US20170174521A1 - Graphite-based carbon material useful as graphene precursor, as well as method of producing the same - Google Patents

Graphite-based carbon material useful as graphene precursor, as well as method of producing the same Download PDF

Info

Publication number
US20170174521A1
US20170174521A1 US14/651,630 US201514651630A US2017174521A1 US 20170174521 A1 US20170174521 A1 US 20170174521A1 US 201514651630 A US201514651630 A US 201514651630A US 2017174521 A1 US2017174521 A1 US 2017174521A1
Authority
US
United States
Prior art keywords
graphene
graphite
carbon material
based carbon
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/651,630
Other languages
English (en)
Inventor
Shoji Hasegawa
Nagisa Kamiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graphene Platform Corp
Original Assignee
Graphene Platform Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52823288&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20170174521(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Graphene Platform Corp filed Critical Graphene Platform Corp
Assigned to GRAPHENE PLATFORM CORPORATION reassignment GRAPHENE PLATFORM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HASEGAWA, SHOJI, KAMIYA, NAGISA
Priority to US14/863,233 priority Critical patent/US9598593B2/en
Priority to US14/973,071 priority patent/US9428393B2/en
Priority to US14/973,100 priority patent/US9587134B2/en
Publication of US20170174521A1 publication Critical patent/US20170174521A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • C01B31/0469
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • C01B31/04
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • C04B14/024Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/46Graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/401Fatty vegetable or animal oils used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a graphite-based carbon material useful as a graphene precursor which makes it possible to obtain graphene by a simple method, as well as a method of producing the same.
  • graphene is superior to other carbon materials in aspect of mass productivity, handleability, etc., as well as performance, and expectations have been placed on graphene in various fields.
  • NPL 1 Structural Change of Graphite with Griding; authors: Michio INAGAKI, Hisae MUGISHIMA, and Kenji HOSOKAWA; Feb. 1, 1973 (Received)
  • NPL 2 Changes of Probabilities P1, PABA, PABC with Heat Treatment of Carbons; authors: Tokiti NODA, Masaaki IWATSUKI, and Michio INAGAKI; Sep. 16, 1966 (Received)
  • NPL 4 Classification of solid carbon materials and their structural characteristics; Nagoya Institute of Technology; Shinji KAWASAKI
  • Patent Literature 2 even by subjecting natural graphite to an ultrasonic treatment for a long time, only weak parts of the surface are exfoliated, other large parts do not contribute to the exfoliation, and it is considered as a problem that the amount of exfoliated graphene is small.
  • an object of the invention is to provide a graphite-based carbon material useful as such a araphene precursor, as well as a method of producing the same.
  • the graphite-based carbon material useful as a graphene precursor of the invention is characterized by having a rhombohedral graphite layer (3R) and a hexagonal graphite layer (2H), wherein a Rate (3R) of the rhombohedral graphite layer (3R) and the hexagonal graphite layer (2H), based on an X-ray diffraction method, which is defined by following Equation 1 is 31% or more:
  • P3 is a peak intensity of a (101) plane of the rhombohedral graphite layer (3R) based on the X-ray diffraction method
  • P4 is a peak intensity of a (101) plane of the hexagonal graphite layer (2H) based on the X-ray diffraction method.
  • a graphite-based carbon material useful as a graphene precursor from which graphene is easily exfoliated when the graphite-based carbon material is useful as a precursor, and which makes it possible to disperse graphene at a high concentration or to a high degree can be obtained.
  • the graphite-based carbon material useful as a graphene precursor of the invention is characterized in that the Rate (3R) is 40% or more.
  • the Rate (3R) is 40% or more
  • a graphite-based carbon material useful as a graphene precursor from which graphene is more easily exfoliated compared with cases where the Rate (3R) is 31% or more and less than 40%, can easily be obtained.
  • the graphite-based carbon material useful as a graphene precursor of the invention is characterized in that the Rate (3R) is 50% or more.
  • a graphite-based carbon material useful as a graphene precursor from which graphene is more easily exfoliated compared with cases where the Rate (3R) is 40% or more and less than 50%, can easily be obtained.
  • the graphite-based carbon material useful as a graphene precursor of the invention is characterized in that an intensity ratio P1/P2 of the hexagonal graphite layer (2H) based on the X-ray diffraction method is 0.01 or more, wherein
  • P1 is a peak intensity of a (100) plane of the hexagonal graphite layer (2H) based on the X-ray diffraction method
  • P2 is a peak intensity of a (002) plane of the hexagonal graphite layer (2H) based on the X-ray diffraction method.
  • the intensity ratio P1/P2 of the hexagonal graphite layer (2H) is made 0.01 or more, the orientation disorder of crystal structure of carbon material will be higher, graphene is easily exfoliated, and the graphite-based carbon material can be made to more effectively function as the precursor.
  • the above-described graphite-based carbon material useful as a graphene precursor is characterized in that the graphite-based carbon material is produced by carrying out a radiowave-force-based treatment and a physical-force-based treatment in a vacuum or in the air.
  • a treatment based on a radiowave force by microwaves, millimeter waves, plasma, electromagnetic induction heating (IH), magnetic fields or the like, and a treatment based on a physical force by a ball mill, jet mill, centrifugal force, supercriticality or the like, to a natural graphite material in a vacuum or in the air a graphite-based carbon material including more rhombohedral graphite layers (3R) is obtained.
  • the treatments are carried out in a vacuum or in the air, aftertreatments are simple.
  • a method of producing a graphite-based carbon material useful as a graphene precursor of the invention is characterized by including: carrying out a radiowave-force-based treatment and a physical-force-based treatment to a natural graphite material in a vacuum or in the air.
  • a graphite-based carbon material useful as a graphene precursor which more easily separates into graphene, compared with use of either one of the treatments, can be obtained in a short time.
  • a method of producing a graphite-based carbon material useful as a graphene precursor of the invention is characterized in that the above-described natural graphite material has at least a hexagonal graphite layer (2H), and an intensity ratio P1/P2 of the hexagonal graphite layer (2H) based on the X-ray diffraction method is less than 0.01, wherein
  • P1 is a peak intensity of a (100) plane of the hexagonal graphite layer (2H) based on the X-ray diffraction method
  • P2 is a peak intensity of a (002) plane of the hexagonal graphite layer (2H) based on the X-ray diffraction method.
  • the carbon material can be produced from easily-available natural graphite of which the orientation disorder of crystal structure of carbon material is lower and general.
  • the graphite-based carbon material of the invention is characterized by having a rhombohedral graphite layer (3R) and a hexagonal graphite layer (2H), wherein a Rate (3R) of the rhombohedral graphite layer (3R) and the hexagonal graphite layer (2H), based on an X-ray diffraction method, which is defined by following Equation 1 is 31% or more:
  • P3 is a peak intensity of a (101) plane of the rhombohedral graphite layer (3R) based on the X-ray diffraction method
  • P4 is a peak intensity of a (101) plane of the hexagonal graphite layer (2H) based on the X-ray diffraction method.
  • a graphene dispersion is characterized in that the graphene dispersion is obtained by carrying out a radiowave-force-based treatment and a physical-force-based treatment to the above-described graphite-based carbon material useful as a graphene precursor in a liquid.
  • heat acts on the graphite-based carbon material due to the radiowave force by microwaves, millimeter waves, plasma, electromagnetic induction heating (IH), magnetic fields or the like, and a physical force further acts thereon by a ball mill, a jet mill, a centrifugal force, supercriticality or the like. Therefore, by combining the radiowave-force-based treatment and the physical-force-based treatment, a large amount of graphene is easily exfoliated in a short time, a graphite-based carbon material from which graphene is not exfoliated and which remains in the liquid as a solvent is less, and graphene is highly dispersed therein. Consequently, a large amount of graphene can be dispersed in the liquid such as a solvent, and a concentrated graphene dispersion is obtained.
  • the graphene dispersion is characterized by containing at least 0.01 or more parts by weight of graphene.
  • the graphene when at least 0.01 or more parts by weight of graphene is present, the graphene has high dispersibility, and therefore, functions caused by dispersions of the graphene can sufficiently be exerted.
  • a graphene composite is characterized in that the graphene composite is obtained by mixing the above-described graphite-based carbon material useful as a graphene precursor or the above-described graphene dispersion with a composite base material, followed by kneading them while applying a shearing force to them.
  • the above-described graphite-based carbon material or the above-described graphene dispersion and the composite base material are kneaded while applying a sharing force to them, and therefore, graphene is easily exfoliated therefrom, and exfoliated graphene is highly dispersed therein. Consequently, a graphene composite, which can disperse a large amount of graphene in a composite base material such as monomers, polymers, other carbon materials, ceramics, wood, cements, or metals, is obtained.
  • the graphene composite is characterized in that a compatibilizer is used in kneading the graphene precursor or the graphene dispersion with the composite base material.
  • the graphene dispersion is characterized in that, when 0.1 part by weight of the above-described graphite-based carbon material useful as a graphene precursor is mixed with N-methylpyrrolidone (NMP), and an ultrasonic wave with an output of 100 W and with a frequency of 20 kHz is applied to the resulting mixture for 3 hours to thereby disperse graphene, 50% or more of an amount of graphene each having 10 layers or less are exposed relative to a total amount of all graphene and graphene precursors.
  • NMP N-methylpyrrolidone
  • a graphene dispersion in which graphene is dispersed at a high concentration or to a high degree, such that the amount of graphene each having 10 layers or less is 50% or more relative to a total amount of all graphene and graphene precursors, can be obtained.
  • a graphite-based carbon material useful as a graphene precursor is characterized in that the graphite-based carbon material used with kneading a composite base material.
  • a sharing force is applied to the graphite-based carbon material with kneading them, and therefore, graphene is easily exfoliated therefrom, and exfoliated graphene is highly dispersed therein. Consequently, a graphene composite, which can disperse a large amount of graphene in a composite base material such as monomers, polymers, other carbon materials, ceramics, wood, cements, or metals, is obtained.
  • the graphene in a composite base material is characterized in that the composite base material is a resin.
  • a resin molded article having a high degree dispersed graphene can be obtained.
  • a resin molded article having an excellent elastic modulus can be obtained.
  • FIG. 1 is a figure which shows a crystal structure of graphite, where (a) refers to a crystal structure of hexagonal crystals, and (b) refers to a crystal structure of rhombohedral crystals.
  • FIG. 2 is a diagram which shows an X-ray diffraction profile of general natural graphite.
  • FIG. 3 is a diagram which illustrates a production apparatus A using a jet mill and plasma of Example 1.
  • FIG. 4 is a figure which illustrates a production apparatus B using a ball mill and magnetron of Example 1, where (a) is a diagram which illustrates a pulverizing state, and (b) is a diagram which illustrates a state where graphite-based carbon materials (precursors) are collected.
  • FIG. 5 is a diagram which shows an X-ray diffraction profile of a graphite-based carbon material of Sample 5 produced by the production apparatus B according to Example 1.
  • FIG. 6 is a diagram which shows an X-ray diffraction profile of a graphite-based carbon material of Sample 6 produced by the production apparatus A according to Example 1.
  • FIG. 7 is a diagram which shows an X-ray diffraction profile of a graphite-based carbon material of Sample 1 indicating a comparative example.
  • FIG. 8 is a diagram which shows a dispersion-producing apparatus which produces a dispersion using a graphite-based carbon material as a precursor.
  • FIG. 9 is a diagram which shows dispersing states of dispersions produced by using graphite-based carbon materials of Sample 1 indicating a comparative example, and Sample 5 produced by the production apparatus B of Example 1.
  • FIG. 10 is a TEM image of a graphite-based carbon material (graphene) dispersed in a dispersion.
  • FIG. 11 is a figure which shows distribution states of a graphite-based carbon material dispersed in a dispersion which was produced using a graphite-based carbon material (precursor) of Sample 5, where (a) is a diagram which shows an average size distribution, while (b) is a diagram which shows a distribution of the number of layers.
  • FIG. 12 is a figure which shows a distribution state of a graphite-based carbon material dispersed in a dispersion which was produced using a graphite-based carbon material of Sample 1 indicating the comparative example, where (a) is a diagram showing an average size distribution, and (b) is a diagram showing a distribution of the number of layers.
  • FIG. 13 is a diagram which shows distributions of the number of layers of graphite-based carbon materials each dispersed in dispersions that were produced using Samples 1 to 7 as precursors.
  • FIG. 14 is a diagram which shows proportions of graphene having 10 layers or less to a content of rhombohedral crystals dispersed in a dispersion.
  • FIG. 15 is a figure which shows a distribution state of graphite when varying conditions for producing a dispersion using a graphite-based carbon material (precursor) of Sample 5 according to Example 2, where (a) is a diagram showing a distribution in a case where an ultrasonic treatment and a microwave treatment were combined, while (b) is a diagram showing a distribution of the number of layers in a case where an ultrasonic treatment was conducted.
  • FIG. 16 is a diagram which shows a resistance value when a graphite-based carbon material of Example 3 was dispersed in a conductive ink.
  • FIG. 17 is a diagram which shows a tensile strength when a graphite-based carbon material of Example 4 was kneaded with a resin.
  • FIG. 18 is a diagram which shows a tensile strength when a graphite-based carbon material of Example 5 was kneaded with a resin.
  • FIG. 19 is a diagram which shows dispersing states of graphite-based carbon materials of dispersions for describing dispersing states of Example 5 supplementary, where (a) is a dispersing state of sample 12, and (b) is a dispersing state of sample 2.
  • the invention focuses on a crystal structure of graphite, and, at first, matters relating to the crystal structure will be explained. It has been known that natural graphite is classified into three types of crystal structures, namely hexagonal crystals, rhombohedral crystals and disordered crystals, depending on an overlapping manner of layers. As shown in FIG. 1 , hexagonal crystals have a crystal structure in which layers are arranged in the order of ABABAB . . . , while rhombohedral crystals have a crystal structure in which layers are arranged in the order of ABCABCABC . . .
  • Non-Patent Literatures 1 and 2 In natural graphite, there are almost no rhombohedral crystals in a stage where natural graphite is excavated. However, about 14% of rhombohedral crystals exist in general natural graphite-based carbon materials because pulverization or the like is carried out in a purification stage. In addition, it has been known that a proportion of rhombohedral crystals converges on about 30% even when pulverization is carried out during purification for a long time (Non-Patent Literatures 1 and 2).
  • Non-Patent Literature 3 a proportion of rhombohedral crystals is about 25% (Non-Patent Literature 3). Furthermore, the proportion is up to about 30% even when heat of an extremely high temperature of 3000° C. is applied thereto (Non-Patent Literature 2).
  • the upper limit is about 30%.
  • An energy required for the exfoliation is inversely proportional to the cube of the thickness. Therefore, in a thick state where numerous layers are overlapped, graphene is exfoliated by a weak physical force such as by very feeble ultrasonic waves.
  • a very large energy is required. In other words, even if graphite is treated for a long time, only weak parts of the surface are exfoliated, and large parts remain not exfoliated.
  • the present inventors succeeded in increasing a proportion of rhombohedral crystals (3R), which had been increased to only about 30% by treatments of pulverization or heating to an extremely high temperature, to 30% or more by carrying out predetermined treatments, as shown below, to natural graphite.
  • the following findings were obtained as results of experiments and studies. That is, when a content of rhombohedral crystals (3R) in a graphite-based carbon material is higher, particularly when the content is 31% or more, there is a tendency that graphene is easily exfoliated by use of such a graphite-based carbon material as a precursor, thereby easily obtaining a highly concentrated and dispersed graphene dispersion or the like.
  • a graphite-based carbon material from which graphene is easily exfoliated by carrying out predetermined treatments to natural graphite, and which makes it possible to disperse graphene at a high concentration or to a high degree, is called a graphene precursor.
  • a method of producing a graphene precursor showing predetermined treatments, a crystal structure of the graphene precursor, and a graphene dispersion using the graphene precursor will be described in that order in examples below.
  • a graphene refers to a flake-like or sheet-like graphene which is a crystal of a mean size of 100 nm or more but which is not a fine crystal of a mean size of several nanometers to tens of nanometers, and which has 10 layers or less.
  • a graphene composite means a composite which is produced by using the graphite-based carbon material useful as a graphene precursor according to the invention, i.e. a graphite-based carbon material having a Rate (3R) of 31% or more (e.g. Samples 2-7 of Example 1, samples 21, . . . of Example 5 described below).
  • the production apparatus A refers to a case in which plasma is applied for the radiowave-force-based treatment and in which the jet mill is used for the physical-force-based treatment.
  • the symbol 1 refers to a particle of 5 mm or less of a natural graphite material (flaky graphite ACB-50 manufactured by Nippon Graphite Industries, ltd.);
  • the symbol 2 refers to a hopper which stores the natural graphite material 1 ;
  • the symbol 3 refers to a Venturi nozzle which discharges the natural graphite material 1 from the hopper 2 ;
  • the symbol 4 refers to a jet mill which jets the air which has been pumped from a compressor 5 , while being divided into eight places, to thereby allow the natural graphite material to collide against the inside of a chamber by a jet blast;
  • the symbol 7 refers to a plasma generator which sprays a gas 9 , such as oxygen, argon, nitrogen or hydrogen, through a nozzle 8 from a tank 6 and which applies a voltage to a coil 11 , wound around the outer periphery of the nozzle 8 , from a high-voltage power supply 10 , thereby generating
  • the symbol 13 refers to a pipe which connects the jet mill 4 and a dust collector 14 to one another; the symbol 14 refers to a dust collector; the symbol 15 refers to a collection container; the symbol 16 refers to a graphite-based carbon material (graphene precursor); and the symbol 17 refers to a blower.
  • the conditions for the jet mill are as follows.
  • Nozzle inner Diameter 12 mm
  • the conditions for plasma are as follows.
  • the natural graphite materials 1 which have been charged into the chamber of the jet mill 4 from the Venturi nozzle 3 , are accelerated to the sonic velocity or higher inside the chamber, and are pulverized by impact between the natural graphite materials 1 or by impact of them against the wall, and that, simultaneously, the plasma 12 discharges an electric current or excites the natural graphite materials 1 , acts directly on atoms (electrons), and increases deformations of crystals, thereby promoting the pulverization.
  • the production apparatus A in this example about 800 g of a graphene precursor from 1 kg of the raw materials, i.e. natural graphite materials 1 , is used.
  • the graphite-based carbon material (graphene precursors) 16 was obtained (recovery efficiency: about 80%).
  • the apparatus B refers to, as an example, a case where microwaves are applied as the radiowave-force-based treatment and where a ball mill is used for the physical-force-based treatment.
  • a natural graphite material flaky graphite ACB-50 manufactured by Nippon Graphite Industries, ltd.
  • the symbol 26 refers to a collection container
  • the symbol 27 refers to a filter
  • the symbol 28 refers to graphite-based carbon material (graphene precursors).
  • the conditions for the ball mill are as follows.
  • microwave generator microwave generator
  • the measurement conditions for the X-ray diffraction apparatus are as follows.
  • each sample shows peak intensities P1, P2, P3 and P4 in the planes (100), (002) and (101) of hexagonal crystals 2H and in the plane (101) of rhombohedral crystals 3R. Therefore, these peak intensities will be explained.
  • Sample 5 produced by the production apparatus B which applies a treatment with a ball mill and a microwave treatment, had high rates of peak intensities P3 and P1, and a Rate (3R) defined by Equation 1 showing a rate of P3 to a sum of P3 and P4 was 46%. Additionally, the intensity ratio P1/P2 was 0.012.
  • P1 is a peak intensity of a (100) plane of the hexagonal graphite layer (2H) based on the X-ray diffraction method
  • P2 is a peak intensity of a (002) plane of the hexagonal graphite layer (2H) based on the X-ray diffraction method
  • P3 is a peak intensity of a (101) plane of the rhombohedral graphite layer (3R) based on the X-ray diffraction method
  • P4 is a peak intensity of a (101) plane of the hexagonal graphite layer (2H) based on the X-ray diffraction method.
  • Sample 6 produced by the production apparatus A which applies a treatment based on the jet mill and a treatment based on plasma, had high rates of peak intensities P3 and P1, and the Rate (3R) was 51%.
  • the intensity ratio P1/P2 was 0.014.
  • Sample 1 indicating a comparative example produced with only the ball mill had a small rate of a peak intensity P3, compared with Samples 5 and 6, and the Rate (3R) was 23%.
  • the intensity ratio P1/P2 was 0.008.
  • Sample 5 produced by the production apparatus B of Example 1 and Sample 6 produced by the production apparatus A of Example 1 had Rates (3R) of 46% and 51%, respectively, and it was shown that their Rates (3R) were 40% or more, or 50% or more, compared with the natural graphite shown in FIG. 2 and Sample 1 indicating a comparative example.
  • graphene dispersions were produced using the above-produced graphene precursors, and their easiness in exfoliation of graphene was evaluated.
  • FIG. 8 shows, as an example, a case where an ultrasonic treatment and a microwave treatment are combined in a liquid when a graphene dispersion is produced.
  • FIG. 9 refers to appearances of graphene dispersions produced in the above-described way when 24 hours had passed.
  • the graphene dispersion produced in the above-described way was diluted to an observable concentration, was coated onto a sample stage (TEM grid), and the grid was dried.
  • TEM transmission electron microscope
  • the grid coated with the diluted supernatant was used for Sample 1.
  • the size corresponds to a maximum length L of a flake 33 , which was 600 nm, based on FIG. 10( a ) .
  • the number of layers the end face of the flake 33 was observed in FIG.
  • a particle size distribution (distribution of sizes) of thin flakes included in the graphene dispersion of Sample 5 (Rate (R3) of 46%) produced by the production apparatus B of Example 1 was a distribution having a peak of 0.5 ⁇ m.
  • a distribution which had a peak in 3 layers and in which graphene having 10 layers or less were 68% was observed.
  • a particle size distribution (distribution of sizes) of thin flakes included in the dispersion of Sample 1 (Rate (R3) of 23%) of the comparative example was a distribution having a peak of 0.9 ⁇ m.
  • a distribution in which those having 30 layers or more occupied the greater portion and in which graphene having 10 layers or less were 10% was observed.
  • Samples 1, 5 and 6 in FIG. 13 are those described above.
  • Samples 2, 3 and 4 were produced by the production apparatus B which carried out a treatment based on a ball mill and a microwave treatment, and were graphene dispersions produced using graphene precursors which had been produced by making the irradiating time of microwaves shorter than that for Sample 5.
  • Sample 7 was produced by the production apparatus A which carried out a treatment based on a jet mill and a plasma treatment, and was a graphene dispersion produced by using a graphene precursor which had been produced by applying plasma of a higher output than that for Sample 6.
  • the Rate (3R) is preferably 40% or more from a view point that the proportion of dispersed graphene of 10 layers or less sharply increases to 50% or more.
  • an upper limit for the Rate (3R) is considered that the upper limit is not particularly defined. However, it is preferable that the upper limit is defined such that the intensity ratio P1/P2 simultaneously satisfies 0.01 or more, because graphene precursors are easily exfoliated when a dispersion or the like is produced. In addition, in cases of production methods using production apparatuses A and B, the upper limit is about 70%, from a viewpoint that graphene is easily produced. Also, a method combining a treatment based on the jet mill of the production apparatus A and a plasma treatment is more preferable, because a graphene precursor having a higher Rate (3R) can easily be obtained. Additionally, the Rate (3R) as long as it reaches 31% or more by combining the physical-force-based treatment and the radiowave-force-based treatment.
  • Example 1 a case where the ultrasonic treatment and the microwave treatment were combined for obtaining a graphene dispersion is explained.
  • Example 2 only an ultrasonic treatment was carried out while a microwave treatment was not carried out, and other conditions were the same as those for Example 1.
  • FIG. 15( a ) is the same as the distribution shown in FIG. 11( b ) of Sample 5 produced by the production apparatus B of Example 1.
  • Example 3 an example used for a conductive ink will be described.
  • Example 4 an example in which a graphene precursor was kneaded with a resin will be explained.
  • LLDPE polyethylene
  • Zinc stearate is explained above as an example of the dispersing agent. However, those suited for compounds may be selected. As examples of the dispersing agent, anionic (anion) surfactants, cationic (cation) surfactants, zwitterionic surfactants, and nonionic surfactants can be mentioned. In particular, anion surfactants and nonionic surfactants are preferable for graphene. Nonionic surfactants are more preferable.
  • nonionic surfactants are surfactants which do not dissociate into ions and which show hydrophilic properties by hydrogen bonds with water, as observed in oxyethylene groups, hydroxyl groups, carbohydrate chains such as glucoside, and the like, there is a merit that they can be used in nonpolar solvents, although they do not have a strength of hydrophilicity as high as ionic surfactants. Further, this is because, by varying chain lengths of their hydrophilic groups, their properties can freely be changed from lipophilic properties to hydrophilic properties.
  • anionic surfactants X acid salts (as for the X acid, for example, cholic acid, and deoxycholic acid), for example, SDC: sodium deoxycholate, and phosphate esters, are preferable.
  • nonionic surfactants glycerol fatty acid esters, sorbitan fatty acid esters, fatty alcohol ethoxylates, polyoxyethylene alkyl phenyl ether, alkyl glycosides, and the like are preferable.
  • the production apparatus A using a jet mill and plasma, and the production apparatus B using a ball mill and microwaves are described as production apparatuses which produce a graphene precursor.
  • a treatment based on a radiowave force such as by microwaves, millimeter waves, plasma, electromagnetic induction heating (IH), and magnetic fields
  • a treatment based on a physical force such as by a ball mill, a jet mill, centrifugal force, and supercriticality
  • a precursor having a high Rate (R3) can be obtained. Therefore, such combination of the treatments is preferable.
  • any specific treatments for the physical-force-based treatment and the radiowave-force-based treatment can be adopted.
  • effects based on a radiowave force and a physical force are simultaneously directed thereto.
  • a radiowave force and a physical force may alternately be directed thereto at predetermined intervals.
  • different radiowave forces such as treatments based on microwaves and plasma, may alternately be applied thereto, and, parallel with the treatments, treatments based on one or more physical forces may be carried out.
  • different physical forces such as treatments based on a jet mill and supercriticality, may alternately be applied thereto, and, parallel with the treatments, treatments based on one or more radiowave forces may be carried out.
  • the pellets produced in (2) were formed into a test piece according to JIS K7161 1A (length: 165 mm, width: 20 mm, thickness: 4 mm) by an injection molding machine.
  • the elastic modulus (Mpa) of the test piece produced in (3) was measured under a condition of a test speed of 500 mm/min according to JIS K7161 by a table-top type precision universal tester produced by Shimadzu Corporation (AUTOGRAPH AGS-J).
  • the kneading conditions were as follows.
  • Pressurization in furnace applying 0.3 MPa for 10 minutes after start, and depressurizing to atmospheric pressure after the 10 minutes elapsed
  • the dispersion of the above-described graphene dispersion into a resin is considered as follows.
  • the melting point of a resin is generally 100° C. or higher, water evaporates in atmosphere, but in a pressing-type kneader, the inside of a furnace can be pressurized. In the inside of the furnace, the boiling point of water is raised so that the dispersion is kept in a liquid form, whereby an emulsion of the dispersion and the resin can be obtained.
  • the inside After applying pressure for a predetermined time, the inside is gradually depressurized, which causes the boiling point of water to decrease, thereby allowing water to evaporate.
  • graphene confined in water are left in the resin. This causes graphene and graphite-based carbon materials to be dispersed at a high concentration in the resin.
  • the graphene dispersion is kneaded into the resin preferably immediately after the graphene dispersion is obtained.
  • the following may be used as the means for obtaining the emulsion of the dispersion and the resin, other than the pressing kneader: a chemical thruster; a vortex mixer; a homomixer; a high-pressure homogenizer; a hydroshear; a flow jet mixer; a wet jet mill; and an ultrasonic generator.
  • IPA 2-propanol
  • NMP N-methylpyrrolidone
  • DMF N,N-dimethyl formamide
  • Table 4 illustrates the relationship between the Rates (3R) of around 30% and the elastic moduli of resin molded articles. It should be noted that Sample 00 in Table 4 is a blank Sample in which no precursor was kneaded, Samples 11 and 12 have Rates (3R) between that of Sample 1 and that of Sample 2, and Sample 21 has a Rate (3R) between that of Sample 2 and that of Sample 3.
  • Example 5 clearly indicates that when the Rate (3R) is 31% or more, a graphite-based carbon material used as a graphene precursor tends to be separated into graphene having 10 or less layers and a thin graphite-based carbon material.
  • the production apparatus using microwaves and ultrasonic waves is described as a production apparatus for obtaining a graphene dispersion using a precursor.
  • a treatment based on a radiowave force such as by microwaves, millimeter waves, plasma, electromagnetic induction heating (IH) and magnetic fields
  • a treatment based on a physical force such as by ultrasonic waves, a ball mill, a jet mill, centrifugal force, and supercriticality
  • a graphene dispersion having a high graphene concentration can be obtained. Therefore, such combination of the treatments is preferable.
  • effects based on a radiowave force and a physical force are simultaneously directed thereto.
  • a radiowave force and a physical force may alternately be directed thereto at predetermined intervals.
  • the production apparatus using microwaves and ultrasonic waves is described as a production apparatus for obtaining a graphene dispersion using a precursor.
  • a treatment based on a radiowave force such as by microwaves, millimeter waves, plasma, electromagnetic induction heating (IH) and magnetic fields
  • a treatment based on a physical force such as by ultrasonic waves, a ball mill, a jet mill, centrifugal force, and supercriticality
  • a graphene dispersion having a high graphene concentration can be obtained. Therefore, such combination of the treatments is preferable.
  • effects based on a radiowave force and a physical force are simultaneously directed thereto.
  • a radiowave force and a physical force may alternately be directed thereto at predetermined intervals.
  • graphene dispersions, conductive inks and resin molded articles are described as applications using precursors.
  • precursors by mixing, as base materials, precursors into composite base materials such as monomers, polymers, other carbon materials, ceramics, woods, cements or metals, graphene composite may be obtained. That is, in the present specification, a graphene composite means products encompassing the above-described graphene dispersions, conductive inks and resin molded articles. Additionally, a graphene dispersion encompasses paste products with high viscosities.
  • Resins includes polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), ABS resins (ABS), acrylic resins (PMMA), polyamide/nylon (PA), polyacetal (POM), polycarbonate (PC), polyethylene terephthalate (PET), cyclic polyolefins (COP), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfones (PSF), polyamide-imide (PAI), thermoplastic polyimide (PI), polyether ether ketone (PEEK), and liquid-crystal polymers (LCP).
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • PVC polyvinyl chloride
  • ABS resins ABS resins
  • acrylic resins PMMA
  • PA polyamide/nylon
  • PA polyacetal
  • PC polycarbonate
  • PET polyethylene terephthalate
  • COP cyclic poly
  • thermosetting resins thermoplastic resins such as epoxy resins (EP), phenolic resins (PF), melamine resins (MF), polyurethanes (PUR) and unsaturated polyester resins (UP) can be mentioned; fibrous nylon, and fibers of polyester, acryl, vinylon, polyolefin, polyurethane, rayon or the like can be mentioned; as elastomers, isoprene rubbers (IR), butadiene rubbers (BR), styrene/butadiene rubbers (SBR), chloroprene rubbers (CR), nitrile rubbers (NBR), polyisobutylene rubbers/butyl rubbers (IIR), ethylene propylene rubbers (EPM/EPDM), chlorosulfonated polyethylene (CSM), acrylic rubbers (ACM), epichlorohydrin rubbers (CO/ECO), and the like can be mentioned; as thermosetting resin-based elastomers, some urethane rubbers (IR), butadiene rubbers (
  • mineral oils lubricating oils, and greases
  • compounded oils for rubbers paraffin-based mineral oils, naphthenic mineral oil, aromatic mineral oils, and the like can be mentioned.
  • nonpolar products hexane, benzene, toluene, chloroform, ethyl acetate, and the like can be mentioned;
  • polar aprotic products acetone, N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), acetonitrile, and the like can be mentioned;
  • polar protic products acetic acid, ethanol, methanol, water, 1-butanol, 2-propanol, formic acid, and the like can be mentioned.
  • natural graphite for producing a graphite-based carbon material useful as a graphene precursor particles of 5 mm or less of a natural graphite material (flaky graphite ACE-50 manufactured by Nippon Graphite Industries, ltd.) is described above.
  • a natural graphite material flaky graphite ACE-50 manufactured by Nippon Graphite Industries, ltd.
  • products which are flaky graphite, being pulverized into 5 mm or less, and which have a Rate (3R) of less than 25% and an intensity ratio Pl/P2 of less than 0.01 are preferable, from a viewpoint that they are easily-available.
US14/651,630 2014-09-09 2015-02-27 Graphite-based carbon material useful as graphene precursor, as well as method of producing the same Abandoned US20170174521A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/863,233 US9598593B2 (en) 2015-02-27 2015-09-23 Graphene composite and method of producing the same
US14/973,071 US9428393B2 (en) 2014-09-09 2015-12-17 Graphite-based carbon material useful as graphene precursor, as well as method of producing the same
US14/973,100 US9587134B2 (en) 2015-02-27 2015-12-17 Graphene composite and method of producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2014/073838 2014-09-09
PCT/JP2014/073838 WO2016038692A1 (ja) 2014-09-09 2014-09-09 グラフェン前駆体として用いられる黒鉛系炭素素材、これを含有するグラフェン分散液及びグラフェン複合体並びにこれを製造する方法
PCT/JP2015/055977 WO2016002254A1 (ja) 2014-09-09 2015-02-27 グラフェン前駆体として用いられる黒鉛系炭素素材及びその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055977 A-371-Of-International WO2016002254A1 (ja) 2014-09-09 2015-02-27 グラフェン前駆体として用いられる黒鉛系炭素素材及びその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/863,233 Division US9598593B2 (en) 2015-02-27 2015-09-23 Graphene composite and method of producing the same
US14/973,071 Continuation US9428393B2 (en) 2014-09-09 2015-12-17 Graphite-based carbon material useful as graphene precursor, as well as method of producing the same

Publications (1)

Publication Number Publication Date
US20170174521A1 true US20170174521A1 (en) 2017-06-22

Family

ID=52823288

Family Applications (7)

Application Number Title Priority Date Filing Date
US14/651,630 Abandoned US20170174521A1 (en) 2014-09-09 2015-02-27 Graphite-based carbon material useful as graphene precursor, as well as method of producing the same
US14/764,525 Active US9815987B2 (en) 2014-09-09 2015-03-13 Composite conductive material, power storage device, conductive dispersion, conductive device, conductive composite and thermally conductive composite and method of producing a composite conductive material
US14/764,505 Active US9862833B2 (en) 2014-09-09 2015-03-19 Composite reinforcing material and method of producing a composite reinforcing material
US14/764,929 Active US9752035B2 (en) 2014-09-09 2015-03-23 Composite lubricating material, engine oil, grease, and lubricant, and method of producing a composite lubricating material
US14/973,071 Active US9428393B2 (en) 2014-09-09 2015-12-17 Graphite-based carbon material useful as graphene precursor, as well as method of producing the same
US14/982,939 Active US9862834B2 (en) 2014-09-09 2015-12-29 Composite reinforcing material and molding material
US15/823,126 Active 2035-09-21 US10421863B2 (en) 2014-09-09 2017-11-27 Composite reinforcing material and molding material

Family Applications After (6)

Application Number Title Priority Date Filing Date
US14/764,525 Active US9815987B2 (en) 2014-09-09 2015-03-13 Composite conductive material, power storage device, conductive dispersion, conductive device, conductive composite and thermally conductive composite and method of producing a composite conductive material
US14/764,505 Active US9862833B2 (en) 2014-09-09 2015-03-19 Composite reinforcing material and method of producing a composite reinforcing material
US14/764,929 Active US9752035B2 (en) 2014-09-09 2015-03-23 Composite lubricating material, engine oil, grease, and lubricant, and method of producing a composite lubricating material
US14/973,071 Active US9428393B2 (en) 2014-09-09 2015-12-17 Graphite-based carbon material useful as graphene precursor, as well as method of producing the same
US14/982,939 Active US9862834B2 (en) 2014-09-09 2015-12-29 Composite reinforcing material and molding material
US15/823,126 Active 2035-09-21 US10421863B2 (en) 2014-09-09 2017-11-27 Composite reinforcing material and molding material

Country Status (27)

Country Link
US (7) US20170174521A1 (pl)
EP (6) EP3002322B1 (pl)
JP (1) JP5688669B1 (pl)
KR (6) KR101600837B1 (pl)
CN (4) CN105452159B (pl)
AP (4) AP2016009657A0 (pl)
AR (1) AR101795A1 (pl)
AU (2) AU2015242994B1 (pl)
BR (4) BR112017003673B1 (pl)
CA (3) CA2916783C (pl)
CL (4) CL2017000567A1 (pl)
CO (4) CO2017000713A2 (pl)
EA (5) EA029994B1 (pl)
ES (5) ES2601130B1 (pl)
GB (1) GB2528790B (pl)
HK (4) HK1223082A1 (pl)
IL (5) IL244120B (pl)
MA (1) MA40129A1 (pl)
MX (4) MX2016014793A (pl)
MY (5) MY165125A (pl)
PE (4) PE20170824A1 (pl)
PH (5) PH12017500396A1 (pl)
PL (5) PL3002322T3 (pl)
SG (4) SG10201508781XA (pl)
TW (5) TWI558661B (pl)
WO (4) WO2016038692A1 (pl)
ZA (1) ZA201607142B (pl)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11339055B2 (en) 2016-10-19 2022-05-24 Incubation Alliance, Inc. Graphite/graphene composite material, heat collector, a heat conductor, a heat dissipator, a heat-dissipation system, and a method of producing the graphite/graphene composite material

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170019366A (ko) 2014-05-16 2017-02-21 디버전트 테크놀로지스, 인크. 차량 섀시용 모듈형 성형 접속체 및 그 사용 방법
SG10201806531QA (en) 2014-07-02 2018-09-27 Divergent Technologies Inc Systems and methods for fabricating joint members
US9552900B2 (en) 2014-09-09 2017-01-24 Graphene Platform Corporation Composite conductive material, power storage device, conductive dispersion, conductive device, conductive composite and thermally conductive composite
JP5688669B1 (ja) 2014-09-09 2015-03-25 グラフェンプラットフォーム株式会社 グラフェン前駆体として用いられる黒鉛系炭素素材、これを含有するグラフェン分散液及びグラフェン複合体並びにこれを製造する方法
US20180272565A1 (en) * 2015-12-03 2018-09-27 Nanotek Instruments, Inc. Chemical-free production of graphene-polymer pellets and graphene-polymer nanocomposite products
US9994741B2 (en) * 2015-12-13 2018-06-12 International Business Machines Corporation Enhanced adhesive materials and processes for 3D applications
KR102522012B1 (ko) * 2015-12-23 2023-04-13 삼성전자주식회사 전도성 소자 및 이를 포함하는 전자 소자
US10685763B2 (en) 2016-01-19 2020-06-16 Xerox Corporation Conductive polymer composite
CN105836737B (zh) * 2016-05-06 2018-11-09 上海利物盛企业集团有限公司 一种采用超声剥离与射流剥离相结合制备石墨烯的方法
JP2019527138A (ja) 2016-06-09 2019-09-26 ダイバージェント テクノロジーズ, インコーポレイテッドDivergent Technologies, Inc. アークおよびノードの設計ならびに製作のためのシステムおよび方法
US10177375B2 (en) 2016-08-10 2019-01-08 Energizer Brands, Llc Alkaline battery cathode structures incorporating multiple carbon materials and orientations
CN106336931A (zh) * 2016-08-19 2017-01-18 颜凤生 一种石墨烯植物复合机油的制备工艺
DK179577B1 (en) 2016-10-10 2019-02-20 Widex A/S Binaural hearing aid system and a method of operating a binaural hearing aid system
CN106564175B (zh) * 2016-10-21 2018-11-30 成都新柯力化工科技有限公司 一种石墨烯导电母料及其制备方法
CN106542525B (zh) * 2016-10-27 2018-09-11 董兰田 连续胶带法制取石墨烯的剥离脱胶和包装方法
US11155005B2 (en) 2017-02-10 2021-10-26 Divergent Technologies, Inc. 3D-printed tooling and methods for producing same
US10759090B2 (en) 2017-02-10 2020-09-01 Divergent Technologies, Inc. Methods for producing panels using 3D-printed tooling shells
WO2018169889A1 (en) * 2017-03-16 2018-09-20 Lyten, Inc. Carbon and elastomer integration
DE102017109759A1 (de) 2017-04-07 2018-10-11 Bernd Burchard Magnetfeld sensitives Bauelement mit einer bei Raumtemperatur supraleitenden Teilvorrichtung
DE102017107597B4 (de) 2017-04-07 2019-05-02 Bernd Burchard Bauelemente mit einer bei Raumtemperatur supraleitenden Teilvorrichtung und Verfahren zu ihrer Herstellung
US20200075832A1 (en) 2017-04-07 2020-03-05 Universität Leipzig Graphite Superconductor and Use Thereof
US11299645B2 (en) * 2017-04-21 2022-04-12 The Regents Of The University Of California Methods and applications for conductive graphene inks
US10898968B2 (en) 2017-04-28 2021-01-26 Divergent Technologies, Inc. Scatter reduction in additive manufacturing
KR102176629B1 (ko) 2017-04-28 2020-11-09 주식회사 엘지화학 그래핀 제조방법
TWI650287B (zh) * 2017-05-04 2019-02-11 中原大學 散熱漿料及散熱結構的製造方法
US10703419B2 (en) 2017-05-19 2020-07-07 Divergent Technologies, Inc. Apparatus and methods for joining panels
US11358337B2 (en) 2017-05-24 2022-06-14 Divergent Technologies, Inc. Robotic assembly of transport structures using on-site additive manufacturing
JPWO2018225670A1 (ja) * 2017-06-05 2020-04-02 積水化学工業株式会社 炭素材料含有分散液、電極形成用スラリー、及び非水電解質二次電池用電極の製造方法
US11123973B2 (en) 2017-06-07 2021-09-21 Divergent Technologies, Inc. Interconnected deflectable panel and node
US10919230B2 (en) 2017-06-09 2021-02-16 Divergent Technologies, Inc. Node with co-printed interconnect and methods for producing same
US10781846B2 (en) 2017-06-19 2020-09-22 Divergent Technologies, Inc. 3-D-printed components including fasteners and methods for producing same
US11492528B2 (en) * 2017-06-23 2022-11-08 Sekisui Chemical Co., Ltd. Heat dissipation sheet, method for producing heat dissipation sheet, and laminate
US10994876B2 (en) 2017-06-30 2021-05-04 Divergent Technologies, Inc. Automated wrapping of components in transport structures
US11022375B2 (en) 2017-07-06 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing microtube heat exchangers
US10895315B2 (en) 2017-07-07 2021-01-19 Divergent Technologies, Inc. Systems and methods for implementing node to node connections in mechanized assemblies
US10940609B2 (en) 2017-07-25 2021-03-09 Divergent Technologies, Inc. Methods and apparatus for additively manufactured endoskeleton-based transport structures
US10751800B2 (en) 2017-07-25 2020-08-25 Divergent Technologies, Inc. Methods and apparatus for additively manufactured exoskeleton-based transport structures
US10605285B2 (en) 2017-08-08 2020-03-31 Divergent Technologies, Inc. Systems and methods for joining node and tube structures
US10357959B2 (en) 2017-08-15 2019-07-23 Divergent Technologies, Inc. Methods and apparatus for additively manufactured identification features
US11306751B2 (en) 2017-08-31 2022-04-19 Divergent Technologies, Inc. Apparatus and methods for connecting tubes in transport structures
US10960611B2 (en) 2017-09-06 2021-03-30 Divergent Technologies, Inc. Methods and apparatuses for universal interface between parts in transport structures
CN107603201B (zh) * 2017-09-07 2021-02-26 金华造物新材料有限公司 一种饰品和牙科精密铸造用3d打印光敏树脂
US11292058B2 (en) 2017-09-12 2022-04-05 Divergent Technologies, Inc. Apparatus and methods for optimization of powder removal features in additively manufactured components
US10814564B2 (en) 2017-10-11 2020-10-27 Divergent Technologies, Inc. Composite material inlay in additively manufactured structures
US10668816B2 (en) 2017-10-11 2020-06-02 Divergent Technologies, Inc. Solar extended range electric vehicle with panel deployment and emitter tracking
US11786971B2 (en) 2017-11-10 2023-10-17 Divergent Technologies, Inc. Structures and methods for high volume production of complex structures using interface nodes
US10926599B2 (en) 2017-12-01 2021-02-23 Divergent Technologies, Inc. Suspension systems using hydraulic dampers
US11110514B2 (en) 2017-12-14 2021-09-07 Divergent Technologies, Inc. Apparatus and methods for connecting nodes to tubes in transport structures
US11085473B2 (en) 2017-12-22 2021-08-10 Divergent Technologies, Inc. Methods and apparatus for forming node to panel joints
US11534828B2 (en) 2017-12-27 2022-12-27 Divergent Technologies, Inc. Assembling structures comprising 3D printed components and standardized components utilizing adhesive circuits
KR101864876B1 (ko) * 2018-01-17 2018-06-11 (주)비올에너지 엔진 기능 강화와 연비 향상을 위한 엔진오일 첨가제
US11420262B2 (en) 2018-01-31 2022-08-23 Divergent Technologies, Inc. Systems and methods for co-casting of additively manufactured interface nodes
US10751934B2 (en) 2018-02-01 2020-08-25 Divergent Technologies, Inc. Apparatus and methods for additive manufacturing with variable extruder profiles
US11224943B2 (en) 2018-03-07 2022-01-18 Divergent Technologies, Inc. Variable beam geometry laser-based powder bed fusion
US11267236B2 (en) 2018-03-16 2022-03-08 Divergent Technologies, Inc. Single shear joint for node-to-node connections
US11254381B2 (en) 2018-03-19 2022-02-22 Divergent Technologies, Inc. Manufacturing cell based vehicle manufacturing system and method
US11872689B2 (en) 2018-03-19 2024-01-16 Divergent Technologies, Inc. End effector features for additively manufactured components
US11408216B2 (en) 2018-03-20 2022-08-09 Divergent Technologies, Inc. Systems and methods for co-printed or concurrently assembled hinge structures
CN108630638A (zh) * 2018-03-30 2018-10-09 北京绿能芯创电子科技有限公司 功率器件散热方法以及功率器件
US11613078B2 (en) 2018-04-20 2023-03-28 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing adhesive inlet and outlet ports
US11214317B2 (en) 2018-04-24 2022-01-04 Divergent Technologies, Inc. Systems and methods for joining nodes and other structures
CN110408132B (zh) * 2018-04-26 2021-12-21 成都创威新材料有限公司 石墨烯/丁基橡胶复合母料及复合材料的制备方法
US10682821B2 (en) 2018-05-01 2020-06-16 Divergent Technologies, Inc. Flexible tooling system and method for manufacturing of composite structures
US11020800B2 (en) 2018-05-01 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for sealing powder holes in additively manufactured parts
US11389816B2 (en) 2018-05-09 2022-07-19 Divergent Technologies, Inc. Multi-circuit single port design in additively manufactured node
IT201800005314A1 (it) * 2018-05-14 2019-11-14 Pasta ad elevata concentrazione di un materiale stratificato esfoliato e procedimento per la sua preparazione
CN112105918A (zh) * 2018-05-14 2020-12-18 株式会社理学 石墨烯前体的判别方法、判别装置以及判别程序
US10691104B2 (en) 2018-05-16 2020-06-23 Divergent Technologies, Inc. Additively manufacturing structures for increased spray forming resolution or increased fatigue life
US11590727B2 (en) 2018-05-21 2023-02-28 Divergent Technologies, Inc. Custom additively manufactured core structures
US11441586B2 (en) 2018-05-25 2022-09-13 Divergent Technologies, Inc. Apparatus for injecting fluids in node based connections
US11035511B2 (en) 2018-06-05 2021-06-15 Divergent Technologies, Inc. Quick-change end effector
US11292056B2 (en) 2018-07-06 2022-04-05 Divergent Technologies, Inc. Cold-spray nozzle
US11269311B2 (en) 2018-07-26 2022-03-08 Divergent Technologies, Inc. Spray forming structural joints
CN108795547B (zh) * 2018-07-26 2021-03-23 颜凤生 含石墨烯-无机非金属纤维的植物复合机油
KR20210035165A (ko) 2018-07-30 2021-03-31 가부시키가이샤 아데카 복합 재료
US20210269644A1 (en) 2018-07-30 2021-09-02 Adeka Corporation Composite material
EP3831892A4 (en) 2018-07-30 2022-05-11 Adeka Corporation METHOD FOR PRODUCING A COMPOSITE MATERIAL
US10836120B2 (en) 2018-08-27 2020-11-17 Divergent Technologies, Inc . Hybrid composite structures with integrated 3-D printed elements
US11433557B2 (en) 2018-08-28 2022-09-06 Divergent Technologies, Inc. Buffer block apparatuses and supporting apparatuses
US11826953B2 (en) 2018-09-12 2023-11-28 Divergent Technologies, Inc. Surrogate supports in additive manufacturing
US11565774B2 (en) 2018-10-03 2023-01-31 Adam Jon Noah Additive manufactured water resistant closed-cell lattice structure for marine hull cavities
US11072371B2 (en) 2018-10-05 2021-07-27 Divergent Technologies, Inc. Apparatus and methods for additively manufactured structures with augmented energy absorption properties
US11260582B2 (en) 2018-10-16 2022-03-01 Divergent Technologies, Inc. Methods and apparatus for manufacturing optimized panels and other composite structures
WO2020086841A1 (en) 2018-10-26 2020-04-30 The University Of Tulsa Vacuum-free, hydrogen-free catalytic synthesis of graphene from solid hydrocarbons
KR20210087019A (ko) 2018-10-26 2021-07-09 가부시키가이샤 아데카 복합 재료
US11504912B2 (en) 2018-11-20 2022-11-22 Divergent Technologies, Inc. Selective end effector modular attachment device
USD911222S1 (en) 2018-11-21 2021-02-23 Divergent Technologies, Inc. Vehicle and/or replica
JP7197089B2 (ja) * 2018-12-03 2022-12-27 国立研究開発法人産業技術総合研究所 電気化学キャパシタ電極用の黒鉛系多孔質炭素材料及びその製造方法、電気化学キャパシタ電極並びに電気化学キャパシタ
US11529741B2 (en) 2018-12-17 2022-12-20 Divergent Technologies, Inc. System and method for positioning one or more robotic apparatuses
US11449021B2 (en) 2018-12-17 2022-09-20 Divergent Technologies, Inc. Systems and methods for high accuracy fixtureless assembly
US10663110B1 (en) 2018-12-17 2020-05-26 Divergent Technologies, Inc. Metrology apparatus to facilitate capture of metrology data
US11885000B2 (en) 2018-12-21 2024-01-30 Divergent Technologies, Inc. In situ thermal treatment for PBF systems
KR102172470B1 (ko) * 2019-01-29 2020-10-29 인제대학교 산학협력단 3d프린터용 기능성 광경화 폴리머
CN109553366B (zh) * 2019-01-31 2020-09-22 深圳大学 一种石墨烯改性水泥基复合材料及其制备方法
WO2020158887A1 (ja) * 2019-02-01 2020-08-06 日亜化学工業株式会社 非水系二次電池用電極活物質の製造方法
CN109880666B (zh) * 2019-03-13 2022-04-15 上海鸣起能源科技有限公司 一种酯类合成油的制备方法及其精制方法
JP7451088B2 (ja) * 2019-03-29 2024-03-18 大阪瓦斯株式会社 熱伝導材料
US11203240B2 (en) 2019-04-19 2021-12-21 Divergent Technologies, Inc. Wishbone style control arm assemblies and methods for producing same
US20220290276A1 (en) * 2019-08-27 2022-09-15 Hitachi Metals, Ltd. WC-Based Cemented Carbide Powder, WC-Based Cemented Carbide Member, and Manufacturing Method for WC-Based Cemented Carbide Member
CN110591797A (zh) * 2019-09-10 2019-12-20 古浪县荣鑫农机有限公司 一种农机润滑油及其制备方法
CN110643410A (zh) * 2019-10-19 2020-01-03 晋江市三豪汽车配件有限公司 一种合成动力机油及其制备方法
WO2021117666A1 (ja) * 2019-12-09 2021-06-17 Dic株式会社 潤滑剤及び潤滑組成物
US11910495B2 (en) * 2019-12-13 2024-02-20 Goodrich Corporation Conductive ink with enhanced mechanical fatigue resistance
US11912339B2 (en) 2020-01-10 2024-02-27 Divergent Technologies, Inc. 3-D printed chassis structure with self-supporting ribs
US11590703B2 (en) 2020-01-24 2023-02-28 Divergent Technologies, Inc. Infrared radiation sensing and beam control in electron beam additive manufacturing
US11479015B2 (en) 2020-02-14 2022-10-25 Divergent Technologies, Inc. Custom formed panels for transport structures and methods for assembling same
US11884025B2 (en) 2020-02-14 2024-01-30 Divergent Technologies, Inc. Three-dimensional printer and methods for assembling parts via integration of additive and conventional manufacturing operations
WO2021168394A1 (en) * 2020-02-20 2021-08-26 Xg Sciences, Inc. Graphene-based lubricant additives and lubricants
US11535322B2 (en) 2020-02-25 2022-12-27 Divergent Technologies, Inc. Omni-positional adhesion device
US11421577B2 (en) 2020-02-25 2022-08-23 Divergent Technologies, Inc. Exhaust headers with integrated heat shielding and thermal syphoning
CN111302334B (zh) * 2020-02-26 2022-04-29 辽宁科技大学 一种原位还原石墨烯发动机机油节能改进剂的制备方法
US11413686B2 (en) 2020-03-06 2022-08-16 Divergent Technologies, Inc. Methods and apparatuses for sealing mechanisms for realizing adhesive connections with additively manufactured components
JP2021150301A (ja) * 2020-03-16 2021-09-27 株式会社村田製作所 積層セラミックコンデンサ
JP7266558B2 (ja) 2020-06-30 2023-04-28 コーセル株式会社 スイッチング電源装置
US11850804B2 (en) 2020-07-28 2023-12-26 Divergent Technologies, Inc. Radiation-enabled retention features for fixtureless assembly of node-based structures
US11806941B2 (en) 2020-08-21 2023-11-07 Divergent Technologies, Inc. Mechanical part retention features for additively manufactured structures
CN112516685A (zh) * 2020-11-17 2021-03-19 华东师范大学重庆研究院 一种可见光光催化空气净化玻璃纤维滤芯及其制备方法
CN112573511A (zh) * 2020-12-03 2021-03-30 铜仁学院 一种石墨烯的简单制备方法
US11872626B2 (en) 2020-12-24 2024-01-16 Divergent Technologies, Inc. Systems and methods for floating pin joint design
US11947335B2 (en) 2020-12-30 2024-04-02 Divergent Technologies, Inc. Multi-component structure optimization for combining 3-D printed and commercially available parts
US11928966B2 (en) 2021-01-13 2024-03-12 Divergent Technologies, Inc. Virtual railroad
EP4304865A1 (en) 2021-03-09 2024-01-17 Divergent Technologies, Inc. Rotational additive manufacturing systems and methods
WO2022226350A1 (en) * 2021-04-23 2022-10-27 Blue Current, Inc. Apparatus and methods for inorganic electrolyte synthesis
US11865617B2 (en) 2021-08-25 2024-01-09 Divergent Technologies, Inc. Methods and apparatuses for wide-spectrum consumption of output of atomization processes across multi-process and multi-scale additive manufacturing modalities
US11572521B1 (en) 2021-11-12 2023-02-07 Hamilton Sundstrand Corporation Corrosion resistant dry film lubricants

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL39629C (pl) 1934-07-06 1936-12-15
JPH08507408A (ja) * 1993-12-22 1996-08-06 サフト 充電式リチウム電気化学電池用の炭素負極及びその製造法
US5700298A (en) 1996-03-15 1997-12-23 Valence Technology, Inc. Carbon anode for lithium ion electrochemical cell
JP2000348727A (ja) * 1999-06-01 2000-12-15 Fuji Elelctrochem Co Ltd 非水電解液2次電池
WO2001070915A1 (en) * 2000-03-17 2001-09-27 Hyperion Catalysis International, Inc. Carbon nanotubes in fuels and lubricants
JP4656710B2 (ja) * 2000-09-29 2011-03-23 三洋電機株式会社 非水電解液二次電池
MXPA04011927A (es) * 2002-05-30 2005-03-31 Ashland Inc Conductividad termica mejorada de fluidos con nanoparticulas de grafito y nanotubo de carbono.
US7071258B1 (en) 2002-10-21 2006-07-04 Nanotek Instruments, Inc. Nano-scaled graphene plates
EP1588385B1 (en) 2002-12-26 2008-05-14 Showa Denko K.K. Carbonaceous material for forming electrically conductive material and use thereof
US7157517B2 (en) * 2003-07-16 2007-01-02 Wayne State University Method of delaminating a graphite structure with a coating agent in a supercritical fluid
US7172745B1 (en) 2003-07-25 2007-02-06 Chien-Min Sung Synthesis of diamond particles in a metal matrix
JP4738039B2 (ja) * 2005-03-28 2011-08-03 三洋電機株式会社 黒鉛系炭素材料の製造方法
JP3920310B1 (ja) * 2006-03-10 2007-05-30 株式会社パワーシステム 電気二重層キャパシタ用正電極及び電気二重層キャパシタ
JP2007277500A (ja) 2006-04-06 2007-10-25 Makoto Sakai 潤滑油界面活性増強装置
JP4957383B2 (ja) 2007-05-29 2012-06-20 パナソニック株式会社 潤滑油を用いた流体軸受装置、これを用いたモータ、および、潤滑油を用いた圧縮機
JP5137066B2 (ja) 2007-09-10 2013-02-06 国立大学法人福井大学 グラフェンシートの製造方法
JP5121663B2 (ja) 2007-10-15 2013-01-16 化薬アクゾ株式会社 無水マレイン酸変性ポリプロピレン及びそれを含む樹脂組成物
US9546092B2 (en) * 2008-02-05 2017-01-17 The Trustees Of Princeton University Functionalized graphene sheets having high carbon to oxygen ratios
WO2009106507A2 (en) * 2008-02-28 2009-09-03 Basf Se Graphite nanoplatelets and compositions
GB2464085A (en) 2008-06-07 2010-04-07 Hexcel Composites Ltd Improved Conductivity of Resin Materials and Composite Materials
WO2010006080A2 (en) 2008-07-08 2010-01-14 Chien-Min Sung Graphene and hexagonal boron nitride planes and associated methods
KR101047983B1 (ko) * 2008-07-31 2011-07-13 한국과학기술연구원 Aa' 적층 흑연 및 그 제조 방법
KR101245001B1 (ko) * 2008-08-28 2013-03-18 고쿠리츠 다이가쿠 호우징 나고야 다이가쿠 그래핀/SiC 복합 재료의 제조 방법 및 그것에 의해 얻어지는 그래핀/SiC 복합 재료
CN101381511A (zh) * 2008-10-24 2009-03-11 南开大学 单层石墨与聚合物复合材料及其制备方法
WO2010077773A1 (en) * 2008-12-30 2010-07-08 3M Innovative Properties Company Lubricant composition and method of forming
WO2010089326A1 (en) * 2009-02-03 2010-08-12 Timcal S.A. New graphite material
WO2010095716A1 (ja) 2009-02-20 2010-08-26 三菱化学株式会社 リチウムイオン二次電池用炭素材料
JP2010254822A (ja) 2009-04-24 2010-11-11 Ube Ind Ltd 熱可塑性樹脂組成物及びそれからなる成形品
JP5457101B2 (ja) * 2009-08-05 2014-04-02 パナソニック株式会社 非水電解質二次電池
US8222190B2 (en) * 2009-08-19 2012-07-17 Nanotek Instruments, Inc. Nano graphene-modified lubricant
CN101752561B (zh) 2009-12-11 2012-08-22 宁波艾能锂电材料科技股份有限公司 石墨烯改性磷酸铁锂正极活性材料及其制备方法以及锂离子二次电池
EP2547723A4 (en) * 2010-03-16 2017-08-02 Basf Se Method for marking polymer compositions containing graphite nanoplatelets
WO2011120008A1 (en) 2010-03-26 2011-09-29 University Of Hawaii Nanomaterial-reinforced resins and related materials
CA2803772C (en) * 2010-06-25 2017-03-28 National University Of Singapore Methods of forming graphene by graphite exfoliation
FR2965274A1 (fr) * 2010-09-28 2012-03-30 Total Raffinage Marketing Composition lubrifiante
KR101137673B1 (ko) 2010-10-07 2012-04-20 이재환 나노 복합 재료 조성물
EP2647600A4 (en) 2010-11-29 2015-10-28 Sekisui Chemical Co Ltd CARBON MATERIAL, PROCESS FOR PRODUCING CARBON MATERIAL, METHOD FOR PRODUCING GRAPHITE IN SEWERS, AND GRAPHITE IN FLAKES
CA2857947C (en) * 2011-03-15 2015-08-04 Peerless Worldwide, Llc Facile synthesis of graphene, graphene derivatives and abrasive nanoparticles and their various uses, including as tribologically-beneficial lubricant additives
KR101223970B1 (ko) 2011-04-21 2013-01-22 쇼와 덴코 가부시키가이샤 흑연재료, 전지전극용 탄소재료, 및 전지
JP2012250883A (ja) * 2011-06-03 2012-12-20 Sekisui Chem Co Ltd 表面修飾炭素材料の製造方法、樹脂複合材料及び樹脂複合材料の製造方法
GB201109962D0 (en) 2011-06-14 2011-07-27 Univ Durham Process for producing graphene
US20130022530A1 (en) * 2011-07-19 2013-01-24 Robert Angelo Mercuri Production Of Exfoliated Graphite
FR2978021B1 (fr) * 2011-07-22 2013-12-20 Dior Christian Parfums Systeme de conditionnement et d'application de produit, notamment de produit cosmetique
JP2013077475A (ja) 2011-09-30 2013-04-25 Mitsubishi Materials Corp リチウムイオン二次電池の正極材料用の導電助剤
JP2013079348A (ja) 2011-10-05 2013-05-02 Nissan Motor Co Ltd 樹脂組成物
KR20200113013A (ko) 2011-12-28 2020-10-05 미쯔비시 케미컬 주식회사 비수계 전해액 및 비수계 전해액 이차 전지
CN104204104A (zh) * 2012-03-27 2014-12-10 积水化学工业株式会社 树脂复合材料
JP5805572B2 (ja) 2012-03-28 2015-11-04 株式会社豊田中央研究所 摺動部材及びその製造方法
JP6102914B2 (ja) 2012-03-30 2017-03-29 日本電気株式会社 二次電池用負極材料、および二次電池
KR20140147813A (ko) 2012-04-04 2014-12-30 세키스이가가쿠 고교가부시키가이샤 수지 복합 재료의 제조 방법 및 수지 복합 재료
JP2013233790A (ja) * 2012-04-11 2013-11-21 Sekisui Chem Co Ltd 樹脂成形体の製造方法及び樹脂成形体
US8486870B1 (en) 2012-07-02 2013-07-16 Ajay P. Malshe Textured surfaces to enhance nano-lubrication
US20140023864A1 (en) 2012-07-19 2014-01-23 Anirudha V. Sumant Superlubricating Graphene Films
EP2889937B1 (en) 2012-08-23 2018-10-03 Mitsubishi Chemical Corporation Carbon material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and manufacturing method for carbon material for non-aqueous electrolyte secondary battery
US20150232664A1 (en) 2012-09-07 2015-08-20 Sabic Innovative Plastics Ip B.V. Thermally conductive blended polymer compositions with improved flame retardancy
JP6127426B2 (ja) * 2012-09-26 2017-05-17 三菱化学株式会社 非水系二次電池用炭素材、負極及び、非水系二次電池
GB201218952D0 (en) * 2012-10-22 2012-12-05 Cambridge Entpr Ltd Functional inks based on layered materials and printed layered materials
WO2014087992A1 (ja) * 2012-12-04 2014-06-12 昭和電工株式会社 グラフェンシート組成物
US10374223B2 (en) 2013-01-23 2019-08-06 Toray Industries, Inc. Positive electrode active material/graphene composite particles, positive electrode material for lithium ion cell, and method for manufacturing positive electrode active material/graphene composite particles
JP2014201676A (ja) 2013-04-05 2014-10-27 積水化学工業株式会社 樹脂複合材料の製造方法
JP2014210916A (ja) 2013-04-05 2014-11-13 積水化学工業株式会社 樹脂複合材料
US8957003B2 (en) 2013-05-16 2015-02-17 Enerage Inc. Modified lubricant
CN103834235A (zh) * 2014-02-20 2014-06-04 江苏格美高科技发展有限公司 一种导电石墨烯碳浆油墨及其制备方法
JP5688669B1 (ja) 2014-09-09 2015-03-25 グラフェンプラットフォーム株式会社 グラフェン前駆体として用いられる黒鉛系炭素素材、これを含有するグラフェン分散液及びグラフェン複合体並びにこれを製造する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11339055B2 (en) 2016-10-19 2022-05-24 Incubation Alliance, Inc. Graphite/graphene composite material, heat collector, a heat conductor, a heat dissipator, a heat-dissipation system, and a method of producing the graphite/graphene composite material

Also Published As

Publication number Publication date
PE20170824A1 (es) 2017-07-04
PH12017500397B1 (en) 2017-07-17
BR112017004525A2 (pt) 2018-05-08
MY163243A (en) 2017-08-30
EA201790338A1 (ru) 2017-05-31
TW201612106A (en) 2016-04-01
TWI558660B (zh) 2016-11-21
US9752035B2 (en) 2017-09-05
ES2662959R1 (es) 2018-05-29
GB201513701D0 (en) 2015-09-16
CA2916795A1 (en) 2016-01-07
WO2016002254A1 (ja) 2016-01-07
EA030118B1 (ru) 2018-06-29
GB2528790A (en) 2016-02-03
BR112017003673A2 (pt) 2018-07-03
HK1223345A1 (zh) 2017-07-28
WO2016038692A1 (ja) 2016-03-17
EP3002317B1 (en) 2022-08-24
PE20170823A1 (es) 2017-07-04
JPWO2016038692A1 (ja) 2017-04-27
ES2617036A2 (es) 2017-06-15
ES2652487R1 (es) 2018-02-08
ES2617036B1 (es) 2018-05-11
AP2017009814A0 (en) 2017-03-31
ES2662959A2 (es) 2018-04-10
CN105518072B (zh) 2017-11-07
PL420791A1 (pl) 2017-07-03
SG10201508781XA (en) 2016-04-28
AU2015242994B1 (en) 2016-01-28
MY163241A (en) 2017-08-30
EP2993219A1 (en) 2016-03-09
IL244667A (en) 2017-02-28
MX2017002917A (es) 2017-11-13
EA029994B1 (ru) 2018-06-29
CN105518114B (zh) 2017-11-07
ZA201607142B (en) 2017-08-30
KR20160041051A (ko) 2016-04-15
IL248763A0 (en) 2017-01-31
PH12017500396A1 (en) 2017-07-17
AP2016009657A0 (en) 2016-12-31
KR101901876B1 (ko) 2018-09-28
US10421863B2 (en) 2019-09-24
PH12017500399B1 (en) 2017-07-17
AR101795A1 (es) 2017-01-11
PH12017500398A1 (en) 2017-07-17
IL244662B (en) 2019-05-30
US20160101980A1 (en) 2016-04-14
EP3007251B1 (en) 2022-09-14
AP2017009816A0 (en) 2017-03-31
EP3002317A1 (en) 2016-04-06
EP3007251A1 (en) 2016-04-13
EA201790158A1 (ru) 2017-05-31
US20160194474A1 (en) 2016-07-07
PH12017500399A1 (en) 2017-07-17
HK1223082A1 (zh) 2017-07-21
CO2017000713A2 (es) 2017-06-30
EA030013B1 (ru) 2018-06-29
CN105452159B (zh) 2016-12-21
KR101581363B1 (ko) 2015-12-30
ES2617036A8 (es) 2017-09-29
SG11201600969RA (en) 2016-03-30
CA2916788A1 (en) 2015-12-30
PL3002322T3 (pl) 2020-03-31
ES2662960B1 (es) 2018-12-13
PE20170822A1 (es) 2017-07-04
US20170174898A1 (en) 2017-06-22
WO2016002268A1 (ja) 2016-01-07
IL244120B (en) 2018-01-31
EP3002317A4 (en) 2016-04-06
CL2017000569A1 (es) 2017-11-10
CN105452159A (zh) 2016-03-30
KR101604683B1 (ko) 2016-03-18
PL420789A1 (pl) 2017-07-03
ES2601130B1 (es) 2017-09-25
PL233494B1 (pl) 2019-10-31
MX2017002915A (es) 2017-12-07
CA2916788C (en) 2016-11-08
PH12018501050A1 (en) 2021-06-07
CA2916783C (en) 2017-08-08
EP3002322A1 (en) 2016-04-06
ES2601130A2 (es) 2017-02-14
SG11201600970WA (en) 2016-03-30
MX2016014793A (es) 2017-03-10
CO2017003180A2 (es) 2017-06-20
SG11201600972YA (en) 2016-03-30
CN105517953A (zh) 2016-04-20
MY165125A (en) 2018-02-28
US20170179490A1 (en) 2017-06-22
CO2017003189A2 (es) 2017-07-28
CN105517953B (zh) 2017-07-04
AU2015242993A1 (en) 2016-03-10
IL244175A0 (en) 2016-04-21
EP2982646A4 (en) 2016-04-06
IL244120A0 (en) 2016-04-21
EA201890408A1 (ru) 2018-10-31
US9862834B2 (en) 2018-01-09
US9815987B2 (en) 2017-11-14
PL420790A1 (pl) 2017-07-03
US20180118950A1 (en) 2018-05-03
TW201601997A (zh) 2016-01-16
PL420253A1 (pl) 2017-04-24
AU2015242993B2 (en) 2016-03-31
EP3007251A4 (en) 2016-04-13
EP3868845A1 (en) 2021-08-25
HK1223392A1 (zh) 2017-07-28
WO2016002261A1 (ja) 2016-01-07
ES2652487B1 (es) 2018-09-06
EA201790450A1 (ru) 2017-05-31
ES2662960R1 (es) 2018-06-04
TW201607129A (zh) 2016-02-16
PE20170825A1 (es) 2017-07-04
US9862833B2 (en) 2018-01-09
IL244175B (en) 2018-01-31
PH12017500397A1 (en) 2017-07-17
MX2017002914A (es) 2017-08-10
EP2982646A1 (en) 2016-02-10
AU2015242995A1 (en) 2016-03-10
MY181036A (en) 2020-12-16
ES2601130R1 (es) 2017-03-06
EA034507B1 (ru) 2020-02-14
KR101600834B1 (ko) 2016-03-08
GB2528790B (en) 2017-04-05
TWI558661B (zh) 2016-11-21
TW201604131A (zh) 2016-02-01
CA2916783A1 (en) 2016-01-07
TW201604275A (zh) 2016-02-01
CO2017003186A2 (es) 2017-07-19
CL2017000570A1 (es) 2017-11-03
BR112017004527A2 (pt) 2018-05-08
BR112017003673B1 (pt) 2022-03-03
EP2982646B1 (en) 2021-12-01
EA201790171A1 (ru) 2017-05-31
CA2916795C (en) 2017-12-05
ES2617036R1 (es) 2017-11-21
KR101588689B1 (ko) 2016-01-27
MY163254A (en) 2017-08-30
MA40129A1 (fr) 2017-09-29
BR112017004639B1 (pt) 2021-02-02
BR112017004639A2 (pt) 2018-05-08
TWI543933B (zh) 2016-08-01
IL248763B (en) 2018-12-31
AP2017009815A0 (en) 2017-03-31
ES2662960A2 (es) 2018-04-10
HK1223390A1 (zh) 2017-07-28
CN105518072A (zh) 2016-04-20
EA030012B1 (ru) 2018-06-29
ES2662959B1 (es) 2018-12-05
IL244667A0 (en) 2016-04-21
CN105518114A (zh) 2016-04-20
ES2652487A2 (es) 2018-02-02
JP5688669B1 (ja) 2015-03-25
TWI532238B (zh) 2016-05-01
TWI544070B (zh) 2016-08-01
CL2017000567A1 (es) 2017-11-03
US20170175023A1 (en) 2017-06-22
IL244662A0 (en) 2016-04-21
US9428393B2 (en) 2016-08-30
KR101600837B1 (ko) 2016-03-10
EP3002322B1 (en) 2019-08-07
CL2017000568A1 (es) 2017-11-03
EP2993219A4 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
US9428393B2 (en) Graphite-based carbon material useful as graphene precursor, as well as method of producing the same
CA2905717C (en) Graphene composite and method of producing the same
JP5697067B1 (ja) グラフェン前駆体として用いられる黒鉛系炭素素材
AU2015234343B2 (en) Graphene composite and method of producing the same
US9587134B2 (en) Graphene composite and method of producing the same
JP5812313B1 (ja) グラフェン複合体及びその製造方法
CA2894774C (en) Graphite-based carbon material useful as graphene precursor, as well as method of producing the same
US20160180981A1 (en) Composite conductive material, power storage device, conductive dispersion, conductive device, conductive composite and thermally conductive composite
GB2532370A (en) Graphite-based carbon material useful as graphene precursor, as well as method of producing the same
OA18232A (en) Graphite-type carbon material used as graphene precursor and method for producing same.
OA18233A (en) Composite conductive material body, electricity storage device, electrically conductive dispersion liquid, electrically conductive device, electrically conductive composite, and thermally conductive composite.

Legal Events

Date Code Title Description
AS Assignment

Owner name: GRAPHENE PLATFORM CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HASEGAWA, SHOJI;KAMIYA, NAGISA;REEL/FRAME:035838/0726

Effective date: 20150605

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION