US20220119383A1 - Quinoline derivatives as alpha4beta7 integrin inhibitors - Google Patents

Quinoline derivatives as alpha4beta7 integrin inhibitors Download PDF

Info

Publication number
US20220119383A1
US20220119383A1 US17/289,614 US201917289614A US2022119383A1 US 20220119383 A1 US20220119383 A1 US 20220119383A1 US 201917289614 A US201917289614 A US 201917289614A US 2022119383 A1 US2022119383 A1 US 2022119383A1
Authority
US
United States
Prior art keywords
cycloalkyl
alkyl
compound
haloalkyl
independently selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/289,614
Other languages
English (en)
Inventor
Peter A. Blomgren
Taryn L. Campbell
Jayaraman Chandrasekhar
Christopher T. Clark
Julian A. Codelli
Kevin S. Currie
Jeffrey E. Kropf
Yasamin Moazami
Nicole A. Nava
Leena PATEL
Stephane Perreault
Jason K. Perry
Kassandra F. Sedillo
Natalie Seeger
Kirk L. Stevens
Jennifer A. TREIBERG
Suet C. Yeung
Zhongdong Zhao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gilead Sciences Inc
Original Assignee
Gilead Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gilead Sciences Inc filed Critical Gilead Sciences Inc
Priority to US17/289,614 priority Critical patent/US20220119383A1/en
Publication of US20220119383A1 publication Critical patent/US20220119383A1/en
Assigned to GILEAD SCIENCES, INC. reassignment GILEAD SCIENCES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PERRY, JASON K., Currie, Kevin S., BLOMGREN, PETER A., CAMPBELL, Taryn L., CHANDRASEKHAR, JAYARAMAN, CLARK, CHRISTOPHER T., CODELLI, JULIAN A., KROPF, JEFFREY E., MOAZAMI, Yasamin, NAVA, Nicole A., PATEL, LEENA, PERREAULT, STEPHANE, SEDILLO, KASSANDRA F., SEEGER, Natalie, STEVENS, KIRK L., TREIBERG, JENNIFER A., YEUNG, Suet C., ZHAO, ZHONGDONG
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4375Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/501Pyridazines; Hydrogenated pyridazines not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/5355Non-condensed oxazines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/541Non-condensed thiazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D215/14Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/48Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • C07D215/54Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/14Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D475/00Heterocyclic compounds containing pteridine ring systems
    • C07D475/02Heterocyclic compounds containing pteridine ring systems with an oxygen atom directly attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/18Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems

Definitions

  • the present disclosure relates generally to novel compounds that have ⁇ 4 ⁇ 7 integrin inhibitory action, prodrugs of compounds having ⁇ 4 ⁇ 7 integrin inhibitory action, and methods of use and manufacture thereof.
  • Integrins are heterodimeric cell surface proteins involved in numerous cellular processes including cell-cell and cell-extracellular matrix interactions. Upon binding of an extracellular ligand, integrins mediate signal transduction to the cell interior resulting in lymphocyte cell capture, adhesion, and infiltration into the tissue.
  • Integrins are heterodimeric proteins consisting of an alpha and a beta subunit. There are 18 known alpha subunits and 8 known beta subunits.
  • the ⁇ 4 ⁇ 7 integrin is expressed on the surface of lymphocytes and recognizes the extracellular ligand mucosal addressing cell adhesion molecule-1 (MAdCAM-1).
  • MAdCAM-1 extracellular ligand mucosal addressing cell adhesion molecule-1
  • ⁇ 4 ⁇ 7 integrin governs lymphocyte trafficking to and retention in gut tissues through its interaction with MAdCAM-1, which is expressed on venules in the intestinal mucosa and high endothelial venules (HEV) in the gut-associated lymphoid tissues (GALT).
  • the present disclosure provides compounds that are inhibitors for ⁇ 4 ⁇ 7 integrin.
  • the disclosure also provides compositions, including pharmaceutical compositions, kits that include the compounds, and methods of using (or administering) and making the compounds.
  • the compounds provided herein are useful in treating diseases, disorders, or conditions that are mediated by ⁇ 4 ⁇ 7 integrin.
  • the disclosure also provides compounds for use in therapy.
  • the disclosure further provides compounds for use in a method of treating a disease, disorder, or condition that is mediated by ⁇ 4 ⁇ 7 integrin.
  • the disclosure provides uses of the compounds in the manufacture of a medicament for the treatment of a disease, disorder or condition that is mediated by ⁇ 4 ⁇ 7 integrin.
  • L is selected from a bond, —O—, —O—C(O)—*, —NH—, —C(O)—N(H)—*, and —N(H)—C(O)—*; wherein * indicates the point of attachment of L to R 1 ;
  • R 1 is selected from A 1 , A 2 , A 3 , and A 4 ;
  • each R 2 , R 3 , R 4 , R 5 , and R 6 is independently selected from H, halo, cyano, hydroxyl, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 alkoxyl, C 1-8 haloalkyl, C 1-8 haloalkoxyl, —NR b1 R b2 , —R b3 S(O) m R b4 , —S(O) m R b4 , —NR b1 S(O) n R b4 , —COOR b1 , —CONR b1 R b2 , —NR b1 COOR b2 , —NR b1 COR b4 , —R b3 NR b1 R b2 , —S(O) n NR b1 R b2 , C 3-12 cycloalkyl, C 6-10 aryl,
  • each R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 is independently selected from H, halo, hydroxyl, cyano, C 1-6 alkyl, C 1-6 alkoxyl, C 1-6 haloalkyl, C 1-6 haloalkoxyl, and —NR a1 R a2 ;
  • R 13 is selected from H, C 1-4 alkyl, and C 1-4 haloalkyl
  • R 14 is selected from H, C 1-6 alkyl, —C 1-4 alkylene-NR a1 R a2 , —C 1-4 alkylene-C(O)NR a1 R a2 , —C 1-4 alkylene-O—C(O)—C 1-4 alkyl, —C 1-4 alkylene-O—C(O)—O—C 1-4 alkyl, C 1-4 alkylene-O—C(O)—C 1-4 alkylene-NR a1 R a2 , C 1-4 alkylene-O—C 1-4 alkyl, C 3-8 cycloalkyl, —C 1-4 alkylene-C 3-8 cycloalkyl, 4-6 membered heterocyclyl, and —C 1-4 alkylene-(4-6 membered heterocyclyl);
  • each R a1 and R a2 is independently selected from H, C 1-6 alkyl, and C 1-6 haloalkyl;
  • n 0, 1, and 2;
  • n is selected from 1, and 2.
  • a dash (“—”) that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, —CON H 2 is attached through the carbon atom.
  • a dash at the front or end of a chemical group is a matter of convenience; chemical groups may be depicted with or without one or more dashes without losing their ordinary meaning.
  • a wavy line drawn through a line in a structure indicates a point of attachment of a group. Unless chemically or structurally required, no directionality is indicated or implied by the order in which a chemical group is written or named.
  • C u-v indicates that the following group has from u to v carbon atoms.
  • C 1-8 alkyl indicates that the alkyl group has from 1 to 8 carbon atoms.
  • references to “about” a value or parameter herein includes (and describes) embodiments that are directed to that value or parameter per se.
  • the term “about” includes the indicated amount ⁇ 10%.
  • the term “about” includes the indicated amount ⁇ 5%.
  • the term “about” includes the indicated amount ⁇ 1%.
  • to the term “about X” includes description of “X”.
  • the singular forms “a” and “the” include plural references unless the context clearly dictates otherwise.
  • reference to “the compound” includes a plurality of such compounds and reference to “the assay” includes reference to one or more assays and equivalents thereof known to those skilled in the art.
  • Alkyl refers to an unbranched or branched saturated hydrocarbon chain. As used herein, alkyl has 1 to 20 carbon atoms (i.e., C 1-20 alkyl), 1 to 8 carbon atoms (i.e., C 1-8 alkyl), 1 to 6 carbon atoms (i.e., C 1-6 alkyl), or 1 to 4 carbon atoms (i.e., C 1-4 alkyl).
  • alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, and 3-methylpentyl.
  • alkyl residue having a specific number of carbons is named by chemical name or identified by molecular formula, all positional isomers having that number of carbons may be encompassed; thus, for example, “butyl” includes n-butyl (i.e.
  • alkylene refers to branched and unbranched divalent “alkyl” groups. As used herein, alkylene has 1 to 20 carbon atoms (i.e., C 1-20 alkylene), 1 to 8 carbon atoms (i.e., C 1-8 alkylene), 1 to 6 carbon atoms (i.e., C 1-6 alkylene), or 1 to 4 carbon atoms (i.e., C 1-4 alkylene). Examples include: methylene, ethylene, propylene, 1-methylethylene, butylene, 1-methylpropylene, 1,1-dimethylethylene or 1,2-dimethylethylene.
  • propylene and butylene include all the possible isomeric forms of the groups in question with the same number of carbons.
  • propylene also includes 1-methylethylene and butylene includes 1-methylpropylene, 1,1-dimethylethylene, and 1,2-dimethylethylene.
  • Alkenyl refers to an aliphatic group containing at least one carbon-carbon double bond and having from 2 to 20 carbon atoms (i.e., C 2-20 alkenyl), 2 to 8 carbon atoms (i.e., C 2-8 alkenyl), 2 to 6 carbon atoms (i.e., C 2-6 alkenyl), or 2 to 4 carbon atoms (i.e., C 2-4 alkenyl).
  • alkenyl groups include ethenyl, propenyl, butadienyl (including 1,2-butadienyl and 1,3-butadienyl).
  • Alkynyl refers to an aliphatic group containing at least one carbon-carbon triple bond and having from 2 to 20 carbon atoms (i.e., C 2-20 alkynyl), 2 to 8 carbon atoms (i.e., C 2-8 alkynyl), 2 to 6 carbon atoms (i.e., C 2-6 alkynyl), or 2 to 4 carbon atoms (i.e., C 2-4 alkynyl).
  • alkynyl also includes those groups having one triple bond and one double bond.
  • alkoxy and alkoxyl are used interchangeably and refer to the group “alkyl-O—”. Examples of alkoxyl and alkoxy groups include methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexoxy, and 1,2-dimethylbutoxy.
  • Haloalkoxyl refers to an alkoxyl group as defined above, wherein one or more hydrogen atoms are replaced by a halogen.
  • acyl refers to a group —C( ⁇ O)R, wherein R is hydrogen, alkyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
  • R is hydrogen, alkyl, cycloalkyl, heterocyclyl, aryl, heteroalkyl, or heteroaryl; each of which may be optionally substituted, as defined herein.
  • Examples of acyl include formyl, acetyl, cylcohexylcarbonyl, cyclohexylmethyl-carbonyl, and benzoyl.
  • Aryl refers to an aromatic carbocyclic group having a single ring (e.g. monocyclic) or multiple rings (e.g. bicyclic or tricyclic) including fused systems.
  • aryl has 6 to 20 ring carbon atoms (i.e., C 6-20 aryl), 6 to 12 carbon ring atoms (i.e., C 6-12 aryl), or 6 to 10 carbon ring atoms (i.e., C 6-10 aryl).
  • Examples of aryl groups include phenyl, naphthyl, fluorenyl, and anthryl.
  • Aryl does not encompass or overlap in any way with heteroaryl defined below. If one or more aryl groups are fused with a heteroaryl ring, the resulting ring system is heteroaryl.
  • Cycloalkyl refers to a saturated or partially saturated cyclic alkyl group having a single ring or multiple rings including fused, bridged, and spiro ring systems.
  • the term “cycloalkyl” includes cycloalkenyl groups (i.e. the cyclic group having at least one double bond).
  • cycloalkyl has from 3 to 20 ring carbon atoms (i.e., C 3-20 cycloalkyl), 3 to 12 ring carbon atoms (i.e., C 3-12 cycloalkyl), 3 to 10 ring carbon atoms (i.e., C 3-10 cycloalkyl), 3 to 8 ring carbon atoms (i.e., C 3-8 cycloalkyl), or 3 to 6 ring carbon atoms (i.e., C 3-6 cycloalkyl).
  • Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
  • Cycloalkyl groups also include partially unsaturated ring systems containing one or more double bonds, including fused ring systems with one aromatic ring and one non-aromatic ring, but not fully aromatic ring systems.
  • Bridged refers to a ring fusion wherein non-adjacent atoms on a ring are joined by a divalent substituent, such as an alkylenyl or heteroalkylenyl group or a single heteroatom. Quinuclidinyl and admantanyl are examples of bridged ring systems.
  • fused refers to a ring which is bound to an adjacent ring.
  • “Spiro” refers to a ring substituent which is joined by two bonds at the same carbon atom.
  • Examples of spiro groups include 1,1-diethylcyclopentane, dimethyl-dioxolane, and 4-benzyl-4-methylpiperidine, wherein the cyclopentane and piperidine, respectively, are the spiro substituents.
  • Spiro also refers to a bicyclic portion, wherein the two rings are connected through a single common atom. Spiro compounds may be fully carbocyclic or heterocyclic. Examples of spiro groups include 5-oxa-8-azaspiro[3.5]nonane, 7-oxa-4-azaspiro[2.5]octane, and 5 ⁇ 2 -azaspiro[2.4]heptane.
  • Halogen or “halo” includes fluoro, chloro, bromo, and iodo.
  • Haloalkyl refers to an unbranched or branched alkyl group as defined above, wherein one or more hydrogen atoms are replaced by a halogen. For example, where a residue is substituted with more than one halogen, it may be referred to by using a prefix corresponding to the number of halogen moieties attached.
  • Dihaloalkyl and trihaloalkyl refer to alkyl substituted with two (“di”) or three (“tri”) halo groups, which may be, but are not necessarily, the same halogen. Examples of haloalkyl include difluoromethyl (—CHF 2 ) and trifluoromethyl (—CF 3 ).
  • heterocyclyl or “heterocycle” as used herein refers to a single saturated or partially unsaturated non-aromatic ring or a non-aromatic multiple ring system that has at least one heteroatom in the ring (i.e., at least one annular heteroatom selected from O, N, S, S(O), S(O) 2 , and N-oxide groups).
  • a heterocyclyl group has from 3 to about 20 annular atoms, for example from 3 to 12 annular atoms, for example from 3 to 10 annular atoms, for example from 5 to 10 annular atoms or for example from 5 to 6 annular atoms.
  • the term includes single saturated or partially unsaturated rings (e.g., 3, 4, 5, 6 or 7-membered rings) having from about 1 to 6 annular carbon atoms and from about 1 to 3 annular heteroatoms independently selected from the group consisting of O, N, S, S(O), S(O) 2 , and N-oxide in the ring.
  • the rings of the multiple condensed ring (e.g. bicyclic heterocyclyl) system can be connected to each other via fused, spiro and bridged bonds when allowed by valency requirements.
  • Heterocycles include, but are not limited to, groups derived from azetidine, aziridine, imidazolidine, morpholine, oxirane (epoxide), oxetane, piperazine, piperidine, pyrazolidine, piperidine, pyrrolidine, pyrrolidinone, tetrahydrofuran, tetrahydrothiophene, dihydropyridine, tetrahydropyridine, tetrahydro-2H-thiopyran 1,1-dioxide, quinuclidine, N-bromopyrrolidine, N-chloropiperidine, and the like.
  • Heterocycles include spirocycles, such as, for example, aza or oxo-spiroheptanes.
  • Heterocyclyl groups also include partially unsaturated ring systems containing one or more double bonds, including fused ring systems with one aromatic ring and one non-aromatic ring, but not fully aromatic ring systems. Examples include dihydroquinolines, e.g. 3,4-dihydroquinoline, dihydroisoquinolines, e.g. 1,2-dihydroisoquinoline, dihydroimidazole, tetrahydroimidazole, etc., indoline, isoindoline, isoindolones (e.g.
  • heterocycles include 3,8-diazabicyclo[3.2.1]octanyl, 2,5-diazabicyclo [2.2.1]heptanyl, 3,6-diazabicyclo[3.1.1]heptanyl, 3-oxa-7,9-diazabicyclo[3.3.1]nonanyl, and hexahydropyrazino[2,1-c][1,4]oxazinyl, for example.
  • “Hydroxyl” and “hydroxy” are used interchangeably and refer to —OH. “Oxo” refers to the group ( ⁇ O) or (O). Where tautomeric forms of the compound exist, hydroxyl and oxo groups are interchangeable.
  • Heteroaryl refers to an aromatic group, including groups having an aromatic tautomer or resonance structure, having a single ring, multiple rings, or multiple fused rings, with at least one heteroatom in the ring, i.e., one or more ring heteroatoms independently selected from nitrogen, oxygen, and sulfur, wherein the nitrogen or sulfur may be oxidized.
  • the term includes rings having one or more annular O, N, S, S(O), S(O) 2 , and N-oxide groups.
  • the term includes rings having one or more annular C(O) groups.
  • heteroaryl include 5 to 20 ring atoms (i.e., 5- to 20-membered heteroaryl), 5 to 12 ring atoms (i.e., 5- to 12-membered heteroaryl), or 5 to 10 ring atoms (i.e., 5- to 10-membered heteroaryl), and 1 to 5 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and oxidized forms of the heteroatoms.
  • heteroaryl groups include pyridin-2(1H)-one, pyridazin-3(2H)-one, pyrimidin-4(3H)-one, quinolin-2(1H)-one, pyrimidinyl, purinyl, pyridyl, pyridazinyl, benzothiazolyl, and pyrazolyl.
  • Heteroaryl does not encompass or overlap with aryl as defined above.
  • “Sulfonyl” refers to the group —S(O) 2 R, where R is alkyl, haloalkyl, heterocyclyl, cycloalkyl, heteroaryl, or aryl. Examples of sulfonyl are methylsulfonyl, ethylsulfonyl, phenylsulfonyl, and toluenesulfonyl.
  • a divalent group such as a divalent “alkyl” group, a divalent “aryl” group, etc.
  • a divalent group such as a divalent “alkyl” group, a divalent “aryl” group, etc.
  • combinations of groups are referred to herein as one moiety, e.g. arylalkyl, the last mentioned group contains the atom by which the moiety is attached to the rest of the molecule.
  • substituted means that any one or more hydrogen atoms on the designated atom or group is replaced with one or more substituents other than hydrogen, provided that the designated atom's normal valence is not exceeded.
  • the one or more substituents include, but are not limited to, alkyl, alkenyl, alkynyl, alkoxy, acyl, amino, amido, amidino, aryl, azido, carbamoyl, carboxyl, carboxyl ester, cyano, guanidino, halo, haloalkyl, heteroalkyl, heteroaryl, heterocyclyl, hydroxy, hydrazino, imino, oxo, nitro, alkylsulfinyl, sulfonic acid, alkylsulfonyl, thiocyanate, thiol, thione, or combinations thereof.
  • the above definitions are not intended to include impermissible substitution patterns (e.g., methyl substituted with 5 fluorines or heteroaryl groups having two adjacent oxygen ring atoms). Such impermissible substitution patterns are well known to the skilled artisan.
  • substituted may describe other chemical groups defined herein.
  • substituted aryl includes, but is not limited to, “alkylaryl.” Unless specified otherwise, where a group is described as optionally substituted, any substituents of the group are themselves unsubstituted.
  • substituted alkyl refers to an alkyl group having one or more substituents including hydroxyl, halo, alkoxy, cycloalkyl, heterocyclyl, aryl, and heteroaryl.
  • substituted cycloalkyl refers to a cycloalkyl group having one or more substituents including alkyl, haloalkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, halo, oxo, and hydroxyl
  • substituted heterocyclyl refers to a heterocyclyl group having one or more substituents including alkyl, haloalkyl, heterocyclyl, cycloalkyl, aryl, heteroaryl, alkoxy, halo, oxo, and hydroxyl
  • substituted aryl refers to an aryl group having one or more substituents including halo, alkyl, haloalkyl, cycloalkyl, heterocyclyl, heteroaryl, alkoxy, and cyano
  • substituted heteroaryl refers to an heteroaryl group having one or more substituents including alkyl, haloalkyl, cycloalkyl, hetero
  • the one or more substituents may be further substituted with halo, alkyl, haloalkyl, hydroxyl, alkoxy, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of which is substituted.
  • the substituents may be further substituted with halo, alkyl, haloalkyl, alkoxy, hydroxyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl, each of which is unsubstituted.
  • Tautomeric isomers are in equilibrium with one another.
  • amide containing compounds may exist in equilibrium with imidic acid tautomers. Regardless of which tautomer is shown, and regardless of the nature of the equilibrium among tautomers, the compounds are understood by one of ordinary skill in the art to comprise both amide and imidic acid tautomers. Thus, the amide containing compounds are understood to include their imidic acid tautomers. Likewise, the imidic acid containing compounds are understood to include their amide tautomers.
  • any formula or structure given herein is also intended to represent unlabeled forms as well as isotopically labeled forms of the compounds.
  • Isotopically labeled compounds have structures depicted by the formulas given herein except that one or more atoms are replaced by an atom having a selected atomic mass or mass number.
  • isotopes that can be incorporated into compounds of the disclosure include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as, but not limited to 2 H (deuterium, D), 3 H (tritium), 11 C, 13 C, 14 C, 15 N, 18 F, 31 P, 32 P, 35 S, 36 Cl and 125 I.
  • isotopically labeled compounds of the present disclosure for example those into which radioactive isotopes such as 3 H, 13 C and 14 C are incorporated.
  • isotopically labelled compounds may be useful in metabolic studies, reaction kinetic studies, detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays or in radioactive treatment of patients.
  • PET positron emission tomography
  • SPECT single-photon emission computed tomography
  • the disclosure also includes compounds of the present disclosure, in which from 1 to n hydrogens attached to a carbon atom is/are replaced by deuterium, in which n is the number of hydrogens in the molecule.
  • Such compounds exhibit increased resistance to metabolism and are thus useful for increasing the half-life of any compound of the present disclosure, when administered to a mammal, particularly a human. See, for example, Foster, “Deuterium Isotope Effects in Studies of Drug Metabolism,” Trends Pharmacol. Sci. 5(12):524-527 (1984).
  • Such compounds are synthesized by means well known in the art, for example by employing starting materials in which one or more hydrogens have been replaced by deuterium.
  • Deuterium labelled or substituted therapeutic compounds of the disclosure may have improved DM PK (drug metabolism and pharmacokinetics) properties, relating to distribution, metabolism and excretion (ADME). Substitution with heavier isotopes such as deuterium may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life, reduced dosage requirements and/or an improvement in therapeutic index.
  • An 18 F labeled compound may be useful for PET or SPECT studies.
  • Isotopically labeled compounds of this disclosure and prodrugs thereof can generally be prepared by carrying out the procedures disclosed in the schemes or in the examples and preparations described below by substituting a readily available isotopically labeled reagent for a non-isotopically labeled reagent. It is understood that deuterium in this context is regarded as a substituent in the compound of the present disclosure.
  • the concentration of such a heavier isotope, specifically deuterium may be defined by an isotopic enrichment factor.
  • any atom not specifically designated as a particular isotope is meant to represent any stable isotope of that atom.
  • a position is designated specifically as “H” or “hydrogen”, the position is understood to have hydrogen at its natural abundance isotopic composition.
  • any atom specifically designated as a deuterium (D) is meant to represent deuterium.
  • the compounds of this disclosure are capable of forming acid and/or base salts by virtue of the presence of amino and/or carboxyl groups or groups similar thereto.
  • pharmaceutically acceptable salt of a given compound refers to salts that retain the biological effectiveness and properties of the given compound, and which are not biologically or otherwise undesirable.
  • Pharmaceutically acceptable base addition salts can be prepared from inorganic and organic bases. Salts derived from inorganic bases include, by way of example only, sodium, potassium, lithium, ammonium, calcium and magnesium salts.
  • Salts derived from organic bases include, but are not limited to, salts of primary, secondary and tertiary amines, such as alkyl amines, dialkyl amines, trialkyl amines, substituted alkyl amines, di(substituted alkyl) amines, tri(substituted alkyl) amines, alkenyl amines, dialkenyl amines, trialkenyl amines, substituted alkenyl amines, di(substituted alkenyl) amines, tri(substituted alkenyl) amines, mono, di or tri cycloalkyl amines, mono, di or tri arylamines or mixed amines, etc.
  • primary, secondary and tertiary amines such as alkyl amines, dialkyl amines, trialkyl amines, substituted alkyl amines, di(substituted alkyl) amines, tri
  • Suitable amines include, by way of example only, isopropylamine, trimethyl amine, diethyl amine, tri(iso-propyl) amine, tri(n-propyl) amine, ethanolamine, 2-dimethylaminoethanol, piperazine, piperidine, morpholine, N-ethylpiperidine, and the like.
  • Salts derived from inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • Salts derived from organic acids include acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluene-sulfonic acid, salicylic acid, and the like.
  • Salts such as TFA salts, can be converted to the free-bases/acids or other pharmaceutically acceptable salts.
  • “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
  • Treatment is an approach for obtaining beneficial or desired results including clinical results.
  • beneficial or desired clinical results may include one or more of the following: a) inhibiting the disease or condition (e.g., decreasing one or more symptoms resulting from the disease or condition, and/or diminishing the extent of the disease or condition); b) slowing or arresting the development of one or more clinical symptoms associated with the disease or condition (e.g., stabilizing the disease or condition, preventing or delaying the worsening or progression of the disease or condition, and/or preventing or delaying the spread (e.g., metastasis) of the disease or condition); and/or c) relieving the disease, that is, causing the regression of clinical symptoms (e.g., ameliorating the disease state, providing partial or total remission of the disease or condition, enhancing effect of another medication, delaying the progression of the disease, increasing the quality of life, and/or prolonging survival.
  • a) inhibiting the disease or condition e.g., decreasing one or more symptoms resulting from the disease or condition
  • Prevention means any treatment of a disease or condition that causes the clinical symptoms of the disease or condition not to develop.
  • Compounds may, in some embodiments, be administered to a subject (including a human) who is at risk or has a family history of the disease or condition.
  • Subject refers to an animal, such as a mammal (including a human), that has been or will be the object of treatment, observation or experiment. The methods described herein may be useful in human therapy and/or veterinary applications.
  • the subject is a mammal. In one embodiment, the subject is a human.
  • terapéuticaally effective amount or “effective amount” of a compound described herein or pharmaceutically acceptable salts, isomer, or a mixture thereof means an amount sufficient to effect treatment when administered to a subject, to provide a therapeutic benefit such as amelioration of symptoms or slowing of disease progression.
  • a therapeutically effective amount may be an amount sufficient to decrease a symptom of a disease or condition responsive to inhibition of ⁇ 4 ⁇ 7 integrin activity.
  • the therapeutically effective amount may vary depending on the subject, and disease or condition being treated, the weight and age of the subject, the severity of the disease or condition, and the manner of administering, which can readily be determined by one or ordinary skill in the art.
  • inhibitors indicates a decrease in the baseline activity of a biological activity or process.
  • “Inhibition of activity of ⁇ 4 ⁇ 7 integrin” or variants thereof refers to a decrease in activity of ⁇ 4 ⁇ 7 integrin as a direct or indirect response to the presence of a compound of the present application relative to the activity of ⁇ 4 ⁇ 7 integrin in the absence of the compound of the present application.
  • “Inhibition of ⁇ 4 ⁇ 7 ” refers to a decrease in ⁇ 4 ⁇ 7 integrin activity as a direct or indirect response to the presence of a compound described herein relative to the activity of ⁇ 4 ⁇ 7 integrin in the absence of the compound described herein.
  • the inhibition of ⁇ 4 ⁇ 7 integrin activity may be compared in the same subject prior to treatment, or other subjects not receiving the treatment.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , and L are defined as above.
  • L is selected from a bond, —O—, —O—C(O)—*, —NH—, —C(O)—N(H)—*, and —N(H)—C(O)—*; wherein * indicates the point of attachment of L to R 1 ;
  • R 1 is selected from A 1 , A 2 , and A 3 ;
  • each R 2 , R 3 , R 4 , R 5 , and R 6 is independently selected from H, halo, cyano, hydroxyl, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 alkoxyl, C 1-8 haloalkoxyl, —NR b1 R b2 , —R b3 S(O) m R b4 , —S(O) m R b4 , —NR b1 S(O) n R b4 , —COOR b1 , —CONR b1 R b2 , —NR b1 COOR b2 , —NR b1 COR b4 , —R b3 NR b1 R b2 , —S(O) n NR b1 R b2 , C 3-12 cycloalkyl, C 6-10 aryl, 5-6 membered heteroaryl, and
  • each R 7 , R 8 , R 9 , R 10 , and R 11 is independently selected from H, halo, hydroxyl, cyano, C 1-6 alkyl, C 1-6 alkoxyl, C 1-6 haloalkyl, C 1-6 haloalkoxyl, and —NR a1 R a2 ;
  • R 13 is selected from H, C 1-4 alkyl, and C 1-4 haloalkyl
  • R 14 is selected from H, C 1-6 alkyl, —C 1-4 alkylene-NR a1 R a2 , —C 1-4 alkylene-C(O)NR a1 R a2 , —C 1-4 alkylene-O—C(O)—C 1-4 alkyl, —C 1-4 alkylene-O—C(O)—O—C 1-4 alkyl, —C 1-4 alkylene-O—C(O)—C 1-4 alkylene-NR a1 R a2 , —C 1-4 alkylene-O—C 1-4 alkyl, C 3-8 cycloalkyl, —C 1-4 alkylene-C 3-8 cycloalkyl, 4-6 membered heterocyclyl, and —C 1-4 alkylene-(4-6 membered heterocyclyl);
  • R 14 together with the N that attaches to R 13 forms a 5 membered heterocyclyl; wherein the 5 membered heterocyclyl is optionally substituted with one to two groups independently selected from halo, C 1-6 alkyl, C 1-6 alkoxyl, C 1-6 haloalkyl, and C 6-10 aryl; wherein the C 6-10 aryl is optionally substituted with one to three groups independently selected from halo, C 1-6 alkyl, C 1-6 alkoxyl, and C 1-6 haloalkyl;
  • each R a1 and R a2 is independently selected from H, C 1-6 alkyl, and C 1-6 haloalkyl;
  • n 0, 1, and 2;
  • n is selected from 1, and 2.
  • R 1 , R 2 , R 3 , R 5 , R 6 , R 14 , R b1 , and R b2 are as defined above in formula (I), (II), or elsewhere in this disclosure.
  • R 1 , R 2 , R 3 , R 5 , R 6 , R 14 , and R b are as defined above in formula (I), (II), or elsewhere in this disclosure.
  • X 1 is selected from CR x1 , and N; and
  • X 2 is selected from CR x1 R x2 , NR x2 , O, and S(O) 2 .
  • R x1 is selected from H, and R b ; and R x2 is selected from H, C 1-4 alkyl, and C 1-4 haloalkyl.
  • p is selected from 0, 1, and 2.
  • q is selected from 0, 1, 2, 3, and 4.
  • R 1 , R 2 , R 3 , R 5 , R 6 , R 14 , and R b4 are as defined above in formula (I), (II), or elsewhere in this disclosure.
  • Each Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 is independently selected from CR y , and N.
  • R y is selected from H, and R a .
  • R a , R 2 , R 3 , R 4 , R 5 , R 6 , and R 14 are as defined above in formula (I), (II), or elsewhere in this disclosure.
  • R a , R 2 , R 4 , R 6 , and R 14 are as defined above in formula (I), (II), or elsewhere in this disclosure.
  • u is selected from 0, 1, 2, 3, 4, and 5.
  • R y is independently selected from H, and R a .
  • R a , R 2 , R 4 , R 6 , and R 14 are as defined above in formula (I), (II), or elsewhere in this disclosure.
  • R a , R 2 , R 3 , R 4 , R 5 , R 6 , and R 14 are as defined above in formula (I), (II), or elsewhere in this disclosure.
  • Y 3 , Y 4 , and Y 5 are as defined above in formula (IId), or elsewhere in this disclosure.
  • Each R y is independently selected from H, and R a .
  • R 2 , R 3 , R 4 , R 5 , R 6 , and R 14 are as defined above in formula (I), (II), or elsewhere in this disclosure.
  • Each R y is independently as defined above in formula (IId), or elsewhere in this disclosure.
  • R a , R 2 , R 3 , R 4 , R 5 , R 6 , and R 14 are as defined above in formula (I), (II), or elsewhere in this disclosure.
  • r is selected from 0, 1, 2, 3, 4, 5, and 6.
  • L is a bond. In some embodiments, L is —O—. In some embodiments, L is —C(O)—N(H)—*.
  • R 1 is selected from phenyl, naphthyl, pyridinyl, pyridazinyl, pyrazinyl, pyrimidinyl, quinolinyl, isoquinolinyl, isoxazolyl, triazolyl, pyrazolyl, benzothiazolyl, pyridinonyl, quinolinonyl, isoquinolinonyl, quinazolinedionyl, pyrazinonyl, pyrimidinonyl, pyrimidinedionyl, pyridazinonyl, quinazolinonyl, benzofuranyl, tetrahydrocyclopenta[b]pyridinonyl, naphthyridinonyl, chromanyl, isochromanyl, and chromenonyl.
  • R 1 is independently optionally substituted with one to four R a .
  • R 1 is selected from phenyl, naphthyl, pyridinyl, pyrimidinyl, quinolinyl, isoxazolyl, pyridinonyl, quinolinonyl, quinazolinedionyl, pyrazinonyl, pyrimidinonyl, pyridazinonyl, quinazolinonyl, benzofuranyl, and chromenonyl, and each R 1 is independently optionally substituted with one to four R a .
  • R 1 -L- is selected from
  • each “R 1 -L-” is optionally substituted with one to four R a .
  • each R a is independently selected from halo, cyano, hydroxyl, NR a1 R a2 , C 1-4 alkyl, C 1-4 alkoxyl, C 1-4 haloalkyl, C 1-4 haloalkoxyl, C 3-6 cycloalkyl, —O—C 3-6 cycloalkyl, 3-6 membered heterocyclyl, —O-(3-6 membered heterocyclyl), and phenyl.
  • each R a is independently selected from F, Cl, CN, OH, —NH 2 , —CH 3 , —CH 2 F, —CHF 2 , —CF 3 , —OCH 3 , and —OCF 3 .
  • R 1 -L- is selected from
  • each “R 1 -L-” is optionally substituted with one to four R a .
  • each R a is independently selected from halo, cyano, hydroxyl, N R a1 R a2 , C 1-4 alkyl, C 1-4 alkoxyl, C 1-4 haloalkyl, C 1-4 haloalkoxyl, C 3-6 cycloalkyl, —O—C 3-6 cycloalkyl, and phenyl.
  • each R a is independently selected from F, Cl, CN, OH, —NH 2 , —CH 3 , —CH 2 F, —CHF 2 , —CF 3 , —OCH 3 , and —OCF 3 .
  • R 1 is selected from
  • Each R 1 is optionally substituted with one to four R a .
  • R 1 is selected from
  • Each R 1 is optionally substituted with one to four R a .
  • R 1 is selected from
  • each R 1 is optionally substituted with one to four R a .
  • each R a is independently selected from halo, CN, —OH, NR a1 R a2 , C 1-4 alkyl, C 1-4 alkoxyl, C 1-4 haloalkyl, C 1-4 haloalkoxyl, C 3-6 cycloalkyl, —O—C 3-6 cycloalkyl, and phenyl.
  • each R a is independently selected from F, Cl, OH, CN, —NH 2 , —CH 3 , —CH 2 F, —CHF 2 , —CF 3 , —OCH 3 , and —OCF 3 .
  • R 1 is selected from
  • each R 1 is optionally substituted with one to four R a .
  • each R a is independently selected from halo, CN, —OH, NR a1 R a2 , C 1-4 alkyl, C 1-4 alkoxyl, C 1-4 haloalkyl, C 1-4 haloalkoxyl, C 3-6 cycloalkyl, —O—C 3-6 cycloalkyl, and phenyl.
  • each R a is independently selected from F, Cl, OH, CN, —NH 2 , —NH(CH 3 ), —N(CH 3 ) 2 , —CH 3 , —CH 2 F, —CHF 2 , —CF 3 , —OCH 3 , and —OCF 3 .
  • each R a is independently selected from F, Cl, —N(CH 3 ) 2 , —CH 3 , —OCH 3 , and —CF 3 .
  • R 1 is
  • each R a is independently selected from F, Cl, —N(CH 3 ) 2 , —CH 3 , —OCH 3 , and —CF 3 .
  • R 1 is substituted with —CH 3 .
  • R 1 is substituted with one to three R a independently selected from halo, CN, OH, NR a1 R a2 , C 1-4 alkyl, C 1-4 alkoxyl, C 1-4 haloalkyl, C 1-4 haloalkoxyl, and C 3-6 cycloalkyl.
  • each R a is independently selected from F, Cl, CN, OH, —NH 2 , —N(CH 3 ) 2 , —CH 3 , —CH 2 CH 3 , —CH(CH 3 ) 2 , —C(CH 3 ) 3 , —CH 2 CN, —CH 2 CH 2 CN, —CH 2 OH, —CH 2 CH 2 OH, —OCH 3 , —OCH 2 CH 3 , —OCH(CH 3 ) 2 , —OC(CH 3 ) 3 , —CH 2 OCH 3 , —CH 2 OCH 2 CH 3 , —CH 2 OCH(CH 3 ) 2 , —CH 2 F, —CHF 2 , —CF 3 , —CH 2 CH 2 F, —CH 2 CHF 2 , —CH 2 CF 3 , —OCH 2 F, —OCHF 2 , —OCF 3 , —OCH 2 CH 2 F
  • cyclopropyl cyclobutyl, cyclopentyl, cyclohexyl, phenyl, —O—cyclopropyl, —O—CH 2 -cyclopropyl, —O—cyclobutyl, —O—CH 2 cyclobutyl, —O-cyclopentyl, —O—CH 2 cyclopentyl, —O-cyclohexyl, —O—CH 2 cyclohexyl, and —O-phenyl.
  • each R a is independently selected from F, Cl, CN, —NH 2 , —CH 3 , —CH 2 F, —CHF 2 , —CF 3 , —OCH 3 , —CH 2 OCH 2 CH 3 , and —OCF 3 .
  • R 1 is selected from:
  • R 1 is selected from:
  • R 1 is selected from
  • R 1 is selected from
  • R 1 is selected from:
  • R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • R 1 -L- is —O—C(O)—N R a1 R a2 .
  • each R a1 and R a2 is independently selected from H, and C 1-4 alkyl.
  • each R a1 and R a2 is independently selected from H, CH 3 , —CH 2 CH 3 , —CH(CH 3 ) 2 , and —C(CH 3 ) 3 .
  • each R a1 and R a2 is independently selected from H, CH 3 , and —CH 2 CH 3 .
  • both R a1 and R a2 are CH 3 .
  • “R 1 -L-” is —O—C(O)—N(CH 3 ) 2 .
  • R 2 and R 3 form a C 3-6 cycloalkyl, 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl.
  • the 5-6 membered heterocyclyl or 5-6 membered heteroaryl comprises one or two N.
  • C 3-6 cycloalkyl, 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl is substituted with one or two groups independently selected from halo, C 1-6 alkyl, C 1-6 haloalkyl, C 3-6 cycloalkyl, and C 1-4 alkylene-phenyl.
  • C 3-6 cycloalkyl, 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl is substituted with one or two groups independently selected from Cl, —CH 3 , cyclopropyl, and —CH 2 -phenyl.
  • R 3 and R 4 form a C 3-6 cycloalkyl, 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl.
  • the 5-6 membered heterocyclyl or 5-6 membered heteroaryl comprises one or two N.
  • C 3-6 cycloalkyl, 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl is substituted with one or two groups independently selected from halo, C 1-6 alkyl, C 1-6 haloalkyl, C 3-6 cycloalkyl, and C 1-4 alkylene-phenyl.
  • C 3-6 cycloalkyl, 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl is substituted with one or two groups independently selected from Cl, —CH 3 , cyclopropyl, and —CH 2 -phenyl.
  • each R 2 , R 3 , R 4 , R 5 , and R 6 is independently selected from H, halo, CN, OH, —NR b1 R b2 , C 1-6 alkyl, C 1-6 alkoxyl, C 1-6 haloalkyl, and C 1-6 haloalkoxyl.
  • each R 2 , R 3 , R 4 , R 5 , and R 6 is independently selected from H, halo, CN, OH, —NR b1 R b2 , C 1-4 alkyl, C 1-4 alkoxyl, C 1-4 haloalkyl, and C 1-4 haloalkoxyl.
  • each R 2 , R 3 , R 4 , R 5 , and R 6 is independently selected from H, F, Cl, CN, OH, —NH 2 , —N(CH 3 ) 2 , —CH 3 , CD 3 , —CH 2 F, —CHF 2 , —CF 3 , —OCH 3 , and —OCF 3 .
  • each R 2 and R 6 is independently selected from H, halo, CN, OH, —NR b1 R b2 , C 1-4 alkyl, C 1-4 alkoxyl, C 1-4 haloalkyl, and C 1-4 haloalkoxyl.
  • each R 2 and R 6 is independently selected from F, Cl, CN, OH, —NH 2 , —N(CH 3 ) 2 , —CH 3 , —CH 2 F, —CHF 2 , —CF 3 , —OCH 3 , and —OCF 3 .
  • both R 2 and R 6 are F.
  • R 6 is —CH 3 .
  • each R 3 and R 5 is independently selected from H, C 1-6 alkyl, C 1-6 alkoxyl, C 1-6 haloalkyl, C 1-6 haloalkoxyl, and C 3-6 cycloalkyl. In some embodiments, each R 3 and R 5 is independently selected from H, C 1-4 alkyl, C 1-4 alkoxyl, C 1-4 haloalkyl, and C 1-4 haloalkoxyl. In some embodiments, each R 3 and R 5 is independently selected from H, F, —NH 2 , —CH 3 , —CH 2 F, —CHF 2 , —CF 3 , and —OCH 3 . In some embodiments, both R 3 and R 5 are H.
  • R 2 is F
  • R 6 is —CH 3 .
  • R 4 is selected from H, —NR b1 R b2 , —NR b1 S(O) n R b4 , and 3-8 membered heterocyclyl.
  • the 3-8 membered heterocyclyl of R 4 contains one to two heteroatoms or groups independently selected from S, N, O, and S(O) 2 .
  • R 4 is —NR b1 R b2 .
  • each R b1 and R b2 is independently selected from H, C 1-8 alkyl, C 1-8 haloalkyl, C 3-6 cycloalkyl, phenyl, and 3-8 membered heterocyclyl.
  • 3-8 membered heterocyclyl contains one to two atoms independently selected from N and O.
  • R b1 is selected from H, C 1-4 alkyl, and C 1-6 haloalkyl.
  • R b1 is selected from H, and CH 3 .
  • R b2 is selected from C 1-6 alkyl, C 1-8 haloalkyl, C 3-6 cycloalkyl, C 3-6 cycloalkyl, and 4-6 membered heterocyclyl.
  • R b2 is selected from C 1-6 alkyl, C 1-6 haloalkyl, C 3-6 cycloalkyl, and 4-6 membered heterocyclyl.
  • R b1 is H, and R b2 is selected from C 1-6 alkyl, C 1-8 haloalkyl, C 3-6 cycloalkyl, and 5-6 membered heterocyclyl.
  • R b1 is H, and R b2 is C 1-6 haloalkyl. In some embodiments, R b2 is —C 1-5 alkylene-CF 3 . In some embodiments, R b2 is selected from -methylene-CF 3 , -ethylene-CF 3 , -propylene-CF 3 , -butylene-CF 3 , and -pentylene-CF 3 . In some embodiments, R b2 is —C 1-5 alkylene-CF 3 substituted with one or two R b5 .
  • each R b5 is independently selected from hydroxyl, C 1-4 alkoxyl, C 3-6 cycloalkyl, phenyl, and 4-6 membered heterocyclyl. In some embodiments, each R b5 is independently selected from C 3-6 cycloalkyl, 4-6 membered heterocyclyl, and phenyl. Each C 3-6 cycloalkyl, 4-6 membered heterocyclyl, and phenyl of R b5 is independently optionally substituted with one or three groups independently selected from halo, hydroxyl, cyano, —NR b1 R b2 , C 1-4 alkyl, C 1-4 alkoxyl, and C 1-4 haloalkyl.
  • R b5 is selected from cyclopropyl, cyclobutyl, cylcopentyl, tetrahydropyranyl, tetrahydrofuranyl, and phenyl; and each R b5 is optionally substituted with one group selected from F, Cl, CN, —CH 3 , —CH 2 F, —CHF 2 , and —CF 3 .
  • R b5 is phenyl.
  • R b5 is phenyl substituted with one or two groups independently selected from F, Cl, CN, —CH 3 , —CH 2 F, —CHF 2 , and —CF 3 .
  • R b5 is phenyl substituted with one or two groups independently selected from F, Cl, CN, and —CF 3 .
  • R b5 is unsubstituted phenyl.
  • R 4 is selected from
  • R 4 is selected from
  • R 4 is 3-8 membered heterocyclyl optionally substituted with one to three R b ; and each R b is independently selected from halo, hydroxyl, cyano, —NR a1 R a2 , C 1-4 alkyl, C 1-4 alkoxyl, and C 1-4 haloalkyl. In some embodiments, each R 4 is optionally substituted with one to two groups independently selected from F, Cl, CN, —OH, —CH 3 , —CH(CH 3 ) 2 , and —CF 3 .
  • R 4 is 3-8 membered spiro, fused or bridged heterocyclyl.
  • R 4 is selected from azetidinyl, aziridinyl, imidazolidinyl, morpholinyl, oxetanyl, piperazinyl, piperidinyl, pyrazolidinyl, piperidinyl, pyrrolidinyl, pyrrolidinonyl, tetrahydrofuranyl, tetrahydrothiophenyl, dihydropyridinyl, tetrahydropyridinyl, 1,1-dioxide-thiomorpholinyl, and quinuclidinyl; and each R 4 is optionally substituted with one to three R b .
  • R 4 is selected from morpholinyl, piperidinyl, tetrahydropyranyl, and pyrrolidinyl; each R 4 is optionally substituted with one to three R b .
  • each R b is independently selected from halo, hydroxyl, cyano, —NR a1 R a2 , C 1-4 alkyl, C 1-4 alkoxyl, and C 1-4 haloalkyl.
  • each R b is independently selected from F, Cl, CN, —OH, —CH 3 , —CH(CH 3 ) 2 , and —CF 3 .
  • R 4 is a spirocyclyl optionally substituted with one to three R b .
  • R 4 is aza spiroheptanyl.
  • R 4 is azaspiro[3.3]heptanyl.
  • R 4 is azaspiro[2.4]heptanyl.
  • each R b is independently selected from halo, hydroxyl, cyano, —NR a1 R a2 , C 1-4 alkyl, C 1-4 alkoxyl, and C 1-4 haloalkyl.
  • each R b is independently selected from F, Cl, CN, —OH, —CH 3 , —CH(CH 3 ) 2 , and —CF 3 .
  • R 4 is a fused or bridged heterocyclyl optionally substituted with one to three Rb.
  • each R 4 is independently selected from azabyicyclo[3.1.0]hexanyl, azabyicyclo[3.2.1]octanyl, azabyicyclo[2.2.2] octanyl, and oxa-azabicyclo[2.2.2]octanyl; each R 4 is optionally substituted with one to three Rb.
  • Each R b is independently selected from halo, hydroxyl, cyano, —NR a1 R a2 , C 1-4 alkyl, C 1-4 alkoxyl, and C 1-4 haloalkyl. In some embodiments, each R b is independently selected from F, Cl, CN, —OH, —CH 3 , —CH(CH 3 ) 2 , and —CF 3 .
  • R 4 is selected from
  • each R 4 is optionally substituted with one to three groups independently selected from halo, OH, CN, —NR a1 R a2 , C 1-4 alkyl, C 1-4 alkoxyl, and C 1-4 haloalkyl.
  • R 4 is selected from
  • each R 4 is optionally substituted with one to three groups independently selected from F, Cl, OH, CN, NH 2 , —CH 3 , —CH(CH 3 ) 2 , —CH 2 F, —CHF 2 , —CF 3 , —CH 2 CH 2 F, —CH 2 CHF 2 , —CH 2 CF 3 , C 3-6 cycloalkyl, and —CH 2 C 3-6 cycloalkyl.
  • R 4 is selected from
  • R 4 is selected from
  • R 4 is selected from
  • R 4 is
  • R 4 is —NHS(O) 2 R b4 .
  • R b4 is selected from C 1-4 alkyl, C 1-4 haloalkyl, C 3-6 cycloalkyl, and phenyl.
  • R b4 is selected from —CH 3 , —CH 2 F, —CHF 2 , —CF 3 , and phenyl.
  • phenyl is optionally substituted with pyridinyl that is optionally substituted with one or two groups independently selected from halo, and C 1-4 alkyl.
  • the pyridinyl is optionally substituted with one or two groups independently selected from F, and —CH 3 .
  • R 4 is selected from
  • X 1 is CH or N. In some embodiments, X 1 is N. In some embodiments, X 2 is selected from CH 2 , NR x2 , O, and S(O) 2 . In some embodiments, X 1 is N, and X 2 is O. In some embodiments, X 1 is N, and X 2 is CH 2 . In some embodiments, X 1 is N, and X 2 is S(O) 2 . In some embodiments, each R b is independently selected from F, OH, —CH 3 , —CH(CH 3 ) 2 , —CH 2 F, —CHF 2 , and —CF 3 .
  • p is 0. In some embodiments, p is 1. In some embodiments, p is 2. In some embodiments, q is 1. In some embodiments, q is 2.
  • Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 are CR y .
  • at least one of Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 is N.
  • Y 1 is N; and Y 2 , Y 3 , Y 4 , and Y 5 are CR y .
  • Y 2 is N; and Y 1 , Y 3 , Y 4 , and Y 5 are CR y .
  • Y 3 is N; and Y 1 , Y 2 , Y 4 , and Y 5 are CR y .
  • Y 1 and Y 5 are N; and Y 1 , Y 2 , and Y 3 are CR y .
  • each R y is independently selected from H, halo, hydroxyl, CN, —NR a1 R a2 , C 1-4 alkyl, C 1-4 alkoxyl, and C 1-4 haloalkyl.
  • each R y is independently selected from H, F, Cl, CN, OH, —NH 2 , —N(CH 3 ) 2 , —CH 3 , —CH 2 CH 3 , —CH(CH 3 ) 2 , —C(CH 3 ) 3 , —CH 2 CN, —CH 2 CH 2 CN, —CH 2 OH, —CH 2 CH 2 OH, —OCH 3 , —OCH 2 CH 3 , —OCH(CH 3 ) 2 , —OC(CH 3 ) 3 , —CH 2 OCH 3 , —CH 2 OCH 2 CH 3 , —CH 2 OCH(CH 3 ) 2 , —CH 2 F, —CHF 2 , —CF 3 , —CH 2 CH 2 F, —CH 2 CHF 2 , —CH 2 CF 3 , —OCH 2 F, —OCHF 2 , —OCF 3 , —OCH 2 CH
  • each R y is independently selected from H, F, Cl, OH, CN, —NH 2 , —CH 3 , —CH 2 F, —CHF 2 , —CF 3 , —OCH 3 , —CH 2 OCH 2 CH 3 , and —OCF 3 .
  • each R y is independently selected from H, F, —CH 3 , —CH 2 F, —CHF 2 , —CF 3 , —OCH 3 , —CH 2 OCH 2 CH 3 , and —OCF 3 .
  • u is selected from 1, 2, and 3. In some embodiments, u is 3.
  • Y 3 , Y 4 , and Y 5 is independently selected from CR y , and N; wherein R y is selected from H, and R a .
  • Y 3 is N; and Y 4 and Y 5 are CR y .
  • Y 5 is N; and Y 3 , and Y 4 are CR y .
  • each R y is independently selected from H, F, Cl, CN, —NH 2 , —N(CH 3 ) 2 , —CH 3 , —CH 2 F, —CHF 2 , —CF 3 , and —OCH 3 .
  • each R x1 is independently selected from H, F, Cl, —NH 2 , —N(CH 3 ) 2 , —CH 3 , —CF 3 , —OCH 3 , and —OCF 3 .
  • r is selected from 1, 2, and 3. In some embodiments, r is 3.
  • each R 7 , R 8 , R 9 , R 10 , and R 11 is independently selected from H, F, Cl, CN, —NH 2 , —N(CH 3 ) 2 , —CH 3 , —CH 2 F, —CHF 2 , —CF 3 , —OCH 3 , and —OCF 3 .
  • each R 7 , R 8 , R 9 , R 10 , and R 11 is selected from H, F, CN, —N(CH 3 ) 2 , —CH 3 , and —CF 3 .
  • each R 7 to R 11 is selected from H, F, and —N(CH 3 ) 2 .
  • R 7 to R 11 are H.
  • R 7 is selected from H, F, CN, —N(CH 3 ) 2 , —CH 3 , and —CF 3 .
  • R 7 is F.
  • R 8 is selected from H, F, CN, —N(CH 3 ) 2 , —CH 3 , and —CF 3 .
  • R 8 is F.
  • R 10 is selected from H, F, CN, —N(CH 3 ) 2 , —CH 3 , and —CF 3 .
  • R 10 is F, or —N(CH 3 ) 2 .
  • R 11 is —CH 3 .
  • R 12 is H. In some embodiments, R 12 is —CH 3 .
  • R 13 is H. In some embodiment, R 13 is —CH 3 .
  • each R 7 , R 8 , R 9 , R 10 , R 11 , R 12, and R 13 is H.
  • R 14 is selected from C 1-6 alkyl, C 3-8 cycloalkyl, and 4-6 membered heterocyclyl. In some embodiments, each C 3-8 cycloalkyl and 4-6 membered heterocyclyl of R 14 is optionally substituted with one to three groups independently selected from halo, C 1-4 alkyl, and C 1-4 haloalkyl.
  • R 14 is selected from —C 1-4 alkylene-NR a1 R a2 , —C 1-4 alkylene-C(O)NR a1 R a2 , —C 1-4 alkylene-O—C(O)—C 1-4 alkyl, —C 1-4 alkylene-O—C(O)—O—C 1-4 alkyl, —C 1-4 alkylene-O—C(O)-C 1-4 alkylene-NR a1 R a2 , and —C 1-4 alkylene-O—C 1-4 alkyl.
  • provided esters when administered to a biological system, provided esters generate active ingredients where R 14 is hydrogen, as a result of chemical reaction(s), enzyme catalyzed chemical reaction(s), and/or metabolic chemical reaction(s).
  • R 14 is selected from H, methyl, ethyl, propyl, butyl, —CH 2 C(O)N(CH 3 ) 2 , —(CH 2 ) 2 N(CH 2 CH 3 ) 2 , —CH 2 —O—C(O)CH 3 , —(CH 2 ) 2 —O—C(O)CH 3 , —CH 2 —O—C(O)CH 3 , —(CH 2 ) 2 —O—C(O)C(CH) 3 , —(CH 2 ) 2 —O—C(O)C(CH) 3 , —(CH 2 ) 2 —O—C(O)C(CH) 3 , —CH 2 —O—C(O)—O—CH 3 , —CH(CH 3 )—O—C(O)—O—CH 3 , —CH 2 —O—C(O)—O—CH 3 , —CH(CH 3 )—O—C(
  • R 14 is selected from H, —CH 2 —O—C(O)C(CH) 3 , —CH (CH 3 )—O—C(O)—O—CH 3 ,
  • R 14 together with the N that attaches to R 13 forms a 5 membered heterocyclyl.
  • the 5 membered heterocyclyl is substituted with one to two groups independently selected from C 1-6 alkyl, C 1-6 alkoxyl, C 1-6 haloalkyl, and C 6-10 aryl.
  • the 5 membered heterocyclyl is substituted with one to two groups independently selected from CH 3 , CH 2 CH 3 , —OCH 3 , —OCH 2 CH 3 , and phenyl.
  • the 5 membered heterocyclyl is substituted with phenyl, and phenyl is optionally substituted with one to three groups independently selected from halo, C 1-6 alkyl, C 1-6 alkoxyl, and C 1-6 haloalkyl.
  • R 14 is H.
  • R 14 is CH 3 , or CH 2 CH 3 . In some embodiments, R 14 is CH 3 . In some embodiments, R 14 is CH 2 CH 3 .
  • the compound of the present disclosure is selected from examples 1-354.
  • the compound of the present disclosure is selected from examples 355-406. In some embodiments, the compound of the present disclosure is selected from examples 407-496.
  • the compound of the present disclosure is selected from:
  • L is selected from a bond, —O—, —O—C(O)—*, —NH—, —C(O)—N(H)—*, and —N(H)—C(O)—*; wherein * indicates the point of attachment of L to R 1 ;
  • R 1 is selected from A 1 , A 2 , A 3 , and A 4 ;
  • each R 2 , R 3 , R 4 , R 5 , and R 6 is independently selected from H, halo, cyano, hydroxyl, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 alkoxyl, C 1-8 haloalkoxyl, —NR b1 R b2 , —R b3 S(O) m R b4 , —S(O) m R b4 , —NR b1 S(O) n R b4 , —COOR b1 , —CONR b1 R b2 , —NR b1 COOR b2 , —NR b1 COR b4 , —R b3 NR b1 R b2 , —S(O) n NR b1 R b2 , C 3-12 cycloalkyl, C 6-10 aryl, 5-6 membered heteroaryl, and
  • each R 7 , R 8 , R 9 , R 10 , R 11 , and R 12 is independently selected from H, halo, hydroxyl, cyano, C 1-6 alkyl, C 1-6 alkoxyl, C 1-6 haloalkyl, C 1-6 haloalkoxyl, and —NR a1 R a2 ;
  • R 13 is selected from H, C 1-4 alkyl, and C 1-4 haloalkyl
  • R 15 is selected from H, C 1-10 alkyl, C 1-10 haloalkyl, C 3-10 cycloalkyl, 3-14 membered heterocyclyl, C 6-10 aryl, 5-10 membered heteroaryl, —C 1-4 alkylene-NR a1 R a2 , —C 1-4 alkylene-C(O)NR a1 R a2 , and -L 1 -R 16 ;
  • each R a1 and R a2 is independently selected from H, C 1-6 alkyl, and C 1-6 haloalkyl;
  • R a5 is C 1-6 alkyl
  • R b7 is independently selected from H and C 1-6 alkyl
  • n 0, 1, and 2;
  • n is selected from 1, and 2.
  • each Y 1 , Y 2 , Y 3 , and Y 4 is independently selected from CR y , and N; wherein each R y is independently selected from H and R a ; and wherein R z is selected from H, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 haloalkyl, C 3-8 cycloalkyl, and 3-6 membered heterocyclyl.
  • each Y 2 and Y 4 is independently selected from CR y , and N.
  • Each R y is independently selected from H and R a .
  • R z is selected from H, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 haloalkyl, C 3-8 cycloalkyl, and 3-6 membered heterocyclyl.
  • X 1 is selected from CR x1 , and N.
  • X 2 is selected from CR x1 R x2 , NR x2 , O, and S(O) 2 .
  • R x1 is selected from H, and R b ; and R x2 is selected from H, C 1-4 alkyl, and C 1-4 haloalkyl.
  • q is selected from 0, 1, 2, and 3; and r is selected from 0, 1, and 2.
  • R z is selected from H, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 haloalkyl, C 3-8 cycloalkyl, and 3-6 membered heterocyclyl; and wherein r is selected from 0, 1, 2, and 3.
  • R z is selected from H, —CH 3 , —CD 3 -CH 2 F, —CHF 2 , —CF 3 , and —CH 2 CH 3 ;
  • X 1 is selected from CR x1 , and N.
  • X 2 is selected from CR x1 R x2 , NR x2 , O, and S(O) 2 .
  • R x1 is selected from H, and R b ; and R x2 is selected from H, C 1-4 alkyl, and C 1-4 haloalkyl.
  • q is selected from 0, 1, 2, and 3; and r is selected from 0, 1, 2, and 3.
  • X 1 is selected from CR x1 , and N.
  • X 2 is selected from CR x1 R x2 , NR x2 , O, and S(O) 2 .
  • R x1 is selected from H, and R b ; and R x2 is selected from H, C 1-4 alkyl, and C 1-4 haloalkyl.
  • q is selected from 0, 1, 2, and 3.
  • each Y 1 and Y 4 is independently selected from CR y , and N.
  • Each R y is independently selected from H and R a .
  • R z is selected from H, —CH 3 , —CD 3 -CH 2 F, —CHF 2 , —CF 3 , and —CH 2 CH 3 .
  • X 1 is selected from CR x1 , and N.
  • X 2 is selected from CR x1 R x2 , NR x2 , O, and S(O) 2 .
  • R x1 is selected from H, and R b ; and
  • R x2 is selected from H, C 1-4 alkyl, and C 1-4 haloalkyl.
  • q is selected from 0, 1, 2, and 3; and r is selected from 0, 1, and 2.
  • each Z 1 , Z 2 , Z 3 , and Z 4 is independently selected from CR y1 R y2 , NR z1 , and O; wherein each R y1 and R y2 is independently selected from H and R a ; and wherein each R z and R z1 is independently selected from H, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 haloalkyl, C 3-8 cycloalkyl, and 3-6 membered heterocyclyl.
  • R 1 is selected from
  • each R 1 is substituted with one to four R a .
  • R a is In some embodiments, R a is —CH 3 . In some embodiments, R 1 is selected from
  • R 1 is selected from
  • each R 1 is optionally substituted with one to four R a .
  • each R a is independently selected from halo, CN, —OH, NR a1 R a2 , C 1-4 alkyl, C 1-4 alkoxyl, C 1-4 haloalkyl, C 1-4 haloalkoxyl, C 3-6 cycloalkyl, —O—C 3-6 cycloalkyl, and phenyl.
  • each R a is independently selected from F, Cl, OH, CN, —NH 2 , —NH(CH 3 ), —N(CH 3 ) 2 , —CH 3 , —CH 2 F, —CHF 2 , —CF 3 , —OCH 3 , and —OCF 3 .
  • each R a is independently selected from —N(CH 3 ) 2 , —CH 3 , —OCH 3 , and —CF 3 .
  • R 1 is selected from:
  • R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • R 1 is
  • R a is independently selected from C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxyl, and C 3-6 cycloalkyl.
  • R 1 is
  • R 3 and R 5 are H.
  • each R 2 and R 6 is independently selected from H, halo, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 haloalkoxyl, C 3-6 cycloalkyl, and 3-7 membered heterocyclyl.
  • each R 2 and R 6 is independently selected from F, Cl, —CH 3 , —CD 3 , —CH 2 CH 3 , —OCH 3 , —OCH 2 CH 3 , —CH 2 F, —CHF 2 , —CF 3 , —CH 2 CH 2 F, —CH 2 CHF 2 , —CH 2 CF 3 , —NH 2 , and —N(CH 3 ) 2 .
  • each R 2 and R 6 is independently selected from F, Cl, and —CH 3 .
  • R 2 is F
  • R 6 is —CH 3 .
  • each R 2 and R 6 is independently selected from F, and Cl.
  • R 2 and R 6 are F.
  • R 4 is
  • each R b is independently selected from C 1-4 alkyl, C 1-4 alkoxyl, C 1-4 haloalkyl, and C 1-4 haloalkoxyl.
  • R b is independently selected from —CH 3 , —CF 3 , and —OCF 3 .
  • R b is —CF 3 .
  • R 4 is
  • Y 2 is N. In some embodiments of formula (Ja) or (Jb), Y 2 is N, and Y 4 is CH. In some embodiments of formula (Ja), Y 1 , Y 3 , and Y 4 are CR y . In some embodiments of (Ja), at least one of Y 1 , Y 2 , Y 3 , and Y 4 is N. In some embodiments, Y 4 is CH. In some embodiments of (Ja), Y 1 , Y 2 , Y 3 , and Y 4 are CR y .
  • Y 1 is N. In some embodiments, Y 4 is N. In some embodiments, both Y 1 and Y 4 are N.
  • R z is —CH 3 .
  • X 1 is N.
  • X 2 is O. In some embodiments, X 1 is N, and X 2 is O.
  • each R b is independently selected from C 1-4 alkyl, C 1-4 alkoxyl, C 1-4 haloalkyl, and C 1-4 haloalkoxyl. In some embodiments, R b is C 1-4 haloalkyl. In some embodiments, R b is independently selected from —CH 2 F, —CHF 2 , and —CF 3 . In some embodiments, R b is CF 3 .
  • R 15 is selected from H, C 1-6 alkyl, C 1-6 haloalkyl, C 3-8 cycloalkyl, 4-10 membered heterocyclyl, and C 6-10 aryl. In some embodiments, R 15 is selected from H, C 1-6 alkyl, and phenyl; and phenyl is optionally substituted with one to three groups independently selected from halo, C 1-4 alkyl, C 1-4 alkoxyl, C 1-4 haloalkyl, and C 1-4 haloalkoxyl.
  • R 15 is selected from H, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, and 3-methylpentyl, and phenyl.
  • R 15 is selected from H, methyl, ethyl, and phenyl.
  • R 15 is H.
  • R 15 is methyl.
  • R 15 is ethyl.
  • R 15 is phenyl.
  • R 15 is phenyl substituted with one group selected from F, —CH 3 , —CF 3 , —OCF 3 , and —(CH 2 ) 2 N(CH 2 CH 3 ) 2 . In some embodiments, R 15 is —CH 2 CH 2 N(CH 2 CH 3 ) 2 .
  • R 15 is -L 1 -R 16 .
  • L 1 is selected from —CH 2 —, —CH 2 CH 2 —, —CH(CH 3 )—, —CH 2 —O—C(O)—C 1-4 alkyl, and —CH 2 —O—C(O)—O—C 1-4 alkyl.
  • R 16 is selected from —CH 2 CH 3 , —CH(CH 3 ) 2 , —C(CH 3 ) 3 , —CH 2 CH 2 CH 3 , phenyl, pyridinyl, imidazolyl, tetrahydrofuranyl, morpholinyl, and tetrahydropyranyl.
  • Each phenyl, pyridinyl, imidazolyl, tetrahydrofuranyl, morpholinyl, and tetrahydropyranyl of R 16 is optionally substituted with one to two groups independently selected from F, —CH 3 , —CH 2 CH 3 , hydroxyl, and —COOH.
  • R 15 is selected from H, —CH 3 , —CH 2 CH 3 ,
  • R 15 is selected from H, —CH 3 , and —CH 2 CH 3 . In some embodiments, R 15 is H. In some embodiments, R 15 is —CH 2 CH 3 .
  • Z 1 is O.
  • Z 2 is O.
  • Z 3 is O.
  • Z 4 is O.
  • Z 1 is NR z1 .
  • Z 2 is NR z1 .
  • Z 3 is NR z1 .
  • Z 4 is NR z1 .
  • R z1 is selected from H, —CH 3 , and —CH 2 CH 3 .
  • R z1 is H.
  • R z is —CH 3 .
  • R 3 and R 5 are H.
  • each R 2 and R 6 is independently selected from H, halo, C 1-4 alkyl, C 1-4 alkoxyl, C 1-4 haloalkyl, C 1-4 haloalkoxyl, C 3-6 cycloalkyl, and 3-7 membered heterocyclyl.
  • each R 2 and R 6 is independently selected from F, Cl, —CH 3 , —CD 3 , —CH 2 CH 3 , —OCH 3 , —OCH 2 CH 3 , —CH 2 F, —CHF 2 , —CF 3 , —CH 2 CH 2 F, —CH 2 CHF 2 , —CH 2 CF 3 , —NH 2 , and —N(CH 3 ) 2 .
  • each R 2 and R 6 is independently selected from F, Cl, and —CH 3 .
  • R 2 is F
  • R 6 is —CH 3 .
  • each R 2 and R 6 is independently selected from F, and Cl.
  • R 2 and R 6 are F.
  • R 4 is
  • each R b is independently selected from C 1-4 alkyl, C 1-4 alkoxyl, C 1-4 haloalkyl, and C 1-4 haloalkoxyl.
  • R b is independently selected from —CH 3 , —CF 3 , and —OCF 3 .
  • R b is —CF 3 .
  • R 4 is
  • R 15 is selected from H, —CH 3 , —CH 2 CH 3 , and —CH 2 CH 2 CH 3 . In some embodiments, R 15 is H. In some embodiments, R 15 is —CH 3 . In some embodiments, R 15 is —CH 2 CH 3 . In some embodiments, R 15 is —CH 2 CH 2 CH 3 .
  • the compound of the present disclosure is selected from:
  • the compound of the present disclosure is selected from:
  • n is the number of hydrogen atoms in the molecule.
  • the deuterium atom is a non-radioactive isotope of the hydrogen atom.
  • Such compounds may increase resistance to metabolism, and thus may be useful for increasing the half-life of the compounds described herein or pharmaceutically acceptable salts, isomer, or a mixture thereof when administered to a mammal. See, e.g., Foster, “Deuterium Isotope Effects in Studies of Drug Metabolism”, Trends Pharmacol. Sci., 5(12):524-527 (1984).
  • Such compounds are synthesized by means well known in the art, for example by employing starting materials in which one or more hydrogen atoms have been replaced by deuterium.
  • the compound of the present disclosure contains one to six deuterium ( 2 H, or D). In some embodiments, one of R 2 , R 3 , R 4 , R 5 , and R 6 contains one to six D. In some embodiments, R 6 contains one to six D. In some embodiments, R 6 is CD 3 .
  • “Pharmaceutically acceptable” or “physiologically acceptable” refer to compounds, salts, compositions, dosage forms and other materials which are useful in preparing a pharmaceutical composition that is suitable for veterinary or human pharmaceutical use.
  • “Pharmaceutically acceptable salts” or “physiologically acceptable salts” include, for example, salts with inorganic acids and salts with an organic acid.
  • the free base can be obtained by basifying a solution of the acid salt.
  • an addition salt particularly a pharmaceutically acceptable addition salt
  • a suitable organic solvent may be used to prepare nontoxic pharmaceutically acceptable addition salts.
  • a “solvate” is formed by the interaction of a solvent and a compound. Solvates of salts of the compounds described herein are also provided. Hydrates of the compounds described herein are also provided.
  • a “prodrug” is a biologically inactive derivative of a drug that upon administration to the human body is converted to the biologically active parent drug according to some chemical or enzymatic pathway.
  • optical isomers, racemates, or other mixtures thereof of the compounds described herein or pharmaceutically acceptable salts or a mixture thereof can be obtained by asymmetric synthesis or by resolution of the racemate. Resolution of racemates can be accomplished, for example, by conventional methods such as crystallization in the presence of a resolving agent, or chromatography, using, for example a chiral high pressure liquid chromatography (HPLC) column.
  • Z- and E-forms or cis- and trans-forms of the hydroxyamidine compounds described herein. Specifically, Z- and E-forms are included even if only one designation is named for both carbon-carbon double bonds as well as the hydroxyamidine bond.
  • Enantiomers are a pair of stereoisomers that are non-superimposable mirror images of each other.
  • a 1:1 mixture of a pair of enantiomers is a “racemic” mixture.
  • a mixture of enantiomers at a ratio other than 1:1 is a “scalemic” mixture.
  • “Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other.
  • “Atropisomers” are stereoisomers arising due to hindered rotation about a single bond, where the barrier to rotation about the bond is high enough to allow for isolation of individual stereoisomers.
  • Atropisomers thereof of the compounds described herein or pharmaceutically acceptable salts are provided.
  • compositions provided herein that include a compound described herein or pharmaceutically acceptable salts, isomer, or a mixture thereof may include racemic mixtures, or mixtures containing an enantiomeric excess of one enantiomer or single diastereomers or diastereomeric mixtures. All such isomeric forms of these compounds are expressly included herein the same as if each and every isomeric form were specifically and individually listed.
  • chelates are also chelates, non-covalent complexes, and mixtures thereof, of the compounds described herein or pharmaceutically acceptable salts, isomer, or a mixture thereof.
  • a “chelate” is formed by the coordination of a compound to a metal ion at two (or more) points.
  • a “non-covalent complex” is formed by the interaction of a compound and another molecule wherein a covalent bond is not formed between the compound and the molecule. For example, complexation can occur through van der Waals interactions, hydrogen bonding, and electrostatic interactions (also called ionic bonding).
  • ex vivo means within a living individual, as within an animal or human. In this context, the methods described herein may be used therapeutically in an individual.
  • Ex vivo means outside of a living individual.
  • ex vivo cell populations include in vitro cell cultures and biological samples including fluid or tissue samples obtained from individuals. Such samples may be obtained by methods well known in the art. Exemplary biological fluid samples include blood, cerebrospinal fluid, urine, and saliva. Exemplary tissue samples include tumors and biopsies thereof. In this context, the invention may be used for a variety of purposes, including therapeutic and experimental purposes.
  • the invention may be used ex vivo to determine the optimal schedule and/or dosing of administration of an ⁇ 4 ⁇ 7 integrin inhibitor for a given indication, cell type, individual, and other parameters. Information gleaned from such use may be used for experimental purposes or in the clinic to set protocols for in vivo treatment. Other ex vivo uses for which the invention may be suited are described below or will become apparent to those skilled in the art.
  • the selected compounds may be further characterized to examine the safety or tolerance dosage in human or non-human subjects. Such properties may be examined using commonly known methods to those skilled in the art.
  • compounds described herein for example, compounds of formula (I), (II), (IIa), (IIb), (IIc), (IId), (IIe), (IIf), (IIg), (IIh), or (IIi), or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, tautomer, or deuterated analog thereof, may be used to treat subjects who have or are suspected of having disease states, disorders, and conditions (also collectively referred to as “indications”) responsive or believed to be responsive to the inhibition of ⁇ 4 ⁇ 7 integrin activity.
  • the compounds described herein may be used to inhibit the activity of ⁇ 4 ⁇ 7 integrin.
  • the compounds described herein may be used to inhibit excessive or destructive immune reactions or growth or a proliferation of a cell, such as a cancer cell, or inhibit immunosuppression.
  • compounds described herein for example, compounds of formula (J), (Ja), (Jb), (Jc), (Jd), (Je), or (Jf), or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, tautomer, or deuterated analog thereof, may be used to treat subjects who have or are suspected of having disease states, disorders, and conditions (also collectively referred to as “indications”) responsive or believed to be responsive to the inhibition of ⁇ 4 ⁇ 7 integrin activity.
  • the compounds described herein may be used to inhibit the activity of ⁇ 4 ⁇ 7 integrin.
  • the compounds described herein may be used to inhibit excessive or destructive immune reactions or growth or a proliferation of a cell, such as a cancer cell, or inhibit immunosuppression.
  • the present disclosure provides a compound described herein useful as an inhibitor of ⁇ 4 ⁇ 7 integrin. In some embodiments, the present disclosure provides a method of treating an inflammatory disease or condition comprising administering a compound described herein.
  • the present disclosure provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound described herein and a pharmaceutically acceptable carrier.
  • the present disclosure provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound described herein and at least one additional therapeutic agent and at least one pharmaceutically acceptable excipient.
  • the present disclosure provides a compound described herein for use in therapy.
  • the present disclosure provides a compound described herein for use in the manufacture of a medicament for treating a disease or condition provided herein.
  • a compound described herein useful for the treatment of a disease or condition in a patient that is amenable to treatment by inhibiting ⁇ 4 ⁇ 7 integrin.
  • Diseases or conditions that may be treated with the compounds described herein include a solid tumor, diabetes, an inflammatory disease, graft versus host disease, primary sclerosing cholangitis, HIV, an autoimmune disease, inflammatory bowel disease (IBD), alcoholic hepatitis, systemic lupus erythematosus (SLE), and lupus nephritis.
  • a compound described herein useful for the treatment of an inflammatory disease or condition in a patient that is mediated, at least in part, by ⁇ 4 ⁇ 7 integrin.
  • administering refers to the delivery of one or more therapeutic agents to a patient.
  • the administration is a monotherapy wherein a compound described herein is the only active ingredient administered to the patient in need of therapy.
  • the administration is co-administration such that two or more therapeutic agents are delivered together during the course of the treatment.
  • two or more therapeutic agents may be co-formulated into a single dosage form or “combined dosage unit”, or formulated separately and subsequently combined into a combined dosage unit, as is typically for intravenous administration or oral administration as a mono or bilayer tablet or capsule.
  • the compound described herein is administered to a human patient in need thereof in an effective amount, such as, from about 0.1 mg to about 1000 mg per dose of said compound. In some embodiments, the effective amount is from about 0.1 mg to about 400 mg per dose. In some embodiments, the effective amount is from about 0.1 mg to about 300 mg per dose. In some embodiments, the effective amount is from about 0.1 mg to about 200 mg per dose. In some embodiments, the effective amount is from about 1 mg to about 100 mg per dose.
  • the effective amount is about 1 mg, about 3 mg, about 5 mg, about 10 mg, about 15 mg, about 18 mg, about 20 mg, about 30 mg, about 40 mg, about 60 mg, about 80 mg, about 100 mg, about 200 mg, or about 300 mg per dose.
  • the compound described herein and at least one additional therapeutic agent is administered to a human patient in need thereof in an effective amount of each agent, independently from about 0.1 mg to about 1000 mg per dose of a compound or formulation per dose per compound. In some embodiments, the effective amount of the combination treatment of a compound described herein and an additional compound is independently from about 0.1 mg to about 200 mg per compound per dose. In some embodiments, the effective amount of the combination treatment of a compound described herein and an additional compound is independently from about 1 mg to about 100 mg per compound per dose.
  • the effective amount of the combination treatment of a compound described herein and an additional compound is for each component, about 1 mg, about 3 mg, about 5 mg, about 10 mg, about 15 mg, about 18 mg, about 20 mg, about 30 mg, about 40 mg, about 60 mg, about 80 mg, about 100 mg, about 200 mg, or about 500 mg each per dose.
  • the dose of a compound described herein and/or a combination of the dose of the compound described herein and/or the dose of an additional therapeutic agent is administered once per day, twice per day, or thrice per day.
  • the dose of a compound described herein and/or the dose of an additional therapeutic agent is administered as a loading dose of from about 0.1 mg to about 1000 mg per compound on the first day and each day or on alternate days or weekly for up to a month followed by a regular regimen of a compound described herein and/or one or more additional therapeutic agents or therapies.
  • the maintenance dose may be about 0.1 mg to about 1000 mg once per day, twice per day, thrice per day, or weekly, for each component of a multi component drug regimen.
  • a qualified care giver or treating physician is aware of what dose regimen is best for a particular patient or particular presenting conditions and will make appropriate treating regimen decisions for that patient.
  • the qualified caregiver is able to tailor a dose regimen of the compound described herein and/or an additional therapeutic agent(s) as disclosed herein to fit with the particular needs of the patient.
  • the amount of the dose of a compound described herein and the amount of the dose of an additional therapeutic agent actually administered will usually be determined by a physician, in light of the relevant circumstances, including the condition(s) to be treated, the chosen route of administration, the actual compound (e.g., salt or free base) administered and its relative activity, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
  • the actual compound e.g., salt or free base
  • Co-administration may also include administering component drugs e.g., one on more compounds described herein and one or more additional (e.g., a second, third, fourth or fifth) therapeutic agent(s). Such combination of one on more compounds described herein and one or more additional therapeutic agent(s) may be administered simultaneously or in sequence (one after the other) within a reasonable period of time of each administration (e.g., about 1 minute to 24 hours) depending on the pharmacokinetic and/or pharmacodynamics properties of each agent or the combination. Co-administration may also involve treatment with a fixed combination wherein agents of the treatment regimen are combinable in a fixed dosage or combined dosage medium e.g., solid, liquid or aerosol. In some embodiments, a kit may be used to administer the drug or drug components.
  • component drugs e.g., one on more compounds described herein and one or more additional (e.g., a second, third, fourth or fifth) therapeutic agent(s).
  • additional therapeutic agent(s) may be administered simultaneously or in sequence (one after the other
  • some embodiments of the present disclosure is a method of treating a disease or condition mediated, at least in part, by ⁇ 4 ⁇ 7 integrin, comprising administering therapeutically effective amounts of formulations of one on more compounds described herein and one or more additional therapeutic agents, including for example, via a kit to a patient in need thereof. It will be understood that a qualified care giver will administer or direct the administration of a therapeutically effective amount of any of the compound(s) or combinations of compounds of the present disclosure.
  • Intravenous administration is the administration of substances directly into a vein, or “intravenously.” Compared with other routes of administration, the intravenous (IV) route is a faster way to deliver fluids and medications throughout the body.
  • An infusion pump can allow precise control over the flow rate and total amount of medication delivered. However, in cases where a change in the flow rate would not have serious consequences, or if pumps are not available, the drip is often left to flow simply by placing the bag above the level of the patient and using the clamp to regulate the rate. Alternatively, a rapid infuser can be used if the patient requires a high flow rate and the IV access device is of a large enough diameter to accommodate it.
  • intermittent infusion is used which does not require additional fluid. It can use the same techniques as an intravenous drip (pump or gravity drip), but after the complete dose of medication has been given, the tubing is disconnected from the IV access device.
  • Some medications are also given by IV push or bolus, meaning that a syringe is connected to the IV access device and the medication is injected directly (slowly, if it might irritate the vein or cause a too-rapid effect).
  • compound(s) or combination of compounds described herein may be administered by IV administration alone or in combination with administration of certain components of the treatment regimen by oral or parenteral routes.
  • Oral administration is a route of administration where a substance is taken through the mouth, and includes buccal, sub labial, and sublingual administration, as well as enteral administration and that through the respiratory tract, unless made through e.g., tubing so the medication is not in direct contact with any of the oral mucosa.
  • Typical form for the oral administration of therapeutic agents includes the use of tablets or capsules.
  • compound(s) or combination of compounds described herein may be administered by oral route alone or in combination with administration of certain components of the treatment regimen by IV or parenteral routes.
  • compositions contemplated by the present disclosure comprise, in addition to a carrier, the compound described herein or a combination of compounds described herein optionally in combination with an additional therapeutic agent.
  • compositions contemplated by the present disclosure may also be intended for administration by injection and include aqueous solutions, oil suspensions, emulsions (with sesame oil, corn oil, cottonseed oil, or peanut oil) as well as elixirs, mannitol, dextrose, or a sterile aqueous solution, and similar pharmaceutical vehicles.
  • Aqueous solutions in saline are also conventionally used for injection.
  • Ethanol, glycerol, propylene glycol, liquid polyethylene glycol, and the like (and suitable mixtures thereof), cyclodextrin derivatives, and vegetable oils may also be employed.
  • the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and/or by the use of surfactants.
  • a coating such as lecithin
  • surfactants for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
  • Sterile injectable solutions are prepared by incorporating the component compound(s) in the required amount in the appropriate solvent with various other ingredients as enumerated above or as required, followed by filtered sterilization.
  • dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
  • the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient(s) plus any additional desired ingredient from a previously sterile-filtered solution thereof.
  • the active ingredient is usually diluted by an excipient or carrier and/or enclosed or mixed with such a carrier that may be in the form of a capsule, sachet, paper or other container.
  • a carrier that may be in the form of a capsule, sachet, paper or other container.
  • the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material (as above), which acts as a vehicle, carrier or medium for the active ingredient.
  • compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 20% by weight of the active compounds, soft and hard gelatin capsules, sterile injectable solutions, and sterile packaged powders.
  • excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, sterile water, syrup, and methyl cellulose.
  • the formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
  • compositions of the disclosure may be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
  • sustained release formulations are used.
  • Controlled release drug delivery systems for oral administration include osmotic pump systems and dissolutional systems containing polymer-coated reservoirs or drug-polymer matrix formulations.
  • compositions are preferably formulated in a unit dosage form.
  • unit dosage forms or “combined dosage unit” refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of one or more of the active materials (e.g., a compound described herein, optionally in combination with an additional therapeutic agent calculated to produce the desired effect, in association with a suitable pharmaceutical excipient in for example, a tablet, capsule, ampoule or vial for injection.
  • each active agent actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compounds administered and their relative activity, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
  • the principal active ingredient(s) is/are mixed with a pharmaceutical excipient to form a solid pre-formulation composition containing a homogeneous mixture of a compound of the present disclosure.
  • a pharmaceutical excipient for preparing solid compositions such as tablets, the principal active ingredient(s) is/are mixed with a pharmaceutical excipient to form a solid pre-formulation composition containing a homogeneous mixture of a compound of the present disclosure.
  • these pre-formulation compositions as homogeneous, it is meant that the active ingredient(s) are dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
  • the tablets or pills comprising compound described herein of the present disclosure optionally in combination with the second agent may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action, or to protect from the acidic conditions of the stomach.
  • the tablet or pill can comprise an inner dosage and an outer dosage element, the latter being in the form of an envelope over the former.
  • the inner dosage element may comprise the compound described herein and the outer dosage element may comprise the second or additional therapeutic agent or vice versa.
  • the combined dosage unit may be side by side configuration as in a capsule or tablet where one portion or half of the tablet or capsule is filled with a formulation of the compound described herein while the other portion or half of the table or capsule comprises the additional therapeutic agent.
  • enteric layers or coatings such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
  • materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
  • One of ordinary skill in the art is aware of techniques and materials used in the manufacture of dosages of formulations disclosed herein.
  • a “sustained release formulation” or “extended release formulation” is a formulation which is designed to slowly release a therapeutic agent into the body over an extended period of time
  • an “immediate release formulation” is a formulation which is designed to quickly release a therapeutic agent into the body over a shortened period of time.
  • the immediate release formulation may be coated such that the therapeutic agent is only released once it reaches the desired target in the body (e.g., the stomach).
  • One of ordinary skill in the art is able to develop sustained release formulations of the presently disclosed compounds without undue experimentation.
  • compound(s) or combination of compounds described herein may be delivered via sustained released formulations alone or in combination with administration of certain components of the treatment regimen by oral, IV or parenteral routes.
  • a lyophilized formulation may also be used to administer a compound described herein singly or in combination with an additional therapeutic agent.
  • One of skill in the art is aware of how to make and use lyophilized formulations of drug substances amenable to lyophilization.
  • Spray-dried formulation may also be used to administer a compound described herein singly or in combination with an additional therapeutic agent.
  • One of skill in the art is aware of how to make and use spray-dried formulations of drug substances amenable to spray-drying.
  • Other known formulation techniques may also be employed to formulate a compound or combination of compounds disclosed herein.
  • Non-limiting examples of diseases or conditions mediated, at least in part, by ⁇ 4 ⁇ 7 integrin include, without limitation, acne, acid-induced lung injury, Addison's disease, adrenal hyperplasia, adrenocortical insufficiency, adult-onset Still's disease, adult respiratory distress syndrome (ARDS), age-related macular degeneration, aging, alcoholic hepatitis, alcoholic liver disease, allergen-induced asthma, allergic bronchopulmonary, allergic conjunctivitis, allergic contact dermatitis, allergies, allergic encephalomyelitis, allergic neuritis, allograft rejection, alopecia, alopecia areata, Alzheimer's disease, amyloidosis, amyotrophic lateral sclerosis, angina pectoris, angioedema, angiofibroma, anhidrotic ectodermal dysplasia-ill
  • the methods are provided for alleviating a symptom of a disease or disorder mediated, at least in part, by ⁇ 4 ⁇ 7 integrin.
  • the methods include identifying a mammal having a symptom of a disease or disorder mediated, at least in part, by ⁇ 4 ⁇ 7 integrin, and providing to the mammal an amount of a compound as described herein effective to ameliorate (i.e., lessen the severity of) the symptom.
  • the disease or condition mediated, at least in part, by ⁇ 4 ⁇ 7 integrin is an inflammatory disease or LPS induced endotoxin shock.
  • the disease is an autoimmune disease.
  • the autoimmune disease is systemic lupus erythematosus (SLE), myestenia gravis, rheumatoid arthritis (RA), acute disseminated encephalomyelitis, idiopathic thrombocytopenic purpura, multiple sclerosis (MS), inflammatory bowel disease (IBD), sepsis, psoriasis, Sjoegren's syndrome, autoimmune hemolytic anemia, asthma, or chronic obstructive pulmonary disease (COPD), ankylosing spondylitis, acute gout and ankylosing spondylitis, reactive arthritis, monoarticular arthritis, osteoarthritis, gouty arthritis, juvenile arthritis, juvenile onset rheumatoid arthritis, juvenile rheum
  • COPD chronic obstructive
  • the disease or condition mediated, at least in part, by ⁇ 4 ⁇ 7 integrin is inflammatory bowel disease (IBD).
  • IBD inflammatory bowel disease
  • the term “inflammatory bowel disease” or “IBD” as used herein is a collective term describing inflammatory disorders of the gastrointestinal tract, the most common forms of which are ulcerative colitis and Crohn's disease.
  • IBD forms of IBD that can be treated with the presently disclosed compounds, compositions and methods include diversion colitis, ischemic colitis, infectious colitis, chemical colitis, microscopic colitis (including collagenous colitis and lymphocytic colitis), atypical colitis, pseudomembranous colitis, fulminant colitis, autistic enterocolitis, indeterminate colitis, Behçet's disease, gastroduodenal CD, jejunoileitis, ileitis, ileocolitis, Crohn's (granulomatous) colitis, irritable bowel syndrome, mucositis, radiation induced enteritis, short bowel syndrome, celiac disease, stomach ulcers, diverticulitis, pouchitis, proctitis, and chronic diarrhea.
  • diversion colitis ischemic colitis, infectious colitis, chemical colitis, microscopic colitis (including collagenous colitis and lymphocytic colitis), atypical colitis, pseudomembranous colitis, fulminant
  • Treating or preventing IBD also includes ameliorating or reducing one or more symptoms of IBD.
  • symptoms of IBD refers to detected symptoms such as abdominal pain, diarrhea, rectal bleeding, weight loss, fever, loss of appetite, and other more serious complications, such as dehydration, anemia and malnutrition. A number of such symptoms are subject to quantitative analysis (e.g. weight loss, fever, anemia, etc.). Some symptoms are readily determined from a blood test (e.g. anemia) or a test that detects the presence of blood (e.g. rectal bleeding).
  • the term “wherein said symptoms are reduced” refers to a qualitative or quantitative reduction in detectable symptoms, including but not limited to a detectable impact on the rate of recovery from disease (e.g. rate of weight gain).
  • the diagnosis is typically determined by way of an endoscopic observation of the mucosa, and pathologic examination of endoscopic biopsy specimens.
  • IBD interleukin deficiency .
  • Various methods have been described for characterizing disease activity and severity of IBD as well as response to treatment in subjects having IBD. Treatment according to the present methods is generally applicable to a subject having IBD of any level or degree of disease activity.
  • the disease or condition treated by the administration of a compound of composition described herein includes acute gout and ankylosing spondylitis, allergic disorders, Alzheimer's disease, Amyotrophic lateral sclerosis (ALS), Amyotrophic lateral sclerosis and multiple sclerosis, atherosclerosis, bacterial infections, bone cancer pain and pain due to endometriosis, BRAF resistant melanoma, brain stem glioma or pituitary adenomas, burns, bursitis, cancer of the anal region, cancer of the endocrine system, cancer of the kidney or ureter (e.g.
  • cancers of the penis cancer of the small intestine, cancer of the thyroid, cancer of the urethra, cancers of the blood such as acute myeloid leukemia, cancers of the tongue, carcinoma of the cervix, carcinoma of the endometrium, carcinoma of the fallopian tubes, carcinoma of the renal pelvis, carcinoma of the vagina or carcinoma of the vulva, chronic myeloid leukemia, chronic or acute leukemia, chronic pain, classic Bartter syndrome, common cold conjunctivitis, coronary heart disease, cutaneous or intraocular melanoma, dermatitis, dysmenorrhea, eczema, endometriosis, familial adenomatous polyposis, fibromyalgia, fungal infections, gout, gynecologic tumors, uterine sarcomas, carcinoma of the fallopian tubes, headache, hemophilic arthropathy, Parkinson's disease, AIDS, her
  • Criteria useful for assessment of disease activity in subjects with ulcerative colitis can be found in, e.g., Truelove et al. (1955) Br Med J 2:1041-1048.) Using these criteria, disease activity can be characterized in a subject having IBD as mild disease activity or severe disease activity. Subjects who do not meet all the criteria for severe disease activity, and who exceed the criteria for mild disease activity are classified as having moderate disease activity.
  • the presently disclosed treatment methods can also be applied at any point in the course of the disease.
  • the methods are applied to a subject having IBD during a time period of remission (i.e., inactive disease).
  • the present methods provide benefit by extending the time period of remission (e.g., extending the period of inactive disease) or by preventing, reducing, or delaying the onset of active disease.
  • methods may be applied to a subject having IBD during a period of active disease. Such methods provide benefit by reducing the duration of the period of active disease, reducing or ameliorating one or more symptoms of IBD, or treating IBD.
  • Measures for determining efficacy of treatment of IBD in clinical practice have been described and include, for example, the following: symptom control; fistula closure; extent of corticosteroid therapy required; and, improvement in quality of life.
  • Heath-related quality of life can be assessed using the Inflammatory Bowel Disease Questionnaire (IBDQ), which is extensively used in clinical practice to assess quality of life in a subject with IBD.
  • IBDQ Inflammatory Bowel Disease Questionnaire
  • the disease or condition is immune-mediated liver injury, disease or condition.
  • the disease or condition mediated, at least in part, by ⁇ 4 ⁇ 7 integrin is alcoholic hepatitis.
  • Alcoholic hepatitis is a clinical syndrome characterized by jaundice and liver failure that develops in subjects with chronic and active alcohol abuse. (See Akriviadis E. et. al, Ann Gastroenterol. 2016 Apr-Jun; 29(2): 236-237). Alcoholic hepatitis can cause cirrhosis and fibrosis of the liver cells.
  • Glucocorticoids, (e.g. prednisolone) and phosophodiesterase inhibitors (e.g. pentoxifylline) can be used to treat alcoholic hepatitis.
  • the compounds herein can be used as stand-alone treatments or in combination with the current treatments for alcoholic hepatitis.
  • the present disclosure provides methods of treating or preventing a human immunodeficiency virus (HIV) infection in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition provided herein.
  • HIV human immunodeficiency virus
  • the disease or condition mediated, at least in part, by ⁇ 4 ⁇ 7 integrin is systemic lupus erythematosus (SLE), lupus nephritis, lupus-related, or other autoimmune disorders or a symptom of SLE.
  • SLE systemic lupus erythematosus
  • lupus nephritis lupus-related, or other autoimmune disorders or a symptom of SLE.
  • Symptoms of systemic lupus erythematosus include joint pain, joint swelling, arthritis, fatigue, hair loss, mouth sores, swollen lymph nodes, sensitivity to sunlight, skin rash, headaches, numbness, tingling, seizures, vision problems, personality changes, abdominal pain, nausea, vomiting, abnormal heart rhythms, coughing up blood and difficulty breathing, patchy skin color and Raynaud's phenomenon.
  • a method of treating diseases or conditions mediated, at least in part, by ⁇ 4 ⁇ 7 integrin and/or diseases or symptoms that co-present or are exacerbated or triggered by the diseases or conditions mediated, at least in part, by ⁇ 4 ⁇ 7 integrin, e.g., an allergic disorder and/or an autoimmune and/or inflammatory disease, and/or an acute inflammatory reaction comprises administering to a patient in need thereof an effective amount of a compound described herein optionally in combination with an additional agent (e.g., a second, third, fourth or fifth active agent) which can be useful for treating diseases or conditions mediated, at least in part, by ⁇ 4 ⁇ 7, an allergic disorder and/or an autoimmune and/or inflammatory disease, and/or an acute inflammatory reaction incident to or co-presenting with diseases or conditions mediated, at least in part, by ⁇ 4 ⁇ 7 integrin.
  • an additional agent e.g., a second, third, fourth or fifth active agent
  • Treatment with the second, third, fourth or fifth active agent may be prior to, concomitant with, or following treatment with a compound described herein.
  • a compound described herein is combined with another active agent in a single dosage form.
  • Suitable therapeutics that may be used in combination with a compound described herein include, but are not limited to, therapeutic agents provided herein, or a combination comprising at least one therapeutic agent provided herein.
  • agents for treatment of an inflammatory disease or condition include alpha-fetoprotein modulators; adenosine A3 receptor antagonist; adrenomedullin ligands; AKT1 gene inhibitors; antibiotics; antifungals; ASK1 inhibitors; ATPase inhibitors; beta adrenoceptor antagonists; BTK inhibitors; calcineurin inhibitors; carbohydrate metabolism modulators; cathepsin S inhibitors; CCR9 chemokine antagonists; CD233 modulators; CD29 modulators; CD3 antagonists; CD40 ligand inhibitors; CD40 ligand receptor antagonists; chemokine CXC ligand inhibitors; CHST15 gene inhibitors; collagen modulators; CSF-1 antagonists; CX3CR1 chemokine modulators; ecobiotics; eotaxin lig
  • Adenosine A3 receptor antagonists include PBF-677.
  • Adrenomedullin ligands include adrenomedullin.
  • Antibiotics include ciprofloxacin, clarithromycin, metronidazole, vancomycin, rifamycin, rifaximin, and tosufloxacin.
  • ASK1 inhibitors include GS-4997.
  • Alpha-fetoprotein modulators include ACT-101.
  • Anti-CD28 inhibitors include JNJ-3133 and abatacept.
  • Beta adrenoceptor antagonists include NM-001.
  • BTK inhibitors include GS-4059.
  • Calcineurin inhibitors include tacrolimus, and ciclosporin.
  • Carbohydrate metabolism modulators include ASD-003.
  • Cathepsin S inhibitors include VBY-129.
  • CCR9 chemokine antagonists include CCX-507.
  • CD233 modulators include GSK-2831781.
  • CD29 modulators include PF-06687234.
  • CD3 antagonists include NI-0401.
  • CD4 antagonists include IT-1208.
  • CD40 ligand inhibitors include SAR-441344, and letolizumab.
  • CD40 gene inhibitors include NJA-730.
  • CD40 ligand receptor antagonists include FFP-104, BI-655064.
  • Chaperonin binding immunoglobulin protein includes IRL-201805.
  • Chemokine CXC ligand inhibitors include LY-3041658.
  • CHST15 gene inhibitors include STNM-01.
  • Collagen modulators include ECCS-50 (DCCT-10).
  • COT protein kinase inhibitors include GS-4875.
  • CSF-1 antagonists include JNJ-40346527 (PRV-6527), and SNDX-6352.
  • CX3CR1 chemokine modulators include E-6130.
  • Ecobiotics include SER-287.
  • Eotaxin ligand inhibitors include bertilimumab.
  • EP4 prostanoid receptor agonists include KAG-308.
  • F1F0 ATP synthase modulators include LYC-30937 EC.
  • Fractalkine ligand inhibitors include quetmolimab (E-6011).
  • Free fatty acid receptor 2 antagonists include GLPG-0974.
  • GATA 3 transcription factor inhibitors include SB-012.
  • Glucagon-like peptide 2 agonists include teduglutide, and apraglutide.
  • Glucocorticoid receptor agonists include budesonide, beclomethasone dipropionate, and dexamethasone sodium phosphate.
  • Glucocorticoid receptor modulators/TNF ligand inhibitors include ABBV-3373.
  • Guanylate cyclase receptor agonists include dolcanatide.
  • HIF prolyl hydroxylase inhibitors include DS-1093, and AKB-4924.
  • HIF prolyl hydroxylase-2 inhibitors/hypoxia inducible factor-1 stimulators include GB-004.
  • Histone deacetylase inhibitors include givinostat.
  • Histone deacetylase-6 inhibitors include CKD-506.
  • HLA class II antigen modulators include HLA class II protein modulators.
  • ICAM1 gene inhibitors include alicaforsen.
  • IL-12 antagonists include ustekinumab (IL12/1L23).
  • IL-13 antagonists include tralokinumab.
  • IL-18 antagonists include GSK-1070806
  • IL-22 agonists include RG-7880.
  • IL-23 antagonists include tildrakizumab, risankizumab (BI-655066), mirikizumab (LY-3074828), brazikumab (AMG-139), and PTG-200.
  • IL-23A inhibitors include guselkumab.
  • IL-6 antagonists include olokizumab.
  • IL-7 receptor antagonists include OSE-127.
  • IL-8 receptor antagonists include clotrimazole.
  • Integrin alpha-4/beta-1 antagonists include natalizumab.
  • Integrin alpha-4/beta-7 antagonists include etrolizumab (a4b7/aEb7), vedolizumab, carotegast methyl, TRK-170 (a4b7/a4b1), PN-10943, and PTG-100.
  • Integrin antagonists include E-6007.
  • Interleukin ligand inhibitors include bimekizumab (IL-17A/IL-17F).
  • Interleukin receptor 17A antagonists include brodalumab.
  • Interleukin-1 beta ligands include K(D)PT.
  • Interleukin 1 like receptor 2 inhibitors include BI-655130.
  • IL-6 receptor modulators include olamkicept.
  • JAK tyrosine kinase inhibitors include tofacitinib (1/3), peficitinib (1/3), TD-3504, an TD-1473.
  • Jak1 tyrosine kinase inhibitors include a compound disclosed in WO2008/109943.
  • JAK inhibitors include, but are not limited to, AT9283, AZD1480, baricitinib, BMS-911543, fedratinib, filgotinib (GLPG0634), gandotinib (LY2784544), INCB039110, lestaurtinib, momelotinib (CYT0387), NS-018, pacritinib (SB1518), peficitinib (ASP015K), ruxolitinib, tofacitinib (formerly tasocitinib), XL019, upadacitinib (ABT-494), filgotinib, GLPG-0555, SHR-0302, and brepocitinib (PF-06700841) (JAK1/Tyk2).
  • Jak3 tyrosine kinase inhibitors include PF-06651600.
  • Lactoferrin stimulators include recombinant human lactoferrin (VEN-100).
  • LanC like protein 2 modulators include BT-11.
  • Leukocyte elastase inhibitors/Leukocyte proteinase-3 inhibitors include tiprelestat.
  • MAdCAM inhibitors include SHP-647 (PF-547659).
  • MCH-1 antagonists include CSTI-100.
  • Melanocortin MC1 receptor agonists include ASP-3291, and PL-8177.
  • Metalloprotease-9 inhibitors include GS-5745.
  • Microbiome modulator include ABI-M201.
  • Natriuretic peptide receptor C agonists include plecanatide.
  • Neuregulin-4 ligands include NRG-4.
  • NKG2 D activating NK receptor antagonists include JNJ-4500.
  • NLPR3 inhibitors include dapansutrile, BMS-986299, SB-414, MCC-950, IFM-514, JT-194, PELA-167, and NBC-6.
  • Farnesoid X receptor (FXR and NR1H4) agonists or modulators include AGN-242266, cilofexor tromethamine (GS-9674), EDP-305, EYP-001, GNF-5120, MET-409, nidufexor (LMB-763), obeticholic acid, TERN-101, and tropifexor.
  • Nuclear factor kappa B inhibitors include Thetanix.
  • Opioid receptor antagonists include naltrexone, and IRT-103.
  • OX40 ligand inhibitors include KHK-4083.
  • Oxidoreductase inhibitors include olsalazine.
  • Pellino homolog 1 inhibitors include BBT-401.
  • P2X7 purinoceptor modulators include SGM-1019.
  • PDE 4 inhibitors include apremilast.
  • PPAR alpha/delta agonists include elafibranor (GFT-1007).
  • PPAR gamma agonists include GED-0507-34-Levo.
  • Protein fimH inhibitors include sibofimloc (EB-8018).
  • P-selectin glycoprotein ligand-1 inhibitors include SEL-K2, AbGn-168H, and neihulizumab.
  • Ret tyrosine kinase receptor inhibitors include GSK-3179106.
  • RIP-1 kinase inhibitors include GSK-2982772.
  • RIP-2 kinase inhibitors include GSK-2983559.
  • Sphingosine 1 phosphate phosphatase 1 stimulators include etrasimod.
  • Sphingosine-1-phosphate receptor-1 agonists include ozanimod. mocravimod (KRP-203), and BMS-986166.
  • Sphingosine-1-phosphate receptor-1 agonists/Sphingosine-1-phosphate receptor-5 agonists include ozanimod.
  • Sphingosine-1-phosphate receptor-1 antagonists include amiselimod (MT-1303).
  • Sphingosine-1-phosphate receptor-1 modulators include OPL-002.
  • Stem cell antigen-1 inhibitors include Ampion (DMI-9523).
  • Superoxide dismutase modulators include midismase.
  • Syk inhibitors include GS-9876.
  • Tissue transglutaminase inhibitor includes zampilimab.
  • TLR-3 antagonists include PRV-300.
  • TLR-4 antagonists include JKB-122.
  • Toll-like receptor 8 (TLR8) inhibitors include E-6887, IMO-4200, IMO-8400, IMO-9200, MCT-465, MEDI-9197, motolimod, resiquimod, VTX-1463, and VTX-763.
  • TLR-9 agonists include cobitolimod, IMO-2055, IMO-2125, lefitolimod, litenimod, MGN-1601, and PUL-042.
  • TNF alpha ligand inhibitors include adalimumab, certolizumab pegol, infliximab, golimumab, DLX-105, Debio-0512, HMPL-004, CYT-020-TNFQb, Hemay-007. and V-565.
  • TNF antagonists include AVX-470, tulinercept, and etanercept.
  • TPL-2 inhibitors include GS-4875.
  • Tumor necrosis factor 14 ligand modulators include AEVI-002.
  • Tumor necrosis factor 15 ligand inhibitors include PF-06480605.
  • Tyk2 tyrosine kinase inhibitors include PF-06826647, and BMS-986165.
  • TrkA receptor antagonist includes SNA-125.
  • Type I IL-1 receptor antagonists include anakinra.
  • Zonulin inhibitors include larazotide acetate.
  • Anti-inflammatory agents include but are not limited to NSAIDs, non-specific and COX-2 specific cyclooxgenase enzyme inhibitors, gold compounds, corticosteroids, methotrexate, tumor necrosis factor receptor (TNF) receptors antagonists, immunosuppressants and methotrexate.
  • NSAIDs include, but are not limited to ibuprofen, flurbiprofen, naproxen and naproxen sodium, diclofenac, combinations of diclofenac sodium and misoprostol, sulindac, oxaprozin, diflunisal, piroxicam, indomethacin, etodolac, fenoprofen calcium, ketoprofen, sodium nabumetone, sulfasalazine, tolmetin sodium, and hydroxychloroquine.
  • NSAIDs also include COX-2 specific inhibitors (i.e., a compound that inhibits COX-2 with an IC 50 that is at least 50-fold lower than the IC 50 for COX-1) such as celecoxib, valdecoxib, lumiracoxib, etoricoxib and/or rofecoxib.
  • COX-2 specific inhibitors i.e., a compound that inhibits COX-2 with an IC 50 that is at least 50-fold lower than the IC 50 for COX-1
  • celecoxib valdecoxib
  • lumiracoxib etoricoxib
  • etoricoxib etoricoxib
  • rofecoxib rofecoxib
  • the anti-inflammatory agent is a salicylate.
  • Salicylates include but are not limited to acetylsalicylic acid or aspirin, sodium salicylate, and choline and magnesium salicylates.
  • the anti-inflammatory agent may also be a corticosteroid.
  • the corticosteroid may be chosen from cortisone, dexamethasone, methylprednisolone, prednisolone, prednisolone sodium phosphate, and prednisone.
  • the anti-inflammatory therapeutic agent is a gold compound such as gold sodium thiomalate or auranofin.
  • the anti-inflammatory agent is a metabolic inhibitor such as a dihydrofolate reductase inhibitor, such as methotrexate or a dihydroorotate dehydrogenase inhibitor, such as leflunomide.
  • a metabolic inhibitor such as a dihydrofolate reductase inhibitor, such as methotrexate or a dihydroorotate dehydrogenase inhibitor, such as leflunomide.
  • the anti-inflammatory compound is an anti-05 monoclonal antibody (such as eculizumab or pexelizumab), a TNF antagonist, such as entanercept, or infliximab, which is an anti-TNF alpha monoclonal antibody.
  • an anti-05 monoclonal antibody such as eculizumab or pexelizumab
  • a TNF antagonist such as entanercept, or infliximab
  • infliximab which is an anti-TNF alpha monoclonal antibody.
  • the immunosuppressant is methotrexate, leflunomide, cyclosporine, tacrolimus, azathioprine, or mycophenolate mofetil.
  • agents for treatment of IBD include ASK1 inhibitors, beta adrenoceptor antagonists, BTK inhibitors, beta-glucuronidase inhibitors, bradykinin receptor modulators, calcineurin inhibitors, calcium channel inhibitors, cathepsin S inhibitors, CCR3 chemokine antagonists, CD40 ligand receptor antagonists, chemokine CXC ligand inhibitors, CHST15 gene inhibitors, collagen modulators, CSF-1 antagonists, cyclooxygenase inhibitors, cytochrome P450 3A4 inhibitors, eotaxin ligand inhibitors, EP4 prostanoid receptor agonists, erythropoietin receptor agonists, fractalkine ligand inhibitors, free fatty acid receptor 2 antagonists, GATA 3 transcription factor inhibitors,
  • agents for treatment of IBD include those provided herein for the treatment of an inflammatory disease or condition, and ABX-464, adalimumab; alicaforsen, ALLO-ASC-CD, AMG-966, anakinra, apremilast; Alequel; AMG-139; amiselimod, ASD-003, ASP-3291, AX-1505, BBT-401, balsalazide; beclomethasone dipropionate; Bl-655130, BMS-986184; budesonide; CEQ-508; certolizumab; ChAdOx2-HAV, dexamethasone sodium phosphate, DNVX-078,
  • agents for treatment of graft versus host disease include those provided herein for the treatment of an inflammatory disease or condition, and [18F]F-AraG, AM-01, Alpha 1 antitrypsin stimulator: AAT-IV and CSL-964; Allocetra, efavaleukin alfa (AMG-592), arsenic trioxide, ATIR-101, belatacept, belimumab, beta lactamase modulator: ribaxamase, bortezomib, brentuximab vedotin, brimonidine, brimonidine tartrate, cannabidiol, ciclosporin, CYP-001, um, dilanubicel, dornase alfa, DSM-9843, eculizumab
  • agents for treatment of primary sclerosing cholangitis include those provided herein for the treatment of an inflammatory disease or condition, and BTT-1023, CM-101, Doconexent, GRI-0124, HTD-1801, HTD-2802, hymecromone, IDN-7314, NGM-282, norursodeoxycholic acid, ORBCEL-C, integrin alpha-V/beta-1 and beta-6 antagonist: PLN-74809; PPAR delta agonist: seladelpar lysine; SCT-5-27, PTGS2 gene and TGF beta 1 gene inhibitor: SCT-5-27, and STP-705; Farnesoid X receptor (FXR, NR1H4) agonists or modulators: AGN-242266, cilofexor
  • the one or more additional therapeutic agents is selected from the group consisting of: combination drugs for HIV, other drugs for treating HIV, HIV protease inhibitors, HIV non-nucleoside or non-nucleotide inhibitors of reverse transcriptase, HIV nucleoside or nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, HIV non-catalytic site (or allosteric) integrase inhibitors, HIV entry inhibitors, HIV maturation inhibitors, latency reversing agents, compounds that target the HIV capsid, immune-based therapies, phosphatidylinositol 3-kinase (PI3K) inhibitors, HIV antibodies, bispecific antibodies and “antibody-like” therapeutic proteins, HIV p17 matrix protein inhibitors, IL-13 antagonists, peptidyl-prolyl cis-trans isomerase A modulators, protein disulfide isomerase inhibitors, complement C5a receptor antagonists, DNA methyltransferase inhibitor, HIV
  • the one or more additional therapeutic agents is selected from the group consisting of HIV protease inhibiting compounds, HIV non-nucleoside inhibitors of reverse transcriptase, HIV non-nucleotide inhibitors of reverse transcriptase, HIV nucleoside inhibitors of reverse transcriptase, HIV nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, gp41 inhibitors, CXCR4 inhibitors, gp120 inhibitors, CCR5 inhibitors, capsid polymerization inhibitors, pharmacokinetic enhancers, and other drugs for treating HIV, or a pharmaceutically acceptable salt of any of the foregoing, or any combinations thereof.
  • the one or more additional therapeutic agent is an immune modulating agent, e.g., an immunostimulant or an immunosuppressant.
  • an immune modulating agent is an agent capable of altering the function of immune checkpoints, including the CTLA-4, LAG-3, B7-H 3 , B7-H4, Tim3, BTLA, KIR, A2aR, CD200 and/or PD-1 pathways.
  • the immune modulating agent is immune checkpoint modulating agents.
  • Exemplary immune checkpoint modulating agents include anti-CTLA-4 antibody (e.g., ipilimumab), anti-LAG-3 antibody, anti-B7-H 3 antibody, anti-B7-H4 antibody, anti-Tim3 antibody, anti-BTLA antibody, anti-KIR antibody, anti-A2aR antibody, anti CD200 antibody, anti-PD-1 antibody, anti-PD-L1 antibody, anti-CD28 antibody, anti-CD80 or -CD86 antibody, anti-B7RP1 antibody, anti-B7-H 3 antibody, anti-HVEM antibody, anti-CD137 or -CD137L antibody, anti-OX40 or -OX40L antibody, anti-CD40 or -CD40L antibody, anti-GAL9 antibody, anti-IL-10 antibody and A2aR drug.
  • CTLA-4 antibody e.g., ipilimumab
  • anti-LAG-3 antibody e.g., anti-B7-H 3 antibody, anti-B7-H4 antibody, anti-T
  • immune modulating agents include those agents capable of altering the function of mediators in cytokine mediated signaling pathways.
  • a compound as disclosed herein e.g., a compound described herein may be combined with one or more (e.g., one, two, three, four, one or two, one to three, or one to four) additional therapeutic agents in any dosage amount of the compound described herein (e.g., from 10 mg to 1000 mg of compound).
  • a compound described herein may be combined with the agents provided herein in any dosage amount of the compound (e.g., from 50 mg to 500 mg of compound) the same as if each combination of dosages were specifically and individually listed.
  • kits comprising a pharmaceutical composition comprising a compound described herein or a compound described herein and at least one additional therapeutic agent, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier.
  • kits comprising a compound disclosed herein, or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, tautomer, or deuterated analog thereof, in combination with one or more (e.g., one, two, three, four, one or two, or one to three, or one to four) additional therapeutic agents are provided.
  • Any pharmaceutical composition provided in the present disclosure may be used in the kits, the same as if each and every composition were specifically and individually listed for use in a kit.
  • the kit comprises instructions for use in the treatment of an inflammatory disease or condition.
  • the instructions in the kit are directed to use of the pharmaceutical composition for the treatment of IBD.
  • the compounds of the disclosure may be prepared using methods disclosed herein and routine modifications thereof which will be apparent given the disclosure herein and methods well known in the art. Conventional and well-known synthetic methods may be used in addition to the teachings herein.
  • the synthesis of typical compounds of formula (I), e.g., compounds having structures described by one or more of formula (I), or other formulas or compounds disclosed herein, or a pharmaceutically acceptable salt, stereoisomer, mixture of stereoisomers, tautomer, or deuterated analog thereof, may be accomplished as described in the following examples.
  • Salts such as TFA salts, can be converted to the free-bases/acids or other pharmaceutically acceptable salts.
  • Typical embodiments of compounds in accordance with the present disclosure may be synthesized using the general reaction schemes and/or examples described below. It will be apparent given the description herein that the general schemes may be altered by substitution of the starting materials with other materials having similar structures to result in products that are correspondingly different. Descriptions of syntheses follow to provide numerous examples of how the starting materials may vary to provide corresponding products. Starting materials are typically obtained from commercial sources or synthesized using published methods for synthesizing compounds which are embodiments of the present disclosure, inspection of the structure of the compound to be synthesized will provide the identity of each substituent group. The identity of the final product will generally render apparent the identity of the necessary starting materials by a simple process of inspection, given the examples herein.
  • Scheme 1 describes a general route that was used to prepare some compounds of Formula (I).
  • amino acid esters (AA2) can be prepared under a variety of conditions (eg. Schollkopf, Maruoka, etc).
  • PG protecting groups
  • AA2 was converted to a boronic acid or boronic ester (AA3) under standard conditions (eg. Miyaura).
  • R 1 was introduced under a variety of cross coupling conditions to give AA4.
  • the amine was coupled with acids to provide heterocyclic compounds AA5.
  • Scheme 2 describes a general route that was used to prepare some compounds of Formula (I).
  • Intermediate BB1 that has a halogen group as Z
  • amino acid esters (BB2) can be prepared under a variety of conditions (primarily by Negishi).
  • BB2 was converted to the free amine (BB3) under standard conditions (eg. Pd/H 2 ).
  • R 1 was introduced under a variety of urea forming conditions with appropriate carboxylic acid or amines to give BB4.
  • the amine was coupled with carboxylic acids or acid chlorides to provide heterocyclic compounds BBS.
  • reaction mixture was diluted with water (200 mL) and stirred for 15 minutes. After washing with water and EA, the combined organic layer was dried over anhydrous Na 2 SO 4 , filtered through Celite, washed with EA, and concentrated under reduced pressure to obtain 30J.
  • the reaction mixture was cooled to RT and filtered over a pad of Celite, rinsed with EA and the filtrate was evaporated to dryness under reduced pressure.
  • the material was purified by silica gel chromatography using EA in Hexane as eluent. To this material was added THF (6 mL) and aqueous LiOH (6.2 mL, 1.0 M). The reaction mixture was stirred at 60° C. for 20 hrs. The reaction mixture was cooled to RT and acidified with 1.0 M HCl before extracting with EA. Organic layers were combined and dried over Na 2 SO 4 . The solvent was removed under reduced pressure to afford 75A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
US17/289,614 2018-10-30 2019-10-29 Quinoline derivatives as alpha4beta7 integrin inhibitors Abandoned US20220119383A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/289,614 US20220119383A1 (en) 2018-10-30 2019-10-29 Quinoline derivatives as alpha4beta7 integrin inhibitors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862752805P 2018-10-30 2018-10-30
US201962823987P 2019-03-26 2019-03-26
US17/289,614 US20220119383A1 (en) 2018-10-30 2019-10-29 Quinoline derivatives as alpha4beta7 integrin inhibitors
PCT/US2019/058573 WO2020092375A1 (en) 2018-10-30 2019-10-29 Quinoline derivatives as alpha4beta7 integrin inhibitors

Publications (1)

Publication Number Publication Date
US20220119383A1 true US20220119383A1 (en) 2022-04-21

Family

ID=68583545

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/667,306 Active US11116760B2 (en) 2018-10-30 2019-10-29 Quinoline derivatives
US17/289,614 Abandoned US20220119383A1 (en) 2018-10-30 2019-10-29 Quinoline derivatives as alpha4beta7 integrin inhibitors
US17/379,175 Active US12053462B2 (en) 2018-10-30 2021-07-19 Quinoline derivatives

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/667,306 Active US11116760B2 (en) 2018-10-30 2019-10-29 Quinoline derivatives

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/379,175 Active US12053462B2 (en) 2018-10-30 2021-07-19 Quinoline derivatives

Country Status (20)

Country Link
US (3) US11116760B2 (es)
EP (1) EP3873884A1 (es)
JP (2) JP7192139B2 (es)
KR (2) KR20240015737A (es)
CN (1) CN112969687B (es)
AU (2) AU2019373240B2 (es)
BR (1) BR112021007213A2 (es)
CA (1) CA3116769C (es)
CL (2) CL2021001098A1 (es)
CO (1) CO2021005532A2 (es)
CR (1) CR20210213A (es)
DO (2) DOP2021000077A (es)
IL (1) IL282545A (es)
MX (2) MX2021005050A (es)
PE (1) PE20211866A1 (es)
PH (1) PH12021550825A1 (es)
SG (1) SG11202103484RA (es)
TW (2) TWI843952B (es)
UA (1) UA127769C2 (es)
WO (1) WO2020092375A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210087480A (ko) * 2018-10-30 2021-07-12 길리애드 사이언시즈, 인코포레이티드 알파4베타7 인테그린 억제제로서의 이미다조피리딘 유도체
US11578069B2 (en) 2019-08-14 2023-02-14 Gilead Sciences, Inc. Compounds for inhibition of α4 β7 integrin
US12053462B2 (en) 2018-10-30 2024-08-06 Gilead Sciences, Inc. Quinoline derivatives

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR114489A1 (es) 2018-04-12 2020-09-09 Morphic Therapeutic Inc ANTAGONISTAS DE LA INTEGRINA a4b7 HUMANA
AU2019373245C1 (en) 2018-10-30 2022-10-27 Gilead Sciences, Inc. Compounds for inhibition of alpha 4β7 integrin
CA3115820A1 (en) 2018-10-30 2020-05-07 Gilead Sciences, Inc. Compounds for inhibition of .alpha.4.beta.7 integrin
JP7437495B2 (ja) 2019-10-16 2024-02-22 モーフィック セラピューティック,インコーポレイテッド ヒトインテグリンα4β7の阻害
CN111518192A (zh) * 2020-05-26 2020-08-11 成都圣诺生物制药有限公司 一种Apraglutide的制备方法
CN112142661B (zh) * 2020-09-02 2022-04-12 苏州康润医药有限公司 3-氨基喹啉-5-羧酸甲酯的合成方法

Family Cites Families (235)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2150550A1 (en) 1992-12-01 1994-06-09 Melissa S. Egbertson Fibrinogen receptor antagonists
EP0767674A4 (en) 1994-06-29 1999-06-16 Texas Biotechnology Corp METHOD FOR INHIBITING THE BINDING OF INTEGRIN ALPHA 4 BETA 1 TO VCAM-1 OR FIBRONECTIN
US6248713B1 (en) 1995-07-11 2001-06-19 Biogen, Inc. Cell adhesion inhibitors
BR9609883A (pt) 1995-08-08 1999-03-23 Fibrogen Inc Composto tendo efeito inibidor em proteinase c composição farmacéutica e processo para tratar doenças relacionadas com a produção inapropriada ou desregulada de colágeno
EP0917462B1 (en) 1996-07-25 2006-09-13 Biogen Idec MA Inc. Cell adhesion inhibitors
WO1998042656A1 (en) 1997-03-21 1998-10-01 Cytel Corporation Novel compounds
WO1998053817A1 (en) 1997-05-29 1998-12-03 Merck & Co., Inc. Biarylalkanoic acids as cell adhesion inhibitors
CA2291708A1 (en) 1997-05-29 1998-12-03 Merck & Co., Inc. Sulfonamides as cell adhesion inhibitors
JP2002512625A (ja) 1997-05-29 2002-04-23 メルク エンド カンパニー インコーポレーテッド 細胞接着阻害薬としての複素環アミド化合物
ES2206953T3 (es) 1997-06-23 2004-05-16 Tanabe Seiyaku Co., Ltd. Inhibidores de la adherencia celular mediada por alfa 4-beta 1.
WO1999006436A1 (en) 1997-07-31 1999-02-11 Elan Pharmaceuticals, Inc. Benzyl compounds which inhibit leukocyte adhesion mediated by vla-4
CN1265672A (zh) 1997-07-31 2000-09-06 伊兰药品公司 能抑制由vla-4介导的白细胞粘连的磺酰化二肽化合物
CN1133648C (zh) 1997-07-31 2004-01-07 伊兰药品公司 抑制vla-4介导的白细胞粘附的取代的苯丙氨酸型化合物
PL338413A1 (en) 1997-07-31 2000-11-06 Elan Pharm Inc Compound of 4-amino phenylalanine type inhibiting adhesion of leucocytes through the meditation of vla-4
WO1999013898A1 (en) 1997-08-15 1999-03-25 Stefan Niewiarowski EC-3, AN INHIBITOR OF α4β1 AND α4β7 INTEGRINS
CA2300121A1 (en) 1997-08-22 1999-03-04 F. Hoffmann-La Roche Ag N-alkanoylphenylalanine derivatives
NZ502813A (en) 1997-08-22 2002-10-25 F N-aroylphenylalanine derivatives as inhibitors of the interaction between a4 containing integrins and VCAM-1
EP0970965A4 (en) 1997-11-13 2002-07-17 Toray Industries CYCLIC PEPTIDES AND MEDICAL USE THEREOF
DE69824037T2 (de) 1997-11-24 2005-06-02 Merck & Co., Inc. Beta-alanin-derivate als zell-adhäsions-inhibitoren
AU750175B2 (en) 1997-11-24 2002-07-11 Merck & Co., Inc. Cyclic amino acid derivatives as cell adhesion inhibitors
US6645939B1 (en) 1997-11-24 2003-11-11 Merck & Co., Inc. Substituted β-alanine derivatives as cell adhesion inhibitors
ATE299023T1 (de) 1997-12-17 2005-07-15 Merck & Co Inc Integrinrezeptor antagonisten
MY153569A (en) * 1998-01-20 2015-02-27 Mitsubishi Tanabe Pharma Corp Inhibitors of ?4 mediated cell adhesion
AU3563799A (en) 1998-04-16 1999-11-01 Texas Biotechnology Corporation Compounds that inhibit the binding of integrins to their receptors
DE69913687T2 (de) 1998-05-28 2004-10-07 Biogen Inc Ein VLA-4-Inhibitor: oMePUPA-V
GB9811969D0 (en) 1998-06-03 1998-07-29 Celltech Therapeutics Ltd Chemical compounds
AU8059598A (en) 1998-06-11 1999-12-30 Merck & Co., Inc. Heterocyclic amide compounds as cell adhesion inhibitors
TW591026B (en) 1998-06-23 2004-06-11 Upjohn Co Inhibitors of alpha4beta1 mediated cell adhesion
WO2000002903A1 (en) 1998-07-10 2000-01-20 Cytel Corporation Cs-1 peptidomimetics, compositions and methods of using the same
EP1133484A2 (en) 1998-07-23 2001-09-19 AstraZeneca AB Heterocyclic derivatives and their use as integrin inhibitors
EP1114028B1 (en) 1998-08-26 2006-11-29 Aventis Pharma Limited Aza-bicycles which modulate the inhibition of cell adhesion
BR9916211A (pt) 1998-12-14 2001-09-11 American Home Prod Derivados de 3,4-diamino-3-ciclobuteno-1,2-diona que inibem adesão de leucócito mediada por vla-4
GB9828074D0 (en) 1998-12-18 1999-02-17 Glaxo Group Ltd Therapeutically useful compounds
CA2357781A1 (en) 1999-01-22 2000-07-27 Elan Pharmaceuticals, Inc. Multicyclic compounds which inhibit leukocyte adhesion mediated by vla-4
AU2623900A (en) 1999-01-22 2000-08-07 American Home Products Corporation Compounds which inhibit leukocyte adhesion mediated by vla-4
CA2359112A1 (en) 1999-01-22 2000-07-27 Elan Pharmaceuticals, Inc. Fused ring heteroaryl and heterocyclic compounds which inhibit leukocyte adhesion mediated by vla-4
JP2002535341A (ja) 1999-01-26 2002-10-22 エラン ファーマシューティカルズ,インコーポレイテッド Vla−4により媒介される白血球接着を阻害するピログルタミン酸誘導体および関連化合物
HUP0200155A3 (en) 1999-02-18 2005-04-28 Hoffmann La Roche Thioamide derivatives, pharmaceutical compositions containing them and their use
DE60009883T2 (de) 1999-03-01 2005-04-07 Elan Pharmaceuticals, Inc., San Francisco Alpha-aminoessigsäure derivate als alpha 4 beta 7- rezeptor antagonisten
US6265572B1 (en) 1999-04-20 2001-07-24 Hoffmann-La Roche Inc. Pyrrolidincarbonylamino cyclic disulfide anti-inflammatory agents
GB9909409D0 (en) 1999-04-24 1999-06-23 Zeneca Ltd Chemical compounds
DK1176956T3 (da) 1999-05-07 2008-05-26 Encysive Pharmaceuticals Inc Carboxylsyrederivater, som inhiberer bindingen af integriner til deres receptorer
BR0012068A (pt) 1999-06-30 2002-05-14 Daiichi Seiyaku Co Compostos inibidores de vla-4
JP3795305B2 (ja) 1999-07-19 2006-07-12 田辺製薬株式会社 医薬組成物
CN1376143A (zh) 1999-07-26 2002-10-23 东丽株式会社 羧酸衍生物及以其作为有效成分的粘连分子抑制剂
PL354063A1 (en) 1999-08-13 2003-12-15 Biogen, Inc.Biogen, Inc. Cell adhesion inhibitors
WO2001012183A1 (en) 1999-08-16 2001-02-22 Merck & Co., Inc. Heterocycle amides as cell adhesion inhibitors
AU6909300A (en) 1999-08-20 2001-03-19 Merck & Co., Inc. Substituted ureas as cell adhesion inhibitors
EP1214292B1 (en) * 1999-09-24 2007-06-13 Genentech, Inc. Tyrosine derivatives
AU7961200A (en) 1999-10-29 2001-05-14 Kaken Pharmaceutical Co., Ltd. Urea derivative, process for producing the same, and medicine containing the urea derivative
JP4788939B2 (ja) 1999-11-18 2011-10-05 味の素株式会社 新規フェニルアラニン誘導体
PT1237878E (pt) 1999-12-06 2007-06-18 Hoffmann La Roche 4-pirimidinil-n-acil-fenilalaninas
KR100492111B1 (ko) 1999-12-06 2005-06-01 에프. 호프만-라 로슈 아게 4-피리디닐-n-아실-l-페닐알라닌
DE60043308D1 (de) 1999-12-16 2009-12-24 Biogen Idec Inc Verfahren zur behandlung der schädigung des zentralnervensystems durch ischämie oder durch hämorrhagie mit antagonisten von alpha4 integrin
DE19962936A1 (de) 1999-12-24 2001-06-28 Bayer Ag Neue beta-Aminosäureverbindungen als Integrinantagonisten
WO2001047868A1 (fr) 1999-12-28 2001-07-05 Ajinomoto Co., Inc. Nouveaux derives de phenylalanine
GB0001348D0 (en) 2000-01-21 2000-03-08 Astrazeneca Uk Ltd Chemical compounds
GB0001346D0 (en) 2000-01-21 2000-03-08 Astrazeneca Uk Ltd Chemical compounds
AU2882801A (en) 2000-01-28 2001-08-07 Kaken Pharmaceutical Co., Ltd. Azepine derivatives
ATE464892T1 (de) 2000-02-03 2010-05-15 Eisai R&D Man Co Ltd Inhibitoren der integrinexpression
WO2001056994A1 (en) 2000-02-04 2001-08-09 Biogen, Inc. Integrin antagonists
WO2001068586A2 (en) 2000-03-14 2001-09-20 Novartis Ag α4β1 AND α4β7 INTEGRIN INHIBITORS
EP1270547A4 (en) 2000-03-23 2005-07-13 Ajinomoto Kk NEW PHENYL ALANIDE DERIVATIVES
US6960597B2 (en) 2000-06-30 2005-11-01 Orth-Mcneil Pharmaceutical, Inc. Aza-bridged-bicyclic amino acid derivatives as α4 integrin antagonists
WO2002008206A1 (en) 2000-07-21 2002-01-31 Elan Pharmaceuticals, Inc. 3-amino-2-(4-aminocarbonyloxy)phenyl-propionic acid derivatives as alpha-4- integrin inhibitors
US6794506B2 (en) 2000-07-21 2004-09-21 Elan Pharmaceuticals, Inc. 3-(heteroaryl) alanine derivatives-inhibitors of leukocyte adhesion mediated by VLA-4
PE20020384A1 (es) 2000-07-21 2002-05-28 Schering Corp PEPTIDOS COMO INHIBIDORES DE LA PROTEASA SERINA NS3/NS4a DEL VIRUS DE LA HEPATITIS C
US7335673B2 (en) 2000-08-11 2008-02-26 Kaken Pharmaceutical Co., Ltd. 2,3-Diphenylpropionic acid derivatives or their salts, medicines or cell adhesion inhibitors containing the same, and their usage
BRPI0113331B8 (pt) 2000-08-18 2021-05-25 Ajinomoto Kk derivados de fenilalanina ou seus sais parmaceuticamente aceitáveis, antagonista de integrina alfa 4, agente terapêutico ou agente preventivo para doenças inflamatórias, e, composição farmacêutica
US20020035104A1 (en) 2000-08-18 2002-03-21 Genentech, Inc. Integrin receptor inhibitors
MY129000A (en) 2000-08-31 2007-03-30 Tanabe Seiyaku Co INHIBITORS OF a4 MEDIATED CELL ADHESION
CN1458922A (zh) 2000-09-14 2003-11-26 东丽株式会社 尿素衍生物及以其作为有效成分的粘连分子阻断剂
KR20030027076A (ko) 2000-09-25 2003-04-03 도레이 가부시끼가이샤 스피로 유도체 및 그것을 유효성분으로 하는 접착분자저해제
AU2001290303A1 (en) 2000-09-29 2002-04-15 Ajinomoto Co., Inc. Novel phenylalanine derivatives
IL156064A0 (en) 2000-12-28 2003-12-23 Daiichi Seiyaku Co Vla-4 inhibitors
ES2200617B1 (es) 2001-01-19 2005-05-01 Almirall Prodesfarma, S.A. Derivados de urea como antagonistas de integrinas alfa 4.
ATE350660T1 (de) 2001-02-21 2007-01-15 Eisai Co Ltd Verfahren zur untersuchung der wirkung eines angionegesis-hemmers unter vermittlung durch hemmung der integrin-expression
BR0207166A (pt) 2001-02-22 2004-02-10 Celltech R&D Ltd Composto, e, composição farmacêutica
ATE443736T1 (de) 2001-06-20 2009-10-15 Asahi Chemical Ind Thermoplastharzzusammensetzung
JP2005022976A (ja) 2001-07-18 2005-01-27 Ajinomoto Co Inc カルボン酸誘導体
WO2003010135A1 (fr) 2001-07-26 2003-02-06 Ajinomoto Co., Inc. Nouveaux derives de l'acide phenylpropionique
WO2003011815A1 (en) 2001-07-26 2003-02-13 Celltech R & D Limited Bicyclic heteroaromatic alanines
JP2003048889A (ja) 2001-08-01 2003-02-21 Ajinomoto Co Inc 新規核酸系化合物
EP1424558A4 (en) 2001-08-17 2004-12-15 Eisai Co Ltd REAGENT FOR TESTING LAMININE-5-ANTIGENS IN A BIOLOGICAL SAMPLE AND TEST PROCEDURE
CA2460149A1 (en) 2001-09-12 2003-03-27 Kaken Pharmaceutical Co., Ltd. 2-phenyl-3-heteroarylpropionic acid derivative or salt thereof and medicine containing the same
GB0127423D0 (en) 2001-11-15 2002-01-09 Glaxo Group Ltd Process
WO2003053926A1 (fr) 2001-12-13 2003-07-03 Ajinomoto Co.,Inc. Nouveau derive de phenylalanine
JP4470219B2 (ja) 2002-02-20 2010-06-02 味の素株式会社 新規フェニルアラニン誘導体
JP4233353B2 (ja) 2002-02-27 2009-03-04 田辺三菱製薬株式会社 医薬組成物
MY140707A (en) 2002-02-28 2010-01-15 Mitsubishi Tanabe Pharma Corp Process for preparing a phenylalanine derivative and intermediates thereof
JP2003277340A (ja) 2002-03-22 2003-10-02 Toray Ind Inc 接着分子阻害剤及び新規アミノ酸誘導体
US20060241132A1 (en) 2002-03-22 2006-10-26 Toray Industries, Inc. A Corporation Of Japan Spiro derivatives and adhesion molecule inhibitors comprising the same as active ingredient
JPWO2003089410A1 (ja) 2002-04-19 2005-08-25 協和醗酵工業株式会社 フェニルアラニン誘導体
NZ536180A (en) 2002-04-30 2005-04-29 Ucb S 2,6-quinolinyl and 2,6-naphthyl derivatives, processes for preparing them and their uses as VLA-4 inhibitors
TWI281470B (en) 2002-05-24 2007-05-21 Elan Pharm Inc Heterocyclic compounds which inhibit leukocyte adhesion mediated by alpha4 integrins
TW200307671A (en) 2002-05-24 2003-12-16 Elan Pharm Inc Heteroaryl compounds which inhibit leukocyte adhesion mediated by α 4 integrins
GB0216568D0 (en) 2002-07-17 2002-08-28 Celltech R&D Ltd Chemical compounds
GB0216571D0 (en) 2002-07-17 2002-08-28 Celltech R&D Ltd Chemical compounds
GB0216574D0 (en) 2002-07-17 2002-08-28 Celltech R&D Ltd Chemical compounds
AU2003265398A1 (en) 2002-08-09 2004-02-25 Transtech Pharma, Inc. Aryl and heteroaryl compounds and methods to modulate coagulation
GB0218630D0 (en) 2002-08-10 2002-09-18 Tanabe Seiyaku Co Novel compounds
KR101145252B1 (ko) 2003-01-08 2012-05-24 유니버시티 오브 워싱톤 항균제
MXPA05007823A (es) 2003-01-24 2005-10-18 Elan Pharm Inc Composicion y tratamiento de enfermedades desmielizantes y paralisis por administracion de agentes remielinizantes.
EP1595870B1 (en) 2003-02-20 2015-09-23 Ajinomoto Co., Inc. Process for producing phenylalanine derivative having quinazolinedione skeleton and intermediate for the same
JP2004277338A (ja) 2003-03-14 2004-10-07 Nippon Soda Co Ltd N−アシルアミノ酸類の製造方法
ES2219177B1 (es) 2003-05-05 2006-02-16 Almirall Prodesfarma, S.A. Derivados de n-(2-feniletil) sulfamida como antagonistas de la integrina alfa4.
AU2004240940A1 (en) 2003-05-20 2004-12-02 Genentech, Inc. Thiocarbamate inhibitors of alpha-4 integrins
AU2004251750A1 (en) 2003-06-25 2005-01-06 Elan Pharmaceuticals, Inc. Methods and compositions for treating rheumatoid arthritis
WO2005009992A1 (ja) 2003-07-24 2005-02-03 Daiichi Pharmaceutical Co., Ltd. シクロヘキサンカルボン酸類
US7501538B2 (en) 2003-08-08 2009-03-10 Transtech Pharma, Inc. Aryl and heteroaryl compounds, compositions and methods of use
EP1679309A4 (en) 2003-10-24 2007-03-28 Ono Pharmaceutical Co ANTISTRESS MEDICAMENT AND ITS MEDICAL USE
US20050176755A1 (en) 2003-10-31 2005-08-11 Dyatkin Alexey B. Aza-bridged-bicyclic amino acid derivatives as alpha4 integrin antagonists
EP1682537B1 (en) 2003-11-05 2012-03-28 SARcode Bioscience Inc. Modulators of cellular adhesion
WO2005046697A1 (ja) 2003-11-14 2005-05-26 Ajinomoto Co., Inc. フェニルアラニン誘導体の徐放性経口投与製剤
CN100563658C (zh) 2003-11-14 2009-12-02 味之素株式会社 苯丙氨酸衍生物的固体分散体或固体分散体医药制剂
JP4748449B2 (ja) 2003-11-27 2011-08-17 味の素株式会社 フェニルアラニン誘導体の結晶及びその製造方法
GB0329584D0 (en) 2003-12-20 2004-01-28 Tanabe Seiyaku Co Novel compounds
KR101194176B1 (ko) 2003-12-22 2012-10-24 아지노모토 가부시키가이샤 신규한 페닐알라닌 유도체
MY140489A (en) 2003-12-26 2009-12-31 Eisai R&D Man Co Ltd 1,2-di (cyclic) substituted benzene compounds
WO2005070921A1 (en) 2004-01-23 2005-08-04 Elan Pharmaceuticals, Inc. Polyethylene glycol conjugates of heterocycloalkyl carboxamido propanoic acids
CA2555594A1 (en) 2004-02-10 2005-08-25 Janssen Pharmaceutica N.V. Pyridazinones as antagonists of a4 integrins
MXPA06009099A (es) 2004-02-10 2007-02-02 Johnson & Johnson Piridazinona ureas como antagonistas de las integrinas alfa-4.
JP2007528397A (ja) 2004-03-10 2007-10-11 メルク エンド カムパニー インコーポレーテッド Vla−4アンタゴニスト
EP1763361A2 (en) 2004-04-01 2007-03-21 Elan Pharmaceuticals, Inc. Steroid sparing agents and their use
AU2005244751A1 (en) 2004-04-16 2005-12-01 Genentech, Inc. Method for augmenting B cell depletion
US7618981B2 (en) 2004-05-06 2009-11-17 Cytokinetics, Inc. Imidazopyridinyl-benzamide anti-cancer agents
TW200610754A (en) 2004-06-14 2006-04-01 Daiichi Seiyaku Co Vla-4 inhibitor
NZ588839A (en) 2004-07-08 2012-09-28 Elan Pharm Inc Multivalent vla-4 antagonists comprising polyethylene glycol moieties
US7196112B2 (en) 2004-07-16 2007-03-27 Biogen Idec Ma Inc. Cell adhesion inhibitors
EP1781686B1 (en) 2004-08-16 2009-05-06 Merck & Co., Inc. Vla-4 antagonists
US8106003B2 (en) 2004-09-09 2012-01-31 Auckland Uniservices Limited Peptides and methods for the treatment of inflammatory disease
US7618983B2 (en) 2004-11-10 2009-11-17 Janssen Pharmaceutica, N.V. Bicyclic triazole α4 integrin inhibitors
CN101068798B (zh) 2004-12-20 2010-05-12 卫材R&D管理有限公司 1-环丙基甲基-4-[2-(3,3,5,5-四甲基环己基)苯基]哌嗪的盐及结晶
WO2006066780A1 (en) 2004-12-22 2006-06-29 F. Hoffmann-La Roche Ag Combinations of valategrast and montelukast for treating asthma
AU2005320089B2 (en) 2004-12-24 2011-04-07 Toray Industries, Inc. Glycine derivative and use thereof
WO2006081986A1 (en) 2005-02-07 2006-08-10 F.Hoffmann-La Roche Ag Bambuterol and integrin inhibitor combination
WO2006090234A1 (en) 2005-02-22 2006-08-31 Ranbaxy Laboratories Limited Heterocyclic derivatives as cell adhesion inhibitors
WO2006096807A1 (en) 2005-03-08 2006-09-14 Janssen Pharmaceutica N.V. Aza-bridged-bicyclic amino acid derivatives as alpha 4 integrin antagonists
WO2006113199A1 (en) 2005-04-14 2006-10-26 Merck & Co., Inc. Vla-4 antagonists
WO2006112738A1 (en) 2005-04-19 2006-10-26 Auckland Uniservices Limited Novel peptides and methods for the treatment of inflammatory disorders
WO2006115918A2 (en) 2005-04-21 2006-11-02 Merck & Co., Inc. Vla-4 antagonists
MX2007014267A (es) 2005-05-20 2008-02-07 Elan Pharm Inc Derivados de imidazolona fenilamina como antagonistas vla-4.
CN101146760A (zh) 2005-05-25 2008-03-19 卫材R&D管理有限公司 [2-(3,3,5,5-四甲基环己基)苯基]哌嗪化合物的制备中间体
CA2609255A1 (en) 2005-05-25 2006-11-30 Eisai R&D Management Co., Ltd. Intermediate in production of [2-(3,3,5,5-tetramethylcyclohexyl)phenyl]piperazine compound
WO2006131200A1 (en) 2005-06-09 2006-12-14 Ucb Pharma, S.A. 2,6 quinolinyl derivatives, processes for preparing them and their use as medicament
JP2007023029A (ja) 2005-06-17 2007-02-01 Tanabe Seiyaku Co Ltd 医薬組成物
CN101243056B (zh) 2005-06-21 2013-03-27 味之素株式会社 苯基丙氨酸衍生物的结晶、其制备方法及其应用
TW200726767A (en) 2005-07-04 2007-07-16 Astrazeneca Ab Chemical compounds 2
EP1961750B1 (en) 2005-12-13 2013-09-18 Daiichi Sankyo Company, Limited Vla-4 inhibitory drug
EP1978928B1 (en) 2006-01-18 2010-03-31 F. Hoffmann-la Roche AG Pharmaceutical valatograst compositions and process for manufacturing them
EA017110B1 (ru) 2006-02-27 2012-09-28 Элан Фамэсьютикэлс, Инк. ПИРИМИДИНИЛСУЛЬФОНАМИДНЫЕ СОЕДИНЕНИЯ (ВАРИАНТЫ), СПОСОБ ПОЛУЧЕНИЯ ПИРИМИДИНИЛСУЛЬФОНАМИДНЫХ СОЕДИНЕНИЙ (ВАРИАНТЫ), ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ, СПОСОБ ЛЕЧЕНИЯ ЗАБОЛЕВАНИЯ, ОПОСРЕДОВАННОГО ИНТЕГРИНОМ α4, СПОСОБ СНИЖЕНИЯ И/ИЛИ ПРЕДУПРЕЖДЕНИЯ ВОСПАЛИТЕЛЬНОГО КОМПОНЕНТА ЗАБОЛЕВАНИЯ ИЛИ АУТОИММУННОГО ОТВЕТА
US8410115B2 (en) 2006-02-28 2013-04-02 Elan Pharmaceuticals, Inc. Methods of treating inflammatory and autoimmune diseases with alpha-4 inhibitory compounds
MX297306B (es) 2006-11-22 2012-03-22 Ajinomoto Kk Procedimiento para la produccion de derivados de fenilalanina que tienen estructuras de base de quinazolinodiona e intermediarios para la produccion.
WO2008064830A1 (en) 2006-11-27 2008-06-05 Ucb Pharma, S.A. Bicyclic and heterobicyclic derivatives, processes for preparing them and their pharmaceutical uses
US8486941B2 (en) 2007-03-12 2013-07-16 Ym Biosciences Australia Pty Ltd Phenyl amino pyrimidine compounds and uses thereof
WO2008125210A1 (en) 2007-04-12 2008-10-23 Ucb Pharma, S.A. Quinoline and naphthalene derivatives, processes for their preparation and their use in treatment of inflammatory diseases
WO2008138591A2 (en) 2007-05-14 2008-11-20 Ucb Pharma, S.A. Bicyclic and heterobicyclic derivatives,processes for preparing them and their uses
EP2662353A3 (en) 2007-06-12 2014-04-02 Achaogen, Inc. Antibacterial agents
JP2011506322A (ja) 2007-12-07 2011-03-03 エラン ファーマシューティカルズ,インコーポレイテッド 液性腫瘍を治療するための方法および組成物
WO2009124755A1 (en) 2008-04-08 2009-10-15 European Molecular Biology Laboratory (Embl) Compounds with novel medical uses and method of identifying such compounds
CN102088973A (zh) 2008-05-15 2011-06-08 杜克大学 与热休克转录因子激活化合物及其靶标有关的组合物和方法
EP2310509B1 (en) 2008-07-21 2015-01-21 Apogenix GmbH Tnfsf single chain molecules
KR20100101054A (ko) 2009-03-07 2010-09-16 주식회사 메디젠텍 세포핵에서 세포질로의 gsk3의 이동을 억제하는 화합물을 함유하는 세포핵에서 세포질로의 gsk3 이동에 의해 발생되는 질환의 치료 또는 예방용 약학적 조성물
US9260479B2 (en) 2009-03-16 2016-02-16 The Governing Council Of The University Of Toronto Cyclic amino acid molecules and methods of preparing the same
GB0905641D0 (en) 2009-04-01 2009-05-13 Serodus As Compounds
MX2011011326A (es) 2009-04-27 2012-02-13 Elan Pharm Inc Antagonistas de piridinona de las integrinas alfa-4.
WO2011048091A1 (en) 2009-10-21 2011-04-28 Glaxo Group Limited Process for preparing a phenylalanine derivative
WO2011094890A1 (en) 2010-02-02 2011-08-11 Argusina Inc. Phenylalanine derivatives and their use as non-peptide glp-1 receptor modulators
JP6109568B2 (ja) 2010-03-29 2017-04-05 Eaファーマ株式会社 フェニルアラニン誘導体の塩の結晶
EP2554169B1 (en) 2010-03-29 2019-11-20 EA Pharma Co., Ltd. Pharmaceutical preparation comprising phenylalanine derivative
EP2569331A1 (en) 2010-05-10 2013-03-20 Perseid Therapeutics LLC Polypeptide inhibitors of vla4
WO2011150499A1 (en) 2010-05-31 2011-12-08 The Governing Council Of The University Of Toronto A method to insert molecular fragments into cyclic molecules
WO2011159781A2 (en) 2010-06-17 2011-12-22 Senomyx, Inc. Bitter taste modulators
CA2805098C (en) 2010-07-20 2015-09-15 Council Of Scientific & Industrial Research Pyridin-2-yl sulfanyl acid esters and process for the preparation thereof
CA2997471C (en) 2010-11-16 2020-12-01 Texas Heart Institute Agonists that enhance binding of integrin-expressing cells to integrin receptors
AU2012212323A1 (en) 2011-02-01 2013-09-12 The Board Of Trustees Of The University Of Illinois HDAC inhibitors and therapeutic methods using the same
CA2854658A1 (en) 2011-11-09 2013-05-16 Aestus Therapeutics, Inc. Methods of treating schizophrenia with phenylalanine enamide derivative inhibitors of .alpha.4 integrin possessing a cyclobutene group
WO2013110681A1 (en) 2012-01-27 2013-08-01 F. Hoffmann-La Roche Ag Chitosan covalently linked with small molecule integrin antagonist for targeted delivery
RU2624731C2 (ru) 2012-01-27 2017-07-06 Ф. Хоффманн-Ля Рош Аг Конъюгаты антагонистов интегрина для нацеленной доставки к клеткам, экспрессирующим vla-4
US20130303763A1 (en) 2012-03-30 2013-11-14 Michael D. Gershon Methods and compositions for the treatment of necrotizing enterocolitis
US9533985B2 (en) 2012-04-24 2017-01-03 Ea Pharma Co., Ltd. Sulfonamide derivative and medicinal use thereof
US9013997B2 (en) 2012-06-01 2015-04-21 Broadcom Corporation System for performing distributed data cut-through
EP2900228A1 (en) 2012-09-26 2015-08-05 KFLP Biotech, LLC Compounds for the treatment and prevention of retroviral infections
WO2014051056A1 (ja) 2012-09-28 2014-04-03 東レ株式会社 グリシン誘導体の結晶及びその医薬用途
US20150045435A1 (en) 2013-08-06 2015-02-12 Indiana University Research And Technology Corporation Compounds and methods for treating diabetes
JP6399874B2 (ja) 2013-09-20 2018-10-03 エーザイ・アール・アンド・ディー・マネジメント株式会社 化合物の抗炎症効果または免疫抑制効果を予測する方法
AU2014341188B2 (en) 2013-10-29 2017-05-25 Ea Pharma Co., Ltd. Sulfonamide derivative and medicinal use thereof
JP6483148B2 (ja) 2014-03-14 2019-03-13 エアーピオ セラピューティクス インコーポレイテッド HPTP−β阻害剤
WO2015172196A1 (en) 2014-05-13 2015-11-19 Monash University Heterocyclic compounds and use of same
JP2016037468A (ja) 2014-08-07 2016-03-22 味の素株式会社 スルホンアミド誘導体及びその医薬用途
JP2016037467A (ja) 2014-08-07 2016-03-22 味の素株式会社 スルホンアミド誘導体及びその医薬用途
SG10201901192TA (en) 2014-09-10 2019-03-28 Epizyme Inc Smyd inhibitors
CA2961311C (en) 2014-09-29 2022-12-06 Ea Pharma Co., Ltd. Pharmaceutical composition for treating ulcerative colitis
US10383842B2 (en) 2015-02-13 2019-08-20 Global Biolife Inc. Method and composition for preventing and treating viral infections
US10214522B2 (en) 2015-03-10 2019-02-26 The Regents Of The University Of California Anti-alphavbeta1 integrin inhibitors and methods of use
MA42016A1 (fr) 2015-07-08 2018-03-30 Axerovision Inc Compositions pharmaceutiques contenant un antagoniste de l'intégrine alpha 4, utilisées pour le traitement d''affections inflammatoires oculaires
CA3234750A1 (en) 2015-10-23 2017-04-27 Navitor Pharmaceuticals, Inc. Modulators of sestrin-gator2 interaction and uses thereof
CN105483206B (zh) 2016-01-06 2019-09-13 北京汉氏联合生物技术股份有限公司 一种用vcam-1检测msc促内皮细胞增殖能力的方法
JP6809713B2 (ja) 2016-01-20 2021-01-06 国立大学法人 岡山大学 炎症性腸疾患抑制剤
CN106995439B (zh) 2016-01-26 2019-09-20 镇江圣安医药有限公司 氘取代3-(甲磺酰基)-l-苯丙氨酸衍生物及其药物组合物、药物制剂和用途
US20180369330A1 (en) 2016-01-29 2018-12-27 La Jolla Institute For Allergy And Immunology Methods and compositions using integrin-based therapeutics
TW201731824A (zh) 2016-02-05 2017-09-16 Ea Pharma Co Ltd α4β7整合蛋白抑制劑
KR20180104758A (ko) 2016-02-05 2018-09-21 이에이 파마 가부시키가이샤 설폰아미드 유도체 및 이를 함유하는 의약 조성물
EP3509590A4 (en) 2016-09-07 2020-12-02 Pliant Therapeutics, Inc. N-ACYL AMINO ACID COMPOUNDS AND METHOD OF USING
KR20190063473A (ko) 2016-09-28 2019-06-07 블레이드 테라퓨틱스, 인크. 칼페인 조정자 및 그 치료학적 용도
WO2018085574A2 (en) 2016-11-02 2018-05-11 Washington University Compositions comprising an integrin inhibitor and agents which interact with a chemokine and methods of use thereof
WO2018085552A1 (en) 2016-11-02 2018-05-11 Saint Louis University Integrin antagonists
EA201991124A1 (ru) 2016-11-08 2019-10-31 ПИРРОЛЬНЫЕ АМИДЫ В КАЧЕСТВЕ ИНГИБИТОРОВ ИНТЕГРИНОВ αV
KR102510858B1 (ko) 2016-11-08 2023-03-15 브리스톨-마이어스 스큅 컴퍼니 알파 v 인테그린 억제제로서의 아졸 아미드 및 아민
WO2018089355A1 (en) 2016-11-08 2018-05-17 Bristol-Myers Squibb Company Cyclobutane- and azetidine-containing mono and spirocyclic compounds as alpha v integrin inhibitors
EA038164B1 (ru) 2016-11-08 2021-07-16 Бристол-Маерс Сквибб Компани 3-замещенные пропановые кислоты в качестве ингибиторов интегрина v
US10745384B2 (en) 2016-11-08 2020-08-18 Bristol-Myers Squibb Company Indazole derivatives as αv integrin antagonists
WO2018160522A1 (en) 2017-02-28 2018-09-07 Lazuli, Inc. Inhibitors of (alpha-v)(beta-6) integrin
CA3054604A1 (en) 2017-02-28 2018-09-07 Morphic Therapeutic, Inc. Inhibitors of .alpha.v.beta.6 integrin
CN116370448A (zh) 2017-04-26 2023-07-04 纳维托制药有限公司 Sestrin-gator2相互作用的调节剂及其用途
US10246451B2 (en) 2017-04-26 2019-04-02 Aviara Pharmaceuticals, Inc. Propionic acid derivatives and methods of use thereof
US10875875B2 (en) 2017-04-26 2020-12-29 Aviara Pharmaceuticals, Inc. Propionic acid derivatives and methods of use thereof
JP2019031449A (ja) 2017-08-04 2019-02-28 Eaファーマ株式会社 スルホンアミド誘導体及びそれを含有する医薬組成物
CN109721605B (zh) 2017-10-31 2022-03-11 维眸生物科技(上海)有限公司 一种免疫细胞迁徙抑制剂
AU2018365793A1 (en) 2017-11-07 2020-06-18 Bristol-Myers Squibb Company Pyrrolopyrazine derivatives as alpha V integrin inhibitors
JOP20200212A1 (ar) 2018-03-07 2020-09-01 Pliant Therapeutics Inc مركبات حمض أميني وطرق استخدامها
EP3765005A4 (en) 2018-03-13 2022-02-23 The Regents of the University of California INHIBITORS OF INTEGRIN ALPHA 2 BETA 1 AND METHOD OF USE
AR114489A1 (es) 2018-04-12 2020-09-09 Morphic Therapeutic Inc ANTAGONISTAS DE LA INTEGRINA a4b7 HUMANA
US20230033021A1 (en) 2018-06-20 2023-02-02 Progenity, Inc. Treatment of a disease of the gastrointestinal tract with an integrin inhibitor
US11685717B2 (en) 2018-08-08 2023-06-27 The General Hospital Corporation Polypeptide integrin antagonists
HUE051802T2 (hu) 2018-08-17 2021-03-29 Oxurion NV Integrin antagonisták
TW202035400A (zh) 2018-08-29 2020-10-01 美商莫菲克醫療股份有限公司 抑制αvβ6整合素
EP3843727A4 (en) 2018-08-29 2022-08-17 Morphic Therapeutic, Inc. INTEGRIN (ALPHA-V)(BETA-6) INHIBITORS
EP3843728A4 (en) 2018-08-29 2022-05-25 Morphic Therapeutic, Inc. INHIBITORS OF (ALPHA-V)(BETA-6) INTEGRIN
AU2019373245C1 (en) 2018-10-30 2022-10-27 Gilead Sciences, Inc. Compounds for inhibition of alpha 4β7 integrin
KR20240015737A (ko) 2018-10-30 2024-02-05 길리애드 사이언시즈, 인코포레이티드 알파4베타7 인테그린 억제제로서의 퀴놀린 유도체
WO2020092394A1 (en) 2018-10-30 2020-05-07 Gilead Sciences, Inc. Imidazopyridine derivatives as alpha4beta7 integrin inhibitors
CA3115820A1 (en) 2018-10-30 2020-05-07 Gilead Sciences, Inc. Compounds for inhibition of .alpha.4.beta.7 integrin
US11578069B2 (en) 2019-08-14 2023-02-14 Gilead Sciences, Inc. Compounds for inhibition of α4 β7 integrin
JP7437495B2 (ja) 2019-10-16 2024-02-22 モーフィック セラピューティック,インコーポレイテッド ヒトインテグリンα4β7の阻害

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210087480A (ko) * 2018-10-30 2021-07-12 길리애드 사이언시즈, 인코포레이티드 알파4베타7 인테그린 억제제로서의 이미다조피리딘 유도체
KR102641718B1 (ko) 2018-10-30 2024-02-29 길리애드 사이언시즈, 인코포레이티드 알파4베타7 인테그린 억제제로서의 이미다조피리딘 유도체
US12053462B2 (en) 2018-10-30 2024-08-06 Gilead Sciences, Inc. Quinoline derivatives
US11578069B2 (en) 2019-08-14 2023-02-14 Gilead Sciences, Inc. Compounds for inhibition of α4 β7 integrin

Also Published As

Publication number Publication date
US11116760B2 (en) 2021-09-14
CN112969687B (zh) 2024-08-23
CN112969687A (zh) 2021-06-15
CA3116769C (en) 2023-08-22
PE20211866A1 (es) 2021-09-21
MX2021005050A (es) 2021-06-15
IL282545A (en) 2021-06-30
KR20210087961A (ko) 2021-07-13
EP3873884A1 (en) 2021-09-08
DOP2021000077A (es) 2021-06-15
BR112021007213A2 (pt) 2021-08-10
PH12021550825A1 (en) 2021-10-04
AU2019373240A1 (en) 2021-05-13
AU2023204712A1 (en) 2023-08-10
CO2021005532A2 (es) 2021-05-10
WO2020092375A1 (en) 2020-05-07
CR20210213A (es) 2021-06-24
MX2024009886A (es) 2024-08-22
SG11202103484RA (en) 2021-05-28
AU2019373240B2 (en) 2023-04-20
CA3116769A1 (en) 2020-05-07
US20230041518A1 (en) 2023-02-09
UA127769C2 (uk) 2023-12-27
JP2023016976A (ja) 2023-02-02
TW202033492A (zh) 2020-09-16
CL2021001098A1 (es) 2021-11-26
DOP2024000039A (es) 2024-04-15
TWI734240B (zh) 2021-07-21
CL2023001369A1 (es) 2023-12-15
JP2022509507A (ja) 2022-01-20
TWI843952B (zh) 2024-06-01
US12053462B2 (en) 2024-08-06
US20200155538A1 (en) 2020-05-21
JP7192139B2 (ja) 2022-12-19
JP7520945B2 (ja) 2024-07-23
TW202138353A (zh) 2021-10-16
KR102630416B1 (ko) 2024-02-01
KR20240015737A (ko) 2024-02-05

Similar Documents

Publication Publication Date Title
US12053462B2 (en) Quinoline derivatives
US11174256B2 (en) Imidazopyridine derivatives
US11179383B2 (en) Compounds for inhibition of α4β7 integrin
US11224600B2 (en) Compounds for inhibition of alpha 4 beta 7 integrin
US11578069B2 (en) Compounds for inhibition of α4 β7 integrin
JP2024147644A (ja) α4β7インテグリン阻害剤としてのキノリン誘導体
EA045366B1 (ru) ПРОИЗВОДНЫЕ ХИНОЛИНА В КАЧЕСТВЕ ИНГИБИТОРОВ ИНТЕГРИНА α4β7

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: GILEAD SCIENCES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLOMGREN, PETER A.;CAMPBELL, TARYN L.;CHANDRASEKHAR, JAYARAMAN;AND OTHERS;SIGNING DATES FROM 20190925 TO 20191010;REEL/FRAME:060029/0378

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION