TWI323474B - Surface mount capacitor and method of making the same - Google Patents

Surface mount capacitor and method of making the same Download PDF

Info

Publication number
TWI323474B
TWI323474B TW095107562A TW95107562A TWI323474B TW I323474 B TWI323474 B TW I323474B TW 095107562 A TW095107562 A TW 095107562A TW 95107562 A TW95107562 A TW 95107562A TW I323474 B TWI323474 B TW I323474B
Authority
TW
Taiwan
Prior art keywords
anode
outer casing
capacitor
capacitive
cathode
Prior art date
Application number
TW095107562A
Other languages
English (en)
Other versions
TW200707488A (en
Inventor
Pavel Vaisman
Alex Eidelman
Yuri Stangrit
Leonid Vasserman
Original Assignee
Vishay Sprague Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vishay Sprague Inc filed Critical Vishay Sprague Inc
Publication of TW200707488A publication Critical patent/TW200707488A/zh
Application granted granted Critical
Publication of TWI323474B publication Critical patent/TWI323474B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • H01G2/065Mountings specially adapted for mounting on a printed-circuit support for surface mounting, e.g. chip capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • Y10T29/435Solid dielectric type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Description

1323474 九、發明說明: 【發明所屬之技術領域】 本發明有關於表面黏著電容器,而更特別的是有關於 具有實質包封在—主體或者外殼中的電容性構件之表面黏 著電容器。 【合併參考案】 於此合併參考2002年四月30日所核發的美國專利第 6,38〇,577號内容以及2001年三月29日所核發的ό,238,444 號内容之全部。 【先前技術】 表面黏著電容器之需求已經不斷地增加。其用於眾多 或者廣泛而多樣之應用以及功能。例如,其用於維持信號 70 (·生以及電氣與電子部件或元件中電荷之高速傳輸。其 同樣也特別有用於切換之功能。其用於大量之去耦合能 力’藉以平緩電源所看到的瞬變暫態需求。 目别可購得眾多的表面粘著式電容之型式與配置,大 多數於封裝或者外殼之内部具有某些型式的電容性構件。 外部的傳導性連接或者端子則是電氣地連接至内部的電容 性構件。能夠將電容器組件設置於一電路板之上,並且透 過其端子連接至電路。 不同的電容性構件之配置會產生不同的電容效能。電 容性構件的本質則能夠決定其尺寸大小。例如,某些需要 處理高電壓則必須制相對較大的電容性構件。此導致相 _較大的外殼尺寸。 6 热TtQ,當參> a 電氣部件的 發生效果。 尺寸是重要 針對本發明 吊吊在電路的設計時, 的。此會y導_ ψ 導出所S月的”容積效率 的容積效率> JT , ' 手之兩個觀點如下。 〜廿丨王偁仵本身具有 有相同尺寸或體穑 w 肖效率。相較於其他) 乂體積之材質,某些 能。钽即是好例 八有杈向的電容$ 相較於鋁質,阳能力保 J的體積而言, 質電容性構件會呈 能。 *文紆的電容交 亦即電容性構件 ’如果外殼内部 ’則整體電容器 於外殼尺寸為較 之 之 大 再者,整個電容器具有容積效率; 外威、以及端+。外殼界定出某—體積 =容性構件體積相對小於外㈣總體積 各積效率通常低於電容性構件體積相較 者。 如果不考慮電路板上電容考的& $ # ^ 就可能不是需要考Μ 則容積效 電…:如同所能夠察知的,隨 二間變得更為受限’容積效率逐漸成為重要。 者逐漸增加的小型化生產出現在廣泛多樣的電子與電氣 件’增加了較小表面黏著電容器之需求。 電容器能夠代表諸多電路中最高的零件數量❶因此, 電容器外殼尺寸(故而體積)的減小,同時維持(或者甚至提 高)其電容效㉟’在技術方面乃是一種當前重要的需求。電 路的設計者需要能夠具體指明電容器某種外殼尺寸’以便 允許其合適地安裝於具有其他電氣或者電子元件所需的其 他部件之電路板上。 〃 j而,困難的是,同時符合提升的電容效能之需要以 及值此同時兼具極微小的封裝或者外殼尺寸。將尺寸最小 同時維持或者改善電容器效能為一種具有挑戰性的工 2。此外,與外殼無關的是,總有改善電容性構件與電容 器組件效能以及容積效率之需要。 队音各積效率 ,ά巧I3C Π1同从月匕^何貿,諸 如鈕質(Ta)、鈮質(Nb)、以及鈮氧化物(Nb〇)作為陽極之用, 此種般型式之固態核心或者顆粒狀表面黏著電容器乃是 在業界眾所周知的’其中的範例可以在合併參考的美國; 利第M8G,577以及6,238,444號中看到。在那些範例中, 固態的内部核心(有時稱為陽極主體、金屬小塊或顆粒)主 2 m常會對此㈣陽極主體進行燒結…般會以兩 入”,:二:金屬線形成於此陽極主體:其一為(a)”後 (同樣^ 理期間中以12 f粉末覆蓋此條金屬線 。:也可以是”的)、或者⑻,,溶接,,,即意謂在顆粒模 的二;::,將此條金屬線炫接至丁3金屬小塊。其他 極材質之陽極氧化作用…人電…介電材質由陽 極主俨之矣&P 製成,稭以形成一種氧化層於陽 極主體之表面上(例如, §|| % At- JAr m , a2 5)。如果陽極主體為Nb, ^化作用則* N“Nb205;如果為Nb0,則氧化作用便 為 NbO—>Nb205〇_^vi7(Ji 能中 λ „ 奴以固態電解質層(例如,m θ 傳:性!合物來塗數介電層藉以形成電容器的陰:= 二覆盖以石墨與銀質’以為較佳傳導性 強度之用。能夠將陽 文良的機械 /、焓極知子分別連接至Ta IJZJ4/4 的隨思末端以及Ta顆粒之外部電解 之後能夠將此所有料包封 ^錄層’並且 膠於部件周圍),而就諸如表㈣著;!_(例如,藉由鎮造塑 殼外部的陽極與陰極端子之外部表面’僅留下裸露在外 塑二=“380,577以及6,238,444號說明此種-般 “的表面黏者纽質電容器。然而,其端子會以U形狀延 伸於外殼末端邊緣之周圍。
6 380 577 , 6知其為”環繞,,端子, 寻』弟6,380,577以及6,23M44號圖6上所 =些=”部分(參考數字36)在元件的兩個平面或側邊提 :二/陰極端子對。儘管相較於僅能夠表面點著於- 側' 之早邊”端子,如此允許其元件表面黏著於兩個側邊 (此能夠稱為”兩邊端子”)其中—者之上,其仍會呈現—個 問題。這些,,環繞,,或者,,兩邊,,端子能夠在設置於電路板上 之時’元件的相對末端之間產生短路。此種短路問題之範 例存在於諸多射頻(RF)應用,其中金屬防護設置於至少一 部份的電路板上。傳導性端子之部分會向上延伸至電容器 外殼之頂部平面並且延伸於其中。 因此,有具’’單邊端子,,的電容器之需求,此意謂著用 於表面黏著之陽極與陰極端子對僅存在於元件的一側邊或 平面之上。用於此種電容器之一種配置係闡述於圖UA中, 為種固態金屬小塊(例如Ta)之電容器。此一載面圖示顯 示一種傳統的鈕質金屬小塊或者顆粒丨,其具有包封於塑 膠衬貝的外忒6中而向外延伸之嵌入组質。陽極端子3定 位於稱為包封材質或外殼6底部平面之處,直接位於金屬 9 線9隨意末端 路徑15將金屬線9。I立導性黏著劑4以及-内部傳導 之酼思末端穿過包封材質ό而雷韻六 ό之下側邊,* (同樣也位於包封材質或外殼 方)經由傳& 於相對於金屬線9之顆粒1末端下 之外部因此生黏者劑4另—個塾片而電氣地連接至顆粒1 。因此’相較於美國專利第6,3 57 號之電容器環繞端子,S13A之電容器具有單及邊
極與陰極端子位於電容器元件單一側邊上相同的大 = 上’亦即圖UA中所示的底邊。與此種單邊端子電容器相 似的前技實施例闡述於圖丨3B。
、儘管圖13A與B之前技電容器並無呈現出較早之前與 美國專利第6,38G,577以及6,238,444號之電容器環繞端子 相結合所探討的問題,然而其確實呈現出容積效率之爭 議。如圖13A與B截面圖示所示的,外殼6之包封材質並 不僅將顆粒1裝人容器而已’而且裝進了金屬線9向外延 伸之部分。特別的是,會產生金屬線9末稍部末端與外殼 ό外部表面之間的外殼實質體積。必須提供充分的空間給 予金屬線9與陽極端子3之間的内部電氣連接或路徑i 5。 在本體上,耗盡了外殼6中包封材質相當實質的體積,藉 以完全地將金屬線9隨意末端以及金屬線9與陽極端子3 之間的連接1 5兩者封進容器之中。此限制了能夠設置於 外殼6中的T a顆粒之尺寸。相對於更完全地充滿著顆粒i, 整個電容器外殼實質的體積必須用於金屬線9至陽極端子 3之電氣連接。 因此,需要具有改良容積效率之表面黏著電容器。 化是:二將:積效率(元件每單位體積之電容數值)最佳 寺別是當元件為較小的外殼尺寸之時。在鑄 的材質以及在產生最終元件兩狀況下,丄 性,(例如,顆粒υ周圍包封材f厚度與其均句 的過产是被忽略,便是傾向造成設計與製造步驟上 容導致外殼之璧部較厚,此則依次限制了電 二間。諸多當則技術狀況之電容器因而具有相 子較厚之外殼壁部,以及較差的容積效率。 1 ::同所旎夠察知的’這些容積效率之議題亦會影響到 ”他早邊終端表面黏著電容器。任何容積效率的提升對於 :何電容器的尺寸或者型式而言都是潛在有利的。因此, -種改良的單邊端子表面黏著電容器具有技術上實際的需 求0 【發明内容】 本發明主要的目的、特點、觀點、或者優點係提供一 種改良現今技術的機構與方法。 本發明其他的目的、特點、觀點、或者優點包含一 機構或方法,其中: a •改良體積的利用率或容積效率; b. 改良鑄造外殼表面黏著式電容器之靈活性,包含產 生具有相同組件行列與鑄模設備的不同尺寸之能力; c. 為有效且兼具經濟效益的’包含大量生產的小形外 殼尺寸者; 1323474 d•能夠以大量製造技術來實現之; e.相較於環繞端子而言,可以降低端+ μ μ 中瓜味子間的紐路風險。 ―、所附的說明書以及巾請專利範圍,本發明上述與 、他的目的、特點、觀點、或者優點將會更為明顯。 根據本發明之實施方式 A ·概述 為使能較佳地理解本發明,此時將詳細地說明一個示 Μ施例。將引用上述圖示為常用之參考。參考數字及/或 文子將用來指示圖示中的某部分或位置。㈣的參考數字 及/或文字用來指示相同的部分或位 示,皆貫穿於其圖示。 “疋否有所指 此-示範實施例之内容為美國專利帛6,38〇,577以及 6’238,444號中所揭示之一般型式表面黏著電容器,除 是”環繞”端子之外,其具有單邊踹早 ,, ,…、兩早遠J而子一陽極與陰極端子兩 者皆位於元件單一側邊丨冰& 遭(在此為底面黏著側)上通稱的相同 平面中。特別的是,此一示範實施例為-種表面黏著铸造 固態電解纽質電容器,其於外殼之底部平面上具有陽極盘 陰㈣子。此一範例的外殼尺寸’亦即外殼尺彳諸 如前技所已知的)’相對較小(大約維度:16(仏〇 一之 長度,0.8(+/-〇.l)mm 之甯磨:乂;^ , 〈見度’以及〇.8(仏〇 1)mm之高度)。 此呈現出外殼體積約略些微大於lmm3。其他相對較小的 外般尺寸為〇402以及〇805 '然而,本發明並不受限於任 何特殊的外殼尺寸或者外殼内部電容性構件任何之特殊材 質或配置。事實上,本發明能夠針對所需而放大或者縮小。 丄:^4/4 本發明其中之一優駄十、 6或者特點為所謂的能力一亦即將之應 用於各種不同雷玄; $ a。。封裴尺寸同時使用相同觀念與製造技 術之能力。 B.範例機構 藉由參照圖1-3、14、以及1 5,閣述根據本發明其中 個觀點之範例雷交哭 令态10。電容器1()包含一個外表的外 =或者傳統塑㈣質之包封材質卜其㈣6之外殼尺寸 1 0603。在傳統技術上,外部的陽極極性標記8提供電容 二。10頂邛表面其陽極端子末端在視覺上的指示(觀看圖 沿著縱軸將電容器1G放大(觀看圖Η 部表面(觀看圖2、3、14、^ '、良 極端子? A良彿 以及15)包含陽極端子3以及陰 ^ 、、為傳統且由傳統材質所製成(例如,鋼質(Cu) 或銀質(Ag)、或者鎳質合 W(CU) 你^ 貝口金)在外殼6之底部上,端子 A 位於相對之末端, 兑 接成μ 而其面對之邊緣則彼此分隔—段
钱跫的距離。 J 藉由參照圖3 ’在電容器1 〇 陽極主》 »s ,A 卜成6之内的疋一個纽質 材皙"、顆粒、或者金屬小塊能夠由其他類二 質(例如,Nb或者Nb0)所製 的 所預先製造的,如同之前所她乃疋根據已知的方法 之护± 』所°兄明的。同樣也沿著電容界 縱軸將之放大,但於其大部分 。 错以將之隔離並且絕緣於外 才貝 钽質八s 6 卜邛。如同傳統的,將一攸 貝玉屬線9連接至顆粒丨,並 條 1复山 卫且延伸出外殼6内部駐, 其中之一末端。 1 4顇粒 13 1323474 刖面的部件為技術之通稱慣例。為了較佳了解電容器 1 〇不同於前技單邊端子表面黏著钽質金屬小塊電容器狀離 之差異’此時將參考圖13A、13B、以及14。 圖13 A顯示用於這些型式電容器之前技架構傳統慣例 清、巴13 B顯示相似的前技之變體。如此的電容器會將 金屬線9全部包封於外殼之中,而留下金屬線9與金屬小 塊1所有側邊周圍實質數量之外殼體積。在内部上(或者實 質内部)’則在之間金屬線9所包封末端以及外部陽極端子 3會有一條電氣傳導路徑丨5、以及一條在顆粒丨相對末端 上的金屬小塊表面與陰極端子2之間的電氣路徑4。因此, 圖13A的前技電容器上僅有電氣傳導性外部組件會位於電 容器底部上陽極與陰極端子3及2以及電容器末端平面中 金屬線9所露出的末端之外部表面。所有其他者則封入於 外殼6之中。除了傳導路徑15的一部份同樣也沿著外殼 的金屬線9側邊暴露之外,圖1 3 B亦是如此。 在比較上,特別參照圖14,乃至於圖14、以及【5 , 本發明示範實施例之電容器1 〇不同於圖丨3 A盥 技電容器,主要在於以下之方面。 之刖 首先,圖14電容器10 Ta顆粒!之長度Lp + 2〇%實質 較長乃至於體積較大於圖13A與B電容器Ta顆粒之長度 Lp以及體積(觀看圖14之指示,在如此特別的比較上,電 容器10 Ta顆粒長度接近較大於2〇%)。 再者,金屬,線9延伸出外殼6其中一末端之外部邊界。 故意將之裸露於外(觀看圖10)。附加(諸如藉由傳統的金屬 14 沈殿技術)-條外部傳導路徑7(例如,金屬沈殿層) 2別之單元皆會接受傳導層之沈積,此在諸如喷鍍、印刷 模版印刷、以及掩蔽印刷之處理上,會覆蓋電容器”一 個或者兩個末端,於如此處理之材#可以是心。^务 2合金、或者裝容著如此金屬之聚合體基糊狀物。此傳導 層給予陽極金屬線以及用來充當 万,丨々„ •土 各《 %極4子的金屬陣 歹J之間可罪的電氣接觸。參照圖.、1(M2、 觀看外部傳導路徑7如何連接 曰以 产一 J连俠A屬線9以及陽極端子3。 弟二’在圖13A與B的前姑 “一 的别技電各器巾,通常經由外殼 6之材質直接將顆粒丨㈣至陰極端+ 2,並 卜 金屬線9連接至陽極端子3。 ^ ^ 、 或者機件4及/或15通常八別f式的電氣傳導性材質 ^ Λ 刀立於陽極端子3與金屬線9 曰1 乂及陰極知子2與顆粒i相 例為-種電氣傳導性⑻,义 而之間。其中-個範 B 1 = ,艮質基)黏著劑(觀看圖13A與 結至端子2與3,並且提+將顆粒W金屬線9連 容号的元们。A 且^、—條電氣傳導路徑以為諸如電 令裔的兀件刼作之用。 眾所Μ Α β 的傳導性黏著劑在技術中乃是 電=。中Γ從各種商業來源購得。在比較上,於 會經由外部傳導路徑或機;7。=陽極端子3之電氣路徑 者陽極端子3與金屬線9之 &電乳傳導性點著劑或 此為絕緣性的黏㈣5),二=是,使用一種絕緣體(在 1之其中-端,將於後說明之广期間中用以支承顆粒 之。如此的絕緣性黏著劑在技 15 乃是眾所周知的,並且可從各種商業 除在外殼6内部中圖13…外部:二電容 之空間需求。在電容器i "顆…陰極端=路-5 :(諸如銅質)。再者,如圓15 顆粒絕緣層Μ設置於銀極端子3以及 間絕緣層M能夠是由非必要及 黏著塗料或墨水所製成,諸如,,Pe_CI㈣之^的,表面 ^ (Automated Industrial Systems Inc )t Pf 1 :=:叫購得,其並且能―二 。 之寺眭,或者以適當的黏著劑將之黏附來替代之。 因此’ ® "A肖14闡述其中一種方式之電容器… 相對於前技電容器之情況,能夠增加容積效率。就參照目 的:a ’ ® 13A具有以下所標示的維度:Le=外殼之長度; LP=顆粒之長度;Le=外部傳導路徑之長度,相對於電容 器之縱軸。假設圖13A與14之各個電容器具有相同的尺 寸(0603),因而具有相同的整體外殼高度η。,外殼高度%、 以及外殼長度Lc。就圖13A與14而言,這些維度相等。 =而,外喊6外部上的陽極端子3與金屬線9裸露末端及 陽極端子3之間的外部傳導路徑7之連接容許圖14電容 器10顆粒1佔據更多的外殼6之内部空間。由於外殼之 尺寸固定,所以相對於外殼6之總體積,如此允許圖J 4 顆粒1之體積增加。換言之,圖14電容器1〇顆粒丨之長 度實質較大於(20%)圖13A電容器中鈕質顆粒之。按慣 例而言,鈕質之電容量會隨體積而增加。因此,相較於外 16 1323474 设6總體積’藉由增加纽質顆粒1之體積,來實現外殼或 者封裝6所增加的利用率(每單位體積更大的電容量),故 而實現改良後之容積效率超越圖丨3 A者。 如圖14所指明的,於20%之層級上,藉由使用外部 傳導路徑7 ’便能在此種〇6〇3外殼中增加顆粒2長度(例 如’顆粒長度能夠增加UOmm至125_左右)。此因而 將增加顆粒1之體積(雖然由於高度與寬度保持相同而藉由 某些低於20%者)。儘管容積效率之增加量可能端視數種 因數而變動,但此種能夠呈現出實質的增加量。測試已經 指明大至70%容積效率增加量之層級仍是可行的,部分端 視外殼尺寸而定。測試指明甚大的增加量是可行的(例:而 100%或者兩倍或更大)。 C,製造之方法 藉由參照圖5 -12,闡述一種製作電容器i 〇之示矿方 法。其方法能夠用來大量生產電容器1 〇 ^
1.原始材質 將各個顆粒 首先藉由傳統方法來生產多數之顆粒 連接至金屬線9之-部分。將顆粒i外部之部分剪裁成為 大約圖示所示之長度。 預先製造一個電氣傳導(金屬平板)基座或者引線框 11 ’以便包含所預先成形的鄰接陽極端早1 τ J與陰極端子2 對之行列’而其周圍則實質環繞著開放之* 1「司(觀看圖8)。 2.陽極端子之絕緣 能夠將微小的電氣絕緣塾片14(僅顯示 π圑1 5中)設置 1323474 或2著於引線框1J上各個陽極端子3之頂部。不似前 技電容器情彡兄,陽極端子在外殼鑄造期間中能夠支承顆粒 並且支承以及藉由内部傳導路徑! 5來電氣連接陽極端子 與顆粒(觀看圖i 3 A) ’在此的陽極端子僅只在鑄造期間中 支承著顆粒而已,不用來支承電氣連接之架構或者材質(諸 如絕緣性黏著劑)。所要提及的是,電容器ι〇中較長顆粒 1要如何更為直接地延伸於陽極端子3之上。其實質的一 部份因而位於相對較為靠近陽極端子3之處。因此,絕緣 墊片Μ會輔助提供顆粒!與陽極端子3之間良好的電氣 絕緣。 3.顆粒至引線框之組件 之後則將電氣傳導性黏著劑4之塾片或小塊設置於引 線框1 1各個陰極端子2夕μ 並且將電氣絕緣性黏著劑5 之塾片或小塊設置於各個陽極端子3的各絕緣層Μ之上(觀 看圖5與6)°之後則將個別的纽質顆粒/金屬線組合1/9設 置或者向下模壓至墊片4與5之卜,益、,竹 之上,鞛以將之附著連接至 引線框11 ’並且支承之;藉由 稭由以圖5與6所示的方位來設 置各個顆粒1 ’其令一 Jrn ΚΘ 至各個險極/陰極端子對3/2之顆 粒/金屬線組合1 /9(以相同方向所俨 所铩點之金屬線9)。伴隨著 金屬線9之顆粒1束踹彳立於哩 、 &位極端子3的絕緣性黏著劑5 之小塊或班點上(覆蓋較小於絕緩 、色、,象墊片14之區域),而顆粒 1之另一末端則位於陰極端子 2傳導性黏著劑4之上。所 要提及的是’各條金屬線9之 不稍鳊如何延伸至一般相同 於其所相應的陽極端子3末稍邊 巧遭緣之垂直面。 18 1323474 將藉由參照個別的顆粒或者藉由將電容器定位於引線 框η上,來說明此種方法的下—個步驟。藉由參照圖7_9, 能夠得知引線框U會具有多數預先形成的陽極/陰極端子 對之橫列與縱行。為此-探討之目的,引線框之縱行以字 母a、b、c、d、e等等來指稱之,如圖7所指明的。行 列由數子、2、3、4、5、6、7、8等等來標示之(觀看順著 圖7引線框陣列另一側邊H . J< 数子)。在縱行與行列位置之 前,個別的顆粒1將以數字”1”來指稱之。例如,在引線框 11第一縱行與第—行列中的顆粒1將以參考數字U來指 稱之,在縱行B、行列中的顆粒則以參考數字⑻ : 之,諸如此類。 曰冉 圖1與2 3 4 5 6閣述將顆粒附加於引線框η之步驟,顯示顆 粒 1A1、1A2、13B1' 以及 IB)八 、 刀別位於其點著劑塾片4虚 1 之上。顆粒尚未設置於引線框11位置!與C2預先η: 2 的黏著劑墊片4與5之上。 必〇 3 而言,自由空間12如何存J =的…各個顆粒1 4 間的引線框7之中’乃至於自由空間η如何存在= 顆粒1之間的引線框7之中。同樣也參照圖與8,在引線 框u中陽極與陰極端子大部分周邊周圍會有自由^線 此則允許塑膠讀造於其空間之中。 5 4.鑄造 6 一旦所需數目的顆粒金屬線組合1/9設置、附著、、, 且由引線框陣列1 1中苴久徊 亚 7 性墊片所支承(通常·^右 而十(陽極與陰極端子)黏著 片所(通吊會充滿整個陣列位置),金屬線則會就 各個顆粒丨而以相 陣列之上(觀看圖7與向排列’而將包封材質6施加於 封材質6,藉以顯示:線把在圖7與8中’裁開部分之包 顆粒/金屬、線1/9組人1縱行與橫列陣列中位置上的 器與方法來鑄造1 纟傳統上’能夠使用前技已知的機 常為-種塑膠物質,V:質環繞於各個顆粒之周圍。其通 之上。如同之前所於液態或者半固態狀塗敷於引線框11 流動,並且流進封材質於空間12與13周圍 =極=顆粒下方處包封於其中。包封材質同樣也 …極Μ子周邊邊緣周圍流動及鞏固,當然除 -、與引線框1 1剩餘^ “ 間中會從… 的周邊邊緣之外(此於分離期 會攸引線框分隔出來)。 實暂!^材質貫質鞏固而於引線框u上成為固體狀態層, “。封引線框u上的顆粒/金屬線1/9組合。現有多 種^包封材質之方式。其中—種前技方法 =得的機器。一托盤會以其在引線框"上一般均= 的位置支樓著引線框11(同樣也觀看圖17)以及所附著 :顆粒/金屬線組合。將此一托盤插入施加或者鑄造塑膠物 質於整個引線框上的機器之中。 5 ·打上標記 如同在傳統上的,能夠以雷射、打印、鑄模、或者其 他施加於各個電容H 10頂部之方式來打上陽極之極性標 不°圖1概略地顯示如此打印標記8之位置。能夠將打印 20 :票記定位於電容器陽極末端上,以便在視覺上告 看者。其能夠包含指標,包含單字或者 之 條紋以及電壓代碼,如同前技中所已知的。 由於各個顆粒之位置在陣列中 因此能夠在鑄造期間中或者之後即==確可辨識, 個縱樺Μ橫列位£神 ^曰由自動機器針對各 部。 列位置將打印標記8施加至包封材質層之頂 6.切割/分離 在前技已知的標準自動或者半自動組建技術之 :::切割或分離。剪裁順著預定的分離線而進 f連續鱗造塑勝層(觀看諸如圖7)分離出各個顆粒/金屬曰線 組合1/9。平行於橫列卜2、3等 …屬線 所你塞夕前# Β各個顆粒1縱轴 夕攸事之2裁會將所鑄造的塑膠物質從顆粒鄰接側邊 ^多除’並且產生通稱的平面垂直側邊壁部。垂直於縱行^ 端之c門:二::6!各個顆粒縱軸之剪裁則會從顆粒鄰接末 ☆而之間移除所鑄造的塑勝物質,產生通稱平面垂 邛控制之,糟以留下裸露的金屬線9之末 9與⑼。外殼6之頂部同樣也是通稱的水平^ (觀看圖 同樣的是,此切割或者分離步驟會促使各個顆粒之陽 極=極端子對3/2從引線框η脫離,而且其 裸露陽極與陰極端子底面之通稱水平面。能夠利用前技; 及叹備未a現之,致使各個已包封之顆粒1 夠分離而成為圖9所示之型式。 b 商業可構得之機器將會容納此具有已包封顆粒陣列之 1323474 引線框。隨著適當的排列以及 剪裁(數個㈣於圖7巾) ’便會順著分離線進行 列位置之間移除。此分離步質從各個陣 裝或者外殼尺寸。其„也會裸露^ ^輯需的封 其同樣也會在各個外殼 上'線9之末端。 以及陰極端子2之外緣。特別要二末及:上/碌露陽極… 陽極端子3的邊緣會暴露 ^處理中, 末端之垂直平面令。 者接近相同於金屬線9裸露 如同圖”所指明的’此剪 金屬線多數之橫列與縱行,乃:出已包封顆粒/ 引線框u所分離出m 相應的金I線以及從 6與端子2與3之ΛΓ_ΓΓ端子組’同時產生外殼 、达… &本型式。此已分離之陣列之後則準備 以為元成電容器1 〇之結束步驟所用。 、 7.外部傳導路徑之施加 同樣也藉由前技已知且商業可購得之方法與機号 則能夠將外部傳導路徑7施加於圖9之各個已分離組合。 其中-種技術為金屬沈積。將一種尺寸受控、相對較薄之 金屬層沈積於各個已分離已包封組合陽極端子末端⑺樣也 :於陰極端子之末端)並且黏著於其上。路徑將會從完全覆 蓋金屬、線9裸露末端向下延伸至覆蓋陽極端子3裸露末端 邊緣鳴看諸如圖^⑺^卜⑷以及^卜雖然其可以 使相對較薄之疊層(諸如,在】〇埃至1〇μηι範圍^内, 〇.〇1μπι-10μηι較佳,而〇.1μΐΏ-5μηι厚則更好),但仍要充 分地致使在金屬線9以及用來充當電容器陽極端子的金屬 22 1323474 陣列之間可靠的電氣接觸。在此一實施例中,疊…不 延伸至外殼k心卜 4 7亚不 8.電鍍 氣傳使瞻的電鑛處理將-種電 之鋅 / (心,厚度0·5㈣·20,、較佳〇·5μηι·3μιη
'、,之谈則施加厚度為0·001μηι-10μηι、較佳為 〇. 1 μηι-5μηι 之 Pd 十 χτ.τ» , L 屬電铲η 或&、或者其他標準金 •加至外部之傳導路控、陽極端子3、以及陰極端 2各個外部表面(觀看圖12)。如此會將某些附加而相對 二的厚度引進那些的零件上(觀看圖14之厚度A卜此 :成了各個電容_ 1〇。因此,連貫的電鍍操作會產生相 、較均勻外殼尺寸之單邊端子電容器。 已完成之分離電容器10具有陽極端子寬度c以及長 度P(觀看圖2)。陰極端子具有相似的寬度c以及長度卜 距離P1存在余端子2與3鄰接的邊緣之間(觀看圖2)。 9.測試與封裝 。。如同傳統的,一旦上述的製造步驟完成,便進行電容 益1〇之測試,以便品質控制以及操作之用。將那些通過 檢驗者封裝,以便裝運至末端使用者。 因此,在大量生產的規模上,能夠使用傳統製作技術 來製造多數之個別電容器10。然而,沿著外殼6之外,史 置金屬線9以及陽極端子3之間的電氣連接會充滿整個外 殼6之内部空間,進而增加顆4立1之尺寸。在不改變外哎 尺寸之前提下,引進更多的電容能力。因此,增加容積效 23 1323474 率。 因而能夠看出示範實施例如何實現本發明所敘述的目 的、特點、觀點、或者優點。能夠已以知、已發展之技術 2機器來製造電容器1〇。此製造步驟能夠有效於成本以及 資源。其能夠簡易地實現於各種不同的外殼尺寸。 D.可選擇與可替代物 將會察知的是,前述示範實施例以及示範製造方法並 φ 非實行本發明的唯-方式。呈現之僅為閣述目的之用,而 不又限之對熟白技術者顯而易見的是,本發明將涵蓋各 種的變體。 例如,本發明可應用至各種不同的封裝或者外殼尺寸。 能夠根據所需而將之放大或者縮小。以上已經說明了 〇6〇3 之封裝尺寸。然而’處理以及產品之可塑性並不僅是以 〇:3(Μ外殼)尺寸產生電容器所宣稱的,而相信其可應用 兴泛可能的任何-種外殼之尺寸。能夠潛在地將之延展 至低高度之外般尺寸。某些額外料範外殼尺寸為峨、 0603、0805、乃至更大的尺寸。 月夠以不同電容量之至少標準公至你廿 制”— 主“不旱Λ差與其他額定規格來
Ik電谷益10,包含相對較高的電 π且亡处… 门幻电刀之轭加。能夠將之用 、遽波、以及旁路的高容積效率之低高度 保=表面黏著應用。就其他較高頻、單邊端子之應用而言, 乃是有利的。這些僅為些許的應用範例而已。〜 本發明能夠與大部分任意型式 同使用。、、肖每i 冤礼或者電子元件協 費者、西療、以及通訊產品為如此電容器之首 24 、者。RF應用同樣也是候選者。 份之某此笳々丨aim 在通讯以及消費者部 ‘靶例為手機、個人數位助理、 置。醫療抄安乂及手握式遊戲裝 ’、®案的應用同樣也是高度可行的。 精密型式之電容器同樣也能 施例中,電容n 1。為一種晶片電容“動〜的實 結、形成、、、谷咨之型式,其具有燒 以及以猛質氧化物或者傳導 的鈕質金届h 丨哥♦丨生之t合體所灌注 個顆二:㈣顆粒。金屬線9為,質金屬線。各 "外表覆盍者一種充當陰極電極之已# P 4 物。鈇A %征必匕厲魔銀質糊狀 明並’能夠針對電容性部件而使用其他的材質。本發 質=限於紐質顆粒或者金屬小塊。電容性部件其他材 觀::以及配置’乃至於外殼6、或者電容器其他之 蜆白有所可能。較早已經述說了某些替代材質。 金屬沈積處理提供外部傳導路徑準確的設置、以及陽 =屬線9與豐層11下方金屬(用來充當電容器陽極端子 之金屬陣列)之間可靠的電氣接觸。在圖i、2、3、4、1〇、 11 ^ 2、以及14中,當金屬沈積步驟完成之時,外部的 傳導路杈7並不會-直延展至外㉟6之上平面。然而,本 發月替代示範實施例顯示於圖1 A、2A、3A、4A、1 1A、 以及12A ^其顯示根據本發明而有些微不同的單邊端子電 今态。替代恰好一個的L形陽極端子3/7(如圖2所示的), L形端子存在於電容器之兩末端上(觀看圖2A與3 A)。傳 導表面會覆蓋著電容器大部分的末端。這些L·形端子有用 於提供至印刷電路板的焊接接缝所增加之強度(例如,當消 費者品要電路板(PCB)較強的固著時,則在回流焊接之後 25

Claims (1)

1323474 十、申請專利範圍: 1.一種表面黏著電容器, a) 包含有一陽極與一陰極 b) 包封材質’形成圍繞除 件周圍之外殼; 包含: 之電容性構件; 了陽極裸露部分的電容性構 0電氣傳導平面結構包含陽極與陰極端子,並具有位 於外殼單-外部側邊上的表面黏著部分並且該電容性構件 黏著於其上;
一 d)位於經裸露的陽極部分與陽極端子之間的傳導路 扠,包含位於外殼外部表面上的外部傳導連接。 2.如申請專利範圍帛i項之電容器,其中的外殼外部 表面位於外殼之一側邊上,其不同於外殼之單一外部側邊。 3·如申請專利範圍第1項之電容器,其中的外殼包含 -個頂部側邊、一個底部側邊、一個位於頂部與底部側邊 之間的第一側邊、一個位於頂部與底部侧邊之間的第二側 邊、一個第一末端側邊、以及一個第二末端側邊,而其中 陽極與陰極端子的表面黏著部分位於底部側邊上,且外部 傳導路徑則位於第一與第二末端側邊其中至少一個之上。 4.如申請專利範圍第1項之電容器,其中的外部傳導 路#包含一多層結構。 5·如申請專利範圍第4項之電容器,其中的多層結構 包含一金屬沈積層。 6.如申請專利範圍第1項之電容器’其中的外部傳導 路經’陽極端子與陰極端子係電鍍一種電氣傳導之電链材 31 13234/4 質。 7. 如中請專利範圍帛!項之電容器其中的陰極端子 錯電氣傳導材質而電氣地連接至電容性構件之陰極。 8. 如申請專利範圍第7項之電容器,其中的電氣傳導 材質包含一種傳導性黏著劑。 9·如申請專利範圍帛】項之電容器,其中的陽極端子 塑膠材質機械耗接至電容性構件並且該陽極端子透過 外部傳導連接電氣輕接至電容性構件。 !〇·如申請專利範圍第9項之電容器,其中的塑膝材質 包含一種環氧樹脂黏著劑。 一 u.如申請專利範圍第10項之電容器,進一步地包含 -位於環氧樹脂黏著劑以及陽極端子之間的絕緣層。 12. 如申請專利範圍第i項之電容器,其中的電容性構 件包含一個固態之主體。 13. 如φ §旁專利範圍第12項之電容器,其中的固態主 體為—種顆粒。 〜 如申請專利範圍帛13項之電容器,其中的顆粒包 3鉅質、鈮質、或者鈮質氧化物。 15.如申請專利範圍第13項之電容器,其中的陽極包 含顆粒以及-條線與-介電層,該線具有一部份嵌入或者 ^接於顆粒與-部份位於顆粒外部,該介電層係由陽極材 質氧化作用所形成,而且其陰極包含在顆粒外部上之電解 層。 16·如申請專利範圍第15項之電容器,其中位於顆粒 32 外部的金屬線部分裸露於置放外部傳導路徑的外殼表面。 17·如申請專利範圍帛16帛之電容器,丨巾置放 傳導路徑的外殼表面係位於一第一平面。 ° 18. 如申請專利範圍帛17項之電容器,其中的陽極與 陰極端子係裸露於外殼之外部,或是接近第二平面。、 19. 如申凊專利範圍第18項之電容器其中第一平面 與第二平面通常為正交。 、2〇.如申請專利範圍第1項之電容器,進一步地包含將 電容性構件周圍之外殼體積相較於電容構件的體積而將其 最小化之步驟。 ' 21. 如申請專利範圍第2〇項之電容器,其中將外殼體 積最小化之步驟係藉由高精度鑄造以及外殼分離而達到使 外殼之壁部厚度最小化。 22. —種電氣電路板,包含: a) 一個電氣電路板; b) —位於電路板上之電氣電路,其包含至少一個表面 黏著式電容器; c) 其表面黏著式電容器包含包封材質之外殼;一個電 谷性構件,其位於該外殼内部,該電容性構件包含陽極, 陰極’待裸露的陽極部份;包含陽極外部端子與陰極外部 知子的電氣傳導平面基板,該陽極與陰極外部端子具有表 黏著式。卩伤於該外殼的外部與其一侧上並且該電容性構 件黏著至其上;外露於該外殼的外部傳導連接其與該電 谷杜構件及陽極端子的經裸露部分電連通;以及在陰極端 33 1323474 子與電容性構件之間至少部分内部的傳導路徑。 23_如申請專利範圍帛22項之電路板,其中外部傳導 路徑藉由使外殼中電容性構件大於由陽極端子透過外 氣連接至電容性構件者,而提供容積效率之改良。 24·如申請專利範圍帛22項之電路板,進—步地包人 針對於電容性構件之體積將電容性構件周圍的外殼體積^ 小化之步驟。 25. 如申請專利範㈣24項之電路板,其中將外殼體 積最小化的步驟係藉由將外殼的壁部厚度以高精度鑄造以 及分隔來最小化外殼之璧部厚度。 26. 如申請專利範圍第22項之電路板,進一 多個該電容器》 3 27·如申請專利範圍第22項之電路板,其中的電容性 構件包含-個固態顆粒之陽極主體,一條部分位於陽極主 體中的後入或焊接金屬線,一個 1U田陽極主體的氧化作用所 形成之介電層’以及一個位於介電層上的電解層。 28.—種電氣或電子裝置,包含: a) —個外殼及一個使用者介面,· b) 一個位於外殼中的電氣電路板,其包含至少—個表 面黏著式電容器; 表 〇其表面黏著式電容器包含_個包封㈣之外殼一 個位於該外殼内之電容性構件, 露的陽極部份,·包含陽極坏極之外^陽極與陰極;待裸 面基板,該%極與陰極之外部端子在外殼外部以及其中一 34 側邊上具有表面黏著部分之電容性構件並且該電容性構件 黏奢於其上’·外露於外殼之至少部分外部傳導連接該連 接係與電谷性構件與陽極端子的經裸露部分呈電連通;以 及在陰極端子與電容性構件之間之至少部分内部傳導路 29.如申請專利範圍第28項之裝置,其中外部傳導路 控藉由使外殼中電容性構件大於由陽極端子透過外殼電氣 連接至電容性構件者,而提供容積效率之改良。 30.如申請專利範圍帛28項之裳置,進—步地包含針 對於電容性構件之體積將電容性構件周圍的外殼體積最小 化之步驟。 3!•如申請專利範圍第30項之裝置,其中將外殼體積 最,i:化的步驟係藉由將外殼的壁部厚度以高精度鑄造以及 分隔來最小化外殼之璧部厚度。 32·如申請專利範圍帛28項之裝置,進一步地包含多 個該電容器。 33·如申請專利範圍帛28項之|置,其中的電容性構 件包含-個固態顆粒之陽極主體,—條部分位於陽極主體 中的嵌入或焊接金屬線’一個由陽極主體的氧化作用所形 成之介電層,以及一個位於介電層上的電解層。 34. 如申請專利範圍帛28項之裝置,其中的裝置包含 —種手握式射頻通訊裝置。 35. 如申請專利範圍帛28項之裝置,其中的裝置包含 一種醫療之儀器。 1323474 36. 如申請專利範圍第28項之裝置,其中的裝置勺 一種微處理器。 匕含 37. —種製造表面黏著式電容器之方法, 琢表面黏著式 電容器包含一個具有包封於外殼内的電容性構件,誃、、 L·, A . I方去 a) 藉由陰㈣子與電容性構件陰極之間的冑氣傳導性 黏著劑以及陽極端子與電容性構件之間的電氣絕緣 支承其電容性構件於陽極與陰極端子上; b) 將包封材質定位於電容性構件以及陽極與陰 部分之周圍; 丁 β Ο塑造包封材f之形狀’藉以形成在電容性構件以及 ==㈣子部分周圍的外殼,留下電容性構件陽極所 二此外殼具有-頂部側邊… 極端子之至少表面黏著部分; 連通在外Μ::構件陽極所裸露的部分以及陽極端子電氣 導路徑。 3條定位於外殼表面上的外部傳 38. 如申請專利範圍第 路徑相對較薄。 39. 如申請專利範圍第 路杈為一薄層。 4〇.如申請專利範圍第 37項之方法,其中的外部傳導 37項之方法’其中的外部傳導 37項之方法,其中的外殼具有 1323474 外殼尺寸’而電容性構件尺寸相對於外殼體積係增加超過 與電容性構件陽極與陽極構件經由外殼電聯通之電容器, 以改善電容器之容積效率。 41.如申睛專利範圍第4〇項之方法其中藉由減少外 殼相對於電容性構件之厚度而進一步地改良容積效率。 2.如申明專利範圍帛41項之方法其中藉由使用高 精度之鑄造與外殼塑形技術來減少外殼厚度。 43. 如申請專利範圍帛37項之方法其中的電容性構 件包含-種具有嵌入或者焊接金屬缘之固態顆粒。 44. 如申請專利範圍第37項之方法,其中藉由金屬沈 積來產生外部傳導路徑。 45·如申請專利範圍第37項之方法,進一步地包含於 間隔的位置中支承多個該電容性構件。 46.—種大量生產多個表面黏著式電容器之方法包 含: a) 藉由各個陰極端子與各個相應的電容性構件陰極之 間所預先施加的電氣傳導性黏著劑以及各個陰極端子與其 所相應的電容性構件之間的電氣絕緣材質,來支承多數之 電容性構件於引線框上所預先形成的陽極與陰極端子之 上; b) 定位包封材質於引線框上所支承的電容性構件周 圍; 。 c) 藉由移除包封材質將電容性構件彼此分離,藉以形 成至少實質上圍繞著各個電容性構件以及所相應的傳導性 37 1323474 黏著劑、絕緣黏著劑、與部分陽極和陰極端子 士 下電容性構件陽極裸露於各個外殼表外殼留 叫工的邵分,而各個 外殼則具有一個頂部側邊以及一個 與陰極端子; 其包含陽極 d)施加-條適以將電容性構件陽極所裸露的部分以及 各個電容性構件陽極端子彼此電連通之外部傳導路徑。 47.如申睛專利範圍第46項之方法立 ,心石忐,其中的分離步驟 包含將外殼厚度最小化之高精度技術。 认如申請專利範圍第46項之方法,其中的包封材質 的定位步驟包含將外殼相對於電容性構件厚度而最小化之 高精度技術。 49·如申請專利範圍第46項之方法,i Λ^ 忐’其中藉由金屬沈 積來形成其外部傳導路徑。 50. 如申請專利範圍第49項之方法,其中的金屬沈積 會促成金屬線與陽極端子之間可靠的電氣接觸,但會阻止 在電容器頂部側邊上任何傳導性材質之形成。 51. 如申請專利範圍第46項之方 万去,進一步地包含以 一種傳導性材質將外部傳实政 丨得導路樘以及陽極與陰極端子電 鍍。 Η 、圖式: 如次頁 38 1323474 /5//6
圖丨6 (先前技術)
TW095107562A 2005-05-17 2006-03-07 Surface mount capacitor and method of making the same TWI323474B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/132,116 US7161797B2 (en) 2005-05-17 2005-05-17 Surface mount capacitor and method of making same

Publications (2)

Publication Number Publication Date
TW200707488A TW200707488A (en) 2007-02-16
TWI323474B true TWI323474B (en) 2010-04-11

Family

ID=35945241

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095107562A TWI323474B (en) 2005-05-17 2006-03-07 Surface mount capacitor and method of making the same

Country Status (8)

Country Link
US (2) US7161797B2 (zh)
EP (1) EP1869685A1 (zh)
JP (3) JP5312021B2 (zh)
KR (1) KR100970023B1 (zh)
CN (2) CN101176173B (zh)
HK (1) HK1115224A1 (zh)
TW (1) TWI323474B (zh)
WO (1) WO2006124053A1 (zh)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870727B2 (en) * 2002-10-07 2005-03-22 Avx Corporation Electrolytic capacitor with improved volumetric efficiency
CN1739205A (zh) * 2003-01-17 2006-02-22 二极管技术公司 使用有机材料的显示器
CN103030148B (zh) * 2006-04-04 2015-02-25 太阳能原材料公司 纯化硅的方法
US7468882B2 (en) * 2006-04-28 2008-12-23 Avx Corporation Solid electrolytic capacitor assembly
WO2008038584A1 (fr) * 2006-09-25 2008-04-03 Showa Denko K. K. Matière de base pour condensateur électrolytique solide, condensateur utilisant une telle matière, et procédé de fabrication dudit condensateur
US9741901B2 (en) 2006-11-07 2017-08-22 Cbrite Inc. Two-terminal electronic devices and their methods of fabrication
US7898042B2 (en) 2006-11-07 2011-03-01 Cbrite Inc. Two-terminal switching devices and their methods of fabrication
CN101622712B (zh) * 2006-11-07 2011-06-15 希百特股份有限公司 双端开关装置及其制造方法
US20080247122A1 (en) * 2007-04-06 2008-10-09 Vishay Sprague, Inc. Capacitor with improved volumetric efficiency and reduced cost
US7893545B2 (en) 2007-07-18 2011-02-22 Infineon Technologies Ag Semiconductor device
AU2008323015B2 (en) * 2007-11-13 2012-09-27 Voltea Limited Water purification device
JP4868601B2 (ja) * 2007-12-05 2012-02-01 Necトーキン株式会社 固体電解コンデンサ及びその製造方法
KR100939765B1 (ko) * 2007-12-17 2010-01-29 삼성전기주식회사 고체 전해 콘덴서 및 그 제조방법
JP5020052B2 (ja) * 2007-12-19 2012-09-05 三洋電機株式会社 固体電解コンデンサ
JP2009170897A (ja) * 2007-12-21 2009-07-30 Sanyo Electric Co Ltd 固体電解コンデンサ
JP2009164412A (ja) * 2008-01-08 2009-07-23 Kobe Steel Ltd 多孔質金属薄膜およびその製造方法、ならびにコンデンサ
CN100528418C (zh) * 2008-01-11 2009-08-19 宁夏东方钽业股份有限公司 含氮均匀的阀金属粉末及其制造方法,阀金属坯块和阀金属烧结体以及电解电容器的阳极
US8062385B2 (en) * 2008-02-12 2011-11-22 Kemet Electronics Corporation Solid electrolytic capacitor with improved volumetric efficiency method of making
JP5132374B2 (ja) * 2008-03-18 2013-01-30 三洋電機株式会社 固体電解コンデンサ及びその製造方法
KR101009850B1 (ko) * 2008-06-17 2011-01-19 삼성전기주식회사 고체 전해 콘덴서 및 그 제조방법
US8199462B2 (en) * 2008-09-08 2012-06-12 Avx Corporation Solid electrolytic capacitor for embedding into a circuit board
JP2010080570A (ja) * 2008-09-25 2010-04-08 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法
JP4883145B2 (ja) 2008-10-30 2012-02-22 株式会社デンソー 半導体装置
US7786839B2 (en) * 2008-12-28 2010-08-31 Pratt & Whitney Rocketdyne, Inc. Passive electrical components with inorganic dielectric coating layer
US8075640B2 (en) 2009-01-22 2011-12-13 Avx Corporation Diced electrolytic capacitor assembly and method of production yielding improved volumetric efficiency
KR101032206B1 (ko) * 2009-03-09 2011-05-02 삼성전기주식회사 고체 콘덴서 및 그 제조방법
US8345406B2 (en) * 2009-03-23 2013-01-01 Avx Corporation Electric double layer capacitor
JP5273726B2 (ja) * 2009-04-07 2013-08-28 Necトーキン株式会社 固体電解コンデンサおよびその製造方法
US8279583B2 (en) 2009-05-29 2012-10-02 Avx Corporation Anode for an electrolytic capacitor that contains individual components connected by a refractory metal paste
US8441777B2 (en) 2009-05-29 2013-05-14 Avx Corporation Solid electrolytic capacitor with facedown terminations
US9190214B2 (en) * 2009-07-30 2015-11-17 Kemet Electronics Corporation Solid electrolytic capacitors with improved ESR stability
KR100996915B1 (ko) * 2009-08-12 2010-11-26 삼성전기주식회사 고체 전해 콘덴서 및 그 제조방법
US8139344B2 (en) * 2009-09-10 2012-03-20 Avx Corporation Electrolytic capacitor assembly and method with recessed leadframe channel
KR101719663B1 (ko) 2009-12-22 2017-03-24 케메트 일렉트로닉스 코포레이션 고체 전해 캐패시터 및 제조 방법
TWI421888B (zh) * 2010-03-05 2014-01-01 Apaq Technology Co Ltd 具有多端產品引出腳之堆疊式固態電解電容器
US8125769B2 (en) 2010-07-22 2012-02-28 Avx Corporation Solid electrolytic capacitor assembly with multiple cathode terminations
US8259436B2 (en) 2010-08-03 2012-09-04 Avx Corporation Mechanically robust solid electrolytic capacitor assembly
KR101412827B1 (ko) * 2010-11-12 2014-06-30 삼성전기주식회사 콘덴서 소자, 고체 전해 콘덴서, 및 그 제조방법
US8885326B2 (en) * 2011-04-26 2014-11-11 Rohm Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
US9406314B1 (en) 2012-10-04 2016-08-02 Magnecomp Corporation Assembly of DSA suspensions using microactuators with partially cured adhesive, and DSA suspensions having PZTs with wrap-around electrodes
KR102138890B1 (ko) * 2013-08-05 2020-07-28 삼성전기주식회사 탄탈륨 캐패시터 및 그 제조 방법
KR20150049918A (ko) 2013-10-31 2015-05-08 삼성전기주식회사 탄탈륨 캐패시터 및 그 제조 방법
KR102064017B1 (ko) * 2013-12-19 2020-01-08 삼성전기주식회사 고체 전해 캐패시터
US10008340B2 (en) * 2014-07-17 2018-06-26 Samsung Electro-Mechanics Co., Ltd. Composite electronic component, board having the same, and power smoother including the same
KR102041648B1 (ko) * 2014-07-17 2019-11-06 삼성전기주식회사 복합 전자부품, 그 실장 기판 및 이를 포함하는 전원 안정화 유닛
US20160020031A1 (en) * 2014-07-18 2016-01-21 Samsung Electro-Mechanics Co., Ltd. Composite electronic component and board having the same
KR102149799B1 (ko) * 2014-09-23 2020-08-31 삼성전기주식회사 탄탈륨 커패시터
KR102052763B1 (ko) * 2014-11-07 2019-12-05 삼성전기주식회사 탄탈륨 캐패시터 및 그 제조 방법
CN107405496B (zh) * 2015-03-31 2021-01-08 心脏起搏器股份公司 用于可植入医疗装置的封装式滤波馈通
CN113990661A (zh) 2015-12-18 2022-01-28 凯米特电子公司 利用膜进行封装物厚度控制的电容器及制造方法
JP6722479B2 (ja) * 2016-03-16 2020-07-15 ローム株式会社 固体電解コンデンサの製造方法
US9545008B1 (en) * 2016-03-24 2017-01-10 Avx Corporation Solid electrolytic capacitor for embedding into a circuit board
JP6647124B2 (ja) * 2016-04-14 2020-02-14 株式会社トーキン 固体電解コンデンサ、および固体電解コンデンサの製造方法
US10381166B2 (en) * 2016-05-25 2019-08-13 Vishay Sprague, Inc. High performance and reliability solid electrolytic tantalum capacitors and screening method
CN108281280A (zh) * 2017-07-28 2018-07-13 六和电子(江西)有限公司 一种带托盘的聚酯薄膜电容器及其安装方法
CN107731573B (zh) * 2017-10-29 2020-08-14 西安空间无线电技术研究所 一种脉冲储能电容封装方法及封装结构
US11058444B2 (en) 2017-12-11 2021-07-13 Covidien Lp Electrically enhanced retrieval of material from vessel lumens
US11024464B2 (en) * 2018-08-28 2021-06-01 Vishay Israel Ltd. Hermetically sealed surface mount polymer capacitor
WO2021049050A1 (ja) * 2019-09-09 2021-03-18 株式会社村田製作所 電解コンデンサ及び電解コンデンサの製造方法
KR20210074611A (ko) * 2019-12-12 2021-06-22 삼성전기주식회사 탄탈 커패시터 및 이의 제조 방법
JP7306279B2 (ja) * 2020-01-24 2023-07-11 株式会社デンソー コンデンサモジュールおよび電力変換装置
CN114093673A (zh) * 2020-08-24 2022-02-25 深圳先进电子材料国际创新研究院 一种无引线埋入式钽电解电容器及其制备方法
KR20220059151A (ko) * 2020-11-02 2022-05-10 삼성전기주식회사 탄탈 커패시터
US11869727B2 (en) 2021-08-31 2024-01-09 Kemet Electronics Corporation Device and process for forming membrane type capacitor devices

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855505A (en) * 1972-04-03 1974-12-17 Nat Components Ind Inc Solid electrolyte capacitor
US4488204A (en) * 1983-11-01 1984-12-11 Union Carbide Corporation Device for use in making encapsulated chip capacitor assemblies
EP0302496A3 (en) * 1987-08-05 1989-12-13 Sanyo Electric Co., Ltd. Aluminum solid electrolytic capacitor and manufacturing method thereof
JPH0590094A (ja) * 1991-09-30 1993-04-09 Matsushita Electric Ind Co Ltd チツプ状固体電解コンデンサ
JP2786978B2 (ja) * 1992-10-15 1998-08-13 ローム株式会社 固体電解コンデンサ
US6229687B1 (en) * 1998-05-27 2001-05-08 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
US6072392A (en) * 1998-08-10 2000-06-06 Jose Armando Coronado Apparatus and method for monitoring and recording the audible environment of a child, patient, older person or pet left in the care of a third person or persons
US6238444B1 (en) 1998-10-07 2001-05-29 Vishay Sprague, Inc. Method for making tantalum chip capacitor
JP3942000B2 (ja) * 1999-06-01 2007-07-11 ローム株式会社 パッケージ型固体電解コンデンサの構造及びその製造方法
JP3312246B2 (ja) * 1999-06-18 2002-08-05 松尾電機株式会社 チップコンデンサの製造方法
US6324051B1 (en) 1999-10-29 2001-11-27 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
JP3416636B2 (ja) * 1999-10-29 2003-06-16 松下電器産業株式会社 固体電解コンデンサ
JP2001196266A (ja) * 2000-01-14 2001-07-19 Matsushita Electric Ind Co Ltd チップ状電子部品の製造方法
JP3349133B2 (ja) * 2000-04-07 2002-11-20 エヌイーシートーキン株式会社 チップ型コンデンサ及びその製造方法並びにモールド金型
TW516054B (en) 2000-05-26 2003-01-01 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2002050545A (ja) * 2000-08-04 2002-02-15 Matsushita Electric Ind Co Ltd チップ型積層コンデンサ
JP2002100534A (ja) * 2000-09-21 2002-04-05 Hitachi Aic Inc 固体電解コンデンサの製造方法
JP2002175939A (ja) * 2000-09-26 2002-06-21 Nippon Chemicon Corp チップ型固体電解コンデンサの製造方法
US6768425B2 (en) * 2000-12-21 2004-07-27 Insulet Corporation Medical apparatus remote control and method
JP4539948B2 (ja) * 2001-11-29 2010-09-08 ローム株式会社 コンデンサの製造方法
JP4454916B2 (ja) * 2002-07-22 2010-04-21 Necトーキン株式会社 固体電解コンデンサ
JP2004063543A (ja) * 2002-07-25 2004-02-26 Matsushita Electric Ind Co Ltd 固体電解コンデンサ及びその製造方法
JP4000956B2 (ja) * 2002-08-28 2007-10-31 松下電器産業株式会社 固体電解コンデンサ
US6845004B2 (en) * 2003-02-12 2005-01-18 Kemet Electronics Corporation Protecting resin-encapsulated components
US7348097B2 (en) * 2003-06-17 2008-03-25 Medtronic, Inc. Insulative feed through assembly for electrochemical devices
JP2005064238A (ja) * 2003-08-12 2005-03-10 Elna Co Ltd チップ型固体電解コンデンサ
JP2005093819A (ja) * 2003-09-18 2005-04-07 Hitachi Cable Ltd チップ型コンデンサ及びそのリードフレーム
JP3806818B2 (ja) * 2003-09-26 2006-08-09 Necトーキン株式会社 チップ型個体電解コンデンサ
JP2005166833A (ja) * 2003-12-01 2005-06-23 Rohm Co Ltd 面実装型固体電解コンデンサ及びその製造方法

Also Published As

Publication number Publication date
JP2012199590A (ja) 2012-10-18
TW200707488A (en) 2007-02-16
JP2012009887A (ja) 2012-01-12
JP5312021B2 (ja) 2013-10-09
EP1869685A1 (en) 2007-12-26
CN101176173B (zh) 2012-07-04
KR20080003011A (ko) 2008-01-04
JP2008541476A (ja) 2008-11-20
WO2006124053A1 (en) 2006-11-23
CN101176173A (zh) 2008-05-07
US20060262489A1 (en) 2006-11-23
US7161797B2 (en) 2007-01-09
KR100970023B1 (ko) 2010-07-16
CN102637528A (zh) 2012-08-15
HK1115224A1 (en) 2008-11-21
US7449032B2 (en) 2008-11-11
US20060260109A1 (en) 2006-11-23

Similar Documents

Publication Publication Date Title
TWI323474B (en) Surface mount capacitor and method of making the same
US10224138B2 (en) Electrode structure and the corresponding electrical component using the same and the fabrication method thereof
US11769621B2 (en) Inductor with an electrode structure
US20080247122A1 (en) Capacitor with improved volumetric efficiency and reduced cost
US8081057B2 (en) Current protection device and the method for forming the same
KR20150031759A (ko) 고체 전해 캐패시터
CN105702432A (zh) 电子组件以及具有该电子组件的板
US9236180B2 (en) Inductor and manufacturing method thereof
CN104854670B (zh) 固态电解电容器及其制造方法
KR102127816B1 (ko) 탄탈륨 캐패시터 및 그 제조 방법
US9330852B2 (en) Tantalum capacitor and method of manufacturing the same
JP5941080B2 (ja) タンタルキャパシタ及びその製造方法
TWI540314B (zh) 溫度感測器及製造方法
JP5931101B2 (ja) タンタルキャパシタ及びその製造方法
JP2004281716A (ja) チップ状固体電解コンデンサ
KR20160054809A (ko) 탄탈륨 캐패시터 및 그 제조 방법
JP2011146333A (ja) 端子及びその電気メッキ法
TWI497544B (zh) Capacitor structure and manufacturing method thereof
KR102163038B1 (ko) 탄탈륨 커패시터
KR20150072155A (ko) 고체 전해 캐패시터
JP2008047553A (ja) 固体電解コンデンサおよびその製造方法
KR20160002624A (ko) 탄탈륨 캐패시터 및 그 제조 방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees