TWI455181B - 半極性(Ga,Al,In,B)N薄膜、異質結構及裝置之生長及製造技術 - Google Patents

半極性(Ga,Al,In,B)N薄膜、異質結構及裝置之生長及製造技術 Download PDF

Info

Publication number
TWI455181B
TWI455181B TW095119443A TW95119443A TWI455181B TW I455181 B TWI455181 B TW I455181B TW 095119443 A TW095119443 A TW 095119443A TW 95119443 A TW95119443 A TW 95119443A TW I455181 B TWI455181 B TW I455181B
Authority
TW
Taiwan
Prior art keywords
semi
polar
group iii
iii nitride
polar group
Prior art date
Application number
TW095119443A
Other languages
English (en)
Other versions
TW200703464A (en
Inventor
Robert M Farrell Jr
Troy J Baker
Arpan Chakraborty
Benjamin A Haskell
P Morgan Pattison
Rajat Sharma
Umesh K Mishra
Steven P Denbaars
James S Speck
Shuji Nakamura
Original Assignee
Univ California
Japan Science & Tech Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ California, Japan Science & Tech Agency filed Critical Univ California
Publication of TW200703464A publication Critical patent/TW200703464A/zh
Application granted granted Critical
Publication of TWI455181B publication Critical patent/TWI455181B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/320275Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth semi-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2201Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure in a specific crystallographic orientation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Geometry (AREA)

Description

半極性(Ga,Al,In,B)N薄膜、異質結構及裝置之生長及製造技術
本發明係關於半導體材料、方法,及裝置,及更特定言之,係關於半極性(Ga,Al,In,B)N薄膜、異質結構,及裝置之生長及製造。
(注意:本申請案參考數件刋物,在本專利說明書中以一或多個方括號內之參考數字表明,例如[參考文獻x]。以該等參考數字排序之各刋物的列表可於本文中標題為"參考文獻"之部分中發現。該等刋物各以引用的方式併入本文)。
氮化鎵(GaN)與(Ga,Al,In,B)N合金之有用性已充分確定,可用於製造可見及紫外光電裝置及高功率電子裝置。如圖1所示,當前技術發展水平之氮化物薄膜、異質結構,及裝置已沿[0001]軸102生長於晶體100上。該等薄膜之總極化乃由自發及壓電極化所貢獻而成,此兩者皆源於wrtzite氮化物晶體結構之單一極性[0001]軸102。當氮化物異質結構進行假晶性生長時,在表面及晶體內部介面處形成不連續極化。該等不連續導致在表面及介面處載流子積累或耗盡,其接著又產生電場。因為該等內置電場之準線與氮化物薄膜及異質結構之典型[0001]生長方向一致,故該等場具有"傾斜"氮化物裝置能帶之作用。
在c-平面wrtzite(Ga,Al,In,B)N量子井中,該"傾斜"能帶104與106空間上分離電洞波函數108及電子波函數110,如圖1中所示。此空間電荷分離降低輻射躍遷之振子強度及紅移該發射波長。該等作用係量子限制斯達克(stark)效應(QCSE)之表現,且已完全分析用於氮化物量子井[參考文獻1-4]。另外,大型極化誘導場會部分地被摻雜劑與注射載流子篩分[參考文獻5-6],所以發射特徵難以準確操縱。
此外,已顯示假晶雙軸應變對於降低c-平面wrtzite(Ga,Al,In,B)N量子井之有效電洞質量影響較小[參考文獻7]。此在斯達克中與典型III-V鋅-閃鋅礦InP-基與GaAs-基量子井情況形成明顯對比,其中重質電洞及輕質電洞帶之各向異性應變誘導分裂會導致有效電洞質量之顯著減少。有效電洞質量之減少導致對於在典型III-V鋅-閃鋅礦InP-基與GaAs-基量子井中任何給定載流子密度之類費米(quasi-Fermi)級分離之大量增加。類費米級分離增加之直接結果為需要小得多之載流子密度以產生光學增益[參考文獻8]。然而,在wrtzite氮化物晶體結構情況下,在雙軸應變c-平面氮化物量子井中,氮原子之六邊形對稱及小旋轉軌道耦合產生重質電洞及輕質電洞帶之可忽略分裂[參考文獻7]。因此,電洞之有效質量仍較雙軸應變c-平面氮化物量子井中之電洞有效質量大得多,且需要極高載流子密度以產生光學增益。
一種在(Ga,Al,In,B)N裝置中消除極化效應及增加有效電洞質量之方法係在非極性平面晶體上生長該等裝置。此乃包括各{110}平面,共同地稱為a-平面,及各{100}平面,共同地稱為m-平面。該等平面各含有等量之鎵與氮原子,且呈電中性。後繼之非極性層乃彼此等效,因此本體晶體沿生長方向並不會極化。此外,已顯示應變非極性InGaN量子井較應變c-平面InGaN量子井具有顯著較小之電洞質量[參考文獻9]。然而,儘管加利福尼亞州立大學及他處之研究者已有所進展[參考文獻10-15],非極性(Ga,Al,In,B)N裝置之生長與製造仍具挑戰性,且在氮化物工業中尚未廣泛採用。
另一種降低(Ga,Al,In,B)N裝置中之極化效應及有效電洞質量之方法係在晶體之半極性平面上生長該等裝置。術語"半極性平面"可用以指不能歸類為c-平面、a-平面,或m-平面之任何平面。在結晶術語中,半極性平面係具有至少兩個非零h、i,或k米勒(Miller)指數與一非零1米勒指數之任何平面。
半極性(Ga,Al,In,B)N薄膜及異質結構之生長已在圖案化c-平面導向帶之側壁上顯示[參考文獻16]。Nishizuka等人已藉由此技術生長{112}InGaN量子井。然而,生產半極性氮化物薄膜及異質結構之此方法顯著不同於本揭示物之方法;其係磊晶側向附生(ELO)之人工製品。半極性刻面不平行於基板表面,且可得到之表面積過小而無法加工成半極性裝置。
本發明描述一種在合適基板或平坦(Ga,Al,In,B)N模板上生長與製造半極性(Ga,Al,In,B)N薄膜、異質結構,及裝置之方法,其中大面積半極性薄膜平行於基板表面。與之前顯示之半極性氮化物的微米級傾斜刻面生長相反,此方法藉由標準微影方法使得大規模製造半極性(Ga,Al,In,B)N裝置成為可能。
相對於鋅-閃鋅礦InP-基與GaAs-基量子井異質結構及裝置,wrtzite c-平面(Ga,Al,In,B)N量子井異質結構及裝置要求更高載流子密度以產生光學增益。此可歸因於大型極化誘導電場及固有大有效電洞質量之存在[參考文獻17,18]。因此,內置電場及有效電洞質量之降低對於實現高性能(Ga,Al,In,B)N裝置係必需的。
典型InP-基與GaAs-基異質結構裝置之設計通常涉及改變薄膜參數,諸如組成、厚度,及應變。藉由改變該等參數,其可改變各磊晶層之電子及光學性質,諸如帶隙、介電常數,及有效電洞質量。儘管並不通常應用於InP-基與GaAs-基裝置設計,改變晶體生長方向亦可影響各磊晶層之電子及光學性質。特定言之,改變晶體生長方向可降低氮化物薄膜與異質結構中之極化效應及有效電洞質量。為調節此新型設計參數,吾人已發明一種用於生長及製造半極性(Ga,Al,In,B)N薄膜、異質結構,及裝置之方法。藉由適當選擇用於晶體生長之恰當基板或半極性模板,可選定淨極化及有效電洞質量之最佳組合以適於特定裝置應用。
作為改變晶體生長方向之作用的示例,壓電極化可計算及繪製為一般生長方向與壓縮應變Inx Ga1 x N量子井之c-軸間角度之函數[參考文獻9,18-20]。圖2顯示c-平面晶體生長之習知座標系統(x,y,z)與一般晶體生長方向之新座標系統(x',y',z')間之關係。習知座標系統(x,y,z)可藉由利用旋轉矩陣轉變成新座標系統(x',y',z'),
其中Φ與θ分別代表相對於[0001]軸之新座標系統的方位角及極性角。如圖2中所示,z-軸對應於[0001]軸102及z'-軸200對應於新一般晶體生長軸。為計算物理參數,可忽略對方位角(Φ)202之相關性,因為wrtzite材料中之壓電效應顯示沿[0001]軸之單軸各向同性行為[參考文獻21]。因此,等效半極性平面系可唯一地藉由單一極性角(θ)204表示,下文簡稱為結晶角204。對於極性、非極性,及少數選定半極性平面之結晶角204如下表1中所示。
預期地,{0001}平面對應於θ=0°,{100}及{110}平面對應於θ=90°,且半極性平面對應於0°<θ<90°。
晶體之壓電極化藉由晶體之應變態測定。對於非晶格匹配晶體層之異質磊晶生長,個別層之應變態可藉由生長平面中之雙軸應力測定。
對於沿z'-軸200之一般晶體生長方向,生長平面中之雙軸應力元件σx ' x ' 及σy ' y ' 經由變換矩陣U可轉變為習知座標系統(x,y,z)。此允許測定在(x,y,z)座標中之應變態及壓電極化。因此,(x,y,z)座標中之壓電極化改變為經由變換矩陣U之結晶角(θ)204函數。對於一般晶體生長方向,壓電極化可藉由取(x,y,z)座標中極化向量P與沿一般結晶生長方向之單位向量間之數積得到:
其中Px 與Pz 代表(x,y,z)座標中壓電極化元件,且如上所述,一般而言取決於晶體角(θ)206。
圖3顯示壓電極化300為生長方向與帶有未應變GaN障壁之壓縮應變Inx Ga1 x N量子井之c-軸間之角度的函數[參考文獻9,18-20]。如所預期者,極化300係c-平面生長(θ=0°)之最大值,及零對應於a-平面或m-平面生長(θ=90°)。在該等兩界限間,極化改變符號一次,且在某一角度θ0 302時等於零。θ0 302之確切值取決於若干物理參數值,諸如壓電張量及彈性常數,其許多目前大多為未知[參考文獻21-25]。
極其類似於壓電極化效應,壓縮應變Inx Ga1 x N量子井之有效電洞質量亦可藉由改變晶體生長方向而大為降低。理論結果[參考文獻9]顯示當晶體角由於重質電洞與輕質電洞帶之各向異性應變誘導分裂而增加時,對於壓縮應變Inx Ga1 x N量子井之有效電洞質量應僅一直遞減。因此,在半極性方向上,具體言之在帶有大晶體角之方向上,生長壓縮應變Inx Ga1 x N量子井應顯著降低有效電洞質量。
本發明描述一種用於生長與製造半極性(Ga,Al,In,B)N薄膜、異質結構,及裝置之方法。該等結構可直接生長於合適基板上或在預沉積於基板上之半極性(Ga,Al,In,B)N模板層上。氣相磊晶技術,諸如有機金屬化學氣相沉積(MOCVD)及氫化物氣相磊晶(HVPE),可用以生長半極性(Ga,Al,In,B)N結構。然而,藉由分子束磊晶法(MBE)或任何其他合適生長技術,本發明可同等地應用至半極性(Ga,Al,In,B)N薄膜、異質結構,及裝置。
半極性氮化物薄膜及異質結構之生長提供降低wrtzite氮化物裝置結構中之極化效應及有效電洞質量之裝置。術語氮化物係指具有式Gaw Alx Iny Bz N之(Ga,Al,In,B)N半導體的任何合金組合物,其中0w1,0x1,0y1,0z1,且w+x+y+z=1。目前市售之氮化物裝置沿極性[0001]c-方向生長。所得極化誘導電場與大有效電洞質量不利於技術發展水平之氮化物光電裝置之性能。
該等裝置沿半極性方向上之生長可藉由降低內置電場與有效電洞質量而顯著改良裝置性能。降低內置電場可降低氮化物量子井中之空間電荷分離。類似地,降低有效電洞質量可降低在氮化物雷射二級體中產生光學增益所需之載流子密度。
在較佳實施例之下列描述中,參考形成其中一部分之附圖,及其中藉由圖示之方式顯示本發明之一特定實施例。應瞭解可利用其他實施例且可做出不偏離本發明範疇之結構改變。
概述
本發明包含一種用於生長及製造半極性(Ga,Al,In,B)N薄膜、異質結構,及裝置之方法。圖4中之流程圖400概述生長半極性(Ga,Al,In,B)N薄膜及異質結構之重要步驟。
步驟402及404概述用於選擇半極性生長方向之自頂向下裝置設計程序。首先,如步驟402中所示,需要確認對於一特定裝置應用之所需材料性質(壓電極化,有效電洞質量等)。基於該等所需性質,應選擇與材料性質最佳組合一致之半極性方向用於步驟404中半極性(Ga,Al,In,B)N薄膜及異質結構之生長。此自頂向下裝置設計程序當然為理想情況;其假設所有半極性方向之晶體品質係等同的。裝置設計程序中之調整應使得符合實際慣例。
選擇最佳半極性生長方向後,需要在步驟406中選擇合適基板。此基板應理想地為具有與待生長結構晶格匹配之組合物之非固定半極性氮化物晶圓。更通常地,儘管如此,該基板可為一異質材料,諸如MgAl2 O4 (尖晶石)或Al2 O3 (藍寶石)。前述基板可視情況藉由任何合適生長技術用氮化物模板層塗覆,該技術包括(但不限於)HVPE、MOCVD、MBE、液相磊晶法(LPE)、化學束磊晶法(CBE)、電漿增強化學氣相沉積(PECVD)、昇華,或濺鍍。模板層之組合物無需與待沉積之結構確切匹配。模板層之厚度可介於少許奈米(此稱作長晶或緩衝層)至數十或數百奈米範圍內。當不要求時,模板之使用一般會改良半極性氮化物裝置之均一性及良率。出於說明目的,而不限制本發明之範疇,此揭示案之其餘部分將描述HVPE-生長半極性GaN模板在本發明實踐中之用途。
選擇基板或模板後,在步驟408將其裝入至生長所需半極性(Ga,Al,In,B)N薄膜及異質結構之反應器中。步驟410-418中用於本發明實踐之合適生長方法包括(但不限於)HVPE、MOCVD、MBE、LPE、CBE、PECVD、昇華、濺鍍,或任何其他氣相沉積方法。出於說明目的,此揭示案之其餘部分將描述藉由MOCVD生長半極性薄膜及異質結構。然而,此焦點不應視作本發明在其他生長技術中適用性之限制。最後,半極性(Ga,Al,In,B)N結構生長後,晶體自薄膜生長反應器中移出,且在步驟420中加工成半極性裝置。
技術描述
本發明描述半極性(Ga,Al,In,B)N薄膜、異質結構,及裝置之生長及製造,其包含下列要素:1.確定用於一特定裝置應用之所需材料性質。
2.選擇具有材料性質最佳組合之半極性方向。
3.選擇用於生長所需半極性方向之合適基板或模板。
4.藉由一合適生長技術來生長半極性薄膜、異質結構,及裝置。如上所述,本發明之實踐藉由使用HVPE生長之厚平坦半極性GaN模板而增強。到此為止,吾人已成功地藉由HVPE生長若干種不同平坦半極性GaN模板方向。模板生長之詳細資料已分別揭示;請參見美國臨時專利申請案第60/660,283號,題為"TECHNIQUE FOR THE GROWTH OF PLANAR SEMI-POLAR GALLIUM NITRIDE",由Troy J.Baker、Benjamin A.Haskell、Paul T.Fini、Steven P.DenBaars、James S.Speck,及Shuji Nakamura於2005年3月10日申請,代理人案號30794.128-US-P1(2005-471),其申請案以引用的方式併入本文。總之,吾人已用實驗方法顯示平坦半極性氮化物模板之四個實例:1.以特定方向誤切之{100}尖晶石上之{101}GaN 2.{110}尖晶石上之{103}GaN 3.{1-100}藍寶石上之{112}GaN 4.{1-100}藍寶石上之{103}GaN
該等半極性平面之晶體品質顯示對生長溫度及壓力之較少相關性。{101}及{103}方向在10托與1000托間之壓力及900℃與1200℃間之溫度下生長,對整體晶體品質影響較小。壓力及溫度之此廣泛範圍顯示當生長於特定基板上時,該等半極性平面極穩定。特定半極性平面與特定基板間之磊晶關係適用於不考慮用以製造該等薄膜之生長系統類型。然而,用於生長該等平面之最佳反應器條件依照個別反應器設計及生長方法而改變。
利用該等平坦HVPE-生長之半極性GaN層作為模板藉由MOCVD生長半極性(Ga,Al,In,B)N薄膜及異質結構,吾人已在若干不同半極性方向上生長及製造(Ga,Al,In,B)N LED。特定言之,吾人已成功顯示在{100}尖晶石上之{101}GaN模板上、在{1-100}藍寶石上之{103}GaN模板,及在{110}尖晶石上之{103}GaN模板上的半極性LED。
如圖5所示,第一示範性半極性LED結構藉由MOCVD在{100}尖晶石基板504上之10 μm厚HVPE-生長之{101}GaN模板502上再生長。於垂直MOCVD反應器中進行之再生長,用2.0 μm摻雜Sin-GaN基礎層506開始。活性區域508由用16 nm摻雜SiGaN障壁及4 nm InGaN量子井堆棧之5週期多重量子井(MQW)組成。16 nm未摻雜GaN障壁510在低溫下沉積以蓋帽InGaN MQW結構,從而防止InGaN在生長中自隨後之活性區域解吸附。接著沉積300 nm摻雜Mg之p-型GaN層512。該結構用40 nm重度摻雜p -GaN接觸層514蓋帽。
生長之後,300×300 μm2 二級體凸台藉由氯基反應性蝕刻(RIE)限定。pd/Au(20/200 nm)及Al/Au(20/200 nm)分別用作p-GaN及n-GaN接點516及518。半極性LED結構之示意性橫截面,及{1011}平面520,如圖5中所示。二級體之電學與發光特徵藉由裝置之晶圓上探測而量測。典型LED之電流-電壓(I-V)特徵600如圖6中所示。在直流電(dc)條件下,自背部經由尖晶石基板發射至校準大面積Si光電二級體上而得到相對光學功率量測值。LED之電致發光(EL)光譜及光學功率發射量測為驅動電流之函數,如圖7及8中分別所示。所有量測在室溫下進行。
如圖6中所示,二級體I-V特徵600展現3.1 V之低接通電壓,串聯電阻為6.9 Ω。EL光譜亦在介於自30至200 mA範圍內之驅動電流下量測。如圖7所示,裝置顯示藍色光譜範圍內之發射線700-710,在439 nm處對於所有驅動電流無可見峰位移。發射線700-710分別對應於驅動電流30 mA-200 mA。隨驅動電流增加之發射峰值中無藍移,與在此波長範圍及類似驅動電流範圍內之c-平面LED中一般可觀察到之藍移現象形成對比。
最後,晶圓上輸出功率及外部量子效率量測為dc驅動電流之函數。如圖8所示,當驅動電流自10 mA增加至300 mA時,輸出功率800近似線性增加。在20 mA前向電流之輸出功率為11 μW,對應於外部量子效率(EQE)802為0.02%。驅動電流為300 mA時量測DC功率高達630 μW。當驅動電流增加時,EQE增加,在200 mA處達到最大值為0.081%,且接著當前向電流增加超過200 mA時略微降低。在隨驅動電流增加之EQE中無顯著降低,與在此波長範圍及類似驅動電流範圍內操作之c-平面LED之EQE中一般可觀察到之限制降低現象形成對比。
儘管本文未說明,光致發光(PL)光譜亦可比較用於在{100}尖晶石上生長之{101}GaN模板上之藍色(~439 nm峰值)半極性LED與在{0001}藍寶石上生長之{0001}GaN模板共裝載c-平面LED。共裝載意味c-平面模板裝入MOCVD反應器中,同時生長期間半極性模板且兩模板置於相同晶座上。用於半極性LED之PL光譜極類似於用於共裝載c-平面LED之PL光譜,暗示半極性Inx Ga1 x N薄膜與c-平面Inx Ga1 x N薄膜之銦併入效率具可比性。此與沿半極性刻面之側向磊晶附生的先前研究一致,其表明沿半極性平面有較多雜質併入[參考文獻26,27]。
除在{100}尖晶石上生長之{101}GaN模板上之藍色(~439 nm峰值)LED外,圖9說明在{100}藍寶石基板904上生長之{103}GaN模板902上之綠色(~525 nm峰值)LED 900。此半極性LED結構900藉由MOCVD再生長於10 μm厚之{100}藍寶石904上HVPE生長之{103}GaN模板902上。在習知水平流動MOCVD反應器中進行之再生長,用500 nm摻雜Si之n-GaN基層906開始。活性區域908由用8 nm未摻雜GaN障壁及4 nm InGaN量子井堆棧之5週期多重量子井(MQW)構成。20 nm摻雜Mg之p-AlGaN障壁910在低溫下沉積以蓋帽InGaN MQW結構,從而在生長中阻止InGaN自活性區域908沉積。該結構用200 nm摻雜Mg之p-GaN 912蓋帽。
生長之後,300×300 μm2 二級體凸台藉由氯基RIE限定。Pd/Au(5/6 nm)及Ti/Al/Ni/Au(20/100/20/300 nm)分別用作p-GaN及n-GaN接點914及916。半極性LED結構之示意性橫截面及{103}平面918,如圖9所示。二級體之電學及發光特徵藉由裝置之晶圓上探測而量測。典型LED之I-V特徵如圖10中所示。在直流電(dc)條件下,自背部經由尖晶石基板發射至校準大面積Si光電二級體上而得到相對光學功率量測值。LED之EL光譜及光學功率發射量測為驅動電流之函數,如圖11及12中分別所示。所有量測在室溫下進行。
如圖10中所示,二級體I-V特徵1000展現3.2 V之低接通電壓,串聯電阻為14.3 Ω。EL光譜亦在介於30至200 mA範圍內之驅動電流量測。如圖11所示,發射曲線1100顯示在藍色光譜範圍內發射之裝置900,略微地自20 mA處之528 nm移動到200 mA處之522 nm。發射峰值中隨驅動電流增加無顯著藍移,與在此波長範圍及類似驅動電流範圍內之c-平面LED中一般可觀察到之明顯藍移現象形成對比。
晶圓上輸出功率及外部量子效率亦量測為dc驅動電流之函數。如圖12所示,當驅動電流在10 mA增加至250 mA時,輸出功率1200近似線性增加。在前向電流20 mA處之輸出功率1200為19.3 μW,對應至外部量子效率(EQE)1202為0.041%。當驅動電流為250 mA時,量測DC功率高達264 μW。EQE 1202隨驅動電流增加而增加,在120 mA處達到最大值為0.052%,且接著當前向電流增加超過120 mA時略微下降。EQE 1202中隨增加之驅動電流無顯著降低,與在此波長範圍與類似驅動電流範圍下工作之c-平面LED中EQE 1202中一般可觀察到之顯著降低現象形成對比。
最後,圖13顯示在{110}尖晶石基板1304上之{103}GaN模板1302上之藍色(~440 nm峰值)半極性LED1300。在垂直MOCVD反應器中進行之再生長,以2.0μm摻雜Si之n-GaN基層1306開始。活性區域1308由用16nm摻雜SiGaN障壁及4nm InGaN量子井堆棧之5週期多重量子井(MQW)構成。16nm未摻雜GaN障壁1310在低溫下沉積以蓋帽InGaN MQW結構,從而在生長中阻止InGaN自活性區域1308沉積。接著沉積300nm摻雜Mg之p-型GaN層1312。該結構用40nm重度摻雜p+ -GaN接觸層1314蓋帽。
生長之後,300×300μm2 二級體凸台藉由氯基RIE限定。Pd/Au(20/200nm)及Al/Au(20/200nm)分別用作p-GaN及n-GaN接點1316及1318。半極性LED1300結構之示意性橫截面,及{103}平面1320,如圖13所示。二級體之電學及發光特徵藉由裝置之晶圓上探測而量測。在直流電(dc)條件下,自背部經由尖晶石基板發射至校準大面積Si光電二級體上而得到相對光學功率量測值。儘管本文未說明,I-V特徵及EL光譜作為驅動電流之函數與在{100}尖晶石上{101}GaN模板上之藍色(~439nm峰值)半極性LED類似。LED之光學功率發射量測為驅動電流之函數,如圖14所示。所有量測在室溫下進行。
如圖14所示,當驅動電流自10mA增加至90mA時,輸出功率1400以近似線性方式增加,在增加至250mA時,輸出功率為次線性方式增加。在20mA前向電流處之輸出功率1400為190μW,對應於外部量子效率(EQE)1402為0.34%。當驅動電流為250mA時,量測DC功率高達1.53mW。EQE 1402隨驅動電流增加而增加,在50mA處達到 最大值0.41%,且接著當前向電流增加超過50mA時顯著下降。EQE 1402中隨驅動電流增加顯著降低,與用於在{100}尖晶石上之{101}GaN模板上之藍色(~439nm峰值)半極性LED及{100}藍寶石上之{103}GaN模板上綠色(~525nm)半極性LED之隨驅動電流增加在EQE 1402無降低形成對比。雖然如此,相比於其他兩種半極性LED,此半極性LED顯示峰值輸出功率1400及峰值EQE 1402之顯著較高值,清晰顯示與c-平面氮化物技術競爭之潛力。
上述之裝置結構構成官能性半極性InGaN-基LED之最初報道。總之,本發明顯示在兩個不同光譜範圍,在兩個不同半極性方向,及三個不同基板上操作之半極性LED。該等包括在{100}尖晶石上{101}GaN模板上之藍色(~439mm峰值)半極性LED,{100}藍寶石上{103}GaN模板上之綠色(~525nm峰值)半極性LED,及在{100}尖晶石上{103}GaN模板上之藍色(~440nm峰值)半極性LED。該等三個實例之介紹僅出於說明目的,且不應視作本發明在其他生長方向或裝置結構之適用性上的限制。
可能之改變及變化
技術實施方式中所述之裝置包含光發射二級體。然而,本發明之範疇包括生長及製造任何半極性(Ga,Al,In,B)N裝置。因此,裝置結構不應視為限制於LED。藉由本發明之方法生長及製造之其他潛在半極性裝置包括邊緣-發射雷射二級體(EEL)、垂直腔表面發射雷射二級體(VCSEL)、共振腔LED(RCLED)、微腔LED(MCLED)、高電子遷移率電晶體(HEMT)、異質接面雙極性電晶體(HBT)、異質接面場效電晶體(HFET);及可見光、UV,及近UV光偵測器。該等實例及其他可能性仍可導致對所有半極性(Ga,Al,In,B)N裝置有利。可能裝置之此列表僅出於說明目的且不應視作本發明應用之限制。然而,本發明主張沿半極性方向或在半極性平面上生長之任何氮化物基裝置之權利。
特定言之,本發明應在設計及製造(Ga,Al,In,B)N雷射二級體中提供顯著利益。該等利益在具有特定言之大型壓電場之長波長雷射二級體,諸如圖15中所示之概念裝置1500中,尤其有價值。此外,理論計算表明由於重質電洞及輕質電洞帶之各向異性應變誘導分裂,對於壓縮應變Inx Ga1 x N量子井之有效電洞質量隨晶體角增加而單調降低[參考文獻9]。對於壓縮應變Inx Ga1 x N量子井眾多主體光學增益之自相容計算指出峰值增益對有效電洞質量最為敏感,及其隨晶體角增加而單調增加[參考文獻17,18]。因此,在典型氮化物基雷射二級體中產生光學增益所需之高載流子密度可藉由在半極性方向上,具體言之彼等帶有晶體角最接近θ=90°方向上,增加雷射結構而降低。此反映在圖15中所示之雷射二級體1500之設計上;吾人已根據試驗顯示該半極性方向,{101}方向1501具有最大晶體角(θ=62.0°)且應提供光學增益中之最有價值之改良。
{100}尖晶石結構1502用以生長{101}半極性GaN模板1504,且n-GaN層1506之再生長接著如上所述進行。接著生長n-AlGaN/GaN覆蓋層1508,且藉由n-GaN波導層1510覆蓋。接著生長MQW活性層1512,p-GaN波導層1514生長於MQW活性層1512。接著生長另一覆蓋層1516,且接著生長p-GaN接觸層。接著沉積Ni/Au接點1520及Ti/Al/Ni/Au接點1522。
電子裝置之性能應受益於本發明。應變半極性(Ga,Al,In,B)N層之較低有效電洞質量應導致較高電洞遷移率,其應增加半極性p-型(Ga,Al,In,B)N層之電導率。應變半極性p-型(Ga,Al,In,B)N層中之較高遷移率應導致諸如HBT之雙極性電子裝置之改良性能。半極性氮化物中之較高p-型傳導率亦應導致p-n接合二級體及LED中較低串連電阻。此外,藉由改變晶體生長方向,壓電極化之數量及方向可適於一特定裝置應用。因此,利用壓電極化產生所需裝置特徵之裝置(諸如HEMT)亦應受益於本發明之多功能性。
在不偏離本發明範疇時,半極性(Ga,Al,In,B)N量子井及異質結構設計之改變係可能的。此外,層之特定厚度及組合物,除生長之量子井數量外,係關於裝置設計之變量且可用於本發明之代替實施例。舉例而言,本發明較佳實施例中之裝置利用InGaN-基量子井用於藍色及綠色光譜區域之光發射。然而,本發明之範疇亦可包括帶有AlGaN-、AlInN-,及AlInGaN-基量子井之裝置,其可設計用於光譜其他區域之光發射。此外,諸如半極性HEMT、HBT,及HFET之潛在裝置甚至在其各自裝置結構中不包括量子井。
在不偏離本發明範疇內,亦可做出MOCVD生長條件中之改變,諸如生長溫度、生長壓力、V/III比率、前驅體流速,及原料。介面品質之控制係方法之一重要方面,且直接與特定反應器設計之流速轉換能力相關。生長條件之連續優化應導致對如上所述之半極性薄膜及異質結構之更準確組成上及厚度之控制。
額外雜質或摻雜劑亦併入本發明所述之半極性氮化物薄膜、異質結構,或裝置中。舉例而言,將Fe、Mg,及Si頻繁地加入至氮化物異質結構中之眾多層中以改變彼等及相鄰層之傳導性質。該等摻雜劑及本文未列出之其他物質的用途在本發明範疇內。
較佳實施例涉及首先藉由HVPE生長半極性模板,且接著藉由MOCVD生長半極性(Ga,Al,In,B)N薄膜及異質結構。然而,不同生長方法及順序可用於本發明之代替實施例中。其他潛在生長方法包括HVPE、MOCVD、MBE、LPE、CBE、PECVD、昇華,及濺鍍。圖4中流程圖提供一般實施例,其顯示多種生長方法及順序可用於本發明實踐。
本發明之範疇不僅覆蓋較佳實施例中引用之四個半極性GaN模板方向。此方法與所有半極性方向上之所有(Ga,Al,In,B)N組合物相關。舉例而言,在誤切(100)尖晶石基板上生長{10-11}AlN、InN、AlGaN、InGaN、AlInN,或AlGaInN係可行的。類似地,若找到合適基板,生長{201}模板亦可行。該等實例及其他可能性仍導致有利於平坦半極性薄膜。
本發明亦覆蓋特定晶體終止及極性之選擇。貫穿本文之波形括號,{},之用途代表對稱相等平面系。因此,{102}系包括(102)、(012)、(102)、(102)、(012),及(012)平面。所有該等平面藉由III族原子終止,意味晶體c-軸指向遠離基板。此平面系亦包括相應相同指數之氮終止平面。換言之,{102}系亦包括(10 )、(01)、(10)、(10)、(01 ),及(01)平面。對於個別該等生長方向,晶體c-軸將指向該基板。單結晶系內之所有平面對於本發明之目的係等價的,儘管極性之選擇可影響側面生長方法之行為。在某些應用中,其需要在氮終止半極性平面上生長,而在其他情況下生長於III族終止平面較佳。半極性平面之終止很大程度上藉由基板選擇及預處理推動。兩種終止對於本發明實踐都為可接受的。
此外,不同於藍寶石與尖晶石之基板可用於半極性模板之生長。本發明之範疇包括在所有可能基板之所有可能結晶方向上生長及製造(Ga,Al,In,B)N薄膜、異質結構,及裝置。該等基板包括(但不限於)碳化矽、氮化鎵、矽、氧化鋅、氮化硼、鋁酸鋰、鈮酸鋰、鍺、氮化鋁、鎵酸鋰、部分取代尖晶石,及共用γ-LiAlO2 結構之四級四邊形氧化物。
此外,半極性(Ga,Al,In,B)N長晶(或緩衝)層及晶核層生長方法之改變對於本發明實踐係可接受的。晶核層之生長溫度、生長壓力、方向,及組合物不需要與隨後之半極性薄膜及異質結構之生長溫度、生長壓力、方向及組合物匹配。本發明之範疇包括利用所有可能晶核層及晶核層生長方法在所有可能基板上生長及製造半極性(Ga,Al,In,B)N薄膜、異質結構,及裝置。
上述半極性(Ga,Al,In,B)N裝置生長於平坦半極性GaN模板上。然而,本發明之範疇亦覆蓋生長於半極性磊晶側向附生(ELO)模板上之(Ga,Al,In,B)N裝置。ELO技術係在隨後之磊晶層中降低穿透位錯(TD)密度之方法。對於LED,該等改良包括增加內部量子效率及降低反向偏壓洩漏電流。對於雷射二級體,該等改良包括增加輸出功率,增加內部量子效率,延伸裝置壽命,及降低閾電流密度[參考文獻28]。該等優勢與生長於半極性ELO模板上之所有半極性平坦薄膜、異質結構及裝置相關。
上述較佳實施例及代替實施例已討論生長於異質基板上之半極性(Ga,Al,In,B)N薄膜、異質結構,及裝置。理想地,儘管該基板係具有與待生長結構匹配之組合物晶格之無固定半極性氮化物晶圓。無固定半極性氮化物晶圓可藉由自厚半極性氮化物層移除異質基板,藉由切開本體氮化物結晶塊或剛玉成單獨半極性氮化物晶圓,或藉由任何可能晶體生長或晶圓製造技術而產生。本發明之範疇包括在藉由所有可能晶體生長方法及晶圓製造技術產生之所有可能無固定半極性氮化物晶圓上,生長及製造半極性(Ga,Al,In,B)N薄膜、異質結構,及裝置。
本發明之一或多個實施例之先前描述已陳述用於說明及描述目的。其不期望太詳盡或將本發明限制於揭示之簡單形式。依照上述教示許多改變及變化亦可能。期望本發明之範疇為此實施方式所限制,而為本文所附之申請專利範圍所限。
優勢及改良
已存在之實踐係沿極性[0001]c-方向生長(Ga,Al,In,B)N薄膜及異質結構。所得極化誘導電場且固有之大有效電洞質量不利於現有發展水平氮化物光電裝置之性能。本發明之優勢係沿半極性方向藉由降低平面及有效電洞質量生長之(Ga,Al,In,B)N薄膜及異質結構可顯著改良裝置性能。在本發明之前,不存在生長大面積半極性氮化物薄膜、異質結構,或裝置之方法。
作為對於已存在實踐之潛在改良之說明,上述{1-100}藍寶石上生長之{10-13}GaN模板上之吾人之綠色(~525 nm峰值)半極性LED的裝置性能與在c平面GaN模板上生長之典型商業綠色光譜範圍(~525 nm峰值)InGaN LED之裝置性能相比。下述資料自密封於半球形環氧圓頂中之標準商業裝置收集。活性區域之總面積為300×300 μm2 ,其與吾人之綠色半極性LED之活性區域面積相同。
商業LED之電學及發光特徵與吾人之綠色半極性LED活性區域之面積相同。LED之I-V特徵如圖16中所示。直流電(dc)條件下之相對光學功率量測自校準大面積Si光電二級體上之半球形環氧圓頂之頂部得到。LED之EL光譜及光學功率發射亦量測為驅動電流之函數。此資料分別如圖17及19中所示。所有量測均在室溫下進行。
如圖16所示,商業LED之I-V特徵1600展現接通電壓為3.5 V,串聯電阻為28.9 Ω。該等值大於吾人之綠色半極性LED之分別為3.1 V與14.3 Ω之前向電壓及串聯電阻值。兩種LED之接通電壓之差最可能歸因於相對於商業LED,半極性LED中極化誘導電場之降低。內置電場之降低,對於n-及p-型類費米能級,允許半極性二級體中之電流,導致較低之接通電壓。
如圖17所示,商業LED之EL光譜1700在驅動電流自20至100 mA時量測。峰值EL之位移為驅動電流之函數,對比用於綠色商業LED與吾人之綠色半極性LED。如圖18所示,商業裝置波長曲線1800自20 mA處之523 nm位移至100 mA處之511 nm,在80 mA處總共跨越12 nm。相比於商業裝置,綠色半極性LED波長曲線1802自20 mA處之528 nm位移至250 mA處之522 nm,在230 mA處總共跨越6 nm。發射峰值之藍移隨半極性LED之驅動電流增加而降低可歸因於相比於商業LED,半極性LED之活性區域中極化誘導電場之降低。
相對光學輸出功率及外部量子效率亦可量測為商業LED之dc驅動電流之函數。光學功率量測自校準大面積Si光電二級體上之半球形環氧圓頂頂部得到。該等功率量測期望提供相對輸出功率為驅動電流之函數的量測方法,而非自商業LED發射之總輸出功率之量測方法。如圖19中所示,當驅動電流自10 mA增加至130 mA時,輸出功率1900呈亞線性增加,顯示在90 mA處之反常跳躍,可能由於熱效應。在110 mA處,輸出功率達到飽和,在較高電流水平下數量級下降,直至裝置在140 mA下由於熱效應而衰亡。
與半極性LED不同,商業LED之EQE 1902在10 mA之極低驅動電流下達到峰值,且接著在更高驅動電流下顯著減少。如圖19所示,商業LED之EQE 1902在10 mA與130 mA間降低了65.7%。相對地,如圖12所示,半極性LED之EQE在120 mA之相對高驅動電流下達到峰值,且接著當驅動電流增加超過120 mA時僅降低約8%。EQE中隨吾人之半極性LED之驅動電流增加而無顯著降低,與在此波長範圍及類似驅動電流範圍下工作之商業c-平面LED之EQE中通常可觀察到之顯著降低現象形成對比。吾人之半極性LED與商業LED之EQE-I特徵之顯著差異背後的機理目前尚未知,儘管可推測相比於商業c-平面LED,其與半極性LED之極化誘導電場之降低有關。
最後,商業c-平面氮化物LED在其電致發光中不顯示任何程度之極化各向異性。另一方面,非極性m-平面氮化物LED,已顯示沿[0001]軸之強極化各向異性[參考文獻15]。此極化可歸因於壓縮應變m-平面Inx Ga1 x N量子井中重質電洞及輕質電洞帶之各向異性應變誘導分裂。類似地,對於一般晶體生長方向,重質電洞與輕質電洞帶之各向異性應變誘導分離會導致x'-極化與y'-極化光學基質元件之不均一性[參考文獻9]。因此,半極性氮化物光電裝置之光學發射亦應顯示顯著之極化各向異性。
上述討論涉及半極性(Ga,Al,In,B)N薄膜、異質結構,及裝置與市售之c-平面(Ga,Al,In,B)N薄膜、異質結構,及裝置之對比。亦可用非極性(Ga,Al,In,B)N薄膜、異質結構,及裝置作類似對比。類似半極性薄膜及異質結構,非極性薄膜及異質結構可藉由降低平面及有效電洞質量而用以改良裝置性能。然而,高品質非極性模板、薄膜,及異質結構相當難以生長,所以目前尚未製造非極性裝置。半極性薄膜及異質結構對於非極性薄膜及異質結構之優勢在於晶體生長之容易性。本發明揭示具有生長於非極性薄膜及異質結構之較大參數間距之半極性薄膜及異質結構。舉例而言,非極性薄膜及異質結構不在大氣壓力下生長,而半極性薄膜及異質結構已根據實驗顯示可在自62.5托至760托下生長,潛在地可在甚至較其更寬之範圍。因此,與非極性薄膜及異質結構不同,半極性(Ga,Al,In,B)N薄膜及異質結構已顯示生長壓力與晶體品質間之相對少之聯繫。
半極性平面對於非極性平面之另一優勢係銦併入效率之改良。非極性a-平面Inx Ga1 x N薄膜中低銦併入效率為在a-平面GaN模板上生長光電裝置之一嚴重問題[參考文獻12]。如上所述,吾人之資料提出半極性Inx Ga1 x N薄膜終止銦併入效率比得上c-平面Inx Ga1 x N薄膜之銦併入效率。此高銦併入效率有助於將半極性Inx Ga1 x N LED之反射範圍延伸至更長波長,如已經藉由在{1-100}藍寶石上之{10-13}GaN模板上生長之吾人之綠色(~525 nm)LED顯示。
Nishizuka等人之生長於圖案化c-平面導向帶側壁上之其{11-22}InGaN量子井之最近揭示案[參考文獻16]提供與吾人目前工作最接近對比。然而,製造半極性薄膜及異質結構之此方法顯著不同於本揭示案之方法;其係磊晶側向附生(ELO)之人造物品。半極性刻面不平行於基板表面,且可得表面積太小而難以加工成半極性裝置。
本發明之優勢為其涉及在適當基板或模板上生長及製造(Ga,Al,In,B)N薄膜、異質結構,及裝置,其中大面積半極性薄膜平行於基板表面。與微米級相反,刻面傾向生長之前已顯示用於半極性氮化物,此方法藉由標準微影方法使得大規模製造半極性(Ga,Al,In,B)N裝置成為可能。
本發明之新穎特徵為確立,即平坦半極性(Ga,Al,In,B)N薄膜、異質結構,及裝置可生長及製造。此已藉由作者實驗上確定(Ga,Al,In,B)N裝置可生長於三個截然不同之半極性方向。先前所述之優勢與所有平坦半極性氮化物薄膜、異質結構,及裝置有關。
方法流程圖
圖20顯示如本發明之方法流程圖。
盒2000顯示選擇半極性生長方向。
盒2002顯示選擇與選定半極性生長方向之生長相容之基板。
盒2004顯示在基板表面生長平坦半極性(Ga,Al,In,B)N模板層。
盒2006顯示在半極性(Ga,Al,In,B)N模板層上生長半極性(Ga,Al,In,B)N薄膜。
參考文獻
下列參考文獻以引用的方式併入本文:1. T.Takeuchi,S.Sota,M.Katsuragawa,M.Komori,H.Takeuchi,H.Amano,及I.Akasaki,Jpn.J.Appl.Phys.,36,L382(1997)。
2. P.Lefebvre,A.Morel,M.Gallart,T.Taliercio,J.Allegre,B.Gil,H.Mathieu,B.Damilano,N.Grandjean,及J.Massies,Appl.Phys.Lett.,78,1252(2001)。
3. N.Grandjean,B.Damilano,S.Dalmasso,M.Leroux,M.Laugt,及J.Massies,J.Appl.Phys.,86,3714(1999)。
4. J.S.Im,H.Kollmer,J.Off,A.Sohmer,F.Scholz,及A.Hangleiter,Phys.Rev.B,57,R9435(1998)。
5. A.Di Carlo,F.Della Sala,P.Lugli,V.Fiorentini,及F.Bernardini,Appl.Phys.Lett.,76,3950(2000)。
6. F.Della Sala,A.Di Carlo,P.Lugli,F.Bernardini,V.Fiorentini,R.Scholz,及J.M.Jancu,Appl.Phys.Lett.,74,2002(1999)。
7. M.Suzuki及T.Uenoyama,Jpn.J.Appl.Phys.,35,1420(1996)。
8. E.Yablonovitch及E.O.Kane,J.Lightwave Tech.,4,504(1986)。
9. S.H.Park,J.Appl.Phys.,91,9904(2002)。
10. A.Chakraborty,B.A.Haskell,S.Keller,J.S.Speck,S.P.DenBaars,S.Nakamura,及U.K.Mishra,Appl.Phys.Lett.,85,5143(2004)。
11. A.Chakraborty,B.A.Haskell,S.Keller,J.S.Speck,S.P.DenBaars,S.Nakamura,及U.K.Mishra,Jpn.J.Appl.Phys.,44,L173(2005)。
12. A.Chakraborty,S.Keller,C.Meier,B.A.Haskell,S.Keller,P.Waltereit,S.P.DenBaars,S.Nakamura,J.S.Speck JS,及U.K.Mishra,Appl.Phys.Lett.,86,031901(2005)。
13. Y.J.Sun,O.Brandt,S.Cronenberg,S.Dhar,H.T.Grahn,K.H.Ploog,P.Waltereit,及J.S.Speck,Phys.Rev.B,67,041306(2003)。
14. A.Chitnis,C.Chen,V.Adivarahan,M.Shatalov,E.Kuokstis,V.Mandavilli,J.Yang,及M.A.Khan,Appl.Phys.Lett.,84,3663(2004)。
15. N.F.Gardner,J.C.Kim,J.J.Wierer,Y.C.Shen,及M.R.Krames,Appl.Phys.Lett.,86,111101(2005)。
16. K.Nishizuka,M.Funato,Y.Kawakami,S.Fujita,Y.Narukawa,及T.Mukai,Appl.Phys.Lett.,85,3122(2004)。
17. S.H.Park,Jpn.J.Appl.Phys,42,L170(2003)。
18. S.H.Park,Jpn.J.Appl.Phys.,42,5052(2003)。
19. S.H.Park及S.L.Chuang,Phys.Rev.B,59,4725(1999)。
20. T.Takeuchi,H.Amano,及I.Akasaki,Jpn.J.Appl.Phys.,39,413(2000)。
21. T.Takeuchi,C.Wetzel,S.Yamaguchi,H.Sakai,H.Amano,I.Akasaki,Y.Kaneko,S.Nakagawa,Y.Yamaoka,及N.Yamada,Appl.Phys.Lett.,73,1691(1998)。
22. F.Bernardini,V.Fiorentini,D.Vanderbilt,Phys.Rev.B,56,R10024(1997)。
23. Polian,M.Grimsditch,I.Grzegory,J.Appl.Phys.,79,3343(1996)。
24. K.Kim,W.R.L.Lambrecht,及B.Segall,Phys Rev.B,53,16310(1996)。
25. I.Vurgaftman及J.R.Meyer,J.Appl.Phys.,94,3675(2003)。
26. F.Bertram,T.Riemann,J.Christen,A.Kaschner,A.Hoffmann,C.Thomsen,K.Hiramatsu,T.Shibata,及N.Sawaki,Appl.Phys.Lett.,74,359(1999)。
27. H.Sone,S.Nambu,Y.Kawaguchi,M.Yamaguchi,H.Miyake,K.Hiramatsu,Y.Iyechika,T.Maeda,及N.Sawaki,Jpn.J.Appl.Phys.,38,L356(1999)。
28. S.Nakamura,M.Senoh,S.Nagahama,N.Iwasa,T.Yamada,T.Matsushita,H.Kiyoku,Y.Sugimoto,T.Kozaki,H.Umemoto,M.Sano,及K.Chocho,Appl.Phys.Lett.,72,211(1998)。
29. S.Nakamura及G.Fasol,The Blue Laser Diode,(Springer,Heidelberg,1997)。此書提供對c-平面(Ga,Al,In,B)N光電子技術之概述。
30. L.Coldren及S.Corzine,Diode Lasers and Photonic Integrated Circuits,(Wiley Interscience,New York,1995)。第4章及附錄8-11提供與應變量子井雷射設計相關之理論。
結論
在此做出本發明較佳實施例描述之結論。本發明之一或多個實施例之先前描述已陳述用於說明及描述目的。不期望太詳盡或將本發明限制於所揭示之簡單形式。根據上述教示,在基本上不偏離本發明本質時,可做出眾多修正及改變。期望本發明之範疇不受此實施方式所限,而受其後所附之申請專利範圍所限。
100...晶體
102...[0001]軸
200...z'-軸
300...壓電極化
400...流程圖
502...{101}GaN模板
504...尖晶石基板
506...基礎層
508...活性區域
510...16 nm未摻雜GaN障壁
512...摻雜Mg之p-型GaN層
514...重度摻雜p+-GaN接觸層
516...p-GaN接點
518...n-GaN接點
520...{1011}平面
600...電流-電壓(I-V)特徵
800...輸出功率
802...外部量子效率(EQE)
900...綠色(~525 nm峰值)LED
902...{103}GaN模板
904...{100}藍寶石基板
906...摻雜Si之n-GaN基層
908...活性區域
910...摻雜Mg之p-AlGaN障壁
912...摻雜Mg之p-GaN
914...p-GaN接點
916...n-GaN接點
918...{103}平面
1000...二級體I-V特徵
1100...發射曲線
1200...輸出功率
1202...外部量子效率(EQE)
1300...藍色(~440 nm峰值)半極性LED
1302...{103}GaN模板
1304...{110}尖晶石基板
1306...摻雜Si之n-GaN基層
1308...活性區域
1310...未摻雜GaN障壁
1312...摻雜Mg之p-型GaN層
1314...重度摻雜p+-GaN接觸層
1316...p-GaN接點
1318...n-GaN接點
1320...{103}平面
1400...輸出功率
1402...外部量子效率(EQE)
1500...概念裝置/雷射二級體
1501...{101}方向
1502...{101}尖晶石結構
1504...{101}半極性GaN模板
1506...n-GaN層
1508...n-AlGaN/GaN覆蓋層
1510...n-GaN波導層
1512...MQW活性層
1514...p-GaN波導層
1516...另一覆蓋層
1520...Ni/Au接點
1522...Ti/Al/Ni/Au接點
1600...商業LED之I-V特徵
1700...商業LED之EL光譜
1800...商業裝置波長曲線
1802...綠色半極性LED波長曲線
1900...輸出功率
1902...商業LED之EQE
圖1係壓縮應變InX Ga1 x N量子井中由於極化誘導電場之頻帶偏移的圖示。
圖2顯示對於c-平面晶體生長之習知座標系統(x,y,z)與對於一般晶體生長方向之轉變座標系統(x',y',z')間之關係。方位角與極性角分別藉由Φ與θ表示。
圖3係顯示壓電極化作為生長方向與帶有未應變GaN障壁之壓縮應變Inx Ga1 x N量子井之c-軸間角度的函數之圖。
圖4係描述生長及製造半極性(Ga,Al,In,B)N薄膜、異質結構,及裝置重要步驟之流程圖。此流程圖表明大量不同生長方法及順序如何在本發明範疇之內使用。
圖5係生長於{101}半極性GaN模板上之藍色(~439 nm峰值)LED之示意性橫截面。
圖6係生長於{101}半極性GaN模板上之藍色(~439 nm峰值)LED電流-電壓(I-V)特徵圖。
圖7係生長於{101}半極性GaN模板上之藍色(~439 nm峰值)LED在不同驅動電流下之電致發光(EL)光譜圖。
圖8係作為用於生長於{101}半極性GaN模板上之藍色(~439 nm峰值)LED之驅動電流函數之晶圓上輸出功率及外部量子效率(EQE)之圖。
圖9係生長於{103}半極性GaN模板上之綠色(~525 nm峰值)LED之示意性橫截面。
圖10係生長於{103}半極性GaN模板上之綠色(~525 nm峰值)LED之電流-電壓(I-V)特徵圖。
圖11係生長於{103}半極性GaN模板上之綠色(~525 nm峰值)LED在不同驅動電流下之電致發光(EL)光譜圖。
圖12係作為用於生長於{103}半極性GaN模板上之綠色(~525 nm峰值)LED之驅動電流函數之晶圓上輸出功率及外部量子效率(EQE)之圖。
圖13係生長於{103}半極性GaN模板上之藍色(~440 nm峰值)LED之示意性橫截面。
圖14係作為用於生長於{103}半極性GaN模板上之藍色(~440 nm峰值)LED之驅動電流函數之晶圓上功率輸出及外部量子效率(EQE)之圖。
圖15係設計用於發射光譜之綠色區域(~525 nm峰值)之半極性氮化物雷射二級體之示意圖。所示半極性方向中,{10-11}半極性方向應在活性區域中提供用於半極性氮化物雷射之淨極化與有效電洞質量之最佳組合。
圖16係生長於c-平面GaN模板上綠色(~525 nm峰值)商業LED之電流-電壓(I-V)特徵圖。
圖17係生長於c-平面GaN模板上綠色(~525 nm峰值)商業LED在不同驅動電流下電致發光(EL)光譜圖。
圖18係用於生長於{103}半極性GaN模板上綠色(~525 nm峰值)LED及生長於c-平面GaN模板上綠色(~525 nm峰值)商業LED,在不同驅動電流下電致發光(EL)波長峰值比較之圖。
圖19係作為用於生長於c-平面GaN模板上綠色(~525 nm峰值)商業LED之驅動電流函數之已封裝輸出功率及外部量子效率(EQE)之圖。
400...流程圖

Claims (44)

  1. 一種生長及製造裝置之方法,其包含:生長一包含發光裝置結構之半極性III族氮化物薄膜,其中該發光裝置結構包含成長於一基板之表面或其上方之一或多層半極性III族氮化物活化層,及該半極性III族氮化物活化層具有一或多種材料性質及一種半極性方向,使得該裝置在250mA之驅動電流下及在不超過278 Amps/每平方公分之電流密度下具有至少1.5mW之輸出功率及至少0.2125%之外部量子效率(EQE)。
  2. 如請求項1之方法,其中該基板包含獨立式(free-standing)氮化鎵基板。
  3. 如請求項1之方法,其中該基板係成長於一異質材料上。
  4. 如請求項3之方法,其中該異質材料係經氮化物模板層塗覆。
  5. 如請求項1之方法,其中該半極性III族氮化物薄膜之頂部表面係平行於該基板之表面。
  6. 如請求項4之方法,其中該氮化物模板層係一晶核層。
  7. 如請求項1之方法,其中該半極性III族氮化物薄膜為異質結構,及該裝置係一發光二極體。
  8. 如請求項1之方法,其進一步包含將該半極性III族氮化物薄膜加工成一裝置。
  9. 如請求項1之方法,其中該基板之選擇係降低該半極性III族氮化物薄膜中之有效電洞質量。
  10. 如請求項1之方法,其中該基板包含具有與該半極性III族氮化物薄膜匹配的組合物晶格之獨立式半極性氮化物晶圓。
  11. 如請求項1之方法,其中,相較於在類似波長及驅動電流密度範圍下操作之極性III族氮化物活化層,該半極性III族氮化物活化層在介於33 Amps/每平方公分及222 Amps/每平方公分之間的增加驅動電流密度下,以藍色發射峰發光,而具有降低的藍移(blue-shift)。
  12. 如請求項1之方法,其中,相較於在類似波長及驅動電流密度範圍下操作之極性III族氮化物活化層,該半極性III族氮化物活化層隨著伴隨驅動電流密度增加而減少降低的EQE發光。
  13. 如請求項1之方法,其中,相較於在類似波長及驅動電流密度範圍下操作之極性III族氮化物活化層,該半極性III族氮化物活化層具有減少的極化效應及有效電洞質量。
  14. 如請求項1之方法,其中該發光裝置結構包含發藍光半極性發光二極體(LED)。
  15. 如請求項1之方法,其中:該半極性III族氮化物活化層之頂部表面係平面的、半極性的且實質上平行於該包含氮化物基板或氮化物模板層之基板的半極性表面,且 該頂部表面具有至少300微米乘300微米之面積區域。
  16. 如請求項1之方法,其中該半極性III族氮化物活化層係成長於一具有至少10微米之厚度之氮化鎵模板層之半極性表面或其上方。
  17. 如請求項1之方法,其中該基板係氮化物基板。
  18. 如請求項1之方法,其中:該發光裝置結構在不超過55 Amps/每平方公分之電流密度下具有峰值EQE;及在至少111 Amps/每平方公分之電流密度下,具有相較於該峰值EQE不超過12%之EQE下降。
  19. 一種使用如請求項1之方法製造之裝置。
  20. 一種生長及製造裝置之方法,其包含:生長一包含發光裝置結構之半極性III族氮化物薄膜,其中該發光裝置結構包含成長於一基板之表面或其上方之一或多層半極性III族氮化物活化層,及該半極性III族氮化物活化層之半極性方向及一或多種材料性質,係使得該發光裝置結構在不超過222 Amps/每平方公分之電流密度下,具有峰值EQE,及在至少278 Amps/每平方公分之電流密度下,相較於該峰值EQE不超過49%之EQE下降。
  21. 一種發光裝置,其包含:一包含發光裝置結構之半極性III族氮化物薄膜,其中該發光裝置結構包含成長於一基板之表面或其上方之 一或多層半極性III族氮化物活化層,及該半極性III族氮化物活化層具有一或多種材料性質及一種半極性方向,使得該裝置在250mA之驅動電流下及在不超過278 Amps/每平方公分之電流密度下具有至少1.5mW之輸出功率及至少0.2125%之EQE。
  22. 如請求項21之裝置,其中該半極性III族氮化物活化層係成長於一包含獨立式氮化鎵(GaN)基板之基板的半極性表面或其上方。
  23. 如請求項21之裝置,其中該基板係成長於一異質材料上。
  24. 如請求項21之裝置,其中該半極性III族氮化物活化層為異質結構,及該裝置係一發光二極體。
  25. 如請求項21之裝置,其中,相較於在類似波長及驅動電流密度範圍下操作之極性III族氮化物活化層,該半極性III族氮化物活化層在介於33 Amps/每平方公分及222 Amps/每平方公分之間的增加驅動電流密度下,以藍色發射峰發光,而具有降低的藍移。
  26. 如請求項21之裝置,其中,相較於在類似波長及驅動電流密度範圍下操作之極性III族氮化物活化層,該半極性III族氮化物活化層隨著伴隨驅動電流密度增加而減少降低的EQE發光。
  27. 如請求項21之裝置,其中,相較於在類似波長及驅動電流密度範圍下操作之極性III族氮化物活化層,該半極性III族氮化物活化層具有減少的極化效應及有效電洞質 量。
  28. 如請求項21之裝置,其中該發光裝置結構包含發藍光半極性LED。
  29. 如請求項21之裝置,其中該半極性III族氮化物活化層之頂部表面係平面的、半極性的且實質上平行於該氮化物基板的主要表面。
  30. 如請求項21之裝置,其中:該發光裝置結構在不超過55 Amps/每平方公分之電流密度下,具有峰值EQE,及在至少111 Amps/每平方公分之電流密度下,具有相較於該峰值EQE不超過12%之EQE下降。
  31. 如請求項21之裝置,其中該半極性III族氮化物活化層係成長於一具有至少10微米之厚度之氮化鎵模板層之半極性表面或其上方。
  32. 如請求項21之裝置,其中該發光裝置結構在介於33 Amps/每平方公分及222 Amps/每平方公分之間的電流密度下,具有藍色波長之發射峰。
  33. 如請求項21之裝置,其中該基板係氮化物基板。
  34. 一種發光裝置,其包含:一包含發光裝置結構之半極性III族氮化物薄膜,其中該發光裝置結構包含成長於一基板之表面或其上方之一或多層半極性III族氮化物活化層,及該半極性III族氮化物活化層之半極性方向及一或多種材料性質,係使得該發光裝置結構在不超過222 Amps/每 平方公分之電流密度下,具有峰值EQE,及在至少278 Amps/每平方公分之電流密度下,相較於該峰值EQE不超過49%之EQE下降。
  35. 一種生長及製造裝置之方法,其包含:在生長條件下及在選擇一種半極性方向下,生長一包含發光二極體結構之半極性III族氮化物薄膜,其中該發光二極體結構包含成長於一氮化鎵模板或基板之表面或其上方之一或多層半極性III族氮化物活化層,及該半極性III族氮化物活化層之半極性方向及一或多種材料性質,係使得該發光二極體結構在55至278 Amps/每平方公分之電流密度下,具有相較於該峰值EQE為0至49%之EQE下降。
  36. 如請求項35之方法,其中在55至111 Amps/每平方公分之電流密度下,該EQE下降係0至12%。
  37. 如請求項35之方法,其中該半極性方向係{101}。
  38. 如請求項35之方法,其中該半極性方向係{103}。
  39. 如請求項35之方法,其中該半極性方向係{11-22}。
  40. 一種發光裝置,其包含:一包含發光二極體結構之半極性III族氮化物薄膜,其中該發光二極體結構包含成長於一氮化鎵模板或基板之表面或其上方之一或多層半極性III族氮化物活化層,及該半極性III族氮化物活化層之半極性方向及一或多種材料性質,係使得該發光二極體結構在55至278 Amps/每平方公分之電流密度下,具有相較於該峰值EQE為0至 49%之EQE下降。
  41. 如請求項40之裝置,其中在55至111 Amps/每平方公分之電流密度下,該EQE下降係0至12%。
  42. 如請求項40之裝置,其中該半極性方向係{101}。
  43. 如請求項40之裝置,其中該半極性方向係{103}。
  44. 如請求項40之裝置,其中該半極性方向係{11-22}。
TW095119443A 2005-06-01 2006-06-01 半極性(Ga,Al,In,B)N薄膜、異質結構及裝置之生長及製造技術 TWI455181B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US68624405P 2005-06-01 2005-06-01

Publications (2)

Publication Number Publication Date
TW200703464A TW200703464A (en) 2007-01-16
TWI455181B true TWI455181B (zh) 2014-10-01

Family

ID=37482271

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095119443A TWI455181B (zh) 2005-06-01 2006-06-01 半極性(Ga,Al,In,B)N薄膜、異質結構及裝置之生長及製造技術

Country Status (6)

Country Link
US (5) US7846757B2 (zh)
EP (1) EP1900013A4 (zh)
JP (3) JP5743127B2 (zh)
KR (1) KR101351396B1 (zh)
TW (1) TWI455181B (zh)
WO (1) WO2006130696A2 (zh)

Families Citing this family (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846757B2 (en) 2005-06-01 2010-12-07 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,A1,In,B)N thin films, heterostructures, and devices
US7504274B2 (en) 2004-05-10 2009-03-17 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US7575947B2 (en) * 2005-09-09 2009-08-18 The Regents Of The University Of California Method for enhancing growth of semi-polar (Al,In,Ga,B)N via metalorganic chemical vapor deposition
KR101145755B1 (ko) * 2005-03-10 2012-05-16 재팬 사이언스 앤드 테크놀로지 에이젼시 평면의 반극성 갈륨 질화물의 성장을 위한 기술
US8148244B2 (en) * 2005-07-13 2012-04-03 The Regents Of The University Of California Lateral growth method for defect reduction of semipolar nitride films
WO2007084783A2 (en) * 2006-01-20 2007-07-26 The Regents Of The University Of California Method for enhancing growth of semipolar (ai,in,ga,b)n via metalorganic chemical vapor deposition
JP5896442B2 (ja) 2006-01-20 2016-03-30 国立研究開発法人科学技術振興機構 Iii族窒化物膜の成長方法
JP5684455B2 (ja) 2006-02-10 2015-03-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 成長中にp型ドーパントがドープされたp型半極性III窒化物半導体を使用して、該III窒化物デバイスまたはIII窒化物半導体を製造する方法、半極性III窒化物半導体、および、p型III窒化物半導体を製造する方法
EP1984545A4 (en) * 2006-02-17 2013-05-15 Univ California PROCESS FOR THE PRODUCTION OF N-TYPE SEMIPOLAR OPTOELECTRONIC DEVICES (AL, IN, GA, B)
US8193020B2 (en) * 2006-11-15 2012-06-05 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition
EP2087507A4 (en) * 2006-11-15 2010-07-07 Univ California METHOD FOR THE HETEROEPITAXIAL GROWTH OF QUALITATIVELY HIGH-QUALITY N-SIDE-GAN, INN AND AIN AND THEIR ALLOYS THROUGH METALLORGANIC CHEMICAL IMMUNE
TWI533351B (zh) 2006-12-11 2016-05-11 美國加利福尼亞大學董事會 高效能非極性第三族氮化物光學裝置之金屬有機化學氣相沈積生長
WO2008073384A1 (en) * 2006-12-11 2008-06-19 The Regents Of University Of California Non-polar and semi-polar light emitting devices
US7839903B2 (en) 2007-02-12 2010-11-23 The Regents Of The University Of California Optimization of laser bar orientation for nonpolar and semipolar (Ga,Al,In,B)N diode lasers
WO2008100504A1 (en) * 2007-02-12 2008-08-21 The Regents Of The University Of California Cleaved facet (ga,al,in)n edge-emitting laser diodes grown on semipolar {11-2n} bulk gallium nitride substrates
WO2008100502A1 (en) * 2007-02-12 2008-08-21 The Regents Of The University Of California Al(x)ga(1-x)n-cladding-free nonpolar iii-nitride based laser diodes and light emitting diodes
JP4907476B2 (ja) * 2007-03-13 2012-03-28 コバレントマテリアル株式会社 窒化物半導体単結晶
JP2008258503A (ja) * 2007-04-06 2008-10-23 Sumitomo Electric Ind Ltd 窒化物系半導体発光素子、および窒化物系半導体発光素子を作製する方法
JP4462289B2 (ja) 2007-05-18 2010-05-12 ソニー株式会社 半導体層の成長方法および半導体発光素子の製造方法
JP2008288527A (ja) * 2007-05-21 2008-11-27 Rohm Co Ltd レーザ発光装置
KR100885190B1 (ko) * 2007-06-29 2009-02-24 우리엘에스티 주식회사 발광소자와 그의 제조방법
JP2010539732A (ja) * 2007-09-19 2010-12-16 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 無極性および半極性の窒化物基板の面積を増加させる方法
US8118934B2 (en) * 2007-09-26 2012-02-21 Wang Nang Wang Non-polar III-V nitride material and production method
JP5003527B2 (ja) * 2008-02-22 2012-08-15 住友電気工業株式会社 Iii族窒化物発光素子、及びiii族窒化物系半導体発光素子を作製する方法
KR100947507B1 (ko) * 2008-03-25 2010-03-12 우리엘에스티 주식회사 임의의 발진파장을 갖는 발광소자 제조방법
JP2009245982A (ja) * 2008-03-28 2009-10-22 Sumitomo Electric Ind Ltd 窒化物発光素子
JP2009246275A (ja) * 2008-03-31 2009-10-22 Showa Denko Kk Iii族窒化物半導体発光素子及びランプ
WO2010065163A2 (en) * 2008-06-05 2010-06-10 Soraa, Inc. Highly polarized white light source by combining blue led on semipolar or nonpolar gan with yellow led on semipolar or nonpolar gan
US20090309127A1 (en) * 2008-06-13 2009-12-17 Soraa, Inc. Selective area epitaxy growth method and structure
US8847249B2 (en) * 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
JP4572963B2 (ja) * 2008-07-09 2010-11-04 住友電気工業株式会社 Iii族窒化物系半導体発光素子、及びエピタキシャルウエハ
US8805134B1 (en) 2012-02-17 2014-08-12 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8143148B1 (en) 2008-07-14 2012-03-27 Soraa, Inc. Self-aligned multi-dielectric-layer lift off process for laser diode stripes
US8767787B1 (en) 2008-07-14 2014-07-01 Soraa Laser Diode, Inc. Integrated laser diodes with quality facets on GaN substrates
US8673074B2 (en) * 2008-07-16 2014-03-18 Ostendo Technologies, Inc. Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE)
KR101479623B1 (ko) * 2008-07-22 2015-01-08 삼성전자주식회사 질화물 반도체 발광소자
JP2010027924A (ja) * 2008-07-22 2010-02-04 Sumitomo Electric Ind Ltd Iii族窒化物発光ダイオード
US8284810B1 (en) 2008-08-04 2012-10-09 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
EP2319086A4 (en) 2008-08-04 2014-08-27 Soraa Inc WHITE LIGHTING DEVICES WITH NON POLAR OR SEMI-POLAR GALLIUM-HARDENED MATERIALS AND INFLUENCES
JP4475358B1 (ja) * 2008-08-04 2010-06-09 住友電気工業株式会社 GaN系半導体光素子、GaN系半導体光素子を作製する方法、及びエピタキシャルウエハ
JP4917585B2 (ja) 2008-08-26 2012-04-18 住友電気工業株式会社 窒化物系半導体光素子を製造する方法、及びエピタキシャルウエハを製造する方法
JP5344676B2 (ja) * 2008-08-29 2013-11-20 学校法人金沢工業大学 発光素子用基板および発光素子
WO2010027016A1 (ja) * 2008-09-05 2010-03-11 シャープ株式会社 窒化物半導体発光素子および半導体発光素子
EP2323180A1 (en) 2008-09-11 2011-05-18 Sumitomo Electric Industries, Ltd. Nitride semiconductor optical device, epitaxial wafer for nitride semiconductor optical device, and method for manufacturing semiconductor light-emitting device
US20100295088A1 (en) * 2008-10-02 2010-11-25 Soraa, Inc. Textured-surface light emitting diode and method of manufacture
JP5077303B2 (ja) * 2008-10-07 2012-11-21 住友電気工業株式会社 窒化ガリウム系半導体発光素子、窒化ガリウム系半導体発光素子を作製する方法、窒化ガリウム系発光ダイオード、エピタキシャルウエハ、及び窒化ガリウム系発光ダイオードを作製する方法
JP5252061B2 (ja) * 2008-10-07 2013-07-31 住友電気工業株式会社 窒化ガリウム系レーザダイオード
JP2010123920A (ja) * 2008-10-20 2010-06-03 Sumitomo Electric Ind Ltd 窒化物系半導体発光素子を作製する方法、及びエピタキシャルウエハを作製する方法
JP5316276B2 (ja) * 2009-01-23 2013-10-16 住友電気工業株式会社 窒化物半導体発光素子、エピタキシャル基板、及び窒化物半導体発光素子を作製する方法
JP5195532B2 (ja) * 2009-03-04 2013-05-08 住友電気工業株式会社 化合物半導体電子デバイス及び化合物半導体集積電子デバイス
WO2010100699A1 (ja) * 2009-03-06 2010-09-10 パナソニック株式会社 窒化物半導体の結晶成長方法および半導体装置の製造方法
US8247886B1 (en) 2009-03-09 2012-08-21 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US8422525B1 (en) 2009-03-28 2013-04-16 Soraa, Inc. Optical device structure using miscut GaN substrates for laser applications
US20140175377A1 (en) * 2009-04-07 2014-06-26 Soraa, Inc. Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors
US8634442B1 (en) 2009-04-13 2014-01-21 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
WO2010120819A1 (en) 2009-04-13 2010-10-21 Kaai, Inc. Optical device structure using gan substrates for laser applications
US8791499B1 (en) 2009-05-27 2014-07-29 Soraa, Inc. GaN containing optical devices and method with ESD stability
US8247887B1 (en) 2009-05-29 2012-08-21 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US8749030B2 (en) * 2009-05-29 2014-06-10 Soraa, Inc. Surface morphology of non-polar gallium nitride containing substrates
WO2010138923A1 (en) * 2009-05-29 2010-12-02 Soraa, Inc. Laser based display method and system
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US8427590B2 (en) 2009-05-29 2013-04-23 Soraa, Inc. Laser based display method and system
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
JP4450112B2 (ja) * 2009-06-29 2010-04-14 住友電気工業株式会社 窒化物系半導体光素子
JP5332959B2 (ja) * 2009-06-29 2013-11-06 住友電気工業株式会社 窒化物系半導体光素子
JP5446622B2 (ja) * 2009-06-29 2014-03-19 住友電気工業株式会社 Iii族窒化物結晶およびその製造方法
JP2011023534A (ja) * 2009-07-15 2011-02-03 Sumitomo Electric Ind Ltd 窒化物系半導体発光素子
JP5635246B2 (ja) 2009-07-15 2014-12-03 住友電気工業株式会社 Iii族窒化物半導体光素子及びエピタキシャル基板
US20110056429A1 (en) * 2009-08-21 2011-03-10 Soraa, Inc. Rapid Growth Method and Structures for Gallium and Nitrogen Containing Ultra-Thin Epitaxial Structures for Devices
US9000466B1 (en) 2010-08-23 2015-04-07 Soraa, Inc. Methods and devices for light extraction from a group III-nitride volumetric LED using surface and sidewall roughening
JP5549158B2 (ja) * 2009-09-04 2014-07-16 住友電気工業株式会社 GaN単結晶基板およびその製造方法、ならびにGaN系半導体デバイスおよびその製造方法
US8598685B2 (en) * 2009-09-04 2013-12-03 Sumitomo Electric Industries, Ltd. GaN single crystal substrate and method of manufacturing thereof and GaN-based semiconductor device and method of manufacturing thereof
JP5549157B2 (ja) * 2009-09-04 2014-07-16 住友電気工業株式会社 GaN単結晶基板およびその製造方法、ならびにGaN系半導体デバイスおよびその製造方法
JP4924681B2 (ja) * 2009-09-10 2012-04-25 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US8355418B2 (en) 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
JP5233936B2 (ja) * 2009-09-24 2013-07-10 住友電気工業株式会社 窒化物半導体基板
JP5515575B2 (ja) * 2009-09-30 2014-06-11 住友電気工業株式会社 Iii族窒化物半導体光素子、エピタキシャル基板、及びiii族窒化物半導体光素子を作製する方法
JP5397136B2 (ja) * 2009-09-30 2014-01-22 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5381581B2 (ja) * 2009-09-30 2014-01-08 住友電気工業株式会社 窒化ガリウム基板
JP4835741B2 (ja) * 2009-09-30 2011-12-14 住友電気工業株式会社 半導体発光素子を作製する方法
JP2011077386A (ja) * 2009-09-30 2011-04-14 Sumitomo Electric Ind Ltd 高電子移動度トランジスタ、エピタキシャル基板、及び高電子移動度トランジスタを作製する方法
US8629065B2 (en) * 2009-11-06 2014-01-14 Ostendo Technologies, Inc. Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE)
JP4793489B2 (ja) * 2009-12-01 2011-10-12 住友電気工業株式会社 Iii族窒化物半導体レーザ素子を作製する方法
JP5131266B2 (ja) * 2009-12-25 2013-01-30 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP2011146639A (ja) * 2010-01-18 2011-07-28 Sumitomo Electric Ind Ltd Iii族窒化物系半導体素子
JP4793494B2 (ja) 2010-01-18 2011-10-12 住友電気工業株式会社 Iii族窒化物半導体レーザ素子を作製する方法
JP2011146652A (ja) * 2010-01-18 2011-07-28 Sumitomo Electric Ind Ltd 貼り合わせ基板、貼り合わせ基板の製造方法、及び発光素子
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US20110186874A1 (en) * 2010-02-03 2011-08-04 Soraa, Inc. White Light Apparatus and Method
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US20110182056A1 (en) * 2010-06-23 2011-07-28 Soraa, Inc. Quantum Dot Wavelength Conversion for Optical Devices Using Nonpolar or Semipolar Gallium Containing Materials
US9927611B2 (en) 2010-03-29 2018-03-27 Soraa Laser Diode, Inc. Wearable laser based display method and system
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
US8218595B2 (en) * 2010-05-28 2012-07-10 Corning Incorporated Enhanced planarity in GaN edge emitting lasers
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
JP5586372B2 (ja) * 2010-08-10 2014-09-10 昭和電工株式会社 発光ダイオード、発光ダイオードランプ及び照明装置
JP5319628B2 (ja) * 2010-08-26 2013-10-16 シャープ株式会社 窒化物半導体素子および半導体光学装置
JP5685035B2 (ja) * 2010-09-24 2015-03-18 住友電気工業株式会社 半導体発光素子の製造方法
US20120107991A1 (en) * 2010-10-21 2012-05-03 The Regents Of The University Of California Magnesium doping in barriers in multiple quantum well structures of iii-nitride-based light emitting devices
US20120126283A1 (en) * 2010-10-27 2012-05-24 The Regents Of The University Of California High power, high efficiency and low efficiency droop iii-nitride light-emitting diodes on semipolar substrates
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US8482103B2 (en) 2010-12-09 2013-07-09 Industrial Technology Research Institute Nitride semiconductor template and fabricating method thereof
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9318875B1 (en) 2011-01-24 2016-04-19 Soraa Laser Diode, Inc. Color converting element for laser diode
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US9236530B2 (en) 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
WO2012144212A1 (ja) * 2011-04-20 2012-10-26 パナソニック株式会社 半導体積層基板、半導体チップおよび半導体積層基板の製造方法
US8686397B2 (en) 2011-06-10 2014-04-01 The Regents Of The University Of California Low droop light emitting diode structure on gallium nitride semipolar substrates
JP2011216914A (ja) * 2011-07-27 2011-10-27 Sumitomo Electric Ind Ltd Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP2011211244A (ja) * 2011-07-27 2011-10-20 Sumitomo Electric Ind Ltd Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
US8471366B2 (en) 2011-11-30 2013-06-25 Sumitomo Electric Industries, Ltd. Nitride semiconductor substrate
JP5351290B2 (ja) * 2012-01-05 2013-11-27 住友電気工業株式会社 窒化物半導体レーザ、及びエピタキシャル基板
EP2823515A4 (en) 2012-03-06 2015-08-19 Soraa Inc LIGHT-EMITTING DIODES WITH MATERIAL LAYERS WITH LOW BREAKING INDEX TO REDUCE LIGHT PIPE EFFECTS
JP2012109624A (ja) * 2012-03-06 2012-06-07 Sumitomo Electric Ind Ltd Iii族窒化物発光素子、及びiii族窒化物系半導体発光素子を作製する方法
US9020003B1 (en) 2012-03-14 2015-04-28 Soraa Laser Diode, Inc. Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates
US9343871B1 (en) 2012-04-05 2016-05-17 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US10559939B1 (en) 2012-04-05 2020-02-11 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9800016B1 (en) 2012-04-05 2017-10-24 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9088135B1 (en) 2012-06-29 2015-07-21 Soraa Laser Diode, Inc. Narrow sized laser diode
US8971368B1 (en) 2012-08-16 2015-03-03 Soraa Laser Diode, Inc. Laser devices having a gallium and nitrogen containing semipolar surface orientation
US9184563B1 (en) 2012-08-30 2015-11-10 Soraa Laser Diode, Inc. Laser diodes with an etched facet and surface treatment
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
JP2014086507A (ja) * 2012-10-22 2014-05-12 Sumitomo Electric Ind Ltd 窒化物半導体レーザ、窒化物半導体レーザを作製する方法
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
US8802471B1 (en) 2012-12-21 2014-08-12 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US9356431B2 (en) * 2013-02-13 2016-05-31 The Regents Of The University Of California High power blue-violet III-nitride semipolar laser diodes
WO2014176283A1 (en) * 2013-04-22 2014-10-30 Ostendo Technologies, Inc. Semi-polar iii-nitride films and materials and method for making the same
US9379271B2 (en) * 2013-05-24 2016-06-28 The United States Of America As Represented By The Secretary Of The Army Variable range photodetector and method thereof
US9893227B2 (en) * 2013-05-24 2018-02-13 The United States Of America As Represented By The Secretary Of The Army Enhanced deep ultraviolet photodetector and method thereof
US9166372B1 (en) 2013-06-28 2015-10-20 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
US8994033B2 (en) 2013-07-09 2015-03-31 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US9410664B2 (en) 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
JP2014001138A (ja) * 2013-09-25 2014-01-09 Sumitomo Electric Ind Ltd GaN単結晶基板およびその製造方法、ならびにGaN系半導体デバイスおよびその製造方法
JP2014001137A (ja) * 2013-09-25 2014-01-09 Sumitomo Electric Ind Ltd GaN単結晶基板およびその製造方法、ならびにGaN系半導体デバイスおよびその製造方法
US9362715B2 (en) 2014-02-10 2016-06-07 Soraa Laser Diode, Inc Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US9520695B2 (en) 2013-10-18 2016-12-13 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser device having confinement region
US9368939B2 (en) 2013-10-18 2016-06-14 Soraa Laser Diode, Inc. Manufacturable laser diode formed on C-plane gallium and nitrogen material
US9379525B2 (en) 2014-02-10 2016-06-28 Soraa Laser Diode, Inc. Manufacturable laser diode
US9209596B1 (en) 2014-02-07 2015-12-08 Soraa Laser Diode, Inc. Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates
US9871350B2 (en) 2014-02-10 2018-01-16 Soraa Laser Diode, Inc. Manufacturable RGB laser diode source
US9520697B2 (en) 2014-02-10 2016-12-13 Soraa Laser Diode, Inc. Manufacturable multi-emitter laser diode
US9564736B1 (en) 2014-06-26 2017-02-07 Soraa Laser Diode, Inc. Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode
US9246311B1 (en) 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US9653642B1 (en) 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
US9666677B1 (en) 2014-12-23 2017-05-30 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
US10938182B2 (en) 2015-08-19 2021-03-02 Soraa Laser Diode, Inc. Specialized integrated light source using a laser diode
US11437775B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
US10879673B2 (en) 2015-08-19 2020-12-29 Soraa Laser Diode, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US20180151301A1 (en) * 2016-11-25 2018-05-31 The Boeing Company Epitaxial perovskite materials for optoelectronics
US11287563B2 (en) 2016-12-01 2022-03-29 Ostendo Technologies, Inc. Polarized light emission from micro-pixel displays and methods of fabrication thereof
US10135227B1 (en) 2017-05-19 2018-11-20 Palo Alto Research Center Incorporated Electron beam pumped non-c-plane UV emitters
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
KR102098572B1 (ko) * 2018-12-26 2020-04-08 한국세라믹기술원 에피택시 성장을 위한 기판 소재의 탐색 장치 및 방법 그리고 이를 구현하기 위한 프로그램을 기록한 기록매체
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
JP7254639B2 (ja) * 2019-04-26 2023-04-10 住友化学株式会社 素子の製造方法
US10903623B2 (en) 2019-05-14 2021-01-26 Soraa Laser Diode, Inc. Method and structure for manufacturable large area gallium and nitrogen containing substrate
US11228158B2 (en) 2019-05-14 2022-01-18 Kyocera Sld Laser, Inc. Manufacturable laser diodes on a large area gallium and nitrogen containing substrate
US10923630B1 (en) * 2019-09-18 2021-02-16 Facebook Technologies, Llc P—GaN-down micro-LED on semi-polar oriented GaN
WO2022094718A1 (en) * 2020-11-05 2022-05-12 Vuereal Inc. Dual microdevice driving
KR102564956B1 (ko) * 2021-11-25 2023-08-08 재단법인대구경북과학기술원 사파이어 미스컷 기판을 이용한 무자기장 스핀궤도토크 스위칭 소자

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020031153A1 (en) * 1996-10-30 2002-03-14 Atsuko Niwa Optical information processing equipment and semiconductor light emitting device suitable therefor

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2005471A (en) 1931-12-11 1935-06-18 Pittaluga Stefano Fruit and vegetable juice filling machine
JPH01143270A (ja) * 1987-11-27 1989-06-05 Matsushita Electric Ind Co Ltd 半導体装置
JP2704181B2 (ja) * 1989-02-13 1998-01-26 日本電信電話株式会社 化合物半導体単結晶薄膜の成長方法
JPH07130657A (ja) 1993-11-08 1995-05-19 Furukawa Electric Co Ltd:The 化合物半導体の成長方法
US6440823B1 (en) * 1994-01-27 2002-08-27 Advanced Technology Materials, Inc. Low defect density (Ga, Al, In)N and HVPE process for making same
JP2890396B2 (ja) 1995-03-27 1999-05-10 日亜化学工業株式会社 窒化物半導体発光素子
JP3484842B2 (ja) * 1995-10-24 2004-01-06 日亜化学工業株式会社 窒化物半導体レーザ素子
JP3361285B2 (ja) * 1996-01-19 2003-01-07 松下電器産業株式会社 窒化ガリウム系化合物半導体発光素子及び窒化ガリウム系化合物半導体の製造方法
CN1292458C (zh) 1997-04-11 2006-12-27 日亚化学工业株式会社 氮化物半导体的生长方法、氮化物半导体衬底及器件
JPH10294490A (ja) * 1997-04-17 1998-11-04 Toshiba Electron Eng Corp p型窒化ガリウム系化合物半導体、その製造方法および青色発光素子
JP3119200B2 (ja) * 1997-06-09 2000-12-18 日本電気株式会社 窒化物系化合物半導体の結晶成長方法および窒化ガリウム系発光素子
EP0902487A3 (en) 1997-09-05 2000-10-25 Honnavalli R. Vydyanath A semiconductor device and method of fabrication thereof
US6849472B2 (en) * 1997-09-30 2005-02-01 Lumileds Lighting U.S., Llc Nitride semiconductor device with reduced polarization fields
US6459096B1 (en) * 1998-01-14 2002-10-01 Manijeh Razeghi Multi quantum well grinsch detector
US6218280B1 (en) 1998-06-18 2001-04-17 University Of Florida Method and apparatus for producing group-III nitrides
US5959316A (en) * 1998-09-01 1999-09-28 Hewlett-Packard Company Multiple encapsulation of phosphor-LED devices
JP3592553B2 (ja) 1998-10-15 2004-11-24 株式会社東芝 窒化ガリウム系半導体装置
US20010047751A1 (en) 1998-11-24 2001-12-06 Andrew Y. Kim Method of producing device quality (a1) ingap alloys on lattice-mismatched substrates
JP2000203995A (ja) * 1999-01-13 2000-07-25 Japan Energy Corp 化合物半導体結晶の成長方法および当該成長方法で成長させた化合物半導体結晶ならびに化合物半導体装置
JP2000216497A (ja) * 1999-01-22 2000-08-04 Sanyo Electric Co Ltd 半導体素子およびその製造方法
US6903376B2 (en) * 1999-12-22 2005-06-07 Lumileds Lighting U.S., Llc Selective placement of quantum wells in flipchip light emitting diodes for improved light extraction
JP3946427B2 (ja) 2000-03-29 2007-07-18 株式会社東芝 エピタキシャル成長用基板の製造方法及びこのエピタキシャル成長用基板を用いた半導体装置の製造方法
JP2001339121A (ja) * 2000-05-29 2001-12-07 Sharp Corp 窒化物半導体発光素子とそれを含む光学装置
US6610144B2 (en) * 2000-07-21 2003-08-26 The Regents Of The University Of California Method to reduce the dislocation density in group III-nitride films
US6586819B2 (en) * 2000-08-14 2003-07-01 Nippon Telegraph And Telephone Corporation Sapphire substrate, semiconductor device, electronic component, and crystal growing method
US7053413B2 (en) 2000-10-23 2006-05-30 General Electric Company Homoepitaxial gallium-nitride-based light emitting device and method for producing
US6635901B2 (en) * 2000-12-15 2003-10-21 Nobuhiko Sawaki Semiconductor device including an InGaAIN layer
US6599362B2 (en) 2001-01-03 2003-07-29 Sandia Corporation Cantilever epitaxial process
JP2002222990A (ja) * 2001-01-26 2002-08-09 Toshiba Corp 半導体発光素子およびその製造方法
US6576932B2 (en) * 2001-03-01 2003-06-10 Lumileds Lighting, U.S., Llc Increasing the brightness of III-nitride light emitting devices
US6773504B2 (en) * 2001-04-12 2004-08-10 Sumitomo Electric Industries, Ltd. Oxygen doping method to gallium nitride single crystal substrate and oxygen-doped N-type gallium nitride freestanding single crystal substrate
JP4822608B2 (ja) * 2001-05-14 2011-11-24 シャープ株式会社 窒化物系半導体発光素子およびその製造方法
US7501023B2 (en) 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
US20030015708A1 (en) 2001-07-23 2003-01-23 Primit Parikh Gallium nitride based diodes with low forward voltage and low reverse current operation
US7105865B2 (en) 2001-09-19 2006-09-12 Sumitomo Electric Industries, Ltd. AlxInyGa1−x−yN mixture crystal substrate
JP4031628B2 (ja) * 2001-10-03 2008-01-09 松下電器産業株式会社 半導体多層膜結晶、およびそれを用いた発光素子、ならびに当該半導体多層膜結晶の成長方法
JP4693351B2 (ja) 2001-10-26 2011-06-01 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン エピタキシャル成長用基板
US7057211B2 (en) 2001-10-26 2006-06-06 Ammono Sp. Zo.O Nitride semiconductor laser device and manufacturing method thereof
JP4131101B2 (ja) * 2001-11-28 2008-08-13 日亜化学工業株式会社 窒化物半導体素子の製造方法
JP2003209062A (ja) 2002-01-17 2003-07-25 Sony Corp 化合物半導体層の結晶成長方法及び半導体素子
JP4307113B2 (ja) * 2002-03-19 2009-08-05 宣彦 澤木 半導体発光素子およびその製造方法
US20030198837A1 (en) * 2002-04-15 2003-10-23 Craven Michael D. Non-polar a-plane gallium nitride thin films grown by metalorganic chemical vapor deposition
AUPS240402A0 (en) * 2002-05-17 2002-06-13 Macquarie Research Limited Gallium nitride
US20060138431A1 (en) * 2002-05-17 2006-06-29 Robert Dwilinski Light emitting device structure having nitride bulk single crystal layer
EP1512171A2 (en) * 2002-05-17 2005-03-09 The Regents of the University of California Hafnium nitride buffer layers for growth of gan on silicon
JP4201541B2 (ja) 2002-07-19 2008-12-24 豊田合成株式会社 半導体結晶の製造方法及びiii族窒化物系化合物半導体発光素子の製造方法
US7427555B2 (en) 2002-12-16 2008-09-23 The Regents Of The University Of California Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy
US7186302B2 (en) 2002-12-16 2007-03-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
JP4052150B2 (ja) * 2003-03-05 2008-02-27 住友電気工業株式会社 窒化物系半導体装置の製造方法
JP2004273661A (ja) 2003-03-07 2004-09-30 Sumitomo Chem Co Ltd 窒化ガリウム単結晶基板の製造方法
US6847057B1 (en) 2003-08-01 2005-01-25 Lumileds Lighting U.S., Llc Semiconductor light emitting devices
US7554109B2 (en) * 2003-09-05 2009-06-30 Dot Metrics Technology, Inc. Quantum dot optoelectronic devices with nanoscale epitaxial lateral overgrowth and methods of manufacture
US7009215B2 (en) 2003-10-24 2006-03-07 General Electric Company Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates
GB2407700A (en) * 2003-10-28 2005-05-04 Sharp Kk MBE growth of nitride semiconductor lasers
GB2407701A (en) * 2003-10-28 2005-05-04 Sharp Kk Manufacture of a semiconductor light-emitting device
JP4600641B2 (ja) * 2004-01-27 2010-12-15 日立電線株式会社 窒化物半導体自立基板及びそれを用いた窒化物半導体発光素子
WO2005104236A2 (en) * 2004-04-15 2005-11-03 Trustees Of Boston University Optical devices featuring textured semiconductor layers
JP2005340765A (ja) * 2004-04-30 2005-12-08 Sumitomo Electric Ind Ltd 半導体発光素子
US7846757B2 (en) 2005-06-01 2010-12-07 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,A1,In,B)N thin films, heterostructures, and devices
US7504274B2 (en) 2004-05-10 2009-03-17 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US7432142B2 (en) 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
US20080163814A1 (en) 2006-12-12 2008-07-10 The Regents Of The University Of California CRYSTAL GROWTH OF M-PLANE AND SEMIPOLAR PLANES OF (Al, In, Ga, B)N ON VARIOUS SUBSTRATES
US7575947B2 (en) 2005-09-09 2009-08-18 The Regents Of The University Of California Method for enhancing growth of semi-polar (Al,In,Ga,B)N via metalorganic chemical vapor deposition
US9011598B2 (en) 2004-06-03 2015-04-21 Soitec Method for making a composite substrate and composite substrate according to the method
KR101145755B1 (ko) * 2005-03-10 2012-05-16 재팬 사이언스 앤드 테크놀로지 에이젼시 평면의 반극성 갈륨 질화물의 성장을 위한 기술
WO2006116030A2 (en) * 2005-04-21 2006-11-02 Aonex Technologies, Inc. Bonded intermediate substrate and method of making same
TW200703463A (en) 2005-05-31 2007-01-16 Univ California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
US8148713B2 (en) 2008-04-04 2012-04-03 The Regents Of The University Of California Method for fabrication of semipolar (Al, In, Ga, B)N based light emitting diodes
US8148244B2 (en) 2005-07-13 2012-04-03 The Regents Of The University Of California Lateral growth method for defect reduction of semipolar nitride films
JP5896442B2 (ja) 2006-01-20 2016-03-30 国立研究開発法人科学技術振興機構 Iii族窒化物膜の成長方法
WO2007084783A2 (en) 2006-01-20 2007-07-26 The Regents Of The University Of California Method for enhancing growth of semipolar (ai,in,ga,b)n via metalorganic chemical vapor deposition
JP5684455B2 (ja) 2006-02-10 2015-03-11 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 成長中にp型ドーパントがドープされたp型半極性III窒化物半導体を使用して、該III窒化物デバイスまたはIII窒化物半導体を製造する方法、半極性III窒化物半導体、および、p型III窒化物半導体を製造する方法
EP1984545A4 (en) 2006-02-17 2013-05-15 Univ California PROCESS FOR THE PRODUCTION OF N-TYPE SEMIPOLAR OPTOELECTRONIC DEVICES (AL, IN, GA, B)
JP2009536606A (ja) 2006-05-09 2009-10-15 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 非極性および半極性(Al、Ga、In)Nの原位置欠陥低減技術
WO2008073384A1 (en) 2006-12-11 2008-06-19 The Regents Of University Of California Non-polar and semi-polar light emitting devices
US20080224268A1 (en) 2007-03-13 2008-09-18 Covalent Materials Corporation Nitride semiconductor single crystal substrate
JP2008235804A (ja) 2007-03-23 2008-10-02 Rohm Co Ltd 発光素子
US7999283B2 (en) * 2007-06-14 2011-08-16 Cree, Inc. Encapsulant with scatterer to tailor spatial emission pattern and color uniformity in light emitting diodes
WO2009035648A1 (en) 2007-09-14 2009-03-19 Kyma Technologies, Inc. Non-polar and semi-polar gan substrates, devices, and methods for making them
JP2010539732A (ja) 2007-09-19 2010-12-16 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 無極性および半極性の窒化物基板の面積を増加させる方法
US7915802B2 (en) 2007-11-12 2011-03-29 Rohm Co., Ltd. Surface light emitting device and polarization light source
JP2009130364A (ja) 2007-11-23 2009-06-11 Samsung Electro-Mechanics Co Ltd 窒化物半導体発光素子及びその製造方法
CN101897029B (zh) 2007-12-10 2015-08-12 特兰斯夫公司 绝缘栅e模式晶体管
KR100972977B1 (ko) 2007-12-14 2010-07-29 삼성엘이디 주식회사 반극성 질화물 단결정 박막의 성장 방법 및 이를 이용한질화물 반도체 발광소자의 제조 방법
KR20100134089A (ko) 2008-04-04 2010-12-22 더 리전츠 오브 더 유니버시티 오브 캘리포니아 평면의 반극성 (Al, In, Ga, B)N계 발광 다이오드들에 대한 MOCVD 성장 기술
US8084763B2 (en) 2008-10-31 2011-12-27 The Regents Of The University Of California Optoelectronic device based on non-polar and semi-polar aluminum indium nitride and aluminum indium gallium nitride alloys

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020031153A1 (en) * 1996-10-30 2002-03-14 Atsuko Niwa Optical information processing equipment and semiconductor light emitting device suitable therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Kamiyama "GaN growth on (30-38) 4H-SiC substrate for reduction of internal polarization" , Physica Status Solidi, Applied Research, vol. 2, Issue 7, pp.2121-2124, 2005 *

Also Published As

Publication number Publication date
KR20080025096A (ko) 2008-03-19
US20140211820A1 (en) 2014-07-31
TW200703464A (en) 2007-01-16
US9231376B2 (en) 2016-01-05
US20160079738A1 (en) 2016-03-17
US20180013035A1 (en) 2018-01-11
EP1900013A2 (en) 2008-03-19
JP2008543089A (ja) 2008-11-27
US10529892B2 (en) 2020-01-07
US9793435B2 (en) 2017-10-17
US20110062449A1 (en) 2011-03-17
EP1900013A4 (en) 2010-09-01
US20070093073A1 (en) 2007-04-26
WO2006130696A2 (en) 2006-12-07
WO2006130696A3 (en) 2007-11-01
JP2015122529A (ja) 2015-07-02
KR101351396B1 (ko) 2014-02-07
US7846757B2 (en) 2010-12-07
JP5743127B2 (ja) 2015-07-01
JP2017195396A (ja) 2017-10-26
US8686466B2 (en) 2014-04-01

Similar Documents

Publication Publication Date Title
TWI455181B (zh) 半極性(Ga,Al,In,B)N薄膜、異質結構及裝置之生長及製造技術
US7186302B2 (en) Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US7973322B2 (en) Nitride semiconductor light emitting device and method for forming the same
EP2312651A1 (en) Gan semiconductor optical element, method for manufacturing gan semiconductor optical element, epitaxial wafer and method for growing gan semiconductor film
US8795430B2 (en) Method of improving surface morphology of (Ga,Al,In,B)N thin films and devices grown on nonpolar or semipolar (Ga,Al,In,B)N substrates
US20120273796A1 (en) High indium uptake and high polarization ratio for group-iii nitride optoelectronic devices fabricated on a semipolar (20-2-1) plane of a gallium nitride substrate
KR20100051846A (ko) 미스컷 기판들 상에 성장된 평면의 무극성 m-면 Ⅲ족-질화물 막들
US8878211B2 (en) Heterogeneous substrate, nitride-based semiconductor device using same, and manufacturing method thereof
WO2008060531A2 (en) Light emitting diode and laser diode using n-face gan, inn, and ain and their alloys
US20120126283A1 (en) High power, high efficiency and low efficiency droop iii-nitride light-emitting diodes on semipolar substrates
WO2018217973A1 (en) Nitrogen-polar and semipolar gan layers and devices formed on sapphire with a high-temperature a1n buffer
CN103003964A (zh) 氮化镓类化合物半导体发光元件和具有该发光元件的光源
JP5261313B2 (ja) 窒化物半導体ウェハ、窒化物半導体素子および窒化物半導体素子の製造方法
JP2009266963A (ja) 窒化物系発光素子、及び半導体発光素子を製造する方法
US20240030380A1 (en) Light emitting devices with reduced strain
JP4970517B2 (ja) 窒化物半導体素子、窒化物半導体ウェハおよび窒化物半導体素子の製造方法
WO2014127136A1 (en) High power blue-violet iii-nitride semipolar laser diodes