 5 1 cが引き起こされる。
以上の 2つのことは上述の寸法関係を満たすが故に同時に起こっており、 定在 波を乱すことがなく開口 4 9からの電磁波の放射を実現できる効果がある。 図 2 0は第 4の実施例であり、 回転導波管の替わりに、 回転アンテナを用いた 構成である。
結合部 7と連結された導電性を有する板体 5 3 (具体的には鉄やステンレス) が指向性を有し、 同様の効果が期待できる。
図 2 1は、 第 5の実施例であり、 開口をふさぐ場所を切り替える構成である。 結合部 7と連結された導電性を有する板体 5 4に開口 5 5を有すと共に、 それ 以外の部分を遮蔽するものである。
よって開口 5 5により指向性を有し、 同様の効果が期待できる。 その他の構成 でも指向性を有するものであれば同様の効果が期待できる。 ただし第 4の実施例 と第 5の実施例の構成では狙い通りの指向性を持たせることが第 1〜 3の実施例 ほど容易ではない。 その替わり折り曲げずに済むなど構造自体が簡単になり得る 効果がある。
図 2 2は、 第 6の実施例である。 ここでは載置台 2 0を、 ガラス製の皿 2 1とローラーリング 5 6で構成し、 凹 部 5 7を有し、 別の部品の軸 5 8とかん合させ、 ローラーリング 5 6で保持しつ つ回転させる構成である。
( a ) は断面図、 (b ) はローラーリングを上から見た要部構成図である。 ローラーリング 5 6はリング 5 9と 3ケのローラー 6 0を有し、 双方とも電磁 波が透過する材料で構成している。
以上により、 回転導波管 8から出た電磁波は、 邪魔されずに食品 6に入る。 よって、 狙った局部を加熱しやすい効果がある。 また、 図示しないが、 ローラ 一がスムーズに動きかつ位置ずれを起こさないよう、 通り道になる加熱室底面を くぼませておくこととする。
図 2 3から図 2 9に第 7の実施例を示す。 まず、 図 2 3は回転導波管 8を加熱 室 4内に突出させている。 この場合、 カバー 2 5は、 回転導波管 8を保護するよ うに箱型に構成している。
この構成で加熱室 4底面下の寸法を小さくできる効果があると同時に加熱室 4 内の有効容積が小さくなる問題がある。
またこの実施例では、 形状検出手段である光センサ 6 1、 6 2を有し、 発光部 6 1からの光を受光部 6 2が受信したかどうかにより、 食品 4の形状を判別でき る。
もし食品 6の温度が皿 2 1の温度と同じ場合、 温度センサ 2 6では食品 6の存 在する領域を瞬時には判別できないが、 光センサ 6 1、 6 2や重量センサ 2 3の 情報で加熱前に食品 4の存在する領域を決めることが可能となる。
よって、 食品 4が存在する領域のみを局所加熱すれば、 食品 4の無い部分を加 熱するような無駄が無く、 効率化が図れる。
またこの場合、 使用者が入力設定できる設定手段 6 3を備えている。
入力の内容によっては、 それだけで局所加熱すべき場所が決まる場合もあるが、 大体の場台、 入力内容と温度センサ 2 6、 光センサ 6 1、 6 2、重量センサ 2 3 などの惰報とをふまえて、 制御手段 1 9の中の領域判定制御手段 (図示せず) の 判定に基づいて、 回転導波管 8の方向やターンテーブル 1の回転やマグネトロン 2の出力などを制御している。
図 2 4は本実施例における高周波加熱装置の要部構成図であり、 設定手段 6 3 として操作パネル 6 4を示している。
まず、 使用者が牛乳のあたためを行う場合、 牛乳を加熱室 4に入れたのち牛乳 キー 6 5を押し、 スタートキ一 6 6を押す。 すると制御手段 1 9は、 操作パネル 6 4からの信号で食品 6を牛乳と判断し、 重量センサ 2 3と光センサ 6 1 6 2 と温度センサ 2 6からの信号で牛乳の量や形状や置かれた位置や初期温度を判定 し、 適切な放射口 1 7の位置を決定し、 基準位置からどれだけ動かせば良いかを 演算し、 その結果モータ 1 8を駆動し、 その後マグネトロン 2からの電磁波の放 射を開始する。
この時、 牛乳が放射部の近くに置かれた時は、 ターンテーブル 1を停止して回 転導波管 8を動かして牛乳の真下を加熱するように制御すればよ t、。
また牛乳が放射口 1 7と離れた位置 (例えばモータ 2 2の軸 6 7をはさんで反 対側) に置かれた時はターンテーブル 1と回転導波管 8の両方を動かして、 牛乳 の真下を加熱できる位置関係になるように制御すればよい。
また牛乳がターンテーブル 1の中央に置かれた場合、 ターンテーブル 1を動か しても停止してもどちらでも大差はなく、 回転導波管 8で電磁波を中央に向けれ ば即ち、 図 2 5のようにすれば自然に牛乳の真下を加熱できる。
もし牛乳が複数個置かれた時はターンテーブル 1と回転導波管 8の両方を動か して、 順次複数個の牛乳の真下を加熱していけばよい。
牛乳の場合、 底面に電界を集中させれば、 対流によって自然に分布の良いでき ばえが得られる上、 整合状態も良く加熱効率が向上する。
ターンテーブルを動かしても停止しても同じという場合は、 停止した方が無駄 な電力を使わなくてよいので、 省エネルギーの効果がある。
加熱が進むとその後重量センサ 2 3と光センサ 6 1、 6 2によって決められた 時間だけ加熱するか、 温度センサ 2 6により牛乳が適温になつたと判断したとき 加熱を終了する。
ここで、 何度もターンテーブル 1や回転導波管 8の駆動と停止を繰り返す場合, 駆動時にはマグネトロン 2から見たインピーダンスが変化するので、 動作がやや 不安定になることもある。 よって駆動前にはマグネトロン 2の発振を停止あるい は出力を減少し、 逆にターンテーブル 1や回転導波管 8が停止した後にマグネ卜 ロン 2を発振させて出力を増大させればマグネトロン 2の動作の状態を安定化で き、 マグネトロン 2からの不要輻射ノイズの低減の効果がある。
ところが、 じやがいものような小さくて固体の食品 6を加熱する場合は下から ばかり電磁波を入れると、 対流が無いため下ばかり熱くなつてしまう。 そこで図 2 6の様に食品 6の無い方向へ電磁波を出し、 つまり局所加熱を避けて加熱室 4 壁面で反射した電磁波で加熱することも効果がある。
また多数個のしゅうまいや、 ピザなどの平らな食品 6を加熱する場合について 説明する。
図 2 7は従来の電子レンジを通常通り使用した時の特性図で、 横軸に加熱時間 tを、 縦軸に食品 6の温度 Tを示す。
食品 6の周囲部分の平均温度を T o u t、 中央部分の平均温度を T i nで大ま かに表し、 加熱終了の目標平均温度 T r e f を 8 0 °Cとした。 加熱が始まると、 T o u tが早く上昇し、 T i nはなかなか上がらない。 t 1後に T o u tは T r e f に到達し、 t 2後には飽和温度 (沸騰温度) に達してしまうが、 その時点で 加熱を終了するとあまりに T i nの温度が低すぎる問題がある。 そこで T i nが そこそこ許せる範囲になる時間 t 3まで加熱を铳けてようやく加熱終了としてい る。 このとき食品 6の周囲部分は加熱しすぎ (T o u t > T r e f ) で、 中央部 分は加熱不足 (T i nく T r e f ) のためできばえは非常に悪い。
一方図 2 8は本実施例の特性図で、 放射ロ 1 7の向きを途中で一回だけで切り 換えることにより加熱の均一化の効果を確認したものである。 まず加熱開始時は 放射ロ 1 7の向きを図 1 2あるいは図 2 5と同じ向きとして先に食品 6の中央部 分を加熱し、 t 4時になったとき放射□ 1 7の向きを 1 8 0 ° 回転させて図 1 3 あるいは図 2 6と同じ向きに切り換えたものである。 加熱が始まると、 t 4時ま では T i nが温度上昇が早く T o u tはなかなか上がらないが、 t 4時以降、 温 度上昇率が逆転して T i nより T o u tの方が上がりやすくなる。 よって t 5時 で加熱を終了すれば、 食品の周囲部分も中央部分も丁度良い過熱状態となり (T o u t ^ T i n ^ T r e f ) , できばえが非常に良い。 またこのときは加熱しす ぎの部分がないので、 加熱のロスが少なく短時間 ( t 5く t 3 ) で加熱を終了で さる。
図 2 9は図 2 8の放射口 1 7の向きの切り替えタイミングをどのように決める かを示した特性図である。 横軸は重量センサ 2 3によつて検出した食品 6の重量 m、 縦軸は時間 tである。 食品 6の重量が重いほど最適な加熱時間は長くなるは ずなので、 放射ロ 1 7の切り替え時間 t 4を mの関数として、 制御手段 1 9内で 計算して求める方法がある。 もちろん加熱終了時間 t 5も同様に決定できる。
もちろん同様の切替を行うのにも他の方法がある。 第 8の実施例の図 3 0のよ うに、 放射口 1 7の切替タイミングを食品 6の温度自体でフィードバック制御す る方法もある。 これは図 2 8とは少し異なり、 温度センサ 2 6により食品 6の温 度をリアルタイムで監視し、 丁 1 11が丁1^ ( T kは制御手段 1 9内で決定された 値で、 T r e f より低い温度) に到達したら放射口 1 7を切り替えるものである。 さらにその後も温度を監視し続け、 実際に食品 6の温度が T r e f になった瞬間 t 6に加熱を終了するよう制御している。 温度センサ 2 6では食品 6の温度を実 測しており、重量 mからの推定に比べると精度が良いといえる。
以上述べたことに対して、 もちろん切り替えを一回に限定する必要はなく、 何 回かこまめに切り替えた方が温度差が広がりにくいのでよいし、 温度を実測する のであれば、 実際に温度の低いところがあればすぐにその部分の局所加熱をする 方が良いということが考えられる。
また、 どの様な食品 6であっても常に加熱分布のむらを無くして均一加熱を実 現するには、 あらかじめ食品 6の材質 ·形状 ·置かれた位置 ·温度等の条件毎に 最適な放射口の方向とターンテーブル 1の回転やマグネトロン 2の発振と組合せ 切替のタイミングなどの情報をあらかじめデータベースとして制御手段 1 9内の マイコンに記憶させておく方法がある。 本実施例ではこの方法により、 制御手段 1 9は操作パネル 6 4の入力および温度センサ 2 6や重量センサ 2 3や光センサ 6 1、 6 2などからの出力と、 データベースを比較して、 最適な加熱のための制 御ができる。
次に図 3 1から図 3 6は冷凍状態 (一 2 0 °C) の食品 6を解凍する場合の例で あ o
まず図 3 1は水の誘電損失 e r · tan ( の温度特性図である。 横軸は水の温度 T、 縦軸は誘電損失 ε r * tan 5を示す。 冷凍状態の水 (0 °C以下の氷) は誘電 損失が少なく、 溶けた水 (0 °C以上) になると極端に上昇する (約 1 0 0 0倍に 激増する) 事が分かる。 一方電磁波によって単位体積当たり吸収される電力は、 (1)式に示した通り £ r · ΐ3η (5に比例する。 よって溶けた部分は極端に電磁波が 吸収されやすくなり、 そのまま加熱を铳けると解凍の進んでいるところはますま す加熱されてさらに温度差が拡大してしまう特徴がある。 つまり水が一部溶けだ した状態で、 そのままの加熱分布で電磁波の加熱を続けると温度むらが必ず発生 することになる。
よってきめ細かな制御が必要になっている。
使用者が肉や魚の冷凍食品の解凍を行う場合、 食品 6を加熱室 4に入れた後図 2 4の様な解凍キー 6 8を押し、 スタートキー 6 6を押す。 すると制御手段 1 9 は、 操作パネル 6 4からの信号で食品 6を冷凍食品と判断し、 重量センサ 2 3と 光センサ 6 1、 6 2からの信号で冷凍食品の量や形状や置かれた位置や初期温度 など種々の状態を判定し、 適切な回転導波管 8の回転数を決定し、 モータ 1 8を 駆動して回転動作させ、 それと相前後してマグネトロン 2からの電磁波の放射を 開始する。 このとき回転導波管 8とともにターンテーブル 1も回転し、 できるか ぎり電界の部分的な集中を避けるようにする。
そして前述の通り温度むらが発生し始めると、 食品中の温度が低い部分を局所 加熱するよう放射口 1 7の位置が低温部位を向くようにして停止させるなど回転 導波管 8を繰り返し制御することになる。 図示しないが、 ここで制御手段 1 9は、 連続回転用の連続制御手段と、 断続的に動作させる断続制御手段と、 両者を途中 で切り替える切り替え制御手段を有しており、 容易に制御可能である。
ところが、 0 °Cを超える部位が発生すると急激に温度上昇するため、 低温部を 局所加熱して均一化しようとしても追いつかない可能性がある。 そこで、 マグネ卜ロンの出力の制御と連動して回転導波管 8を制御し、 改善し て 以下、 マグネトロン 2の出力の制御と組合せた例について説明する。
図 3 2、 図 3 3は従来の電子レンジの特性図である。
図 3 2は冷凍食品 6の解凍を行うときの、 マグネトロン 2による加熱出力の変 化を示す特性図である。 横軸は時間 t、 縦軸は出力 Pを示す。 加熱初期の時間 t 7の間は連続的な高出力で加熱し、 その後 t 8は出力を下げることに加えて断続 動作に切り替え、 最後の 9間はさらに断続の比率を変えて平均的な出力を引き 下げている。 簡単にいえば徐々に出力を落としているのである。 出力を落とすこ とで、 電磁波の加熱による温度上昇が減り、 食品 6の内部の熱伝達や食品 6と加 熱室 4内の雰囲気温度との差による温度上昇の割合が増えるので、 多少温度むら を改善する効果がある。
図 3 3は図 3 2の t 7、 t 8、 t 9をどのように決定するかを示した特性図で ある。 横軸は重量 mで、 縦軸は時間 tである。 ここでは重量センサ 2 3によって 検出した食品 6の加熱前の保存状態によらず mによってのみ出力の切り替えタイ ミングを決定している点である。 例えば加熱前の保存温度が高めであれば t 7を すぎるまでに一部分溶けて煮え出す可能性がある。 よって実際には温度センサ 2 6の出力により補正するべきである。 もちろん、 一定の加熱分布で加熱している ことには変わり無いので、 あまり温度むらの解消は期待できない。
図 3 4〜図 3 6は、 本実施例の高周波加熱装置の特性図である。
図 3 4は冷凍食品 6の解凍を行うとき連続制御手段により回転導波管 8を一定 回転させ、 途中で切り替え制御手段により断铳制御手段に切り替え、 放射口 1 7 が低温部位を加熱できる位置に停止させた時の温度特性図である。 横軸は時間 t、 縦軸は温度 Tである。 まず回転導波管 8とターンテーブル 1とをそれぞれ一定回 転させて加熱を開始する。 そして図 3 0で述べた設定温度 T k = 0 °Cとしており、 高温部位の温度 THI = T kに到達した時間 t 1 0で加熱を停止し、 同時に放射口 1 7とターンテーブル 1を低温部位が加熱できる状態にて停止するか、 その状態 の近辺で減速する。 その後 t sの間電磁波を出さないかもしくは出力を大幅に下 げて低温部分の TLowがある程度温度上昇するのを待ち、 t 1 1から再び出力を 9 上げて加熱する。
この時は放射口 1 7とターンテーブル 1により加熱部位が低温部位となり、 T Lowの方が温度上昇が早く、 THIに追いついていく。 そして THI ^ TLow Tref となった時点 t 1 2で加熱を終了する。 結果として、 待ち時間 t sによる温度の 平均化の効果と、 加熱分布の切り替えによる効果で、 分布むらの無い極めてでき ばえのよい解凍が実現できる。
図 3 5は図 3 4の t sあるいは t 1 1、 t 1 2をどのように決定するかを示し た特性図である。 横軸は重量 mで、 縦軸は時間 tである。 ここでは重量センサ 2 3によって検出した食品 6の重量 mの関数として t s、 t l l、 t 1 2を決めて いる。 もちろん、 温度センサ 2 6の出力で補正しながら決定する方法があり、 よ り一層加熱の均一化の制度が良いと考えられる。
図 3 6は図 3 4、 図 3 5で述べた冷凍食品 6の解凍を行うときの、 マグネトロ ン 2による加熱出力の変化を示す特性図である。 横軸は時間 t、 縦軸は出力 Pを 示す。 加熱初期の時間 t 1 0の間は連铳的な高出力で加熱し、 その後 t sの間出 力を出さず、 最後の t 1 2までは出力を下げることに加えて断続動作に切り替え て平均的な出力を引き下げている。
さらに本実施例では、 電磁波による加熱を停止するか、 大幅に出力を下げてい るときに回転導波管 8を駆動することとしており、 従来のスタラーや回転導波管 のような常時一定回転の電磁波の攪拌に比べると、 不要輻射やマグネトロン 2の 温度上昇を抑える効果がある。
また、 マグネトロン 2からの電磁波の放射が不安定な場合、 たとえばマグネト ロン 2の動作が 0 F Fから 0 Nに変わってすぐとか、 回転導波管 8の切り替え動 作中などにおいては、 各種のセンサに高周波ノィズの影響が出るのを防ぐために、 センサの出力を取り込まないようにすれば、 より精度の高い制御ができる効果が ある。
また、 使用者による設定入力や各種のセンサ出力により、 制御手段 1 9内で演 算処理を行ってから局所加熱部位を制御することも可能である。
例えばメニューによって局所加熱部位の切り替えタイミングを最大温度によつ て決定したり、 最大温度と最小温度の差によったり、 時間変化に対するそれぞれ の変化率によったり、 という具合である。
また、 複数の食品 6を同時に調理する場合はもつといろいろなことが考えられ る。
たとえば、 加熱したい食品と加熱したくない生野菜などの食品がある時は、 加 熱したい食品にのみ局所加熱を行わなければならない。
そのためには、 置き場所を決めて使用者がどのゾーンを加熱したいかを設定す る方法がある。 また、 食品の材質や調理内容を検知するセンサなどがあれば、 自 動的に判定することが可能となる効果がある。
図 3 7から図 3 9は第 9の実施例であり、 ターンテーブルがなく固定の載置台 2 0があり、 回転導波管 8を 2次元に制御するものである。
回転導波管 8はモ一タ 1 8により自転しながら公転するように回転駆動される が、 その仕組みは以下の通りである。 モータ 1 8の第一の回転軸 6 9に連動して 回転する歯車 7 0は歯数比 1 : 1で歯車 7 1に回転力を与え、 よって第二の回転 軸 7 2が回転し、 回転導波管 8をモータ 1 8と同じ回転速度で自転させる。 また 第一の回転 $由 6 9に連動して回転する歯車 7 3は歯車 7 4を介して歯数比 1 : 1 0で歯車 7 5に回転力を与え、 よって第二の回転軸 7 2自体が第一の回転軸 6 9 の周囲を回転し、 回転導波管 8をモータ 1 8の回転速度の 1 / 1 0で公転させる c よって回転導波管 8は、 1回の公転の間に 1 0回の自転をすることになる。
電磁波 4 2の方向を変えて加熱部位を制御するために、 第一の回転軸 6 9に連 動して回転するカム 3 7が一周期に一回スィツチ 3 8を押す構成としている。 ス イッチ 3 8を押した回数や、 スィッチ 3 8を押してからの駆動時間により放射口 1 7の位置が決まり電磁波の放射の方向を制御できる。 もちろんモータ 1 8とし てステツビングモータを使う場合、 スィツチ 3 8を押してからの駆動パルス数に より正確に位置決め制御をすることができる。 ここでカム 3 7とスィツチ 3 8に より電磁波の方向を設定あるいは検出していることになる。
操作パネル 6 4は、 使用者が食品 6の種類や加熱出力の大きさや加熱時間や加 熱方法などを設定する第一の操作キー 7 6と、 加熱スター卜のための第二の操作 キーとしてスタートキー 6 6を有している。
制御手段 1 9は、 第一の操作キー 7 6の入力により、 モータ 1 8を駆動しスイツ チ 3 8の出力に基づいて回転導波管 8を適切な位置に制御する。 そしてスタート キー 6 6が押されると、 マグネ卜ロン 2からの電磁波の放射を開始する。 その後 加熱が進むと、 第一の操作キー 7 6の入力内容や、 温度センサ 2 6からの食品 6 の加熱分布の惰報を元に、 必要であればモータ 1 8を駆動して加熱むらをなくす ように放射口 1 7からの電磁波の放射の方向を制御したり、 マグネトロン 2の出 力を変化させる制御を行い、 加熱終了まで加熱する。
さらに本実施例では、 食品 6を置くため載置台 2 0が回転導波管 8をカバーす る保護部を兼ね、 電磁波を吸収しにくい低損失の誘電体材料からなる仕切り板と して構成している。
図 3 8は、 図 3 7の A— A ' 線断面図である。 加熱室 4の底面上に回転導波管 8の結合部 7が移動できる切り込み 7 7と、 導波管 3の底面上に第二の回転軸 7 2が移動できる切り込み 7 8があり、 モータ 1 8の回転方向は切り込みの端面 7 9、 8 0のどちらかまでいけば反転するように動作する。 この反転のタイミング は、 ストツバを設けてもよいし、 スィッチ 3 8を押す回数で決めてもよい。
図 3 9は、 図 3 8において、 回転導波管 8の動作により電磁波 4 2の方向がど のように変化するかを、 放射口 1 7のボイント 8 1の動きに置き換えて示した特 性図である。 加熱室 4底面を X y座標で表し、 (0 . 0 ) を加熱室 4底面の中央 としている。 一例として第一の回転軸 6 9と第二の回転軸 7 2の距離即ち回転導 波管 8の公転の半径を 7 0 mmとし、 第二の回転軸 7 2の中心からボイント 8 1 までの距離すなわち自転の半径を 6 0 mmとし、 また自転周期を公転周期の 1ノ 1 0倍とすると、 公転の角度を 0としてポイン卜 8 1の座標は、 (2)式および(3) 式として表され、 図 3 9のような螺旋形状の挙動 (サイクロイ ド) を示す。
X = 7 0 cos ^ + 6 0 cos ( 1 0 0 ) … (2 ) y = 7 O sin 0 + 6 O sin ( 1 0 0 ) … ( 3 ) 前述のようにモータ 1 8は、 正確には端面 7 9、 8 0のどちらかまでいけば反転 する構成であるが、 ここではィメージ図のために無視している。
図 4 0から図 4 2は、 第 1 0の実施例であり、 第 9の実施例を改良したもので める。
これは、 回転導波管を 2段に構成し、 それぞれの回転の比率を歯車の歯数比で 設定することにより、 自転しながら公転させるものである。
図 4 0とその要部構成図である図 4 1とで構造を説明する。
モータ 1 8により第一の回転軸に連動して歯車 8 2が回転し、 歯車 8 2により 歯車 8 3が回転する (自転) 。 ここで歯車 8 4は歯車 8 3と一体のものであり、 歯車 8 3と全く同じ動作をする。 歯車 8 4が歯車 8 3と一緒に第二の回転軸 7 2 を中心に回転すると、 歯車 8 5により歯車 8 4、 歯車 8 3、 第二の回転軸 7 2が 歯車 8 2を中心に回転する (公転) 。
ここで第一の回転轴 6 9の周囲には第一の回転導波管 8 6の結合部 8 7があり、 第二の回転軸 7 2の内側には第二の回転導波管 8 8の結合部 8 9がある。 よって マグネトロン 2から出た電磁波は、 導波管 3、 結合部 8 7、 第一の回転導波管 8 6、 結合部 8 9、 第二の回転導波管 8 8の順で伝送されていく。 この実施例のメ リ ッ 卜は、 回転によらずマグネトロン 2から結合部 8 7までの距離と、 結合部 8 7から結合部 8 9までの距離とが常に一定に保たれる点である。
よって電磁波が通過する距離が一定となり、 整合が合いやすく、 加熱効率が高 い効果がある。
さらに本実施例では回転導波管の位置決めのために、 ストッパー 9 0を構成し、 ストッパー 9 0に歯車 8 4を当てることで、 基準位置が決まるようにしている。 ステッピングモータを用いた場合、 目的位置まで駆動するには、 一旦基準位置 に到達させてから改めて駆動し直すのが簡単である。
つまり、 充分多めのパルスを入れて基準位置まで駆動し、 その後駆動したい分 だけパルスを入れればよい。
各歯数比により、 自転周期を公転周期の 1 6倍とすると、 図 4 2のような軌 跡を動かす事ができる。
図 4 3、 図 4 4は本発明の第 1 1の実施例における高周波加熱装置の要部断面 構成図である。 導波管 3の下部に駆動部として回転軸 9 1を有するモータ 1 8と、 保持部 9 2と、 駆動軸 9 3と、 取りつけ具 9 4を有している。 回転軸 9 1が回転 すると、 矩形断面を有する回転軸 9 1に上下動自在にかん合した矩形開口を有す る駆動軸 9 3が回転する。 このとき駆動軸 9 3の外部には雄ねじ 9 5があり、 保 持部 9 2の内部の雌ねじ 9 6があるので、 モータ 1 8の回転方向によっては上昇 するか下降する。 回転導波管 8の放射口 1 7からの電磁波 4 2の向きは、 回転に よる円周方向の変化だけでなく、 上下動による変化も加えて制御できることにな る。 図 4 3では上昇した状態、 図 4 4では下降した状態を示している。
ここでは回転と上下動の組合せを示したが、 もちろん前述の実施例で示したよ うにターンテーブルや螺旋形状の動作と組み合わせてもよいし、 他にもいろいろ な構成で、 2次元ないし 3次元の制御が考えられる。
次に本発明の第 1 2の実施例を図 4 5〜4 6を参照しながら説明する。 図 4 5 は高周波加熱装置の構成断面図である。 また図 4 6は同実施例の要部拡大図であ る。
第 1 2の実施例は局所加熱手段として開口位置可変手段を設け、 ターンテープ ルを使わない構成である。 図 4 5において、 マグネトロン 2から出た電磁波は導 波管 3を介して加熱室 4内に置かれた皿 2 1上の食品 6を加熱する。 導波管 3と 加熱室 4とを接続し電磁波を導く開口部は、 第 1の遮蔽板 9 7と第 2の遮蔽板 9 8により開口位置が定まるものである。 第 1の遮蔽板 9 7には、 切欠部 9 9、 第 2の遮蔽板 9 8には切欠部 1 0 0がありこの切欠部 9 9と 1 0 0の組合わさった 位置が開口位置となる。
第 1の遮蔽板 9 7は開口位置可変手段である第 1のステツビングモータ 1 0 1 の回転により軸 1 0 2を中心に回転するものである。 第 1のステッビングモータ 1 0 1は第 1の回転軸 1 0 3を回転させ、 第 1の回転軸 1 0 3には第 1の歯車 1 0 4を取り付けていて、 第 1の歯車 1 0 4が回転する。 第 1の遮蔽板 9 7の周囲 には歯車を形成していて第 1の歯車 1 0 4の回転に合わせて回転するものである c また第 2のステツビングモータ 1 0 5は第 2の回転軸 1 0 6を回転させ、 第 2の 回転軸 1 0 6には第 2の歯車 1 0 7が取り付けられていて、 第 2の歯車 1 0 7が 回転する。 第 2の遮蔽板 9 8の周囲にも歯車を形成していて第 2の歯車 1 0 7の 回転に合わせて回転するものである。
図 4 6は、 遮蔽板の拡大図であり、 図 4 6 ( a ) は第 1の遮蔽板 9 7、 図 4 6 ( b ) は第 2の遮蔽板 9 8である。 図 4 6に示すようにいずれの遮蔽板も円形で、 第 1の遮蔽板 9 7には半径方向に切欠部 9 9を構成し、 第 2の遮蔽板 9 8には中 心から周囲に向けて渦巻状の切欠部 1 0 0を構成している。 この 2枚の遮蔽板を 上下に配置して組み合わせれば遮蔽板の円形の中の任意の位置に開口部を作るこ とが出来る。 即ち、 加熱室 4内のほぼ全領域の任意の位置を開口部として電磁波 の放射位置にでき、 局所加熱することができる。 またこの 2枚の遮蔽板 9 7、 9 8を周期を変えて回転することで、 加熱室 4内で開口位置が順次移動し全体を均 —加熱することも可能である。
制御手段 1 9は加熱開始初期には 2枚の遮蔽板 9 7、 9 8を別の周期で駆動し 均一加熱制御を行い、 温度センサ 2 6で検出した温度分布より食品 6の中から低 温部分を抽出し、 その低温部分の下に開口部が位置するよう 2枚の遮蔽板 9 7、 9 8の角度を制御し局所加熱制御する。 この制御を繰り返すことで食品 6から低 温部分をなく し全体を均一な温度に加熱するのである。
尚、 本実施例において、 2枚の遮蔽板を駆動するのに 2個のモータを使ったが 1個のモータで歯車の比率を変えることも実現でき、 この場合は駆動部が少なく 信頼性を向上させる効果がある。 また、 遮蔽板は回転させるのでなく直線運動す るようにしても良いし、 多数の開口部を設けそれぞれに遮蔽板を設けても同様の 効果が得られる。
また、 上記第 1〜第 1 2の実施例において、 局所加熱手段の電磁波放射位置と なる放射口あるいは開口部を加熱室 4の底面に設けているが、 これは電磁波を食 品の一部分に集中させて局所加熱するにはできるだけ食品に近いところから電磁 波を加熱室に放射するのが効果がある。 し力、し、 加熱室 4の底面に放射口や開口 部を設けることは本発明を限定するものではなく、 天井面や側面に設けても良い 天井面に設ける場合には食品を高さ方向に移動させるか、 天井面を高さ方向に移 動させるかして食品と天井面を近づけた状態で制御すれば効果は大きく、 この場 合には開口部と食品の間に皿や載置台がないので、 より集中的な局所加熱が可能 である。 また側面に設けた場台には、 食品を回転導波管のある側面方向に移動さ せるか、 側面を食品の方向に移動させるかして、 食品と回転導波管のある側面を 近づけて背の高い食品を高さ方向で局所加熱制御することも可能になる。 また、 底面と天井面、 あるいは底面と側面など 2つの面、 もしくは 3面以上に放射口や 開口部を設け分布可変制御を行ってもよく、 特に大きな食品では有効である。 結局、 局所加熱の為には、 放射口は開口部を食品と近づけた状態で駆動すべき である。
また、 上記第 1〜第 1 2の実施例において、 温度分布検出手段を 1素子の赤外 線検出素子を駆動することで 2次元の温度分布を検出すれば、 安価で且つ赤外線 検出素子の出力調整が簡易にできる効果がある。 しかし、 1素子の赤外線検出素 子を駆動する事は本発明を限定するものではなく、 例えば赤外線検出素子を複数 2次元に並べて温度分布を検出しても良い。 この場合には駆動部がなく信頼性を 向上できる効果と瞬時に温度分布を検出できる効果がある。 また例えば、 複数の 赤外線検出素子を直線的に並べて直線的な温度分布を検出し、 それとターンテー ブルの回転を組み合わせて 2次元の温度分布を検出しても良いし、 直線的に並べ た赤外線検出素子を駆動して首振りすることで 2次元の温度分布を検出しても同 様の効果が得られる。
なお、 マグネトロンから放射部までを一つの導波管で導いているが、 多方向に 分岐させ、 それぞれに放射部を有し、 切り替え可能な構成とすれば、 もっときめ 細かな局所加熱が実現出来る効果がある。
また、 導波管でなく、 同軸線路で導いてもよい。
また、 マグネトロンでなく、 半導体発振素子を用いてもよい。
以下、 本発明の第 1 3の実施例を図 4 7〜図 5 1を参照しながら説明する。 図 4 7は本発明の第 1 3の実施例の高周波加熱装置の構成断面図である。 また 4 8 は同実施例の特に物理量検出手段の検出特性を示す図である。 また図 4 9は同実 施例の特に物理量検出手段の要部断面図である。 また図 5 0は同実施例における 制御動作を説明するブロック図である。 また図 5 1は同実施例における温度変化 の特性を示す特性図である。
ターンテ一ブル 1は回転手段であるモータ 2 2で一定周期で回転するものであ る。 このモータ 2 2の回転中心は加熱室 4の底面のほぼ中央にあり、 一方、 モー タ 1 8の回転中心は加熱室 4の底面中央からずれた位置で、 底面中央と周縁部の ほぼ真ん中に位置するものである。 この位置関係により回転導波管 8でターンテ 一ブル 1の半径方向の加熱部位を変えることができ、 ターンテーブル 1の回転と 台わせ皿 2 1上の任意の位置を加熱することができるのである。
温度センサ 2 6は加熱室 4の天井面に光路を確保するための開口 2 9を設け、 その開口 2 9近傍には電磁波が加熱室 4外部に漏れないようチョーク構造 1 0 8 を形成している。
次に温度センサ 2 6について説明する。 図 4 8は図4 7の8— 8 ' 断面を示し ている。 加熱室 4の天井面 1 0 9に開口 2 9を設け、 チョーク構造は 2種の板金 1 1 0 aと 1 1 0 bで構成している。 1 1 0 aは光路を形成するもので天井面 1 0 9に広がりを持った筒状の金属部品で天井面 1 0 9に密接している。 1 1 0 b は小孔 1 1 1を持った箱状の金属部品で天井面 1 0 9に密接している。 このチヨ ーク構造 1 1 0 a、 1 1 0 bにより加熱室 4内から赤外線は小孔 1 1 1より外部 に出るが、 加熱室 4内の電磁波は遮断され外部にはほとんど漏れない。 図 4 8に おいて寸法 Lを; 1ノ4に設計する、 即ち周波数が 2. 4 5 G H zであれば約 3 0 mmにすることで、 小孔 1 1 1でのインピーダンスが無限大となり電磁波の遮断 効果は最も大きい。
図 4 8において、 1 1 2は焦電型の赤外線検出素子で入光する赤外線量、 即ち 視野となる加熱室 4内の位置の温度に相関を持った出力をするものである。 赤外 線検出素子 1 1 2は固定部材 1 1 3内部に固定し、 固定部材 1 1 3に取り付けた レンズ 1 1 4を通して視野を絞って狭い範囲の温度を検出している。 レンズ 1 1 4はフレネルレンズで赤外線の透過する材料で構成している。 1 1 5はステツピ ングモータであり、 1 1 6を第 1の回転軸として小歯車 1 1 7とチヨツバ 1 1 8 を回転する。
チヨツバ 1 1 8はスリッ 卜を形成していて赤外線検出素子 1 1 2に至る光路を 開閉しながら回転する。 小歯車 1 1 7は大歯車 1 1 9と接し大歯車 1 1 9には第 2の回転軸 1 2 0を取り付け、 第 2の回転軸 1 2 0は受け部 1 2 1により回転自 在に取り付けている。 また、 第 2の回転軸 1 2 0にはプリン卜基板 1 2 2を取り 付け、 ブリント基板 1 2 2には赤外線検出素子 1 1 2の他、 増幅回路等の電子回 路 (図示せず) を取り付けている。 これらは赤外線の光路となる位置に小孔 1 2 3を持った金属ケース 1 2 4に収納され金属蓋 1 2 5で覆い金属蓋 1 2 5でチヨ ーク構造 1 1 0に固定している。
この構成でステツビングモータ 1 1 5は赤外線検出素子 1 1 2を図 4 8の手前 から奥に首振りし、 同時にチヨツバ 1 1 8による光路の開閉の両方を行っている c この赤外線検出素子 1 1 2の首振りの周期はモータ 2 2の回転周期の整数分の 1 に設定、 即ちモータ 2 2の回転周期を赤外線検出素子 1 1 2の回転周期の整数倍 としていて、 モータ 2 2の回転ごとに同じ位置の温度を検出できる構成としてい る。
図 4 9に赤外線検出素子 1 1 2の検出位置を示す。 赤外線検出素子 1 1 2の検 出視野を小円で示し、 検出中心の軌跡を破線で示している。 この例では赤外線検 出素子 1 1 2の首振り片道で温度検出位置を 5箇所変更している。 この首振りと モータ 2 2の回転の組み合わせで、 検出位置は皿 2 1の全体を覆い 2次元的に温 度分布を検出できるものである。 また、 赤外線検出素子 1 1 2の首振りの整数倍 の周期でモータ 2 2は回転するので、 ターンテーブルの 1周前の温度との温度差 や初期からの温度変化を各検出位置ごとに検出できるものである。
次に制御手段 1 9の制御動作について図 5 0により説明する。 制御手段 1 9は 温度分布検出手段 2 6で検出した温度分布によりモータ 1 8を制御するのである が、 まず検出した温度が食品 6の温度なのか、 または皿 2 1や加熱室 4の壁面の 温度であるのかを各検出位置ごとに区別するのが被加熱物抽出手段 1 2 6である < 加熱初期には食品 6がどのような大きさのものであるか、 どの位置に置かれてい るかなどわからないので、 まず均一加熱制御手段 1 2 7でモータ 1 8を制御する, 均一加熱制御手段 1 2 7はモータ 2 2の回転周期に比べて十分早い周期で回転さ せる、 または半回転で往復させる、 あるいはランダムに駆動するなどして加熱室 4内に電磁波を攆拌し均一に分布させる。 この均一加熱制御手段 1 2 7でモータ 1 8を制御している間に各検出位置ごとの温度上昇により食品 6であるかそうで ないかを区別する。
図 5 1に均一加熱制御手段 1 2 7でモータ 1 8の駆動を制御しているときの食 品 6の表面温度変化と皿 2 1など食品 6ではない部分の温度変化を示す。 横軸は 加熱開始からの経過時間、 縦軸は加熱開始からの温度変化であり、 斜線で示した Cの領域が皿 2 1など食品 6でない部分の温度変化を示し、 Dの領域が食品 6の 温度変化を示している。 このように皿 2 1は食品 6に比べて誘電損失が小さいの で電磁波が吸収されにく くほとんど温度上昇しないので明確に区別ができる。 温 度変化演算手段 1 2 8は例えばモータ 2 2の加熱開始から 1周目の各検出位置に 対応した温度を記憶しておき、 それから t 1 3時間経過後の各検出位置に対応し た温度から 1周目の温度との温度差 Δ Τを演算する。 温度変化比較手段 1 2 9は 温度変化演算手段 1 2 8の演算結果である温度差 Δ Τが予め定めた所定値 Δ Τ 1 より大きければ食品 6、 小さければ皿 2 1として区別するのである。
被加熱物抽出手段 1 2 6で各検出位置が食品 6であるか、 皿 2 1であるかの区 別ができれば加熱モード切替手段 1 3 0によりモータ 1 8の制御を均一加熱制御 手段 1 2 7から局所加熱制御手段 1 3 1に切り替える。 局所加熱制御手段 1 3 1 はモータ 1 8を適当な位置で止めながら電磁波の集中する箇所を制御するのであ る。 1 3 2は低温部分抽出手段であり、 被加熱物抽出手段 1 2 6で食品 6と判定 した検出位置の中から温度の低い箇所を抽出する。 局所加熱制御手段 1 3 1は低 温部分抽出手段 1 3 2で抽出された温度の低い箇所に電磁波が放射されるように モータ 1 8の駆動を制御するのである。 また、 局所加熱制御手段 1 3 1で食品 6 の低温部分に電磁波を放射することで食品 6から低温部分がなくなり全体が均一 温度になれば再度均一加熱制御手段 1 2 7でモータ 1 8を制御しても良い。 低温部分抽出手段 1 3 2は赤外線検出素子 1 1 2の苜振り 1往復の間で被加熱 物抽出手段 1 2 6が食品 6と判定した検出位置の中で最も検出温度の低い検出位 置を加熱位置として記憶しておく。 モータ 2 2の 1回転の間に赤外線検出素子 1 1 2の首振りの往復は繰り返されるが、 それぞれの首振り 1往復における加熱位 置を記憶する。 モータ 2 2の回転で回転導波管 (放射部) 8の上部にある半径方 向での記憶している加熱位置に向けて局所加熱制御手段 1 3 1がモータ 1 8の角 度を調節し、 加熱位置、 即ち食品 6の中での低温部分を加熱するのである。 この 制御を繰り返すことで食品 6から低温部分がなくなり全体に均一に加熱されるこ とになるのである。
また、 モータ 1 8の駆動回数を減らす簡易的な方法としては、 赤外線検出素子 1 1 2の検出位置は同心円上に並ぶものであり、 各同心円の円周単位で食品 6か 皿 2 1かを区別し、 食品と判定できる円周についてはその円周の中での最高温度 を抽出し、 その最高温度が最も低い円周を低温部分抽出手段 1 3 2が抽出して、 その円周に電磁波が集中するようにモータ 1 8の角度を調節しても良い。 この場 合にはモータ 1 8の耐久性能を向上させる効果がある。
尚、 均一加熱制御手段 1 2 7の均一という意味は、 局所加熱に対して広域加熱 を表現しているものであり、 完全に万遍にムラなく加熱することを条件とするも のではない。
また、 物理量検出手段は上記第 1 3の実施例の説明では温度分布検出手段とし たが本発明はこれに限定するものではない。 例えば食品 6の形状や色を認識でき る C C Dイメージセンサと呼ばれる固体撮像素子を使っても可能である。 この場 合には加熱の進行に従って変化する色とその分布を基に制御手段が局所加熱手段 を制御すればよく、 例えば肉であれば赤から薄茶を経て白っぽく変化する色に合 わせ全体が薄茶の色に仕上がるように局所加熱手段を制御する。 また形状の変化 を基に制御手段が局所加熱手段を制御してもよく、 例えば餅であれば柔らかくな り膨らむ変化があるので全体が同じように膨らみかけるように局所加熱手段を制 御する。 複数の発光素子と受光素子を使って光路の遮断パターンから形状認識し ても同様の効果が得られる。 また形状に合わせて最適な局所加熱手段の制御バタ ーンを予め記憶しておけば、 固体撮像素子や複数の発光素子と受光素子で認識で きる初期の形状認識で制御手段が局所加熱手段を制御することも可能である。 ま たメニュ一と重量に合わせて最適な局所加熱手段の制御パターンを予め記憶して おけば重量センサを物理量検出手段とすることも可能である。
また、 制御手段は上記第 1 3の実施例の説明では均一加熱制御手段と局所加熱 制御手段と加熱モード切替手段を有する構成としたが本発明はこれに限定するも のではない。 例えば均一加熱制御手段と加熱モード切替手段がない場合について 図 5 2を参照して説明する。 図 5 2は高周波加熱装置の制御動作を説明するブロッ ク図である。 この場合には加熱開始初期から被加熱物抽出手段が食品 6か皿 2 1 かを区別する。 温度変化比較手段 1 2 9は加熱経過時間により定まる所定温度変 化と時々刻々比較し所定温度変化より大きければ食品 6、 小さければ皿 2 1と区 別する。 この所定温度変化は加熱経過時間により定まる関数で図 5 1において直 線 Eで示すものである。 加熱開始初期には食品 6の温度変化も小さく食品 6と皿 2 1の区別を誤ることもあるが加熱進行に従って誤りは訂正されるので、 全体の 加熱分布に大きな影響を及ぼすものでない。
他にも加熱開始初期はモータ 1 8を所定位置に固定する方法もある。 一般には 食品 6は加熱室 4の中央に配置されることが多く、 しかも周囲が加熱されやすく 中央が加熱されにくい形状になっていることが多いので、 まずは図 1 2、 図 2 5 に示すように回転導波管 (放射部) 8の方向を固定して加熱する。 この方法でも 初期の最適加熱位置として誤る可能性もあるが加熱進行に従って誤りは訂正され、 全体の加熱分布に大きな影響を及ぼすものでない。 また、 初期の固定位置を中央 でなく図 1 3、 図 2 6に示す周囲やそれ以外の位置であつても加熱進行に従つて 適切な加熱位置制御されるので同様の効果をもたらすものである。
次に本発明の第 1 4の実施例について図 5 3を参照して説明する。 図 5 3は本 発明の第 1 4の実施例の高周波加熱装置の制御動作を説明するプロック図である。 尚、 上記第 1 3の実施例と同じ構成のものは同一符号を付している。 1 3 3はメ ニュー設定手段で、 使用者が調理メニューを設定するものである。 メニュー設定 手段 1 3 3は調理メニューに対応したキー、 例えば「あたため」 キー 1 3 3 a、 「生ものの解凍」 キー 1 3 3 b、 「牛乳」 キー 1 3 3 cなどを備えていて、 使用 者がいずれかのキーを押すことで調理メニューを設定する。 1 3 4は制御モード O 選択手段で、 メニュー設定手段 1 3 3で設定された調理メニューに応じモータ 1 8を加熱モード切替制御手段 1 3 5で制御するか、 加熱モード非切替制御手段 1 3 6で制御するかをモード選択するものである。 加熱モード切替制御手段 1 3 4 の制御動作は上記第 1 3の実施例のように行なうものである。 即ち、 加熱開始初 期には均一加熱制御手段 1 2 7でモータ 1 8を制御し、 被加熱物抽出手段 1 2 6 が食品 6と皿 2 1の区別をしてからは低温部分抽出手段 1 3 2の検出する低温部 分に従って局所加熱制御手段 1 3 1がモータ 1 8を制御するのである。 一方、 加 熱モード非切替制御手段 1 3 6は加熱開始初期から局所加熱制御手段 1 3 1のみ でモータ 1 8を制御するものである。
冷やご飯の再加熱や煮物、 焼き物の再加熱などは局所を集中的に加熱し、 その 局所位置を変化させ全体に均一な温度分布となるように制御すれば良い。 また、 肉や魚の解凍も同様である。 しかし、 牛乳のような液体はそれを入れている容器 の底から集中的に加熱することで対流が起こり高さ方向に全体に均一加熱できる ようになる。 従って一般には加熱室 4の中央に置かれるものとして図 1 2、 図 2 5に示すようにモータ 1 8は中央が局所加熱されるように放射部 8の位置を固定 すれば良い。 中央に匱かれなかった場合には被加熱物抽出手段 3 4で牛乳の容器 の位置を検出し、 その位置が放射部 8の位置を通るようにモータ 1 8は放射部 8 の位置を設定して固定すれば良い。 複数置かれた場合にはそれが同心円上であれ ばその同心円の位置が局所加熱されるようモータ 1 8は放射部 8の位置を固定す れば良い。 複数を同心円でなく置かれた場合には放射部 8付近を通る牛乳の容器 の位置に合わせて都度モータ 1 8が放射部 8の向きを変えれば良い。
制御動作は、 まず使用者が調理メニューを設定するキーを押す。 押されたキー が「あたため」 キー 1 3 3 aか「解凍」 キー 1 3 3 bであれば制御モード選択手 段 1 3 4は加熱モード切替制御手段 1 3 5を選択して加熱開始初期は均一加熱制 御手段 1 2 7がモータ 1 8を制御し、 その後は局所加熱制御手段 1 3 1がモータ 1 8を制御する。 使用者が押したキーが「牛乳」 キーであれば制御モード選択手 段 1 3 4は加熱モード非切替制御手段 1 3 6を選択する。 この場合には局所加熱 制御手段 1 3 1はまずモータ 1 8を制御して放射部 8の位置を加熱室 4の中央が 局所加熱されるようにして固定する。 被加熱物抽出手段 1 2 6により牛乳の容器 の位置が中央であると認識できればそのまま中央を局所加熱し、 牛乳の容器の位 置が中央でない、 または複数あると認識できれば牛乳の容器の検出位置の中心を 局所加熱できるようにモータ 1 8を制御し放射部 8の位置を設定する。
尚、 牛乳の容器の位置が中央でない場合にはターンテーブルの回転により放射 部 8から離れた位置にある時間帯でマグネト口ンを停止させ電磁波を加熱室 4内 部に入れないようにしても良い。 この場合には加熱に時間を要するものであるが、 更に温度分布が良好にできるし、 無駄なエネルギー消費を行わない効果がある。 また酒燜、 味噌汁、 コーヒーなども牛乳と同様であり使用者が設定するメニュー 設定手段 1 3 3に新たにメニューとして加えることで同様の効果を得るものであ る。
次に本発明の第 1 5の実施例を図 5 4〜図 5 5を参照しながら説明する。 図 5 4は本発明の第 1 5の実施例の高周波加熱装置の構成断面図である。 また図 5 5 は同実施例の温度分布検出手段の要部断面図である。 尚、 上記実施例と同じ構成 のものは同一符号を付し、 説明を省略する。
第 1 5の実施例は回転手段であるターンテーブルモータを使わない構成である。 マグネトロン 2から出た電磁波は、 導波管 3、 袷電室 1 5を介して加熱室 4内に 放射され、 加熱室 4内の食品 6を加熱する。 給電室 1 5内には放射部 8があり、 放射部 8は導波管移動手段であるモータ 1 8で回転する構成としている。 2 5は 給電室 1 5を覆うカバーである。 モータ 1 8はステツビングモータであり、 第 1 の回転軸 1 3 7を回転させる。 第 1の回転軸 1 3 7には大歯車 1 3 8が取り付け られている。 1 3 9は周囲歯車で内側に歯車を形成し、 また小歯車 1 4 0の軸受 けとなる溝があり、 導波管 3に取り付け固定している。 小歯車 1 4 0は大歯車 1 3 8と周囲歯車 1 3 9に接し、 小歯車 1 4 0には第 2の回転軸 1 4 1が取り付け られ、 第 2の回転軸 1 4 1は周囲歯車 1 3 9に設けた溝を軸受けとして回転自在 に取り付けられている。 この第 2の回転軸 1 4 1に放射部 8が取付けられている c この構成でモータ 1 8が回転すると、 第 2の回転軸 1 4 1は回転を繰り返しなが ら周囲歯車 1 3 9に沿って大歯車 3 8の周囲を移動する。 モータ 1 8は、 原点検 出スィツチを使ったり、 ス卜ッパーを使うなどして初期の位置合わせを行い、 以 後初期位置からの移動角度を逐次累積して常に回転角度をわかるようにすること で放射部 8の位置と向きの両方がわかるものである。
図 5 5は温度分布検出手段の要部断面図であり、 図 5 4の F— F ' 断面を示し ている。 図 5 5において第 1 3の実施例の図 4 8と同じ構成のものは同一符号を 付し説明を省略する。 1 1 5はステツビングモータであり、 赤外線検出素子 1 1 2を図 5 5の手前から奥に首振りし、 同時にチヨッパ 1 1 8による光路の開閉の 両方を行っている。 1 4 2は赤外線検出素子 1 1 2を含む金属ケース 1 2 4全体 を駆動する駆動手段でステツビングモータにより構成している。 ステツピングモ 一夕 1 4 2は回転軸 1 4 3を回転させ、 回転軸に取り付けられた連結部 1 4 4を 駆動して赤外線検出素子 1 1 2を図 5 5の左右方向に首振りするのである。 ここ でステツビングモータ 1 4 2の首振り周期はステツビングモータ 1 1 5の首振り 周期より十分遅く整数倍で駆動するものであり、 ステツビングモータ 1 4 2の苜 振り 1往復ごとに同じ位置の温度を検出できる構成としている。 この構成で加熱 室 4内の全領域の温度を検出でき 2次元的に温度分布を検出できるものである。 またステツビングモータ 1 4 2の首振り 1往復ごとに同じ位置の温度検出ができ るので 1往復前の温度との温度差や初期からの温度変化を各検出位置ごとに算出 できるのである。
制御手段 1 9は初期にモータ 1 8を一定周期で回転させて均一加熱制御を行い、 食品を抽出すれば、 抽出した食品の中で低温部分を抽出し、 その低温部分の位置 に放射部 8が向くようにモータ 1 8の角度を制御する。 これを繰り返すことで食 品 6から低温部分がなくなり全体に均一な温度に加熱できるのである。 この実施 例の場合、 食品 6を回転しないので重い食品を加熱することが可能になるほか、 加熱室 4内のスペースを有効に活用できる効果がある。 なお、 上記実施例におい ては 1個のモータで放射部 8の位置と向きを制御する構成で説明したが、 これは 本発明を限定するものでなく、 放射部 8の向きと位置を別個のモータで制御して もよいし、 直線的な 2軸の動きで制御してもよい。 これらはさらにキメ細かく局 所加熱できる効果がある。 次に本発明の第 1 6の実施例を図 5 6〜図 5 7を参照しながら説明する。 図 5 6は本発明の第 1 6の実施例の高周波加熱装置の構成断面図である。 また図 5 7 は同実施例の電磁波放射部の要部断面図である。 尚、 上記第 1 3〜第 1 5の実施 例と同じ構成のものは同一符号を付し、 説明を省略する。
第 1 6の実施例は分布可変手段として開口位置可変手段を設けたものである。 図 5 6において、 マグネトロン 2から出た電磁波は導波管 3を介して加熱室 4内 に置かれた皿 2 1上の食品 6を加熱する。 導波管 3と加熱室 4とを接続し電磁波 を導く開口部は、 第 1の開口部 1 4 5を加熱室 4の中央寄りに、 第 2の開口部 1 4 6を加熱室 4の周囲寄りに、 且つターンテーブル 1の回転半径方向に並べて位 置する構成としている。 1 4 7は遮蔽板で、 開口部 1 4 5と 1 4 6の一方を遮蔽 するものであり、 その構造は半円形状の金属板であり、 電磁波を吸収しにくい低 損失の材料からなる回転軸 1 4 8により回転する。 1 8は開口位置可変手段であ りステツビングモータで構成され回転軸 1 4 8を回転させることで遮蔽板 1 4 7 により開口部 1 4 5と 1 4 6のいずれか一方を塞ぐものである。 この構成で加熱 室 4内に電磁波を放射する位置が変わり、 塞がれていない開口部の直上にある食 品 6の部分が集中的に局所加熱される。 また遮蔽板 1 4 7を一定周期で回転させ れば食品 6を均一加熱することも可能である。
図 5 7は、 図 5 6の G— G' 断面を示している。 開口部 1 4 5、 1 4 6はそれ ぞれ長方形で、 同じく長方形状の加熱室 4底面と 4辺が平行である。 図 5 7 ( a ) は図 5 6と同じく遮蔽板 1 4 7により第 1の開口部 1 4 5を塞ぎ、 第 2の開口部 1 4 6から電磁波が加熱室 4内に放射するので、 食品 6の中で加熱室 4の周辺付 近に位置する部分を局所加熱する。 図 5 7 ( b ) は逆に遮蔽板 1 4 7により第 2 の開口部 1 4 6を塞ぎ第 1の開口部 1 4 5から電磁波を加熱室 4内に放射するの で、 食品 6の中で加熱室 4の中央付近に位置する部分を局所加熱する。
制御手段 1 9は初期には一定周期で遮蔽板 1 4 7を回転して均一加熱制御を行 い、 温度センサ 2 6で検出した温度分布より食品 6を抽出すれば、 食品 6の中か ら低温部分を抽出し加熱位置として記憶する。 ターンテーブル 1の回転で開口部 1 4 5、 1 4 6のある半径方向における加熱位置に合わせて遮蔽板 1 4 7の位置 を時々刻々切り替えることで最適な局所加熱制御を行 t、、 この繰り返しで食品 6 から低温部分をなくし全体に均一に加熱するのである。
本実施例において、 開口部を 2個設け半円形の金属板を回転させることで簡単 且つ小型でできる構成として説明したが、 これらは本発明を限定するものでなく 開口部の数を多く してよりキヌ細かな局所加熱制御をすることも可能であるし、 遮蔽板は回転させるのでなく直線運動するようにしても良い。 また複数の開口部 それぞれに遮蔽板を設けても同様の効果が得られる。
次に本発明の第 1 7の実施例を図 5 8〜図 5 9を参照して説明する。 図 5 8は 制御動作を説明するプロック図である。 また図 5 9は特に輪郭抽出手段の動作を 説明する温度特性図である。 尚、 上記第 1 3〜第 1 6の実施例と同じ構成のもの は同一符号を付し、 説明を省略する。
図 5 8において、 加熱初期にはまず均一加熱制御手段 1 2 7で局所加熱手段 1 6を制御する。 被加熱物抽出手段 1 2 6は温度分布検出手段 2 6で検出した各検 出位置に食品が存在するか否かの区別ができれば加熱モード切替手段 1 3 0によ り局所加熱手段 1 6の制御を均一加熱制御手段 1 2 7から局所加熱制御手段 1 3 1に切り替えるのである。
被加熱物抽出手段 1 2 6は温度変化演算手段 1 2 8と輪郭抽出手段 1 4 9によ り構成している。 温度変化演算手段 1 2 8は加熱開始初期の温度分布検出手段 2 6の各検出位置に対応した温度を記憶しておき、 それから所定時間経過後の各検 出位置に対応した温度と同じ検出位置の初期温度との温度差 Δ Τを演算する。 こ の各検出位置に対応した初期からの温度変化厶 Tにより輪郭抽出手段 1 4 9が食 品の輪郭を抽出するのである。
図 5 9において (a ) はマス目が温度分布検出手段 2 6の各検出位置であり、 斜線部が食品 6である。 ここで温度分布検出手段 2 6は赤外線検出素子を複数 2 次元に配列したもの、 または直線的に配列したものの首を振るなどの構成でマト リクス状の検出位置で温度分布を検出するものとしている。 食品 6の加熱開始初 期からの温度変化は食品のない箇所の温度変化より大きいのが普通である。 X方 向微分手段 1 5 0は、 このマトリクス状に配列された検出箇所の X方向、 即ち図 5 9においては横方向の隣接する検出位置との温度差の差を演算する。 その演算 結果が所定値より大きい検出位置を記憶する。 図 5 9 ( b ) で斜線で示した検出 位置が X方向微分手段 1 5 0で記憶する所定値より大きい検出位置である。 また Y方向微分手段 1 5 1は、 マトリクス状に配列された検出箇所の Y方向、 即ち図 5 9において縱方向の隣接する検出位置との温度差の差を演算する。 その演算結 果が所定値より大きい検出位置を記憶する。 図 5 9 ( c ) で斜線で示した検出位 置が Y方向微分手段 1 5 1で記憶する所定値より大きい検出位置である。
整形手段 1 5 2は X方向微分手段 1 5 0で記憶した検出位置と、 Y方向微分手 段 1 5 1で記憶した検出位置の論理和を演算する。 即ち、 X方向微分手段 1 5 0 か Y方向微分手段 1 5 1のいずれかで記憶している検出位置が食品の輪郭と判断 するのである。 食品の温度上昇にも分布があるので食品の内部でも隣接する検出 位置との温度差の差が大きい位置も発生するが、 整形手段 1 5 2は最も大きい周 囲を食品の輪郭とする。 また、 周囲の輪郭の一部が切れている場合もつなぎ合わ せて輪郭とする。 被加熱物抽出手段 1 2 6は以上のようにして食品の輪郭を抽出 し、 輪郭に囲まれた内側を食品とするのである。
低温部分抽出手段 1 3 2は、 被加熱物抽出手段 1 2 6で抽出した食品の中から 低温部分を抽出し、 局所加熱制御手段 1 3 1は低温部分抽出手段 1 3 2で抽出し た温度の低い箇所に電磁波が放射されるように局所加熱手段 1 6を制御する。 こ のように被加熱物を抽出してそこに電磁波を放射するので無駄なエネルギーの消 費がなく効率よく加熱することができる。
次に本発明の第 1 8の実施例を図 6 0を参照して説明する。 図 6 0は本発明の 高周波加熱装置の制御動作を説明するブロック図である。 尚、 上記第 1 3〜第 1 7の実施例と同じ構成のものは同一符号を付し、 説明を省略する。
第 1 8の実施例は食品の一部分だけを加熱したいような場合、 例えば幕の内弁 当を加熱するような場合、 ご飯のように加熱すべき食品と、 刺身や漬物のように 低温で食べるべき食品が一つの容器に入っている。 この場合ご飯と刺身や漬物を 分けることなく容器のまま加熱室に入れてご飯だけを加熱する例として説明する c 図 6 0において、 1 5 3は加熱範囲設定手段で使用者が操作して加熱範囲を設 定するものである。 加熱範囲設定手段 1 5 3は、 液晶により成る設定画面 1 5 4、 十字型をしたカーソルキー 1 5 5、 設定キー 1 5 6、 取消キー 1 5 7で構成して いる。
設定画面 1 5 4が加熱室の底面として、 その中で加熱したい範囲はどこなのか を使用者が設定するのである。 使用者は設定を開始するときはまず設定キー 1 5 6を押す。 このとき設定画面 1 5 4の左上隅に第 1の点 1 5 8が表示される。 こ こで使用者はカーソルキー 1 5 5を操作することでこの第 1の点 1 5 8を設定画 面 1 5 4の中で移動させる。 カーソルキー 1 5 5は、 上方向キー 1 5 5 aと下方 向キー 1 5 5 bと左方向キー 1 5 5 cと右方向キー 1 5 5 dより成るもので、 こ れらを操作することで第 1の点 1 5 8を上下左右に任意の位置に移動させること ができる。 使用者は第 1の点 1 5 8を加熱範囲の端部に移動させて設定キー 1 5 6を押す。 この時点で第 1の点 1 5 8の位置は固定され同じ位置に第 2の点 1 5 9が表示される。 使用者は同様にカーソルキー 1 5 5を操作してこの第 2の点 1 5 9を移動させる。 この時、 設定画面 1 5 4には第 1の点 1 5 8と第 2の点 1 5 9を対角とする長方形 1 6 0を表示する。 この長方形で表示された範囲が加熱範 囲となるのである。 使用者は第 2の点 1 5 9を設定画面 1 5 4の任意の位置に移 動させ長方形 1 6 0で加熱範囲を設定する。 設定キー 1 5 6を再度押すことで、 第 2の点 1 5 9と長方形 1 6 0が確定する。 加熱範囲が複数ある場合、 使用者は 再度設定キー 1 5 6を押すと設定画面 1 5 4に再度第 1の点 1 5 8が表示され、 以下上記操作を繰り返すのである。 操作を誤った場合は取消キー 1 5 7を押すこ とで、 その直前に押した設定キー 1 5 6での設定内容を取り消すことができる。 以上のようにして使用者の操作により加熱範囲が設定されれば制御手段 1 9は その加熱範囲を均一に加熱するように制御する。 低温部分抽出手段 1 3 2は温度 分布検出手段 2 6からの信号に基づき加熱範囲設定手段 1 5 3で設定された加熱 範囲の中から低温部分を抽出する。 局所加熱制御手段 1 3 1は低温部分抽出手段 1 3 2で抽出した低温部分に電磁波を放射するように局所加熱手段 1 6を制御す る。 これで加熱範囲の中から低温部分が消え、 加熱範囲の全体を均一に加熱でき る。 また加熱範囲以外は加熱せず、 低温で食べるべき食品は低温のままで調理す ることが可能となるのである。
尚、 本実施例では幕の内弁当のような異種の食品が同時に加熱室に入る場合で 説明したが、 単品だけで加熱する場合でもこのように加熱範囲を設定すれば加熱 初期に食品抽出する必要がないので制御手段の構成を簡易にでぎる。 また加熱範 囲設定手段 1 5 3を設定画面 1 5 4、 カーソルキー 1 5 5、 設定キー 1 5 6、 取 消キー 1 5 7で構成しているがこれらは本発明を限定するものでなく、 例えばタツ チパネルを使ったり、 マウスを使うなどの方法もあり、 同様の効果がある。 また 長方形で加熱範囲を設定することで操作を簡略化しているが、 自由曲線で設定し ても同様の効果がある。 また幕の内弁当のような商品であれば、 商品の包装袋に バーコ一ド等で加熱範囲を符号化して印刷してあれば、 その印刷を光学的に読み 取ることで加熱範囲を設定しても良く、 この場合には複雑な加熱範囲であっても 極めて簡易な操作で加熱範囲を設定できる効果がある。
次に本発明の第 1 9の実施例を図 6 1を参照して説明する。 図 6 1は本発明の 高周波加熱装置の制御動作を説明するブロック図である。 尚、 上記第 1 3〜第 1 8の実施例と同じ構成のものは便宜上同一符号を付し、 説明を省略する。
第 1 9の実施例は上記第 1 8の実施例と同様に食品の一部分だけを加熱したい ような場合で、 弁当を店頭で加熱して顧客に提供するような業務用として説明す る。 一股にこのような形態の業務用の商品は種類は限られていて、 同じ種類であ れば容器の中の食品の置く位置は同じである。 例えば、 商品の種類は幕の内弁当、 焼肉弁当、 鲑弁当などがあり、 焼肉弁当であればご飯の位置と焼肉の位置は決まつ ている。 そして種類は限られているが何度も同じ種類の商品を加熱することにな る。 この場合、 例えば「1」 は幕の内弁当、 「2」 は焼肉弁当、 「3」 は娃弁当 として、 それぞれの商品の加熱範囲をコードと対応づけて登録しておけば、 顧客 の選んだ商品の加熱範囲をコードにより呼び出すことができ、 加熱範囲の設定操 作を簡略化できる。
図 6 1において加熱範囲設定手段 1 5 3には 「1」 から 「1 0」 までの数字キ 一群 1 6 1と、 登録手段である登録キー 1 6 2、 登録呼出手段である呼出キー 1 6 3がある。 加熱範囲を登録するにはまず上記第 1 8の実施例で説明した操作方 法でカーソルキー 1 5 5と設定キー 1 5 6で加熱範囲を設定する。 次に登録キー 1 6 2を押し、 数字キー群 1 6 1のいずれかの数字キーを押す。 そして設定キ一 1 5 6を押すと、 加熱範 aは数字キーで押されたコードとともに登録記憶手段 1 6 4で記憶する。 加熱範囲を呼び出すには、 まず呼出キ一 1 6 3を押し、 次に数 字キー群 1 6 1の中から、 商品に対応した数字キーを押す。 登録記憶手段 1 6 4 から押された数字のコードに対応して記憶している加熱範囲を設定画面 1 5 4に 表示する。 間違いなければ確認の意味で設定キー 1 5 6を押す。 一度登録してお けばその後は呼出の操作ばかりであり、 加熱範囲の設定は簡単に行うことができ る。
加熱を開始すると上記第 1 8の実施例と同様にして制御手段 1 9が局所加熱手 段 1 6を制御してその加熱範囲を均一な温度に加熱する。 即ち、 低温部分抽出手 段 1 3 2は温度分布検出手段 2 6からの信号に基づき加熱範囲設定手段 1 5 3で 設定された加熱範囲の中から低温部分を抽出し、 局所加熱制御手段 1 3 1は低温 部分抽出手段 1 3 2で抽出した低温部分に電磁波を放射するように局所加熱手段 1 6を制御するのである。
尚、 本実施例では登録手段、 登録呼出手段を数字キー群 1 6 1、 登録キー 1 6 2、 呼出キー 1 6 3で説明したがこれは本発明を限定するものでなく、 例えば設 定画面 1 5 4に操作手順や数字、 アルファべッ トなどのコードを表示し、 カーソ ルキー 1 5 5や設定キー 1 5 6を使って登録手段、 登録呼出手段とすることも可 能であり、 この場合にはキーの数が減り、 構成を簡易にする効果がある。 また、 数字キー群は使わず、 商品の包装袋にコードを印刷していて光学的に読み取るこ とで操作を簡易にすることも可能である。
図 6 2は、 本発明の第 2 0の実施例における高周波加熱装置の断面構成図であ る。 本実施例では第 9の実施例の図 3 7の応用で、 マグネトロン 2から出た電磁 波は導波管 3より開口部 1 6 5を介して加熱室 4内に放射され、 食品 6を載置す るターンテーブル 1が螺旋形状で動作するものである。 この構成により食品 6自 体が位置決め駆動され、 その位置により食品 6に対する電磁波の入射方向が変わ るため、 たとえば食品 6の中央を加熱したり周囲を加熱したりというような、 加 熱部位を切替える代表的な位置切替え方法であり、 カム 3 7とスィッチ 3 8は食 品の位置を検出している位置検出部であると言える。
図 6 3、 図 6 4は、 本発明の第 2 1の実施例における高周波加熱装置の要部断 面構成図である。 本実施例では図 4 3、 図 4 4とは異なり、 食品 6の位置が位置 決め駆動され、 また図 6 2とは異なり、 ターンテーブル 1の回転による二次元の 変化だけでなく上下動による変化も加わり三次元で制御している。 図 6 3では上 昇した状態、 図 6 4では下降した状態を示している。
ここでは簡単のために三次元の動作の代表として回転と上下動の組合せを示し たが、 もちろん螺旋形状の動作と組み合わせてもよいし、 他にもいろいろな構成 が考えられる。
また、 加熱分布の切り替えの回数を限定する必要はないが、 こまめに切替えた ほうが常に加熱むらの発生が防げると考えられる。
図 6 5は本発明の第 2 2の実施例における高周波加熱装置の要部構成図で、 タ ーンテーブル 1の構成を下から見た図を示す。 図 1 7とは異なりターンテーブル 1はセラミ ックなどの電磁波を吸収しにく く透過性のある材質で構成され、 円盤 1 6 6と回転軸受け 4 8から成る。 隙間がなくても電磁波が容易に透過できる構 成である。
下方から電磁波を入れるとターンテーブル 1が電磁波の通り道になり、 なおか つヒータ 2 8を使うオーブンレンジの場合、 図 1 7、 図 6 5の様なターンテープ ル 1側の工夫で耐熱性が高くて電磁波を透過しやすい構成にしている。
図 6 6は本発明の第 2 3の実施例における高周波加熱装置の要部断面構成図で、 ターンテーブル 1と加熱室 4底面の中央部 1 6 7の寸法関係について示している c ターンテーブル 1は半径 r (図 6 6では直径 2 r ) で加熱室 4底面の中央部 1 6 7の出っ張り寸法は半径 R (図 6 6では直 S 2 R) とし、 2 R〉 2 rすなわち R > rの関係にある。 よってターンテーブル 1上でたとえば水をこぼしたりしても、 ターンテーブル 1の軸をったつて加熱室 4より下方へ漏れるようなことがないこ とに加えて、 加熱室 4底面の中央部 1 6 7の出っ張り 2 Rの外側に水がたまるの でターンテーブルを外さなくてもふきとり作業ができる。 特に図 6 5のようにタ ーンテーブル 1をセラミ ックで構成する場台、 セラミ ックは一般に強度が弱いと いわれ、 回転軸への着脱作業の繰り返しなどで割れないような耐久性の向上のた めの工夫が必要である。 そこで本実施例のような構成であれば、 掃除の際に着脱 する必要もなくなり、 耐久性が向上する効果がある。
図 6 7は、 本発明の第 2 4の実施例における高周波加熱装置の断面構成図であ る o
マグネトロン 2から出た電磁波は、 導波管 3を介して加熱室 4内のターンテー ブル 1上の食品 6を加熱する。 マグネトロン 2から出た電磁波は、 第一の導波管 3 Aから分岐点 1 6 9で導波管 3 B、 3 Cに分岐し、 加熱室 4底面上の開口部 1 6 9 A、 1 6 9 Bを介して加熱室 4内に電磁波を伝送する。 このとき導波管 3 B、 3 Cの壁面のうち隣接する部分は共通の金属板で構成している。 また分岐点 1 6 8は第一の導波管 3 A内の電界の弱いところ (節) に構成している。 また、 第一 の導波管 3 Aはマグネトロン 2のアンテナ 3 0に対向する壁面 1 Ί 0を突出させ てアンテナ 3 0と壁面 1 Ί 0間の距離を稼いでいるが、 導波管 3 B、 3 Cにはァ ンテナ 3 0のような出っ張りがないので距離を狭く して良い。 よって第一の導波 管 3 Aと比べて導波管 3 B、 3 Cの断面積を狭く して良いわけで、 複数の導波管 が重なっている割に場所を取らない構成にできる。 本実施例では導波管 3 B、 3 Cを基準に考え、 第一の導波管 3 A側の断面積を壁面 1 7 0により広げている。 また、 導波管 3 B、 3 Cの長さが分岐点 1 6 8から終端部までが管内波長ス8 の 1 / 2に対して概ね整数倍となっている事や、 分岐点 1 6 8の幅が管内波長ス g の 1 4以下になっている事については図 6 8で詳しく述べる。
また、 金属製の遮蔽部 1 Ί 1は、 駆動部 1 7 2により、 加熱室 4と導波管 3 B、 3 C上の突起部 1 7 3と接触しながら開口部 1 6 9 A、 1 6 9 B間を動作するこ とにより、 電磁波を伝送しやすい開口部 1 6 9 A、 1 6 9 Bを切り替えるもので ある。 またシール部 1 7 4は、 遮蔽部 1 Ί 1の位置に関わらず、 加熱室 4や導波 管 3の外部に電磁波が漏洩するのを防ぐものである。
また、 制御手段 1 9は、 食品 6の温度を検出する温度センサ 2 6、 ターンテー ブル 1に接続され食品 6の重量を検出する重量センサ 2 3、 食品 6の形状を検出 す光センサ 6 1、 6 2の検出信号に基づいて、 マグネトロン 2からの電磁波の放 射や、 マグネ トロン 2冷却用のファン 2 7の動作や、 遮蔽部 1 7 1用の駆動部 1 7 2の動作や、 ターンテーブル 1を回転させる回転用のモータ 2 2の動作や、 タ —ンテーブル 1の高さを変化させる高さ駆動部 1 7 5の動作を制御する。 特に、 マグネ トロン 2から電磁波が出ていないときに遮蔽部 1 Ί 1を動かすよう制御し ている。 また、 加熱が終了した時には、 遮蔽部 1 7 1の位置やターンテーブル 1 の高さを、 軽量の食品 6に対してもつとも加熱分布や加熱効率が良くなるような 構成となるよう制御している。 また、 どのような用途の加熱においても、 使用者 が食品 6を入れて加熱を開始させたときは速やかに電磁波を発生させ、 加熱開始 直後の電磁波の挙動が不安定な状態 (いわゆる立ち上がり) に誤検知の可能性の 有る検出部 (たとえば重量センサ 2 3 ) については、 安定するまで検出部の出力 を受けないかもしくは無視するように制御している。 さらに、 食品 6によっては
(特に大量のものなど) 、 加熱途中に遮蔽部 1 7 1の位置やターンテーブル 1の 高さを複数回動作させるなどして、 加熱分布や加熱効率の最適化を図つている。 ここで、 駆動部 1 7 2により遮蔽部 1 7 1の位置を変えると、 複数の開口 1 6 9 A、 1 6 9 Bのうち電磁波の出やすい開口と出にくい開口が切り替わり加熱室 4内の電界分布を切り替えることができる。 特に、 各種の検出部からの信号に合 わせて、 自由に遮蔽部 1 7 1の位置を設定できるので、 加熱の目的に応じた適切 な電界分布状態にできる。 図 6 7には示していないが、 遮蔽部]. 7 1の位置を正 確に決めるために、 基準点をどこかに決め、 基準点からの移動距離によって遮蔽 部 1 7 1の位置を管理することが容易に考えられる。
また、 高さ駆動部 1 7 5によりターンテーブル 1の高さ hを変えると、 食品 6 の高さが変わるので、 同じ電界分布の場合でも食品 6の加熱分布を変えることが できる。 よって同様に、 各種の検出部からの信号や遮蔽部 1 7 1.の位置による電 界分布の違いに合わせて最適なタ一ンテーブル 6の高さ hに調整すれば、 より一 層加熱の目的に応じた適切な加熱分布にできる。 図 6 7には示していないが、 遮 蔽部 1 7 1と同様に、 ターンテーブル 1の高さ hを正確に決めるためには基準点 と移動距離で管理しても良い。 また、 ターンテーブル 1は、 通常は回転させて回転中心から見た食品 6の同心 円方向の均一化を図るが、 回転用のモータ 2 2により回転や停止 (あるいは可変 速) も自由に設定できる。 たとえば加熱途中で温度センサ 2 6により食品に温度 むらが生じていると判断したときには、 遮蔽部 1 7 1や高さ駆動部 1 7 5によつ て加熱分布を変化させ、 温度むらを解消できそうな状態を探して、 そういう伏態 になったときに回転を止めるか減速して、 早くむらを無くすようにする事なども できる。
図 6 8は本発明の第 2 5の実施例における高周波加熱装置の要部断面構成図で ある。 マグネ トロン 2のアンテナ 3 0から導波管 3 Aに供給する電磁波は、 アン テナ 3 0での電界を最大 (電界の腹 1 7 6 ) として、 以後管内波長ス g の 1 Z 4 ごとに弱くなつたり (電界の節 1 7 7 ) 、 強くなつたり (電界の腹 1 7 6 ) をく り返しながら図 6 8の左右に伝送される。 このとき導波管の左右の端面が電界の 節となるように設計しているので導波管 3 A、 3 C内の電界は整然と電界の腹 1 7 6と電界の節 1 7 7をく り返している。 ここで管内波長; l g は図 6 8の奥行き 方向の距離 Iで決まるので高さ方向の距離 J ,には自由度があるが、 アンテナ 3 0と対向する壁面 1 7 0との距離が近すぎると (5 mm以下となると) 放電を起 こすなどの異常な状態も起こりうるためある程度の距離を保たなければならない。 また導波管 3 A、 3 Cの途中で分岐点 1 6 8を電界の節 1 Ί 7に構成している。 これは電磁波から見れば分岐点 1 6 8は開口部と考えられるので、 分岐点 1 6 8 をはさみ込むように電界 1 7 8 Aがたつため、 それによつて導波管 3 A、 3 C内 の電界が乱されないようにするためである。 そして分岐点 1 6 8から導波管 3 B 内へ伝送された電磁波は、 同様に分岐点 1 6 8をはさみ込むように電界 1 7 8 B がたち、 図 6 8の奥行き方向の距離 Iが同じであるため同じ管内波長え g によつ て左右に伝送される。 ここで分岐点 1 6 8から右の端面 1 Ί 9までは の 1 / 2倍の長さとし、 左の端面 1 8 0までは g の 2 2倍の長さとしているので、 導波管 3 B内の電界は整然と電界の腹 1 7 6と電界の節 1 7 7をくり返している c また、 導波管 3 B内にはアンテナ 3 0のような突出した部分がないので、 壁面同 志での放電が起こらない範囲で高さ方向の距離 J 2を小さくできる。 ここでは、 J 2< J ,Z2として断面積を半分以下にまで小さく している。 ここで分岐点 1 6 8の幅 Kは、 大きすぎると導波管 3 A、 3 Cの電磁波の整然とした状態を乱し、 小さすぎると導波管 3 に伝送するエネルギーが減少するので、 ;ig の 1/4よ りわずかに小さい程度としている。 同様に加熱室 4内に電磁波を伝送するための 開口部 1 6 9についても; lg の 1 4よりわずかに小さい程度としている。 また、 導波管 3 A、 3 Cと導波管 3 Bとを隣接させており壁面 1 8 1を共用化している。 図 69は本発明の第 26の実施例における高周波加熱装置の要部斜視構成図で ある。 (実際はそれぞれの構成要素が接続されているが、 見やすいように実際と は異なってばらばらの状態で示している。 )
加熱室 4と導波管 3のそれぞれに、 開口部 1 69と開口部 1 69を取り囲むよ うに金属に切り込みを入れて突出させられた突起部 1 7 3 A、 1 7 3 Bを構成し ている。 (ただし導波管 3は壁面構成部 1 82と突起構成部 1 83を有するもの である) 突起部 1 73Aと突起部 1 73 Bとは向かい合うように突出しており、 両者に接触しながらその間を駆動可能に金属製の遮蔽部 1 7 1が構成されている。 導波管 3内の電磁波は、 遮蔽部 1 7 1が開口部 1 69上に無いときのみ加熱室 4 内に伝送するものである。 また、 電磁波の外部への漏洩を抑えるために導波管 3 と加熱室 4は接続され、 特に M方向への電磁波に対してはシール部 1 3で遮蔽し ている。 シール部 1 3は、 深さ Nの溝を有する金属で、 N ;ig Z4とすること で図中のシール部 1 3の上面 29より M側には電磁波が伝わらないものである。 一般に、 M方向に向かう電磁波から見たインピーダンス (M側への伝わりにくさ の指標) は Nによって変化する。 インピーダンスの値は Zin = j'Z0 -tan (2 π NZ;ig)で表され、 Ν= λ8 Ζ4のときには I Zin l = ZO -tan (π/2) =∞ (インピーダンスが無限大) となり、 位置 1 84より Μ側へは電磁波が伝わらな い。 このインピーダンスの考え方は、 電子レンジの電波シール装置などで良く使 われるマイクロストリップラインの考え方と同じであり、 コンパク 卜に構成する 他の実施例もいろいろと考えられる (特開平 6— 1 320 7号公報) 。
図 70、 図 7 1は本発明の第 27の実施例における高周波加熱装置の要部構成 図であり、 一つの駆動部 1 Ί 2と一つの遮蔽部 1 7 1で複数の開口部 1 6 9 Α、 1 6 9 Bを切り替える様子を示す。
図 7 0は開口部 1 6 9 Aが開放され開口部 1 6 9 Bが遮蔽されている場合で、 図 7 0 ( a ) は要部断面構成図、 図 7 0 ( b ) は上から図 7 0 ( a ) の遮蔽部 1 7 1より下を見た構成図である。 歯車状の駆動部 1 Ί 2の回転により遮蔽部 1 7 1が加熱室 4と導波管 3 B、 3 Cとの間で突起部 1 Ί 3と接触しながら動作し、 電磁波の伝送される開口部 1 6 9 A、 1 6 9 Bを切り替える。 この場合、 開口部 1 6 9 Aは遮蔽部 1 7 1の切り込み 1 8 5と重なるので開放され、 開口部 1 6 9 Bは遮蔽部 1 7 1により遮蔽されている。
図 7 1は開口部 1 6 9 Aが遮蔽され開口部 1 6 9 Bが開放されている場合で、 図 7 1 ( a ) は要部断面構成図、 図 7 1 ( b ) は上から図 7 1 ( a ) の遮蔽部 1 7 1より下を見た構成図である。 この場合、 開口部 1 6 9 Aは遮蔽部 1 7 1によ り遮蔽され、 開口部 1 6 9 Bは遮蔽部 1 7 1からずれているので開放されている。 図 7 2は、 本実施例における高周波加熱装置の特性図である。 これはマグネト ロン 2の動作点を表すリーケ線図と呼ばれるもので、 加熱室 4内への電磁波の入 り易さを示している。 電磁波がもっとも入りやすいのは領域 1 8 6で、 外側にい くにしたがって電磁波は入らなくなる。 電磁波が入らなくなると、 加熱効率が落 ちて、 電磁波放射部での発熱に変わる損失が増えることは明らかである。 一例と して、 電磁波を放射したまま開口部 1 6 9 Aから 1 6 9 Bを切り替える場合につ いて説明する。 開口部 1 6 9 Aが開放されて開口部 1 6 9 Bが遮蔽されていると きに、 動作点が 1 8 7にあったとする。 ところが徐々に開口部 1 6 9 Aが遮蔽さ れ開口部 1 6 9 Bが開放され始めると、 動作点は矢印の方向に動きだし、 ちょう ど半分ずつ開放された状態のとき動作点は 1 8 8になり、 その後完全に開口部が 切り変わったときに動作点 1 8 7に戻る。 すなわち遮蔽部 1 7 1の動作途中で電 磁波が入りにく くなる状態が起こる事を示している。 この動作途中には、 前述の ような電磁波放射部の損失が增えるだけで無く、 場合によっては発振周波数が変 動したり、 高調波ノイズを発生するなど様々な問題が起こり得る。 よって本発明 では、 遮蔽部 1 7 1を動作させるときには、 電磁波放射部から電磁波を出さない ように制御して、 問題を解決している。 図 7 3は本発明の同実施例を示す特性図であり、 横軸に時間 tを縦軸に高周波 出力 Pを示す。 一般に電磁波放射部から電磁波が出始めてしばらくの間 t S Tは、 不安定な状態のため、 高^波などのノイズを発生しやすい。 よって従来は、 加熱 初期の食品 6の状態を検出するためにノイズに弱い検出部を使用する場合は、 図 7 3 ( a ) に示すように t Mの期間は電磁波を出さずに検出し、 検出終了後に電 磁波を出し、 t S Tを経て安定した加熱状態 t Fに到達するものがあった。 これで は t Mの期間は加熱していないのだから極めて加熱効率が悪い。 そこで本発明で は図 7 3 ( b ) に示すように、 速やかに電磁波を出して加熱を開始し、 できるだ け早く t S Tを経て安定した加熱状態 t F状態に到達させ、 t ST + A t後 (安定し て間もなく) から加熱初期の食品 6の状態を検出する事としている。 よって加熱 効率を落とさずに、 精度よく食品 6の状態を検出している。
図 7 4は、 本発明の第 2 8の実施例における高周波加熱装置の断面構成図であ る。
マグネトロン 2から出た電磁波は、 導波管 3を介して加熱室 4内のターンテー ブル 1上の食品 6を加熱する。 このとき導波管 3から加熱室 4内に電磁波を導く 複数の開口部 1 6 9を、 電磁波を吸収しにくい低損失の材料からなる透明な開口 カバー 2 5で覆っている。 また導波管 3内には回転体としての金属性のスタラー 羽根 1 8 9が設けられ、 これはステツビングモータ 1 9 0により回転駆動されて いる。 スタラー羽根 1 8 9は目的に応じてさまざまな動作パターンをもっため、 羽根位置検出器 1 9 1により基準点からの移動距離を常に監視している。 制御手 段 1 9は、 使用者がキー入力した操作パネル 6 4からの信号と、 重量センサ 2 3 あるいはその他温度センサなどを含む状態センサ 1 9 2からの信号と、 羽根位置 検出器 1 9 1からの信号に基づいて、 マグネトロン 2からの電磁波の放射を制御 したり、 スタラー羽根 1 8 9の動作パターンを決定してステツビングモータ 1 9 0の駆動を制御したり、 ターンテーブル 1の回転や停止を決定してモータ 2 2の 駆動を制御している。 そして、 ボディカバー 1 9 3、 開閉自在のドア 1 9 4を有 している。
ここで、 スタラー羽根 1 8 9の位置によって、 複数の開口部 1 6 9のうち電磁 波の出やすい開口と出にくい開口が切り替わり加熱分布を切り替えることができ、 また同時に整合状態を切り替えることができる。 特に、 操作パネル 6 4からの信 号や重量センサ 2 3あるいはその他の状態センサ 1 9 2からの信号に合わせて、 自由にスタラー羽根 1 8 9の位置や回転動作を設定できるので、 加熱の目的に応 じた適切な分布や整合状態にできる。 さらに、 ターンテーブル 1の回転や停止も 自由に設定できるので、 食品 6によってはターンテーブル 1を回転させて回転中 心から見た食品 6の同心円方向の均一化を図ったり、 食品 6が牛乳や汁物 (液体 状のもの) の場合はターンテーブル 1を停止して、 より整合状態を良くすること などもできる。
図 7 5は、 図 7 4の P— P ' 断面構成図である。
導波管 3は途中で幅が広がっており内部にスタラー羽根 1 8 9を構成している。 また開口カバー 2 5が透明なため、 使用者は 5つの開口部 1 6 9を通してスタラ 一羽根 1 8 9の動作を見ることができる。
図 7 6、 図 7 7は本発明の第 2 9、 第 3 0の実施例における高周波加熱装置の 断面構成図である。
図 7 6はスタラー羽根 1 8 9の前にしか開口部 1 6 9が無い場合、 図 7 7はス タラー羽根 1 8 9の前には開口部 1 6 9が一つしかない場合を示す。
さらに図示しないが、 加熱室 4の形状やターンテーブル 1の高さなどによって は、 開口部 1 6 9をマグネトロン 2から見てスタラー羽根 1 8 9よりも遠い位置 に設けても良いし、 導波管 3の長手方向を上下方向や斜めの方向に構成したり、 マグネトロン 2から一方向だけでなく複数方向に導波管 3が伸びて複数の開口部 1 6 9を構成したり、 加熱室の背面だけで無く側面や底面や天面あるいはそのう ちの二面か三面にまたがるように導波管 3を折りまげて構成したりすることも考 えられる。 またスタラー羽根 1 8 9の構成も、 四枚羽根だけでなく他の枚数の羽 根でも良いし、 回転体としては羽根状でなくても単なる板状や棒状でも良い。 さて、 使用者が牛乳のあたためを行う場合、 操作パネル 6 4を図 2 4として牛 乳を加熱室 4に入れたのち牛乳キー 6 5を押し、 スタートキー 6 6を押す。 する と制御手段 1 9は、 操作パネル 6 4からの信号で食品 6を牛乳と判断し、 重量セ ンサ 2 3と状態センサ 1 9 2らの信号で牛乳の量や形状や温度など種々の状態を 判定し、 適切なスタラー羽根 1 8 9の位置を決定し、 羽根位置検出器 1 9 1から の信号に基づいてステッピングモータ 1 9 0を駆動し、 それと相前後して、 マグ ネトロン 2からの電磁波の放射を開始する。 このときターンテーブル 1は停止し たままで整合状態を安定させ、 効率良く加熱する。 その後重量センサ 2 3あるい は状態センサ 1 9 2によって決められた時間だけ加熱するか、 牛乳が適温になつ たとき加熱を終了する。 牛乳の場合、 底面に電界を集中させれば対流によって自 然に分布の良いできばえが得られる上、 安定した適切な整合状態で加熱でき、 効 率が向上する。
—方、 使用者が肉や魚の冷凍食品の解凍を行う場合、 食品 6を加熱室 4に入れ たのち解凍キー 6 8を押し、 スタートキー 6 6を押す。 すると制御手段 1 9は、 操作パネル 6 4からの信号で食品 6を冷凍食品と判断し、 重量センサ 2 3と状態 センサ 1 9 2からの信号で冷凍食品の量や形状や温度など種々の状態を判定し、 適切なスタラー羽根 1 8 9の回転数を決定し、 ステツビングモータ 1 9 0を駆動 して回転動作させ、 それと相前後して、 マグネトロン 2からの電磁波の放射を開 始する。 このときスタラー羽根 1 8 9とともにターンテーブル 1も回転し、 でき るかぎり電界の部分的な集中を避けるようにする。 その後重量センサ 2 3あるい は状態センサ 1 9 2によって決められた時間だけ加熱するか、 適温 (解凍完了) になったとき加熱を終了する。 解凍の場合、 電界が集中すると部分的な煮えが発 生してしまうという分布の問題が大きいので、 多少効率を犠牲にしてでも分布を 良くすべきであろう。
さらに冷めた料理をあたため直す場合 (再加熱) 、 食品 6を加熱室 4に入れた のちスタートキ一 6 6を押す。 すると制御手段 1 9は、 操作パネル 6 4からの信 号で食品 6を再加熱するのだと判断し、 重量センサ 2 3と状態センサ 1 9 2から の信号で食品 6の量や形状や温度など種々の状態を判定する。 なかでも重要なこ ととして、 食品 6が液体状か固体状か液体と固体の中間の状態であるかの判断を 行う。 この一つの方法として、 初期の短時間ターンテーブル 1を回転させたあと 停止させることで食品 6に振動を与え、 そのとき発生する振動の時間変化を検知 して判断する方法がある。 つまり、 物体が液体であれば振動は長時間継続し、 物 体が固体であれば振動は短時間で消滅するという原理に基づいている。 その後、 適切なスタラー羽根 1 S 9の動作を決定し、 ステツビングモータ 1 9 0を駆動し て回転動作させ、 それと相前後して、 マグネトロン 2からの電磁波の放射を開始 する。 そして食品 6が液体状のときは、 前述の牛乳と同様に、 ターンテーブル 1 を停止したままで整台状態を安定させ、 効率良く加熱する。 一方食品 6が固体状 のときはターンテーブル 1を回転させて同心円状の加熱分布を均一化する。 さら に食品 6が液体と固体の中間の状態のときは、 ターンテーブル 1の回転と停止を くり返すものである。 その後重量センサ 2 3あるいは状態センサ 1 9 2によって 決められた時間だけ加熱するか、 適温になったとき加熱を終了する。 液体状の食 品 6の場合、 前述の牛乳と同様ターンテーブル 1を停止させても、 底面に電界を 集中させれば対流によって自然に分布の良いできばえが得られる上、 安定した適 切な整合状態で加熱でき、 効率が向上する。
図 7 8には、 同実施例の加熱効率を表す特性図を示す。 図 7 8はマグネトロン 2から見た負荷の整合状態を示すスミスチャートであり、 斜線部は高効率領域 1 9 5 (加熱室 4内にもっとも効率的に電磁波が入る領域) である。 ある食品 6の とき、 ターンテーブル 1を停止したままでスタラー羽根 1 8 9を回転させると、 (^〜(^〜(^〜(^〜(^〜(^〜(^〜 〜…という特性変化を示す。 つまりス タラー羽根 1 8 9の位置により整合状態を変えられることを示す。 またスタラー 羽根 1 8 9を Q6の特性の位置に停止した状態でターンテーブル 1を回転させる と、 Q e Q e Q o C !)〜 Q H〜Q 6〜…という特性変化を示す。 つまりターン テーブル 1の回転により、 整合伏態が変わることを示す。
結論としてスタラー羽根 1 8 9やターンテーブル 1の位置により整合状態を変 えることができるのである。
このとき最も効率を良くするためには、 ターンテーブル 1を停止したままでス タラー羽根 1 8 9を Q eの特性の位置に停止させるのが良い。 もちろん前述の冷 凍食品の解凍の場合のように、 分布のためにはどちらも回転させなければならな いこともあるが、 液体状の食品 6の場合は、 どちらも停止して効率を最大にする ことが可能である。 ただし、 図 7 8の特性は食品 6の材質 ·形状 ·置かれた位置 温度などの条件で変化するので、 状態センサ 1 9 2などで整合状態を検出するか、 もしくはあらかじめ食品 6の材質 ·形状 ·置かれた位置 ·温度などの条件ごとに 最適なターンテーブル 1ゃスタラー羽根 1 8 9の位置をあらかじめデーターベー スとして制御手段 1 9内のマイコンに記憶させておく方法がある。 この方法によ り、 制御手段 1 9は、 操作パネル 6 4、 重量センサ 2 3、 状態センサ 1 9 2など からの情報とデータベースに基づいて、 最適な加熱のための制御ができる。
図 7 9は、 本発明の第 3 1の実施例における高周波加熱装置の断面構成図であ る。
マグネトロン 2から出た電磁波は、 導波管 3を介して加熱室 4内のターンテー ブル 1上の食品 6を加熱する。 このとき導波管 3から加熱室 4内に電磁波を導く 複数の開口部 1 6 9を加熱室 4の底面上に構成し、 導波管 3は複数の開口部 1 6 9 Aと 1 6 9 Bの間の位置から分岐する副導波管 1 9 6を有し、 副導波管 1 9 6 内で図中の上下方向に移動するシール部 1 9 7、 シール部 1 9 7を駆動するシー ル駆動部 1 9 8、 あるいは電磁波を吸収しにくい低損失の材料からなる透明な開 ロカバー 2 5などを構成している。 制御手段 1 9は、 使用者がキー入力した操作 パネル 6 4からの信号と、 ターンテーブル 1に接続され食品 6の重量を検出する 重量センサ 2 3、 あるいは食品 6の温度を検出する温度センサ 2 6からの信号に 基づいて、 マグネトロン 2からの電磁波の放射を制御したり、 シール駆動部 1 9 8に信号を与えてシール部 1 9 7の位置を移動させり、 テーブル回転用のモータ 2 2に信号を与えてタ一ンテーブル 1の回転動作を制御したり、 テーブル高さ駆 動部 1 7 5に信号を与えてターンテーブル 1の高さを変化させたり、 マグネトロ ン 2の冷却と加熱室 4内への送風を行なう送風用のフアン 2 7のファン駆動部 1 9 9に信号を与えて回転動作を制御している。
ここで、 シール駆動部 1 9 8によりシール部 1 9 7の位置を変えると、 複数の 開口 1 6 9 A、 1 6 9 Bのうち電磁波の出やすい開口と出にくい開口が切り替わ り電界分布を切り替えることができる。 特に、 操作パネル 6 4からの信号や重量 センサ 2 3あるいは温度センサ 2 6からの信号に合わせて、 自由にシール部 1 9 7の位置を設定できるので、 加熱の目的に応じた適切な電界分布状態にできる。 図 7 9には示していないが、 シール部 1 9 7の位置を正確に決めるために、 基準 点をどこかに決め、 基準点からの移動距離によってシール部 1 9 7の位置を管理 することが容易に考えられる。
また、 テーブル高さ駆動部 1 7 5によりターンテーブル 1の高さを変えると、 食品 6の高さが変わるので、 同じ電界分布の場合でも食品 6の加熱分布を変える ことができる。 よって同様に、 操作パネル 6 4、 重量センサ 2 3、 温度センサ 2 6からの信号やシール部 1 9 7の位置による電界分布の違いによって最適なター ンテーブル 1の高さに調整すれば、 加熱の目的に応じた適切な加熱分布にできる。 図 7 9には示していないが、 シール部 1 9 7と同様に、 ターンテーブル 1の高さ を正確に決めるためには基準点と移動距離で管理しても良い。
また、 温度センサ 2 6は、 天面上から食品 6を監視して水平方向の複数箇所の 温度や温度変化を検出する温度センサ 2 6 Aと、 側面上から食品 6を監視して垂 直方向の複数箇所の温度や温度変化を検出する温度センサ 2 6 Bからなり、 概ね 食品 6全体の温度分布を検出できる。 もちろん、 水平方向と垂直方向でなくとも 2ケ所に温度センサ 2 6を有していれば同様のことができることは明らかである。 また、 ターンテーブル 1は、 通常は回転させて回転中心から見た食品 6の同心 円方向の均一化を図るが、 テーブル回転用のモータ 2 2により回転や停止 (ある いは可変速) も自由に設定できる。 たとえば加熱途中で温度センサ 2 6により食 品に温度むらが生じていると判断したときには、 シール部 1 9 7やテーブル高さ 駆動部 1 7 5によって加熱分布を変化させ、 温度むらを解消できそうな状態を探 して、 そういう状態になったときに回転を止めるか減速して、 早くむらを無くす ようにする事ができる。
さらに、 送風用のフアン 2 7は、 マグネトロン 2を冷却すると同時に送風 2 0 0を吸気口 2 0 1から加熱室 4内に送りこむ構成となっている。 送風 2 0 0はマ グネトロン 2の熱により温風となっているので食品 6が冷たいときには多少加熱 し、 食品 6が高温の場合は逆に冷却する作用もある。 いずれにしても送風 2 0 0 は食品 6の周囲温度を平均化するので、 温度むらが大き t、ときには回転数を上げ て風量を増やし、 さらに均一化を図ることができる。 そして送風 200は食品 6 を均一化した後、 排気 202となって排気口 203から加熱室 4の外部へ排気さ れる。 ここで風量を増やすには、 回転数を上げる方法以外にも、 吸気口 201の 開口寸法を広げたり、 ガイ ド等により風の流れを良くして加熱室 4内に入りやす くするなど、 方法はいろいろと考えられる。
図 80〜図 81は同実施例における高周波加熱装置の要部構成図であり、 副導 波管 196内を動作するシール部 197で見かけ上開口部 169 A、 169Bを 切り替えるものである。
図 80は、 シール駆動部 198による駆動軸 204の移動により、 シール部 1 97が副導波管 196内の最も下端に引っぱられた状態を示す。 シール部 197 は、 導電性を有する部材 205の周囲にスパーク防止用の絶縁体 206を湲つた 構成で、 L 1 2 IgZ 4とすることで図中のシール端面 207より下側に は電磁波が伝わらないものである。 一方このとき、 L 3の長さによって導波管 3 と副導波管 196との接続部近傍の位置 208では、 電磁波から見たインピーダ ンス (導波管 3内を図中の右方向からやってくる電磁波に対する位置 208より 左側への伝わりやすさ) が変化する。 具体的には、 インピーダンス Zin=j*Z0* tan ( 27Γ · L 3ノス8)で表され、 L 3 = AgZ4のときには I Zin I =Z0-tan {π/2) =∞ (インピーダンスが無限大) となり、 位置 208より左側へは電 磁波が伝わらない。
図 81は、 シール駆動部 198による駆動軸 204の移動により、 シール部 1 97が副導波管 196内の最も上端に引っぱられた状態を示す。 この場合は、 L 3 = 0を示しており I Zin I =Z0-tan (0) =0 (インピーダンスが 0) とな り、 電磁波は位置 208より左側へ容易に伝わる。
よって開口部 196 Aはシール部 197の位置により見かけ上開閉されている のと同じことになる。 図 80〜81のインピーダンスの考え方は、 マイクロスト リッブラインの考え方と同じであり、他の実施例もいろいろと考えられる。
図 82は本発明の第 32の実施例であり、 副導波管 196の接続方向が異なる 場合の実施例である。 図 82の場合、 図 79〜図 81と比べて副導波管 196に よる加熱室 4底面下の幅が小さくて良いので、 外形に対する庫内の容積比率が上 がり、 場所を取らずコンパク 卜な高周波加熱装置を実現できる効果がある。
図 8 3〜図 8 9は、 発明における高周波加熱装置の特性図、 要部構成図、 フ ローチャートであり、 開口部 1 6 9の位置と食品 6の高さとの関係により、 加熱 分布をどのように均一化するかを示すものである。
図 8 3は、 開口部 1 6 9 A、 1 6 9 Bのどちらか一つだけで電磁波を加熱室 4 内に伝送した場合に、 食品 6として牛乳 2 0 0 cc (カップ一杯) を用い、 高さ h を変えて加熱して温度を測定したときの加熱分布むらを示す特性図である。 横軸 には開放している開口部の番号を、 縦軸には複数箇所で温度測定した場合の最高 温度と最低温度の差を示し、 値が小さいほど分布むらがないことになる。 h iは 高さ h = 1 0 mra、 h 2は高さ h = 3 0 mmであり、 最も良い条件は開口部 1 6 9 A、 高さ 1 O mniでむらが 0 °Cとなる。 ただし一般に販売されている電子レンジで同様 に測定したところ、 むらは 2〜1 5 °C程度であり、 本実施例によりかなり改善さ れると言える。 これは、 液体上の食品 6を加熱する場合には、 食品 6の底面に電 界を集中させるのが良いということを示している。 開口部 1 6 9 Aから出る電磁 波で食品 6の底面を加熱し、 食品 6自身の対流によつて自然に分布が良くなつて いるのである。 なぜならば図 8 3で開口部 1 6 9 Bとしたときの分布むらは、 食 品 6の上部の温度が高くなつて起こっているからである。 開口位置を食品 6の底 面から遠ざけたのが原因で、 上部に電磁波が入りやすくなつているのである。 図 8 4は、 図 8 3の最適条件の開口部 1 6 9 A、 高さ 1 0 mmの要部断面構成図 CTある ο
図 2 4の操作パネル 6 4の例では、 牛乳キー 6 5が専用キーとして構成されて いるので、 使用者が牛乳のあたためを行う場合の手順は、 牛乳を加熱室 4に入れ たのち牛乳キー 6 5を押し、 スタートキー 6 6を押す。 すると制御手段 1 9は、 操作パネル 6 4からの信号で食品 6を牛乳と判断し、 重量センサ 2 3と温度セン サ 2 6からの信号で牛乳の量や形状や温度など種々の状態を判定しつつ、 複数の 開口部 1 6 9のうち開口部 1 6 9 Aから電磁波を出し、 高さ hを 1 0 にするな ど適切な構成になるよう制御し、 それと相前後して、 マグネトロン 2からの電磁 波の放射を開始する。 その後重量センサ 2 3あるいは温度センサ 2 6等によって 決められた時間だけ加熱するか、 牛乳が適温になったとき加熱を終了する。 よつ て容易に加熱分布の良い仕上がり状態にできるわけである。
図 8 5は、 食品 6として冷凍の牛スライス肉 1 0 0 gを用いて解凍調理をした 場合の特性図である。 最も良い条件は開口部 1 6 9 A、 高さ 3 0 mmとなる。 ただ し一般に販売されている電子レンジで同様に測定したところ、 むらは 3 2〜6 0 °C程度であり、 本実施例により改善されている。 この場合の牛スライス肉 1 0 0 gは、 食品 6の中でも高さ (厚み t ) が小さく重量が軽い代表的な形状のもので あ O 0
図 8 6は、 図 8 5の最適条件の開口部 1 6 9 A、 高さ 3 O ramの要部断面構成図 である。
図 8 7は、 食品 6として冷凍の牛スライス肉 3 0 0 gを用いて解凍調理をした 場合の特性図である。 最も良い条件は開口部 1 6 9 8、 高さ 1 O mniとなる。 ただ し一般に販売されている電子レンジで同様に測定したところ、 むらは 3 2〜7 5 て程度であり、 やはり本実施例により改善されている。 この場合の牛スライス肉 3 0 0 gは、 食品 6の中でも高さ (厚み t ) があり重量も一般的で、 標準的な形 状のものである。
図 8 8は、 図 8 7の最適条件の開口部 1 6 9 B、 高さ 1 O mniの要部断面構成図 である。
使用者が肉や魚の冷凍食品の解凍を行う場合の手順は、 図 2 4の操作パネル 6 4によると、 食品 6を加熱室 4に入れたのち解凍キー 6 8を押し、 スタートキー 6 6を押す。 すると制御手段 1 9部は、 操作パネル 6 4からの信号で食品 6を冷 凍食品と判断し、 重量センサ 2 3と温度センサ 2 6からの信号で冷凍食品の量や 形状や温度など種々の状態を判定しつつ、 開口部 1 6 9と高さ hが適切な構成に なるよう制御し、 それと相前後して、 マグネトロン 2からの電磁波の放射を開始 する。 その後重量センサ 2 3あるいは温度センサ 2 6によって決められた時間だ け加熱するか、 適温 (解凍完了) になったとき加熱を終了する。
さらに専用キーがないォート調理の場合、 たとえば冷めた料理をあたため直す 場合 (再加熱) 、 食品 6を加熱室 4に入れたのちスタートキー 6 6を押す。 する と制御手段 1 9は、 操作パネル 6 4からの信号で食品 6を再加熱するのだと判断 し、 重量センサ 2 3と温度センサ 2 6からの信号で食品 6の置や形状や温度など 種々の状態を判定する。 なかでも重要なこととして、 食品 6が液体状か固体状か の判断を行う。 この一つの方法として、 初期の短時間ターンテーブル 1を回転さ せたあと停止させることで食品 6に振動を与え、 そのとき発生する振動の時間変 化を検知して判断する方法がある。 つまり、 物体が液体であれば振動は長時間継 続し、 物体が固体であれば振動は短時間で消滅するという原理に基づいている。 その後、 開口部 1 6 9と高さ hが適切な構成になるよう制御し、 それと相前後し て、 マグネトロン 2からの電磁波の放射を開始し、 ターンテーブル 1を再度回転 させて同心円状の加熱分布を均一化する。 その後重量センサ 2 3あるいは温度セ ンサ 2 6によって決められた時間だけ加熱するか、 適温になったとき加熱を終了 する。 液体状の食品 6の場合、 前述の牛乳と同様、 底面に電界を集中させれば対 流によって自然に分布の良いできばえが得られる。
また、 どのような食品 6であっても常に加熱分布のむらを無く して均一加熱を 実現するには、 あらかじめ食品 6の材質 ·形状 ·置かれた位置 ·温度などの条件 ごとに最適な開口部 1 6 9位置と高さ hの情報をあらかじめデーターベースとし て制御手段 1 9内のマイコンに記憶させておく方法がある。 この方法により、 制 御部手段 1 9は、 操作パネル 6 4、 重量センサ 2 3、 温度センサ 2 6などからの 出力とデータベースを比較して、 最適な加熱のための制御ができる。
図 8 9は、 図 7 9〜図 8 2などの構成におけるフローチヤ一卜の一実施例で、 最適な開口部 1 6 9位置と高さ hを決定するシーケンスを示している。 手順 2 0 9は初期状態を表し、 高さ h = l O nm シール部 1 9 7の位置 L 3 = 0としてい る。 手順 2 1 0は重量センサ 2 3による判定で、 食品 6が液体状かどうか、 重量 mは m lより軽いか、 または m lより重くて m 2より軽いか、 または m 2より重 いかということを判断する。 手順 2 1 1はシール部 1 9 7をシール駆動部 1 9 8 により、 適切な位置 L 3に動かす。 手順 2 1 2は温度センサ 2 6あるいはその他 のセンサによる判定で、 食品 6の高さ (厚み) tが t 1より高いか、 または t 1 より低くて t 2より高いか、 t 2より低いかということを判断する。 手順 2 1 3 は食品 6の高さをテーブル高さ駆動部 1 Ί 5により、 適切な高さ hに動かす。 以 上により、 食品 6の材質 (液体状かどうか) 、 重量 m、 高さ (厚み) tに応じた 適切な開口部 1 6 9位置と高さ hを構成できる。
ここで図 8 9には、 初期状態における適切な開口部 1 6 9位置と高さ hの決定 シーケンスを説明したが、 もちろん他の実施例として、 食品 6の伏態変化 (特に 加熱が進むにつれての温度変化) をフィードバックして、 その時の分布むらを解 消するように適切な開口部 1 6 9位置と高さ hを何回か変えることも考えられる。 さて同じ材質の食品 6でも重量が違えば、 最適な分布を与えるためには開口部 1 6 9や食品 6が置かれる高さ hを切り替えなければならないことを述べた。
ここで本発明では、 毎回の加熱終了後に、 開口部が 1 6 9 Aで高さ hを 3 O mm にして、 軽量の食品 6用にスタンバイさせておくこととしている。 なぜなら重量 の軽いものほど加熱時間が短いので、 途中で切り替えても加熱終了までの間に分 布が改善しきれなかったり、 せっかく加熱時間が短 t、のに加熱効率の悪い状態で 加熱をスタートして時間を延ばしてしまうのを防ぐためである。 それに対して大 量の食品 6の場合には、 加熱終了までの時間が長いので、 途中で切り替えても充 分間に合うだけの余裕がある。 実際に使用者が食品 6を加熱する場合、 まずマグ ネトロン 2からの電磁波の放射とターンテーブル 1の回転をスター卜する。 そし て加熱途中で温度センサ 2 6や重量センサ 2 3やその他の状態センサ 1 9 2 (例 えば光センサ 6 1、 6 2 ) からの信号で食品 6の量や形状や温度など種々の状態 を判定する。 初期状態で軽量の食品 6の加熱用に構成されているので、 大量であ ると判断した場合は、 開口部 1 6 9と高さ hが適切な構成になるよう制御し、 そ の後使用者が設定した決められた時間だけ加熱するか、 もしくは各種のセンサに よって適温になったとき加熱を終了する。
図 9 0〜図 9 5は、 高周波加熱装置の内部の電界をシミュレ一ションした結果 を示す構成図である。
図 9 0は、 本発明の一実施例の高周波加熱装置の斜視図である。 マグネトロン 2のアンテナ 3 0から電磁波が励振されることとしている。 図 9 1、 図 9 2は、 図 9 0の高周波加熱装置の電界分布 (ただし食品の無い場 合) をシミ ュレーションし、 S— S ' で切断した斜視図で、 共振状態において生 じる電界を等電界強度線で示している。 (年輪状の模様の込み入ったところほど 電界が強い (腹) と考えれば良い) これはすなわち開口部 1 6 9の位置による電 界分布の違いを示す。
図 9 1は、 第一の開口部 1 6 9 Aだけが開放されている場合を示し、 加熱室 4 内の X方向に電界の腹が 4つ、 Y方向に電界の腹が 3つ、 Z方向に電界の腹が 1 つ生じている。
図 9 2は、 第二の開口部 1 6 9 Bだけが開放されている場合を示し、 加熱室 4 内の X方向に電界の腹が 5つ、 Y方向に電界の腹が 1つ、 Z方向に電界の腹が 1 つ生じている。
図 9 3は、 図 9 0の高周波加熱装置内で加熱される平らな形状の食品 6 (しゅ うまいなど) の斜視図である。
図 9 4および図 9 5は、 図 9 3の食品を図 9 0の高周波加熱装置の第一の開口 部 1 6 9 A上に置いて電磁波を入れた場合の、 誘電損失の分布をシミユレーショ ンし、 U— U' で切断した斜視図である。 斜線部分ほど損失があり温度上昇する と考えられる。
図 9 4は、 第一の開口部 1 6 9 Aだけが開放されている場合を示し、 食品 6の 中央底部 2 1 4が加熱されることを示す。
図 9 5は、 第二の開口部 1 6 9 Bだけが開放されている場合を示し、 食品 6の 端部 2 1 5が加熱されることを示す。
ここで、 なぜ、 図 9 1、 図 9 2のような電界分布が起こるか説明を加える。 まず、 導波管 3内の電磁波の伝搬について説明する。
図 9 6は高周波加熱装置の要部断面構成図であり、 簡単にマグネトロン 2と導 波管 3と加熱室 4と開口部 1 6 9のみを示している。 マグネトロン 2のアンテナ 3 0と開口部 1 6 9の中心 2 1 6との距離 L 4は、 導波管 3内を左方向に向かつ て伝送する電磁波の波長 (管内波長) を l gとして表すと、 ス8ノ4の奇数倍の距 離である。 これは、 電磁波が導波管 3内を伝送するときに、 導波管 3の形状で決 まる管内波長; I gに基づいて強弱を繰り返しながら図 96の左方向に進み、 ス8/ 4の奇数倍の位置で必ず電界が弱くなる (導波管内の伝送では磁界と電界の位相 は一致し、 磁界も弱くなる) ために選んでいるのである。 ここでは、 L4 = g X 9 4としている。 また実線の矢印が強い電界の向きを示しており、 電界 (お よび磁界) の向きは; lgZ2毎に逆向きとなるので、 アンテナ 30から λ8Ζ2離 れるごとに矢印の向きが逆になつているが、 それぞれが 2.45GHzの周波数で反 転をくり返すものである。 図 96では電界 (および磁界) の弱いところで加熱室 4の開口部 169と接続されているため、 導波管 3内の電界を乱さず、 効率よく 加熱室 4内に電磁波が入りやすい。 ただし、 図 79では開口部 169 Aを電界 (お よび磁界) の弱いところで加熱室 4と接続し、 開口部 169 Bを電界 (および磁 界) の強いところで加熱室 4と接続している。 これは、 シール部 197の位置 L 3 = 0の時は、 できるだけ開口部 169 Aから加熱室 4内にスムーズに電磁波が 入り、 かつ開口部 169 Bからは加熱室 4内に電磁波が入らないようにするため である。 一方逆に、 位置 L 3 = λ8Ζ4の時は、 前述の通り開口部 169 Αには 電磁波が伝わっておらず、 必然的に開口部 169 Bからのみ加熱室 4内に電磁波 が入る。 よって、 シール部 197の位置 L3を変化させることで、 見かけ上開口 部 169A、 169 Bを切り替えられるのである。
図 4の従来例では、 2つの開口部 5に対向する 2つの副導波管 13の端面 14 を動かし、 2つの開口部 5を独立して開閉しているが、 本発明では、 開口部 16 9 Aを電界の弱い所、 開口部 169 Bを電界の強い所に構成して、 その間にシー ル部 197を有するので、 1つのシール部しかなくても開口部 169 A、 169 Bを切り替えられる。
ここで導波管 3内を伝搬する管内波長 λ8の定義は、 図 96に合わせて説明す ると、 導波管 3の奥行を (:、 厚みを D、 奥行方向の電波の強弱の山の数を m、 厚 み方向の電磁波の強弱の山の数を n、 真空での電磁波の波長を; I ^ 122 mmとす れば、 (4) 式となる。 一般に m=l、 n = 0が多く採用され、 このときは (5) 式となる。 具体的な値として C = 8 Oram. D = 4 Oramなら ^g^ .188miD程度で ある。 (ただし寸法はすべて板厚を含まない内寸とする。 ) 入
八 S = (4)
V〔l一入2 { (mZ2C〉 2+ (nZ2D〉 2}〕 λ
λι = (δ)
λζ ( 1/2C) 2} 次に、 この時の加熱室 4内の電磁波の共振について説明する。
図 96の場合、 加熱室 4内の電磁波は共振状態を起こそうとするが、 開口部 1 69を挟み込むような逆向きの強電界 217、 218 (実線矢印) が生じ、 加熱 室 4内の開口部 169で電界が弱く (節に) なるような共振状態で安定する。 こ のときもっとも効率よく加熱室 4内に電磁波が入ることになる。 (ただし共振状 態では、 導波管 3内のような伝送状態とは異なり、 電界と磁界の位相は 90° ず れる。 )
共振状態は加熱室形状と開口部の位置によって決まるのだが、 この時加熱室 4 内の電界分布を示す図 91の場合、 加熱室の X方向に四つ、 Υ方向に三つ、 Ζ方 向に一つの強電界が発生している。 これは共振状態となったために加熱室内に電 磁波が定在波として分布することによつて起こる電界の腹であり、 この腹の数を モードと呼ぶ。 通常、 加熱室 4形状を三次元で表し、 各方向の寸法を x、 y、 z とする時、 それぞれの方向に電界の腹が m、 n、 pだけあれば、 そのモードは (m n p) であるという。 本実施例では、 加熱室 4の底面の奥行き Xと幅 yの中心位 置に第一の開口部 169 Aの中心位置をおおよそ一致させていると同時に、 開口 部 169を挟み込むように強電界が発生するように (開口部 169 Aで節となる ように) 構成しているので、 奥行き X方向には偶数のモード (m :偶数) が立ち やすく、 かつ幅 y方向には奇数のモード (n ;奇数) が立ちやすくなると同時に、 他のモードが立ちにく くなる。 図 91がモード (431) であると同様に、 図 9 2がモード (511) だということも容易にわかる。
結論として開口部 169の位置により電界分布 (すなわち加熱分布) を変える こともできるのである。 参考までに、 食品 6が加熱室 4内に無くて、 加熱室 4が直方体の場合は、 加熱 室 4を空胴共振器と考えることができて、 加熱室 4の寸法と開口部 1 6 9の位置 により、 立ちうるモードを求めることができる。 加熱室 4寸法を x、 y、 zとし, 各方向に立つモードの数は (6 ) 式を満たす m、 n、 pの組合せとなる。 (x、 y、 zは mm単位、 m、 n、 pは整数)
2
1 m + p ( 6 ) 入: 2 x 2 y 2 z 一方、 食品 6がある場合は、 食品の誘電率による波長圧縮の影響などで (6 ) 式からずれが生じる。 しかし食品 6があっても、 開口部 1 6 9付近では (6 ) 式 を満たすモードが立とうとしており、 開口部 1 6 9から離れた位置ではモードが 乱される傾向にあるということが、 実験的にわかってきている。 よって; I 1 2 2 ramでモード (4 3 1 ) を立てるための一例として、 (6 ) 式をほぼ満たす寸法 の X = 3 3 0 IM、 y = 3 0 0 mm. z = 2 1 5 mmなどを選ぶことができる。
また、 食品 6を狙った加熱分布にするためには、 食品 6の近くに開口部 1 6 9 を構成すべきであると考え、 本発明では食品 6に最も近い加熱室 4壁面、 即ち加 熱室 4の底面上に異なる電界分布を起こす複数の開口部 1 6 9 A、 1 6 9 Bを構 成している。
図 9 7は本発明の第 3 3の実施例の高周波加熱装置の断面図である。
図 9 7において、 マグネトロン 2から出た電磁波は、 導波管 3を介して加熱室 4内に置かれた皿 2 1 9上の食品 6を加熱する。 導波管 3と加熱室 4とを接続し 電磁波を導く開口部 1 6 9 C、 1 6 9 Dは、 第一の開口部 1 6 9 Cを加熱室 4の 中央に、 第二の開口部 1 6 9 Dをマグネトロン 2寄りに構成し、 導波管 3内を伝 搬する電磁波における電界の弱い部分 (節) と、 加熱室 4内に定在波として分布 する電磁波における電界の弱い部分 (節) とを接続するように構成している。一 方、 食品 6の加熱効率や加熱分布を良くするため、 開口部 1 6 9 C、 1 6 9 Dを 覆うように開口遮蔽部 2 2 0があり、 その構造は円板形状で、 電磁波を吸収しに くい低損失の材料からなる電磁波透過部 2 2 1と、 金属からなる電磁波遮蔽部 2 2 2とを有し、 電磁波を吸収しにくい低損失の材料からなる回転軸 2 2 3により 回転する。 回転軸 2 2 3は、 開口部 1 6 9 C、 1 6 9 Dの間の位置で加熱室 4と 導波管 3を貫通し、 駆動郜であるモータ 2 2 4に接続されて回転駆動されている。 この回転に応じて、 導波管 3から加熱室 4内に入る見かけ上の電磁波の透過でき る開口位置が変化し (第一の開口部 1 6 9 Cと第二の開口部 1 6 9 Dが切り換わ り) 、 電界分布を変化させている。 また同時に回転軸 2 2 3は第一の歯車 2 2 5 とも接続されており、 第一の歯車 2 2 5の回転により第二の歯車 2 2 6に回転力 が伝わる。 第二の歯車 2 2 6は、 ターンテーブル 1と接続されており、 食品 6を 回転させることで回転中心から見た同心円方向の均一化を図るものであるが、 歯 数を第一の歯車 2 2 5の歯数とは異ならせる (この実施例の場合は第二の歯車 2 2 6の歯数のほうを多く している) ことで、 より一層の均一化を図るものである c また、 形状認識センサ 2 2 7が食品 6の形状を認識して制御手段 1 9に信号を送 り、 制御手段 1 9はその信号に応じてマグネトロン 2やモータ 2 2 4やマグネト ロン 2の冷却用のファン 2 7の動作などを制御している。 この場合、 あらかじめ 食品の形状に応じて最適な給電方法 (開口部 1 6 9 C、 1 6 9 Dの切り替えバタ ーン、 マネトロン 2の電磁波放射パターンなど) を設定しておいて、 形状認識セ ンサ 2 2 7からの信号により切り替えるものである。 さらに安全のためカバー 2 5で開口遮蔽部 2 2 0などを覆うように構成し、 支持部 2 2 8でターンテーブル 1を保持する構成としている。
図 9 8は、 図 9 7の V— V' 断面構成図である。
加熱室 4の底面上の中央部 (縦の中央かつ横の中央) に第一の開口部 1 6 9 C の中央があり、 それよりマグネトロン 2寄りに第二の開口部 1 6 9 Dがある。 開 口部 1 6 9 C、 1 6 9 Dはそれぞれ長方形状で、 同じく長方形状の加熱室 4底面 と四辺が平行である。
図 9 9は、 図 9 7の W— W' 断面構成図である。
開口遮蔽部 2 2 0が開口部 1 6 9 C、 1 6 9 Dを覆っており、 円状の電磁波透 過部 2 2 1上に半円状の電磁波遮蔽部 2 2 2を有し、 回転軸 2 2 3により回転す る。 図 9 9の場合、 電磁波遮蔽部 2 2 2のため、 導波管 3内の電磁波は第一の開 口部 1 6 9 Cからは加熱室 4内に入りにくく、 第二の開口部 1 6 9 Dからは入り やすい状態となっている。 一方、 回転軸 2 2 3が半回転すると逆に、 導波管 3内 の電磁波は第一の開口部 1 6 9 Cからは加熱室 4内に人りやすく、 第二の開口部 1 6 9 Dからは入りにくい状態となる。 よって開口遮蔽部 2 2 0の回転により見 かけ上開口部 1 6 9 C、 1 6 9 Dが切り換わることになる。
ここで本実施例では、 一つの回転軸 2 2 3で開口遮蔽部 2 2 0とターンテープ ル 1の両方を回転させる構成である。 もちろん別々に回転軸を設けてより一層の 均一化をねらう構成にしてもよい。 また、 開口遮蔽部 2 2 0を加熱室 4内で回転 する構成にしているが、 導波管 3内で左右に直線運動する構成にしてもよい。 ま た、 モータ 2 2 4についても簡単な A Cモータで一定速度の回転をさせる構成が もっとも簡単である力 ステツビングモータを使ってこまめに制御してより一層 均一化をねらってもよい。 また、 第二の開口部 1 6 9 Dを加熱室 4の底面に構成 しているが、 加熱室 4の他の壁面に構成してもよい。 また形状認識センサ 2 2 7 の信号をもとに制御する構成としているが、 他のセンシング手段で検出部を構成 してもよい。
図 1 0 0は、 加熱室 4の中央付近 (すなわち第一の開口部 1 6 9 Cの上部) に 平らな (背の低い) 食品 6を置いたときに電界がどのように曲げられるかを示す 図である。 食品 6が開口部 1 6 9 Cをはさみ込むように生じた一対の逆向きの強 電界 2 2 9、 2 3 0を押し曲げて、 食品内強電界 2 3 1を起こし、 食品内強電界 2 3 1と食品 6の誘電定数により (1 ) 式に示した電力 Pに基づいて加熱される c このとき食品 6の中央下部に発熱部 2 3 2が生じ、 縁が煮える事なく食品 6の内 部が加熱される。 これが図 9 4で示したのと同様の損失の分布となるのである。 但しこの時は、 食品 6の中央下部が熱すぎて縁が冷たいという事で、 今までの電 子レンジとは正反対の問題が起きる。 よって前述のような第二の開口部 1 6 9 D との切り替えで均一化をねらうのである。 経験上、 加熱室 4底面の中央 (食品の 真下) の開口部で無い限り、 食品 6は縁が熱くなる。 これは底面中央以外の位置 の開口部では、 食品 6自身により加熱室 4内の電界分布が乱され、 開口部から離 れたところでは食品の縁を覆うような向きにしか電界が起こらないという事が原 因であろう。 加熱室 4底面の中央 (食品の真下) の開口部 1 6 9 Cの場合も開口 部から遠ざかるにつれて電界分布が乱れるが、 開口部 1 6 9 C付近は安定した強 電界 2 2 9、 2 3 0が保たれるため、 縁が煮える事なく食品 6の内部が加熱され るのである。 (図 1 0 0では、 強電界変形部 2 3 3だけが乱されているように示 しているが、 極端な場合は加熱室 4天面の四つの強電界 2 3 4が三つや二つになつ てしまう可能性もある。 ) また一般に食品は加熱室 4の中央に置かれるので、 第 —の開口部 1 6 9 Cは加熱室 4底面の中央にしなければならないが、 第二の開口 部 1 6 9 Dは取り付け位置に自由度が有ることもわかってきている。
図 1 0 1〜図 1 0 4は加熱室 4の断面図であり、 壁面にある開口部の位置によつ て電界の立ち方がどのように変わるかについて説明する。
加熱室 4を空胴共振器として (6 ) 式に従うモードを立てるには、 図 1 0 1〜 図 1 0 3の様に開口部の位置を決めるのがよい。 (ただしここでは簡単のため二 次元で考えることにする)
図 1 0 1は、 開口部 1 6 9 Eをはさみこむように逆向きの強電界 2 3 5. 2 3 6を起こし、 (2 2 * ) のモードを立てている。 このように (偶数、 偶数、 * ) のモードが同様に立てられる事は容易に考えられる。
図 1 0 2は、 開口部 1 6 9 Fをはさみこむように逆向きの強電界 2 3 7、 2 3 8を起こし、 (2 3 * ) のモードを立てている。 このように (偶数、 奇数、 * ) (奇数、 偶数、 * ) のモードが同様に立てられる事は容易に考えられる。
図 1 0 3は、 開口部 1 6 9 Gをはさみこむように逆向きの強電界 2 3 9、 2 4 0を起こし、 (3 3 * ) のモードを立てている。 (奇数、 奇数、 * ) のモードが 同様に立てられる事は容易に考えられる。
ところが図 1 0 4は、 開口部 1 6 9 Hをはさみこむように逆向きの強電界 2 4 1、 2 4 2を起こそうとするが、 (6 ) 式に従うモードにはならず、 電界分布が 推定できない。 これは加熱室 4壁面と開口部 1 6 9 Hが平行でないからである。 以上のように、 本発明によって、 加熱室 4壁面と開口部 1 6 9を平行にするこ とで、 ねらった通りの電界が起こせる事がわかる。
図 1 0 5に、 本発明の第 3 4の実施例の加熱効率を表す特性図を示す。 図 1 0 5はマグネ トロン 2から見た反射の状態 (整合状態) を示すスミスチャートであ り、 斜線部は高効率領域 1 9 5 (加熱室 4内にもっとも効率的に電磁波が入る領 域) である。 このとき第一の開口部 1 6 9 C、 第二の開口 1 6 9 Dのみがそれぞ れ開放されている場合の反射の特性を 2 4 3、 2 4 4として、 いずれも高効率領 域 1 9 5に有り定格出力が出るように整合を取っている。 よって前述のように均 —加熱ができると同時に加熱効率を高くすることができる。
図 1 0 6は、 平らな食品の代表である皿 2 1 9上のしゅうまい 2 4 5を上から 見た平面図を示す。 これを図 1の様な従来の電子レンジで加熱すると、 図 1 0 7 の特性が得られる。 図 1 0 7の横軸は加熱終了時からの放置時間で、 縱軸は温度 である。 しゅうまい 2 4 5の中央部 2 4 6 (斜線のある部分) の 4ケのしゅうま いの平均温度を X ,、 しゅうまい 2 4 5の周囲部 2 4 7 (斜線の無い部分) の 1 2ケのしゅうまいの平均温度を X 2としており、 周囲部 2 4 7の方が中央部 2 4 6より熱くなることを示している。 これは従来の電子レンジでは、 しゅうまいの ような平らな食品は縁ばかり加熱されて中央が加熱されにくいという特徴を示す ものである。
図 1 0 8は、 図 1 0 6の 1 6ケのしゅうまい 2 4 5を、 本発明の高周波加熱装 置で加熱した時の温度ばらつきを示す特性図である。 加熱終了時からの放置時間 を横軸に、 温度を縦軸に取ると、 しゅうまい 2 4 5の中央部 2 4 6の 4ケの平均 温度 X ,と、 しゅうまい 2 4 5の周囲部 2 4 7の 1 2ケの平均温度 X 2とカ^ ほぼ 同じ温度になっており図 1 0 7より均一加熱が進んだことを示す。
但し、 複数の開口でそれぞれ整合を取れば必ず図 1 0 8のようになるとは言え ない。 第一の開口部 1 6 9 C、 第二の開口部 1 6 9 Dがそれぞれ、 中央部 2 4 6、 周囲部 2 4 7を加熱する傾向があるのは間違いないが、 まったく同じスピードで 昇温するとは限らない。 たとえば図 1 0 9のように、 中央部 2 4 6の平均温度 X ,が周囲部 2 4 7の平均温度 X 2より大きいこと (従来の特性の図 1 0 7とは逆転) が起こりうる。 何故ならば、 しゅうまいの数が周囲部 2 4 7は 1 2ケなのに対し て中央部 2 4 6は 4ケしかなく、 それぞれの開口部 1 6 9 C、 1 6 9 Dから同じ 量の電磁波が加熱室 4内に入ったとしても中央部 2 4 6の方が速く昇温するかも 知れないからである。 よって中心温度と周囲温度の上昇のバランスを変える解決 策として、 本発明の第 3 5の実施例ないし第 3 7の実施例を図 1 1 0〜図 1 1 3 に示す。
第 3 5の実施例として、 図 1 1 0には、 図 9 8の構成とは異なって、 第一の 開口部 1 6 9 Cの開口面積を第二の開口部 1 6 9 Dの開口面積より小さくするこ とで、 第一の開口部 1 6 9 Cから加熱室 4内に入る電磁波の量を絞った例を示す。 その結果、 中心温度の上昇を抑えることで、 図 1 0 9のような特性を図 1 0 8の ような特性に最適化することができる。
第 3 6の実施例として、 図 1 1 1には、 図 1 0 5での特性とは異なって、 第一 の開口部 1 6 9 Cでの反射の状態 (整合状態) をずらした例を示す。 第二の開口 部 1 6 9 Dでの特性 2 4 4は高効率領域に保ったまま、 第一の開口部 1 6 9 Cで の特性 2 4 3を図 1 1 1のようにずらすのである。 図 1 1 0の効果と同様、 第一 の開口部 1 6 9 Cから加熱室 4内に入る電磁波が減り (反射が増えて) 中心温度 の上昇を抑えることで、 図 1 0 9のような特性を図 1 0 8のような特性に最適化 することができる。
第 3 7の実施例として、 図 1 1 2〜図 1 1 3には、 開口部 1 6 9 C、 1 6 9 D の開時間の比率を変える例を示す。 図 1 1 3は図 1 1 2の Y— Y' 断面図である。 図 1 1 2は図 9 7の構成とは異なって、 電磁波遮蔽部 2 2 2が遮蔽突出部 2 4 8 と遮蔽開口部 2 4 9を有する工夫をしている。 この場合、 開口遮蔽部 2 2 0がー 回転する間の大半の時間は第二の開口部 1 6 9 Dが開放されており、 遮蔽突出部 2 4 8が第二の開口部 1 6 9 D上にあり遮蔽開口部 2 4 9が第一の開口部 1 6 9 C上にあるときだけ、 第一の開口部 1 6 9 Cが開放される。 その結果、 中心温度 の上昇を抑え、 かつ周囲温度の上昇を促進することで、 図 1 0 9のような特性を 図 1 0 8のような特性に最適化することができる。
また図示しないが、 モータ 2 2 4としてステッピングモータを用いて、 開口遮 蔽部 2 2 0の回転が一定でなく、 開口部 1 6 9 C、 1 6 9 Dの遮蔽と開放を切り 替える途中段階の時間を極力短くする構成が考えられる。 たとえば図 1 0 5のよ うに、 開口部 1 6 9 C、 1 6 9 Dのどちらかだけの特性 2 4 3、 2 4 4を実現で きたとしても、 切り替える途中段階 (たとえば開口部 1 6 9 C、 1 6 9 Dがそれ ぞれ半分ずつ開放されている場合) では反射が増えて効率が落ちる可能性が高い。 よってそのタイミングた'け開口遮蔽部 2 2 0を高速動作させ、 極力、 加熱効率を 落とさないようにすることができる。
さて、 本実施例では平らな食品を例に挙げ、 加熱効率の向上と加熱分布の均一 化について述べた。 しかし食品にはさまざまな種類や形状があり、 加えて皿の影 響も考えなければならない。 よって、 本実施例以外の例として、 食品に応じて開 口部 1 6 9 C、 1 6 9 Dの開放時間のバランスを変えるなど、 最適化のためにい ろいろな方法が考えられることを付け加えておく。
なお、 局所的な加熱について、 実施例の中ではしゅうまいや牛スライス肉の解 凍など、 かなり細かい部分の加熱を説明したが、 これに限らず、 たとえばまぐろ 一匹の中央部と外部を切替えるなど広範囲に渡る部分を局所加熱する例も考えら れる。
以上のように、 本発明の高周波加熱装置によれば、 次の効果がある。
局所加熱手段が被加熱物の任意の部位を加熱できるので、 全体の加熱分布を均 一にしたり、 加熱する部位と加熱しない部位を明確に区別できる効果がある。 被加熱物と局所加熱手段との間で局所加熱手段を保護する保護手段を有すれば、 いかなる場合も被加熱物の任意の部位の加熱を妨げないので、 被加熱物のかすの 直搫により局所加熱手段が動かないとか、 被加熱物のかすによる電磁波の吸収で 電磁波の方向に影響が出るとかの問題がなく、 局所加熱を邪魔させない効果があ る。 よって安定して狙った部位の局所加熱ができる。
局所加熱手段は載置台よりも下に位置し、 保護手段は載置台と局所加熱手段の 間に位置すれば、 載置台によっても局所加熱手段が保護される。 また、 局所加熱 手段が常に被加熱物に近いところに位置すれば、 電磁波を他の壁面で反射させず に、 直接、 被加熱物の狙った部位に放射できるため、 より局所加熱しやすい効果 がある。
保護手段は被加熱物を載置し、 局所加熱手段は保護手段よりも下に位置すれば, 保護手段と載置台とを兼用するか一体化できるため、 構成が簡単で部品が少なく て済むので、 全体として小型化、 軽量化、 低価格化できる効果がある。
保護手段が少なくとも一部に誘電体を有すれば、 誘電体で局所加熱手段を保護 すると同時に、 誘電体を介して局所加熱手段からの電磁波を加熱室内に放射でき るため、 容易に狙った部位を局所加熱できる効果がある。
局所加熱手段が、 電磁波放射手段が放射した電磁波を導く導波部と、 導波部が 導いた電磁波を加熱室内に放射する放射部とを有し、 電磁波放射手段から放射部 までの電磁波が通過する距離を常に略一定とすれば、 電磁波にとって、 電磁波放 射手段から放射部までのインピーダンスが一定なので、 局所加熱手段をどのよう に制御するかに関わらず、 整合状態を維持しやすく、 加熱効率を高く保つことが できる効果がある。 また加熱効率が高いと、 結果として、 加熱時間の短縮、 省ェ ネルギー化の効果もある。
電磁波放射手段から放射部までの電磁波が通過する距離を、 電磁波の通過経路 における波長を λ gとして、 ス g Z 2の略整数倍とすれば、 放射部での電界が強 くなるので、 被加熱物を放射部に近づけて置く場合には効率が極めて高い効果が める。
放射部が有する電磁波結合部と駆動手段とを接続し、 放射部が電磁波結合部を 中心に回転駆動するように駆動手段を制御すれば、 駆動手段の制御により放射部 からの電磁波の放射位置を変え、 被加熱物の加熱部位を自由に変えられる効果が ある。 よって局所加熱を容易に実現できる効果がある。
導波部が電磁波放射手段と加熱室を接続する導波管を有し、 電磁波結合部が導 波管内と加熱室内とに渡るものとすれば、 電磁波結合部がアンテナとなり導波管 内の電磁波を効率的に加熱室内に導き出せるため、 より一層加熱効率を向上でき る効果がある。
電磁波放射手段から電磁波結合部までの電磁波が通過する距離を、 電磁波の通 過経路における波長を; I gとして、 λ gZ 2の略整数倍とすれば、 電磁波の通過 経路に定在波を起こした場合、 電磁波結合部の位置で最も電界が強くなり、 電磁 波結合部が導波管内の電磁波を最も効率的に加熱室内に導き出せる効果がある。 放射部が被加熱物よりも下に位置すれば、 放射部が常に被加熱物に近いところ に位置するので、 電磁波を他の壁面で反射させずに、 直接、 被加熱物の狙った部 位に放射できるため、 より局所加熱しやすい効果がある。
加熱室内で被加熱物を載置する載置台を有し、 載置台の中心は加熱室の略中心 に位置すれば、 載置台を大きく して加熱室内のスペースを有効に利用できる効果 がある。 よって、 大きさの大きな被加熱物を載置したり、 数多く載置したりでき る効果がある。 結果として、 使用者にとって使い勝手がよい効果がある。
載置台の中心を回転中心として載置台を回転駆動するように載置台駆動手段を 制御すれば、 回転中の載置台の上下動を抑制し安定した駆動ができるため、 狙つ た加熱部位を局所加熱しやすい効果がある。 また同様に、 被加熱物を振動させに くいので、 回転中にこぼれたりしにくい効果がある。
局所加熱手段の制御と載置台駆動手段の制御とを連動して行なえば、 被加熱物 に対する局所加熱手段の位置の把握や変更が容易である。 よってより一層、 狙つ た加熱部位を局所加熱しやすい効果がある。
局所加熱手段の制御と載置台駆動手段を減速または停止させる制御とを、 同時 に、 または、 前後して行なえば、 局所加熱手段と載置台駆動手段が局所加熱する に最適な位置関係になったときに、 その状態を長く維持できる。 狙った加熱部位 を間違いなく局所加熱できるのと、 局所加熱の時間短縮ができる効果がある。 放射部が駆動する範囲が加熱室底面の内側となるよう駆動手段を制御れば、 駆 動に要するスペースや加熱室外のスペースを小さくできる効果がある。 また、 駆 動する範囲から加熱室外に電磁波が漏れにくいので、 特殊なシール構成は不要と なり、 構成が簡単で部品が少なくて済むので、 全体として小型化、 軽量化、 低価 格化できる効果がある。
載置台が、 導電性材料からなる電磁波遮蔽部と中心近傍に電磁波透過部とを有 すれば、 被加熱物の底面中央近傍を局所加熱できる効果がある。
放射部からの電磁波の方向を、 被加熱物の有る方向と、 被加熱物の無い方向と を切り替えるよう制御すれば、 被加熱物に直接電磁波を放射する局所加熱と、 局 所加熱を避け、 加熱室壁面で反射した後の電磁波での加熱とを切り替えることが できる。 よって使用目的に応じて電磁波を集中させたり、 集中しないようにでき るので、 より一層自由に加熱分布を変えることができる効果がある。
被加熱物の略底面中央の加熱と、 被加熱物の略周囲の加熱とを切り替えるよう、 局所加熱手段を制御すれ 、 簡便な方法で被加熱物の加熱分布を均一にできる効 果カある。
被加熱物の加熱部位を 2次元ないし 3次元で切り替えるよう、 局所加熱手段を 制御すれば、 より一層きめ細やかに加熱分布を変えることができる効果がある。 局所加熱手段を断続的に制御する断続制御手段を有していれば、 被加熱物の加 熱部位を断続的に切り替えられ、 限られた部分に電磁波を集中できるので、 より —層自由に加熱分布を変えることができる効果がある。
局所加熱手段を連続的に制御する連続制御手段を有していれば、 被加熱物の加 熱部位を連続的に切り替えられるので、 加熱の局所的な集中を避け、 広範囲の部 分を均一加熱できる効果がある。
局所加熱手段を断続的に制御する断続制御手段と、 局所加熱手段を連続的に制 御する連続制御手段と、 断統制御手段と連続制御手段を切り替える切り替え制御 手段を有していれば、 目的に応じた切り替えが容易である。
使用者が設定できる設定手段を有し、 設定手段により局所加熱手段を制御すれ ば、 設定内容に応じた適切な局所加熱を実現できる効果がある。
検出量として被加熱物の物理量またはその変化量または加熱室内の状態を示す 物理量またはその変化量の少なくとも一つを検出する検出手段を有し、 検出手段 の検出量により局所加熱手段を制御すれば、 被加熱物自体の状態や加熱室内の状 態に合わせて、 適切な局所加熱を実現できる効果がある。
被加熱物の温度分布を検出する温度分布検出手段により局所加熱手段を制御す れば、 実際の温度情報を元に局所加熱手段を制御するので、 最適な局所加熱を実 現できる効果がある。
被加熱物の形状を検出する形状検出手段または被加熱物の重量を検出する重量 検出手段の少なくとも一つを有すれば、 加熱しなくても被加熱物の状態をおおよ そ決めることが可能となる。 このため無駄な加熱を防ぎ、 より一層効率的に局所 加熱できる効果がある。 加熱開始の前後に形状検出手段または重量検出手段の少なくとも一方により加 熱すべき領域を判定する領域判定制御手段を有すれば、 加熱開始したかどうかに 関わらず加熱すべき領域が判るので、 領域内、 すなわち被加熱物のみを効率的に 局所加熟できる効果がある。
局所加熱手段の制御と電磁波放射手段の制御とを連動して行なえば、 局所加熱 したい部位を加熱できる状態の時のみ電磁波を放射したり、 局所加熱したくない 部位を加熱できる状態の時には電磁波を放射しないなど、 より一層きめ細やかな 加熱制御ができる。
電磁波放射手段を制御して出力を減少するか 0とした後で局所加熱手段を制御 すれば、 局所加熱手段を制御し終えるまでに、 加熱しなくてもよい部分を通過し ても、 無駄な加熱をしなくてすむ効果がある。
局所加熱手段を制御した後で電磁波放射手段を制御して、 出力を増加させれば、 同様の効果がある。
局所加熱手段の位置を検出する位置検出手段により局所加熱手段を制御すれば、 局所加熱手段を狙った位置に正確に制御できるので、 より精度よく局所加熱でき る効果がある。
加熱開始時または加熱終了時の少なくとも一方で、 局所加熱手段を所定の位置 に制御すれば、 次の加熱を行なうときに所定の位置を基準として局所加熱手段を 狙つた位置に制御すればよいので、 位置制御が簡単にできるという効果がある。 また、 被加熱物抽出手段により加熱室内の被加熱物を抽出し、 低温部分抽出手 段で被加熱物の中の低温部分を抽出して分布可変手段を制御れば、 無駄な加熱を せず適切に食品を加熱し、 エネルギー消費を低減することができる。
また、 加熱範囲設定手段で設定された加熱範囲の中から低温部分抽出手段が低 温部分を抽出して分布可変手段を制御すれば、.最適温度の違う異種の食品を同時 にそれぞれの最適温度に加熱調理することができる。
また、 加熱範囲を登録手段で登録記憶手段に登録し、 登録呼出手段で呼び出せ ば、 操作は簡単で使用者の使い勝手を向上することができる。
また、 第一の操作キーで被加熱物の種類または電磁波による加熱出力の大きさ- または加熱時間または加熱方法の少なくとも一つを入力してから第二の操作キー で加熱の開始を入力するまでの間に加熱部位切替え部を制御し始めれば、 加熱の 開始時にはすでに適切な 位を加熱できる状態になっている。 よって無駄な部分 を加熱することがなく、 加熱むらを抑えたり加熱の均一化が図れる。 同様に、 無 駄な部分を加熱することがないので、 加熱時間が短くなり使用者の待ち時間を少 なくすることができる。 また、 無駄な部分を加熱することがないので、 加熱効率 が向上し省電力化が図れる。 また、 加熱の開始前に加熱部位切替え部を制御して いれば、 加熱中に加熱部位切替え部を制御しなくてよかったり制御回数を減らす ことができる。 よって、 加熱部位切替え部を制御している途中に電界が乱された り反射波が増えたりする問題を抑えることができ、 電磁波放射手段での異常な発 熱を防ぐことができる。 よつて電磁波放射手段の耐久性を高めることができる。 同様に、 電界が乱されたり反射波が増えたりする問題を抑えることができ、 高調 波の発生を防ぐことができる。 よってノイズを抑制し、 高周波加熱装置の中の他 の部品や、 外部の機器の誤動作を防ぐこともできる。
加熱の目的に応じて加熱部位を変化させることができれば、 被加熱物を均一に 加熱するように動作させたり、被加熱物の特定部分を集中的に加熱するように動 作させることがある程度可能となる。 代表的な高周波加熱装置として電子レンジ で調理を行う場合、 単品の食品をむらなく加熱したり、 多品種の食品を選択的に 加熱 (たとえば一つの皿の上で、 煮物や揚げ物は加熱し生野菜は加熱しない) し たりすることができる。
駆動部が加熱開始直後は局所加熱手段を一定周期で駆動し、 加熱途中で周期を 変えるかまたは停止するよう駆動制御すれば、 加熱開始直後に生じる加熱分布と 加熱途中からの加熱分布を変えることができる。 特に加熱途中からは被加熱物の ある特定の部分を集中的に加熱することができるので、 加熱途中までに発生した 加熱むらを補うため加熱の遅れている部分を加熱して均一化を図ったり、 より部 分的に加熱したい部分だけ加熱することができる。
制御部は加熱開始直後は電磁波放射手段の加熱出力を一定とし、 加熱途中で局 所加熱手段の状態によって加熱出力を変化させるかまたは加熱停止するよう制御 すれば、 加熱開始直後に生じる加熱分布と加熱途中からの加熱分布を変えること ができる。 特に加熱途中からは被加熱物のある特定の部分を加熱しないようにで きるので、 加熱途中までに発生した加熱むらを補うため加熱の進んでいる部分を 加熱しないようにして均一化を図ったり、 より部分的に加熱したくない部分だけ 加熱しないようにできる。
電磁波を給電室を介して加熱室に導き、 給電室内に給電口切り替え部を設けれ ば、 導波管と加熱室の間を給電室でつなぐこととなり、 電磁波の反射を抑えやす くマッチングが取りやすい効果がある。 また、 加熱室内に給電口切り替え部が出つ 張ることがなく、 特に使用者が手を触れないよう給電口切り替え部にカバーをす る場合、 カバーを含めて加熱室底面上を平らにできるため、 使用者が加熱室内を 掃除しやすい効果がある。 また、 局所加熱手段にカバーをする場合、 カバーのサ ィズは加熱室底面の全体を覆わなくても給電室を覆うサイズで十分であり、 カバ 一の小型化 ·低価格化が実現できる。
また、 ターンテーブルが金属あるいは導電性材料からなり、 回転方向に電磁波 の波長の 1ノ 2以上の長さの隙間を有すれば、 電磁波がターンテーブルの隙間を 介して上下に透過することができる。 よつて被加熱物の加熱部位を容易に切り替 えることができる。
ターンテーブルを金属あるいは導電性材料で構成すれば、 耐熱性が高く、 普及 タイプのオーブン機能付き電子レンジのようにヒータを加熱室底面下に構成する 場合も、 使用することが可能である。
ターンテーブルを電磁波の透過する材料で構成すれば、 電磁波がターンテープ ルを介して電磁波が反射する事なく上下に透過することができる。 よつて容易に 被加熱物の加熱部位を切り替えることができる。
加熱室底面上に半径 rのターンテーブルの回転中心を中心として R〉 rなる半 径 Rの円内が上方に凸の傾斜を有すれば、 ターンテーブルの上方あるいは周囲に 液体の被加熱物をこぼした場合、 ターンテーブルを外さなくても掃除ができるな ど作業性がよい効果がある。
局所加熱手段を制御して、 加熱開始後は被加熱物の中央を加熱し、 その後周囲 を加熱すれば、 被加熱物の縁の加熱しすぎを防ぐ効果がある。 よって加熱むらを 抑える効果がある。 加熱むらが少ないと無駄な加熱をしなくて済むので、 加熱効 率が良く省電力化が図れ、 加熱時間が短くなり使用者の待ち時間を少なくするこ とができる。
局所加熱手段により、 加熱開始後は電磁波の方向を加熱室底面の中央に向けれ ば、 被加熱物の中央が主に加熱され、 その後電磁波の方向を加熱室底面の外側に 向ければ、 被加熱物の周囲が主に加熱されるので加熱むらを少なくすることがで さる。
被加熱物の物理量や加熱室内の状態を検出する検出部の出力により、 被加熱物 に部分的な加熱しすぎが発生する前に給電口切り替え部を駆動すれば、 加熱部位 を切り替えて加熱むらを抑える効果がある。
冷凍状態にある被加熱物を解凍する場合、 被加熱物の最高温度が o °c以下と推 定される範囲では連続的に電磁波を放射して加熱し、 最高温度が o °cを越えたと 推定したとき電磁波の放射を一時停止するよう制御すれば、 最高温度が 0 °cを越 えたあとの温度差の拡大を抑え、 停止時間の間に被加熱物内の熱伝導により温度 むらを縮小する効果がある。 よって加熱むらの少ない解凍の仕上がりが提供でき る。
電磁波の放射を停止あるいは減少させているときに局所加熱手段を駆動すれば、 駆動中に加熱室内の電磁波が撹拌されることはない。 よって電磁波放射手段を安 定な動作領域で使用できるので、 不要輻射や電磁波放射手段の温度上昇を抑える 効果があり、 ノィズ対策や冷却構成を容易にすることができる。
局所加熱手段を回転導波管、 回転アンテナまたはスタラーで構成すれば、 簡単 な構成および駆動方法で電磁波の方向を容易に切り替えることができる。 よって 低価格で実現でき、 過去の実績からも明らかなように信頼性がある。
局所加熱手段を駆動する駆動部を、 ステッピングモータまたは、 その他のモー 夕とスィツチの組合せで構成すれば、 局所加熱手段の位置制御が正確かつ容易な ため、 電磁波の方向を正確かつ容易に制御できる。 よって簡単、 低価格な構成で- よりいつそう精度の良い加熱部位の切り替えができる。 電磁波の放射の一時停止時間を検出手段の出力により決定すれば、 被加熱物ま たは加熱室内の状態に応じて、 被加熱物内部の熱伝達や被加熱物と加熱室内の雰 囲気温度との差による温度上昇の割合を決めることができる。 よって被加熱物の 解凍むらを抑えるような適切な加熱ができる。
複数の導波管が互いに隣接すれば、 狭いスペースで、 かつ少ない部材で構成で きる。 よって小型化、 軽量化、 低価格化が図れる。
電界の節で導波管が分岐すれば、 電磁波が分岐後の導波管内に効率よく伝送さ れ、 よって複数の開口を介して効率よく加熱室内にも伝送されるため加熱効率が 良い。 よって加熱時間が短くて良いので、 使用者の待ち時間を短くでき、 余分な 電力の消費を極力抑えることができるので省エネルギー化が図れ、 電磁波放射手 段での損失が減るため信頼性が向上する。
分岐後の複数の導波管の断面積を小さくすれば、 抉いスペースで、 かつ少ない 部材で構成できる。 よって小型化、 軽量化、 低価格化が図れる。 分岐する導波管 の長さが管内波長; l g の 1 Z 2の 0以上の整数倍となるので、 分岐後の導波管内 でも電磁波が管内波長 l g で共振することができる。 よって電磁波が複数の開口 を介して効率よく加熱室内にも伝送されるため加熱効率が良い効果がある。
第一の導波管と分岐する導波管との分岐点の幅が管内波長 の 1 Z 4以下と すれば、 共振状態にある第一の導波管内の電磁波が共振状態のまま分岐後の導波 管にも効率よく伝送される。 よって電磁波が複数の開口を介して効率よく加熱室 内にも伝送されるため加熱効率が良い効果がある。
複数の開口部を有し、 遮蔽部が、 加熱室または導波管または少なくともどちら か一方に固定された金属あるいは導電性を有する部材のいずれかにある突起部と 接触しながら開口部を遮蔽すれば、 遮蔽部と突起部の間からは電磁波が伝送され ず完全な遮蔽ができる。 よって電磁波の出る開口部を正確に切り替えることがで きるため、 加熱分布を自由に変化させることができ、 目的に応じた最適な加熱分 布を得る事ができる。 よってどのような食品でも均一に加熱することができる。 また同様に、 遮蔽部と突起部との間から外部への電磁波の漏洩も抑えられるので, 安全であり、 外部の機器などに対するノィズの問題もなく誤動作等を防ぐことも できる。
複数の開口部を有し、 シール部が、 加熱室または導波管または少なくともどち らか一方に固定された部材のいずれかに構成されれば、 遮蔽部と開口部の間から は電磁波が伝送されないうえ、 外部への電磁波の漏洩も抑えられる効果がある。 一つの遮蔽部で同一壁面上の複数の開口部を遮蔽したり開放したりすれば、 遮 蔽部の構造が簡単で部品の数が少なくてよい。 よって低価格化が図れる効果があ る。 また、 もし仮になんらかの事故により遮蔽部が動かなくなったとしても、 必 ずどこかの開口部が開放されており、 常に加熱室内に電磁波が供給される。 よつ て、 開口部がすべて遮蔽され加熱室内に電磁波が入らないということが無く、 電 磁波放射手段や導波管内での異常な損失や発熱が起こりにく く、 安全で信頼性が 高い効果がある。
一つの駆動部で、 複数の開口部を遮蔽したり開放したりする遮蔽部を動作させ れば、 駆動部の構造が簡単で部品の数が少なくてよいとか、 制御が容易である効 果がある。 よって小型化、 軽量化、 低価格化が図れる。
電磁波の放射を停止しているときに遮蔽部を動作させれば、 遮蔽部の動作途中 に電界が乱されることが無く、 電磁波放射手段での異常な損失や高調波の発生を 防げる。 よって安全で信頼性が高く、 外部の機器などに対するノイズの問題もな く誤動作等を防ぐこともできる。
加熱開始時または加熱終了時に、 遮蔽部の位置を軽量の被加熱物かあるいは短 時間の加熱に適した位置とすれば、 毎回加熱が始まつたときには軽量の被加熱物 などの短時間の加熱の準備ができている。 よって、 軽量の被加熱物を入れたとき に加熱の失敗が無い。 一方、 大量の被加熱物など長時間の加熱が必要なものを入 れたときは、 加熱を始めた後に遮蔽部の位置を適切な位置に動かしても充分間に 合う。 結局本発明によると、 軽量の被加熱物を入れたときに、 加熱当初から適切 な加熱分布を与えることができる。 また、 軽量の被加熱物を入れたときに、 あま り遮蔽部の動作をさせなくてよいので、 遮蔽部の位置を動かすための電力や遮蔽 部の動作途中の損失が無く、 より一層効率よく加熱することができ、 時間短縮が 図れる効果もある。 また、 加熱開始時または加熱終了時に、 被加熱物の位置が軽 量の被加熱物かあるいは短時間の加熱に適した位置となるよう駆動部を制御する ので、 毎回加熱が始まつたときには軽量の被加熱物などの短時間の加熱の準備が できている効果がある。
加熱開始後しばらくの間は検出手段の出力を受けないかもしくは無視すれば、 検出手段にとって加熱初期の電磁波が不安定な状態での誤検出の心配が無く、 安 定状態での正確な検出ができる。 よって検出手段の出力に基づく制御も正確であ り、 信頼性の高い動作が実現できる。 同様に、 被加熱物の初期の状態を検出手段 で検出する目的で開始後しばらくの間電磁波を出さない期間を設けるという必要 が無く、 最初から効率的に加熱することができる。 よって使用者の待ち時間を短 くすることができる。
検出手段の出力によっては加熱開始から加熱終了までの間に遮蔽部を複数回動 作させれば、 それにより加熱分布が変化するため、 被加熱物の状態に対応した適 切な加熱ができる。 よってどのような被加熱物でも均一に効率よく加熱すること ができる。
検出手段の出力によっては加熱開始から加熱終了までの間に被加熱物の位置を 複数回変化させるよう駆動部を制御すれば、 それにより加熱分布が変化するため、 被加熱物の状態に対応した適切な加熱ができる。 よってどのような被加熱物でも 均一に効率よく加熱することができる。
導波管内の回転体などの駆動体と複数の開口を有する構成とすれば、 回転体の 回転により複数の開口のうち電磁波の出やすい開口と出にくい開口を切り替え、 見かけ上いろいろな電界をこまめに切り替えられることになり、 被加熱物を全体 的に均一に加熱できる。
導波管内部に回転体などの駆動体を構成すれば、 簡単な構成で場所を取らず、 全体の大きさに対する加熱室内部の有効容積を維持できる。
操作キーの入力に応じて駆動体が複数の動作パターンを切り替える構成とすれ ば、 一定回転に比べると被加熱物や全体の加熱シーケンスに合わせて最適な電界 分布を切り替えながら加熱できるため、 より一層均一に加熱できる。
また逆に、 電界分布を切り替えるほどの分布の良さが要求されない場合 (たと えば対流により底面さえ加熱しておけば分布が均一になる牛乳などの液体状のも の) が入力された時、 最も整合の取れた位置に回転体を停止させることもできる。 この時は効率良く被加熱物を加熱できるので、 加熱時間が短くて済み、 使用者の 待ち時間を短くできる。 また同様に、 損失が減り省電力化が図れる。 さらに同様 に電磁波放射手段での熱ストレスが減り、 信頼性が増す。
検出手段で被加熱物や加熱室内の状態を検出しそれに応じて回転体が複数の動 作パターンを切り替える構成とすれば、 被加熱物の状態に合わせて最適な電界分 布を切り替えながら加熱できるため、 より一層均一に加熱できる。
また逆に、 検出手段により、 電界分布を切り替えるほどの分布の良さが要求さ れない状態 (たとえば対流により底面さえ加熱しておけば分布が均一になる牛乳 などの液体状のもの) と判断すれば、 その後最も整合の取れた位置に回転体を停 止させることもできる。 この時は効率良く被加熱物を加熱できるので、 加熱時間 が短くて済み、 使用者の待ち時間を短くできる。 また同様に、 損失が減り省電力 化が図れる。 さらに同様に電磁波放射手段での熱ストレスが減り、 信頼性が増す。 冷凍食品を用いる場合 (解凍調理の場合) に回転体を回転動作させるので、 加 熱室内の電界は常に変化し、 冷凍食品の一部分への電磁波の集中を防ぐことがで きる。 よって全体が凍っているのに一部分だけ煮えるような解凍特有の分布むら を起こしにく くできる。
操作キーで牛乳や汁物を入力したときには食品載置台を回転させないようにす れば、 回転による整台状態の変化は起こらない。 このとき整台が取れれば最も効 率良く加熱できる。 またこのときは、 ターンテーブルの回転のための電力が不要 となり、 省電力化が図れる。 一般に牛乳や汁物など液体状のものは、 ターンテー ブルの回転や停止による分布への影響は少ないため、 分布むらの問題は起こらな い。
検出手段で被加熱物が液体状と判別したときには食品載置台を回転させないよ うにすれば、 回転による整合状態の変化は起こらない。 このとき整合が取れれば 最も効率良く加熱できる。 またこのときは、 食品載置台の回転のための電力が不 要となり、 省電力化が図れる。 電磁波を複数の開口部を介して加熱室内に導けば、 開口部ごとに異なった電界 分布を起こすことができ、 一つの開口部の場合に比べて被加熱物を均一に加熱す ることができる。
また、 加熱室底面上に開口部を有すれば、 その開口位置によりおおよそ被加熱 物のどこを強く加熱できるかが決まり、 ねらった分布をつくりやすい。 また、 同 様に加熱室底面上に開口部を有すれば、 比較的被加熱物と開口部の位置が近く、 加熱効率が良い。 よって加熱時間が短くて良いので使用者の待ち時間を短くでき、 余分な電力の消費を極力抑えることができるので省エネルギー化が図れ、 電磁波 放射手段での損失が減るため信頼性が向上する。
被加熱物の高さ方向の位置を変化させるかもしくは被加熱物と被加熱物底面下 の導電性を有する部材との距離を変化させれば、 加熱室内の電界分布が同じでも 被加熱物内の加熱分布を変化させる事ができ、 分布を自由にコントロールできる c 開口部の切り替えにより、 操作キーの入力や検出部の出力に応じて複数の開口 部のうち電磁波の出やすい開口部を切り替えれば、 操作内容や検出内容に合った 加熱分布を起こすことができ、 被加熱物の加熱分布の均一化が図れる。
開口部の切り替えにより、 被加熱物が液体状の場合は複数の開口部のうち被加 熱物の底面中央にもっとも近い開口部から電磁波を出やすくすれば、 被加熱物の 底面中央を集中的に加熱することができ、 他の部分より温度を高くできる。 そし てこのとき被加熱物は液体状なので対流が起こり上下方向には自然に温度が平均 化され、 液体状の被加熱物に特有の問題である上部の加熱しすぎが無く、 上下に 温度差の無い均一な加熱分布が実現できる。
開口部の切り替えにより、 被加熱物がある程度以上高さが高いかまたは重量が 重い場合は複数の開口部のうち被加熱物の底面中央にもっとも近い開口部からは 電磁波が出にく くなるようにすれば、 大きな被加熱物に特有の問題である底面を 加熱しすぎることによる焦げつきや下部の加熱しすぎが無く、 上下に温度差の無 い均一な加熱分布が実現できる。
操作キーの入力や検出手段の出力に応じて、 被加熱物の高さ方向の位置を変化 させるかもしくは被加熱物と被加熱物底面下の導電性を有する部材との距離を変 化させれば、 操作内容や検出内容によって加熱分布を変化させることができ、 目 的に応じた最適な加熱分布が得られる。
被加熱物がある程度以上高さが低いかまたは重量が軽い場合は、 披加熱物の高 さ方向の位置を上げるかもしくは被加熱物と被加熱物底面下の導電性を有する部 材との距離を大きくすれば、 小さな被加熱物に特有の問題である電界の局所的な 集中の無い均一な加熱分布が実現できる。
シール部が複数の開口部のうち第一の開口部と第二の開口部の間で導波管から 分岐する副導波管内を移動可能とすれば、 シール部の移動により見かけ上導波管 から加熱室内へ電磁波を伝送しやすい開口部を切り替えることができ、 加熱分布 を自由に変化させることができる。
同様に、 開口部を切り替える際にスパークや電波漏洩が起こらないので極めて 安全である。
シール部の移動により、 操作キーの入力や検出部の出力に応じて導波管から加 熱室内へ電磁波の出やすい開口部を切り替えれば、 操作内容や検出内容に台った 加熱分布を起こすことができ、 被加熱物の加熱分布の均一化が図れる。
第一の温度センサにより被加熱物の垂直方向の複数箇所の温度やその温度変化 を検出し、 第二の温度センサにより被加熱物の水平方向の複数箇所の温度やその 温度変化を検出すれば、 被加熱物全体の温度分布が精度よく検出できる。
温度センサにより被加熱物の温度分布を検出し、 被加熱物の高さ方向の位置を 変化させるかもしくは被加熱物と被加熱物底面下の導電性を有する部材との距離 を変化させて、 低温部分に電磁波を集中させるかあるいは高温部分に電磁波を集 中させないようにすれば、 被加熱物の実際の温度に応じて加熱の分布むらを抑え ることができ、 極めて均一な加熱ができる。
温度センサにより被加熱物の温度分布を検出し、 開口部の切り替えにより複数 の開口部のうち電磁波の出やすい開口部を切り替えて、 低温部分に電磁波を集中 させるかあるいは高温部分に電磁波を集中させないようにすれば、 被加熱物の実 際の温度に応じて加熱の分布むらを抑えることができ、 極めて均一な加熱ができ る 温度センサの出力から被加熱物の低温部分の温度上昇度が大きくなるかあるい は高温部分の温度上昇度が小さくなると判断したとき、 すなわち温度むらが改善 できる状態になつたときに、 食品載置台の回転を停止するかあるいは減速すれば、 加熱分布がすみやかに改善でき、 分布むらを無くすことができ、 極めて均一な加 熱が実現できる。
温度センサの出力から被加熱物の複数箇所の温度差がある値以上になると判断 したときに、 送風部の回転数を上げるかあるいは吸気口を広げるかあるいは風の 流れを良くするなどの方法により加熱室内に入る風量を増やせば、 全体の周囲の 温度が平均化されるとともに、 その間は被加熱物内の熱伝導によっても温度が平 均化されて、 分布むらを無くすことができ、 極めて均一な加熱が実現できる。 加熱室と導波管とを複数の開口部で接続し、 加熱室底面の中央部 (縦の中央か つ横の中央) に第一の開口部を有する構成とすれば、 第一の開口部で被加熱物の 底面中央部を加熱するとともに、 その他の開口部で被加熱物の縁を加熱するので、 全体的に均一に加熱することができる。
長方形の加熱室底面のすべての辺が長方形の開口部のいずれかの辺と平行にす る構成とすれば、 電磁波放射手段から放射された電磁波により開口部をはさみ込 む様に逆向きの強電界が発生し、 加熱室を空胴共振器と考えて計算した時のよう なねらつた電界分布が加熱室底面上に定在波分布として生じる。 よつて加熱室内 のモードを (少なくとも開口部付近では) ねらった通りのモードとすることがで き、 被加熱物をねらった通りの加熱分布にすることができる。
開口遮蔽部で複数の開口部の少なくとも一つを遮蔽すれば、 遮蔽されていない 開口部ごとに生じる定在波分布を切り換えたり、 いろいろな定在波を混在させる ことができるため、 被加熱物の加熱分布を切り換えたり組み合わせたりして均一 化することができる。
複数の開口部を有し、 任意の一つの開口部を除く他の開口部を遮蔽した場合に 整合を取る (定格出力が出る) 構成とすれば、 どの開口部から給電された場合で も効率よく被加熱物を加熱することができる。 よって加熱時間が短くて済み、 使 用者の待ち時間を短くする効果がある。 また同様に省電力化が図れる効果がある さらに同様に電磁波放射手段の熱ス卜レスが減り信頼性が増す。
開口遮蔽部は加熱室底面の中央部 (縦の中央かつ横の中央) 以外の位置の回転 軸を中心に回転することで開口部を遮蔽すれば、 加熱室内の電界分布を攪拌し、 被加熱物の加熱分布を均一化できる。 また同様に開口部を加熱室底面の中央部に 設けることができるので、 簡単な構成で、 被加熱物の底面中央部を加熱したり、 加熱しなかつたりを切り換えられるので、 さらに均一に加熱することができる。 開口遮蔽部は開口部を一定速度の回転運動で遮蔽すれば、 一定速度で回転させ る駆動部で実現できる。 よって簡単な構成 (安価で作りやすい構成) で加熱室内 の電界分布を変化させて、 被加熱物の加熱分布を均一化できる。
円板形状の開口遮蔽部で開口部を遮蔽すれば、 角の無い開口遮蔽部が実現でき る。 よって簡単な構成 (安価で作りやすい構成) で加熱室内の電界分布を変化さ せて、 被加熱物の加熱分布を均一化できる効果がある。 また同様に角の無い開口 遮蔽部なので、 他の構成要素との接触などで破損したりする危険が少なく、 安全 性を高めることができる。
開口遮蔽部は樹脂などの電磁波透過部と金属などの電磁波遮断部とから構成す れば、 駆動部によりその位置が変わると、 電磁波の透過と遮断の状態を変えるこ とができる。 よって加熱室内の定在波分布を切り換えたり、 いろいろな定在波を 混在させたり、 電界分布を攪拌したりできるので、 被加熱物の加熱分布を均一化 できる。 また同様に、 電磁波透過部により開口部と電磁波遮断部の間のスパーク を防止でき、 安全性を高めることができる。
複数の開口部の開口面積について、 前記被加熱物の底面中央に最も近くにある 開口部の開口面積を最小にする構成とすれば、 最小の開口部から出る電磁波を他 の開口部から出る電磁波より少なくすることができる。 よって同じ開口面積では 他の開口部より分布への影響が大きすぎる、 もっとも加熱室底面よりかつ被加熱 物よりにある開口部の分布への影響を抑制し、 他の開口部の分布への影響を高め ることで、 被加熱物の加熱分布をより一雇均一化できる。
前記被加熱物の底面中央に最も近くにある開口部を除く他の開口部を遮蔽した 場合に整合を取らない (定格出力が出ない) 構成とすれば、 この時に出る電磁波 を他の開口部から出る電磁波より少なくすることができる。 よって同じ整合状態 では他の開口部より分布への影響が大きすぎる、 前記被加熱物の底面中央に最も 近くにある開口部の分布への影響を抑制し、 他の開口部の分布への影響を高める ことで、 被加熱物の加熱分布をより一層均一化できる。
開口遮蔽部は一定でない速度で運動しながら開口部を遮蔽すれば、 開口部ごと に、 開放動作 ·遮蔽動作に要する時間や開放している時間 ·遮蔽している時間を 変えることができる。 よって、 安定して電磁波が加熱室内に入らず定在波分布の 立ちにくい開放動作 ·遮蔽動作に要する時間や遮蔽している時間を短く して、 安 定して電磁波が加熱室内に入り定在波分布の立つ開放している時間を長くするこ とで効率よく被加熱物を加熱することができる。 よつて加熱時間が短くて済み、 使用者の待ち時間を短くする効果がある。 また同様に省電力化が図れる効果があ る。 さらに同様に電磁波放射手段の熱ストレスが減り信頼性が増す効果がある。 産業上の利用可能性
以上のように、 本発明の高周波加熱装置は、 被加熱物の任意の部位を加熱する ことができるとともに、 いろいろな部位の加熱を組み合わせることにより被加熱 物全体の加熱分布を均一にすることができるので、 様々な食品を加熱調理する電 子レンジ等として使用するのに適している。

Claims

請 求 の 範 囲
1 . 電磁波を放射する電;!波放射手段と、 該電磁波放射手段が放射した前記電磁 波で被加熱物の任意の部位を加熱できる局所加熱手段と、 該局所加熱手段を制御 する制御手段とを備えたことを特徴とする高周波加熱装置。
2. 被加熱物と局所加熱手段との間に保護手段を有し、 該保護手段は前記局所加 熱手段による被加熱物の任意の部位の加熱を妨げない構成とした請求項 1記載の 高周波加熱装置。
3. 被加熱物を載置する載置台を有し、 局所加熱手段は前記載置台よりも下に位 置し、 保護手段は前記載置台と前記局所加熱手段の間に位置する構成とした請求 項 2記載の高周波加熱装置。
4. 被加熱物を載置する載置台と、 該載置台と保護手段とを兼用するかまたは前 記載置台の一部に前記保護手段を有し、 局所加熱手段は前記保護手段よりも下に 位置する構成とした請求項 2記載の高周波加熱装置。
5 . 保護手段は、 少なくとも一部に誘電体を有する構成とした請求項 2ないし 4 のいずれか 1項に記載の高周波加熱装置。
6. 被加熱物を収納する加熱室と、 駆動軸を中心に局所加熱手段を回転駆動する 駆動手段を有し、 前記駆動軸は前記加熱室の底面の中央以外の位置に構成した請 求項 1記載の高周波加熱装置。
7 . 被加熱物を収納する加熱室を有し、 局所加熱手段は、 電磁波放射手段が放射 した電磁波を導く導波部と、 該導波部が導いた前記電磁波を前記加熱室内に放射 する放射部と、 該放射部を駆動する駆動手段を有する構成とした請求項 1記載の 高周波加熱装置。
8. 放射部は電磁波結合部を有し、 駆動手段と前記電磁波結合部を接铳し、 制御 手段は、 放射部が前記電磁波結合部を中心に回転駆動するように前記駆動手段を 制御する構成とした請求項 7記載の高周波加熱装置。
9. 導波部は電磁波放射手段と加熱室を接铳する導波管を有し、 電磁波結合部は 前記導波管内と前記加熱室内とに渡る構成とした請求項 8記載の高周波加熱装置 c
1 0. 電磁波放射手段から電磁波結合部までの電磁波が通過する距離を常に略一 定とした請求項 8または 9記載の高周波加熱装置。
1 1 . 電磁波放射手段から電磁波結合部までの電磁波が通過する距離を、 前記電 磁波の通過経路における波長を λ gとして、 λ g Z 2の略整数倍とした請求項 1 0記載の高周波加熱装置。
1 2. 放射部は、 被加熱物よりも下に位置する構成とした請求項 7ないし 1 1の いずれか 1項に記載の高周波加熱装置。
1 3. 被加熱物を収納する加熱室を有し、 局所加熱手段は、 電磁波放射手段が放 射した電磁波を導く導波部と、 該導波部が導いた前記電磁波を前記加熱室内に放 射する放射部とを有し、 前記電磁波放射手段から前記放射部までの電磁波が通過 する距離を常に略一定とした請求項 1記載の高周波加熱装置。
1 4. 電磁波放射手段から放射部までの電磁波が通過する距離を、 前記電磁波の 通過経路における波長を λ gとして、 ス g / 2の略整数倍とした請求項 1 3記載 の高周波加熱装置。
1 5. 被加熱物を載置する載置台を有し、 局所加熱手段は前記載置台の半径方向 の任意の方向に電磁波を導く構成とした請求項 1記載の高周波加熱装置。
1 6. 被加熱物を載置する載置台を有し、 該載置台は、 導電性材料からなる電磁 波遮蔽部と、 中心近傍に電磁波透過部とを有する構成とした請求項 1記載の高周 波加熱装置。
1 7. 電磁波透過部は回転方向に電磁波の波長の 1ノ 2以上の長さを有する構成 とした請求項 1 6記載の高周波加熱装置。
1 8. 被加熱物を載置する載置台を有し、 該載置台は電磁波が透過する材料で構 成した請求項 1記載の高周波加熱装置。
1 9. 被加熱物を収納する加熱室と、 前記被加熱物を載置する載置台を有し、 前 記加熱室の底面上に上方に向かって前記載置台以上の大きさの凸部を有する構成 とした請求項 1記載の高周波加熱装置。
2 0. 被加熱物を載置する載置台と、 該載置台を駆動する載置台駆動手段を有し- 制御手段は、 局所加熱手段の制御と前記載置台駆動手段の制御とを連動して行な う構成とした請求項 1記載の高周波加熱装置。
2 1 . 制御手段は、 局所加熱手段の制御と、 載置台駆動手段を減速または停止さ せる制御とを、 同時に、 または、 前後して行なう構成とした請求項 2 0記載の高 周波加熱装置。
2 2. 制御手段は、 局所加熱手段の制御と電磁波放射手段の制御とを連動して行 なう構成とした請求項 1記載の高周波加熱装置。
2 3. 制御手段は、 電磁波放射手段を制御して出力を減少するか 0とした後で局 所加熱手段を制御する構成とした請求項 2 2記載の高周波加熱装置。
2 4 . 制御手段は、 局所加熱手段を制御した後で電磁波放射手段を制御して出力 を增加させる構成とした請求項 2 2または 2 3記載の高周波加熱装置。
2 5. 被加熱物の物理量を検出する検出手段を有し、 制御手段は前記検出手段の 出力に基づいて局所加熱手段を制御する構成とした請求項 1記載の高周波加熱装
2 6 . 被加熱物を載置する載置台を有し、 検出手段は前記載置台の半径方向の任 意の位置の被加熱物の物理量を検出する構成とした請求項 2 5記載の高周波加熱 装置。
2 7 . 載置台を回転駆動する載置台駆動手段と、 検出手段を駆動する駆動手段を 有し、 前記検出手段の検出点を載置台の半径方向に往復移動させる構成とした請 求項 2 6記載の高周波加熱装置。
2 8 . 載置台駆動手段の回転周期は駆動手段の往復の周期の整数倍とした請求項 2 7記載の高周波加熱装置。
2 9 . 検出手段は、 被加熱物の任意の部位の温度を検出できる温度検出手段を有 する構成とした請求項 2 5ないし 2 8記載の高周波加熱装置。
3 0. 制御手段は、 温度検出手段より被加熱物部分を抽出する被加熱物抽出手段 と、 該被加熱物抽出手段で抽出した被加熱物部分より低温部分を抽出する低温部 分抽出手段とを有する構成とした請求項 2 9記載の高周波加熱装置。
3 1 . 被加熱物抽出手段は、 温度検出手段の各検出箇所の加熱開始初期からの温 度変化を演算する温度変化演算手段と、 該温度変化演算手段の演算結果と所定値 とを比較する温度変化比較手段とを有し、 該温度変化比較手段の比較結果より前 記温度変化演算手段の演算結果が所定値より大なる検出箇所を被加熱物とする請 求項 2 9または 3 0記 の高周波加熱装置。
3 2 . 被加熱物抽出手段は、 温度検出手段の各検出箇所の加熱開始初期からの温 度変化を演算する温度変化演算手段と、 該温度変化演算手段の演算結果の隣接す る検出箇所との差を演算して被加熱物の輪郭を抽出する輪郭抽出手段を有する請 求項 2 9または 3 0記載の高周波加熱装置。
3 3. 使用者が加熱範囲を設定する加熱範囲設定手段を有し、 制御手段は、 前記 加熱範囲設定手段で設定された加熱範囲における低温部分を抽出する低温部分抽 出手段を有し、 該低温部分抽出手段の抽出結果に基づき局所加熱手段を制御する 構成とした請求項 2 5ないし 3 2記載の高周波加熱装置。
3 4 . 加熱範囲設定手段は、 使用者が設定した加熱範囲を登録コードとともに登 録する登録手段と、 該登録手段で登録された加熱範囲を登録コードとともに記憶 する登録記憶手段と、 使用者が登録コードにより対応する加熱範囲を呼び出す登 録呼出手段を有する構成とした請求項 3 3記載の高周波加熱装置。
3 5. 検出手段は、 被加熱物の形状を検出する形状検出手段または被加熱物の重 量を検出する重量検出手段の少なくとも一つを有する構成とした請求項 2 5ない し 3 4記載の高周波加熱装置。
3 6 . 制御手段は、 加熱開始の前後に形状検出手段または重量検出手段の少なく とも一方により加熱すべき領域を判定する領域判定制御手段を有する構成とした 請求項 3 5記載の高周波加熱装置。
3 7 . 被加熱物を収納する加熱室と、 該加熱室内の状態を示す物理量を検出する 検出手段とを有し、 制御手段は前記検出手段の出力に基づいて局所加熱手段を制 御する構成とした請求項 1記載の高周波加熱装置。
3 8 . 制御手段は、 検出手段の出力の変化に基づいて局所加熱手段を制御する構 成とした請求項 2 5または 3 7記載の高周波加熱装置。
3 9. 制御手段は、 電磁波放射手段が電磁波を放射し始めてから.しばらくの間は, 検出手段の出力を受けないかまたは前記検出手段の出力を無視する構成とした請 求項 2 5または 3 7記載の高周波加熱装置。
4 0. 使用者が設定できる設定手段を有し、 制御手段は、 前記設定手段により局 所加熱手段を制御する構成とした請求項 1記載の高周波加熱装置。
4 1 . 設定手段は、 使用者が被加熱物の種類または加熱出力の大きさまたは加熱 時間または加熱方法の少なくとも一つを設定できる第 1の操作キーと、 加熱の開 始を設定できる第 2の操作キーとを有し、 制御部は、 前記第 1の操作キーの設定 により局所加熱手段を制御し、 前記第 2の操作キーの設定により電磁波放射手段 を制御する構成とした請求項 4 0記載の高周波加熱装置。
4 2. 制御手段は、 電磁波の方向を、 被加熱物の有る方向と、 前記被加熱物の無 t、方向とを切り替えるよう局所加熱手段を制御する構成とした請求項 1記載の高 周波加熱装置。
4 3. 制御手段は、 被加熱物の略底面中央の加熱と、 前記被加熱物の略周囲の加 熱とを切り替えるよう、 局所加熱手段を制御する構成とした請求項 1記載の高周 波加熱装置。
4 4. 制御手段は、 被加熱物の加熱部位を 2次元ないし 3次元で切り替えるよう、 局所加熱手段を制御する構成とした請求項 1記載の高周波加熱装置。
4 5. 制御手段は、 局所加熱手段による電磁波の放射の方向の軌跡を螺旋状に制 御する構成とした請求項 4 4記載の高周波加熱装置。
4 6. 制御手段は、 局所加熱手段を断铳的に制御して限られた部分に電磁波を集 中する断続制御手段を有する構成とした請求項 1記載の高周波加熱装置。
4 7. 制御手段は、 局所加熱手段を連続的に制御して広範囲の部分に均一に電磁 波を放射する連続制御手段を有する構成とした請求項 1記載の高周波加熱装置。
4 8. 制御手段は、 局所加熱手段を断続的に制御して限られた部分に電磁波を集 中する断続制御手段と、 前記局所加熱手段を連続的に制御して広範囲の部分に均 —に電磁波を放射する連続制御手段と、 前記断続制御手段と前記連続制御手段を 切り替える切り替え制御手段を有する構成とした請求項 1記載の高周波加熱装置 c 4 9. 局所加熱手段の位置を検出する位置検出手段を有し、 制御手段は前記位置 検出手段により前記局所加熱手段を制御する構成とした請求項 1記載の高周波加 熱装置。
5 0. 制御手段は、 加熱開始時または加熱終了時の少なくとも一方で、 局所加熱 手段を所定の位置に制御する構成とした請求項 1記載の高周波加熱装置。
5 1 . 所定の位置は、 軽量の被加熱物に適した位置または短時間の加熱に適した 位置とする請求項 5 0記載の高周波加熱装置。
5 2. 局所加熱手段は、 加熱室に電磁波を導く複数の開口部を有する構成とした 請求項 1記載の高周波加熱装置。
5 3. 制御手段は、 複数の開口部を切り替えるよう局所加熱手段を制御する構成 とした請求項 5 2記載の高周波加熱装置。
5 4 . 局所加熱手段は、 複数の開口部のうち少なくとも一つの開口部を遮蔽する 開口遮蔽部を有し、 制御手段は、 前記開口遮蔽部を制御する構成とした請求項 5 2または 5 3記載の高周波加熱装置。
5 5. 開口部と開口遮蔽部との間の電磁波を遮蔽するシール部を有する構成とし た請求項 5 4記載の高周波加熱装置。
5 6. 複数の開口部のうち少なくとも一つの開口部を加熱室の底面に構成した請 求項 5 2記載の高周波加熱装置。
5 7. 複数の開口部の開口面積が異なる構成とした請求項 5 2記載の高周波加熱 装置。
5 8. 複数の開口部により加熱室底面上に異なった電界を起す構成とした請求項 5 2記載の高周波加熱装置。
5 9. 局所加熱手段は、 加熱室に電磁波を導く導波管と、 該導波管内に駆動体を 有する構成とした請求項 1記載の高周波加熱装置。
6 0. 局所加熱手段は、 電磁波放射手段から放射される電磁波を伝送する第 1の 導波管と、 加熱室内に電磁波を導くため前記第 1の導波管より分岐する複数の導 波管を有する構成とした請求項 1記載の高周波加熱装置。
6 1 . 局所加熱手段は、 被加熱物の高さ方向の位置を変化させる構成とした請求 項 1記載の高周波加熱装置。
6 2. 局所加熱手段は、 被加熱物と該被加熱物の底面下の部材との距離を変化さ せる構成とした請求項 1記載の高周波加熱装置。
6 3 . 加熱室内に風を送るファンを有し、 制御手段は加熱室に入る風量を制御す る構成とした請求項 1記載の高周波加熱装置。
PCT/JP1995/002145 1994-04-07 1995-10-19 High-frequency heating device WO1996013140A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA002202976A CA2202976C (en) 1994-10-20 1995-10-19 High-frequency heating apparatus
AU37096/95A AU695236B2 (en) 1994-10-20 1995-10-19 High-frequency heating device
US08/809,436 US5986249A (en) 1994-10-20 1995-10-19 High frequency heating apparatus for providing a uniform heating of an object
KR1019970702565A KR100270747B1 (ko) 1994-10-20 1995-10-19 고주파 가열장치
DE69534104T DE69534104T2 (de) 1994-10-20 1995-10-19 Hochfrequenz-heizeinrichtung
BR9509398-2A BR9509398A (pt) 1994-10-20 1995-10-19 Aparelho de aquecimento de alta frequéncia
EP95934842A EP0788296B1 (en) 1994-04-07 1995-10-19 High-frequency heating device
HK98100815A HK1001810A1 (en) 1994-10-20 1998-02-04 High-frequency heating device.
HK98101247A HK1002218A1 (en) 1994-10-20 1998-02-18 High-frequency heating device
US09/373,644 US6172348B1 (en) 1994-04-07 1999-08-13 High frequency heating apparatus

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP6/255066 1994-10-20
JP06255066A JP3082597B2 (ja) 1994-10-20 1994-10-20 高周波加熱装置
JP6/274999 1994-11-09
JP6274999A JP3063546B2 (ja) 1994-11-09 1994-11-09 高周波加熱装置
JP6/274997 1994-11-09
JP6274997A JP3063545B2 (ja) 1994-11-09 1994-11-09 高周波加熱装置
JP07124749A JP3103745B2 (ja) 1995-05-24 1995-05-24 高周波加熱装置
JP7/124749 1995-05-24
JP7175744A JP2894250B2 (ja) 1995-07-12 1995-07-12 高周波加熱調理器
JP7/175744 1995-07-12
JP7/191700 1995-07-27
JP19170095A JP2853610B2 (ja) 1995-07-27 1995-07-27 高周波加熱装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/373,643 Division US6274859B1 (en) 1994-04-07 1999-08-13 High frequency heating apparatus for selective heating of a desired portion of an object

Publications (1)

Publication Number Publication Date
WO1996013140A1 true WO1996013140A1 (en) 1996-05-02

Family

ID=27552661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002145 WO1996013140A1 (en) 1994-04-07 1995-10-19 High-frequency heating device

Country Status (10)

Country Link
US (2) US5986249A (ja)
EP (3) EP1220572A3 (ja)
KR (1) KR100270747B1 (ja)
CN (3) CN1301040C (ja)
AU (1) AU695236B2 (ja)
BR (1) BR9509398A (ja)
CA (1) CA2202976C (ja)
DE (2) DE69536097D1 (ja)
HK (3) HK1001810A1 (ja)
WO (1) WO1996013140A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2301543A (en) * 1996-09-24 1996-12-11 Tarmac Quarry Products Ltd Method of separating aggregate and cement fines contained in concrete slurry

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366022B1 (ko) 1999-06-18 2002-12-26 삼성전자 주식회사 전자렌지의 회전접시 구동장치 및 이를 가지는 전자렌지
BR0001932A (pt) * 2000-02-23 2001-11-13 Multibras Eletrodomesticos Sa Forno de microondas
JP2001241669A (ja) * 2000-02-29 2001-09-07 Sanyo Electric Co Ltd 電子レンジ
CN1201634C (zh) * 2000-04-17 2005-05-11 松下电器产业株式会社 高频加热器具
JP2002013743A (ja) * 2000-04-28 2002-01-18 Sanyo Electric Co Ltd 電子レンジ
JP3825644B2 (ja) 2001-02-28 2006-09-27 三洋電機株式会社 電子レンジ
JP2002257351A (ja) 2001-02-28 2002-09-11 Sanyo Electric Co Ltd 電子レンジ
DE10120136A1 (de) * 2001-04-25 2002-11-14 Frima Sa Garverfahren und Gargerät mit automatischer Garguterkennung
US6592364B2 (en) 2001-11-30 2003-07-15 David Zapata Apparatus, method and system for independently controlling airflow in a conveyor oven
JP3827303B2 (ja) * 2002-03-12 2006-09-27 松下電器産業株式会社 蒸気発生機能付き高周波加熱装置
JP2005106362A (ja) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd 高周波加熱調理器
JP2005143353A (ja) * 2003-11-13 2005-06-09 Matsushita Electric Ind Co Ltd 解凍方法
US7582852B2 (en) * 2004-03-12 2009-09-01 Acp, Inc. Microwave intensification system for rapid, uniform processing of food items
US6867402B1 (en) 2004-04-08 2005-03-15 Maytag Corporation System for sensing the presence of a load in an oven cavity of a microwave cooking appliance
CN103384422B (zh) 2006-02-21 2016-11-09 高知有限公司 电磁加热
US8839527B2 (en) * 2006-02-21 2014-09-23 Goji Limited Drying apparatus and methods and accessories for use therewith
US8653482B2 (en) 2006-02-21 2014-02-18 Goji Limited RF controlled freezing
US10674570B2 (en) 2006-02-21 2020-06-02 Goji Limited System and method for applying electromagnetic energy
US7652389B2 (en) * 2006-06-26 2010-01-26 Clint Farmer Air-wind power system for a vehicle
US20090236334A1 (en) * 2006-07-10 2009-09-24 Rf Dynamics Ltd Food preparation
EP2127481A1 (en) 2007-02-21 2009-12-02 RF Dynamics Ltd. Rf controlled freezing
IL184672A (en) 2007-07-17 2012-10-31 Eran Ben-Shmuel Apparatus and method for concentrating electromagnetic energy on a remotely-located object
EP2187749A4 (en) * 2007-08-14 2011-04-20 Charm Sciences Inc METHOD AND DEVICE FOR CONCENTRATING SAMPLES
US9131543B2 (en) 2007-08-30 2015-09-08 Goji Limited Dynamic impedance matching in RF resonator cavity
KR101797837B1 (ko) 2008-11-10 2017-11-15 고지 엘티디. 에너지 제어 장치 및 방법
DE102009005358A1 (de) 2009-01-16 2010-07-22 Krones Ag Resonatoreinheit, Expansionsverfahren und Vorrichtung zur Erwärmung von Behältnissen
CN102348934B (zh) * 2009-03-30 2014-04-09 夏普株式会社 加热烹调器
EP2247160B1 (en) * 2009-05-02 2012-11-28 Electrolux Home Products Corporation N.V. A microwave sealing device of an opening for a rotating shaft
US20120241445A1 (en) * 2009-09-01 2012-09-27 Lg Electronics Inc. Cooking appliance employing microwaves
EP2499505B2 (en) 2009-11-10 2021-05-05 Goji Limited Device and method for controlling energy
MX2012012706A (es) 2010-05-03 2013-04-29 Goji Ltd Analisis modal.
US9161395B2 (en) 2011-06-30 2015-10-13 Cem Corporation Instrument for performing microwave-assisted reactions
JPWO2013018358A1 (ja) * 2011-08-04 2015-03-05 パナソニック株式会社 マイクロ波加熱装置
EP2618634A1 (en) * 2012-01-23 2013-07-24 Whirlpool Corporation Microwave heating apparatus
DE102012004204A1 (de) * 2012-03-01 2013-09-05 Topinox Sarl Gargerät und Verfahren zur Steuerung eines Gargeräts
EP2824991B1 (en) * 2012-03-09 2019-11-27 Panasonic Corporation Microwave heating device
KR101887054B1 (ko) * 2012-03-23 2018-08-09 삼성전자주식회사 적외선 검출 장치 및 이를 포함하는 가열 조리 장치
US9538880B2 (en) * 2012-05-09 2017-01-10 Convotherm Elektrogeraete Gmbh Optical quality control system
JP2014033003A (ja) * 2012-08-01 2014-02-20 Tokyo Electron Ltd 被処理体の処理方法
DE102012222156A1 (de) * 2012-12-04 2014-06-05 BSH Bosch und Siemens Hausgeräte GmbH Mikrowellengerät
US9420641B2 (en) 2013-01-23 2016-08-16 Whirlpool Corporation Microwave oven multiview silhouette volume calculation for mass estimation
US10356855B2 (en) 2013-04-19 2019-07-16 Panasonic Intellectual Property Management Co., Ltd. Microwave heating apparatus
JP6586274B2 (ja) * 2014-01-24 2019-10-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 調理装置、調理方法、調理制御プログラム、および、調理情報提供方法
WO2015141206A1 (ja) * 2014-03-18 2015-09-24 パナソニックIpマネジメント株式会社 加熱調理器
US9888804B2 (en) 2014-04-07 2018-02-13 Whirlpool Emea S.P.A. Oven comprising weight sensors
US10827568B2 (en) * 2014-05-13 2020-11-03 Centre National de la Recherche Scientifique—CNRS Microwave oven
US11252792B2 (en) 2014-06-18 2022-02-15 Spot Labs, Llc Device for selective heating of materials in an electromagnetic oven
DE112015003208T5 (de) * 2014-07-10 2017-03-30 Panasonic Intellectual Property Management Co., Ltd. Mikrowellen-Heizvorrichtung
CN105605630B (zh) * 2014-11-21 2019-04-16 上海松下微波炉有限公司 双动力烧烤微波炉及其烹饪方法
KR101680969B1 (ko) * 2015-05-15 2016-12-12 엘지전자 주식회사 컨트롤 어셈블리 및 컨트롤 어셈블리가 구비된 조리 기기
KR102414251B1 (ko) * 2015-10-13 2022-06-29 삼성전자주식회사 조리 장치 및 이의 제어 방법
WO2017077695A1 (ja) * 2015-11-05 2017-05-11 パナソニックIpマネジメント株式会社 加熱調理器
KR102399409B1 (ko) 2015-11-12 2022-05-19 삼성전자주식회사 오븐 및 오븐의 도어 개폐 방법
USD827356S1 (en) 2016-02-11 2018-09-04 Whirlpool Corporation Oven
USD819386S1 (en) 2016-02-11 2018-06-05 Whirlpool Corporation Oven
CN108781486B (zh) * 2016-03-25 2021-08-10 松下知识产权经营株式会社 微波加热装置
US10531526B2 (en) * 2016-06-30 2020-01-07 Nxp Usa, Inc. Solid state microwave heating apparatus with dielectric resonator antenna array, and methods of operation and manufacture
BR112018077367A2 (pt) * 2016-07-01 2019-04-09 Electrolux Appliances AB sistema de alimentação por micro-ondas
WO2018056977A1 (en) 2016-09-22 2018-03-29 Whirlpool Corporation Method and system for radio frequency electromagnetic energy delivery
EP3530074A4 (en) 2016-10-19 2020-05-27 Whirlpool Corporation MODULATION OF THE COOKING TIME OF FOOD
EP3529536B1 (en) 2016-10-19 2021-07-14 Whirlpool Corporation System and method for food preparation utilizing a multi-layer model
WO2018075026A1 (en) 2016-10-19 2018-04-26 Whirlpool Corporation Method and device for electromagnetic cooking using closed loop control
EP3560292A4 (en) 2016-12-22 2020-11-25 Whirlpool Corporation ELECTROMAGNETIC COOKING PROCESS AND DEVICE USING NON-CENTERED LOADS
EP3560291A4 (en) 2016-12-22 2020-11-25 Whirlpool Corporation METHOD AND DEVICE FOR ELECTROMAGNETIC COOKING USING NON-CENTERED LOAD MANAGEMENT BY SPECTROMODAL AXIS ROTATION
WO2018125137A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation System and method for analyzing a frequency response of an electromagnetic cooking device
EP3563633B1 (en) 2016-12-29 2021-11-17 Whirlpool Corporation System and method for detecting cooking level of food load
US11452182B2 (en) 2016-12-29 2022-09-20 Whirlpool Corporation System and method for detecting changes in food load characteristics using coefficient of variation of efficiency
WO2018125136A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation System and method for controlling a heating distribution in an electromagnetic cooking device
WO2018125147A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation Electromagnetic cooking device with automatic liquid heating and method of controlling cooking in the electromagnetic cooking device
EP3563634B1 (en) 2016-12-29 2021-10-13 Whirlpool Corporation Electromagnetic cooking device with automatic boiling detection and method of controlling cooking in the electromagnetic cooking device
EP3563632B1 (en) 2016-12-29 2023-01-18 Whirlpool Corporation Electromagnetic cooking device with automatic popcorn popping feature and method of controlling cooking in the electromagnetic device
WO2018125149A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation Electromagnetic cooking device with automatic melt operation and method of controlling cooking in the electromagnetic cooking device
EP3563631B1 (en) 2016-12-29 2022-07-27 Whirlpool Corporation Detecting changes in food load characteristics using q-factor
WO2018125130A1 (en) 2016-12-29 2018-07-05 Whirlpool Corporation System and method for controlling power for a cooking device
US11412585B2 (en) 2016-12-29 2022-08-09 Whirlpool Corporation Electromagnetic cooking device with automatic anti-splatter operation
USD909811S1 (en) 2016-12-30 2021-02-09 Whirlpool Corporation Panel for an oven
DE102017101407A1 (de) * 2017-01-25 2018-07-26 Frima International Ag Verfahren zum Betreiben eines Gargeräts sowie Baugruppe
CN107093283A (zh) * 2017-06-29 2017-08-25 颜厥电 一种自助点餐贩卖机
CN109936883B (zh) * 2017-12-15 2021-10-26 佛山市顺德区美的电热电器制造有限公司 加热控制方法、装置、加热器具和计算机可读存储介质
TWM560057U (zh) * 2017-12-27 2018-05-11 President Chain Store Corp 加熱裝置
CN110089916B (zh) * 2018-01-30 2021-04-20 广东美的生活电器制造有限公司 母乳或奶制品的解冻装置、解冻方法及烹饪器具
JP7029706B2 (ja) * 2018-02-28 2022-03-04 パナソニックIpマネジメント株式会社 加熱調理器
KR102524027B1 (ko) * 2018-05-04 2023-04-21 삼성전자주식회사 발열 제어를 위한 전자 장치 및 그의 동작 방법
CN108770107B (zh) * 2018-08-02 2024-04-19 电子科技大学 一种用于柱状物体加热的微波装置
DE102018219086A1 (de) * 2018-11-08 2020-05-14 BSH Hausgeräte GmbH Verfahren zum Betreiben eines Haushalts-Gargeräts und Haushalts-Gargerät
DE102019201332A1 (de) * 2019-02-01 2020-08-06 BSH Hausgeräte GmbH Haushalts-Gargerät und Verfahren zum Betreiben eines Haushalts-Gargeräts
US20220205850A1 (en) * 2019-04-30 2022-06-30 Gea Food Solutions Bakel Bv. Improved Temperature Measurement
DE102019213485A1 (de) * 2019-09-05 2021-03-11 BSH Hausgeräte GmbH Haushalts-Mikrowellengerät mit Mikrowellendom
CN110936611B (zh) * 2019-11-25 2024-02-06 贵州师范学院 一种基于微波均匀加热的3d打印机
CN111432514A (zh) * 2020-03-23 2020-07-17 成都赛纳微波科技有限公司 一种模块化周期加载微波加热设备
US20220015200A1 (en) * 2020-07-13 2022-01-13 Haier Us Appliance Solutions, Inc. Cooking appliance with variable microwave and turntable timing
CN114222390B (zh) * 2021-12-29 2024-07-30 广东美的厨房电器制造有限公司 烹饪器具、烹饪器具的控制方法和装置、可读存储介质

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852037A (ja) * 1971-11-04 1973-07-21
JPS4927943A (ja) * 1972-07-12 1974-03-12
JPS52129038A (en) * 1976-04-21 1977-10-29 Matsushita Electric Ind Co Ltd Cooking vessel for high frequency heating device
JPS5361848U (ja) * 1976-10-28 1978-05-25
JPS54162244A (en) * 1978-06-13 1979-12-22 Matsushita Electric Ind Co Ltd High-frequency heating device
JPS5527186Y2 (ja) * 1975-06-16 1980-06-28
JPS5611886A (en) * 1979-07-10 1981-02-05 Sanyo Electric Co Method of controlling electronic range
JPS56104096A (en) * 1980-01-22 1981-08-19 Kohjin Co Ltd Electrorecording stencil paper
JPS5769197U (ja) * 1980-10-14 1982-04-26
JPS57137901U (ja) * 1981-02-18 1982-08-28
JPS5920994A (ja) * 1982-07-23 1984-02-02 三洋電機株式会社 高周波加熱装置
JPS5983393A (ja) * 1982-11-02 1984-05-14 松下電器産業株式会社 高周波加熱装置
JPS5985281A (ja) * 1982-11-08 1984-05-17 Matsushita Electric Ind Co Ltd 加熱調理器具
JPS59215519A (ja) * 1983-05-24 1984-12-05 Toshiba Corp 調理器
JPS6010584A (ja) * 1983-06-29 1985-01-19 松下電器産業株式会社 高周波加熱装置
JPS61240029A (ja) * 1985-04-17 1986-10-25 Sanyo Electric Co Ltd 電子レンジ
JPH0119351Y2 (ja) * 1984-03-19 1989-06-05
JPH0130275B2 (ja) * 1984-08-10 1989-06-19 Matsushita Electric Ind Co Ltd
JPH01159529A (ja) * 1987-12-16 1989-06-22 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH01129793U (ja) * 1988-02-25 1989-09-04
JPH0148629B2 (ja) * 1984-04-24 1989-10-19 Matsushita Electric Ind Co Ltd
JPH01292793A (ja) * 1988-05-18 1989-11-27 Sharp Corp 電子レンジの均一加熱装置
JPH02114804U (ja) * 1989-02-27 1990-09-13
JPH0395312A (ja) * 1989-09-07 1991-04-19 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH03173094A (ja) * 1989-11-30 1991-07-26 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH04104498A (ja) * 1990-08-22 1992-04-06 Sharp Corp 電子レンジ
JPH04267094A (ja) * 1991-02-22 1992-09-22 Matsushita Electric Ind Co Ltd 加熱装置
JPH04319287A (ja) * 1991-04-19 1992-11-10 Mitsubishi Electric Home Appliance Co Ltd 高周波加熱調理器
JPH0574566A (ja) * 1991-09-13 1993-03-26 Toshiba Corp 高周波加熱装置
JPH05144566A (ja) * 1991-11-19 1993-06-11 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH06260275A (ja) * 1993-03-03 1994-09-16 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH06310268A (ja) * 1993-04-20 1994-11-04 Zojirushi Corp 調理物加熱方法
JPH06338388A (ja) * 1993-05-28 1994-12-06 Toshiba Corp 電子レンジ
JPH07142164A (ja) * 1993-11-15 1995-06-02 Toshiba Corp 高周波加熱装置及びその制御方法
JPH07161469A (ja) * 1993-12-13 1995-06-23 Toshiba Corp 高周波加熱装置
JP4064151B2 (ja) * 2001-05-21 2008-03-19 ヒューレット・パッカード・カンパニー Arsシステムを製造する方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB977777A (en) * 1962-02-02 1964-12-16 Lyons & Co Ltd J Improvements in or relating to radio frequency ovens
US4065654A (en) * 1975-12-01 1977-12-27 Chemetron Corporation Microwave oven adjusting (energy distribution) and tuning arrangement
JPS5815437B2 (ja) 1976-11-12 1983-03-25 三菱重工業株式会社 双子型クレ−ンの巾制御装置
GB2026862A (en) * 1978-08-04 1980-02-13 Robins Co Inc A H Filaricide implants containing diethylcarbamazine
JPS5769197A (en) * 1980-10-20 1982-04-27 Koyo Seiko Co Rubber elastic hose joint
JPS57137901A (en) * 1981-02-20 1982-08-25 Nippon Denso Co Ltd Driving device for electromagnetic operator
KR850000580B1 (ko) * 1983-12-31 1985-04-29 주식회사 금성사 마이크로파 오븐의 균일가열 장치
AU588137B2 (en) * 1986-10-15 1989-09-07 Matsushita Electric Industrial Co., Ltd. Microwave oven with heater
JPS6448629A (en) * 1987-08-14 1989-02-23 Suzuki Motor Co Detecting device for article position
JPS6419351A (en) * 1987-07-15 1989-01-23 Dainippon Screen Mfg Method for controlling dry part temperature of photosensitive material processor
JPS6430275A (en) * 1987-07-24 1989-02-01 Matsushita Electric Ind Co Ltd Manufacture of photovoltaic element
JPH01129793A (ja) * 1987-11-13 1989-05-23 Meidensha Corp 電動機のトルク制御方式
DE3811063A1 (de) * 1988-03-31 1989-10-19 Berstorff Gmbh Masch Hermann Vorrichtung zum kontinuierlichen erwaermen, pasteurisieren oder sterilisieren von lebensmitteln oder dergleichen
FR2632476B1 (fr) * 1988-06-07 1990-08-31 Boulard Michel Four a micro-ondes equipe d'un repartiteur d'ondes
JPH02114804A (ja) * 1988-10-20 1990-04-26 Mitsubishi Electric Corp 電気車チョッパ制御装置
JPH0464154A (ja) * 1990-07-03 1992-02-28 Ricoh Co Ltd 電子部品交換方法
KR930011809B1 (ko) * 1990-12-18 1993-12-21 주식회사 금성사 전자레인지의 자동요리방법 및 그 장치
JP3133368B2 (ja) * 1991-05-24 2001-02-05 三洋電機株式会社 高周波加熱装置
JP3064578B2 (ja) * 1991-10-29 2000-07-12 松下電器産業株式会社 高周波加熱装置
CA2087638C (en) * 1992-01-23 1997-02-25 Masatugu Fukui Microwave oven having a function for matching impedance
JPH05256458A (ja) * 1992-03-13 1993-10-05 Toshiba Corp 加熱調理器
SE470343B (sv) * 1992-06-10 1994-01-24 Whirlpool Int Mikrovågsugn
JP2627730B2 (ja) * 1993-09-23 1997-07-09 エルジー電子株式会社 電子レンジの自動整合装置

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852037A (ja) * 1971-11-04 1973-07-21
JPS4927943A (ja) * 1972-07-12 1974-03-12
JPS5527186Y2 (ja) * 1975-06-16 1980-06-28
JPS52129038A (en) * 1976-04-21 1977-10-29 Matsushita Electric Ind Co Ltd Cooking vessel for high frequency heating device
JPS5361848U (ja) * 1976-10-28 1978-05-25
JPS54162244A (en) * 1978-06-13 1979-12-22 Matsushita Electric Ind Co Ltd High-frequency heating device
JPS5611886A (en) * 1979-07-10 1981-02-05 Sanyo Electric Co Method of controlling electronic range
JPS56104096A (en) * 1980-01-22 1981-08-19 Kohjin Co Ltd Electrorecording stencil paper
JPS5769197U (ja) * 1980-10-14 1982-04-26
JPS57137901U (ja) * 1981-02-18 1982-08-28
JPS5920994A (ja) * 1982-07-23 1984-02-02 三洋電機株式会社 高周波加熱装置
JPS5983393A (ja) * 1982-11-02 1984-05-14 松下電器産業株式会社 高周波加熱装置
JPS5985281A (ja) * 1982-11-08 1984-05-17 Matsushita Electric Ind Co Ltd 加熱調理器具
JPS59215519A (ja) * 1983-05-24 1984-12-05 Toshiba Corp 調理器
JPS6010584A (ja) * 1983-06-29 1985-01-19 松下電器産業株式会社 高周波加熱装置
JPH0119351Y2 (ja) * 1984-03-19 1989-06-05
JPH0148629B2 (ja) * 1984-04-24 1989-10-19 Matsushita Electric Ind Co Ltd
JPH0130275B2 (ja) * 1984-08-10 1989-06-19 Matsushita Electric Ind Co Ltd
JPS61240029A (ja) * 1985-04-17 1986-10-25 Sanyo Electric Co Ltd 電子レンジ
JPH01159529A (ja) * 1987-12-16 1989-06-22 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH01129793U (ja) * 1988-02-25 1989-09-04
JPH01292793A (ja) * 1988-05-18 1989-11-27 Sharp Corp 電子レンジの均一加熱装置
JPH02114804U (ja) * 1989-02-27 1990-09-13
JPH0395312A (ja) * 1989-09-07 1991-04-19 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH03173094A (ja) * 1989-11-30 1991-07-26 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH04104498A (ja) * 1990-08-22 1992-04-06 Sharp Corp 電子レンジ
JPH04267094A (ja) * 1991-02-22 1992-09-22 Matsushita Electric Ind Co Ltd 加熱装置
JPH04319287A (ja) * 1991-04-19 1992-11-10 Mitsubishi Electric Home Appliance Co Ltd 高周波加熱調理器
JPH0574566A (ja) * 1991-09-13 1993-03-26 Toshiba Corp 高周波加熱装置
JPH05144566A (ja) * 1991-11-19 1993-06-11 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH06260275A (ja) * 1993-03-03 1994-09-16 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH06310268A (ja) * 1993-04-20 1994-11-04 Zojirushi Corp 調理物加熱方法
JPH06338388A (ja) * 1993-05-28 1994-12-06 Toshiba Corp 電子レンジ
JPH07142164A (ja) * 1993-11-15 1995-06-02 Toshiba Corp 高周波加熱装置及びその制御方法
JPH07161469A (ja) * 1993-12-13 1995-06-23 Toshiba Corp 高周波加熱装置
JP4064151B2 (ja) * 2001-05-21 2008-03-19 ヒューレット・パッカード・カンパニー Arsシステムを製造する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2301543A (en) * 1996-09-24 1996-12-11 Tarmac Quarry Products Ltd Method of separating aggregate and cement fines contained in concrete slurry

Also Published As

Publication number Publication date
DE69534104D1 (de) 2005-04-28
HK1002218A1 (en) 1998-08-07
EP1220572A2 (en) 2002-07-03
CN1301041C (zh) 2007-02-14
CA2202976C (en) 2000-11-14
EP1220572A3 (en) 2007-07-18
EP1489887A3 (en) 2006-06-21
CN1496194A (zh) 2004-05-12
EP1220571A2 (en) 2002-07-03
EP1489887A2 (en) 2004-12-22
CN1161772A (zh) 1997-10-08
HK1001810A1 (en) 1998-07-10
AU695236B2 (en) 1998-08-13
HK1047677A1 (zh) 2003-02-28
AU3709695A (en) 1996-05-15
US6172348B1 (en) 2001-01-09
DE69534104T2 (de) 2006-03-02
CN1496195A (zh) 2004-05-12
US5986249A (en) 1999-11-16
CN1301040C (zh) 2007-02-14
EP1489887B1 (en) 2010-08-18
CN1143599C (zh) 2004-03-24
KR100270747B1 (ko) 2000-11-01
BR9509398A (pt) 1997-12-30
DE69536097D1 (de) 2010-09-30
KR970707703A (ko) 1997-12-01

Similar Documents

Publication Publication Date Title
WO1996013140A1 (en) High-frequency heating device
US6274859B1 (en) High frequency heating apparatus for selective heating of a desired portion of an object
CN102265092B (zh) 微波加热烹调器
JP3669030B2 (ja) 高周波加熱装置
JP2894250B2 (ja) 高周波加熱調理器
JP2003294241A (ja) 加熱調理器
WO2017164291A1 (ja) マイクロ波加熱装置
JP3617181B2 (ja) 高周波加熱装置
JP2005016788A (ja) 加熱調理器
JPH08321378A (ja) 高周波加熱装置
TWI701411B (zh) 加熱調理器
JP5076627B2 (ja) マイクロ波加熱装置
JP5003273B2 (ja) マイクロ波加熱装置
JP3063545B2 (ja) 高周波加熱装置
JP3063643B2 (ja) 加熱装置
JP3617182B2 (ja) 高周波加熱装置
JP3402309B2 (ja) 高周波加熱装置
JP5409669B2 (ja) 加熱調理器
JPS626412Y2 (ja)
JP5040426B2 (ja) マイクロ波加熱装置
JP2001304581A (ja) 高周波加熱装置
JP2001304582A (ja) 高周波加熱装置
JP2001297870A (ja) 高周波加熱装置
JP2004206938A (ja) 高周波加熱装置
JPH08138857A (ja) 高周波加熱装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95195792.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2202976

Country of ref document: CA

Ref document number: 2202976

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1995934842

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1997 809436

Country of ref document: US

Date of ref document: 19970418

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970702565

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1995934842

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970702565

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970702565

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1995934842

Country of ref document: EP