TWI675461B - 顯示裝置 - Google Patents

顯示裝置 Download PDF

Info

Publication number
TWI675461B
TWI675461B TW103140805A TW103140805A TWI675461B TW I675461 B TWI675461 B TW I675461B TW 103140805 A TW103140805 A TW 103140805A TW 103140805 A TW103140805 A TW 103140805A TW I675461 B TWI675461 B TW I675461B
Authority
TW
Taiwan
Prior art keywords
film
pixel
sub
oxide semiconductor
insulating film
Prior art date
Application number
TW103140805A
Other languages
English (en)
Other versions
TW201530744A (zh
Inventor
楠紘慈
三宅博之
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW201530744A publication Critical patent/TW201530744A/zh
Application granted granted Critical
Publication of TWI675461B publication Critical patent/TWI675461B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0213Addressing of scan or signal lines controlling the sequence of the scanning lines with respect to the patterns to be displayed, e.g. to save power

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)
  • Geometry (AREA)

Abstract

本發明的一個方式可以提供一種開口率高且包括能夠增大電容值的電容元件來可以實現窄邊框化的顯示裝置。電晶體包括:基板上的閘極電極;與該閘極電極重疊的氧化物半導體膜;與該氧化物半導體膜的一面接觸的閘極絕緣膜;以及與該氧化物半導體膜接觸的一對導電膜。電容元件包括:在該閘極絕緣膜上且與該一對導電膜的一方接觸的金屬氧化物膜;無機絕緣膜;以及該無機絕緣膜上的第一透光導電膜。像素電極由第二透光導電膜形成且與該一對導電膜的一方接觸。兼作閘極電極的第一閘極線以選擇四個子像素中的三個子像素的方式連接,第二閘極線以選擇剩下子像素及下行的一個子像素的方式連接。

Description

顯示裝置
本發明的一個方式係關於一種顯示裝置。本發明的一個方式尤其係關於包括作為顯示元件的液晶元件的顯示裝置。
注意,本發明不侷限於上述技術領域。本說明書等所公開的發明的技術領域係關於一種物體、方法或製造方法。另外,本發明係關於一種製程(process)、機器(machine)、產品(manufacture)或者組合物(composition of matter)。由此,更明確而言,作為本說明書所公開的本發明的一個方式的技術領域的一個例子可以舉出半導體裝置、顯示裝置、發光裝置、蓄電裝置、記憶體裝置、這些裝置的驅動方法或者這些裝置的製造方法。
近年來,已經提出了對使用包括三原色,即,RGB(紅色、綠色、藍色)的濾色片的子像素進行彩色顯示的結構追加W(白色)的子像素來實現低耗電量化 或亮度得到提高的顯示裝置(參照專利文獻1)。
[專利文獻1]日本專利申請公開第平11-295717號公報
當對包括RGB(紅色、綠色、藍色)的濾色片的子像素追加W子像素時,這導致用來控制各子像素的佈線數量增多。當佈線數量增多時,需要擴大用來驅動佈線的電路面積,由此在包括用來驅動的電路的結構中難以實現窄邊框化。
或者,由於構成像素的子像素數量增多而使每個子像素的面積減少,這導致降低開口率或者難以確保電容元件所需要的電容值。
於是,本發明的一個方式的目的之一是提供一種包括即使子像素數量增多也能夠抑制佈線數量的增加的新穎結構的顯示裝置等。或者,本發明的一個方式的目的之一是提供一種包括能夠實現窄邊框化的新穎結構的顯示裝置等。或者,本發明的一個方式的目的之一是提供一種包括能夠抑制開口率降低的新穎結構的顯示裝置等。或者,本發明的一個方式的目的之一是提供一種包括能夠確保電容元件所需要的電容值的新穎結構的顯示裝置等。或者,本發明的一個方式的目的之一是提供一種包括顯示品質優異的新穎結構的顯示裝置等。或者,本發明的一個方式的目的之一是提供一種新穎顯示裝置等。
注意,本發明的目的不侷限於上列目的。上列目的並不妨礙其他目的的存在。注意,其他目的是下面記載的在本節中不說明的目的。所屬技術領域的普通技術人員可以從說明書或圖式等的記載導出並適當地抽出該在本節中不說明的目的。注意,本發明的一個方式實現上列記載及/或其他目的中至少一個目的。
本發明的一個方式是一種顯示裝置,包括:具有第一子像素至第四子像素的第一像素;設置在第一像素的下行的具有第一子像素至第四子像素的第二像素;供應用來選擇第一像素所具有的第一子像素至第三子像素的信號的第一佈線;以及用來選擇第一像素所具有的第四子像素的第二佈線,其中第二佈線是用來選擇第二像素所具有的第四子像素的佈線。
本發明的另一個方式是一種顯示裝置,包括:具有第一子像素至第四子像素的第一像素;設置在第一像素的下行的具有第一子像素至第四子像素的第二像素;供應用來選擇第一像素所具有的第一子像素至第三子像素的信號的第一佈線;用來選擇第一像素所具有的第四子像素的第二佈線;以及用來選擇第二像素所具有的第一子像素至第三子像素的第三佈線,其中第二佈線是用來選擇第二像素所具有的第四子像素的佈線。
本發明的一個方式可以提供一種包括即使子像素數量增多也能夠抑制佈線數量的增加的新穎結構的顯示裝置等。或者,本發明的一個方式可以提供一種包括能 夠實現窄邊框化的新穎結構的顯示裝置等。或者,本發明的一個方式可以提供一種包括能夠抑制開口率降低的新穎結構的顯示裝置等。或者,本發明的一個方式可以提供一種包括能夠確保電容元件所需要的電容值的新穎結構的顯示裝置等。或者,本發明的一個方式可以提供一種包括顯示品質優異的新穎結構的顯示裝置等。或者,本發明的一個方式可以提供一種新穎顯示裝置等。
注意,本發明的效果不侷限於上列效果。上列效果並不妨礙其他效果的存在。注意,其他效果是下面記載的在本節中不說明的效果。所屬技術領域的普通技術人員可以從說明書或圖式等的記載導出並適當地抽出該在本節中不說明的效果。注意,本發明的一個方式具有上列記載及/或其他效果中至少一個效果。因此,本發明的一個方式有時不具有上列效果。
11‧‧‧像素部
13‧‧‧像素
13_1‧‧‧像素
13_2‧‧‧像素
14‧‧‧子像素
14B‧‧‧子像素
14B_1‧‧‧子像素
14B_2‧‧‧子像素
14G‧‧‧子像素
14G_1‧‧‧子像素
14G_2‧‧‧子像素
14R‧‧‧子像素
14R_1‧‧‧子像素
14R_2‧‧‧子像素
14W_1‧‧‧子像素
14W_2‧‧‧子像素
16‧‧‧信號線驅動電路
17‧‧‧掃描線
17_1‧‧‧掃描線
17_2‧‧‧掃描線
17_3‧‧‧掃描線
18‧‧‧電位生成電路
19‧‧‧電容線
25‧‧‧信號線
25_1‧‧‧信號線
25_2‧‧‧信號線
25_3‧‧‧信號線
31‧‧‧液晶元件
41‧‧‧發光元件
43‧‧‧電晶體
45‧‧‧電晶體
47‧‧‧佈線
49‧‧‧佈線
50‧‧‧佈線
51‧‧‧閘極絕緣膜
53‧‧‧無極絕緣膜
53a‧‧‧絕緣膜
70‧‧‧電子槍室
72‧‧‧光學系統
74‧‧‧樣本室
76‧‧‧光學系統
78‧‧‧拍攝裝置
80‧‧‧觀察室
82‧‧‧膠片室
84‧‧‧電子
88‧‧‧物質
92‧‧‧螢光板板
100‧‧‧顯示裝置
102‧‧‧電晶體
102a‧‧‧電晶體
103‧‧‧電晶體
103a‧‧‧電晶體
103d‧‧‧電晶體
105‧‧‧電容元件
302‧‧‧基板
304a‧‧‧導電膜
304b‧‧‧導電膜
304c‧‧‧導電膜
304d‧‧‧導電膜
305‧‧‧絕緣膜
306‧‧‧絕緣膜
307‧‧‧氧化物半導體膜
308a‧‧‧氧化物半導體膜
308b‧‧‧氧化物半導體膜
308c‧‧‧金屬氧化物膜
308d‧‧‧氧化物半導體膜
308e‧‧‧氧化物半導體膜
308f‧‧‧金屬氧化物膜
309‧‧‧導電膜
310a‧‧‧導電膜
310b‧‧‧導電膜
310c‧‧‧導電膜
310d‧‧‧導電膜
310e‧‧‧導電膜
310f‧‧‧導電膜
310g‧‧‧導電膜
310h‧‧‧導電膜
310i‧‧‧導電膜
310j‧‧‧導電膜
311‧‧‧絕緣膜
311a‧‧‧絕緣膜
311b‧‧‧絕緣膜
312‧‧‧絕緣膜
312a‧‧‧絕緣膜
312b‧‧‧絕緣膜
313‧‧‧絕緣膜
314‧‧‧絕緣膜
315‧‧‧導電膜
316a‧‧‧導電膜
316b‧‧‧導電膜
316d‧‧‧導電膜
316e‧‧‧導電膜
317‧‧‧有機絕緣膜
317a‧‧‧有機絕緣膜
318‧‧‧導電膜
319‧‧‧導電膜
319a‧‧‧導電膜
319b‧‧‧導電膜
320‧‧‧配向膜
321‧‧‧液晶層
322‧‧‧液晶元件
336‧‧‧多層膜
336a‧‧‧氧化物半導體膜
336b‧‧‧氧化物半導體膜
342‧‧‧基板
344‧‧‧遮光膜
346‧‧‧有色膜
348‧‧‧絕緣膜
350‧‧‧導電膜
352‧‧‧配向膜
362‧‧‧開口部
364a‧‧‧開口部
364b‧‧‧開口部
364c‧‧‧開口部
364d‧‧‧開口部
371‧‧‧有機樹脂膜
373‧‧‧EL層
375‧‧‧共用電極
1001‧‧‧主體
1002‧‧‧外殼
1003a‧‧‧顯示部
1003b‧‧‧顯示部
1004‧‧‧鍵盤按鈕
1021‧‧‧主體
1022‧‧‧固定部
1023‧‧‧顯示部
1024‧‧‧操作按鈕
1025‧‧‧外部儲存槽
1030‧‧‧外殼
1031‧‧‧外殼
1032‧‧‧顯示面板
1033‧‧‧揚聲器
1034‧‧‧麥克風
1035‧‧‧操作鍵
1036‧‧‧指向裝置
1037‧‧‧照相機
1038‧‧‧外部連接端子
1040‧‧‧太陽能電池
1041‧‧‧外部儲存槽
1050‧‧‧電視機
1051‧‧‧外殼
1052‧‧‧儲存介質再現錄影部
1053‧‧‧顯示部
1054‧‧‧外部連接端子
1055‧‧‧支架
1056‧‧‧外部記憶體
8000‧‧‧顯示模組
8001‧‧‧上部覆蓋物
8002‧‧‧下部覆蓋物
8003‧‧‧FPC
8004‧‧‧觸控面板
8005‧‧‧FPC
8006‧‧‧顯示面板
8007‧‧‧背光單元
8008‧‧‧光源
8009‧‧‧框架
8010‧‧‧印刷基板
8011‧‧‧電池
在圖式中:圖1A及圖1B是說明顯示裝置的一個方式的方塊圖及電路圖;圖2是說明顯示裝置的一個方式的俯視圖;圖3是說明顯示裝置的一個方式的俯視圖;圖4是說明顯示裝置的一個方式的剖面圖;圖5A至圖5C是說明顯示裝置的製造方法的一個方 式的剖面圖;圖6A至圖6C是說明顯示裝置的製造方法的一個方式的剖面圖;圖7A及圖7B是說明顯示裝置的製造方法的一個方式的剖面圖;圖8A至圖8C是說明顯示裝置的製造方法的一個方式的剖面圖;圖9A至圖9C是說明顯示裝置的製造方法的一個方式的剖面圖;圖10A至圖10C是說明顯示裝置的製造方法的一個方式的剖面圖;圖11是說明顯示裝置的一個方式的剖面圖;圖12是說明顯示裝置的一個方式的剖面圖;圖13是說明顯示裝置的一個方式的剖面圖;圖14是說明顯示裝置的一個方式的剖面圖;圖15是說明顯示裝置的一個方式的剖面圖;圖16是說明顯示裝置的一個方式的剖面圖;圖17A至圖17C是氧化物半導體的剖面TEM影像及局部性的傅立葉變換影像;圖18A至圖18D是示出氧化物半導體膜的奈米束電子繞射圖案的圖以及示出透過電子繞射測量裝置的一個例子的圖;圖19A至圖19C是示出利用透過電子繞射測量的結構分析的一個例子的圖以及平面TEM影像; 圖20A及圖20B是示出顯示裝置的驅動方法的一個例子的示意圖;圖21是說明顯示模組的圖;圖22A至圖22D是根據實施方式的電子裝置的外觀圖;圖23是說明顯示裝置的一個方式的剖面圖;圖24是說明顯示裝置的一個方式的剖面圖;圖25是說明顯示裝置的一個方式的剖面圖;圖26是說明顯示裝置的一個方式的剖面圖;圖27A及圖27B是說明顯示裝置的一個方式的電路圖;圖28A至圖28C是說明顯示裝置的一個方式的剖面圖;圖29是說明電阻率的溫度依賴性的圖。
下面,參照圖式實施方式。注意,所屬技術領域的普通技術人員可以很容易地理解一個事實,就是實施方式可以以多個不同形式來實施,其方式和詳細內容可以被變換為各種各樣的形式而不脫離精神及其範圍。因此,本發明不應該被解釋為僅限定在以下所示的實施方式所記載的內容中。另外,在以下說明的本發明的結構中,在不同的圖式中共同使用相同的元件符號來表示相同的部分。
另外,在圖式中,為便於清楚地說明有時對大小、層的厚度和/或區域進行誇張的描述。因此,本發明並不一定限定於上述尺寸。此外,在圖式中,示意性地示出理想的例子,而不侷限於圖式所示的形狀或數值等。例如,可以包括因雜波或定時偏差等所引起的信號、電壓或電流的不均勻等。
此外,在本說明書等中,電晶體是指至少包括閘極、汲極以及源極的三個端子的元件。在汲極(汲極端子、汲極區或汲極電極)與源極(源極端子、源極區或源極電極)之間具有通道區,並且電流能夠流過汲極、通道區以及源極。
在此,因為源極和汲極根據電晶體的結構或工作條件等而更換,因此很難限定哪個是源極哪個是汲極。因此,有時將被用作源極的部分或被用作汲極的部分不稱為源極或汲極,而將源極和汲極中的一個稱為第一端子並將源極和汲極中的另一個稱為第二端子。
注意,本說明書所使用的“第一”、“第二”、“第三”等序數詞是為了避免結構要素的混同而附上的,而不是為了在數目方面上進行限定而附上的。
注意,在本說明書中,注意,在本說明書中,“使A與B連接”的描述除了包括使A與B直接連接的情況以外,還包括使A與B電連接的情況。在此,“使A與B電連接”的描述是指當在A與B之間存在具有某種電作用的目標物時,能夠進行A和B的電信號的 授受的情況。
注意,在本說明書中,為了方便起見,使用“上”“下”等的表示配置的詞句以參照圖式構成要素的位置關係。另外,構成要素的位置關係根據描述各構成要素的方向適當地改變。因此,不侷限於說明書中所說明的詞句,根據情況可以適當地換詞句。
另外,在本說明書等中,圖式中的各電路方塊的配置是因說明關係而特定位置關係的,雖然在圖式中示出不同的電路方塊具有不同的功能,但是有時在實際的電路或區域中可以設置為在相同的電路方塊中實現不同的功能。此外,圖式中的各電路方塊的功能是因說明關係而特定功能的,即使示出的是一個電路方塊,但是有時在實際的電路或區域中也可以設置為藉由多個電路方塊進行一個電路方塊所進行的處理。
注意,電壓大多是指某個電位和參考電位(例如接地電位)之間的電位差。因此,電壓、電位和電位差可以分別稱為電位、電壓和電壓差。注意,電壓是指兩點之間的電位差,並且電位是指某一點處的靜電場中的單位電荷所具有的靜電能(電位能)。
注意,一般而言,電位或電壓是彼此相對的。因此,接地電位並不一定限於0伏特。
注意,在本說明書等中,“平行”是指兩條直線形成的角度為-10°以上且10°以下的狀態。因此也包括角度為-5°以上且5°以下的情況。另外,“垂直”是指 兩條直線形成的角度為80°以上且100°以下的狀態。因此也包括角度為85°以上且95°以下的情況。
另外,在本說明書等中,六方晶系包括三方晶系和菱方晶系。
實施方式1
在本實施方式中,參照圖式對本發明的一個方式的顯示裝置所包括的像素結構進行說明。
在圖1A中作為顯示裝置的一個例子示出顯示裝置100。圖1A所示的顯示裝置100包括像素部11、掃描線驅動電路12、信號線驅動電路16、設置為平行或大致平行且其電位由掃描線驅動電路12控制的掃描線17、以及設置為平行或大致平行且其電位由信號線驅動電路16控制的信號線25。而且,像素部11包括配置為矩陣狀的像素13。像素13包括多個子像素14。而且,顯示裝置100還包括沿著信號線25設置為平行或大致平行且將電位生成電路18的電位供應的電容線19。
另外,顯示裝置包括驅動多個像素的驅動電路等。此外,顯示裝置有時還包括配置在另一基板上的控制電路、電源電路、信號產生電路及背光模組等而被稱為液晶模組。另外,掃描線驅動電路12是具有驅動掃描線17的功能的電路,而且有時簡單地被稱為電路。此外,電位生成電路18是具有生成供應給電容線19的電位的功能的電路,而且有時簡單地被稱為電路。此外,信號線驅 動電路16是具有驅動信號線25的功能的電路,而且有時簡單地被稱為電路。
像素13具有藉由子像素14控制RGB(紅色、綠色、藍色)的三原色和W(白色)的四色的光透過而根據這些光的加法混色進行彩色顯示的功能。控制RGB光透過的子像素包括用來將來自光源的光變換為呈現各顏色的光的有色膜。注意,控制W光透過的子像素在來自光源的光是白色時使該光直接透過。注意,除了藉由RGB的加法混色得到白色以外,還可以藉由混合處於補色關係的顏色得到白色。
從透過RGB光的子像素得到的白色由於是透過濾色片的光,由此其強度比從光源射出的光的強度小。如本發明的一個方式那樣,從能夠使光源的光直接透過的透過W光的子像素得到的白色的強度比從光源射出的光的強度幾乎沒有變化。因此,從本發明的一個方式的透過RGBW光的子像素得到的白色的強度比從透過RGB光的子像素得到的白色大。換言之,從透過RGBW光的子像素得到的白色被抑制光強度的降低。因此,在使用透過RGBW光的子像素的本發明的一個方式中,與在包括透過RGB光的子像素的顯示裝置中獲得白色的情況相比,可以減弱光源的光。結果,可以實現顯示裝置的耗電量的降低。
子像素14具有如下功能:藉由供應掃描信號來控制電晶體的導通狀態,用電容元件保持資料信號,根 據被資料信號供應的電荷量驅動顯示元件,從而控制光透過。注意,子像素14包括分別對應於RGBW的每個顏色的第一子像素至第四子像素。
作為一個例子,掃描線17的電連接關係按照像素部11中的配置為矩陣狀的子像素14的每個行而不同。例如,第一行掃描線17與第一行像素13中的控制透過RGB光的子像素14電連接。此外,第二行掃描線17與第一行像素13中的抑制透過W光的子像素14及第二行像素13中的控制透過W光的子像素14電連接。此外,第三行掃描線17與第二行像素13中的控制透過RGB光的子像素14電連接。注意,掃描線17是供應選擇子像素的信號的佈線,有時簡單地稱為佈線。
作為一個例子,信號線25的電連接關係按照以矩陣狀排列在像素部11中的配置為矩陣狀的子像素14的每個列而不同。例如,第一列信號線25與第一列像素13中的控制透過R光的子像素14電連接。此外,第二列信號線25與第一列像素13中的控制透過G光的子像素14電連接。此外,第三列信號線25與電連接於第一列信號線的像素13中的控制透過B光的子像素14及控制透過W光的子像素14電連接。注意,信號線25是對子像素供應資料信號的資料的佈線,有時簡單地稱為佈線。
作為電容線19的一個例子,第一列電容線19與第一列至第三列像素13中的控制透過RGBW光的子像素14電連接。注意,電容線19是對子像素供應固定電位 的佈線,有時簡單地稱為佈線。
這裡,圖27A及圖27B示出能夠用於圖1A所示的顯示裝置的子像素14的電路結構的一個例子。
圖27A所示的子像素301包括液晶元件31、電晶體103和電容元件105。
根據子像素301的規格適當地設定液晶元件31的一對電極之一的電位。根據被寫入的資料設定液晶元件31的配向狀態。此外,也可以對多個子像素301的每一個所包括的液晶元件31的一對電極之一供應共用電位(common potential)。此外,也可以對各行的子像素301的每一個所包括的液晶元件31的一對電極之一分別供應不同電位。
注意,液晶元件31是利用液晶的光學調變作用來控制光的透過或非透過的元件。另外,液晶的光學調變作用由施加到液晶的電場(包括橫向電場、縱向電場或傾斜方向電場)控制。另外,作為液晶元件31,可以舉出向列液晶、膽固醇相(cholesteric)液晶、層列型液晶、熱致液晶、溶致液晶、鐵電液晶、反鐵電液晶等。
例如,作為包括液晶元件31的顯示裝置的驅動方法也可以使用如下模式:TN模式;VA模式;ASM(Axially Symmetric Aligned Micro-cell:軸對稱排列微單元)模式;OCB(Optically Compensated Birefringence:光學補償彎曲)模式;MVA模式;PVA(Patterned Vertical Alignment:垂直配向構型)模式; IPS模式;FFS模式;或TBA(Transverse Bend Alignment:橫向彎曲配向)模式等。然而,不侷限於此,可以採用各種方式作為液晶元件及其驅動方式。
此外,也可以使用包含呈現藍相(Blue Phase)的液晶和手性試劑的液晶組成物構成液晶元件。呈現藍相的液晶的回應速度快,即為1msec以下。並且呈現藍相的液晶由於具有光學各向同性,所以不需要配向處理,且視角依賴性小。
在圖27A所示的子像素301的結構中,電晶體103的源極電極和汲極電極中的一個與信號線25電連接,源極電極和汲極電極中的另一個與液晶元件31的一對電極中的另一個電連接。另外,電晶體103的閘極電極與掃描線17電連接。電晶體103具有藉由成為導通狀態或關閉狀態而對資料信號的資料的寫入進行控制的功能。
在圖27A所示的子像素301的結構中,電容元件105的一對電極中的一個與被供應電位的電容線19電連接,另一個與液晶元件31的一對電極中的另一個電連接。注意,根據子像素301的規格適當地設定電容線19的電位的值。電容元件105被用作儲存被寫入的資料的儲存電容器。
例如,在包括圖27A的子像素301的顯示裝置中,藉由使用掃描線驅動電路12依次選擇各行的子像素301,使電晶體103成為導通狀態而寫入資料信號的資 料。
藉由使電晶體103成為截止狀態,使被寫入了資料的子像素301成為保持狀態。藉由按行依次進行上述步驟,可以顯示影像。
另外,圖27B所示的子像素301包括用來進行顯示元件的開關的電晶體43、用來控制像素的驅動的電晶體103、電晶體45、電容元件105以及發光元件41。
電晶體43的源極電極和汲極電極中的一個與被供應資料信號的信號線25電連接。並且,電晶體43的閘極電極與被供應閘極信號的掃描線17電連接。
電晶體43具有藉由成為導通狀態或關閉狀態而對資料信號的資料的寫入進行控制的功能。
電晶體103的源極電極和汲極電極中的一個與被用作陽極線的佈線47電連接,電晶體103的源極電極和汲極電極中的另一個與發光元件41中的一個電極電連接。另外,電晶體103的閘極電極與電晶體43的源極電極和汲極電極中的另一個及電容元件105中的一個電極電連接。
電晶體103具有藉由成為導通狀態或關閉狀態而對流過發光元件41的電流進行控制的功能。
電晶體45的源極電極和汲極電極中的一個與被供應資料的參考電位的佈線49連接,電晶體45的源極電極和汲極電極中的另一個與發光元件41中的一個電極 及電容元件105的另一個電極電連接。此外,電晶體45的閘極電極與被供應閘極信號的掃描線17電連接。
電晶體45具有對流動發光元件41的電流進行調整的功能。例如,在因劣化等而增加發光元件41的內部電阻的情況下,藉由監視流過與電晶體45的源極電極和汲極電極中的一個連接的佈線49的電流,可以校正流過發光元件41的電流。例如,被施加到佈線49的電位可以為0V。
電容元件105的一對電極中的一個與電晶體43的源極電極和汲極電極中的另一個及電晶體103的閘極電極電連接,電容元件105的一對電極中的另一個與電晶體45的源極電極和汲極電極中的另一個及發光元件41的一個電極電連接。
在圖27B所示的子像素301的結構中,電容元件105被用作儲存被寫入的資料的儲存電容器。
發光元件41的一對電極中的一個與電晶體45的源極電極和汲極電極中的另一個、電容元件105的一對電極中的另一個以及電晶體103的源極電極和汲極電極中的另一個電連接。此外,發光元件41的一對電極中的另一個與被用作陰極線的佈線50電連接。
作為發光元件41,例如可以使用有機電致發光元件(也稱為有機EL元件)等。但是,發光元件41不侷限於此,也可以採用由無機材料構成的無機EL元件。
注意,對佈線47和佈線50中的一個施加高 電源電位VDD,對另一個施加低電源電位VSS。在圖27B所示的結構中,對佈線47施加高電源電位VDD,對佈線50施加低電源電位VSS。
例如,在包括圖27B的子像素301的顯示裝置中,藉由使用掃描線驅動電路12依次選擇各行的子像素301,使電晶體43成為導通狀態而寫入資料信號的資料。
藉由使電晶體43成為截止狀態,使被寫入了資料的子像素301成為保持狀態。再者,因為電晶體43與電容元件105連接,所以能夠在長時間內保持被寫入的資料。而且,根據電晶體103控制流過電晶體103的源極電極與汲極電極之間的電流量,發光元件41以對應於流過的電流量的亮度發光。藉由按行依次進行上述步驟,可以顯示影像。
注意,雖然在圖27A及圖27B中示出了作為顯示元件使用液晶元件31和發光元件41的例子,但是本發明的實施方式的一個方式不侷限於此。可以對本發明的一個方式使用各種顯示元件。例如,可以舉出EL(電致發光)元件(包含有機物和無機物的EL元件、有機EL元件、無機EL元件)、LED(白光LED、紅光LED、綠光LED或藍光LED等)、電晶體(根據電流而發射出光的電晶體)、電子發射元件、液晶元件、電子墨水、電泳元件、柵光閥(GLV)、電漿顯示面板(PDP)、使用微機電系統(MEMS)的顯示裝置、數位微鏡裝置(DMD)、DMS(數位微快門)、 IMOD(干涉測量調節器顯示器)元件、快門方式的MEMS顯示元件、光干涉方式的MEMS顯示元件、電潤濕元件、壓電陶瓷顯示器或碳奈米管等,這些是其對比度、亮度、反射率、透射率等藉由電磁作用來改變的顯示介質。作為使用EL元件的顯示裝置的一個例子,有EL顯示器等。作為使用電子發射元件的顯示裝置的一個例子,有場致發射顯示器(FED)或SED方式平面型顯示器(SED:Surface-conduction Electron-emitter Display:表面傳導電子發射顯示器)等。作為使用液晶元件的顯示裝置的一個例子,有液晶顯示器(透射型液晶顯示器、半透射型液晶顯示器、反射型液晶顯示器、直觀型液晶顯示器、投射型液晶顯示器)等。作為使用電子墨水或電泳元件的顯示裝置的一個例子,有電子紙等。注意,當實現半透射型液晶顯示器或反射型液晶顯示器時,使像素電極的一部分或全部具有反射電極的功能,即可。例如,像素電極的一部分或全部具有鋁、銀等,即可。並且,此時也可以將SRAM等記憶體電路設置在反射電極下。因而,進一步可以降低耗電量。
接著,圖1B示出在將圖27A所說明的電路結構應用於圖1A的佈局時的電路結構的例子。
在圖1B中,作為像素13表示第m行(m是自然數)像素的像素13_1及第(m+1)行像素的像素132。
像素13_1包括:控制R光的透過的子像素 14R_1;控制G光的透過的子像素14G_1;控制B光的透過的子像素14B_1;以及控制W光的透過的子像素14W_1。並且,像素13_2包括:控制R光的透過的子像素14R_2;控制G光的透過的子像素14G_2;控制B光的透過的子像素14B_2;以及控制W光的透過的子像素14W_2。
注意,子像素14R_1及子像素14R_2有時被稱為第一子像素。子像素14G_1及子像素14G_2有時被稱為第二子像素。子像素14B_1及子像素14B_2有時被稱為第三子像素。子像素14W_1及子像素14W_2有時被稱為第四子像素。
像素13_1及像素13_2所包括的子像素14R_1至子像素14W_2各自包括電晶體103、電容元件105及液晶元件31。
在圖1B中,作為掃描線17表示第M行(M是自然數)掃描線的掃描線17_1、第(M+1)行掃描線的掃描線17_2及第(M+2)行掃描線的掃描線17_3。
在圖1B中,作為信號線25表示第n列(n是自然數)信號線的信號線25_1、第(n+1)列信號線的信號線25_2及第(n+2)列信號線的信號線25_3。
注意,子像素14R有時被稱為第一子像素。子像素14G有時被稱為第二子像素。子像素14B有時被稱為第三子像素。子像素14W有時被稱為第四子像素。
兼作閘極電極的第一閘極線以選擇四個子像 素中的三個子像素的方式連接,第二閘極線以選擇剩下子像素及下行的一個子像素的方式連接。
藉由如圖1A及圖1B所示配置像素13_1及像素13_2中的子像素14R_1及子像素14R_2,可以使信號線的數量與包括配置為條形的RGB子像素的像素所具有的信號線的數量相同。並且可以抑制掃描線的數量,即可以對於兩個像素使用三個掃描線。
例如,在顯示裝置是液晶顯示裝置,並且將RGBW這四個子像素配置為條形的情況下,雖然可以使用四個資料線、一個掃描線及一個電容線的一共六個佈線來控制,但是信號線的數量增多。
另外,在將RGBW這四個子像素配置為2行2列的情況下,雖然可以使用兩個資料線、兩個掃描線及一個電容線的一共五個佈線來控制,但是對於一行像素的掃描線的數量增多。在此情況下,掃描線驅動電路12的電路結構變大,這導致難以實現顯示裝置的窄邊框化。
另一方面,在本發明的一個方式所公開的結構中,可以使用三行掃描線驅動配置在2行的像素13_1及像素13_2中的子像素14R_1至子像素14W_2。並且,在本發明的一個方式所公開的結構中,因為可以實現與包括配置為條形的RGB子像素的像素的結構相同的信號線的數量,所以與將RGBW這四個子像素配置為條形的情況相比可以減少信號線的數量。因此,尤其是,可以縮小掃描線驅動電路12的電路結構,由此可以實現顯示裝置 的窄邊框化。
接著,圖28A示出顯示裝置所包括的電晶體103及電容元件105的剖面圖。
圖28A所示的電晶體103包括:設置在基板302上並被用作閘極電極的導電膜304c;形成在基板302及導電膜304c上的閘極絕緣膜51;隔著閘極絕緣膜51與導電膜304c重疊的氧化物半導體膜308b;以及與氧化物半導體膜308b接觸並被用作源極電極和汲極電極的一對導電膜310d及310e。
此外,在閘極絕緣膜51上設置有金屬氧化物膜308c。注意,金屬氧化物膜308c與包括在電晶體103中的一對導電膜中的一個導電膜310e連接。此外,在電晶體103及金屬氧化物膜308c上設置有無機絕緣膜53。在無機絕緣膜53上設置有導電膜316b。由金屬氧化物膜308c、無機絕緣膜53以及導電膜316b構成電容元件105。
此外,在無機絕緣膜53及導電膜316b上設置有有機絕緣膜317。此外,在有機絕緣膜317上設置有在形成於無機絕緣膜53及有機絕緣膜317中的開口部中與導電膜310e連接的導電膜319。導電膜319被用作像素電極。
藉由對與氧化物半導體膜308b同時形成的氧化物半導體膜添加氫、硼、磷、氮、錫、銻、稀有氣體元素、鹼金屬、鹼土金屬等雜質並使該氧化物半導體膜包含 氧缺陷,形成其導電性得到提高,由此成為具有導電性的金屬氧化物膜308c。注意,因為氧化物半導體膜具有透光性,所以金屬氧化物膜308c也具有透光性。
注意,當對形成有氧缺陷的氧化物半導體添加氫時,氫進入氧缺陷的位點而在導帶附近形成施體能階。其結果是,氧化物半導體的導電性增高,而成為導電體。將成為導電體的氧化物半導體稱為金屬氧化物膜,有時稱為氧化物導電體。一般而言,由於氧化物半導體的能隙大,因此對可見光具有透光性。另一方面,氧化物導電體是在傳導帶附近具有施體能階的氧化物半導體。因此,起因於該施體能階的吸收的影響小,而對可見光具有與氧化物半導體相同程度的透光性。
另外,導電膜316b及導電膜319由透光導電膜形成。由此,電容元件105具有透光性。因此,在像素中,可以擴大電容元件的面積,而且可以提高電容元件的電容值及像素的開口率。
無機絕緣膜53較佳為至少包括氧化物絕緣膜,進一步較佳為包括氧化物絕緣膜和氮化物絕緣膜的疊層。藉由在無機絕緣膜53中與氧化物半導體膜308b接觸的區域中形成氧化物絕緣膜,可以減少氧化物半導體膜308b與無機絕緣膜53的介面中的缺損量。
另外,氮化物絕緣膜被用作水、氫等的障壁膜。當氧化物半導體膜308b包含水、氫等時,包含在氧化物半導體膜308b中的氧與水、氫等起反應,而導致形 成氧缺陷。由於氧缺陷而在氧化物半導體膜308b中生成載子,電晶體的臨界電壓負向漂移而成為常開啟(normally-on)特性。因此,藉由在無機絕緣膜53中形成氮化物絕緣膜,可以減少從外部到氧化物半導體膜308b中的水、氫等的擴散量,並且可以減少氧化物半導體膜308b的缺陷量。因此,藉由在無機絕緣膜53中從氧化物半導體膜308b一側依次層疊氧化物絕緣膜及氮化物絕緣膜,可以減少氧化物半導體膜308b與無機絕緣膜53的介面中的缺陷量及氧化物半導體膜308b中的氧缺陷量,並且可以製造常關閉特性的電晶體。
有機絕緣膜317由丙烯酸樹脂、聚醯亞胺樹脂、環氧樹脂等有機樹脂形成,所以其平坦性高。另外,有機絕緣膜317的厚度為500nm以上且5000nm以下,較佳為1000nm以上且3000nm以下。
另外,形成在有機絕緣膜317上的導電膜319與電晶體103連接。導電膜319被用作像素電極,藉由設置在無機絕緣膜53及有機絕緣膜317中的開口部與電晶體103連接。就是說,因為導電膜319離電晶體103有距離,所以不容易受到電晶體103的導電膜310d的電位影響。結果,可以使導電膜319與電晶體103重疊,來可以提高像素的開口率。
在此,作為參考例子,對如下情況進行說明:在包括在無機絕緣膜53上沒有形成有機絕緣膜317的電晶體103的顯示裝置中,對被用作電晶體103的閘極 電極的導電膜304c施加負電壓的情況。
當對被用作閘極電極的導電膜304c施加負電壓時,產生電場。該電場不被氧化物半導體膜308b遮蔽而影響到無機絕緣膜53,因此無機絕緣膜53表面帶弱正電荷。另外,當對被用作閘極電極的導電膜304c施加負電壓時,包含在空氣中的帶有正電荷的粒子吸附在無機絕緣膜53表面,因此無機絕緣膜53表面帶弱正電荷。
由於無機絕緣膜53表面帶正電荷而產生電場,這導致該電場影響到氧化物半導體膜308b與無機絕緣膜53之間的介面。結果,氧化物半導體膜308b與無機絕緣膜53之間的介面處於實質上被施加正偏壓的狀態,因此電晶體的臨界電壓漂移到負一側。
另一方面,圖28A所示的電晶體103在無機絕緣膜53上包括有機絕緣膜317。因為有機絕緣膜317的厚度厚,所以由負電壓被施加到被用作閘極電極的導電膜304c而產生的電場不影響到有機絕緣膜317表面,因此有機絕緣膜317表面不容易帶正電荷。另外,即使包含在空氣中的帶有正電荷的粒子吸附到有機絕緣膜317表面,因為有機絕緣膜317的厚度厚,所以吸附到有機絕緣膜317表面的帶有正電荷的粒子的電場也不容易影響到氧化物半導體膜308b與無機絕緣膜53之間的介面。結果,氧化物半導體膜308b與無機絕緣膜53之間的介面不處於實質上被施加正偏壓的狀態,因此電晶體的臨界電壓的變動小。
另外,雖然在有機絕緣膜317中容易擴散水等,但是無機絕緣膜53包括氮化物絕緣膜而該氮化物絕緣膜成為水的障壁膜,因此可以防止擴散到有機絕緣膜317中的水還擴散到氧化物半導體膜308b中。
由上述可知,藉由在電晶體上形成有機絕緣膜317,可以減少電晶體的電特性的偏差。另外,可以製造具有常關閉特性的可靠性高的電晶體。另外,可以藉由印刷法、塗佈法等形成有機絕緣膜,可以縮短製造時間。另外,藉由在有機絕緣膜317上形成被用作像素電極的導電膜,可以提高像素的開口率。
〈關於氧化物導電體(金屬氧化物膜)〉
在此,參照圖29說明使用氧化物半導體形成的膜(以下稱為氧化物半導體膜(OS))及使用氧化物導電體形成的膜(以下稱為氧化物導電體膜(OC))的各自電阻率的溫度依賴性。在圖29中,橫軸示出測定溫度,縱軸示出電阻率。此外,圓圈示出氧化物半導體膜(OS)的測定結果,方塊示出氧化物導電體膜(OC)的測定結果。
以如下方法製造包含氧化物半導體膜(OS)的樣本:在玻璃基板上,藉由使用原子個數比為In:Ga:Zn=1:1:1.2的濺射靶材的濺射法形成厚度為35nm的In-Ga-Zn氧化物膜,藉由使用原子個數比為In:Ga:Zn=1:4:5的濺射靶材的濺射法形成厚度為20nm的In-Ga-Zn氧化物膜,在450℃的氮氛圍下進行熱處理之 後,在450℃的氮及氧的混合氣體氛圍下進行熱處理,並且利用電漿CVD法形成氧氮化矽膜。
此外,以如下方法製造包含氧化物導電體膜(OC)的樣本:在玻璃基板上,藉由使用原子個數比為In:Ga:Zn=1:1:1的濺射靶材的濺射法形成厚度為100nm的In-Ga-Zn氧化物膜,在450℃的氮氛圍下進行熱處理之後,在450℃的氮及氧的混合氣體氛圍下進行熱處理,並且利用電漿CVD法形成氮化矽膜。
從圖29可知,氧化物導電體膜(OC)的電阻率的溫度依賴性低於氧化物半導體膜(OS)的電阻率的溫度依賴性。典型的是,80K以上且290K以下的氧化物導電體膜(OC)的電阻率的變化率低於±20%。或者,150K以上且250K以下的電阻率的變化率低於±10%。也就是說,氧化物導電體是簡併半導體,可以推測其傳導帶邊緣能階與費米能階一致或大致一致。因此,可以將氧化物導電體膜(OC)用於佈線、電極、像素電極等。
<變形例1>
參照圖28B說明圖28A所示的電晶體的變形例。本變形例所示的電晶體103c包括藉由使用多灰階遮罩形成的氧化物半導體膜308e及一對導電膜310f、310g。另外,電晶體103c與電容元件105藉由被用作像素電極的導電膜319連接。
藉由使用多灰階遮罩可以形成具有多個厚度 的光阻遮罩,並且在使用該光阻遮罩形成氧化物半導體膜308e之後,使光阻遮罩暴露於氧電漿等而光阻遮罩的一部分被除去,由此成為用來形成一對導電膜的光阻遮罩。因此,可以在氧化物半導體膜308e及一對導電膜310f、310g的製程中減少光微影製程數。
注意,在平面形狀上,使用多灰階遮罩形成的氧化物半導體膜308e的一部分超過一對導電膜310f、310g延伸且不被一對導電膜310f、310g覆蓋。就是說,氧化物半導體膜308e的一部分露出到一對導電膜310f、310g的外側。
另外,在圖28B中,金屬氧化物膜308f形成在閘極絕緣膜51上。另外,與導電膜310f、310g同時導電膜310h形成在金屬氧化物膜308f上。另外,導電膜319與導電膜310g及導電膜310h連接。結果,電晶體103c與電容元件105電連接。
<變形例2>
參照圖28C說明圖28A所示的電晶體的變形例。本變形例所示的電晶體103d包括通道保護結構。
在通道保護結構的電晶體103d中,絕緣膜53a具有開口部,在該開口部中氧化物半導體膜308b與一對導電膜310i、310j連接。該結構能夠減小對氧化物半導體膜308b所造成的損傷。
〈變形例3〉
在圖28A至圖28C所示的顯示裝置中,根據情況或狀況,例如,可以使用具有反射光的功能的導電膜來形成導電膜319。或者,也可以使用疊層膜來形成導電膜319,並且作為該疊層膜的至少一個膜使用具有反射光的功能的導電膜。作為具有反射光的功能的導電膜的一個例子,可以舉出銀、鋁、鉻、銅、鉭、鈦、鉬、鎢等。或者,作為導電膜319可以使用由銀形成的膜夾在ITO之間的疊層膜。在此情況下,可以將圖28A至圖28C所示的顯示裝置應用於反射型顯示裝置、半透過型顯示裝置、頂部發射結構的發光裝置等。
以上所說明的本發明的一個方式的顯示裝置包括:具有第一子像素至第四子像素的第一像素;設置在第一像素的下行的具有第一子像素至第四子像素的第二像素;供應用來選擇第一像素所具有的第一子像素至第三子像素的信號的第一佈線;以及用來選擇第一像素所具有的第四子像素的第二佈線,其中第二佈線是用來選擇第二像素所具有的第四子像素的佈線。
因此,可以使信號線的數量與在將RGB這三個子像素配置為條形時的信號線的數量相同,並且可以縮減每兩行像素的掃描線的數量,即成為3個,由此可以縮小掃描線驅動電路12的電路結構。並且,可以實現顯示裝置的窄邊框化。
並且,在本發明的一個方式的顯示裝置中, 因為電容元件具有透光性,所以可以在子像素內形成較大(大面積)的電容元件。由此,可以獲得開口率得到提高(典型地提高到50%以上,較佳到60%以上)且電容值增大的顯示裝置。例如,在解析度高的顯示裝置諸如液晶顯示裝置中,像素的面積小,電容元件的面積也小。因此,在解析度高的顯示裝置中,儲存在電容元件中的電荷量小。但是,由於本實施方式所示的電容元件105具有透光性,所以藉由在像素中設置該電容元件,可以在各像素中獲得充分的電容值,並提高開口率。
另外,在液晶顯示裝置中,電容元件的電容值越大,施加電場的情況下的能夠將液晶元件的液晶分子的配向保持為固定的期間越長。在顯示靜態影像的情況下,由於可以長期保持該期間,所以能夠減少重寫影像資料的次數,從而可以降低耗電量。另外,藉由採用本實施方式所示的結構,還在高解析度的顯示裝置中可以提高開口率,因此可以高效地利用背光等光源的光,從而可以降低顯示裝置的耗電量。
注意,像素可以包括R子像素、G子像素、B子像素以及W子像素的四種子像素,但是本發明的一個方式不侷限於此。一個像素包括四種子像素中的至少多個子像素,即可。另外,各自像素所包括的子像素根據像素而不同,即可。
例如,第一像素可以包括R子像素、G子像素以及B子像素,第二像素可以包括R子像素、G子像素 以及W子像素。或者,第一像素可以包括R子像素及G子像素,第二像素可以包括B子像素及W子像素。或者,第一像素可以包括R子像素、G子像素以及B子像素,第二像素可以包括R子像素、G子像素、B子像素以及W子像素。
注意,本實施方式所示的結構及方法等可以與其他實施方式所示的結構及方法等適當地組合而實施。
實施方式2
在本實施方式中,參照表示具體結構的圖式對本發明的一個方式的顯示裝置及其製造方法進行說明。
接著,說明顯示裝置所包括的元件基板的具體結構。在此,作為顯示裝置使用VA方式的液晶顯示裝置,並且說明該液晶顯示裝置所包括的子像素14R_1、14G_1、14B_1、14W_1、14R_2、14G_2、14B_2及14W_2(以下稱為子像素14)的俯視圖。圖2示出子像素14的元件基板一側的構件佈局的俯視圖。另外,圖3示出與圖2所示的元件基板一側的構件佈局的俯視圖對應的反基板一側的構件佈局的俯視圖。注意,圖2及圖3都是與圖1B所示的電路結構對應的俯視圖。
在圖2中,被用作子像素14R_1、14G_1、14B_1的掃描線的導電膜304c以及被用作14W_1、14W_2的掃描線的導電膜304d在與被用作信號線的導電膜大致正交的方向(圖式中的左右方向)上延伸地設置。被 用作信號線的導電膜310d在與被用作掃描線的導電膜大致正交的方向(圖式中的上下方向)上延伸地設置。另外,被用作掃描線的導電膜304c與掃描線驅動電路12(參照圖1A)電連接,並且被用作信號線的導電膜310d與信號線驅動電路16(參照圖1A)電連接。
電晶體103設置在被用作掃描線的導電膜和被用作信號線的導電膜的交叉區域。電晶體103包括被用作閘極電極的導電膜304c、閘極絕緣膜(在圖2中未圖示)、形成在閘極絕緣膜上的形成有通道區域的氧化物半導體膜308b以及被用作源極電極及汲極電極的一對導電膜310d、導電膜310e。另外,導電膜304c還被用作掃描線,且其與氧化物半導體膜308b重疊的區域被用作電晶體103的閘極電極。此外,導電膜310d還被用作信號線,且其與氧化物半導體膜308b重疊的區域被用作電晶體103的源極電極或汲極電極。此外,在圖2的頂面形狀中,被用作掃描線的導電膜的端部位於氧化物半導體膜308b的端部的外側。由此,被用作掃描線的導電膜被用作阻擋來自背光等光源的光的遮光膜。其結果是,電晶體所包括的氧化物半導體膜308b不被照射光而電晶體的電特性的變動可以得到抑制。
另外,金屬氧化物膜308c與包括在電晶體103中的導電膜310e連接。在金屬氧化物膜308c上隔著絕緣膜設置有導電膜316b。注意,在設置在金屬氧化物膜308c上的絕緣膜中設置有開口部362。在該開口部362 中,金屬氧化物膜308c與包含在絕緣膜中的氮化物絕緣膜(在圖2中未圖示)接觸。
電容元件105形成在金屬氧化物膜308c與導電膜316b重疊的區域。金屬氧化物膜308c及導電膜316b都具有透光性。即,電容元件105具有透光性。
被用作像素電極的導電膜319隔著有機絕緣膜(在圖2中未圖示)設置在導電膜310e及導電膜316b上。另外,導電膜319在開口部364c中與導電膜310e連接。就是說,電晶體103、電容元件105及導電膜319電連接。
因為電容元件105具有透光性,所以可以在子像素14中形成較大(大面積)的電容元件105。由此,可以獲得開口率得到提高,典型地提高到50%以上,較佳到60%以上,且電容值增大的顯示裝置。例如,在解析度高的顯示裝置諸如液晶顯示裝置中,像素的面積小,電容元件的面積也小。因此,在解析度高的顯示裝置中,儲存在電容元件中的電荷量小。但是,由於本實施方式所示的電容元件105具有透光性,所以藉由在像素中設置該電容元件,可以在各像素中獲得充分的電容值,並提高開口率。典型的是,電容元件105可以適當地應用於像素密度為200ppi以上、300ppi以上或500ppi以上的高解析度顯示裝置。
另外,在液晶顯示裝置中,電容元件的電容值越大,施加電場的情況下的能夠將液晶元件的液晶分子 的配向保持為固定的期間越長。在顯示靜態影像的情況下,由於可以長期保持該期間,所以能夠減少重寫影像資料的次數,從而可以降低耗電量。另外,藉由採用本實施方式所示的結構,還在高解析度的顯示裝置中可以提高開口率,因此可以高效地利用背光等光源的光,從而可以降低顯示裝置的耗電量。
另外,在圖3所示的與圖2的俯視圖對應的反基板一側的俯視圖中,表示子像素14的佈局例子。在子像素14中的設置在遮光部BM的開口部中設置有有色膜R1、G1、B1、具有透光性的層W1、有色膜R2、G2、B2、以及具有透光性的層W2。
遮光膜BM只要具有阻擋特定的波長區域的光的功能即可,則作為遮光膜BM可以使用金屬膜或包含黑色顏料等的有機絕緣膜等。
有色膜R1、G1、B1、R2、G2、B2是用來將透過的光源的光變為呈現所定顏色的光的層。典型地使用濾色片並在與RGB子像素對應的子像素中配置,即可。
具有透光性的層W1及W2是用來使光源的光透過的層。典型地使用丙烯酸樹脂、聚醯亞胺樹脂、環氧樹脂等有機樹脂並在與W子像素對應的子像素中配置,即可。注意,也可以不配置具有透光性的層W1及W2。或者,作為包括具有透光性的層W1及W2的層設置吸收特定波長的光的層。在採用上述結構的情況下,例如,因為即使根據光源的光的波長得不到適當的白色也可以調整 白色平衡,所以可以進行色純度高的顯示。
接著,圖4示出沿著圖2、圖3的線C-D的剖面圖。注意,在圖4中的線A-B中示出圖1A及1B所說明的包括掃描線驅動電路12及信號線驅動電路16的驅動電路部(省略俯視圖)的剖面圖。在本實施方式中作為顯示裝置對VA方式的液晶顯示裝置進行說明。
在本實施方式所示的液晶顯示裝置中,在一對基板(基板302和基板342)之間夾有液晶元件322。
液晶元件322包括基板302上方的導電膜319、控制配向性的膜(下面稱為配向膜320、配向膜352)、液晶層321以及導電膜350。另外,導電膜319被用作液晶元件322的一個電極,並且導電膜350被用作液晶元件322的另一個電極。
如此,液晶顯示裝置是指包括液晶元件的裝置。另外,液晶顯示裝置還包括驅動多個像素的驅動電路等。此外,液晶顯示裝置包括配置在另一基板上的控制電路、電源電路、信號產生電路及背光模組等,而且有時還被稱為液晶模組。
在驅動電路部中,電晶體102包括被用作閘極電極的導電膜304a、被用作閘極絕緣膜51的絕緣膜305及絕緣膜306、形成有通道區域的氧化物半導體膜308a以及被用作源極電極及汲極電極的導電膜310a及導電膜310b。氧化物半導體膜308a設置在閘極絕緣膜51上。
在像素部中,電晶體103包括被用作閘極電極的導電膜304c、被用作閘極絕緣膜51的絕緣膜305及絕緣膜306、形成在閘極絕緣膜51上並形成有通道區域的氧化物半導體膜308b以及被用作源極電極及汲極電極的導電膜310d及導電膜310e。氧化物半導體膜308b設置在閘極絕緣膜51上。此外,在導電膜310d、導電膜310e上設置有被用作保護膜的無機絕緣膜53的絕緣膜312及絕緣膜314。
另外,電容元件105包括被用作一個電極的金屬氧化物膜308c、被用作介電膜的絕緣膜314以及被用作另一個電極的導電膜316b。金屬氧化物膜308c設置在閘極絕緣膜51上。
在無機絕緣膜53上形成有有機絕緣膜317。此外,在有機絕緣膜317上形成有被用作像素電極的導電膜319。導電膜319與導電膜310e連接。
此外,在驅動電路部中,由與導電膜319同時形成的導電膜319a連接與導電膜304a、304c同時形成的導電膜304b和與導電膜310a、310b、310d、310e同時形成的導電膜310c。
導電膜304b和導電膜319a在形成於絕緣膜305、絕緣膜306、絕緣膜312、絕緣膜314以及有機絕緣膜317中的開口部中連接。此外,導電膜310c和導電膜319a在形成於絕緣膜312、絕緣膜314以及有機絕緣膜317中的開口部中連接。
注意,雖然未圖示,由與導電膜319、319a同時形成的導電膜,導電膜316b和與導電膜304a、304b、304c同時形成的導電膜或者與導電膜310a、310b、310c、310d、310e同時形成的導電膜電連接。另外,藉由與導電膜304a、304b、304c同時形成的導電膜或者與導電膜310a、310b、310c、310d、310e同時形成的導電膜,共用電位、接地電位等任意電位施加到導電膜316b。
這裡,以下說明圖4所示的顯示裝置的構成要素。
在基板302上形成有導電膜304a、304b、304c。導電膜304a具有驅動電路部的電晶體的閘極電極的功能。此外,導電膜304b形成在驅動電路部中並與導電膜310c連接。此外,導電膜304c形成在像素部11中並被用作像素部的電晶體的閘極電極。
雖然對基板302的材料等沒有特別的限制,但是至少需要具有能夠承受後續的加熱處理的耐熱性。例如,作為基板302,可以使用玻璃基板、陶瓷基板、石英基板、藍寶石基板等。另外,還可以利用以矽或碳化矽為材料的單晶半導體基板或多晶半導體基板、以矽鍺等為材料的化合物半導體基板、SOI(Silicon On Insulator:絕緣層上覆矽)基板等,並且也可以將在這些基板上設置有半導體元件的基板用作基板302。注意,當作為基板302使用玻璃基板時,藉由使用第6代(1500mm×1850mm)、第7 代(1870mm×2200mm)、第8代(2200mm×2400mm)、第9代(2400mm×2800mm)、第10代(2950mm×3400mm)等的大面積基板,可以製造大型液晶顯示裝置。
另外,作為基板302,也可以使用撓性基板,並且在撓性基板上直接形成電晶體。或者,也可以在基板302與電晶體之間設置剝離層。剝離層可以在如下情況下使用,即在剝離層上製造元件部的一部分或全部,然後將其從基板302分離並轉置到其他基板上的情況。此時,也可以將電晶體轉置到耐熱性低的基板或撓性基板上。
導電膜304a、304b、304c可以使用選自鋁、鉻、銅、鉭、鈦、鉬、鎢中的金屬元素、以上述金屬元素為成分的合金或組合上述金屬元素的合金等而形成。此外,也可以使用選自錳、鋯中的任一種或多種的金屬元素。此外,導電膜304a、304b、304c可以具有單層結構或者兩層以上的疊層結構。例如,可以舉出包含矽的鋁膜的單層結構、在鋁膜上層疊鈦膜的兩層結構、在氮化鈦膜上層疊鈦膜的兩層結構、在氮化鈦膜上層疊鎢膜的兩層結構、在氮化鉭膜或氮化鎢膜上層疊鎢膜的兩層結構、以及依次層疊鈦膜、該鈦膜上的鋁膜和其上的鈦膜的三層結構等。此外,也可以使用組合鋁與選自鈦、鉭、鎢、鉬、鉻、釹、鈧中的一種或多種而形成的合金膜或氮化膜。
另外,導電膜304a、導電膜304b、導電膜304c也可以使用銦錫氧化物、包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含 氧化鈦的銦錫氧化物、銦鋅氧化物、添加有氧化矽的銦錫氧化物等透光導電材料。另外,也可以採用上述透光導電材料和上述金屬元素的疊層結構。
在基板302及導電膜304a、304b、304c上形成有絕緣膜305、絕緣膜306。絕緣膜305、絕緣膜306被用作驅動電路部的電晶體的閘極絕緣膜51及像素部11的電晶體的閘極絕緣膜51。
作為絕緣膜305,例如較佳為使用氮化矽、氮氧化矽、氮化鋁、氮氧化鋁等氮化物絕緣膜形成。
絕緣膜306例如可以使用氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鋁、氧化鉿、氧化鎵或Ga-Zn類金屬氧化物等來以單層或疊層結構形成。此外,藉由作為絕緣膜306使用矽酸鉿(HfSiOx)、添加有氮的矽酸鉿(HfSixOyNz)、添加有氮的鋁酸鉿(HfAlxOyNz)、氧化鉿、氧化釔等high-k材料,可以降低電晶體的閘極漏電流。
較佳為將絕緣膜305及絕緣膜306的總厚度設定為5nm以上且400nm以下,較佳為10nm以上且300nm以下,更佳為50nm以上且250nm以下。
在絕緣膜306上形成有氧化物半導體膜308a、308b、金屬氧化物膜308c。氧化物半導體膜308a形成在與導電膜304a重疊的位置上,並被用作驅動電路部的電晶體的通道區域。另外,氧化物半導體膜308b形成在與導電膜304c重疊的位置上,並被用作像素部的電 晶體的通道區域。金屬氧化物膜308c與包括在電晶體103中的導電膜310e連接,並被用作電容元件105的電極。
氧化物半導體膜308a、308b及金屬氧化物膜308c典型的是In-Ga氧化物膜、In-Zn氧化物膜、In-M-Zn氧化物膜(M是Al、Ti、Ga、Y、Zr、La、Ce、Nd、Sn或Hf)。注意,氧化物半導體膜308a、308b及金屬氧化物膜308c具有透光性。
注意,在氧化物半導體膜308a、308b及金屬氧化物膜308c是In-M-Zn氧化物的情況下,當假設In與M之總和為100atomic%時,In與M的原子百分比較佳為:In的原子百分比是25atomic%以上且M的原子百分比低於75atomic%,更佳為:In的原子百分比是34atomic%以上且M的原子百分比低於66atomic%。
氧化物半導體膜308a、308b及金屬氧化物膜308c的能隙為2eV以上,較佳為2.5eV以上,更佳為3eV以上。像這樣,藉由使用能隙寬的氧化物半導體,可以減少電晶體的關態電流(off-state current)。
氧化物半導體膜308a、308b及金屬氧化物膜308c的厚度為3nm以上且200nm以下,較佳為3nm以上且100nm以下,更佳為3nm以上且50nm以下。
作為氧化物半導體膜308a、308b及金屬氧化物膜308c可以使用原子個數比為In:Ga:Zn=1:1:1、1:1:1.2或3:1:2的In-Ga-Zn氧化物。此外,氧化物 半導體膜308a、308b及金屬氧化物膜308c的原子個數比作為誤差分別包括上述原子個數比的±20%的變動。
另外,氧化物半導體膜308a、308b及金屬氧化物膜308c例如可以具有非單晶結構。非單晶結構例如包括下述CAAC-OS(C Axis Aligned Crystalline Oxide Semiconductor:c軸配向的結晶氧化物半導體)、多晶結構、下述微晶結構或非晶結構。在非單晶結構中,非晶結構的缺陷態密度最高,而CAAC-OS的缺陷態密度最低。注意,氧化物半導體膜308a、308b及金屬氧化物膜308c具有相同的結晶性。
此外,氧化物半導體膜308a、308b及金屬氧化物膜308c的每一個也可以為包括非晶結構的區域、微晶結構的區域、多晶結構的區域、CAAC-OS的區域和單晶結構的區域中的兩種以上的混合膜。混合膜有時例如為包括非晶結構的區域、微晶結構的區域、多晶結構的區域、CAAC-OS的區域和單晶結構的區域中的兩種以上的區域的單層結構。另外,混合膜有時例如為包括非晶結構的區域、微晶結構的區域、多晶結構的區域、CAAC-OS的區域和單晶結構的區域中的兩種以上的區域的疊層結構。
當氧化物半導體膜308a、308b包含第14族元素之一的矽或碳時,氧化物半導體膜308a、308b中氧缺陷增加,會導致使氧化物半導體膜308a、308bn型化。因此,將氧化物半導體膜308a、308b中的矽或碳的濃度 (利用二次離子質譜分析法得到的濃度)設定為2×1018atoms/cm3以下,較佳為2×1017atoms/cm3以下。
另外,將藉由二次離子質譜分析法得到的氧化物半導體膜308a、308b的鹼金屬或鹼土金屬的濃度設定為1×1018atoms/cm3以下,較佳為2×1016atoms/cm3以下。鹼金屬和鹼土金屬有時會與氧化物半導體結合而生成載子,導致電晶體的關態電流的增大。由此,較佳為降低氧化物半導體膜308a、308b的鹼金屬或鹼土金屬的濃度。
另外,當在氧化物半導體膜308a、308b中含有氮時生成作為載子的電子,載子密度增加而容易使氧化物半導體膜308a、308bn型化。其結果,使用具有含有氮的氧化物半導體的電晶體容易變為常開啟特性。因此,在該氧化物半導體膜中,較佳為盡可能地減少氮,例如,藉由二次離子質譜分析法得到的氮濃度較佳為5×1018atoms/cm3以下。
作為氧化物半導體膜308a、308b使用載子密度較低的氧化物半導體膜。例如,氧化物半導體膜308a、308b使用載子密度為1×1017/cm3以下,較佳為1×1015/cm3以下,更佳為1×1013/cm3以下,,尤其是,較佳為8×1011/cm3以下,更佳為1×1011/cm3以下,進一步較佳為1×1010/cm3以下,且1×10-9/cm3以上的氧化物半導體膜。
另外,本發明不侷限於此,可以根據所需要 的電晶體的半導體特性及電特性(場效移動率、臨界電壓等)而使用具有適當的組成的氧化物。另外,較佳為適當地設定氧化物半導體膜308a、308b的載子密度、雜質濃度、缺陷密度、金屬元素與氧的原子個數比、原子間距離、密度等,以得到所需要的電晶體的半導體特性。
因為氧化物半導體膜308a、308b與絕緣膜306及絕緣膜312等的由能夠提高與氧化物半導體膜的介面特性的材料形成的膜接觸,所以氧化物半導體膜308a、308b被用作半導體,且包括氧化物半導體膜308a、308b的電晶體具有優良的電特性。
此外,藉由作為氧化物半導體膜308a、308b使用雜質濃度低且缺陷態密度低的氧化物半導體膜,可以製造具有優良的電特性的電晶體,所以是較佳的。在此,將雜質濃度較低且缺陷態密度較低(氧缺陷少)的狀態稱為高純度本質或實質上高純度本質。高純度本質或實質上高純度本質的氧化物半導體具有少載子發生源,因此有時可以具有較低的載子密度。因此,在該氧化物半導體膜中形成有通道區域的電晶體很少具有負臨界電壓的電特性(也稱為常開啟特性)。此外,高純度本質或實質上高純度本質的氧化物半導體膜具有較低的缺陷態密度,因此有時具有較低的缺陷態密度。此外,高純度本質或實質上高純度本質的氧化物半導體膜的關態電流顯著小,即便是通道寬度為1×106μm、通道長度L為10μm的元件,當源極電極與汲極電極間的電壓(汲極電壓)在1V至10V的範圍時, 關態電流也可以為半導體參數分析儀的測量極限以下,即1×10-13A以下。因此,有時在該氧化物半導體膜中形成有通道區域的電晶體的電特性變動小,因此該電晶體成為可靠性高的電晶體。此外,被氧化物半導體膜的缺陷態俘獲的電荷到被釋放需要長時間,有時像固定電荷那樣動作。因此,有時在缺陷態密度高的氧化物半導體膜中形成有通道區域的電晶體的電特性不穩定。雜質的例子為氫、氮、鹼金屬或鹼土金屬等。
金屬氧化物膜308c是對與氧化物半導體膜308a、308b同時形成的氧化物半導體膜進行加工而形成的。因此,金屬氧化物膜308c是具有與氧化物半導體膜308a、308b同樣的金屬元素的膜。並且,金屬氧化物膜308c是具有與氧化物半導體膜308a、308b相同或不同的結晶結構的膜。然而,藉由使與氧化物半導體膜308a、308b同時形成的氧化物半導體膜包含雜質或氧缺陷而形成具有導電性的膜,並將其用作電容元件的電極。作為包含在氧化物半導體膜中的雜質有氫。另外,作為雜質也可以包含硼、磷、錫、銻、稀有氣體元素、鹼金屬、鹼土金屬等代替氫。或者,金屬氧化物膜308c是與氧化物半導體膜308a、308b同時形成的膜,並且是因電漿損傷等而形成氧缺陷來提高導電性的膜。或者,金屬氧化物膜308c是與氧化物半導體膜308a、308b同時形成的膜,並且是藉由包含雜質並因電漿損傷等而形成氧缺陷來提高導電性的膜。
因此,雖然氧化物半導體膜308a、308b及金屬氧化物膜308c都形成在絕緣膜306上,但是它們的雜質濃度不同。明確而言,金屬氧化物膜308c的雜質濃度高於氧化物半導體膜308a、308b的雜質濃度。例如,氧化物半導體膜308a、308b中的氫濃度低於5×1019atoms/cm3,較佳低於5×1018atoms/cm3,更佳為1×1018atoms/cm3以下,進一步較佳為5×1017atoms/cm3以下,更進一步較佳為1×1016atoms/cm3以下,金屬氧化物膜308c中的氫濃度為8×1019atoms/cm3以上,較佳為1×1020atoms/cm3以上,更佳為5×1020atoms/cm3以上。此外,金屬氧化物膜308c的氫濃度為氧化物半導體膜308a、308b的氫濃度的兩倍以上,較佳為十倍以上。
另外,藉由將與氧化物半導體膜308a、308b同時形成的氧化物半導體膜暴露於電漿,可以使氧化物半導體膜受到損傷而形成氧缺陷。例如,藉由在氧化物半導體膜上利用電漿CVD法或濺射法形成膜,將氧化物半導體膜暴露於電漿而形成氧缺陷。或者,藉由進行用來形成絕緣膜312的蝕刻處理,將氧化物半導體膜暴露於電漿而形成氧缺陷。或者,將氧化物半導體膜暴露於氧和氫的混合氣體、氫、稀有氣體、氨等的電漿形成氧缺陷。其結果是,氧化物半導體膜的導電性得到提高,從而成為具有導電性的膜並被用作金屬氧化物膜308c。
也就是說,金屬氧化物膜308c也可以說是由導電性高的氧化物半導體膜形成的。並且,金屬氧化物膜 308c也可以說是由導電性高的金屬氧化物膜形成的。
另外,在使用氮化矽膜作為絕緣膜314時,氮化矽膜包含氫。由此,當絕緣膜314的氫擴散到與氧化物半導體膜308a、308b同時形成的氧化物半導體膜中時,在該氧化物半導體膜中氫和氧鍵合而生成作為載子的電子。當藉由利用電漿CVD法或濺射法形成氮化矽膜時,氧化物半導體膜暴露於電漿,而形成氧缺陷。氮化矽膜中的氫進入該氧缺陷,由此生成作為載子的電子。結果,氧化物半導體膜的導電性增高,而成為金屬氧化物膜308c。
金屬氧化物膜308c的電阻率低於氧化物半導體膜308a、308b。金屬氧化物膜308c的電阻率較佳為氧化物半導體膜308a、308b的電阻率的1×10-8倍以上且低於1×10-1倍,典型地為1×10-3Ωcm以上且低於1×104Ωcm,較佳為1×10-3Ωcm以上且低於1×10-1Ωcm。
但是,本發明的一個方式不侷限於此,金屬氧化物膜308c根據情況也可以不與絕緣膜314接觸。
另外,本發明的實施方式的一個方式不侷限於此,根據情況金屬氧化物膜308c也可以藉由與氧化物半導體膜308a或308b不同的製程形成。在此情況下,金屬氧化物膜308c也可以包含與氧化物半導體膜308a、308b不同的材料。例如,金屬氧化物膜308c也可以使用銦錫氧化物(下面表示為ITO)或銦鋅氧化物等形成。
在本實施方式所示的液晶顯示裝置中,電容 元件具有透光性。其結果是,可以增大電容元件的佔有面積並提高像素的開口率。
導電膜310a、310b、310c、310d、310e使用選自鋁、鈦、鉻、鎳、銅、釔、鋯、鉬、銀、鉭和鎢中的金屬或以這些元素為主要成分的合金的單層結構或疊層結構。例如,可以舉出如下結構:包含矽的鋁膜的單層結構;在鋁膜上層疊鈦膜的兩層結構;在鎢膜上層疊鈦膜的兩層結構;在銅-鎂-鋁合金膜上層疊銅膜的兩層結構;在鈦膜或氮化鈦膜上層疊鋁膜或銅膜,在其上還形成鈦膜或氮化鈦膜的三層結構;以及在鉬膜或氮化鉬膜上層疊鋁膜或銅膜,在其上還形成鉬膜或氮化鉬膜的三層結構等。另外,可以使用包含氧化銦、氧化錫或氧化鋅的透明導電材料。
在絕緣膜306、氧化物半導體膜308a、308b、金屬氧化物膜308c、導電膜310a、310b、310c、310d、310e上形成有作為無機絕緣膜53的絕緣膜312及絕緣膜314。絕緣膜312較佳為與絕緣膜306同樣地使用能夠提高與氧化物半導體膜的介面特性的材料,可以使用氧化物絕緣膜形成。這裡,作為絕緣膜312,層疊絕緣膜312a、312b形成。
絕緣膜312a為使氧透過的氧化物絕緣膜。另外,當在後面形成絕緣膜312b時,絕緣膜312a還被用作緩和對氧化物半導體膜308a、308b及金屬氧化物膜308c所造成的損傷的膜。
作為絕緣膜312a,可以使用厚度為5nm以上且150nm以下,較佳為5nm以上且50nm以下的氧化矽膜、氧氮化矽膜等。注意,在本說明書中,“氧氮化矽膜”是指在其組成中氧含量多於氮含量的膜,而“氮氧化矽膜”是指在其組成中氮含量多於氧含量的膜。
另外,較佳的是,絕緣膜312a為氧化物絕緣膜,該氧化物絕緣膜包含氮且缺陷量少。
作為包含氮且缺陷量少的氧化物絕緣膜的典型例子,有氧氮化矽膜、氧氮化鋁膜等。
在對缺陷少的氧化物絕緣膜利用100K以下的ESR進行測量而得到的質譜中,觀察到g值為2.037以上且2.039以下的第一信號、g值為2.001以上且2.003以下的第二信號以及g值為1.964以上且1.966以下的第三信號。此外,第一信號與第二信號的分裂寬度以及第二信號與第三信號的分裂寬度在X波段的ESR測定中分別為5mT左右。另外,g值為2.037以上且2.039以下的第一信號、g值為2.001以上且2.003以下的第二信號以及g值為1.964以上且1.966以下的第三信號的自旋密度的總計為小於1×1018spins/cm3,典型為1×1017spins/cm3以上且小於1×1018spins/cm3
另外,在100K以下的ESR譜中,g值為2.037以上且2.039以下的第一信號、g值為2.001以上且2.003以下的第二信號以及g值為1.964以上且1.966以下的第三信號相當於起因於氮氧化物(NOx,x為0以上且 2以下,較佳為1以上且2以下)的信號。作為氮氧化物的典型例子,有一氧化氮、二氧化氮等。換言之,g值為2.037以上且2.039以下的第一信號、g值為2.001以上且2.003以下的第二信號以及g值為1.964以上且1.966以下的第三信號的自旋密度的總計越低,氧化物絕緣膜所包含的氮氧化物的含量越少。
當如上那樣絕緣膜312a所包含的氮氧化物的含量少時,能夠減少絕緣膜312a與氧化物半導體膜的介面的載子陷阱。結果,能夠減少顯示裝置所包括的電晶體的臨界電壓變動,並能夠減少電晶體的電特性變動。
另外,絕緣膜312a的藉由SIMS(Secondary Ion Mass Spectrometry:二次離子質譜分析法)測定的氮濃度較佳為6×1020atoms/cm3以下。其結果,在絕緣膜312a中不容易生成氮氧化物,從而能夠減少絕緣膜312a與氧化物半導體膜308a、308b的介面的載子陷阱。此外,能夠減少顯示裝置所包括的電晶體的臨界電壓變動,並能夠減少電晶體的電特性變動。
當在絕緣膜312a中含有氮氧化物及氨時,在製程中的加熱處理中氮氧化物及氨起反應,使得氮氧化物成為氮氣並脫離。其結果是,可以降低絕緣膜312a中的氮濃度及氮氧化物含量。另外,可以減少絕緣膜312a與氧化物半導體膜308a、308b之間的介面的載子陷阱。此外,還可以減少包含在顯示裝置中的電晶體的臨界電壓的變動,從而可以減少電晶體的電特性的變動。
在絕緣膜312a中,有時從外部進入絕緣膜312a的氧不是全部移動到絕緣膜312a的外部,而是其一部分殘留在絕緣膜312a的內部。另外,還有時在氧從外部進入絕緣膜312a的同時,絕緣膜312a中含有的氧移動到絕緣膜312a的外部,而在絕緣膜312a中發生氧的移動。
在形成使氧透過的氧化物絕緣膜作為絕緣膜312a時,可以使從設置在絕緣膜312a上的絕緣膜312b脫離的氧經由絕緣膜312a移動到氧化物半導體膜308a、308b中。
絕緣膜312b以與絕緣膜312a接觸的方式形成。絕緣膜312b使用其氧含量超過化學計量組成的氧化物絕緣膜形成。其氧含量超過化學計量組成的氧化物絕緣膜由於被加熱而其一部分的氧脫離。其氧含量超過化學計量組成的氧化物絕緣膜藉由TDS分析,換算為氧原子的氧的脫離量為1.0×1018atoms/cm3以上,較佳為3.0×1020atoms/cm3以上。注意,上述TDS分析時的膜的表面溫度較佳為100℃以上且700℃以下或100℃以上且500℃以下。
作為絕緣膜312b可以使用厚度為30nm以上且500nm以下,較佳為50nm以上且400nm以下的氧化矽膜、氧氮化矽膜等。
較佳的是,絕緣膜312b中的缺陷量較少,典型的是,利用ESR測得的在起因於矽的懸空鍵的g=2.001 處出現的信號的自旋密度低於1.5×1018spins/cm3,更佳為1×1018spins/cm3以下。由於絕緣膜312b與絕緣膜312a相比離氧化物半導體膜308a、308b更遠,所以絕緣膜312b的缺陷密度也可以高於絕緣膜312a。
藉由作為絕緣膜314設置對氧、氫、水、鹼金屬、鹼土金屬等具有阻擋效果的氮化物絕緣膜,能夠防止氧從氧化物半導體膜308a、308b及金屬氧化物膜308c擴散到外部。氮化物絕緣膜可以使用氮化矽、氮氧化矽、氮化鋁、氮氧化鋁等形成。
另外,也可以在對氧、氫、水、鹼金屬、鹼土金屬等具有阻擋效果的氮化物絕緣膜上設置對氧、氫、水等具有阻擋效果的氧化物絕緣膜。作為對氧、氫、水等具有阻擋效果的氧化物絕緣膜,可以舉出氧化鋁膜、氧氮化鋁膜、氧化鎵膜、氧氮化鎵膜、氧化釔膜、氧氮化釔膜、氧化鉿膜、氧氮化鉿膜等。此外,為了控制電容元件的電容值,也可以適當地在對氧、氫、水、鹼金屬、鹼土金屬等具有阻擋效果的氮化物絕緣膜上設置氮化物絕緣膜或氧化物絕緣膜。
另外,在絕緣膜314上形成有導電膜316b。導電膜316b形成在絕緣層314上並能夠被用作電容元件的電極。
導電膜316b可以使用具有透光性的導電材料形成。作為具有透光性的導電材料可以舉出包含氧化鎢的氧化銦、包含氧化鎢的氧化銦鋅、包含氧化鈦的氧化銦、 包含氧化鈦的氧化銦錫、ITO、氧化銦鋅、添加有氧化矽的氧化銦錫等。
作為有機絕緣膜317可以使用丙烯酸樹脂、聚醯亞胺樹脂、環氧樹脂等有機樹脂。注意,有機絕緣膜317的厚度為500nm以上且5000nm以下,較佳為1000nm以上且3000nm以下。藉由將有機絕緣膜317的厚度設定為上述厚度,可以在導電膜316b上的凹部填充有機絕緣膜317,可以減少被形成配向膜320的區域的凹凸。
藉由使用有機樹脂形成有機絕緣膜317,可以使用有機絕緣膜317至少填充在導電膜316b的凹部,可以減少構成液晶層321的液晶材料的配向無序。
另外,在有機絕緣膜317上形成有導電膜319、319a。導電膜319被用作像素電極。導電膜319a在開口部364a(參照圖9A)中與導電膜304b電連接,並在開口部364b(參照圖9A)中與導電膜310c電連接。換言之,導電膜319a被用作連接導電膜304b與導電膜310c的連接電極。
有機絕緣膜317不侷限於此。例如,有機絕緣膜317也可以具有濾光片、黑矩陣的功能。例如,當有機絕緣膜317具有濾光片的功能時,例如,在紅色的像素、藍色的像素、綠色的像素的每一個中形成有色性的有機絕緣膜317即可。
導電膜319、319a可以使用與導電膜316b同樣的具有透光性的導電材料形成。
此外,為了形成使導電膜304b與導電膜310c直接接觸的連接結構,需要如下製程:在形成導電膜310c之前,形成用來圖案化的遮罩,以在絕緣膜305、絕緣膜306中形成開口部。然而,如圖4所示,藉由導電膜319a使導電膜304b與導電膜310c連接,不需要製造使導電膜304b與導電膜310c直接接觸的連接部,可以減少一個光罩。就是說,可以減少液晶顯示裝置的製程。
配向膜320較佳為具有透光性,典型地可以使用丙烯酸樹脂、聚醯亞胺樹脂、環氧樹脂等有機樹脂。
此外,在基板342上形成有有色性的膜(下面稱為有色膜346)。有色膜346被用作濾光片。另外,與有色膜346相鄰的遮光膜344形成在基板342上。遮光膜344被用作黑矩陣。此外,不一定需要設置有色膜346,例如當液晶顯示裝置進行黑白顯示時等也可以不設置有色膜346。
作為有色膜346,可以使用使特定的波長區域的光透過的有色膜,例如可以使用使紅色的波長區域的光透過的紅色(R)的濾光片、使綠色的波長區域的光透過的綠色(G)的濾光片或使藍色的波長區域的光透過的藍色(B)的濾光片等。或者,作為有色膜346,可以使用使光源的光直接透過的具有透光性的層。例如,作為具有透光性的層可以使用丙烯酸樹脂、聚醯亞胺樹脂、環氧樹脂等有機樹脂。
遮光膜344只要具有阻擋特定的波長區域的光的功能即可,則作為遮光膜344可以使用金屬膜或包含黑色顏料等的有機絕緣膜等。
此外,在有色膜346上形成有絕緣膜348。絕緣膜348具有平坦化層的功能或抑制有色膜346可能包含的雜質擴散到液晶元件一側的功能。
另外,在絕緣膜348上形成有導電膜350。導電膜350被用作像素部的液晶元件所包括的一對電極的另一個。注意,在導電膜319、319a上形成有配向膜320,並且在導電膜350上形成有配向膜352。
另外,在導電膜319、319a與導電膜350之間形成有液晶層321。此外,使用密封材料(未圖示)將液晶層321密封在基板302與基板342之間。另外,密封材料較佳與無機材料接觸以抑制來自外部的水分等侵入。
此外,也可以在導電膜319、319a與導電膜350之間設置用來維持液晶層321的厚度(也稱為單元間隙)的間隔物。
參照圖5A至圖8C說明設置在圖4所示的液晶顯示裝置中的基板302上的元件部的製造方法。此外,這裡,設置在基板302上的元件部是指夾在基板302與配向膜320之間的區域。
構成電晶體的膜(絕緣膜、氧化物半導體膜、金屬氧化物膜、導電膜等)可以藉由濺射法、化學氣相沉積(CVD)法、真空蒸鍍法、脈衝雷射沉積(PLD) 法形成。或者,可以藉由塗佈法或印刷法形成。作為成膜方法的典型,有濺射法、電漿化學氣相沉積(PECVD)法,但也可以使用熱CVD法。作為熱CVD法的例子,可以使用MOCVD(Metal Organic Chemical Vapor Deposition:有機金屬化學氣相沉積)法或ALD(原子層沉積)法。
藉由熱CVD法進行的沉積可以按以如下方式執行:將源氣體及氧化劑同時供應到處理室內,藉由將處理室內的壓力設定為大氣壓或減壓,並使源氣體和氧化劑在基板附近或基板上相互反應而沉積在基板上。如此,由於熱CVD法不發生電漿來形成膜,因此具有不產生起因於電漿損傷的缺陷的優點。
另外,藉由ALD法進行的沉積可以按如下方式執行:將處理室內的壓力設定為大氣壓或減壓,將用於反應的源氣體依次引入處理室內,然後按該順序反復地引入氣體。例如,藉由切換各自的開關閥(也稱為高速閥)來將兩種以上的源氣體依次供應到處理室內。例如在該情況下,在將第一源氣體引入的同時或之後將惰性氣體(氬或氮等)等引入,然後將第二源氣體引入,以防止多種源氣體混合。注意,在將第一源氣體和惰性氣體同時引入的情況下,惰性氣體被用作載子氣體,並且,惰性氣體也可以在將第二源氣體引入的同時引入。另外,也可以不引入惰性氣體而藉由真空抽氣將第一源氣體排出而代替沒有引入惰性氣體,然後引入第二源氣體。第一源氣體吸附於 基板表面上,以形成第一層;然後第二源氣體被引入以與第一層起反應;其結果,第二層層疊於第一層上,從而形成薄膜。
藉由按該順序反復多次地引入氣體直到獲得所希望的厚度為止,由此可以形成步階覆蓋性良好的薄膜。薄膜的厚度可以根據按該順序反復引入氣體的次數來調整,因此ALD法可以準確地調整厚度,因而適用於製造微型電晶體。
首先,準備基板302。在此,作為基板302使用玻璃基板。
接著,在基板302上形成導電膜,且藉由將該導電膜加工為所希望的形狀來形成導電膜304a、304b、304c。另外,藉由第一圖案化在所希望的區域中形成遮罩,然後對不被該遮罩覆蓋的區域進行蝕刻,從而可以形成導電膜304a、304b、304c。
此外,典型地使用濺射法、真空蒸鍍法、脈衝雷射沉積(PLD)法、熱CVD法等形成導電膜304a、304b、304c。
另外,可以藉由使用利用ALD法的成膜裝置形成鎢膜作為導電膜304a、304b、304c。此時,依次反復引入WF6氣體和B2H6氣體形成初始鎢膜,然後同時引入WF6氣體和H2氣體形成鎢膜。注意,也可以使用SiH4氣體代替B2H6氣體。
接著,在基板302及導電膜304a、304b、 304c上形成絕緣膜305,然後在絕緣膜305上形成絕緣膜306(參照圖5A)。
可以藉由濺射法、CVD法、真空蒸鍍法、脈衝雷射沉積(PLD)法、熱CVD法等形成絕緣膜305及絕緣膜306。另外,較佳在真空中連續形成絕緣膜305及絕緣膜306,因為可以抑制雜質的混入。
當作為絕緣膜305及絕緣膜306形成氧化矽膜或氧氮化矽膜時,作為源氣體,較佳為使用包含矽的沉積氣體及氧化性氣體。作為包含矽的沉積氣體的典型例子,有矽烷、乙矽烷、丙矽烷、氟化矽烷等。作為氧化性氣體,有氧、臭氧、一氧化二氮、二氧化氮等。
此外,當作為絕緣膜305及絕緣膜306形成氧化鎵膜時,可以藉由MOCVD法形成。
另外,在作為絕緣膜305及絕緣膜306藉由MOCVD法或ALD法等熱CVD法形成氧化鉿膜時,使用兩種氣體,即被用作氧化劑的臭氧(O3)和藉由使包含溶劑和鉿前體化合物的液體(鉿醇鹽溶液,典型為四二甲基醯胺鉿(TDMAH))氣化而獲得的源氣體。注意,四二甲基醯胺鉿的化學式為Hf[N(CH3)2]4。另外,作為其它材料液,有四(乙基甲基醯胺)鉿等。
另外,在作為絕緣膜305及絕緣膜306藉由MOCVD法或ALD法等熱CVD法形成氧化鋁膜時,使用兩種氣體,即被用作氧化劑的H2O和藉由使包含溶劑和鋁前體化合物的液體(三甲基鋁(TMA)等)氣化而獲得 的源氣體。注意,三甲基鋁的化學式為Al(CH3)3。另外,作為其它材料液有三(二甲基醯胺)鋁、三異丁基鋁、鋁三(2,2,6,6-四甲基-3,5-庚二酮)等。
例如,在作為絕緣膜305及絕緣膜306藉由MOCVD法或ALD法等熱CVD法形成氧化矽膜時,使六氯乙矽烷(hexachlorodisilane)吸附於被成膜面上,去除吸附物所包含的氯,供應氧化性氣體(O2或一氧化二氮)的自由基使其與吸附物起反應。
接著,在絕緣膜306上形成氧化物半導體膜307(參照圖5B)。
可以藉由濺射法、塗佈法、脈衝雷射蒸鍍法、雷射燒蝕法、熱CVD法等形成氧化物半導體膜307。
作為濺射氣體,適當地使用稀有氣體(典型的是氬)、氧氣體、稀有氣體和氧氣體的混合氣體。此外,當採用稀有氣體和氧氣體的混合氣體時,較佳為增高相對於稀有氣體的氧氣體比例。
另外,靶材根據所形成的氧化物半導體膜的組成適當地選擇即可。
另外,在當形成氧化物半導體膜時例如使用濺射法的情況下,藉由將基板溫度設定為150℃以上且750℃以下,較佳為設定為150℃以上且450℃以下,更佳為設定為200℃以上且350℃以下來形成氧化物半導體膜,可以形成CAAC-OS膜。
另外,為了形成CAAC-OS膜,較佳為應用如下條件。
藉由抑制成膜時的雜質的混入,可以抑制雜質所導致的結晶態的損壞。例如,可以降低存在於成膜室內的雜質濃度(氫、水、二氧化碳及氮等)。另外,可以降低成膜氣體中的雜質濃度。明確而言,使用露點為-80℃以下,較佳為-100℃以下的成膜氣體。
例如,當使用利用ALD的沉積裝置來形成氧化物半導體膜如In-Ga-Zn-O膜時,依次反復引入In(CH3)3氣體和O3氣體形成In-O層,然後同時引入Ga(CH3)3氣體和O3氣體形成GaO層,然後同時引入Zn(CH3)2氣體和O3氣體形成ZnO層。注意,這些層的順序不侷限於上述例子。此外,也可以混合這些氣體來形成混合化合物層如In-Ga-O層、In-Zn-O層、Ga-Zn-O層等。注意,雖然也可以使用利用Ar等惰性氣體使其起泡的H2O氣體來代替O3氣體,但較佳為使用不含有H的O3氣體。還可以使用In(C2H5)3氣體代替In(CH3)3氣體。還可以使用Ga(C2H5)3氣體代替Ga(CH3)3氣體。另外,也可以使用Zn(CH3)2氣體。
接著,藉由將氧化物半導體膜307加工為所希望的形狀來形成島狀的氧化物半導體膜308a、308b、308d。另外,藉由第二圖案化在所希望的區域中形成遮罩,然後對不被該遮罩覆蓋的區域進行蝕刻,從而可以形成氧化物半導體膜308a、308b、308d。作為蝕刻可以採 用乾蝕刻、濕蝕刻或組合兩者的蝕刻(參照圖5C)。
然後,也可以藉由進行加熱處理,使氧化物半導體膜308a、308b、308d中的氫、水等脫離,降低氧化物半導體膜308a、308b、308d中的氫濃度及水濃度。其結果是,可以形成高度純化的氧化物半導體膜308a、308b、308d。作為該加熱處理的溫度,典型地採用250℃以上且650℃以下,較佳為300℃以上且500℃以下的溫度。此外,藉由將該加熱處理的溫度典型地設定為300℃以上且400℃以下,較佳為320℃以上且370℃以下,在採用大面積基板的情況下也可以減少基板的翹曲或收縮,由此提高良率。
該加熱處理可以使用電爐、RTA裝置等來進行。藉由使用RTA裝置,可只在短時間內在基板的應變點以上的溫度下進行加熱處理。由此,可以縮短加熱處理時間,且可以減少加熱處理中的基板的翹曲,在採用大面積基板的情況下是特別較佳的。
此外,加熱處理可以在氮、氧、超乾燥空氣(水含量為20ppm以下,較佳為1ppm以下,更佳為10ppb以下的空氣)或稀有氣體(氬、氦等)的氛圍下進行。另外,上述氮、氧、超乾燥空氣或稀有氣體較佳為不含有氫、水等。此外,在氮或稀有氣體氛圍下進行加熱處理之後,也可以在氧或超乾燥空氣氛圍下進行加熱。其結果是,在可以使氧化物半導體膜中的氫、水等脫離的同時,可以將氧供應到氧化物半導體膜中。其結果是,可以 減少氧化物半導體膜中的氧缺陷量。
注意,在將後面形成的絕緣膜311a的成膜溫度設定為280℃以上且400℃以下的情況下,可以使氧化物半導體膜308a、308b、308d中的氫、水等脫離,因此不需要上述加熱處理。
接著,在絕緣膜306及氧化物半導體膜308a、308b、308d上形成導電膜309(參照圖6A)。
導電膜309可以使用濺射法、真空蒸鍍法、脈衝雷射沉積(PLD)法、熱CVD法等形成。
接著,藉由將導電膜309加工為所希望的形狀形成導電膜310a、310b、310c、310d、310e。另外,藉由第三圖案化在所希望的區域中形成遮罩,然後對不被該遮罩覆蓋的區域進行蝕刻,從而可以形成導電膜310a、310b、310c、310d、310e(參照圖6B)。
接著,以覆蓋絕緣膜306、氧化物半導體膜308a、308b、308d以及導電膜310a、310b、310c、310d、310e上的方式形成層疊有絕緣膜311a、311b的絕緣膜311(參照圖6C)。絕緣膜311可以使用濺射法、CVD法、蒸鍍法等形成。
注意,較佳的是,在形成絕緣膜311a之後,在不暴露於大氣的狀態下連續地形成絕緣膜311b。在形成絕緣膜311a之後,在不暴露於大氣的狀態下,調節源氣體的流量、壓力、高頻功率和基板溫度中的一個以上以連續地形成絕緣膜311b,由此能夠在減少絕緣膜311a與 絕緣膜311b之間的介面的來源於大氣成分的雜質濃度的同時,能夠使包含於絕緣膜311b中的氧移動到氧化物半導體膜308a、308b、308d中,由此能夠減少氧化物半導體膜308a、308b、308d的氧缺陷量。
另外,作為絕緣膜311a在如下條件下利用CVD法可以形成包含氮且缺陷量少的氧化物絕緣膜:在相對於沉積氣體的氧化性氣體比例為大於20倍且小於100倍,較佳為40倍以上且80倍以下;並且處理室內的壓力為低於100Pa,較佳為50Pa以下。
作為絕緣膜311a的源氣體,較佳為使用含有矽的沉積氣體及氧化性氣體。含有矽的沉積氣體的典型例子為矽烷、乙矽烷、丙矽烷、氟化矽烷等。氧化性氣體的例子為氧、臭氧、一氧化二氮、二氧化氮等。
藉由採用上述條件,可以形成使氧透過的氧化物絕緣膜作為絕緣膜311a。另外,藉由設置絕緣膜311a,在後續形成絕緣膜311b的形成製程中,能夠降低對氧化物半導體膜308a、308b、308d所造成的損傷。
此外,作為絕緣膜311b利用以下述條件可以形成氧化矽膜或氧氮化矽膜:在180℃以上且280℃以下,較佳在200℃以上且240℃以下的溫度下保持設置在電漿CVD設備的抽成真空的處理室內的基板,將源氣體導入處理室中,將處理室中的壓力設定為100Pa以上且250Pa以下,較佳為100Pa以上且200Pa以下,並且對設置在處理室中的電極供應0.17W/cm2以上且0.5W/cm2以 下,較佳為0.25W/cm2以上且0.35W/cm2以下的高頻功率。
作為絕緣膜311b的源氣體,較佳為使用包含矽的沉積氣體及氧化性氣體。作為包含矽的沉積氣體的典型例子,可以舉出矽烷、乙矽烷、丙矽烷、氟化矽烷等。作為氧化性氣體,可以舉出氧、臭氧、一氧化二氮、二氧化氮等。
由於作為絕緣膜311b的成膜條件,在施加有上述壓力的反應室中供應具有上述功率密度的高頻功率,因此電漿中的源氣體的分解效率提高,氧自由基增加,且源氣體進一步氧化,所以絕緣膜311b中的氧含量多於化學計量比。然而,當基板溫度是上述絕緣膜311b的形成溫度時,由於矽與氧的鍵合力較弱,因此,因加熱處理而使氧的一部分脫離。其結果是,可以形成包含比滿足化學計量組成的氧多的氧且因加熱而氧的一部分脫離的氧化物絕緣膜。此外,在氧化物半導體膜308a、308b、308d上設置有絕緣膜311a。由此,在絕緣膜311b的形成製程中,絕緣膜311a被用作氧化物半導體膜308a、308b、308d的保護膜。其結果是,能夠在減少對氧化物半導體膜308a、308b、308d所造成的損傷的同時,使用功率密度高的高頻功率來形成絕緣膜311b。
另外,在絕緣膜311b的成膜條件中,藉由增加相對於氧化性氣體的包含矽的沉積氣體的流量,可以減少絕緣膜311b中的缺陷量。典型的是,能夠形成缺陷量 較低的氧化物絕緣膜,其中藉由ESR測量,在起因於矽的懸空鍵的g=2.001處呈現的信號的自旋密度低於6×1017spins/cm3,較佳為3×1017spins/cm3以下,更佳為1.5×1017spins/cm3以下。由此能夠提高電晶體的可靠性。
接著,進行加熱處理。該加熱處理的溫度典型地為150℃以上且低於基板的應變點,較佳為200℃以上且450℃以下,更佳為300℃以上且450℃以下。此外,藉由將該加熱處理的溫度典型地設定為300℃以上且400℃以下,較佳為320℃以上且370℃以下,在採用大面積基板的情況下也可以減少基板的翹曲或收縮,由此提高良率。
該加熱處理可以使用電爐、RTA裝置等。藉由使用RTA裝置,可以限定於短時間內在基板的應變點以上的溫度下進行加熱處理。由此,可以縮短加熱處理時間。
加熱處理可以在氮、氧、超乾燥空氣(水的含量為20ppm以下,較佳為1ppm以下,更佳為10ppb以下的空氣)或稀有氣體(氬、氦等)的氛圍下進行。另外,上述氮、氧、超乾燥空氣或稀有氣體較佳為不含有氫、水等。
藉由該加熱處理,能夠將絕緣膜311b所含的氧的一部分移動到氧化物半導體膜308a、308b、308d中以減少氧化物半導體膜308a、308b、308d中的氧缺陷 量。其結果是,可以進一步減少氧化物半導體膜308a、308b、308d中的氧缺陷量。
另外,當絕緣膜311a、311b包含水、氫等時,若在後續形成具有阻擋水、氫等的功能的絕緣膜313並進行加熱處理,則絕緣膜311a、311b所包含的水、氫等會移動到氧化物半導體膜308a、308b、308d中,因此,在氧化物半導體膜308a、308b、308d中產生缺陷。然而,藉由進行上述加熱處理,能夠使絕緣膜311a、311b所包含的水、氫等脫離,由此在能夠減少電晶體的電特性偏差的同時,能夠抑制臨界電壓的變動。
另外,當在進行加熱的同時,在絕緣膜311a上形成絕緣膜311b時,可以將氧移動到氧化物半導體膜308a、308b、308d中以減少氧化物半導體膜308a、308b、308d中的氧缺陷,因此,不需要進行上述加熱處理。
另外,當形成導電膜310a、310b、310d、310e時,由於導電膜的蝕刻,氧化物半導體膜308a、308b、308d會受到損傷而在氧化物半導體膜308a、308b的背後通道(在氧化物半導體膜308a、308b中與相對於被用作閘極電極的導電膜304a、304c的表面相反一側的表面)一側產生氧缺陷。然而,當在絕緣膜311b中使用包含超過化學計量組成的氧的氧化物絕緣膜時,藉由加熱處理能夠修復產生在該背後通道一側的氧缺陷。由此,能夠減 少氧化物半導體膜308a、308b中的缺陷,因此,能夠提高電晶體的可靠性。
另外,也可以在形成後面形成的開口部362之後進行該加熱處理。
接著,藉由將絕緣膜311加工為所希望的形狀,形成絕緣膜312及開口部362。此外,藉由第四圖案化在所希望的區域中形成遮罩,然後對不被該遮罩覆蓋的區域進行蝕刻,從而可以形成絕緣膜312及開口部362(參照圖7A)。
另外,以使氧化物半導體膜308d的表面露出的方式形成開口部362。作為開口部362的形成方法,例如可以採用乾蝕刻法。較佳藉由乾蝕刻法對絕緣膜311進行蝕刻。其結果是,在蝕刻處理中氧化物半導體膜308d被暴露於電漿,從而可以增加氧化物半導體膜308d的氧缺陷。但是,對於開口部362的形成方法不侷限於此而可以採用濕蝕刻法或組合乾蝕刻法和濕蝕刻法的形成方法。
接著,在絕緣膜312及氧化物半導體膜308d上形成絕緣膜313(參照圖7B)。
作為絕緣膜313,較佳為使用防止來自外部的雜質諸如氧、氫、水、鹼金屬、鹼土金屬等擴散到氧化物半導體膜中的材料,較佳為還包含氫,典型地可以使用包含氮的無機絕緣材料,例如氮化物絕緣膜。此外,例如可以藉由CVD法、濺射法形成絕緣膜313。
當藉由利用電漿CVD法或濺射法形成絕緣膜 313時,氧化物半導體膜暴露於電漿,而在氧化物半導體中形成氧缺陷。此外,絕緣膜313是由防止來自外部的雜質諸如水、鹼金屬、鹼土金屬等擴散到氧化物半導體膜中的材料形成的膜,還包含氫。由此,當絕緣膜313的氫擴散到氧化物半導體膜308d中時,在該氧化物半導體膜308d中氫和氧鍵合而生成作為載子的電子。或者,氫進入氧化物半導體膜中的氧缺陷而生成作為載子的電子。其結果是,氧化物半導體膜308d的導電性提高,且氧化物半導體膜308d成為金屬氧化物膜308c。
此外,上述氮化絕緣膜較佳在高溫下形成以提高阻擋性,例如在100℃以上且400℃以下的基板溫度下,較佳在300℃以上且400℃以下的基板溫度下進行加熱來形成。另外,因為當在高溫下進行成膜時,可能氧從被用作氧化物半導體膜308a、308b的氧化物半導體脫離,因此載子濃度上升,所以採用不發生這種現象的溫度。
接著,在絕緣膜313上形成導電膜315(參照圖8A)。
導電膜315例如可以藉由濺射法形成。
然後,藉由將導電膜315加工為所希望的形狀形成導電膜316b。另外,藉由第五圖案化在所希望的區域中形成遮罩,然後對不被該遮罩覆蓋的區域進行蝕刻,從而可以形成導電膜316b(參照圖8B)。
接著,以覆蓋絕緣膜313及導電膜316b的方 式形成有機絕緣膜317(參照圖8C)。被用作平坦化膜的有機絕緣膜317具有開口部,以使絕緣膜313的一部分露出。
藉由使用旋塗法、浸漬塗佈法等的塗佈法在絕緣膜313及導電膜316b上塗佈光敏組成物,接著利用第六光罩的光微影製程進行組成物的曝光及顯像,然後進行加熱處理,從而形成有機絕緣膜317。注意,當在絕緣膜313及導電膜316b上塗佈非光敏組成物時,在非光敏組成物上塗佈光阻劑,藉由利用第六光罩的光微影製程對該光阻劑進行加工來形成遮罩,並且使用該遮罩對非光敏組成物進行蝕刻,從而可以形成有機絕緣膜317。
注意,藉由噴墨法、印刷法等濕處理形成有機絕緣膜317,可以減少光罩的數量。
接著,藉由將有機絕緣膜317用作遮罩對絕緣膜305、絕緣膜306、絕緣膜312及絕緣膜313的每一部分進行蝕刻,形成使導電膜304b露出的開口部364a、使導電膜310c露出的開口部364b及使導電膜310e露出的開口部364c(參照圖9A)。
接著,形成導電膜318(參照圖9B)。
導電膜318例如可以藉由濺射法形成。
接著,將導電膜318加工為所希望的形狀來形成導電膜319、319a。另外,藉由第七圖案化在所希望的區域中形成遮罩,然後對不被該遮罩覆蓋的區域進行蝕刻,從而可以形成導電膜319、319a(參照圖9C)。
可以藉由上述製程在基板302上形成包括電晶體的像素部及驅動電路部。注意,在本實施方式所示的製程中藉由第一圖案化至第七圖案化,即使用七個光罩,來可以同時形成電晶體及電容元件。
另外,在本實施方式中,使絕緣膜313所包括的氫擴散到氧化物半導體膜308d來提高氧化物半導體膜308d的導電性。也可以藉由使用遮罩覆蓋氧化物半導體膜308a、308b,並對氧化物半導體膜308d添加雜質,典型的是氫、硼、磷、錫、銻、稀有氣體元素、鹼金屬、鹼土金屬等,從而提高氧化物半導體膜308d的導電性。作為對氧化物半導體膜308d添加氫、硼、磷、錫、銻、稀有氣體元素等的方法,有離子摻雜法、離子植入法等。另一方面,作為對氧化物半導體膜308d添加鹼金屬、鹼土金屬等的方法,有對氧化物半導體膜308d塗佈包含該雜質的溶液的方法。
接著,下面說明設置在與基板302對置地設置的基板342上的元件部。注意,這裡,設置在基板342上的元件部是指夾在基板342與配向膜352之間的區域。
首先,準備基板342。作為基板342可以援用基板302的材料。接著,在基板342上形成遮光膜344、有色膜346(參照圖10A)。
使用各種材料並採用印刷法、噴墨法、使用光微影技術的蝕刻法等在所希望的位置上分別形成遮光膜344及有色膜346。
接著,在遮光膜344及有色膜346上形成絕緣膜348(參照圖10B)。
作為絕緣膜348,例如可以使用丙烯酸樹脂、環氧樹脂、聚醯亞胺等有機絕緣膜。藉由形成絕緣膜348,例如可以抑制有色膜346所包含的雜質等擴散到液晶層321一側。注意,絕緣膜348是不一定需要設置的,也可以採用不形成絕緣膜348的結構。
接著,在絕緣膜348上形成導電膜350(參照圖10C)。作為導電膜350可以援用導電膜315的材料。
形成在基板342上的結構可以藉由上述製程完成。
接著,在基板302及基板342上,更詳細地說,在形成於基板302上的絕緣膜317、導電膜319、319a上以及在形成於基板342上的導電膜350上,分別形成配向膜320及配向膜352。配向膜320及配向膜352可以藉由摩擦法、光配向法等形成。然後,在基板302與基板342之間形成液晶層321。作為液晶層321的形成方法,可以採用分配器法(滴落法)或在將基板302和基板342貼合之後利用毛細現象來注入液晶的注入法。
藉由上述製程形成圖4所示的液晶顯示裝置。
本實施方式所示的結構及方法等可以與其他實施方式所示的結構及方法等適當地組合而實施。
實施方式3
在本實施方式中,使用圖11至圖15說明包括與實施方式1不同的電晶體的液晶顯示裝置。
圖11所示的液晶顯示裝置在A-B線所示的驅動電路部中包括雙閘極結構的電晶體102a。
設置在驅動電路部中的電晶體102a包括:設置在基板302上的被用作閘極電極的導電膜304a;被用作閘極絕緣膜51的絕緣膜305、306;形成在絕緣膜306上的氧化物半導體膜308a;以及與氧化物半導體膜308a接觸並被用作源極電極及汲極電極的導電膜310a、310b。此外,在氧化物半導體膜308a及導電膜310a、310b上形成有無機絕緣膜53,在無機絕緣膜53上形成有被用作閘極電極的導電膜316d。被用作閘極電極的導電膜316d在設置於閘極絕緣膜51及無機絕緣膜53中的開口部(未圖示)中與被用作閘極電極的導電膜304a連接。就是說,導電膜304a的電位與導電膜316d相同。
由此,藉由對電晶體102a的各閘極電極施加同一電位的電壓,可以降低初期特性的不均勻並抑制由-GBT應力測試導致的劣化及受到汲極電壓左右的通態電流(on-state current)的上升電壓變動。另外,在氧化物半導體膜308a中,還可以在膜厚度方向上進一步增大載子流動的區域,使得載子的遷移量增多。其結果是,電晶體102a的通態電流增大且場效移動率增高,典型的是,場效移動率為20cm2/V.s以上。
在藉由蝕刻等被加工的氧化物半導體膜的端部中,加工時的損傷導致缺陷的產生且雜質的附著等導致污染的產生,因此,由於被施加電場等的應力,氧化物半導體膜的端部容易活化而成為n型(低電阻)。因此,與被用作閘極電極的導電膜304a重疊的氧化物半導體膜308a的端部容易被n型化。在該n型化的端部被設置在被用作源極電極及汲極電極的導電膜310a與導電膜310b之間時,n型化的區域成為載子的路徑而形成寄生通道。但是,藉由在通道寬度方向上設置被用作閘極電極的導電膜316d,借助於被用作閘極電極的導電膜316d的電場的影響,可以抑制寄生通道發生在氧化物半導體膜308a的側面或包含該側面及其附近的端部中。其結果是,可以得到臨界電壓中的汲極電流的上升陡峭的電特性優良的電晶體。
另外,被用作閘極電極的導電膜316d可以適當地使用與實施方式2所示的導電膜316b同樣的材料。
〈變形例1〉
雖然實施方式3的圖11所示的液晶顯示裝置使用雙閘極結構的電晶體製造驅動電路部的電晶體,但是如圖12所示,也可以在A-B線所示的驅動電路部中包括雙閘極結構的電晶體102a且在C-D線所示的像素部中包括雙閘極結構的電晶體103a。
電晶體103a包括:設置在基板302上的被用 作閘極電極的導電膜304c;被用作閘極絕緣膜51的絕緣膜305、306;形成在絕緣膜306上的氧化物半導體膜308b;以及與氧化物半導體膜308b接觸並被用作源極電極及汲極電極的導電膜310d、310e。此外,在氧化物半導體膜308b及導電膜310d、310e上形成有無機絕緣膜53,在無機絕緣膜53上形成有被用作閘極電極的導電膜316e。被用作閘極電極的導電膜316e在設置於閘極絕緣膜51及無機絕緣膜53中的開口部(未圖示)中與被用作閘極電極的導電膜304c連接。就是說,導電膜304c的電位與導電膜316e相同。
藉由在驅動電路部及像素部中設置可靠性高、通態電流大且場效移動率高的雙閘極結構的電晶體,可以製造顯示品質良好的液晶顯示裝置。
〈變形例2〉
在實施方式2或實施方式3所示的液晶顯示裝置中,如圖13所示,可以在與設置於驅動電路中的電晶體102a重疊的區域中且在有機絕緣膜317上形成與導電膜319同時形成的導電膜319b。導電膜319b的電位可以是共用電位、接地電位等任意電位。藉由設置與雙閘極結構的電晶體102a重疊的導電膜319b,可以由導電膜319b遮蔽因施加到電晶體102a的被用作閘極電極的導電膜316d的電壓而發生的電場。結果,可以防止該電場所導致的液晶層321的配向不良。
〈變形例3〉
雖然實施方式2或實施方式3中說明在驅動電路部及像素部中包括有機絕緣膜317的液晶顯示裝置,但是如圖14所示,也可以只在像素部中設置有機絕緣膜317a。
另外,在圖14所示的液晶顯示裝置中,如圖7B所示那樣形成絕緣膜313,然後藉由圖案化形成遮罩,使用該遮罩對絕緣膜305、306、312、313分別進行蝕刻來形成開口部。接著,形成圖8A所示的導電膜315,然後在形成圖8B所示的導電膜316b的同時,形成使導電膜304b和導電膜310c連接的導電膜316a。然後,形成有機絕緣膜317a及導電膜319。
另外,如圖15所示,當在驅動電路部中不設置有機絕緣膜317a時,也可以在被用作雙閘極結構的電晶體102a的閘極電極的導電膜316d上設置與導電膜319同時形成的導電膜319c。
〈變形例4〉
注意,雖然在實施方式2及實施方式3中使用液晶元件作為顯示元件的一個例子進行說明,但是可以使用各種顯示元件。作為一個例子,將使用有機EL元件的例子表示在圖23、圖24、圖25及圖26中。包括有機EL元件的的顯示裝置包括:丙烯酸樹脂、聚醯亞胺樹脂、環氧樹脂等的有機樹脂膜371;設置在有機樹脂膜 371上的EL層373;以及設置在EL層373上的共用電極375。此外,由導電膜319、EL層373及共用電極375構成有機EL元件。
注意,本實施方式所示的結構及方法等可以與其他實施方式所示的結構及方法等適當地組合而實施。
實施方式4
根據需要,可以在實施方式2及實施方式3所示的電晶體102、102a、103、103a中以疊層結構形成氧化物半導體膜。這裡,使用電晶體103進行說明。
圖16所示的電晶體在絕緣膜306與導電膜310d、導電膜310e之間形成有包括氧化物半導體膜的多層膜336。
多層膜336包括氧化物半導體膜336a及氧化物半導體膜336b。即,多層膜336包括兩層結構。另外,氧化物半導體膜336a的一部分被用作通道區域。另外,以與多層膜336接觸的方式形成絕緣膜312a,與絕緣膜312a接觸的方式形成有氧化物半導體膜336b。即,在氧化物半導體膜336a與絕緣膜312a之間設置有氧化物半導體膜336b。
氧化物半導體膜336b由構成氧化物半導體膜336a的元素中的一種以上構成。由於氧化物半導體膜336b由構成氧化物半導體膜336a的元素中的一種以上構成,所以在氧化物半導體膜336a與氧化物半導體膜336b 之間的介面不容易產生介面散射。因此,在該介面不阻礙載子的移動,從而提高電晶體的場效移動率。
作為氧化物半導體膜336b典型的是In-Ga氧化物、In-Zn氧化物、In-M-Zn氧化物(M是Al、Ti、Ga、Y、Zr、La、Ce、Nd、Sn或Hf),並且與氧化物半導體膜336a相比,氧化物半導體膜336b的導帶底端的能量較接近於真空能階,典型的是,氧化物半導體膜336b的導帶底端的能量和氧化物半導體膜336a的導帶底端的能量之間的差異較佳為0.05eV以上、0.07eV以上、0.1eV以上或0.15eV以上,且2eV以下、1eV以下、0.5eV以下或0.4eV以下。換而言之,氧化物半導體膜336b的電子親和力與氧化物半導體膜336a的電子親和力之差為0.05eV以上、0.07eV以上、0.1eV以上或者0.15eV以上,且2eV以下、1eV以下、0.5eV以下或者0.4eV以下。
氧化物半導體膜336b藉由包含In提高載子移動率(電子移動率),所以是較佳的。
藉由在氧化物半導體膜336b中使Al、Ti、Ga、Y、Zr、La、Ce、Nd、Sn或Hf的原子個數比高於In,有時得到下面的効果。(1)擴大氧化物半導體膜336b的能隙。(2)減小氧化物半導體膜336b的電子親和力。(3)遮蔽來自外部的雜質。(4)絕緣性高於氧化物半導體膜336a。(5)由於Al、Ti、Ga、Y、Zr、La、Ce、Nd、Sn或Hf是與氧的鍵合力強的金屬元素,所以藉由具有其原子個數比高於In的原子個數比的Al、Ti、Ga、Y、Zr、 La、Ce、Nd、Sn或Hf,不容易產生氧缺陷。
在氧化物半導體膜336b為In-M-Zn氧化物膜的情況下,當In和M之總和為100atomic%時,In及M的原子百分比為如下:較佳為In低於50atomic%且M為50atomic%以上;更佳為In低於25atomic%且M為75atomic%以上。
另外,當氧化物半導體膜336a及氧化物半導體膜336b為In-M-Zn氧化物膜(M為Al、Ti、Ga、Y、Zr、La、Ce、Nd、Sn或Hf)時,氧化物半導體膜336b中所含的M(Al、Ti、Ga、Y、Zr、La、Ce、Nd、Sn或Hf)的原子數比大於氧化物半導體膜336a中的M的原子個數比,典型的是,氧化物半導體膜336b中所含的M的原子數比率為氧化物半導體膜336a中所含的M的原子個數比率的1.5倍以上,較佳為2倍以上,更佳為3倍以上。
另外,當氧化物半導體膜336a及氧化物半導體膜336b為In-M-Zn氧化物膜(M為Al、Ti、Ga、Y、Zr、La、Ce、Nd、Sn或Hf)時,並且氧化物半導體膜336b的原子個數比為In:M:Zn=x1:y1:z1,且氧化物半導體膜336a的原子個數比為In:M:Zn=x2:y2:z2的情況下,y1/x1大於y2/x2,較佳y1/x1為y2/x2的1.5倍以上。更佳的是,y1/x1為y2/x2的2倍以上,進一步較佳的是y1/x1為y2/x2的3倍以上。此時,在氧化物半導體膜336b中,在y1為x1以上的情況下,使用該氧化物半導體膜的電晶體具有穩定的電特性,因此是較佳的。但是,在y1 為x1的3倍以上的情況下,使用該氧化物半導體膜的電晶體的場效移動率降低,因此,較佳y1低於x1的3倍。
例如,作為氧化物半導體膜336a可以使用原子個數比為In:Ga:Zn=1:1:1、1:1:1.2或3:1:2的In-Ga-Zn氧化物。此外,作為氧化物半導體膜336b可以使用原子個數比為In:Ga:Zn=1:3:n(n是2以上且8以下的整數)、1:6:m(m是2以上且10以下的整數)或1:9:6的In-Ga-Zn氧化物。另外,氧化物半導體膜336a及氧化物半導體膜336b的原子個數比作為誤差包括上述原子個數比的±20%的變動。此外,在氧化物半導體膜336a中,當Zn的比率為Ga以上時,容易形成CAAC-OS,所以是較佳的。
當在後面形成絕緣膜312b時,氧化物半導體膜336b也被用作緩和對氧化物半導體膜336a所造成的損傷的膜。
將氧化物半導體膜336b的厚度設定為3nm以上且100nm以下,較佳為3nm以上且50nm以下。
另外,氧化物半導體膜336b與氧化物半導體膜336a同樣地例如可以具有非單晶結構。非單晶結構例如包括下述CAAC-OS(C Axis Aligned Crystalline Oxide Semiconductor:c軸配向的結晶氧化物半導體)、多晶結構、下述微晶結構或非晶結構。
此外,氧化物半導體膜336a及氧化物半導體膜336b的每一個也可以為具有非晶結構的區域、微晶結 構的區域、多晶結構的區域、CAAC-OS的區域和單晶結構的區域中的兩種以上的混合膜。混合膜有時例如為具有非晶結構的區域、微晶結構的區域、多晶結構的區域、CAAC-OS的區域和單晶結構的區域中的兩種以上的區域的單層結構。另外,混合膜有時例如為具有非晶結構的區域、微晶結構的區域、多晶結構的區域、CAAC-OS的區域和單晶結構的區域中的兩種以上的區域的疊層結構。
在此,在氧化物半導體膜336a與絕緣膜312a之間設置有氧化物半導體膜336b。由此,在氧化物半導體膜336b與絕緣膜312a之間即使因雜質及缺陷形成陷阱能階,也在該陷阱能階與氧化物半導體膜336a之間有間隔。其結果是,在氧化物半導體膜336a中流過的電子不容易被陷阱能階俘獲,所以不僅能夠增大電晶體的通態電流,而且能夠提高場效移動率。此外,當電子被陷阱能階俘獲時,該電子成為固定負電荷。其結果,導致電晶體的臨界電壓的變動。然而,當氧化物半導體膜336a與陷阱能階之間有間隔時,能夠抑制電子被陷阱能階俘獲,從而能夠抑制臨界電壓的變動。
此外,由於氧化物半導體膜336b能夠遮蔽來自外部的雜質,所以可以減少從外部移動到氧化物半導體膜336a中的雜質量。此外,在氧化物半導體膜336b中不容易形成氧缺陷。由此,能夠減少氧化物半導體膜336a中的雜質濃度及氧缺陷量。
此外,氧化物半導體膜336a及氧化物半導體 膜336b不以簡單地層疊各膜的方式來形成,而是以形成連續接合(在此,特指在各膜之間導帶底端的能量連續地變化的結構)的方式來形成。換而言之,採用在各膜之間的介面不存在雜質的疊層結構,該雜質會形成俘獲中心或再結合中心等缺陷能階。如果雜質混入層疊有的氧化物半導體膜336a與氧化物半導體膜336b之間,則能帶則失去連續性,因此,載子在介面被俘獲或者因再結合而消失。
為了形成連續接合,需要使用具備負載鎖定室的多室方式的成膜裝置(濺射裝置)在不使各膜暴露於大氣的情況下連續地層疊。在濺射裝置的各室中,較佳為使用低溫泵等吸附式真空泵進行高真空抽氣(抽空到5×10-7Pa至1×10-4Pa左右)以盡可能地去除對氧化物半導體膜來說是雜質的水等。或者,較佳為組合渦輪分子泵和冷阱來防止將氣體、尤其是包含碳或氫的氣體從抽氣系統倒流到處理室內。
此外,在圖16中,作為多層膜336採用氧化物半導體膜336a及氧化物半導體膜336b的兩層結構,但是也可以採用在絕緣膜306與氧化物半導體膜336a之間還設置與氧化物半導體膜336b同樣的膜的三層結構。此時,設置在絕緣膜306與氧化物半導體膜336a之間的氧化物膜的厚度較佳比氧化物半導體膜336a薄。藉由將氧化物膜的厚度設定為1nm以上且5nm以下,較佳為1nm以上且3nm以下,可以減少電晶體的臨界電壓的變動量。
本實施方式所示的結構及方法等可以與其他實施方式所示的結構及方法等適當地組合而實施。
實施方式5
在本實施方式中,對能夠用於包含在上述實施方式所說明的顯示裝置中的電晶體的氧化物半導體膜的一個方式進行說明。
氧化物半導體膜也可以由單晶結構的氧化物半導體(以下,稱為單晶氧化物半導體)、多晶結構的氧化物半導體(以下,稱為多晶氧化物半導體)、微晶結構的氧化物半導體(以下,稱為微晶氧化物半導體)及非晶結構的氧化物半導體(以下,稱為非晶氧化物半導體)中的一種以上構成。另外,氧化物半導體膜也可以由CAAC-OS構成。此外,氧化物半導體膜也可以由非晶氧化物半導體及具有晶粒的氧化物半導體構成。下面作為典型例子,對CAAC-OS及微晶氧化物半導體進行說明。
首先,說明CAAC-OS膜。
CAAC-OS膜是包含多個c軸配向的結晶部的氧化物半導體膜之一。
在CAAC-OS膜的穿透式電子顯微鏡(TEM:Transmission Electron Microscope)影像中,觀察不到結晶部與結晶部之間的明確的邊界,即晶界(grain boundary)。因此,在CAAC-OS膜中,不容易產生起因於晶界的電子移動率的降低。
由利用TEM所得到的大致平行於樣本面的方向上的CAAC-OS膜的影像(剖面TEM影像)可知,在結晶部中金屬原子排列為層狀。各金屬原子層具有反映著被形成CAAC-OS膜的面(也稱為被形成面)或CAAC-OS膜的頂面的凹凸的形狀並以平行於CAAC-OS膜的被形成面或頂面的方式排列。
另一方面,由利用TEM所得到的大致垂直於樣本面的方向上的CAAC-OS膜的影像(平面TEM影像)可知,在結晶部中金屬原子排列為三角形狀或六角形狀。但是,在不同的結晶部之間沒有金屬原子的排列的有序度。
圖17a是CAAC-OS膜的剖面TEM影像。另外,圖17b是進一步放大圖17a的剖面TEM影像,為便於理解而強調表示原子排列。
圖17c是圖17a中的A-O-A’之間的由圓圈圍繞的區域(直徑大致為4nm)的局部性的傳立葉變換影像。在圖17c所示的各區域中可以確認到c軸配向性。此外,A-O之間的c軸方向和O-A’之間的c軸方向不同,由此可知A-O之間和O-A’之間具有不同的晶粒。另外,可知:在A-O之間,c軸的角度為14.3°、16.6°、26.4°等而逐漸地連續變化。同樣地,可知:在O-A’之間,c軸的角度為-18.3°、-17.6°、-15.9°等而逐漸地連續變化。
另外,在CAAC-OS膜的電子繞射圖案中,觀察到表示配向性的斑點(亮點)。例如,在使用例如為1nm 以上且30nm以下的電子束獲得的CAAC-OS膜的頂面的電子繞射圖案(也稱為奈米束電子繞射圖案)中,觀察到斑點(參照圖18A)。
藉由觀察剖面TEM影像以及平面TEM影像可知,CAAC-OS膜的結晶部具有配向性。
注意,CAAC-OS膜所包含的結晶部的尺寸幾乎都是可以收容在一個邊長短於100nm的立方體內的尺寸。因此,有時包括在CAAC-OS膜中的結晶部的尺寸為能夠容納在一個邊長短於10nm、短於5nm或短於3nm的立方體內的尺寸。但是,有時包含在CAAC-OS膜中的多個結晶部聯結,從而形成一個大結晶區。例如,在平面TEM影像中有時會觀察到2500nm2以上、5μm2以上或1000μm2以上的結晶區。
使用X射線繞射(XRD:X-Ray Diffraction)裝置對CAAC-OS膜進行結構分析。例如,在藉由out-of-plane法分析包括InGaZnO4的結晶的CAAC-OS膜的情況下,在繞射角度(2θ)為31°附近有時出現峰值。由於該峰值歸屬於InGaZnO4結晶的(009)面,所以可以確認到CAAC-OS膜的結晶具有c軸配向性並且c軸在大致垂直於CAAC-OS膜的被形成面或頂面的方向上配向。
另一方面,在藉由從大致垂直於c軸的方向使X射線入射到樣本的in-plane法分析CAAC-OS膜的情況下,在2θ為56°附近有時出現峰值。該峰值歸屬於InGaZnO4結晶的(110)面。在此,假設樣本是InGaZnO4的 單晶氧化物半導體膜,在將2θ固定為56°附近的狀態下,一邊以樣本面的法線向量為軸(Φ軸)旋轉樣本一邊進行分析(Φ掃描),此時觀察到六個歸屬於等價於(110)面的結晶面的峰值。另一方面,在該樣本是CAAC-OS膜的情況下,即使在將2θ固定為56°附近的狀態下進行Φ掃描也不能觀察到明確的峰值。
由上述結果可知,在具有c軸配向性的CAAC-OS膜中,雖然a軸及b軸的方向在結晶部之間不同,但是c軸在平行於被形成面或頂面的法線向量的方向上配向。因此,在上述剖面TEM影像中觀察到的排列為層狀的各金屬原子層相當於平行於結晶的ab面的面。
注意,結晶部在形成CAAC-OS膜或進行加熱處理等晶化處理時形成。如上所述,結晶的c軸在平行於CAAC-OS膜的被形成面或頂面的法線向量的方向上配向。由此,例如,在藉由蝕刻等改變CAAC-OS膜的形狀的情況下,有時結晶的c軸未必平行於CAAC-OS膜的被形成面或頂面的法線向量。
此外,CAAC-OS膜中的c軸配向的結晶部的分佈也可以不均勻。例如,在CAAC-OS膜的結晶部藉由從CAAC-OS膜的頂面近旁產生的結晶生長而形成的情況下,有時頂面附近的c軸配向的結晶部的比例會高於被形成面附近。另外,在添加有雜質的CAAC-OS膜中,添加有雜質的區域變質而有時CAAC-OS膜中的c軸配向結晶部所占的比例根據區域不同。
注意,在藉由out-of-plane法分析包括InGaZnO4結晶的CAAC-OS膜的情況下,除了2θ為31°附近的峰值之外,有時還觀察到2θ為36°附近的峰值。2θ為36°附近的峰值意味著不具有c軸配向性的結晶包括在CAAC-OS膜的一部分中。較佳的是,CAAC-OS膜在2θ為31°附近出現峰值並在2θ為36°附近不出現峰值。
CAAC-OS膜是雜質濃度低的氧化物半導體膜。雜質是指氫、碳、矽以及過渡金屬元素等氧化物半導體膜的主要成分以外的元素。尤其是,與氧的鍵合力比構成氧化物半導體膜的金屬元素強的矽等元素因為會從氧化物半導體膜中奪取氧而打亂氧化物半導體膜的原子排列,導致結晶性下降。另外,由於鐵或鎳等重金屬、氬、二氧化碳等的原子半徑(或分子半徑)大,所以若其被包含在氧化物半導體膜內,也會打亂氧化物半導體膜的原子排列,導致結晶性下降。注意,包含在氧化物半導體膜中的雜質有時成為載子陷阱或載子發生源。
另外,CAAC-OS膜是缺陷態密度低的氧化物半導體膜。例如,氧化物半導體膜中的氧缺陷有時會成為載子陷阱,或因俘獲氫而成為載子發生源。
將雜質濃度低且缺陷態密度低(氧缺陷的個數少)的狀態稱為“高純度本質”或“實質上高純度本質”。高純度本質或實質上高純度本質的氧化物半導體膜具有較少的載子發生源,因此可以具有較低的載子密度。因此,使用該氧化物半導體膜的電晶體很少具有負臨界電 壓的電特性(也稱為常開啟特性)。此外,高純度本質或實質上高純度本質的氧化物半導體膜具有較少的載子陷阱。因此,使用該氧化物半導體膜的電晶體的電特性變動小,而成為高可靠性電晶體。此外,被氧化物半導體膜的載子陷阱俘獲的電荷到被釋放需要長時間,有時像固定電荷那樣動作。所以,採用雜質濃度高且缺陷態密度高的氧化物半導體膜的電晶體有時電特性不穩定。
另外,在使用CAAC-OS膜的電晶體中,起因於可見光或紫外光的照射的電特性的變動小。
接下來,說明微晶氧化物半導體膜。
在使用TEM觀察微晶氧化物半導體膜時的影像中,有時無法明確地確認到結晶部。微晶氧化物半導體膜中含有的結晶部的尺寸大多為1nm以上且100nm以下,或1nm以上且10nm以下。尤其是,將具有尺寸為1nm以上且10nm以下或1nm以上且3nm以下的微晶的奈米晶(nc:nanocrystal)的氧化物半導體膜稱為nc-OS(nanocrystalline Oxide Semiconductor:奈米晶氧化物半導體)膜。另外,例如在使用TEM觀察nc-OS膜時,有時無法明確地確認到晶界。
nc-OS膜在微小區域(例如1nm以上且10nm以下的區域,特別是1nm以上且3nm以下的區域)中其原子排列具有週期性。另外,nc-OS膜在不同的結晶部之間觀察不到晶體配向的規律性。因此,在膜整體中觀察不到配向性。所以,有時nc-OS膜在某些分析方法中與非晶 氧化物半導體膜沒有差別。例如,當利用使用直徑比結晶部大的X射線的XRD裝置對nc-OS膜進行結構分析時,在利用out-of-plane法的分析中,檢測不出顯示結晶面的峰值。此外,在對nc-OS膜進行使用其束徑比結晶部大(例如,50nm以上)的電子射線的電子繞射(選區電子繞射)時,觀察到類似光暈圖案的繞射圖案。另一方面,在對nc-OS膜進行使用其束徑近於結晶部或者比結晶部小的電子射線的奈米束電子繞射時,觀察到斑點。另外,在nc-OS膜的奈米束電子繞射圖案中,有時觀察到如圓圈那樣的(環狀的)亮度高的區域。而且,在nc-OS膜的奈米束電子繞射圖案中,有時還觀察到環狀的區域內的多個斑點(參照圖18B)。
nc-OS膜是比非晶氧化物半導體膜規律性高的氧化物半導體膜。因此,nc-OS膜的缺陷態密度比非晶氧化物半導體膜低。但是,nc-OS膜在不同的結晶部之間觀察不到晶體配向的規律性。所以,nc-OS膜的缺陷態密度比CAAC-OS膜高。
注意,氧化物半導體膜例如也可以是包括非晶氧化物半導體膜、微晶氧化物半導體膜和CAAC-OS膜中的兩種以上的疊層膜。
當氧化物半導體膜具有多個結構時,有時可以藉由利用奈米束電子繞射來進行結構分析。
圖18C示出一種透過電子繞射測量裝置,包括:電子槍室70;電子槍室70下的光學系統72;光學系 統72下的樣本室74;樣本室74下的光學系統76;光學系統76下的觀察室80;設置在觀察室80的拍攝裝置78;以及觀察室80下的膠片室82。以朝向觀察室80的內部的方式設置拍攝裝置78。另外,該透過電子繞射測量裝置也可以不包括膠片室82。
此外,圖18D示出圖18C所示的穿透式電子繞射測定裝置內部的結構。在透過電子繞射測量裝置內部中,從設置在電子槍室70的電子槍發射的電子藉由光學系統72照射到配置在樣本室74中的物質88。穿過物質88的電子藉由光學系統76入射到設置在觀察室80內部的螢光板92中。在螢光板92中,藉由呈現對應於所入射的電子的強度的圖案,可以測量透過電子繞射圖案。
因為拍攝裝置78朝向螢光板92地設置,所以可以拍攝呈現在螢光板92的圖案。經過照相裝置78的透鏡的中央及螢光板92的中央的直線與螢光板92的頂面所形成的角度例如為15°以上且80°以下,30°以上且75°以下或45°以上且70°以下。該角度越小,由拍攝裝置78拍攝的透過電子繞射圖案的應變越大。但是,如果預先知道該角度,則能夠校正所得到的透過電子繞射圖案的應變。另外,有時也可以將拍攝裝置78設置在膠片室82。例如,也可以以與電子84的入射方向相對的方式將拍攝裝置78設置在膠片室82中。在此情況下,可以從螢光板92的背面拍攝歪曲少的透過電子繞射圖案。
樣本室74設置有用來固定樣本的物質88的 支架。支架具有使穿過物質88的電子透過的結構。例如,支架也可以具有將物質88在X軸、Y軸、Z軸上移動等的功能。支架的移動功能例如具有在1nm以上且10nm以下、5nm以上且50nm以下、10nm以上且100nm以下、50nm以上且500nm以下、100nm以上且1μm以下等的範圍中移動的精度,即可。至於這些範圍,根據物質88的結構設定最適合的範圍,即可。
接著,說明使用上述透過電子繞射測量裝置測量物質的透過電子繞射圖案的方法。
例如,如圖18D所示,藉由改變物質中的奈米束的電子84的照射位置(進行掃描),可以確認到物質的結構逐漸地產生變化的情況。此時,如果物質88是CAAC-OS膜,則可以觀察到圖18A所示的繞射圖案。或者,如果物質88是nc-OS膜,則可以觀察到圖18B所示的繞射圖案。
即使物質88是CAAC-OS膜,也有時部分地觀察到與nc-OS膜等同樣的繞射圖案。因此,有時可以以在一定的範圍中觀察到CAAC-OS膜的繞射圖案的區域的比例(也稱為CAAC化率)表示CAAC-OS膜的優劣。例如,優良的CAAC-OS膜的CAAC化率為50%以上,較佳為80%以上,更佳為90%以上,進一步較佳為95%以上。另外,將觀察到與CAAC-OS膜不同的繞射圖案的區域的比例表示為非CAAC化率。
作為一個例子,至於具有剛進行成膜之後(表 示為as-sputterd)的CAAC-OS膜或在包含氧的氛圍中以450℃進行加熱處理之後的CAAC-OS膜的各樣本的頂面,一邊進行掃描一邊得到透過電子繞射圖案。在此,一邊以5nm/秒鐘的速度進行掃描60秒鐘一邊觀察繞射圖案,且在每個0.5秒鐘將觀察到的繞射圖案轉換為靜態影像,從而導出CAAC化率。注意,作為電子線使用束徑為1nm的奈米束。另外,對六個樣本進行同樣的測量。而且,在算出CAAC化率時利用六個樣本中的平均值。
圖19A示出各樣本的CAAC化率。剛進行成膜之後的CAAC-OS膜的CAAC化率為75.7%(非CAAC化率為24.3%)。此外,進行450℃的加熱處理之後的CAAC-OS膜的CAAC化率為85.3%(非CAAC化率為14.7%)。由此可知,與剛進行成膜之後相比,450℃的加熱處理之後的CAAC化率較高。也就是說,可以知道藉由高溫(例如400℃以上)下的加熱處理,降低非CAAC化率(提高CAAC化率)。此外,在進行低於500℃的加熱處理時也可以得到具有高CAAC化率的CAAC-OS膜。
在此,與CAAC-OS膜不同的繞射圖案的大部分是與nc-OS膜同樣的繞射圖案。此外,在測量區域中觀察不到非晶氧化物半導體膜。由此可知,藉由加熱處理,具有與nc-OS膜同樣的結構的區域受到相鄰的區域的結構的影響而重新排列,並CAAC化。
圖19B及圖19C是剛進行成膜之後及450℃的加熱處理之後的CAAC-OS膜的平面TEM影像。藉由對 圖19B和圖19C進行比較,可以知道450℃的加熱處理之後的CAAC-OS膜的性質更均勻。也就是說,可以知道藉由高溫的加熱處理提高CAAC-OS膜的性質。
藉由採用這種測量方法,有時可以對具有多種結構的氧化物半導體膜進行結構分析。
本實施方式所示的結構及方法等可以與其他實施方式所示的結構及方法等適當地組合而實施。
實施方式6
如在實施方式2中該的那樣,使用氧化物半導體膜的電晶體可以將在關閉狀態的電流值(關態電流值)控制得低。由此,可以延長影像信號等的電信號的保持時間,並將寫入間隔設定得長。
藉由適用關態電流值低的電晶體,本實施方式的液晶顯示裝置能夠至少以兩種驅動方法(模式)進行顯示。第一驅動模式是習知的液晶顯示裝置的驅動方法,即每1個圖框逐次改寫資料的驅動方法。第二模式是在執行資料的寫入處理之後,停止資料的改寫的驅動方法。就是說,減小更新速率的驅動模式。
以第一驅動模式進行動態影像的顯示。當顯示靜態影像時,每1個圖框的影像資料沒有變化,而不需要每1個圖框進行資料的改寫。由此,當顯示靜態影像時,藉由以第二驅動模式使液晶顯示裝置進行工作,可以去除畫面的閃爍,同時可以減少耗電量。
另外,被應用於本實施方式的液晶顯示裝置的液晶元件包括面積大的電容元件,並且儲存在電容元件的電荷量大。因此,能夠延長保持像素電極的電位的時間,可以應用減少更新速率的驅動模式。並且,即使在液晶顯示裝置中應用減少更新速率的驅動模式的情況下,也能夠長期間地抑制施加到液晶層的電壓的變化,從而可以進一步防止使用者發覺影像的閃爍。因此,可以實現低耗電量化以及顯示的提高。
在此,對減少更新速率的效果進行說明。
眼睛疲勞被大致分為兩種,即神經疲勞和肌肉疲勞。神經疲勞是:由於長時間一直觀看液晶顯示裝置的發光、閃爍螢幕,使得該亮度刺激視網膜、視神經、腦子而引起的。肌肉疲勞是:由於過度使用在調節焦點時使用的睫狀肌而引起的。
圖20A示出習知的液晶顯示裝置的顯示的示意圖。如圖20A所示,在習知的液晶顯示裝置的顯示中,進行1秒鐘60次的影像改寫。長時間一直觀看這種螢幕,恐怕會刺激使用者的視網膜、視神經、腦子而引起眼睛疲勞。
在本發明的一個方式中,將關態電流極小的電晶體,例如,使用氧化物半導體的電晶體應用於液晶顯示裝置的像素部。另外,液晶元件包括面積大的電容元件。由此能夠抑制儲存在電容元件的電荷洩漏,所以即使減少圖框頻率,也能夠維持液晶顯示裝置的亮度。
也就是說,如圖20B所示,例如可以進行每5秒鐘1次的影像改寫,由此可以盡可能地看到相同的影像,這使得使用者所看到的影像閃爍減少。由此,可以減少對使用者的視網膜、視神經、腦子的刺激而減輕神經疲勞。
根據本發明的一個方式,可以提供對眼睛刺激少的液晶顯示裝置。
本實施方式所示的結構及方法等可以與其他實施方式所示的結構及方法等適當地組合而實施。
實施方式7
在本實施方式中,對應用本發明的一個方式的顯示裝置的電子裝置的結構例子進行說明。另外,在本實施方式中,參照圖21對應用本發明的一個方式的顯示裝置的顯示模組進行說明。
圖21所示的顯示模組8000在上部覆蓋物8001與下部覆蓋物8002之間包括連接於FPC8003的觸控面板8004、連接於FPC8005的顯示面板8006、背光單元8007、框架8009、印刷基板8010、電池8011。另外,有時不設置背光單元8007、電池8011、觸控面板8004等。
可以將本發明的一個方式的顯示裝置例如用於顯示面板8006。
上部覆蓋物8001及下部覆蓋物8002根據觸控面板8004及顯示面板8006的尺寸可以適當地改變形狀 或尺寸。
觸控面板8004可以使用電阻膜方式或靜電容量方式的觸控面板並重疊於顯示面板8006。此外,也可以使顯示面板8006的反基板(密封基板)具有觸控面板的功能。或者,也可以在顯示面板8006的各像素內設置光感測器,而用作光學觸控面板。或者,也可以在顯示面板8006的每個像素中設置觸摸感測器用電極,以製成電容型觸控面板。
背光單元8007具有光源8008。也可以採用將光源8008設置於背光單元8007的端部,且使用光擴散板的結構。
框架8009除了具有保護顯示面板8006的功能以外還具有用來遮斷因印刷基板8010的工作而產生的電磁波的電磁屏蔽的功能。此外,框架8009具有放熱板的功能。
印刷基板8010具有電源電路以及用來輸出視訊信號和時脈信號的信號處理電路。作為對電源電路供應電力的電源,既可以採用外部的商業電源,又可以採用另行設置的電池8011的電源。當使用商用電源時,可以省略電池8011。
此外,在顯示模組8000中還可以設置偏光板、相位差板、稜鏡片等構件。
圖22A至圖22D是包括本發明的一個方式的顯示裝置的電子裝置的外觀圖。
作為電子裝置,例如可以舉出電視機(也稱為電視或電視接收機)、用於電腦等的顯示器、數位相機、數位攝影機等影像拍攝裝置、數位相框、行動電話機(也稱為行動電話、行動電話裝置)、可攜式遊戲機、可攜式資訊終端、音頻再生裝置、彈珠機等大型遊戲機等。
圖22A表示可攜式資訊終端,其包括主體1001、外殼1002、顯示部1003a和顯示部1003b等。顯示部1003b是觸控面板,藉由觸摸在顯示部1003b上顯示的鍵盤按鈕1004,可以操作螢幕且可以輸入文字。不必說,也可以將顯示部1003a用作觸控面板而構成。藉由將上述實施方式所示的電晶體用作切換元件製造液晶面板或有機發光面板,並將其用於顯示部1003a、顯示部1003b,可以實現可靠性高的可攜式資訊終端。
圖22A所示的可攜式資訊終端可以具有如下功能:顯示各種資訊(靜止影像、動態影像、文字影像等);將日曆、日期或時刻等顯示在顯示部上;對顯示在顯示部上的資訊進行操作或編輯;以及利用各種軟體(程式)控制處理;等。另外,也可以採用在外殼的背面或側面具備外部連接端子(耳機端子、USB端子等)、儲存介質插入部等的結構。
此外,圖22A所示的可攜式資訊終端也可以以無線的方式收發資訊。還可以採用以無線的方式從電子書閱讀器伺服器購買所希望的書籍資料等,然後下載的結構。
圖22B示出可攜式音樂播放機,其中主體1021包括顯示部1023、用來戴在耳朵上的固定部1022、揚聲器、操作按鈕1024以及外部儲存槽1025等。藉由將上述實施方式所示的電晶體用作切換元件製造液晶面板或有機發光面板,並將其用於顯示部1023,可以實現可靠性高的可攜式音樂播放機。
再者,藉由使圖22B所示的可攜式音樂播放器具有天線、麥克風功能及無線通訊功能,且與行動電話機互動,可以實現在駕駛汽車等時利用無線通訊進行免提的對話。
圖22C示出行動電話,由兩個外殼,即外殼1030及外殼1031構成。外殼1031具備顯示面板1032、揚聲器1033、麥克風1034、指向裝置1036、照相機1037、外部連接端子1038等。另外,外殼1030具備進行行動電話的充電的太陽能電池1040、外部儲存槽1041等。另外,在外殼1031內組裝有天線。藉由將上述實施方式所示的電晶體用於顯示面板1032,可以實現可靠性高的行動電話。
另外,顯示面板1032具備觸控面板,圖22C以虛線表示作為影像而被顯示出來的多個操作鍵1035。另外,還安裝有用來將由太陽能電池1040輸出的電壓升壓到各電路所需的電壓的升壓電路。
顯示面板1032根據使用方式適當地改變顯示的方向。另外,由於在與顯示面板1032同一面上設置有 照相機1037,所以可以實現視頻電話。揚聲器1033及麥克風1034不侷限於音訊通話,還可以進行視頻通話、錄音、再生等。再者,藉由滑動外殼1030和外殼1031而可以從如圖22C那樣的展開狀態變成重疊狀態,所以可以實現適於攜帶的小型化。
外部連接端子1038可以與AC轉接器及各種電纜如USB電纜等連接,並可以進行充電及與個人電腦等的資料通信。另外,藉由將儲存介質插入外部儲存槽1041中,可以對應於更大量資料的保存及移動。
另外,除了上述功能之外,還可以具有紅外線通信功能、電視接收功能等。
圖22D示出電視機的一例。在電視機1050中,在外殼1051中安裝有顯示部1053。利用顯示部1053可以顯示影像。此外,將CPU內置於支撐外殼1051的支架1055。藉由將上述實施方式所示的電晶體用於顯示部1053及CPU,可以實現可靠性高的電視機1050。
可以藉由外殼1051所具備的操作開關或另行提供的遙控器進行電視機1050的操作。此外,也可以採用在遙控器中設置顯示從該遙控器輸出的資訊的顯示部的結構。
另外,電視機1050採用具備接收機、數據機等的結構。可以藉由利用接收機接收一般的電視廣播。再者,藉由數據機連接到有線或無線方式的通信網路,從而可以進行單向(從發送者到接收者)或雙向(發送者和接 收者之間或接收者之間等)的資訊通信。
另外,電視機1050具備外部連接端子1054、儲存介質再現錄影部1052、外部儲存槽。外部連接端子1054可以與USB電纜等各種電纜連線,並可以進行與個人電腦等的資料通信。藉由將盤狀儲存介質插入儲存介質再現錄影部1052中,可以進行對儲存在儲存介質中的資料的讀出以及對儲存介質的寫入。另外,也可以將插入外部儲存槽中的外部記憶體1056所儲存的影像或影像等顯示在顯示部1053上。
在上述實施方式所示的電晶體的關態洩漏電流極低的情況下,藉由將該電晶體應用於外部記憶體1056或CPU,可以提供耗電量充分降低的高可靠性電視機1050。
本實施方式所示的結構及方法等可以與其他實施方式所示的結構及方法等適當地組合而實施。

Claims (7)

  1. 一種顯示裝置,包括:第一像素;第二像素;第一佈線;第二佈線;以及第三佈線,其中,該第一像素及該第二像素都包括第一子像素、第二子像素、第三子像素及第四子像素,該第一子像素、該第二子像素、該第三子像素及該第四子像素都包括電晶體,其中,該第一佈線與該第一像素的該第一子像素的該電晶體的閘極、該第一像素的該第二子像素的該電晶體的閘極及該第一像素的該第三子像素的該電晶體的閘極電連接,其中,該第二佈線與該第一像素的該第四子像素的該電晶體的閘極及該第二像素的該第四子像素的該電晶體的閘極電連接,其中,該第三佈線與該第一像素的該第四子像素的該電晶體的源極和汲極中的一個、該第一像素的該第二子像素的該電晶體的源極和汲極中的一個及該第二像素的該第二子像素的該電晶體的源極和汲極中的一個電連接,並且其中,該第一子像素、該第二子像素、該第三子像素及該第四子像素都還包括電連接到該電晶體的該源極和該汲極中的另一個的液晶元件。
  2. 一種顯示裝置,包括:第一像素;第二像素;第一佈線;第二佈線;以及第三佈線,其中,該第一像素及該第二像素都包括分別包括電晶體的第一子像素、第二子像素、第三子像素及第四子像素,其中,該第一佈線與該第一像素的該第一子像素的該電晶體的閘極、該第一像素的該第二子像素的該電晶體的閘極及該第一像素的該第三子像素的該電晶體的閘極電連接,其中,該第二佈線與該第一像素的該第四子像素的該電晶體的閘極及該第二像素的該第四子像素的該電晶體的閘極電連接,其中,該第三佈線與該第一像素的該第四子像素的該電晶體的源極和汲極中的一個、該第一像素的該第二子像素的該電晶體的源極和汲極中的一個及該第二像素的該第二子像素的該電晶體的源極和汲極中的一個電連接,其中,該第三佈線在某個方向上延伸,其中,該第一像素的該第一子像素在該方向上的該第一佈線和該第二佈線之間包括第一像素電極,其中,該第一像素的該第二子像素在該方向上的該第一佈線和該第二佈線之間包括第二像素電極, 其中,該第一像素的該第三子像素在該方向上的該第一佈線和該第二佈線之間包括第三像素電極,其中,該第一像素的該第四子像素在該方向上的該第三像素電極和該第二佈線之間包括第四像素電極,並且其中,該第一子像素、該第二子像素、該第三子像素及該第四子像素都還包括電連接到該電晶體的該源極和該汲極中的另一個的液晶元件。
  3. 根據申請專利範圍第1和2項中之任一項之顯示裝置,還包括:該第一像素的該第一子像素的該電晶體上的無機絕緣膜;該無機絕緣膜上的有機絕緣膜;與該第一像素的該第一子像素的該電晶體電連接的電容元件;以及該有機絕緣膜上的像素電極,該像素電極與該第一像素的該第一子像素的該電晶體電連接,其中,該第一像素的該第一子像素的該電晶體位於基板上,其中,該第一像素的該第一子像素的該電晶體包括:該基板上的閘極電極;該閘極電極上的閘極絕緣膜;該閘極絕緣膜上的氧化物半導體膜,該氧化物半導體膜與該閘極電極重疊;以及該氧化物半導體膜上的一對導電膜, 其中,該電容元件包括:該閘極絕緣膜上且與該一對導電膜中的一個接觸的金屬氧化物膜;該無機絕緣膜;以及該無機絕緣膜上的第一透光導電膜,並且其中,該像素電極由使用第二透光導電膜形成且與該一對導電膜中的該一個接觸。
  4. 根據申請專利範圍第3項之顯示裝置,其中,該無機絕緣膜包括:與該氧化物半導體膜接觸的氧化物絕緣膜;以及該氧化物絕緣膜上的氮化物絕緣膜。
  5. 根據申請專利範圍第4項之顯示裝置,其中,該金屬氧化物膜與該氮化物絕緣膜接觸且包括與該氧化物半導體膜相同的金屬元素。
  6. 根據申請專利範圍第3項之顯示裝置,其中,該氧化物半導體膜包括In-Ga氧化物、In-Zn氧化物或In-M-Zn氧化物,並且其中,M是Al、Ti、Ga、Y、Zr、La、Ce、Nd、Sn或Hf。
  7. 根據申請專利範圍第3項之顯示裝置,其中,該氧化物半導體膜具有包括第一膜及第二膜的多層結構,並且其中,該第一膜的金屬元素的原子個數比與該第二膜的該金屬元素的原子個數比不同。
TW103140805A 2013-11-27 2014-11-25 顯示裝置 TWI675461B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-245172 2013-11-27
JP2013245172 2013-11-27
JP2014-038159 2014-02-28
JP2014038159 2014-02-28

Publications (2)

Publication Number Publication Date
TW201530744A TW201530744A (zh) 2015-08-01
TWI675461B true TWI675461B (zh) 2019-10-21

Family

ID=53181874

Family Applications (2)

Application Number Title Priority Date Filing Date
TW103140805A TWI675461B (zh) 2013-11-27 2014-11-25 顯示裝置
TW108118280A TWI703713B (zh) 2013-11-27 2014-11-25 顯示裝置

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108118280A TWI703713B (zh) 2013-11-27 2014-11-25 顯示裝置

Country Status (4)

Country Link
US (1) US9880437B2 (zh)
JP (5) JP6486660B2 (zh)
KR (2) KR102240809B1 (zh)
TW (2) TWI675461B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027597A (ja) * 2013-12-06 2016-02-18 株式会社半導体エネルギー研究所 半導体装置
WO2016038508A1 (en) 2014-09-12 2016-03-17 Semiconductor Energy Laboratory Co., Ltd. Display device
CN105093611B (zh) * 2015-07-21 2018-09-11 京东方科技集团股份有限公司 一种阵列基板及其驱动方法、显示面板、显示装置
CN104991364B (zh) * 2015-07-21 2018-10-30 京东方科技集团股份有限公司 一种阵列基板及其驱动方法、显示面板、显示装置
WO2017072634A1 (en) * 2015-10-30 2017-05-04 Semiconductor Energy Laboratory Co., Ltd. Display device, electronic device, and method for manufacturing display device and electronic device
WO2017098375A1 (en) 2015-12-11 2017-06-15 Semiconductor Energy Laboratory Co., Ltd. Display device
US10797113B2 (en) 2016-01-25 2020-10-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with layered electrode structures
US10249249B2 (en) * 2016-03-04 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display panel, and electronic device
JP6723109B2 (ja) * 2016-08-04 2020-07-15 株式会社半導体エネルギー研究所 表示装置
KR102583770B1 (ko) 2016-09-12 2023-10-06 삼성디스플레이 주식회사 메모리 트랜지스터 및 이를 갖는 표시장치
CN115857237A (zh) * 2016-09-12 2023-03-28 株式会社半导体能源研究所 显示装置及电子设备
CN108628044B (zh) * 2017-03-22 2021-10-26 鸿富锦精密工业(深圳)有限公司 显示面板
DE112018005219T5 (de) 2017-11-02 2020-06-18 Semiconductor Energy Laboratory Co., Ltd. Anzeigevorrichtung und elektronisches Gerät
JP7225112B2 (ja) * 2017-11-09 2023-02-20 株式会社半導体エネルギー研究所 表示装置、電子機器
US11430846B2 (en) * 2019-03-19 2022-08-30 Innolux Corporation Display module with transistor
CN111161639B (zh) * 2020-01-03 2022-04-19 厦门天马微电子有限公司 显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040217694A1 (en) * 2003-04-30 2004-11-04 Eastman Kodak Company Color oled display with improved power efficiency
US20060208977A1 (en) * 2005-03-18 2006-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US20070152217A1 (en) * 2005-12-29 2007-07-05 Chih-Ming Lai Pixel structure of active matrix organic light-emitting diode and method for fabricating the same
US20110089416A1 (en) * 2009-10-21 2011-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
US5126865A (en) * 1990-12-31 1992-06-30 Honeywell Inc. Liquid crystal display with sub-pixels
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
EP0820644B1 (en) 1995-08-03 2005-08-24 Koninklijke Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JPH11295717A (ja) 1998-04-13 1999-10-29 Hitachi Ltd 液晶表示装置
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW478014B (en) * 1999-08-31 2002-03-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing thereof
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4700156B2 (ja) * 1999-09-27 2011-06-15 株式会社半導体エネルギー研究所 半導体装置
TWI282457B (en) * 2000-04-06 2007-06-11 Chi Mei Optoelectronics Corp Liquid crystal display component with defect restore ability and restoring method of defect
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
WO2003040441A1 (en) 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
KR100951350B1 (ko) * 2003-04-17 2010-04-08 삼성전자주식회사 액정 표시 장치
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US20050116615A1 (en) * 2003-09-30 2005-06-02 Shoichiro Matsumoto Light emissive display device
KR101078483B1 (ko) 2004-03-12 2011-10-31 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Lcd 또는 유기 el 디스플레이의 스위칭 소자
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
KR101090247B1 (ko) * 2004-04-19 2011-12-06 삼성전자주식회사 4색 표시 장치의 구동 장치 및 방법
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP4476076B2 (ja) * 2004-08-26 2010-06-09 シャープ株式会社 多原色表示装置及び液晶表示装置
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
JP4349628B2 (ja) 2004-09-11 2009-10-21 徹 勝呂 人工指関節
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
KR100939998B1 (ko) 2004-11-10 2010-02-03 캐논 가부시끼가이샤 비정질 산화물 및 전계 효과 트랜지스터
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
JP5118812B2 (ja) 2004-11-10 2013-01-16 キヤノン株式会社 電界効果型トランジスタ
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
CA2585063C (en) 2004-11-10 2013-01-15 Canon Kabushiki Kaisha Light-emitting device
US7382384B2 (en) * 2004-12-07 2008-06-03 Eastman Kodak Company OLED displays with varying sized pixels
WO2006075564A1 (ja) * 2005-01-12 2006-07-20 Sharp Kabushiki Kaisha 液晶表示装置
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI505473B (zh) 2005-01-28 2015-10-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI390735B (zh) 2005-01-28 2013-03-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
JP5613360B2 (ja) * 2005-07-04 2014-10-22 株式会社半導体エネルギー研究所 表示装置、表示モジュール及び電子機器
US7898623B2 (en) * 2005-07-04 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Display device, electronic device and method of driving display device
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
EP1770788A3 (en) 2005-09-29 2011-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
CN101577293B (zh) 2005-11-15 2012-09-19 株式会社半导体能源研究所 半导体器件及其制造方法
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
CN101449308B (zh) * 2006-06-19 2013-03-27 夏普株式会社 显示装置
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP5403860B2 (ja) * 2006-10-10 2014-01-29 株式会社ジャパンディスプレイ カラー液晶表示装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR20080057040A (ko) * 2006-12-19 2008-06-24 엘지디스플레이 주식회사 액정패널
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP2009122652A (ja) * 2007-10-23 2009-06-04 Sony Corp 表示装置及び電子機器
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
KR20090083197A (ko) * 2008-01-29 2009-08-03 삼성전자주식회사 컬러필터기판의 제조 방법
JP5396913B2 (ja) * 2008-09-17 2014-01-22 凸版印刷株式会社 画像表示装置
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5491833B2 (ja) * 2008-12-05 2014-05-14 株式会社半導体エネルギー研究所 半導体装置
KR101605467B1 (ko) * 2009-10-16 2016-04-04 삼성디스플레이 주식회사 박막 트랜지스터 표시판
JP5497417B2 (ja) * 2009-12-10 2014-05-21 富士フイルム株式会社 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
US9019186B2 (en) * 2010-01-29 2015-04-28 Sharp Kabushiki Kaisha Liquid crystal display device
WO2011148537A1 (ja) * 2010-05-24 2011-12-01 シャープ株式会社 薄膜トランジスタ基板及びその製造方法
US8610180B2 (en) * 2010-06-11 2013-12-17 Semiconductor Energy Laboratory Co., Ltd. Gas sensor and method for manufacturing the gas sensor
JP5770073B2 (ja) 2011-11-25 2015-08-26 株式会社ジャパンディスプレイ 表示装置及び電子機器
JP6091905B2 (ja) * 2012-01-26 2017-03-08 株式会社半導体エネルギー研究所 半導体装置
KR101970783B1 (ko) * 2012-05-07 2019-04-23 삼성디스플레이 주식회사 반도체 장치
KR101411656B1 (ko) * 2012-06-27 2014-06-25 엘지디스플레이 주식회사 유기전계발광 표시장치 및 이의 제조 방법
TWI481937B (zh) * 2012-08-27 2015-04-21 Au Optronics Corp 顯示面板
KR101325325B1 (ko) * 2012-11-30 2013-11-08 엘지디스플레이 주식회사 액정표시장치와 그 제조 방법
KR102002986B1 (ko) * 2013-01-11 2019-07-24 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
WO2014141832A1 (ja) * 2013-03-12 2014-09-18 シャープ株式会社 アクティブマトリクス基板、及び、表示装置
JP5849981B2 (ja) * 2013-03-25 2016-02-03 ソニー株式会社 表示装置および電子機器
JP2014186257A (ja) * 2013-03-25 2014-10-02 Sony Corp 表示装置および電子機器
CN103217846B (zh) * 2013-04-23 2015-12-02 京东方科技集团股份有限公司 阵列基板及显示装置
CN103472644B (zh) * 2013-09-25 2015-11-25 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
KR102021106B1 (ko) * 2013-11-12 2019-09-11 엘지디스플레이 주식회사 액정표시장치용 어레이 기판 및 그 제조방법
JP2015099331A (ja) * 2013-11-20 2015-05-28 株式会社ジャパンディスプレイ 液晶表示装置
TWI559048B (zh) * 2013-12-27 2016-11-21 友達光電股份有限公司 主動元件基板與應用其之顯示面板
JP6324207B2 (ja) * 2014-05-16 2018-05-16 株式会社ジャパンディスプレイ 表示装置
TWI525379B (zh) * 2014-06-04 2016-03-11 聯詠科技股份有限公司 顯示裝置及其驅動模組
CN104078490B (zh) * 2014-06-19 2016-08-24 京东方科技集团股份有限公司 基板及显示装置
JP2016061858A (ja) * 2014-09-16 2016-04-25 株式会社ジャパンディスプレイ 画像表示パネル、画像表示装置及び電子機器
JP2016085365A (ja) * 2014-10-27 2016-05-19 株式会社ジャパンディスプレイ 表示装置
JP6483411B2 (ja) * 2014-11-19 2019-03-13 株式会社ジャパンディスプレイ 表示装置
TWI574078B (zh) * 2014-12-02 2017-03-11 聯詠科技股份有限公司 顯示裝置及其驅動模組
TWI556048B (zh) * 2014-12-02 2016-11-01 聯詠科技股份有限公司 顯示裝置及其驅動模組
TWI587041B (zh) * 2014-12-02 2017-06-11 聯詠科技股份有限公司 顯示裝置及其驅動模組
JP2016161920A (ja) * 2015-03-05 2016-09-05 株式会社ジャパンディスプレイ 表示装置
JP2016200769A (ja) * 2015-04-14 2016-12-01 株式会社ジャパンディスプレイ 表示装置
KR102326806B1 (ko) * 2015-04-24 2021-11-15 엘지디스플레이 주식회사 서브 픽셀 배열 구조를 갖는 표시장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040217694A1 (en) * 2003-04-30 2004-11-04 Eastman Kodak Company Color oled display with improved power efficiency
US20060208977A1 (en) * 2005-03-18 2006-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US20070152217A1 (en) * 2005-12-29 2007-07-05 Chih-Ming Lai Pixel structure of active matrix organic light-emitting diode and method for fabricating the same
US20110089416A1 (en) * 2009-10-21 2011-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
KR102240809B1 (ko) 2021-04-14
KR20150061578A (ko) 2015-06-04
TW201937712A (zh) 2019-09-16
JP2022070929A (ja) 2022-05-13
JP2023099018A (ja) 2023-07-11
JP2021002044A (ja) 2021-01-07
TWI703713B (zh) 2020-09-01
US20150144945A1 (en) 2015-05-28
JP2019117384A (ja) 2019-07-18
US9880437B2 (en) 2018-01-30
KR102493175B1 (ko) 2023-01-27
JP6486660B2 (ja) 2019-03-20
TW201530744A (zh) 2015-08-01
KR20210036899A (ko) 2021-04-05
JP6753970B2 (ja) 2020-09-09
JP7265658B2 (ja) 2023-04-26
JP2015179250A (ja) 2015-10-08

Similar Documents

Publication Publication Date Title
TWI675461B (zh) 顯示裝置
JP6868675B2 (ja) 半導体装置
JP2022046546A (ja) 半導体装置、電子機器
JP6880116B2 (ja) 表示装置
JP7302067B2 (ja) 表示装置
JP6495612B2 (ja) 表示装置
JP2021168388A (ja) 半導体装置
TW202025464A (zh) 顯示裝置
WO2020089726A1 (ja) 半導体装置
JP2023168348A (ja) 半導体装置の作製方法
CN112514079A (zh) 半导体装置
CN112242448A (zh) 半导体装置