US20170225234A1 - A preparation method of rare earth oxide dispersion strengthened fine grain tungsten materials - Google Patents

A preparation method of rare earth oxide dispersion strengthened fine grain tungsten materials Download PDF

Info

Publication number
US20170225234A1
US20170225234A1 US14/901,780 US201414901780A US2017225234A1 US 20170225234 A1 US20170225234 A1 US 20170225234A1 US 201414901780 A US201414901780 A US 201414901780A US 2017225234 A1 US2017225234 A1 US 2017225234A1
Authority
US
United States
Prior art keywords
rare earth
tungsten
earth oxide
dispersion strengthened
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/901,780
Other languages
English (en)
Inventor
Jinglian Fan
Yong Han
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Publication of US20170225234A1 publication Critical patent/US20170225234A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1026Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline

Definitions

  • the invention relates to field of nanomaterials and powder metallurgy field, especially a preparation method of rare earth oxide dispersion strengthened fine grain tungsten materials by nano-composite technology.
  • Tungsten has characteristics such as high melting point, high hardness, good high temperature strength, thermal conductivity, electrical conductivity, low thermal expansion coefficient low sputtering and plasma effect, does not react with H, low H + retention, is a very important high temperature structural materials and functional materials and is widely used as a plasma facing material and divertor component material in the nuclear fusion field.
  • pure tungsten material is a widely used, typical high temperature materials.
  • tungsten grain size is about 100 microns
  • the ductile to brittle transition temperature (DBTT) is about 300 ⁇ 350 ⁇
  • the recrystallization temperature is of 1300 ⁇ 1350 ⁇
  • room temperature tensile strength is more than 500 MPa
  • high temperature tensile strength at 1000 ⁇ is about 400 MPa.
  • this material exists defects such as coarse grain, fiber microstructure, high DBTT, low recrystallization temperature, high brittleness.
  • the present invention adopts the heterogeneous precipitation—spray drying—calcining—thermal reduction—conventional sintering technology to prepare high performance rare-earth oxide dispersion strengthened fine grain tungsten materials, its density is close to full density (98.5% or higher), and the rare earth oxides particles evenly distribute in tungsten intracrystalline or grain boundary, its grain size is uniform and very fine (average in about 10 microns or less), with good room temperature and high temperature performance as well as high thermal loading shock resistance.
  • a rare earth oxide dispersion strengthened fine grain tungsten material its character is that includes: rare earth oxides referred to any one or more of Y 2 O 3 , La 2 O 3 , or in CeO 2 , the mass percent of the rare earth oxide is of 0.1 ⁇ 2%, and the rest ingredient is W.
  • The-mass percent of the rare earth oxide is of 0.1 ⁇ 2%, and the rest ingredient is W.
  • the coprecipitation coating particle colloidal is spray-dried at 350 ⁇ 450 ⁇ forming tungsten and rare earth oxide compound precursor powder, which is then calcined at 300 ⁇ 600 ⁇ for 1 ⁇ 4 h. After deaggregation and sieving, the calcined powder is hydrogen reduced at 600 ⁇ 850° C. for 2 ⁇ 6 h, ultrafine or nanoscale tungsten powder with particle size of 50 ⁇ 500 nm is obtained.
  • Rare earth oxides referred to any one or more of Y 2 O 2 , La 2 O 3 , or in CeO 2 ;
  • the ultrafine/nanoscale tungsten powder containing trace rare earth oxide prepared in step (1) is compression molded under 150 ⁇ 300 MPa using mold pressing or cold isostatic pressing;
  • the described tungstate is ammonium metatungstate, ammonium paratungstate or ammonium tungstate.
  • the described rare earth salts are nitrate, oxalate, carbonate, chloride or sulfate of Y, La or Ce.
  • the described stirring speed is 1000 ⁇ 5000 revolutions per minute.
  • the described spray drying nozzle rotating speed is 20000 ⁇ 30000 revolutions per minute.
  • reaction dispersant are stearic acid, polyethylene glycol (PEG), area, N, N-dimethyl formamide, OP emulsifier, twain-20 or sodium dodecyl sulfate, the mass fraction of reaction dispersant is of 0.1 ⁇ 1.5% of rare earth salt solution or tungstate solution.
  • the described acid is hydrochloric acid (HCl), nitric acid (HNO 3 ) or oxalic acid (H 2 C 2 O 4 ), the described alkali is sodium hydroxide (NaOH), potassium hydroxide (KOH), or aqueous ammonia (NH 3 ⁇ H 2 O).
  • heterogeneous precipitation—spray drying” adding rare earth oxide in tungsten matrix improves the compatibility of tungsten and rare earth oxides particles surface, spray drying achieves the uniformity of composition, microstructure in powder and alloy, so rare earth elements in tungsten matrix distribute more uniform, and do not introduce impurities.
  • ultrafine tungsten composite powder containing trace rare earth oxides prepared by “heterogeneous precipitation—spray drying—calcining—hydrogen reduction” method has much higher sintering activity;
  • the powder of this invention can reach more than 98.5% density sintered at 1800 ⁇ 2000 ⁇ by conventional sintering, grain size for sintered body is about 5 ⁇ 10 microns, and microstructure more evenly, excellent toughness at room temperature and high temperature.
  • the invention adopts the conventional sintering method preparation of rare earth oxide dispersion strengthened fine grain tungsten materials, the technological process is simple and suitable for engineering preparation.
  • the coprecipitated coating particle colloidal is spray-dried at 360 ⁇ , spray drying nozzle rotating speed is 20000 revolutions per minute, forming tungsten and rare earth oxide compound precursor powder,
  • the precursor powder is then calcined at 350 ⁇ for 2 h. After desegregation and sieving, the calcined powder is hydrogen reduced at 780° C. for 4 h, ultrafine tungsten powder containing 0.1 wt % Y 2 O 3 is obtained.
  • the ultrafine tungsten powder containing trace rare earth oxide is compression molded using mold pressing.
  • the pressing molded compaction is subjected to pre-sintering and then high temperature sintered at 1950 ⁇ for 2 h and W-0.1 wt %Y 2 O 3 material is obtained, its density is above 99.2%, its microstructure is uniform and very fine, average grain size is less than 10 microns.
  • This materials can bear 200 MW/m 2 high heat flux loading without surface crack appearing.
  • the coprecipitated coating particle colloidal is spray-dried at 400 ⁇ , spray drying nozzle rotating speed is 20000 revolutions per minute, forming tungsten and rare earth lanthanum oxide compound precursor powder.
  • the precursor powder is then calcined at 350 ⁇ for 2 h. After deaggregation and sieving, the calcined powder is hydrogen reduced at 780° C. for 4 h, ultrafine tungsten powder containing 0.3 wt % La 2 O 3 is obtained.
  • the ultrafine tungsten powder containing trace rare earth lanthanum oxide is compression molded using mold pressing.
  • the pressing molded compaction is subjected to pre-sintering and then high temperature sintered at 1950 ⁇ for 2 h and W-0.3 wt % La 2 O 3 material is obtained, its density is above 99.1%, its microstructure is uniform and very fine, average grain size is less than 8 microns.
  • This materials can bear 200 MW/m 2 high heat flux loading without surface crack appearing.
  • the coprecipitated coating particle colloidal is spray-dried at 400 ⁇ , spray drying nozzle rotating speed is 25000 revolutions per minute, forming tungsten and rare earth cerium oxide compound precursor powder.
  • the precursor powder is then calcined at 400 ⁇ for 2 h. After deaggregation and sieving, the calcined powder is two-step hydrogen reduced at 600 ⁇ for 2 h subsequent with 800 ⁇ for 2 h, ultrafine tungsten powder containing 0.5 wt % CeO 2 is obtained.
  • the ultrafine tungsten powder containing trace rare earth cerium oxide is compression molded using cold isostatic pressing.
  • the pressing molded compaction is subjected to pre-sintering and then high temperature sintered at 1950 ⁇ for 4 h and W-0.5 wt % CeO 2 material is obtained, its density is above 99.3%, its microstructure is uniform and very fine, average grain size is less than 8 microns.
  • This materials can bear 200 MW/m 2 high heat flux loading without surface crack appearing.
  • the coprecipitated coating particle colloidal is spray-dried at 450 ⁇ , spray drying nozzle rotating speed is 25000 revolutions per minute, forming tungsten and rare earth yttrium and lanthanum oxide compound precursor powder.
  • the precursor powder is then calcined at 400 ⁇ for 3 h. After disaggregation and sieving, the calcined powder is hydrogen reduced at 800 ⁇ for 3 h, ultrafine tungsten powder containing 0.3 wt % Y 2 O 3 +0.3 wt % La 2 O 3 is obtained.
  • the ultrafine tungsten powder containing trace rare earth yttrium and lanthanum oxide is compression molded using mold pressing.
  • the pressing molded compaction is subjected to pre-sintering at 1000 ⁇ for 2 h and then high temperature sintered at 1920 ⁇ for 3 h and W-0.3 wt % Y 2 +3.0 wt % La 2 O 3 material is obtained, its density is above 99.4%, its microstructure is uniform and very fine, average grain size is less than 6 microns. This materials can bear 300 MW/m 2 high heat flux loading without surface crack appearing.
  • the coprecipitated coating particle colloidal is spray-dried at 450 ⁇ , spray drying nozzle rotating speed is 30000 revolutions per minute, forming tungsten and rare earth yttrium+lanthanum+cerium oxide compound precursor powder.
  • the precursor powder is then calcined at 500 ⁇ for 3 h. After deaggregation and sieving, the calcined powder is two-step hydrogen reduced at 600 ⁇ for 2 h subsequent with 800 ⁇ for 4 h, ultrafine tungsten powder containing 0.3 wt % Y 2 O 3 -0.3 wt %La 2 O 3 0.3 wt %CeO 2 is obtained.
  • the ultrafine tungsten powder containing trace rare earth yttrium and lanthanum oxide is compression molded using mold pressing.
  • the pressing molded compaction is subjected to pre-sintering and then high temperature sintered at 1950 ⁇ for 4 h and W-0.3 wt %Y 2 O 3 -0.3 wt %La 2 O 3 -0.3 wt %CeO 2 material is obtained, its density is above 99.1%, its microstructure is uniform and very fine, average grain size is less than 5 microns.
  • This materials can bear 300 MW/m 2 high heat flux loading without surface crack appearing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Coating By Spraying Or Casting (AREA)
US14/901,780 2014-10-20 2014-10-20 A preparation method of rare earth oxide dispersion strengthened fine grain tungsten materials Abandoned US20170225234A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088882 WO2016061721A1 (zh) 2014-10-20 2014-10-20 一种稀土氧化物弥散强化细晶钨材料的制备方法

Publications (1)

Publication Number Publication Date
US20170225234A1 true US20170225234A1 (en) 2017-08-10

Family

ID=55724979

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/901,780 Abandoned US20170225234A1 (en) 2014-10-20 2014-10-20 A preparation method of rare earth oxide dispersion strengthened fine grain tungsten materials

Country Status (3)

Country Link
US (1) US20170225234A1 (zh)
CN (1) CN105518169B (zh)
WO (1) WO2016061721A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110407254A (zh) * 2018-04-26 2019-11-05 南昌大学 一种含钇的仲钨酸铵复合粉末的制备方法
CN111644632A (zh) * 2020-04-20 2020-09-11 淮北师范大学 一种掺杂稀土氧化镧的tzm合金的制备方法
CN111922330A (zh) * 2020-06-17 2020-11-13 广东省材料与加工研究所 一种用于激光增材制造钨制品的金属钨粉和钨制品及其制备方法
CN112222420A (zh) * 2020-12-07 2021-01-15 西安稀有金属材料研究院有限公司 一种掺杂金属氧化物纳米颗粒的纳米钨粉及其制备方法
US10906105B2 (en) 2018-04-20 2021-02-02 Raytheon Technologies Corporation Uniformly controlled nanoscale oxide dispersion strengthened alloys
CN112570724A (zh) * 2020-12-11 2021-03-30 江西理工大学 一种稀土钨铜复合粉的制备方法
CN112846173A (zh) * 2021-02-08 2021-05-28 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法
CN112872363A (zh) * 2021-01-12 2021-06-01 江西理工大学 一种稀土钴镍复合粉的制备方法
CN113102747A (zh) * 2020-01-13 2021-07-13 天津大学 一种在增材制造用金属粉末中掺杂稀土氧化物的制备方法
CN113106279A (zh) * 2021-03-01 2021-07-13 北京工业大学 一种多元掺杂氧化物弥散强化钨基合金及其制备方法与应用
CN113798504A (zh) * 2021-09-17 2021-12-17 郑州大学 3d打印用稀土氧化物弥散增强钨粉的制备方法
CN114231813A (zh) * 2021-01-20 2022-03-25 厦门虹鹭钨钼工业有限公司 一种合金线材及其制备方法与应用
CN114752801A (zh) * 2022-05-12 2022-07-15 崇义章源钨业股份有限公司 一种板状晶强化网状结构硬质合金及其制备方法
CN114951639A (zh) * 2022-05-10 2022-08-30 厦门虹鹭钨钼工业有限公司 一种高密度细晶结构钼合金顶头及其制备方法
CN114990374A (zh) * 2022-06-08 2022-09-02 合肥工业大学 一种稀土氧化物颗粒增强钨钒固溶合金及其制备方法
US20220411901A1 (en) * 2021-06-29 2022-12-29 General Electric Company Oxide dispersion strengthened refractory based alloy
CN115533112A (zh) * 2022-10-17 2022-12-30 北京工业大学 一种复合稀土钨/钼酸盐共晶细化难熔金属的方法
US20230101137A1 (en) * 2021-09-30 2023-03-30 Chongqing Institute Of Green And Intelligent Technology, Chinese Academy Of Sciences Nano-lanthanum oxide reinforced tungsten-based composite material and preparation method thereof
CN115992329A (zh) * 2023-03-22 2023-04-21 中钨稀有金属新材料(湖南)有限公司 一种钨棒坯及其应用
CN116119719A (zh) * 2023-04-18 2023-05-16 崇义章源钨业股份有限公司 一种超细板状氧化钨及其制备方法
CN116904821A (zh) * 2023-07-24 2023-10-20 湖南金博高新科技产业集团有限公司 一种含二元稀土复合氧化物的钨丝基材及其制备方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106564927B (zh) * 2016-11-04 2017-12-08 天津大学 超细氧化钇掺杂钨复合前驱体粉末的制备方法
CN107052356B (zh) * 2017-01-18 2019-01-15 天津大学 一种核壳结构的钨-氧化钇超细复合前驱体粉末的制备方法
CN107190195A (zh) * 2017-05-04 2017-09-22 鹤山市沃得钨钼实业有限公司 一种稀土钨合金坩埚及其制造方法
CN107227423A (zh) * 2017-06-12 2017-10-03 合肥工业大学 一种具有优异高温力学性能的钨‑氧化钇复合材料及其制备方法
CN107322002B (zh) * 2017-06-28 2020-01-17 合肥工业大学 一种稀土氧化物掺杂钨基复合粉体及其制备方法
CN107326240A (zh) * 2017-07-07 2017-11-07 合肥工业大学 一种超细晶TiC和Y2O3掺杂W基复合材料及其制备方法
CN109022883A (zh) * 2018-08-17 2018-12-18 佛山皖和新能源科技有限公司 一种风力发电机用合金材料的制备方法
CN109095471A (zh) * 2018-10-29 2018-12-28 合肥工业大学 一种具有核壳结构的wc包覆稀土氧化物无粘结相硬质合金的制备方法
US11673196B2 (en) 2018-12-24 2023-06-13 University Of Science And Technology Beijing Metal material sintering densification and grain size control method
CN109676124B (zh) * 2018-12-24 2020-02-28 北京科技大学 一种金属材料的烧结致密化及晶粒尺寸控制方法
CN109972018B (zh) * 2019-05-10 2020-07-07 赣州有色冶金研究所 一种WC-Co-RE复合粉及其制备方法与应用
CN110270692B (zh) * 2019-06-10 2020-08-25 北京科技大学 一种钨/稀土金属氧化物复合空心球形粉体的制备方法
CN111041318A (zh) * 2019-12-28 2020-04-21 泰州市华诚钨钼制品有限公司 一种钨铜合金及其制备方法
CN111547768A (zh) * 2020-04-26 2020-08-18 金堆城钼业股份有限公司 一种纳米掺杂制备稀土二钼酸铵的制备方法
CN111893339A (zh) * 2020-08-06 2020-11-06 合肥工业大学 一种湿化学法制备高性能WC-8Co-Y2O3硬质合金的方法
CN112030026B (zh) * 2020-08-31 2021-10-15 合肥工业大学 一种高硬度、高致密度复合稀土氧化物掺杂钨基复合材料的制备方法
CN112251622B (zh) * 2020-09-17 2022-03-18 洛阳科威钨钼有限公司 一种稀土掺杂冶炼金属用搅拌器的生产方法
CN112941386B (zh) * 2021-01-27 2022-10-14 北京控制工程研究所 一种用于磁等离子体动力推力器的阴极
CN113070482A (zh) * 2021-03-22 2021-07-06 中南大学 一种氧化物弥散强化铜基复合材料的制备方法
CN114480903B (zh) * 2022-01-26 2023-04-14 中南大学 一种高抗He等离子体辐照超细晶W-Y2O3复合材料及制备方法
CN114959338A (zh) * 2022-05-16 2022-08-30 北京科技大学 一种机械合金化制备高强度高塑性钨合金的方法
CN114959339A (zh) * 2022-05-16 2022-08-30 北京科技大学 一种湿化学法制备高强度高塑性钨合金的方法
CN114951675B (zh) * 2022-05-30 2024-01-30 中国科学院合肥物质科学研究院 一种超细钨-钽纳米晶合金粉体及其制备方法
CN115229181B (zh) * 2022-09-23 2022-12-09 西安稀有金属材料研究院有限公司 基于纳米级固液混合沉积制备超细二氧化钼和钼粉的方法
CN115415530B (zh) * 2022-10-13 2023-10-24 崇义章源钨业股份有限公司 一种含稀土的硬质合金及其制备方法
CN115555572B (zh) * 2022-10-25 2024-08-09 北京科技大学 一种采用粉末冶金法制备含稀土元素高强铝合金的方法
CN115418616B (zh) * 2022-11-04 2023-02-10 广州市尤特新材料有限公司 一种电控变色玻璃用钨合金靶材及其制备方法
CN116253852B (zh) * 2022-12-22 2024-05-03 苏州羽燕特种材料科技有限公司 一种改性热塑性聚氨酯弹性体的制备方法
CN116103532B (zh) * 2023-02-28 2024-01-23 南昌大学 一种微量稀土氧化物强化无氧铜材及其制备方法
CN115976388B (zh) * 2023-03-21 2023-07-04 新乡市东津机械有限公司 一种硬质合金、捣镐、磨耗板及其制造工艺
CN116275047A (zh) * 2023-03-22 2023-06-23 中钨稀有金属新材料(湖南)有限公司 一种含钇钨棒坯及其制备方法与应用
CN116275048A (zh) * 2023-03-22 2023-06-23 中钨稀有金属新材料(湖南)有限公司 一种含镧钨棒坯及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020002879A1 (en) * 2000-07-08 2002-01-10 Hong Soon Hyung Process for making oxide dispersion-strengthened tungsten heavy alloy by mechanical alloying

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3835328C1 (zh) * 1988-10-17 1989-12-14 Gesellschaft Fuer Wolfram-Industrie Mbh, 8220 Traunstein, De
JP4659278B2 (ja) * 2001-06-18 2011-03-30 株式会社アライドマテリアル タングステン焼結体およびその製造方法並びにタングステン板材およびその製造方法
JP4189723B2 (ja) * 2002-08-26 2008-12-03 三菱マテリアルシ−エムアイ株式会社 高精度光学ガラスレンズの熱間プレス成形に用いるのに適したタングステン基焼結合金金型
CN1287947C (zh) * 2004-09-30 2006-12-06 北京工业大学 高含量多元复合稀土钨电极材料及其制备方法
CN100582267C (zh) * 2008-02-22 2010-01-20 中南大学 一种含稀土的细晶W-Ni-Fe合金的制备方法
CN101805867B (zh) * 2009-12-01 2012-11-21 中南大学 Si3N4基金属陶瓷及其制备方法
CN103173641B (zh) * 2013-04-10 2015-04-08 北京科技大学 一种纳米氧化钇弥散强化钨合金的制备方法
CN103740994B (zh) * 2014-02-10 2015-09-02 中国科学院合肥物质科学研究院 纳米结构钨合金及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020002879A1 (en) * 2000-07-08 2002-01-10 Hong Soon Hyung Process for making oxide dispersion-strengthened tungsten heavy alloy by mechanical alloying

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906105B2 (en) 2018-04-20 2021-02-02 Raytheon Technologies Corporation Uniformly controlled nanoscale oxide dispersion strengthened alloys
CN110407254A (zh) * 2018-04-26 2019-11-05 南昌大学 一种含钇的仲钨酸铵复合粉末的制备方法
CN113102747A (zh) * 2020-01-13 2021-07-13 天津大学 一种在增材制造用金属粉末中掺杂稀土氧化物的制备方法
CN111644632A (zh) * 2020-04-20 2020-09-11 淮北师范大学 一种掺杂稀土氧化镧的tzm合金的制备方法
CN111922330A (zh) * 2020-06-17 2020-11-13 广东省材料与加工研究所 一种用于激光增材制造钨制品的金属钨粉和钨制品及其制备方法
CN112222420A (zh) * 2020-12-07 2021-01-15 西安稀有金属材料研究院有限公司 一种掺杂金属氧化物纳米颗粒的纳米钨粉及其制备方法
CN112570724A (zh) * 2020-12-11 2021-03-30 江西理工大学 一种稀土钨铜复合粉的制备方法
CN112872363A (zh) * 2021-01-12 2021-06-01 江西理工大学 一种稀土钴镍复合粉的制备方法
CN114231813A (zh) * 2021-01-20 2022-03-25 厦门虹鹭钨钼工业有限公司 一种合金线材及其制备方法与应用
CN112846173A (zh) * 2021-02-08 2021-05-28 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法
CN113106279A (zh) * 2021-03-01 2021-07-13 北京工业大学 一种多元掺杂氧化物弥散强化钨基合金及其制备方法与应用
US20220411901A1 (en) * 2021-06-29 2022-12-29 General Electric Company Oxide dispersion strengthened refractory based alloy
CN113798504A (zh) * 2021-09-17 2021-12-17 郑州大学 3d打印用稀土氧化物弥散增强钨粉的制备方法
US20230101137A1 (en) * 2021-09-30 2023-03-30 Chongqing Institute Of Green And Intelligent Technology, Chinese Academy Of Sciences Nano-lanthanum oxide reinforced tungsten-based composite material and preparation method thereof
US11718896B2 (en) * 2021-09-30 2023-08-08 Chongqing Institute Of Green And Intelligent Technology, Chinese Academy Of Sciences Nano-lanthanum oxide reinforced tungsten-based composite material and preparation method thereof
CN114951639A (zh) * 2022-05-10 2022-08-30 厦门虹鹭钨钼工业有限公司 一种高密度细晶结构钼合金顶头及其制备方法
CN114752801A (zh) * 2022-05-12 2022-07-15 崇义章源钨业股份有限公司 一种板状晶强化网状结构硬质合金及其制备方法
CN114990374A (zh) * 2022-06-08 2022-09-02 合肥工业大学 一种稀土氧化物颗粒增强钨钒固溶合金及其制备方法
CN115533112A (zh) * 2022-10-17 2022-12-30 北京工业大学 一种复合稀土钨/钼酸盐共晶细化难熔金属的方法
CN115992329A (zh) * 2023-03-22 2023-04-21 中钨稀有金属新材料(湖南)有限公司 一种钨棒坯及其应用
CN116119719A (zh) * 2023-04-18 2023-05-16 崇义章源钨业股份有限公司 一种超细板状氧化钨及其制备方法
CN116904821A (zh) * 2023-07-24 2023-10-20 湖南金博高新科技产业集团有限公司 一种含二元稀土复合氧化物的钨丝基材及其制备方法

Also Published As

Publication number Publication date
WO2016061721A1 (zh) 2016-04-28
CN105518169B (zh) 2017-09-12
CN105518169A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
US20170225234A1 (en) A preparation method of rare earth oxide dispersion strengthened fine grain tungsten materials
CN104630532B (zh) 一种碳化物和稀土氧化物复合强化细晶钨材料的制备方法
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN100582267C (zh) 一种含稀土的细晶W-Ni-Fe合金的制备方法
CN110560700B (zh) 一种制备高致密度超细晶稀土氧化物掺杂钨合金的方法
CN102732743B (zh) 一种高铜含量W-Cu复合材料及其制备方法
CN110093548B (zh) 一种含稀土Gd的超细晶高强韧高熵合金及其制备方法
CN110512107B (zh) 一种微量元素和稀土氧化物复合强化钨基复合材料的制备方法
CN101698919B (zh) 颗粒增强钼基复合材料及其制备方法
CN105385871A (zh) 一种多元纳米复合强化耐热铝基复合材料的制备方法
CN107099716B (zh) 界面强化钼合金及其制备方法
CN106564927A (zh) 超细氧化钇掺杂钨复合前驱体粉末的制备方法
CN102350508B (zh) 一种掺杂钨基复合粉体的制备方法
CN108772569B (zh) 一种超细纳米钨粉的水热制备方法
CN104451226B (zh) 一种微纳复合细晶钨材料的制备方法
CN109585113A (zh) 一种烧结钕铁硼磁体的制备方法
CN102690965A (zh) 一种耐磨钼合金的制备方法
CN111020333B (zh) 一种细化氧化钇弥散强化钨基合金中晶界处氧化钇尺寸的方法
CN111206164A (zh) 一种高性能超细晶钼镧合金的制备方法
CN108788173A (zh) 一种超细氧化钇掺杂钨复合粉末的水热制备方法
CN106001545A (zh) 一种纳米碳化物-钨复合粉末的制备方法
Zhang et al. Effects of various rare earth oxides on morphology and size of oxide dispersion strengthening (ODS)-W and ODS-Mo alloy powders
CN108356287B (zh) 一种催化凝胶制备钨弥散强化铜基复合材料的方法
CN107217171B (zh) 一种液液掺杂稀土氧化物铜基复合材料及其制备方法
CN105965026A (zh) 一种用溶胶-非均相沉淀-喷雾干燥制备纳米MeC-W粉末的方法

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION