WO1995003436A1 - Stationary aperture plate for reactive sputter deposition - Google Patents
Stationary aperture plate for reactive sputter deposition Download PDFInfo
- Publication number
- WO1995003436A1 WO1995003436A1 PCT/US1994/006716 US9406716W WO9503436A1 WO 1995003436 A1 WO1995003436 A1 WO 1995003436A1 US 9406716 W US9406716 W US 9406716W WO 9503436 A1 WO9503436 A1 WO 9503436A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- plate
- sputter
- target
- apertures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3447—Collimators, shutters, apertures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
- C23C14/0068—Reactive sputtering characterised by means for confinement of gases or sputtered material, e.g. screens, baffles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/042—Coating on selected surface areas, e.g. using masks using masks
- C23C14/044—Coating on selected surface areas, e.g. using masks using masks using masks to redistribute rather than totally prevent coating, e.g. producing thickness gradient
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3464—Operating strategies
- H01J37/347—Thickness uniformity of coated layers or desired profile of target erosion
Definitions
- the present invention relates to sputter deposition and. more specifically, to reactive sputter deposition used to coat a substrate with a film that is a combination of the target material and a reactive gas.
- Sputter deposition is a generally known method of depositing a layer of material onto the surface of a substrate workpiece. such as a semiconductor wafer.
- a substrate to be coated is placed generally opposite a sputter target of the material to be deposited and an ionized gas plasma is formed in the area of the target.
- the target is electrically energized with a negative electrical polarity opposite the polarity of the ionized gas particles in the plasma, while the deposition chamber or enclosure is grounded so as to create an electric field at the target.
- the ionized plasma atoms under the influence of the electric field, bombard the target surface and dislodge or "sputter" particles of target material which travel away from the target. Since the substrate is usually positioned opposite the target, the sputtered panicles deposit on the substrate to form a deposition film layer of the target material on the substrate.
- Reactive sputter deposition is a form of sputter deposition which
- a chemically reactive gas such as nitrogen or oxygen
- an inert gas such as argon
- the plasma produces the ions that sputter the target ejecting particles that project onto the substrate.
- the target panicles As the target panicles are deposited on the substrate, they come into contact and react with the reactive gas at the surface of the substrate causing a film to fo ⁇ n on the substrate surface that is a product of the chemical reaction. Therefore, in reactive sputter deposition, the composition of the deposited film is a chemical combination of both the target material and the reactive gas.
- sputtering an aluminum target in the presence of inert argon gas will yield an aluminum film on the substrate.
- particles are reactively sputtered from an aluminum target in the presence of an argon-oxygen gas combination
- the film deposited on the substrate is the ceramic aluminum oxide.
- targets sputtered in the presence of other reactive gas combinations will yield various other reactant films on the substrate.
- a recurring problem with reactive sputtering is that the chemical reaction between the reactive gas and the target particles takes place not only at the surface of the substrate but also at the sputtering surface of the target. As a result, an undesired reactant film forms on the target.
- This problem is pa ⁇ icularly troublesome when the reactant film that is formed is an electrically insulating material, such as, for example, the ceramic aluminum oxide.
- an insulating reactant film is formed on the surface of the target, it causes plasma instabilities, - electrical arcing, and the generation of contaminating particles in the sputter deposition chamber. These results are undesirable in a sputter deposition chamber and adversely affect the proper deposition of a film on a substrate.
- the sputter target and the substrate be increased in order to reduce the tendency of the inert gas and the reactive gas to intermix and in order to physically isolate the target from the reactive gas.
- the deposition rate is reduced and the thickness uniformity of the film deposited on the surface of the substrate is also reduced. Uniform thickness of the deposition film
- Another way of reducing the formation of a reactant film on the surface of the target is to bias the target such that it is sputtered away at a rapid rate that is faster than the reaction rate of the reactive gas with the target. Rapidly sputtering the target yields a clean target surface and prevents the formation of a reactant layer on the target.
- the rate of sputtering is increased, the rate of deposition on the substrate is also increased. At an increased deposition rate, the sputter particles do not have time to sufficiently react with the reactive gas at the surface of the substrate, and the desired reactant film is not formed. It has also been proposed to rapidly sputter the target and increase the concentration of reactive gas at the substrate surface. However, an increased concentration of gas requires the introduction and evacuation of gas at a rate that may not be possible without the use of an increased number of pumps or larger
- the uniformity of the film thickness is a function of many factors, including the relative ion concentration and the shape of the gas plasma which sputters the target, such as that which results from the shape of the magnetic fields which may be used to enhance the plasma formation over the target.
- Other factors include the shape of the vacuum chamber containing the substrate, the spatial effects of any other structures or devices located within the chamber proximate the target and the substrate, as well as any external or internal electric or magnetic field effects associated with sputter deposition chamber.
- the shape of the target and its orientation with respect to the substrate may also result in a non-uniform film.
- an objective of the present invention to reduce the formation of a reactant film on the surface of the sputter target while providing the proper reaction conditions at the substrate surface for the deposition of the desired reactive material film on the substrate. It is a further objective of the present invention to provide a means for selectively controlling the rate of deposition on a substrate and selectively varying the thickness of a deposited film, such as to improve the uniformity of the thickness of a sputter deposited film.
- the present invention accomplishes these and other objectives by providing a stationary apermre plate which is mounted between and generally parallel to the sputter target and a substrate upon which a reactant material film is to be deposited.
- the stationary aperture plate includes a plurality of low aspect ratio apertures formed therein which have walls oriented generally perpendicularly to the target and substrate to intercept some of the sputter panicles traveling from the target. Other sputter panicles that are not intercepted by the plate pass through the plate and deposit themselves upon a surface of the substrate. The rate of sputtering from the target is therefore higher than the deposition rate due to the interception of the panicles by the plate.
- the rate of sputtering from the target may be kept sufficiently higher than the reaction rate of the reactive gas with the target so as to prevent the formation of a reactant film on the substrate surface while providing the desired film on the substrate.
- the apertures of the plate of the present invention have low aspect ratios, such that when placed between the sputter target and the substrate, the plate is generally non-collimating. Therefore, the sputter panicles are generally not focused into columns or beams of panicles, but rather are distributed at random flight paths onto the substrate surface. Further, the plate is spaced a sufficient distance from the substrate, preferably 0.5 to 1 inch, such that the plate is virtually shadowless. In this way, there is no masking of apertures of the plate onto the substrate surface. Due to the plate and the effect of the apermres, the deposition rate is maintained sufficiently low to allow complete reaction between the sputter
- the stationary aperture plate creates and maintains a difference between the sputter rate and the deposition rate in order to prevent the formation of a reactant film on the target.
- the target is sputtered away at a sufficiently high rate, keeping the target surface clean and free from the formation of a
- the cross-sectional area, depth and density of apermres of the plate may be selectively varied across the plate to achieve different deposition rates at different areas on the substrate.
- the apertures might be varied in cross-sectional area, depth and/or density to provide different deposition rates at different radii outwardly from the center of a circular substrate such as a traditional semiconductor wafer.
- the variation in deposition rates achieved by the apermre plate is a function of the cross-sectional area, depth and density of the apertures on the plate.
- the apertures are increased or decreased in cross-sectional area, or alternatively, increased or decreased in depth such as by changing the thickness of the plate in different areas, to achieve the desired deposition rates on different areas of the substrate.
- the dimensions of the aper res and their density determine the percentage of sputter particles that are intercepted by the plate, and the extent to which they are varied across the plate determines the effective variation in deposition rate that is achieved at different areas across the substrate or wafer. Therefore, using selective variation of the apermre dimensions and/or density, the deposition rates may be made selectively higher in some areas of the substrate relative to other areas on the substrate. By varying the deposition rates achieved
- the plate having apertures of varied cross- sectional area and depth also preferably has apertures of a low aspect ratio such that they are generally non-collimating. Further, the plate is preferably spaced a sufficient distance, at least approximately 0.5 inches, from the substrate so as not to leave a mask pattern of the apermre plate in the film layer deposited on the substrate. If collimation is desired, the aspect ratios of the plate might be adjusted to accomplish collimating as long as the varied deposition rates at the different areas of the substrate are also accomplished in accordance with this one feature of the present invention.
- apertures of larger cross-sectional area around the periphery of the aper re plate than at its center will provide a greater deposition efficiency at the center of the substrate relative to the substrate edges.
- This, in m may cause a greater film thickness at the edge of the substrate than at the substrate center, or the higher deposition rate may be necessary to compensate for the common tendency of the deposition rate of sputter deposition to be greater at the substrate center.
- apermres shallower in depth at the periphery of the plate than at its center.
- the wall depth of the aper re is shortened, and the probability that a sputter particle will strike a wall and deposit thereon is reduced. Reducing the probability of capmring sputter particles with a particular aperture increases the probability that a sputter particle will be deposited beneath that apermre on the substrate. Therefore, a shallower apermre means a higher deposition rate beneath that apermre than beneath a deeper aperture.
- the aperture cross-section might be made larger and/or the aperture shallower at the center of the plate to provide a greater deposition rate at the center relative to the periphery of the substrate.
- the aperture plate of the present invention is used to selectively vary the deposition rates in different areas of the substrate to achieve either a generally uniform film thickness on the plate, or to achieve a film of selected, varying thickness across the substrate. Therefore, the apermre plate of the present invention reduces the formation of a reactant film layer on the target surface while allowing sufficient chemical reaction at the substrate surface.
- the aperture plate of the present invention provides selective variation of the deposition rate across the surface of the substrate to achieve variable film thicknesses or a more uniform film thickness on a substrate, as desired.
- FIG. 1 is a front elevational view, in cross-section, of a reactive sputter deposition chamber showing use of the stationary aperture plate of the
- Fig. 2 is a diagrammatic cross-sectional view along lines 2-2 of Fig. 1 of the stationary aperture plate and substrate.
- Fig. 3 is a fragmentary top plan view of an embodiment of the stationary apermre plate.
- Fig. 4 is a cross-sectional view similar to that of Fig. 2, of an alternative embodiment of the stationary apermre plate of the present invention.
- a reactive sputter deposition chamber 5 includes a vacuum housing 10 containing a sputter target 12 mounted to a mounting structure 14 and a substrate workpiece or wafer 16 mounted to a support 18 generally opposite the target 12.
- An ionizable inert gas such as argon, is introduced into the housing 10 in the proximity of the target 12 through a gas inlet, such as nozzle 20.
- the ionizable gas is ionized into a gas plasma which contains positively ionized gas atoms.
- the gas may be ionized into a plasma through any of the commonly acceptable methods. For example, by energizing the target 12 negatively through power, source 11 with respect to
- the positively ionized plasma atoms of the gas plasma are then attracted to cathode target 12 under the influence of an electric field, and the positive gas ions bombard the target 12 to dislodge or "sputter" the target particles 22 from the target 12.
- the dislodged target particles 22 travel away from target 12 and assume various flight paths, as indicated by the arrow 23.
- the panicles 22 predominately travel generally perpendicular to the bottom target surface 28; however, various other flight directions are also assumed by the panicles 22.
- Preferably a majority of the sputter particles 22 travel in a vertically downward direction as shown in Fig. 1, or in a direction generally perpendicular to the planar surface 24 of substrate 16 so that a large percentage of the particles 22 are deposited upon surface 24 of substrate 16 to form a film 27 on the substrate surface 24.
- a reactive gas such as oxygen or nitrogen is introduced into the housing 10 in proximity to the substrate 16 through appropriate means, such as a nozzle 26.
- the reactive gas (not shown) reacts with the sputter particles 25 which deposit on the substrate surface 24, and the gas chemically alters the particles 25 to yield a film layer 27 on surface 24 which is a chemical combination of the target material and the reactive gas (see Fig. 2).
- the sputter particles 22 are aluminum, and in the absence of a reactive gas, a film of aluminum is deposited upon substrate 16.
- a reactive gas such as oxygen
- a stationary apermre plate 30 in accordance with the principles of the present invention is positioned in housing 10 generally between target 12 and substrate 16.
- Fig. 2 shows an enlarged diagrammatic cross-sectional view of a region of the stationary aper re plate 30.
- Apermre plate 30 has a plurality of openings or apermres 32 extending through the plate.
- the apermres 32 are defined by opposing aperture walls 34 as discussed hereinabove.
- sputter particles travel toward substrate 16 and, if unhindered, will strike the exposed surface 24 of substrate 16 to form film 27.
- some of the sputter particles such as those particles having a flight path similar to arrow 38, impact with an aperture wall 34 and will be deposited thereon instead of substrate 16.
- Other sputter particles such as those having a path similar to arrow 40, pass through the apermres 32, avoiding walls 34, and are deposited upon substrate surface 24.
- the accumulation of sputter particles 22 intercepted by the walls 34 of apermre plate 30 is indicated by reference numeral 42.
- the interception of sputter particles 22 by the walls 34 of aperture plate 30 reduces the number of sputter particles 25 which make it past the aperture plate 30 to be deposited on substrate surface 24. That is, the number of particles 22 incident upon the top plane 41 of plate 30 is greater than the number of particles 25 which pass through the bottom plane 46 of the plate 30 to deposit on substrate 16.
- the sputter rate is defined as the number of particles that are sputtered from target 12 per unit time
- the deposition rate is defined as the number of sputtered particles which deposit on the upper exposed surface 24 of substrate 16 per unit time.
- the rate of production of sputter particles 22 from target 12, i.e., the sputter rate, is indicated by the relatively large number of arrows 23 that are incident on the top plane 41 of the plate 30 compared with the smaller number of arrows 44 which pass through the plate 30 and through the bottom plane 46 of the plate 30. Since a percentage of sputter particles 22 are intercepted by the aper re walls 34 of plate 30. the number of sputter particles 25 deposited on substrate surface 24 per second, i.e., the deposition rate, is less than the sputter rate as illustrated by the smaller number of arrows 44 on the bottom side of plate 30.
- the apertures 32 of plate 30 have relatively low aspect ratios.
- high aspect ratio apermres intercept a large percentage of sputter particles and focus the sputter particles into generally highly defined columns or beams of sputter particles. Such focusing by high aspect ratio apertures is referred to as collimation.
- the aperture plate 30 of the present invention is substantially non-collimating. That is, the apermres 32 of the plate 30 do not substantially focus or collimate the incident sputter particles 22 into focused beams or columns by eliminating all particles 22 incident to the plate 30 except those having a generally perpendicular flight path with respect to the plate 30 and substrate 16.
- the substantially non-collimating plate 30 generally intercepts only a relatively small percentage of sputter particles. Utilizing low aspect ratio apertures, the rate reduction between the sputter rate and the deposition rate achieved by plate 30 is between approximately 20 and 40 percent, and preferably between 25 and 35 percent. That is, using the plate 30 of the present invention, the deposition rate is generally only 25 to 35 percent less than the sputter rate. Commercial collimators, on the other hand, with high aspect ratio apertures, achieve a reduction in the rate of deposition from the rate of sputtering in the range of approximately 90 to 95 percent. Such a rate reduction is undesirable due to the waste of deposition material and the increased amount of time associated with depositing a film 27 of predetermined thickness on
- plate 30 is spaced from the substrate 16 a sufficient distance so that there is no sharp delineation of the apermre pattern on the surface of substrate 16. That is, plate 30 is virtually shadowless. In this way, the plate 30 does not mask the apermres onto the substrate 16 to produce a film layer which reflects the apermre pattern, but rather provides sufficiently equal deposition rates across the substrate surface 24 to achieve a generally uniformly thick layer on substrate 16 as may be desired.
- the plate 30 is spaced from the substrate 16 approximately 0.5 to 1 inch, or more, to reduce or eliminate any masking or shadowing effects that may occur on substrate surface 24.
- the target 12 may be sputtered away at a first rate, but the effective deposition rate on substrate 16 which is achieved below plate 30 is at a second rate which is less than the sputter rate or first rate.
- the target 12 may be sputtered away at a rate that is greater than the rate of reaction between the reactive gas and the target 12 so that the target surface 28 remains "clean" and free from the formation of a reactant film on the target 12. Since the deposition rate, or second rate, is less than the sputter rate, there is a sufficient amount of time for the particles on the surface 24 of substrate 16 to react with the reactive gas and form reactant film 27, despite the relatively high sputter rate.
- the desirable reaction between the deposited particles 25 and the reactive gas may be achieved without the necessity of boosting the concentration of reactive gas in proximity to substrate 16, thus eliminating the need for an increased number of larger pumps for evacuating the gas.
- Reactive sputter deposition is achieved using plate 30 without the undesired formation of a reactant layer on the target which may cause plasma instabilities, electrical arcing and the generation of contaminants in the sputter deposition chamber. Further, since the plate 30 is substantially non-collimating, there is not a lot of waste of sputter material that occurs due to the plate, and a layer may be deposited on substrate 16 quickly and more efficiently.
- the apermre dimensions of the apermres 32 of plate 30 may be tailored to achieve the desired reductions in deposition rate required in accordance with the principles of the present invention as just described.
- the dimensions of the apertures 32 determine the number or percentage of sputter particles 22 which pass through the apermre 32 and are deposited on substrate 16. Both the cross- sectional area of apermre 32, as indicated by reference numeral 50, and the depth, as indicated by reference numeral 51.
- the ratio of the depth 51 of apermre 32 to the cross-sectional area 50 of the aper re determines the percentage of incident sputter particles 22 which pass through plate 30.
- the ratio of aper re depth 51 to apermre cross-sectional area 50 is sometimes referred to as the "aspect ratio".
- an aspect ratio of 1 corresponds to those apertures which have the same depth 51 as diameter 50.
- the apermres 32 are generally in the range from 0.05 to 0.5, which correspond to apermre depth to diameter ratios of 1:20 and 1:2, respectively.
- the plate 30 of the present invention is substantially non-collimating as discussed above. In this way, the sputter deposition is maintained generally non-focused over the area of die substrate. Further, due to its substantially non-collimating nature, the plate 30 sufficiently reduces the deposition rate from the sputter rate in order to provide a clean target surface in accordance with one of the objectives of the present invention without blocking too large a percentage of the sputter material from the substrate. Therefore, the substrate may be coated with a film at a sufficient rate to have desirable substrate throughput in the deposition chamber, despite the reduction in the sputter rate to reduce and/or eliminate the undesirable target reactant film.
- the uniformity of the film 27 deposited upon the exposed surface 24 of the substrate 16 is often an important parameter.
- Non-uniform thickness of a layer deposited upon a substrate may reduce the yield of devices from the substrate and may also degrade the operation of the electrical devices which are yielded from the substrate.
- the apermre plate includes apermres of selectively varied cross-sectional areas and depth and various different aspect ratios in selected areas of the plate, as well as different aperture densities in selected areas of the plate. The selectively varied aperture dimensions and densities on the plate act to selectively vary the deposition rate in selected areas of the substrate.
- Fig. 3 shows a top view of one embodiment of an apermre plate with apertures having various different aspect ratios in accordance widi the principles of the present invention.
- Plate 49 has a series of circular openings or apertures 52 arranged around the circular plate 49.
- the apertures 52 are arranged concentrically around the plate 49; however, the size and spacing of the apertures may dictate that an arrangement other than concentric be used. This is especially true toward d e center of plate 49 where space constraints are higher.
- the apermres 52 of plate 49 are shown to be generally circular in Fig. 3, other shapes may readily be used to accomplish the results of the apermre plate 49 as mentioned above.
- the plate is divided into two regions according to the size of the apermres 52 as noted by imaginary line 55 and reference numerals 54 and 58. Additionally, other regions might be noted rather than just a center region 58 and a peripheral region 54 surrounding center region 58.
- the apermres, such as aperture 53 in the peripherai region 54 of plate 49 have larger diameters than the diameters of the apermres, such as apermre 56. located in the center region 58 of apermre plate 49.
- Plate 49 has a generally uniform thickness throughout so that the apertures 52 are
- the larger diameter peripheral apertures 53 have a lower aspect ratio than the center apertures 56 because the depth to diameter ratio is smaller for the larger diameter apermres 53.
- the apermres 53 wim lower aspect ratios intercept a lower percentage of sputter particles than apermres 56 which have higher aspect ratios because of their smaller diameter, as will be further illustrated below. Therefore, the peripheral apermres 53 allow a greater number of incident sputter particles to pass through plate 49 during a sputter deposition process than do the center apertures 56. This, in turn, causes a relatively higher deposition rate at the periphery of a substrate located below the plate than is achieved at the center area of the substrate.
- the deposition rate proximate the center region 58 of plate 49 is also defined by the apertures 56 at the center of the plate 49 and their associated aspect ratios.
- the apertures 52 of the aperture plate 49 in Fig. 3 are shown to gradually decrease in diameter and thus increase in aspect ratio from the outer peripheral region 54 to the center region 58.
- the deposition rate is gradually reduced from the outer peripheral area of the substrate, which experiences the highest deposition rate because it underlies the peripheral region 54 of plate 49, to the center area of the substrate which underlies plate center area 58.
- the plate 49 of the present invention by creating a higher deposition rate at the peripheral area of the substrate, compensates for the often occurring tendency in many sputter deposition chambers and applications to have a higher deposition rate, and hence, a greater film thickness, at the center area of the substrate than at the peripheral edges.
- Deposition variations and resulting film thickness variations are caused by such factors as plasma density and the shape of the target, as well as the orientation of the substrate with respect to the target.
- Plate 49 may thus be utilized to achieve a more uniform thickness of the deposition film on a substrate. It may further be used to achieve a thicker film thickness around the periphery of a substrate than at its center if that is a desirable result. It has been empirically found that a deposition rate variance of approximately 10% between the center area and peripheral area of a substrate is all that is necessary to achieve an uniform film thickness in many, but not all cases. However, with the plate of the present invention, any rate variance may be achieved, as is required.
- the apermre plate may be utilized to decrease the deposition rate around the periphery of a substrate while increasing the deposition rate around the center area of the substrate, if so desired.
- center apermres 56 would be increased in diameter and peripheral apertures 53 decreased in diameter so that the larger apermres with lower aspect ratios are proximate center region 58 of plate 49 while the smaller apermres are located in peripheral region 54.
- the diameters and aspect ratios of the apermres 52 of plate 49 may be selectively varied in order to achieve other different deposition rates in selected areas of a substrate. In this way, the aper re plate 49 may be utilized to selectively vary the thickness of the deposited film across the surface of the substrate or to achieve a
- the apertures in the peripheral area would be positioned closer together than those in the center area.
- various deposition rates may be achieved by selectively varying the density of apermres around the plate.
- peripheral region 54 and center region 58 are not specific and may be redefined by moving imaginary line 55 to define different region boundaries. Further, omer regions might be defined on me plate having additional apermres of still different aspect ratios than the center apertures 58 and peripheral aper res 53. Additionally, while d e apermres 53, 56 are shown to taper in diameter within me regions moving toward the center of the plate 49, each region might contain aper res of all one aspect ratio unique to that plate region and different from me other plate regions. As discussed hereinabove, the aspect ratio of the aperture plate is defined as the ratio of the cross-sectional dimension of the aperture, such as diameter, to the depth of the aper re.
- a high aspect ratio apermre will generally have a longer depth and/or a smaller diameter d an a low aspect ratio apermre, which generally has a shorter depth and/or larger diameter.
- High aspect ratio aper res capmre a greater percentage of incident sputter particles man low aspect ratio apermres and thus reduce the sputter deposition rate to a greater extent than low aspect ratio apermres.
- the aspect ratios of the apermres are selectively varied by varying the thickness of the plate, i.e., by varying the depth of the apertures instead of varying the diameter of the apertures as shown in Fig . 3.
- stationary apermre plate 64 has a series of
- apertures 66 therein through which sputtered particles pass to be deposited upon a substrate.
- aper res 66 have aperture walls 68 which capmre a percentage of the incident sputtered particles such as particles indicated by arrows 70.
- the deposition rate below the bottom plane 72 of plate 64 is lower than the sputter rate above the upper plane 74 of plate 64.
- the particle flight path may be characterized by a "flight angle" which is defined herein as the angle ⁇ of the particle flight with respect to an imaginary line 77 that extends generally parallel to the plane of plate 64.
- a sputter panicle which assumes a flight path that is essentially perpendicular to surface 74 of plate 64 and parallel to line 77, would have a flight angle of approximately 0"
- a sputter particle having a flight angle of 45 * or 135 * with respect to plate surface 74 is assigned a flight angle of 45 * .
- a particle having a flight path that is 10° above the horizontal plane of plate 64 is assigned a flight angle of 80" , and so on. Therefore, the flight angle of a sputter panicle as defined herein generally falls into the range of 0-90" with respect to die plate 64. Lower flight angles signify particles which are close to parallel with line 77 and perpendicular to plate 64,
- Each apermre in turn, has an associated critical angle that is determined by the dimensions of the apermre and is also defined with respect to line 77.
- the apermre critical angle indicates the maximum flight angle that a
- sputter particle 70 may assume and still pass through the apermre when it is incident upon the aper re at one of the farthestmost ends of the apermre.
- Particle path 80 and apermre 76 of Fig. 4 illustrate the critical angle of the apermre 76. If a sputter particle has a flight angle greater than the critical angle of the apermre or if it is incident upon die aperture somewhere in the middle of me apermre and has a flight angle close to or equal the critical angle, it will generally strike the walls of the aperture and be collected thereon.
- particle 82 of Fig. 4 has an angle greater than the critical angle of apermre 64 and strikes the aperture wall.
- sputter particles with flight angles below the critical angles will pass through the aperture and deposit upon die substrate.
- the higher the critical flight angle of the aperture the greater the percentage of particles mat will pass through the aperture, because a high critical angle, such as 80 * , means that the apermre will allow all particles having an angle below 80 * to pass through the aperture, and will intercept only that percentage of particles having angles between 80 * and 90' .
- the critical flight angle of the aperture is determined by me depth and cross- sectional dimensions of the apermre, i.e. , by the aspect ratio of the aperture. In Fig. 4, the angle ⁇ represents the greatest flight angle that a sputter particle, such as a particle indicated by arrow 80, may have and pass through apermre 76.
- Angle ⁇ is therefore the critical angle of the apermre 76.
- me critical angle would be smaller, signifying a higher aspect ratio, and a greater percentage of sputter particles would be intercepted. Therefore, the aspect ratio of an apermre is inversely proportional to the critical angle defined by that apermre.
- a high aspect ratio corresponds to a small critical angle and a greater percentage of blocked particles.
- a low aspect ratio apermre defines a high critical angle so that a greater percentage of particles pass through the apermre.
- a circular apermre with an aspect ratio of 1 has a diameter which is generally equal to the apermre dep i and a critical flight angle of 45 " .
- an aspect ratio of 1/5 or 0.2 corresponds to a critical flight angle of approximately 79" .
- the critical flight angle assumes, as discussed above, Uiat the particle is incident upon d e apermre at one of the farthermost sides of the apermre.
- Particle flight path 82 of Fig. 4 shows such a particle incident upon die plate at the farthestmost side of apermre 76.
- the flight angle distribution of sputter particles is not generally equally distributed over die range of angles from 0-90° due to such factors as me shape of the deposition chamber, me relative density and shape of the plasma and die location and shape of the target with respect to the substrate. For example, there may be more particles with a flight angle of 75° than 45° and so forth. Further, each of the sputter particles will not strike an apermre at the farthestmost side of d e aperture. As a result, the effective reduction in deposition rate achieved by a plate having apermres of a specific aspect ratio cannot always be
- a high reduction of the deposition rate is generally undesirable using me aperture plate of the present invention.
- the aspect ratios chosen for apertures in me plates 49. 64 of d e present invention are generally low, less than 1 and preferably between 0.5 and 0.05, to be substantially non-collimating.
- a plate having low aspect ratio apertures in that range is generally non-collimating and will not substantially focus the sputter particles into columns of sputter beams to deposit on die substrate.
- the aspect ratios may be chosen to accomplish me collimation objectives, as long as various different aspect ratio apermres are utilized in accordance wid the objectives of the invention. Plates 49, 64 are also preferably
- the aper re plate 64 may be used to selectively capmre different percentages of sputter particles at different regions of the plate in order to achieve the desired deposition rate.
- die aspect ratio of apermre 76 is chosen so that it generally passes sputter particles which have a flight angle approximately less than or equal to ⁇ .
- particle 80. incident upon apermre 76 will pass through apermre 76, while particle 82, which is incident upon apermre 76 at me same point as particle 80, has a flight angle greater than the critical angle 0, and will strike wall 79 and be intercepted.
- apermre plate 64 has apertures which are varied in dep i rather than diameter in order to achieve the desired deposition rates at chosen areas on a substrate.
- aperture plate 64 has apermres located in d e center region 90 widi higher aspect ratios dian the apermres located in the peripheral region 88. Therefore, a larger percentage of sputter particles 70 are intercepted by die apermres in center region 90 of plate 64 than at peripheral region 88 of die plate because of the higher aspect ratios. Plate 64 thus yields a greater deposition
- An alternative embodiment of me plate of the present invention may have apermres of greater aspect ratios at the peripheral region 88 than at the center region 90 by providing deeper apertures in die peripheral region 88 and shallower apermres in the center region 90 to increase deposition at the center of a substrate. Since the apermres 66 of plate 64 are generally of equal diameter, the aspect ratios are varied in plate 64 by varying the depth of the apermres such as by varying the corresponding diickness of plate 64. That is, apertures with lower aspect ratios at the peripheral region 88 of plate 64 correspond to a d inner plate in that region dian in center region 90. As may be seen in Fig.
- the length of one wall of an apermre such as wall 79 of apermre 76 is longer than wall 78 when the apertures are located in the tapered or thinner peripheral area 88 of plate 64.
- the taper of plate 64 at peripheral area 88 or at any area on die plate 64 is such that the effective aspect ratios are approximately equal from one side of the apermre to the other side.
- the varying aspect ratio plates 49, 64 are spaced sufficiently from the substrate so as to be generally non-shadowing. That is, they are preferably maintained at a distance from the substrate of approximately 0.5 to
- die deposition rate is selectively varied to obtain a more uniform film thickness or a selectively variable film iickness as may be desired.
- the apermres may be varied in diameter or cross-
- the aspect ratios of the stationary apermre plate of the present invention may be varied by varying both the depdi and diameter of me apermres. Further, die density of apermres on me plate might also be varied.
- the diameter of the apermres and/or die density of the apermres in different regions of the stationary aper re plate are selectively varied to produce a desired result, such as a more uniform film thickness across the surface of die substrate.
- the apertures might be chosen to yield
- apermre plate thus disclosed will generally utilize apermres which are dimensioned to have aspect ratios between 0.05 and 0.5, apermres of other aspect ratios might be utilized as well widiout departing from me scope of me invention, keeping in mind me objectives of the present inventions. Still further, different apermre shapes as well as different plate shapes might be used instead of the circular apermres and circular plates utilized in the preferred embodiments of d e invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP94920200A EP0710299A1 (en) | 1993-07-22 | 1994-06-13 | Stationary aperture plate for reactive sputter deposition |
| AU71079/94A AU7107994A (en) | 1993-07-22 | 1994-06-13 | Stationary aperture plate for reactive sputter deposition |
| JP7505135A JPH09500690A (ja) | 1993-07-22 | 1994-06-13 | 反応スパッタ付着に使用する静止有孔プレート |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/095,950 | 1993-07-22 | ||
| US08/095,950 US5415753A (en) | 1993-07-22 | 1993-07-22 | Stationary aperture plate for reactive sputter deposition |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1995003436A1 true WO1995003436A1 (en) | 1995-02-02 |
Family
ID=22254331
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1994/006716 Ceased WO1995003436A1 (en) | 1993-07-22 | 1994-06-13 | Stationary aperture plate for reactive sputter deposition |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US5415753A (enExample) |
| EP (1) | EP0710299A1 (enExample) |
| JP (1) | JPH09500690A (enExample) |
| AU (1) | AU7107994A (enExample) |
| CA (1) | CA2164975A1 (enExample) |
| SG (1) | SG47675A1 (enExample) |
| TW (1) | TW285752B (enExample) |
| WO (1) | WO1995003436A1 (enExample) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0854201A1 (en) * | 1997-01-20 | 1998-07-22 | Coherent Optics Europe Limited | Three-dimensional masking method for control of optical coating thickness |
| US5993904A (en) * | 1997-01-20 | 1999-11-30 | Coherent, Inc. | Three-dimensional masking method for control of coating thickness |
| US6168832B1 (en) | 1997-01-20 | 2001-01-02 | Coherent, Inc. | Three-dimensional masking method for control of coating thickness |
| DE10062713C1 (de) * | 2000-12-15 | 2002-09-05 | Zeiss Carl | Verfahren zum Beschichten von Substraten und Maskenhaltern |
| US12488969B2 (en) | 2019-07-02 | 2025-12-02 | Spts Technologies Limited | Deposition apparatus |
Families Citing this family (433)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4325051C1 (de) * | 1993-07-26 | 1994-07-07 | Siemens Ag | Anordnung zur Abscheidung einer Schicht auf einer Substratscheibe durch Kathodenstrahlzerstäuben und Verfahren zu deren Betrieb |
| US5643428A (en) * | 1995-02-01 | 1997-07-01 | Advanced Micro Devices, Inc. | Multiple tier collimator system for enhanced step coverage and uniformity |
| US5650052A (en) * | 1995-10-04 | 1997-07-22 | Edelstein; Sergio | Variable cell size collimator |
| US5827408A (en) * | 1996-07-26 | 1998-10-27 | Applied Materials, Inc | Method and apparatus for improving the conformality of sputter deposited films |
| JPH10219430A (ja) * | 1997-02-05 | 1998-08-18 | Minolta Co Ltd | マグネトロンスパッタ法により得られる化合物薄膜ならびにそれを製造するための方法および装置 |
| KR100278190B1 (ko) * | 1997-02-19 | 2001-01-15 | 미다라이 후지오 | 박막형성장치및이를이용한박막형성방법 |
| EP0860514B1 (en) * | 1997-02-19 | 2004-11-03 | Canon Kabushiki Kaisha | Reactive sputtering apparatus and process for forming thin film using same |
| US6238527B1 (en) * | 1997-10-08 | 2001-05-29 | Canon Kabushiki Kaisha | Thin film forming apparatus and method of forming thin film of compound by using the same |
| US6030513A (en) * | 1997-12-05 | 2000-02-29 | Applied Materials, Inc. | Full face mask for capacitance-voltage measurements |
| US6482301B1 (en) | 1998-06-04 | 2002-11-19 | Seagate Technology, Inc. | Target shields for improved magnetic properties of a recording medium |
| US6592728B1 (en) * | 1998-08-04 | 2003-07-15 | Veeco-Cvc, Inc. | Dual collimated deposition apparatus and method of use |
| US6139636A (en) * | 1998-11-12 | 2000-10-31 | United Microelectronics Corp. | Spray coating device |
| US6214413B1 (en) * | 1999-01-13 | 2001-04-10 | Applied Materials, Inc. | Method and apparatus for fabricating a wafer spacing mask on a substrate support chuck |
| US6210540B1 (en) * | 2000-03-03 | 2001-04-03 | Optical Coating Laboratory, Inc. | Method and apparatus for depositing thin films on vertical surfaces |
| US6502530B1 (en) * | 2000-04-26 | 2003-01-07 | Unaxis Balzers Aktiengesellschaft | Design of gas injection for the electrode in a capacitively coupled RF plasma reactor |
| US6744493B1 (en) | 2000-07-05 | 2004-06-01 | Euv Llc | In-vacuum exposure shutter |
| JP2002069634A (ja) | 2000-08-29 | 2002-03-08 | Canon Inc | 薄膜作製方法および薄膜作製装置 |
| US6733640B2 (en) | 2002-01-14 | 2004-05-11 | Seagate Technology Llc | Shutter assembly having optimized shutter opening shape for thin film uniformity |
| PT1350863E (pt) * | 2002-03-19 | 2006-12-29 | Scheuten Glasgroep Bv | Dispositivo e processo para a aplicação orientada de um material a depositar num substrato |
| US7511028B2 (en) * | 2003-08-29 | 2009-03-31 | Brookler Kenneth H | Use of bisphosphonates for otosclerosis |
| KR20060014495A (ko) * | 2004-08-11 | 2006-02-16 | 주식회사 유진테크 | 화학기상증착장치의 샤워헤드 |
| WO2008080244A1 (de) * | 2007-01-02 | 2008-07-10 | Oc Oerlikon Balzers Ag | Verfahren zur herstellung einer gerichteten schicht mittels kathodenzerstäubung und vorrichtung zur durchführung des verfahrens |
| US20090308739A1 (en) * | 2008-06-17 | 2009-12-17 | Applied Materials, Inc. | Wafer processing deposition shielding components |
| KR20110020918A (ko) * | 2008-06-17 | 2011-03-03 | 어플라이드 머티어리얼스, 인코포레이티드 | 균일한 증착을 위한 장치 및 방법 |
| US9493875B2 (en) * | 2008-09-30 | 2016-11-15 | Eugene Technology Co., Ltd. | Shower head unit and chemical vapor deposition apparatus |
| US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
| US20100181505A1 (en) * | 2009-01-21 | 2010-07-22 | Applied Materials, Inc. | Particle beam device with reduced emission of undesired material |
| EP2211367A1 (en) * | 2009-01-21 | 2010-07-28 | Applied Materials, Inc. | Particle beam device with reduced emission of undesired material |
| US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
| KR102262978B1 (ko) * | 2009-04-24 | 2021-06-08 | 어플라이드 머티어리얼스, 인코포레이티드 | 웨이퍼 프로세싱 증착 차폐 부품 |
| US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
| US8845806B2 (en) * | 2010-10-22 | 2014-09-30 | Asm Japan K.K. | Shower plate having different aperture dimensions and/or distributions |
| DE102010049329A1 (de) * | 2010-10-22 | 2012-04-26 | Forschungszentrum Jülich GmbH | Sputterquellen für Hochdrucksputtern mit großen Targets und Sputterverfahren |
| US20120152726A1 (en) * | 2010-12-17 | 2012-06-21 | Harkness Iv Samuel D | Method and apparatus to produce high density overcoats |
| US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
| US9793148B2 (en) | 2011-06-22 | 2017-10-17 | Asm Japan K.K. | Method for positioning wafers in multiple wafer transport |
| US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
| US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
| US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
| US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
| US8946830B2 (en) | 2012-04-04 | 2015-02-03 | Asm Ip Holdings B.V. | Metal oxide protective layer for a semiconductor device |
| WO2014008484A2 (en) | 2012-07-05 | 2014-01-09 | Intevac, Inc. | Method to produce highly transparent hydrogenated carbon protective coating for transparent substrates |
| US9558931B2 (en) | 2012-07-27 | 2017-01-31 | Asm Ip Holding B.V. | System and method for gas-phase sulfur passivation of a semiconductor surface |
| US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
| US9021985B2 (en) | 2012-09-12 | 2015-05-05 | Asm Ip Holdings B.V. | Process gas management for an inductively-coupled plasma deposition reactor |
| US9132436B2 (en) * | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
| US9324811B2 (en) | 2012-09-26 | 2016-04-26 | Asm Ip Holding B.V. | Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same |
| US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
| US9640416B2 (en) | 2012-12-26 | 2017-05-02 | Asm Ip Holding B.V. | Single-and dual-chamber module-attachable wafer-handling chamber |
| US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
| US9589770B2 (en) | 2013-03-08 | 2017-03-07 | Asm Ip Holding B.V. | Method and systems for in-situ formation of intermediate reactive species |
| US9484191B2 (en) | 2013-03-08 | 2016-11-01 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
| US8993054B2 (en) | 2013-07-12 | 2015-03-31 | Asm Ip Holding B.V. | Method and system to reduce outgassing in a reaction chamber |
| US9018111B2 (en) | 2013-07-22 | 2015-04-28 | Asm Ip Holding B.V. | Semiconductor reaction chamber with plasma capabilities |
| US9793115B2 (en) | 2013-08-14 | 2017-10-17 | Asm Ip Holding B.V. | Structures and devices including germanium-tin films and methods of forming same |
| US9240412B2 (en) | 2013-09-27 | 2016-01-19 | Asm Ip Holding B.V. | Semiconductor structure and device and methods of forming same using selective epitaxial process |
| US9556516B2 (en) | 2013-10-09 | 2017-01-31 | ASM IP Holding B.V | Method for forming Ti-containing film by PEALD using TDMAT or TDEAT |
| US10179947B2 (en) | 2013-11-26 | 2019-01-15 | Asm Ip Holding B.V. | Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition |
| US9484190B2 (en) * | 2014-01-25 | 2016-11-01 | Yuri Glukhoy | Showerhead-cooler system of a semiconductor-processing chamber for semiconductor wafers of large area |
| US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
| US9447498B2 (en) | 2014-03-18 | 2016-09-20 | Asm Ip Holding B.V. | Method for performing uniform processing in gas system-sharing multiple reaction chambers |
| US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
| US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
| US9404587B2 (en) | 2014-04-24 | 2016-08-02 | ASM IP Holding B.V | Lockout tagout for semiconductor vacuum valve |
| US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
| US9543180B2 (en) | 2014-08-01 | 2017-01-10 | Asm Ip Holding B.V. | Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum |
| US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
| US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
| US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
| JP5985581B2 (ja) * | 2014-11-05 | 2016-09-06 | 株式会社東芝 | 処理装置及びコリメータ |
| KR102300403B1 (ko) | 2014-11-19 | 2021-09-09 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
| KR102263121B1 (ko) | 2014-12-22 | 2021-06-09 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 및 그 제조 방법 |
| US9478415B2 (en) | 2015-02-13 | 2016-10-25 | Asm Ip Holding B.V. | Method for forming film having low resistance and shallow junction depth |
| US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
| US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
| US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
| US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
| US9899291B2 (en) | 2015-07-13 | 2018-02-20 | Asm Ip Holding B.V. | Method for protecting layer by forming hydrocarbon-based extremely thin film |
| US10043661B2 (en) | 2015-07-13 | 2018-08-07 | Asm Ip Holding B.V. | Method for protecting layer by forming hydrocarbon-based extremely thin film |
| US10083836B2 (en) | 2015-07-24 | 2018-09-25 | Asm Ip Holding B.V. | Formation of boron-doped titanium metal films with high work function |
| US10087525B2 (en) | 2015-08-04 | 2018-10-02 | Asm Ip Holding B.V. | Variable gap hard stop design |
| US9647114B2 (en) | 2015-08-14 | 2017-05-09 | Asm Ip Holding B.V. | Methods of forming highly p-type doped germanium tin films and structures and devices including the films |
| US9711345B2 (en) | 2015-08-25 | 2017-07-18 | Asm Ip Holding B.V. | Method for forming aluminum nitride-based film by PEALD |
| US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
| CN105132861A (zh) * | 2015-10-13 | 2015-12-09 | 京东方科技集团股份有限公司 | 一种蒸镀掩膜版以及蒸镀设备 |
| US9909214B2 (en) | 2015-10-15 | 2018-03-06 | Asm Ip Holding B.V. | Method for depositing dielectric film in trenches by PEALD |
| US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
| KR20240127488A (ko) * | 2015-10-27 | 2024-08-22 | 어플라이드 머티어리얼스, 인코포레이티드 | Pvd 스퍼터 챔버를 위한 바이어스가능 플럭스 최적화기/콜리메이터 |
| US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
| US9455138B1 (en) | 2015-11-10 | 2016-09-27 | Asm Ip Holding B.V. | Method for forming dielectric film in trenches by PEALD using H-containing gas |
| US9905420B2 (en) | 2015-12-01 | 2018-02-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium tin films and structures and devices including the films |
| US9607837B1 (en) | 2015-12-21 | 2017-03-28 | Asm Ip Holding B.V. | Method for forming silicon oxide cap layer for solid state diffusion process |
| US9735024B2 (en) | 2015-12-28 | 2017-08-15 | Asm Ip Holding B.V. | Method of atomic layer etching using functional group-containing fluorocarbon |
| US9627221B1 (en) | 2015-12-28 | 2017-04-18 | Asm Ip Holding B.V. | Continuous process incorporating atomic layer etching |
| US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
| US10775533B2 (en) * | 2016-02-12 | 2020-09-15 | Purdue Research Foundation | Methods of forming particulate films and films and devices made therefrom |
| US9754779B1 (en) | 2016-02-19 | 2017-09-05 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
| US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
| US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
| US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
| US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
| US9892913B2 (en) | 2016-03-24 | 2018-02-13 | Asm Ip Holding B.V. | Radial and thickness control via biased multi-port injection settings |
| US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
| US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
| US10087522B2 (en) | 2016-04-21 | 2018-10-02 | Asm Ip Holding B.V. | Deposition of metal borides |
| US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
| US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
| KR102592471B1 (ko) | 2016-05-17 | 2023-10-20 | 에이에스엠 아이피 홀딩 비.브이. | 금속 배선 형성 방법 및 이를 이용한 반도체 장치의 제조 방법 |
| US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
| US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
| US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
| US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
| US9793135B1 (en) | 2016-07-14 | 2017-10-17 | ASM IP Holding B.V | Method of cyclic dry etching using etchant film |
| US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
| KR102354490B1 (ko) | 2016-07-27 | 2022-01-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
| US10177025B2 (en) | 2016-07-28 | 2019-01-08 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
| US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
| US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
| US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
| KR102532607B1 (ko) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 가공 장치 및 그 동작 방법 |
| US10090316B2 (en) | 2016-09-01 | 2018-10-02 | Asm Ip Holding B.V. | 3D stacked multilayer semiconductor memory using doped select transistor channel |
| US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
| US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
| US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
| US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
| US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
| US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
| US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
| US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
| KR102546317B1 (ko) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기체 공급 유닛 및 이를 포함하는 기판 처리 장치 |
| US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
| KR102762543B1 (ko) | 2016-12-14 | 2025-02-05 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| US9916980B1 (en) | 2016-12-15 | 2018-03-13 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
| US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
| US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
| KR102700194B1 (ko) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
| US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
| US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
| US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
| US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
| US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
| US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
| US10103040B1 (en) | 2017-03-31 | 2018-10-16 | Asm Ip Holding B.V. | Apparatus and method for manufacturing a semiconductor device |
| USD830981S1 (en) | 2017-04-07 | 2018-10-16 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate processing apparatus |
| KR102457289B1 (ko) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
| US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
| US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
| US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
| US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
| US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
| US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
| US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
| US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
| KR20190009245A (ko) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물 |
| US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
| US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
| US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
| US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
| US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
| US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
| TWI815813B (zh) | 2017-08-04 | 2023-09-21 | 荷蘭商Asm智慧財產控股公司 | 用於分配反應腔內氣體的噴頭總成 |
| US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
| US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
| US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
| US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
| US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
| US10236177B1 (en) | 2017-08-22 | 2019-03-19 | ASM IP Holding B.V.. | Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures |
| USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
| US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
| US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
| KR102491945B1 (ko) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
| KR102401446B1 (ko) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
| KR102630301B1 (ko) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치 |
| US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
| US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
| US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
| US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
| WO2019082739A1 (ja) * | 2017-10-27 | 2019-05-02 | 大日本印刷株式会社 | 蒸着マスク及び蒸着マスクの製造方法 |
| US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
| KR102443047B1 (ko) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 방법 및 그에 의해 제조된 장치 |
| US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
| US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
| CN111316417B (zh) | 2017-11-27 | 2023-12-22 | 阿斯莫Ip控股公司 | 与批式炉偕同使用的用于储存晶圆匣的储存装置 |
| US11639811B2 (en) | 2017-11-27 | 2023-05-02 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
| US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
| US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
| TWI852426B (zh) | 2018-01-19 | 2024-08-11 | 荷蘭商Asm Ip私人控股有限公司 | 沈積方法 |
| KR102695659B1 (ko) | 2018-01-19 | 2024-08-14 | 에이에스엠 아이피 홀딩 비.브이. | 플라즈마 보조 증착에 의해 갭 충진 층을 증착하는 방법 |
| USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
| US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
| USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
| US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
| US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
| KR102657269B1 (ko) | 2018-02-14 | 2024-04-16 | 에이에스엠 아이피 홀딩 비.브이. | 주기적 증착 공정에 의해 기판 상에 루테늄-함유 막을 증착하는 방법 |
| US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
| US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
| US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
| KR102636427B1 (ko) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 장치 |
| US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
| US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
| US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
| US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
| KR102646467B1 (ko) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조 |
| US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
| US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
| US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
| KR102501472B1 (ko) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
| KR102600229B1 (ko) | 2018-04-09 | 2023-11-10 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 장치, 이를 포함하는 기판 처리 장치 및 기판 처리 방법 |
| TWI843623B (zh) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構 |
| US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
| US12272527B2 (en) | 2018-05-09 | 2025-04-08 | Asm Ip Holding B.V. | Apparatus for use with hydrogen radicals and method of using same |
| TWI816783B (zh) | 2018-05-11 | 2023-10-01 | 荷蘭商Asm 智慧財產控股公司 | 用於基板上形成摻雜金屬碳化物薄膜之方法及相關半導體元件結構 |
| KR102596988B1 (ko) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 그에 의해 제조된 장치 |
| US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
| TWI840362B (zh) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 水氣降低的晶圓處置腔室 |
| US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
| KR102568797B1 (ko) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 시스템 |
| US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
| CN112292477A (zh) | 2018-06-27 | 2021-01-29 | Asm Ip私人控股有限公司 | 用于形成含金属的材料的循环沉积方法及包含含金属的材料的膜和结构 |
| KR102854019B1 (ko) | 2018-06-27 | 2025-09-02 | 에이에스엠 아이피 홀딩 비.브이. | 금속 함유 재료를 형성하기 위한 주기적 증착 방법 및 금속 함유 재료를 포함하는 필름 및 구조체 |
| KR102686758B1 (ko) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
| US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
| US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
| US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
| US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
| US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
| US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
| US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
| US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
| US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
| US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
| KR102707956B1 (ko) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
| US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
| CN110970344B (zh) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | 衬底保持设备、包含所述设备的系统及其使用方法 |
| US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
| KR102592699B1 (ko) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치 |
| US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
| US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
| KR102546322B1 (ko) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
| KR102605121B1 (ko) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
| USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
| US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
| US12378665B2 (en) | 2018-10-26 | 2025-08-05 | Asm Ip Holding B.V. | High temperature coatings for a preclean and etch apparatus and related methods |
| US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
| KR102748291B1 (ko) | 2018-11-02 | 2024-12-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 기판 처리 장치 |
| US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
| US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
| US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
| US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
| US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
| US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
| US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
| KR102636428B1 (ko) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치를 세정하는 방법 |
| US11572624B2 (en) * | 2018-12-13 | 2023-02-07 | Xia Tai Xin Semiconductor (Qing Dao) Ltd. | Apparatus and method for semiconductor fabrication |
| US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
| TWI874340B (zh) | 2018-12-14 | 2025-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成裝置結構之方法、其所形成之結構及施行其之系統 |
| TWI866480B (zh) | 2019-01-17 | 2024-12-11 | 荷蘭商Asm Ip 私人控股有限公司 | 藉由循環沈積製程於基板上形成含過渡金屬膜之方法 |
| KR102727227B1 (ko) | 2019-01-22 | 2024-11-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| CN111524788B (zh) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | 氧化硅的拓扑选择性膜形成的方法 |
| JP7193369B2 (ja) * | 2019-02-12 | 2022-12-20 | 株式会社アルバック | スパッタリング装置 |
| KR102626263B1 (ko) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치 |
| TWI838458B (zh) | 2019-02-20 | 2024-04-11 | 荷蘭商Asm Ip私人控股有限公司 | 用於3d nand應用中之插塞填充沉積之設備及方法 |
| TWI845607B (zh) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | 用來填充形成於基材表面內之凹部的循環沉積方法及設備 |
| JP7603377B2 (ja) | 2019-02-20 | 2024-12-20 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基材表面内に形成された凹部を充填するための方法および装置 |
| TWI842826B (zh) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 基材處理設備及處理基材之方法 |
| KR102782593B1 (ko) | 2019-03-08 | 2025-03-14 | 에이에스엠 아이피 홀딩 비.브이. | SiOC 층을 포함한 구조체 및 이의 형성 방법 |
| KR102762833B1 (ko) | 2019-03-08 | 2025-02-04 | 에이에스엠 아이피 홀딩 비.브이. | SiOCN 층을 포함한 구조체 및 이의 형성 방법 |
| KR102858005B1 (ko) | 2019-03-08 | 2025-09-09 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체 |
| US11332827B2 (en) * | 2019-03-27 | 2022-05-17 | Applied Materials, Inc. | Gas distribution plate with high aspect ratio holes and a high hole density |
| KR20200116033A (ko) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | 도어 개방기 및 이를 구비한 기판 처리 장치 |
| KR102809999B1 (ko) | 2019-04-01 | 2025-05-19 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자를 제조하는 방법 |
| US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
| KR20200125453A (ko) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 기상 반응기 시스템 및 이를 사용하는 방법 |
| KR102869364B1 (ko) | 2019-05-07 | 2025-10-10 | 에이에스엠 아이피 홀딩 비.브이. | 비정질 탄소 중합체 막을 개질하는 방법 |
| KR20200130121A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 딥 튜브가 있는 화학물질 공급원 용기 |
| KR20200130652A (ko) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조 |
| JP7598201B2 (ja) | 2019-05-16 | 2024-12-11 | エーエスエム・アイピー・ホールディング・ベー・フェー | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
| JP7612342B2 (ja) | 2019-05-16 | 2025-01-14 | エーエスエム・アイピー・ホールディング・ベー・フェー | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
| USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
| USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
| USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
| USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
| KR20200141003A (ko) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | 가스 감지기를 포함하는 기상 반응기 시스템 |
| KR20200141931A (ko) | 2019-06-10 | 2020-12-21 | 에이에스엠 아이피 홀딩 비.브이. | 석영 에피택셜 챔버를 세정하는 방법 |
| KR20200143254A (ko) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조 |
| USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
| USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
| CN112176318B (zh) | 2019-07-03 | 2023-08-18 | Asm Ip私人控股有限公司 | 用于基板处理装置的温度控制组件及其使用方法 |
| JP7499079B2 (ja) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | 同軸導波管を用いたプラズマ装置、基板処理方法 |
| CN112216646A (zh) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | 基板支撑组件及包括其的基板处理装置 |
| KR102895115B1 (ko) | 2019-07-16 | 2025-12-03 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| KR20210010816A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 라디칼 보조 점화 플라즈마 시스템 및 방법 |
| KR102860110B1 (ko) | 2019-07-17 | 2025-09-16 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 게르마늄 구조를 형성하는 방법 |
| US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
| TWI839544B (zh) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | 形成形貌受控的非晶碳聚合物膜之方法 |
| KR102903090B1 (ko) | 2019-07-19 | 2025-12-19 | 에이에스엠 아이피 홀딩 비.브이. | 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법 |
| CN112309843A (zh) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | 实现高掺杂剂掺入的选择性沉积方法 |
| US12169361B2 (en) | 2019-07-30 | 2024-12-17 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
| CN112309899B (zh) | 2019-07-30 | 2025-11-14 | Asmip私人控股有限公司 | 基板处理设备 |
| CN112309900B (zh) | 2019-07-30 | 2025-11-04 | Asmip私人控股有限公司 | 基板处理设备 |
| US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
| US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
| US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
| CN118422165A (zh) | 2019-08-05 | 2024-08-02 | Asm Ip私人控股有限公司 | 用于化学源容器的液位传感器 |
| KR20210018761A (ko) | 2019-08-09 | 2021-02-18 | 에이에스엠 아이피 홀딩 비.브이. | 냉각 장치를 포함한 히터 어셈블리 및 이를 사용하는 방법 |
| USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
| USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
| JP2021031769A (ja) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | 成膜原料混合ガス生成装置及び成膜装置 |
| USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
| USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
| USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
| KR20210024423A (ko) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 홀을 구비한 구조체를 형성하기 위한 방법 |
| USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
| KR20210024420A (ko) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법 |
| US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
| KR102806450B1 (ko) | 2019-09-04 | 2025-05-12 | 에이에스엠 아이피 홀딩 비.브이. | 희생 캡핑 층을 이용한 선택적 증착 방법 |
| KR102733104B1 (ko) | 2019-09-05 | 2024-11-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| US12469693B2 (en) | 2019-09-17 | 2025-11-11 | Asm Ip Holding B.V. | Method of forming a carbon-containing layer and structure including the layer |
| US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
| CN112593212B (zh) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法 |
| KR20210042810A (ko) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법 |
| TW202128273A (zh) | 2019-10-08 | 2021-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 氣體注入系統、及將材料沉積於反應室內之基板表面上的方法 |
| TWI846953B (zh) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理裝置 |
| KR102879443B1 (ko) | 2019-10-10 | 2025-11-03 | 에이에스엠 아이피 홀딩 비.브이. | 포토레지스트 하부층을 형성하기 위한 방법 및 이를 포함한 구조체 |
| US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
| TWI834919B (zh) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 氧化矽之拓撲選擇性膜形成之方法 |
| US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
| KR102845724B1 (ko) | 2019-10-21 | 2025-08-13 | 에이에스엠 아이피 홀딩 비.브이. | 막을 선택적으로 에칭하기 위한 장치 및 방법 |
| KR20210050453A (ko) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
| US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
| KR102890638B1 (ko) | 2019-11-05 | 2025-11-25 | 에이에스엠 아이피 홀딩 비.브이. | 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템 |
| US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
| KR102861314B1 (ko) | 2019-11-20 | 2025-09-17 | 에이에스엠 아이피 홀딩 비.브이. | 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템 |
| US11450529B2 (en) | 2019-11-26 | 2022-09-20 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
| CN112951697B (zh) | 2019-11-26 | 2025-07-29 | Asmip私人控股有限公司 | 基板处理设备 |
| CN120432376A (zh) | 2019-11-29 | 2025-08-05 | Asm Ip私人控股有限公司 | 基板处理设备 |
| CN112885692B (zh) | 2019-11-29 | 2025-08-15 | Asmip私人控股有限公司 | 基板处理设备 |
| JP7527928B2 (ja) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板処理装置、基板処理方法 |
| KR20210070898A (ko) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| CN112992667A (zh) | 2019-12-17 | 2021-06-18 | Asm Ip私人控股有限公司 | 形成氮化钒层的方法和包括氮化钒层的结构 |
| KR20210080214A (ko) | 2019-12-19 | 2021-06-30 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
| JP7636892B2 (ja) | 2020-01-06 | 2025-02-27 | エーエスエム・アイピー・ホールディング・ベー・フェー | チャネル付きリフトピン |
| TWI901623B (zh) | 2020-01-06 | 2025-10-21 | 荷蘭商Asm Ip私人控股有限公司 | 氣體供應總成以及閥板總成 |
| US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
| KR102882467B1 (ko) | 2020-01-16 | 2025-11-05 | 에이에스엠 아이피 홀딩 비.브이. | 고 종횡비 피처를 형성하는 방법 |
| KR102675856B1 (ko) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 및 박막 표면 개질 방법 |
| TWI889744B (zh) | 2020-01-29 | 2025-07-11 | 荷蘭商Asm Ip私人控股有限公司 | 污染物捕集系統、及擋板堆疊 |
| TW202513845A (zh) | 2020-02-03 | 2025-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 半導體裝置結構及其形成方法 |
| KR20210100010A (ko) | 2020-02-04 | 2021-08-13 | 에이에스엠 아이피 홀딩 비.브이. | 대형 물품의 투과율 측정을 위한 방법 및 장치 |
| US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
| KR20210103956A (ko) | 2020-02-13 | 2021-08-24 | 에이에스엠 아이피 홀딩 비.브이. | 수광 장치를 포함하는 기판 처리 장치 및 수광 장치의 교정 방법 |
| KR20210103953A (ko) | 2020-02-13 | 2021-08-24 | 에이에스엠 아이피 홀딩 비.브이. | 가스 분배 어셈블리 및 이를 사용하는 방법 |
| TWI855223B (zh) | 2020-02-17 | 2024-09-11 | 荷蘭商Asm Ip私人控股有限公司 | 用於生長磷摻雜矽層之方法 |
| TWI895326B (zh) | 2020-02-28 | 2025-09-01 | 荷蘭商Asm Ip私人控股有限公司 | 專用於零件清潔的系統 |
| TW202139347A (zh) | 2020-03-04 | 2021-10-16 | 荷蘭商Asm Ip私人控股有限公司 | 反應器系統、對準夾具、及對準方法 |
| US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
| KR20210116240A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 조절성 접합부를 갖는 기판 핸들링 장치 |
| CN113394086A (zh) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | 用于制造具有目标拓扑轮廓的层结构的方法 |
| US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
| KR102755229B1 (ko) | 2020-04-02 | 2025-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 |
| TWI887376B (zh) | 2020-04-03 | 2025-06-21 | 荷蘭商Asm Ip私人控股有限公司 | 半導體裝置的製造方法 |
| TWI888525B (zh) | 2020-04-08 | 2025-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於選擇性蝕刻氧化矽膜之設備及方法 |
| US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
| KR20210128343A (ko) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조 |
| US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
| KR102901748B1 (ko) | 2020-04-21 | 2025-12-17 | 에이에스엠 아이피 홀딩 비.브이. | 기판을 처리하기 위한 방법 |
| KR20210132600A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템 |
| KR20210132612A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 화합물들을 안정화하기 위한 방법들 및 장치 |
| TW202208671A (zh) | 2020-04-24 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成包括硼化釩及磷化釩層的結構之方法 |
| KR102866804B1 (ko) | 2020-04-24 | 2025-09-30 | 에이에스엠 아이피 홀딩 비.브이. | 냉각 가스 공급부를 포함한 수직형 배치 퍼니스 어셈블리 |
| KR20210132576A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 나이트라이드 함유 층을 형성하는 방법 및 이를 포함하는 구조 |
| KR102783898B1 (ko) | 2020-04-29 | 2025-03-18 | 에이에스엠 아이피 홀딩 비.브이. | 고체 소스 전구체 용기 |
| KR20210134869A (ko) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Foup 핸들러를 이용한 foup의 빠른 교환 |
| JP7726664B2 (ja) | 2020-05-04 | 2025-08-20 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板を処理するための基板処理システム |
| JP7736446B2 (ja) | 2020-05-07 | 2025-09-09 | エーエスエム・アイピー・ホールディング・ベー・フェー | 同調回路を備える反応器システム |
| KR20210137395A (ko) | 2020-05-07 | 2021-11-17 | 에이에스엠 아이피 홀딩 비.브이. | 불소계 라디칼을 이용하여 반응 챔버의 인시츄 식각을 수행하기 위한 장치 및 방법 |
| KR102788543B1 (ko) | 2020-05-13 | 2025-03-27 | 에이에스엠 아이피 홀딩 비.브이. | 반응기 시스템용 레이저 정렬 고정구 |
| TW202146699A (zh) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統 |
| KR102905441B1 (ko) | 2020-05-19 | 2025-12-30 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
| KR102795476B1 (ko) | 2020-05-21 | 2025-04-11 | 에이에스엠 아이피 홀딩 비.브이. | 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법 |
| KR20210145079A (ko) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | 기판을 처리하기 위한 플랜지 및 장치 |
| KR102702526B1 (ko) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | 과산화수소를 사용하여 박막을 증착하기 위한 장치 |
| TW202212650A (zh) | 2020-05-26 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 沉積含硼及鎵的矽鍺層之方法 |
| TWI876048B (zh) | 2020-05-29 | 2025-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
| TW202212620A (zh) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法 |
| KR20210156219A (ko) | 2020-06-16 | 2021-12-24 | 에이에스엠 아이피 홀딩 비.브이. | 붕소를 함유한 실리콘 게르마늄 층을 증착하는 방법 |
| CN113838794B (zh) | 2020-06-24 | 2024-09-27 | Asmip私人控股有限公司 | 用于形成设置有硅的层的方法 |
| TWI873359B (zh) | 2020-06-30 | 2025-02-21 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
| US12431354B2 (en) | 2020-07-01 | 2025-09-30 | Asm Ip Holding B.V. | Silicon nitride and silicon oxide deposition methods using fluorine inhibitor |
| TW202202649A (zh) | 2020-07-08 | 2022-01-16 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
| TWI864307B (zh) | 2020-07-17 | 2024-12-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於光微影之結構、方法與系統 |
| TWI878570B (zh) | 2020-07-20 | 2025-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於沉積鉬層之方法及系統 |
| KR20220011092A (ko) | 2020-07-20 | 2022-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 전이 금속층을 포함하는 구조체를 형성하기 위한 방법 및 시스템 |
| US12322591B2 (en) | 2020-07-27 | 2025-06-03 | Asm Ip Holding B.V. | Thin film deposition process |
| KR20220021863A (ko) | 2020-08-14 | 2022-02-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
| US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
| KR20220026500A (ko) | 2020-08-25 | 2022-03-04 | 에이에스엠 아이피 홀딩 비.브이. | 표면을 세정하는 방법 |
| TWI874701B (zh) | 2020-08-26 | 2025-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成金屬氧化矽層及金屬氮氧化矽層的方法 |
| KR20220027772A (ko) | 2020-08-27 | 2022-03-08 | 에이에스엠 아이피 홀딩 비.브이. | 다중 패터닝 공정을 사용하여 패터닝된 구조체를 형성하기 위한 방법 및 시스템 |
| KR20220033997A (ko) | 2020-09-10 | 2022-03-17 | 에이에스엠 아이피 홀딩 비.브이. | 갭 충진 유체를 증착하기 위한 방법 그리고 이와 관련된 시스템 및 장치 |
| USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
| KR20220036866A (ko) | 2020-09-16 | 2022-03-23 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 산화물 증착 방법 |
| USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
| TWI889903B (zh) | 2020-09-25 | 2025-07-11 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
| US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
| KR20220045900A (ko) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치 |
| CN114293174A (zh) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | 气体供应单元和包括气体供应单元的衬底处理设备 |
| TW202229613A (zh) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 於階梯式結構上沉積材料的方法 |
| KR102873665B1 (ko) | 2020-10-15 | 2025-10-17 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자의 제조 방법, 및 ether-cat을 사용하는 기판 처리 장치 |
| KR20220053482A (ko) | 2020-10-22 | 2022-04-29 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 금속을 증착하는 방법, 구조체, 소자 및 증착 어셈블리 |
| TW202223136A (zh) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基板上形成層之方法、及半導體處理系統 |
| TW202229620A (zh) | 2020-11-12 | 2022-08-01 | 特文特大學 | 沉積系統、用於控制反應條件之方法、沉積方法 |
| TW202229795A (zh) | 2020-11-23 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 具注入器之基板處理設備 |
| TW202235649A (zh) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 填充間隙之方法與相關之系統及裝置 |
| TW202235675A (zh) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 注入器、及基板處理設備 |
| US12255053B2 (en) | 2020-12-10 | 2025-03-18 | Asm Ip Holding B.V. | Methods and systems for depositing a layer |
| TW202233884A (zh) | 2020-12-14 | 2022-09-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成臨限電壓控制用之結構的方法 |
| CN114639631A (zh) | 2020-12-16 | 2022-06-17 | Asm Ip私人控股有限公司 | 跳动和摆动测量固定装置 |
| TW202232639A (zh) | 2020-12-18 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 具有可旋轉台的晶圓處理設備 |
| TW202226899A (zh) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 具匹配器的電漿處理裝置 |
| TW202231903A (zh) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成 |
| TW202242184A (zh) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 前驅物膠囊、前驅物容器、氣相沉積總成、及將固態前驅物裝載至前驅物容器中之方法 |
| USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
| USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
| USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
| USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
| USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
| CN115786844A (zh) * | 2021-09-10 | 2023-03-14 | 北京华卓精科科技股份有限公司 | 改善沉积薄膜厚度均匀性的方法及其掩膜板 |
| USD1099184S1 (en) | 2021-11-29 | 2025-10-21 | Asm Ip Holding B.V. | Weighted lift pin |
| USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1051251A (enExample) * | ||||
| US4392931A (en) * | 1981-03-30 | 1983-07-12 | Northern Telecom Limited | Reactive deposition method and apparatus |
| US4988424A (en) * | 1989-06-07 | 1991-01-29 | Ppg Industries, Inc. | Mask and method for making gradient sputtered coatings |
Family Cites Families (54)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2456795A (en) * | 1945-10-06 | 1948-12-21 | Reeves Hoffman Corp | Cathode sputtering apparatus for coating oscillator plates |
| US3410774A (en) * | 1965-10-23 | 1968-11-12 | Ibm | Method and apparatus for reverse sputtering selected electrically exposed areas of a cathodically biased workpiece |
| FR1595037A (enExample) * | 1968-02-12 | 1970-06-08 | ||
| US3594301A (en) * | 1968-11-22 | 1971-07-20 | Gen Electric | Sputter coating apparatus |
| DK120734B (da) * | 1969-03-17 | 1971-07-05 | Disa Elektronik As | Fremgangsmåde til pålægning af tyndfilm ved ionforstøvning på et tyndt, trådformet, elektrisk isolerende substrat samt apparat til udøvelse af fremgangsmåden. |
| US3617463A (en) * | 1969-06-18 | 1971-11-02 | Ibm | Apparatus and method for sputter etching |
| GB1358538A (en) * | 1971-06-08 | 1974-07-03 | Bristol Aerojet Ltd | Electrodeposited composite coatings |
| FR2218652B1 (enExample) * | 1973-02-20 | 1976-09-10 | Thomson Csf | |
| US5099100A (en) * | 1974-08-16 | 1992-03-24 | Branson International Plasma Corporation | Plasma etching device and process |
| JPS53123659A (en) * | 1977-04-05 | 1978-10-28 | Futaba Denshi Kogyo Kk | Method of producing compound semiconductor wafer |
| JPS581186B2 (ja) * | 1977-12-13 | 1983-01-10 | 双葉電子工業株式会社 | イオンプレ−テイング装置 |
| US4250009A (en) * | 1979-05-18 | 1981-02-10 | International Business Machines Corporation | Energetic particle beam deposition system |
| JPS56105483A (en) * | 1980-01-25 | 1981-08-21 | Mitsubishi Electric Corp | Dry etching device |
| US4340461A (en) * | 1980-09-10 | 1982-07-20 | International Business Machines Corp. | Modified RIE chamber for uniform silicon etching |
| US4351712A (en) * | 1980-12-10 | 1982-09-28 | International Business Machines Corporation | Low energy ion beam oxidation process |
| US4350578A (en) * | 1981-05-11 | 1982-09-21 | International Business Machines Corporation | Cathode for etching |
| JPS5867016A (ja) * | 1981-10-19 | 1983-04-21 | Nippon Telegr & Teleph Corp <Ntt> | 薄膜の製造方法 |
| US4416759A (en) * | 1981-11-27 | 1983-11-22 | Varian Associates, Inc. | Sputter system incorporating an improved blocking shield for contouring the thickness of sputter coated layers |
| US4474659A (en) * | 1982-05-28 | 1984-10-02 | Fazal Fazlin | Plated-through-hole method |
| US4481062A (en) * | 1982-09-02 | 1984-11-06 | Kaufman Harold R | Electron bombardment ion sources |
| EP0106497B1 (en) * | 1982-09-10 | 1988-06-01 | Nippon Telegraph And Telephone Corporation | Ion shower apparatus |
| JPS59207631A (ja) * | 1983-05-11 | 1984-11-24 | Semiconductor Res Found | 光化学を用いたドライプロセス装置 |
| US4424104A (en) * | 1983-05-12 | 1984-01-03 | International Business Machines Corporation | Single axis combined ion and vapor source |
| US4690744A (en) * | 1983-07-20 | 1987-09-01 | Konishiroku Photo Industry Co., Ltd. | Method of ion beam generation and an apparatus based on such method |
| US4508612A (en) * | 1984-03-07 | 1985-04-02 | International Business Machines Corporation | Shield for improved magnetron sputter deposition into surface recesses |
| JPS61577A (ja) * | 1984-06-13 | 1986-01-06 | Matsushita Electric Ind Co Ltd | スパツタリング装置 |
| KR900001825B1 (ko) * | 1984-11-14 | 1990-03-24 | 가부시끼가이샤 히다찌세이사꾸쇼 | 성막 지향성을 고려한 스퍼터링장치 |
| US4604179A (en) * | 1985-02-28 | 1986-08-05 | Trimedia Corporation | Sputtering-system baffle |
| JPH0348204Y2 (enExample) * | 1985-03-20 | 1991-10-15 | ||
| JPS61243167A (ja) * | 1985-04-17 | 1986-10-29 | Anelva Corp | スパツタ装置 |
| JPS627855A (ja) * | 1985-07-05 | 1987-01-14 | Hitachi Ltd | スパツタリング装置 |
| JPS6217173A (ja) * | 1985-07-15 | 1987-01-26 | Ulvac Corp | 平板マグネトロンスパツタ装置 |
| US4637853A (en) * | 1985-07-29 | 1987-01-20 | International Business Machines Corporation | Hollow cathode enhanced plasma for high rate reactive ion etching and deposition |
| JPH0682642B2 (ja) * | 1985-08-09 | 1994-10-19 | 株式会社日立製作所 | 表面処理装置 |
| DE3606959A1 (de) * | 1986-03-04 | 1987-09-10 | Leybold Heraeus Gmbh & Co Kg | Vorrichtung zur plasmabehandlung von substraten in einer durch hochfrequenz angeregten plasmaentladung |
| WO1987007916A1 (fr) * | 1986-06-18 | 1987-12-30 | Ricoh Company, Ltd. | Appareil pour former un film mince |
| JPH0763056B2 (ja) * | 1986-08-06 | 1995-07-05 | 三菱電機株式会社 | 薄膜形成装置 |
| US4810322A (en) * | 1986-11-03 | 1989-03-07 | International Business Machines Corporation | Anode plate for a parallel-plate reactive ion etching reactor |
| US4780169A (en) * | 1987-05-11 | 1988-10-25 | Tegal Corporation | Non-uniform gas inlet for dry etching apparatus |
| JPH0660391B2 (ja) * | 1987-06-11 | 1994-08-10 | 日電アネルバ株式会社 | スパッタリング装置 |
| US4960072A (en) * | 1987-08-05 | 1990-10-02 | Ricoh Company, Ltd. | Apparatus for forming a thin film |
| JPH0741153Y2 (ja) * | 1987-10-26 | 1995-09-20 | 東京応化工業株式会社 | 試料処理用電極 |
| US4824544A (en) * | 1987-10-29 | 1989-04-25 | International Business Machines Corporation | Large area cathode lift-off sputter deposition device |
| JPH01129998A (ja) * | 1987-11-13 | 1989-05-23 | Kobe Steel Ltd | 複合めっき法 |
| US4931158A (en) * | 1988-03-22 | 1990-06-05 | The Regents Of The Univ. Of Calif. | Deposition of films onto large area substrates using modified reactive magnetron sputtering |
| US4999320A (en) * | 1988-03-31 | 1991-03-12 | Texas Instruments Incorporated | Method for suppressing ionization avalanches in a helium wafer cooling assembly |
| US4981568A (en) * | 1988-09-20 | 1991-01-01 | International Business Machines Corp. | Apparatus and method for producing high purity diamond films at low temperatures |
| US4925542A (en) * | 1988-12-08 | 1990-05-15 | Trw Inc. | Plasma plating apparatus and method |
| JP2572438B2 (ja) * | 1989-01-30 | 1997-01-16 | ホーヤ株式会社 | ガラスプレス成形型の製造方法 |
| US4992153A (en) * | 1989-04-26 | 1991-02-12 | Balzers Aktiengesellschaft | Sputter-CVD process for at least partially coating a workpiece |
| US5114559A (en) * | 1989-09-26 | 1992-05-19 | Ricoh Company, Ltd. | Thin film deposition system |
| US4971653A (en) * | 1990-03-14 | 1990-11-20 | Matrix Integrated Systems | Temperature controlled chuck for elevated temperature etch processing |
| US5058527A (en) * | 1990-07-24 | 1991-10-22 | Ricoh Company, Ltd. | Thin film forming apparatus |
| US5223108A (en) * | 1991-12-30 | 1993-06-29 | Materials Research Corporation | Extended lifetime collimator |
-
1993
- 1993-07-22 US US08/095,950 patent/US5415753A/en not_active Expired - Lifetime
-
1994
- 1994-03-12 TW TW083102149A patent/TW285752B/zh active
- 1994-06-13 CA CA002164975A patent/CA2164975A1/en not_active Abandoned
- 1994-06-13 WO PCT/US1994/006716 patent/WO1995003436A1/en not_active Ceased
- 1994-06-13 EP EP94920200A patent/EP0710299A1/en not_active Withdrawn
- 1994-06-13 AU AU71079/94A patent/AU7107994A/en not_active Abandoned
- 1994-06-13 JP JP7505135A patent/JPH09500690A/ja not_active Withdrawn
- 1994-07-13 SG SG1996003680A patent/SG47675A1/en unknown
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1051251A (enExample) * | ||||
| US4392931A (en) * | 1981-03-30 | 1983-07-12 | Northern Telecom Limited | Reactive deposition method and apparatus |
| US4988424A (en) * | 1989-06-07 | 1991-01-29 | Ppg Industries, Inc. | Mask and method for making gradient sputtered coatings |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0854201A1 (en) * | 1997-01-20 | 1998-07-22 | Coherent Optics Europe Limited | Three-dimensional masking method for control of optical coating thickness |
| US5993904A (en) * | 1997-01-20 | 1999-11-30 | Coherent, Inc. | Three-dimensional masking method for control of coating thickness |
| US6168832B1 (en) | 1997-01-20 | 2001-01-02 | Coherent, Inc. | Three-dimensional masking method for control of coating thickness |
| DE10062713C1 (de) * | 2000-12-15 | 2002-09-05 | Zeiss Carl | Verfahren zum Beschichten von Substraten und Maskenhaltern |
| US12488969B2 (en) | 2019-07-02 | 2025-12-02 | Spts Technologies Limited | Deposition apparatus |
Also Published As
| Publication number | Publication date |
|---|---|
| AU7107994A (en) | 1995-02-20 |
| EP0710299A1 (en) | 1996-05-08 |
| US5415753A (en) | 1995-05-16 |
| CA2164975A1 (en) | 1995-02-02 |
| SG47675A1 (en) | 1998-04-17 |
| TW285752B (enExample) | 1996-09-11 |
| JPH09500690A (ja) | 1997-01-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5415753A (en) | Stationary aperture plate for reactive sputter deposition | |
| EP1184483B1 (en) | Thin-film formation system and thin-film formation process | |
| US4871433A (en) | Method and apparatus for improving the uniformity ion bombardment in a magnetron sputtering system | |
| US4946576A (en) | Apparatus for the application of thin layers to a substrate | |
| EP0154859B1 (en) | Apparatus for vacuum deposition | |
| JP2000144399A (ja) | スパッタリング装置 | |
| KR100221048B1 (ko) | 스퍼터링 장치 | |
| US5346601A (en) | Sputter coating collimator with integral reactive gas distribution | |
| KR20210089740A (ko) | Pvd 스퍼터링 증착 챔버의 경사형 마그네트론 | |
| EP0703598A1 (en) | Electrode between sputtering target and workpiece | |
| JPS63310965A (ja) | スパッタリング装置 | |
| WO1997035044A1 (en) | Method and apparatus for rf diode sputtering | |
| KR20010020525A (ko) | 스퍼터 코팅 시스템 및 기판 전극을 사용하는 방법 | |
| US9887073B2 (en) | Physical vapor deposition system and physical vapor depositing method using the same | |
| US6475353B1 (en) | Apparatus and method for sputter depositing dielectric films on a substrate | |
| EP0753600B1 (en) | High vacuum sputtering apparatus and a substrate to be processed | |
| US12416074B2 (en) | PVD system and collimator | |
| US20200051798A1 (en) | Collimator for selective pvd without scanning | |
| WO2009061067A1 (en) | Apparatus for reactive sputtering deposition | |
| JPS59229480A (ja) | スパツタリング装置 | |
| JPH08264447A (ja) | マグネトロンスパッタ成膜装置 | |
| US20190353919A1 (en) | Multi-zone collimator for selective pvd | |
| KR0127233Y1 (ko) | 반도체 제조장치의 스퍼터 장치 | |
| NL9201938A (nl) | Inrichting voor het ionenetsen over een groot oppervlak. | |
| WO1999043864A1 (en) | Vacuum deposition apparatus using electron beams |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KE KG KP KR KZ LK LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA UZ VN |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2164975 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1994920200 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1994920200 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 1994920200 Country of ref document: EP |