TW201603489A - 電壓位準移位驅動電路 - Google Patents
電壓位準移位驅動電路 Download PDFInfo
- Publication number
- TW201603489A TW201603489A TW104120280A TW104120280A TW201603489A TW 201603489 A TW201603489 A TW 201603489A TW 104120280 A TW104120280 A TW 104120280A TW 104120280 A TW104120280 A TW 104120280A TW 201603489 A TW201603489 A TW 201603489A
- Authority
- TW
- Taiwan
- Prior art keywords
- type transistor
- voltage
- coupled
- terminal
- driving circuit
- Prior art date
Links
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 5
- 230000005611 electricity Effects 0.000 description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/08—Address circuits; Decoders; Word-line control circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/26—Sensing or reading circuits; Data output circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/04—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using capacitive elements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/08—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/14—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
- G11C17/146—Write once memory, i.e. allowing changing of memory content by writing additional bits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/14—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
- G11C17/16—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/14—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
- G11C17/18—Auxiliary circuits, e.g. for writing into memory
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
- G11C29/76—Masking faults in memories by using spares or by reconfiguring using address translation or modifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Geometry or layout of the interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0611—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
- H01L27/0617—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
- H01L27/0629—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
- H01L29/1079—Substrate region of field-effect devices of field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4916—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/92—Capacitors having potential barriers
- H01L29/93—Variable capacitance diodes, e.g. varactors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/353—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
- H03K3/356—Bistable circuits
- H03K3/356104—Bistable circuits using complementary field-effect transistors
- H03K3/356182—Bistable circuits using complementary field-effect transistors with additional means for controlling the main nodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B20/00—Read-only memory [ROM] devices
- H10B20/20—Programmable ROM [PROM] devices comprising field-effect components
- H10B20/25—One-time programmable ROM [OTPROM] devices, e.g. using electrically-fusible links
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
- H10B41/35—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/525—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
- H01L23/5252—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising anti-fuses, i.e. connections having their state changed from non-conductive to conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Power Engineering (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- Geometry (AREA)
- Semiconductor Memories (AREA)
- Read Only Memory (AREA)
- Non-Volatile Memory (AREA)
- Logic Circuits (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
電壓位準移位驅動電路包含電壓位準移位電路及驅動電路。驅動電路包含串聯的第一P型電晶體、第二P型電晶體、第一N型電晶體及第二N型電晶體。當電壓位準移位電路之輸入訊號處於操作電壓時,電壓位準移位電路會截止第二N型電晶體,而第一N型電晶體的控制端接收操作電壓可以避免第二N型電晶體產生閘極引致汲極漏電流。當輸入訊號處於系統基準電壓時,電壓位準移位電路會截止第一P型電晶體,而第二P型電晶體的控制端接收操作電壓可以避免第一P型電晶體產生閘極引致汲極漏電流。
Description
本發明係有關於一種電壓位準移位驅動電路,特別是有關於一種能夠降低閘極引致汲極漏電流(gate-induced drain leakage current,GIDL current)的電壓位準移位驅動電路。
當利用電壓位準移位驅動電路來控制高電壓輸出時,輸出電晶體之閘極與汲極間的巨大電壓差可能會導致輸出電晶體產生閘極引致汲極漏電流(gate-induced drain leakage current,GIDL current)。漏電流不僅會造成較大的能量損耗,且為使高電壓供給電路能夠提供較大的驅動電流,也將使所需的電路面積增加。
為解決閘極引致汲極漏電流的問題,美國專利案號US. 7,646,653揭露了如第1圖所示的驅動電路100以降低閘極引致汲極漏電流。驅動電路100包含了PXID驅動電路(PXID driver circuit)110,MWL訊號產生電路(MWL signal generating circuit)120,和輸出驅動電路130。第2圖為驅動電路100的操作時序圖。
當驅動電路100操作在待機模式(standby mode)時,PXID驅動電路110所輸出的訊號PXID將處於操作電壓VDD,而MWL訊號產生電路120則將輸出處於驅動電壓VPP之訊號MWL,且驅動電壓VPP會大於操作電壓VDD。由於N型電晶體N1A被導通且P型電晶體P1A被截止,因此驅動電路100之驅動輸出端OUT的電壓會被下拉之系統基準電壓VSS。亦即,藉由PXID驅動電路110,即可降低P型電晶體P1A的端電壓差,也因此能夠在驅動電路100處於待機模式時,減少閘極引致汲極漏電流。
然而當驅動電路100被啟動時,若驅動電路100的位址位元被選取,則PXID驅動電路110所輸出的訊號PXID將處於驅動電壓VPP,而MWL訊號產生電路120將輸出處於系統基準電壓VSS之訊號MWL。因此,驅動電路100之驅動輸出端OUT的電壓會被P型電晶體P1A上拉至驅動電壓VPP。然而由於N型電晶體N1A的閘極處於系統基準電壓VSS且N型電晶體N1A的汲極會處於驅動電壓VPP,因此N型電晶體N1A之閘極與汲極間的巨大電壓差將可能導致顯著的閘極引致汲極漏電流。
申言之,美國專利案號US. 7,646,653所教導的驅動電路100僅能夠在驅動電路100處於待機模式時降低閘極引致汲極漏電流,而無法在驅動電路100處於啟動模式時降低閘極引致汲極漏電流。因此,如何能夠在兩種模式下皆能夠減少閘極引致汲極漏電流即成為亟需解決的問題。
本發明之一實施例提供一種電壓位準移位驅動電路。電壓位準移位驅動電路包含電壓位準移位電路及驅動電路。電壓位準移位電路包含第一系統電壓端、第二系統電壓端、第一輸入端、第二輸入端及第一輸出端。第一系統電壓端用以接收驅動電壓。第二系統電壓端用以接收系統基準電壓。第一輸入端用以接收第一輸入訊號。第二輸入端用以接收第二輸入訊號,其中第二輸入訊號與第一輸入訊號互為反向。第一驅動電路包含第一P型電晶體、第二P型電晶體、第一N型電晶體及第二N型電晶體。第一P型電晶體具有第一端耦接於第一系統電壓端,一第二端,及控制端耦接於第一輸出端。第二P型電晶體具有第一端耦接於第一P型電晶體之第二端,一第二端,及一控制端。第一N型電晶體具有第一端耦接於第二P型電晶體之第二端,一第二端,及一控制端用以接收操作電壓。第二N型電晶體具有第一端耦接於第一N型電晶體之第二端,第二端耦接於第二系統電壓端,及控制端耦接於第一輸出端。
當第一輸入訊號處於操作電壓時,第一輸出端之電壓係處於系統基準電壓,而當第一輸入訊號處於系統基準電壓時,第一輸出端之電壓係處於驅動電壓。
第3圖為本發明一實施例之電壓位準移位驅動電路200的示意圖。電壓位準移位驅動電路200包含電壓位準移位電路210及驅動電路220。
電壓位準移位電路210包含第一系統電壓端SI1、第二系統電壓端SI2、第一輸入端IN、第二輸入端ZIN及第一輸出端O1。第一系統電壓端SI1可接收驅動電壓VPP。在本發明的部分實施例中,電壓位準移位驅動電路200可另包含升壓電路以產生驅動電壓VPP。而在本發明的其他實施例中,驅動電壓VPP亦可由外部電路產生。第二系統電壓端SI2可接收系統基準電壓VSS。在本發明的部分實施例中,系統基準電壓VSS可低於驅動電壓VPP,且可為包含電壓位準移位驅動電路200之系統的系統基準電壓。第一輸入端IN可接收第一輸入訊號SIN
。第二輸入端ZIN可接收第二輸入訊號SZIN
。在本發明的部分實施例中,第二輸入訊號SZIN
會與第一輸入訊號SIN
反向。
在本發明的部分實施例中,驅動電路220包含P型電晶體P2A、P型電晶體P2B、N型電晶體N2A及N型電晶體N2B。P型電晶體P2A具有第一端、第二端Dp2A
及控制端Gp2A
,P型電晶體P2A的第一端耦接於第一系統電壓端SI1,而P型電晶體P2A的控制端耦接於第一輸出端O1。P型電晶體P2B具有第一端、第二端Dp2B
及控制端Gp2B
,P型電晶體P2B的第一端耦接於P型電晶體P2A之第二端Dp2A
。N型電晶體N2A具有第一端DN2A
、第二端及控制端GN2A
,N型電晶體N2A的第一端耦接於P型電晶體P2B之第二端Dp2B
,而N型電晶體N2A的控制端用以接收操作電壓VDD。N型電晶體N2B具有第一端DN2B
、第二端及控制端GN2B
,N型電晶體N2B的第一端耦接於N型電晶體N2A之第二端,N型電晶體N2B的第二端耦接於第二系統電壓端SI2,而N型電晶體N2B的控制端GN2B
耦接於第一輸出端O1。在本發明的部分實施例中,驅動電壓VPP會大於操作電壓VDD。驅動電壓VPP可例如但不限於為操作電壓VDD的2至3倍。在第3圖中,P型電晶體P2B的第二端DP2B
亦可作為電壓位準移位驅動電路200的驅動輸出端OUT。
在本發明的部分實施例中,電壓位準移位電路210包含P型電晶體P2C、P型電晶體P2D、N型電晶體N2C及N型電晶體N2D。P型電晶體P2C具有第一端、第二端及控制端,P型電晶體P2C的第一端耦接於第一系統電壓端SI1,而P型電晶體P2C的第二端耦接於第一輸出端O1。P型電晶體P2D具有第一端、第二端及控制端,P型電晶體P2D的第一端耦接於第一系統電壓端SI1,P型電晶體P2D的第二端耦接於P型電晶體P2C之控制端,而P型電晶體P2D的控制端耦接於第一輸出端O1。N型電晶體N2C具有第一端、第二端及控制端,N型電晶體N2C的第一端耦接於第一輸出端O1,N型電晶體N2C的第二端耦接於第二系統電壓端SI2,及N型電晶體N2C的控制端耦接於第一輸入端IN。N型電晶體N2D具有第一端、第二端及控制端,N型電晶體N2D的第一端耦接於P型電晶體P2D之第二端,N型電晶體N2D的第二端耦接於第二系統電壓端SI2,及N型電晶體N2D的控制端耦接於第二輸入端ZIN。然而電壓位準移位電路210的結構並非以第3圖所示的結構為限;只要當第一輸入訊號SIN
處於操作電壓VDD時,能使第一輸出端O1的電壓處於系統基準電壓VSS,且當第一輸入訊號SIN
處於系統基準電壓VSS時,能使第一輸出端O1的電壓處於驅動電壓VPP,則電壓位準移位電路210亦可使用其他種類的電壓位準移位電路架構,並根據第一輸入訊號SIN
及第二輸入訊號SZIN
來切換第一輸出端O1的電壓。
第4圖為本發明一實施例電壓位準移位驅動電路200的操作時序圖。在第4圖中,於第一時段T1期間,第一輸出訊號SIN
處於操作電壓VDD,第二輸入訊號SZIN
處於系統基準電壓VSS。因此N型電晶體N2C會被導通,而第一輸出端O1的電壓會處於系統基準電壓VSS。P型電晶體P2A被導通。在第4圖中,P型電晶體P2B的控制端GP2B
可接收操作電壓VDD。由於驅動電壓VPP大於操作電壓VDD,因此P型電晶體P2B也會被導通,而驅動輸出端OUT的電壓會被上拉至驅動電壓VPP。此外,N型電晶體N2B會被截止。由於N型電晶體N2A的控制端GN2A
的電壓處於操作電壓VDD,因此N型電晶體N2A的控制端GN2A
的電壓可能會因為之前的操作而高於N型電晶體N2A的第二端的電壓(亦即N型電晶體N2B的第一端DN2B
的電壓)。因此N型電晶體N2A在第一時段T1的初期可能會被導通。然而當N型電晶體N2B之第一端DN2B
的電壓被P型電晶體P2A及P2B提升到操作電壓VDD減去N型電晶體N2B的臨界電壓VthN2A
時,也就是提升到VDD - VthN2A
時,N型電晶體N2A最終仍會在第一時段T1的末期被截止。如此一來,N型電晶體N2A的控制端GN2A
及第一端DN2A
之間的電壓差即會等於VPP – VDD,而小於先前技術中的VPP – VSS。亦即,N型電晶體N2A所產生的閘極引致汲極漏電流即會被降低。此外,N型電晶體N2B的控制端GN2B
及第一端DN2B
之間的電壓差即會等於VDD - VthN2A
– VSS,而仍會小於VPP – VSS。因此在電壓位準移位驅動電路200處於啟動模式時,亦即當驅動輸出端OUT的電壓處於驅動電壓VPP時,N型電晶體N2A及N2B上所產生的閘極引致汲極漏電流皆會被顯著地降低。
在第4圖中,於第二時段T2期間,第一輸出訊號SIN
處於系統基準電壓VSS,第二輸入訊號SZIN
處於操作電壓VDD。因此N型電晶體N2D會被導通,而P型電晶體P2C也會被導通,導致第一輸出端O1的電壓被拉升到驅動電壓VPP。N型電晶體N2B會被導通而N型電晶體N2A也會被導通。驅動輸出端OUT的電壓會被拉低至系統基準電壓VSS。P型電晶體P2A會被截止。由於第一時段T1期間的操作,P型電晶體P2B之第一端的電壓,也就是P型電晶體P2A第二端DP2A
的電壓,仍會處於驅動電壓VPP。因此P型電晶體P2B可能會在第二時段T2的初期被導通。然而當P型電晶體P2B之第一端的電壓,亦即P型電晶體P2A之第二端DP2A
的電壓,被N型電晶體N2A及N2B下拉到VDD + VthP2B
時(VthP2B
為P型電晶體P2B的臨界電壓),P型電晶體P2B最終仍會被截止。如此一來,P型電晶體P2A之控制端GP2A
及第二端DP2A
間的電壓差即會等於VPP – (VDD + VthP2B
),而較VPP – VSS來得小,使得在P型電晶體P2A上的閘極引致汲極漏電流被降低。此外,P型電晶體P2B之控制端GP2B
及第二端DP2B
間的電壓差即會等於VDD – VSS,而較VPP – VSS來得小。也就是說,當電壓位準移位驅動電路200處於待機模式,亦即當驅動輸出端OUT的電壓處於系統基準電壓VSS時,於P型電晶體P2A及P2B產生的閘極引致汲極漏電流皆可被顯著地降低。
在本發明的另一實施例中,P型電晶體P2B的控制端GP2B
可耦接至第二輸入訊號SZIN
。在此情況下,於第一時段T1期間,由於第二輸入訊號SZIN
處於系統基準電壓VSS,因此P型電晶體P2B可被完全導通。而於第二時段T2期間,由於第二輸入訊號SZIN
會處於操作電壓VDD,因此P型電晶體P2B的運作會與前述P型電晶體P2B在第二時段T2期間的運作相同。
如此一來,電壓位準移位驅動電路200即得以在第二時段T2期間,亦即電壓位準移位驅動電路200處於待機模式時,降低於P型電晶體P2A及P2B產生的閘極引致汲極漏電流。此外,電壓位準移位驅動電路200亦得以在第一時段T1期間,亦即電壓位準移位驅動電路200處於啟動模式時,降低於N型電晶體N2A及N2B產生的閘極引致汲極漏電流。
在本發明的部分實施例中,由於電壓位準移位電路210係用以輸出控制訊號而無需處理較大的驅動電流,而驅動電路220則係用以輸出具高電壓且較大的驅動電流至系統負載,因此P型電晶體P2A及P2B的寬度可大於P型電晶體P2C及P2D的寬度。相似地,N型電晶體N2A及N2B的寬度可大於N型電晶體N2C及N2D的寬度。
此外,為減少電路所需的面積,P型電晶體P2A及P2B的長度可小於P型電晶體P2C及P2D的長度。相似地N型電晶體N2A及N2B的長度可小於N型電晶體N2C及N2D的長度。
第5圖為本發明另一實施例之電壓位準移位驅動電路400的示意圖。電壓位準移位驅動電路400與電壓位準移位驅動電路200相似。電壓位準移位驅動電路200及400的差別在於電壓位準移位驅動電路400包含驅動電路220、電壓位準移位電路410及驅動電路430。電壓位準移位電路410與電壓位準移位電路210非常相似,兩者的差別在於電壓位準移位電路410另包含耦接於P型電晶體P2D之第二端的第二輸出端O2。驅動電路430包含P型電晶體P4E及N型電晶體N4E。
P型電晶體P4E具有第一端、第二端及控制端,P型電晶體P4E的第一端耦接於第一系統電壓端SI1,及P型電晶體P4E的控制端耦接於第二輸出端O2。N型電晶體N4E具有第一端、第二端及控制端,N型電晶體N4E的第一端耦接於P型電晶體P4E之第二端,N型電晶體N4E的第二端耦接於第二系統電壓端SI2,及N型電晶體N4E的控制端耦接於第二輸出端O2。P型電晶體P4E的第二端可作為電壓位準移位驅動電路400的驅動輸出端ZOUT。
由於驅動電路430的結構與驅動電路220的結構相似卻具有反向的輸入訊號,因此驅動電路430可作為驅動電路220的反向替代電路。也就是說當驅動輸出端OUT的電壓處於驅動電壓VPP時,驅動輸出端ZOUT的電壓會處於系統基準電壓VSS;而當驅動輸出端OUT的電壓處於系統基準電壓VSS時,驅動輸出端ZOUT的電壓則會處於驅動電壓VPP。
然而,當第二輸出端O2的電壓處於驅動電壓VPP且驅動輸出端ZOUT處於系統基準電壓VSS時,P型電晶體P4E可能會因為P型電晶體P4E之控制端及第二端間的巨大電壓差,而承受巨大的閘極引致汲極漏電流。相似地,當第二輸出端O2的電壓處於系統基準電壓VSS且驅動輸出端ZOUT處於驅動電壓VPP時,N型電晶體N4E可能會因為N型電晶體N4E之控制端及第一端間的巨大電壓差,而承受巨大的閘極引致汲極漏電流。
於驅動電路430產生的閘極引致汲極漏電流亦可利用與驅動電路220相似的架構來降低。第6圖為本發明另一實施例之電壓位準移位驅動電路500的示意圖。電壓位準移位驅動電路500與電壓位準移位驅動電路400相似。電壓位準移位驅動電路500及400的差別在於電壓位準移位驅動電路500包含驅動電路530而非驅動電路430。驅動電路530包含P型電晶體P5E及P5F以及N型電晶體N5E及N5F。
P型電晶體P5E具有第一端、第二端及控制端,P型電晶體P5E的第一端耦接於第一系統電壓端SI1,及P型電晶體P5E的控制端耦接於第二輸出端O2。P型電晶體P5F具有第一端、第二端及控制端,P型電晶體P5F的第一端耦接於P型電晶體P5E之第二端,及P型電晶體P5F的控制端耦接於第一輸入端IN或用以接收操作電壓VDD。N型電晶體N5E具有第一端、第二端及控制端,N型電晶體N5E的第一端耦接於P型電晶體P5F之第二端,及N型電晶體N5E的控制端接收操作電壓VDD。N型電晶體N5F具有第一端、第二端及控制端,N型電晶體N5F的第一端耦接於N型電晶體N5E之第二端,N型電晶體N5F的第二端耦接於第二系統電壓端SI2,及N型電晶體N5F的控制端耦接於第二輸出端O2。
由於驅動電路530與驅動電路220雖具有反向的輸入訊號卻具有相同結構,因此P型電晶體P5E、P5F及N型電晶體N5E及N5F可分別作為P型電晶體P2A、P2B及N型電晶體N2A及N2B的反向替代電路。
再者,由於驅動電路530具有與驅動電路220相同的結構,因此驅動電路530可與驅動電路220根據相同的原理操作,而使得驅動電路530中的閘極引致汲極漏電流能夠顯著地被降低。
第7圖為本發明另一實施例之電壓位準驅動電路600的示意圖。電壓位準移位驅動電路600與電壓位準移位驅動電路200相似。電壓位準移位驅動電路600及200的差別在於電壓位準移位驅動電路600包含驅動電路620。驅動電路620與驅動電路220相似,但驅動電路620另包含P型電晶體P6A、P6B及P6C。P型電晶體P6A及P6B可對應於驅動電路220中的P型電晶體P2A及P2B,而P型電晶體P6C則係串聯於P型電晶體P6A及P6B之間。
在本發明的部分實施例中,P型電晶體P6C之控制端的電壓VP6C
會介於驅動電壓VPP及P型電晶體P6B之控制端的電壓之間。舉例來說,如果驅動電壓VPP為操作電壓VDD的三倍,且P型電晶體P6B之控制端的電壓係為操作電壓VDD,則電壓VP6C
可為兩倍的操作電壓VDD(亦即VP6C
= 2VDD)。
第8圖為本發明一實施例之電壓位準移位驅動電路600的操作時序圖。在第8圖中,於第一時段T1期間,第一輸入訊號SIN
處於操作電壓VDD,而第二輸入訊號SZIN
處於系統基準電壓VSS。因此第一輸出端O1的電壓會處於系統基準電壓VSS。P型電晶體P6A會被導通。由於驅動電壓VPP為操作電壓VDD的三倍,因此P型電晶體P6B及P6C也皆會被導通,使得動輸出端OUT的電壓被拉升至驅動電壓VPP。
於第二時段T2期間,第一輸入訊號SIN
處於系統基準電壓VSS,而第二輸入訊號SZIN
處於操作電壓VDD。因此第一輸出端O1的電壓會被拉升至驅動電壓VPP。P型電晶體P6A會被截止。N型電晶體會被導通使得驅動輸出端OUT的電壓為系統基準電壓VSS。由於第一時段T1期間的操作,P型電晶體P6C及P6B之第一端 (或P型電晶體P6A及P6C之第二端DP6A
及DP6C
) 的電壓可能仍維持在驅動電壓VPP,因此在第二時段T2的初期,P型電晶體P6C及P6B可能仍會被導通。然而,當P型電晶體P6C之第一端(或P型電晶體P6A之第二端DP6A
)的電壓被驅動電路620中的N型電晶體拉低至2VDD + VthP6C
時,P型電晶體P6C最終會被截止,其中VthP6C
為P型電晶體P6C的臨界電壓。此外,當P型電晶體P6B之第一端(或P型電晶體P6C之第二端DP6C
)的電壓被驅動電路620中的N型電晶體拉低至VDD + VthP6B
時,P型電晶體P6B最終也會被截止,其中VthP6B
為P型電晶體P6B的臨界電壓。
如此一來,P型電晶體P6A之控制端GP6A
及第二端DP6A
間的電壓差即會等於VPP - (2VDD + VthP6C
),而甚至小於驅動電路220中P型電晶體P2A之控制端GP2A
及第二端DP2A
間的電壓差。因此於P型電晶體P2A產生的閘極引致汲極漏電流即可被進一步地降低。相似地,透過在P型電晶體P6C之控制端上饋入中介電壓,於P型電晶體P6C及P6B產生的閘極引致汲極漏電流也可被進一步地降低。
在本發明的部分實施例中,在第8圖中的第一時段T1期間,P型電晶體P6B的控制端與P型電晶體P6C的控制端亦可接收系統基準電壓VSS,在此情況下,P型電晶體P6B及P6C即可在電壓位準移位驅動電路600被啟動時被完全導通。
在本發明的部分實施例中,驅動電路620可包含N型電晶體N6A、N6B及N6C。N型電晶體N6A及N6B可對應於驅動電路220中的N型電晶體N2A及N2B,而N型電晶體N6C則係串聯於P型電晶體P6B及N型電晶體N6A之間。
在本發明的部分實施例中,N型電晶體N6C之控制端的電壓VN6C
會介於驅動電壓VPP及操作電壓VDD之間。舉例來說,如果驅動電壓VPP為操作電壓VDD的三倍,則電壓VP6C
可為兩倍的操作電壓VDD(亦即VN6C
= 2VDD)。
在第8圖中,於第一時段T1期間,第一輸出端O1的電壓處於系統基準壓VSS。N型電晶體N6B會被截止。由於N型電晶體N6A及N6C之第二端的電壓可能因為先前的操作而仍處於系統基準電壓VSS,因此在第一時段T1的初期,N型電晶體N6B及N6C可能仍會被導通。然而,當N型電晶體N6A之第二端(或N型電晶體N6B之第一端DN6B
)的電壓被驅動電路620中的P型電晶體拉升至VDD - VthN6A
時,N型電晶體P6A最終會被截止,其中VthN6A
為N型電晶體N6A的臨界電壓。此外,當N型電晶體N6C之第二端(或N型電晶體N6A之第一端DN6A
)的電壓被驅動電路620中的P型電晶體拉升至2VDD - VthN6C
時,N型電晶體N6C最終也會被截止,其中VthN6C
為N型電晶體N6C的臨界電壓。
如此一來,N型電晶體N6A之控制端GN6A
及第二端DN6A
間的電壓差即會等於2VDD - VthN6C
- VDD,亦即VDD - VthN6C
,而甚至小於驅動電路220中N型電晶體N2A之控制端GN2A
及第二端DN2A
間的電壓差。因此於N型電晶體N2A產生的閘極引致汲極漏電流即可被進一步地降低。相似地,透過在N型電晶體N6C之控制端上饋入中介電壓,於N型電晶體N6B產生的閘極引致汲極漏電流也可被進一步地降低。
於第二時段T2期間,第一輸出端O1的電壓會被拉升至驅動電壓VPP。N型電晶體N6A、N6B及N6C會被導通,使得驅動輸出電壓OUT處於系統基準電壓VSS。
如此一來,電壓位準移位驅動電路600即可在第二時段T2期間,亦即電壓位準移位驅動電路600處於待機模式時,降低P型電晶體P6A、P6B及P6C所產生的閘極引致汲極漏電流。且電壓位準移位驅動電路600亦可在第一時段T1期間,亦即電壓位準移位驅動電路600處於啟動模式時,降低N型電晶體N6A、N6B及N6C所產生的閘極引致汲極漏電流。
雖然在第7圖中,驅動電路620僅包含三個P型電晶體及三個N型電晶體,然而本發明並不以此數量為限。在本發明的其他實施例中,驅動電路620亦可根據系統需求包含其他數量的P型電晶體及N型電晶體。
綜上所述,根據本發明之實施例所提供的電壓位準移位驅動電路,不論係在電壓位準移位驅動電路處於啟動模式或者待機模式時,皆能夠降低驅動電路中電晶體所產生的閘極引致汲極漏電流,並得以降低能量損耗。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
100‧‧‧驅動電路
110‧‧‧PXID驅動電路
120‧‧‧MWL訊號產生電路
130‧‧‧輸出驅動電路
VPP‧‧‧驅動電壓
VSS‧‧‧系統基準電壓
VDD‧‧‧操作電壓
PXID、MWL‧‧‧訊號
ZOUT、OUT‧‧‧驅動輸出端
200、400、500、600‧‧‧電壓位準移位驅動電路
210、410‧‧‧電壓位準移位電路
220、430、530、620‧‧‧驅動電路
SI1‧‧‧第一系統電壓端
SI2‧‧‧第二系統電壓端
IN‧‧‧第一輸入端
ZIN‧‧‧第二輸入端
SIN‧‧‧第一輸入訊號
SZIN‧‧‧第二輸入訊號
O1‧‧‧第一輸出端
O2‧‧‧第二輸出端
GP2A、GP2B、GN2A、GN2B、GP6A、GP6B、GP6C、GN6A、GN6B、GN6C‧‧‧電晶體之控制端
DP2A、DP2B、DP6A、DP6B、DP6C‧‧‧電晶體之第二端
DN2A、DN2B、GN6A、DN6B、DN6C‧‧‧電晶體之第一端
P1A、P2A、P2B、P2C、P2D、P4E、P5E、P5F、P6A、P6B、P6C‧‧‧P型電晶體
N1A、N2A、N2B、N2C、N2D、N4E、N5E、N5F、N6A、N6B、N6C‧‧‧N型電晶體
VthP2B、VthN2A、VthP6C、VthP6B、VthN6C、VthN6A‧‧‧臨界電壓
VP6C‧‧‧控制端電壓
T1‧‧‧第一時段
T2‧‧‧第二時段
110‧‧‧PXID驅動電路
120‧‧‧MWL訊號產生電路
130‧‧‧輸出驅動電路
VPP‧‧‧驅動電壓
VSS‧‧‧系統基準電壓
VDD‧‧‧操作電壓
PXID、MWL‧‧‧訊號
ZOUT、OUT‧‧‧驅動輸出端
200、400、500、600‧‧‧電壓位準移位驅動電路
210、410‧‧‧電壓位準移位電路
220、430、530、620‧‧‧驅動電路
SI1‧‧‧第一系統電壓端
SI2‧‧‧第二系統電壓端
IN‧‧‧第一輸入端
ZIN‧‧‧第二輸入端
SIN‧‧‧第一輸入訊號
SZIN‧‧‧第二輸入訊號
O1‧‧‧第一輸出端
O2‧‧‧第二輸出端
GP2A、GP2B、GN2A、GN2B、GP6A、GP6B、GP6C、GN6A、GN6B、GN6C‧‧‧電晶體之控制端
DP2A、DP2B、DP6A、DP6B、DP6C‧‧‧電晶體之第二端
DN2A、DN2B、GN6A、DN6B、DN6C‧‧‧電晶體之第一端
P1A、P2A、P2B、P2C、P2D、P4E、P5E、P5F、P6A、P6B、P6C‧‧‧P型電晶體
N1A、N2A、N2B、N2C、N2D、N4E、N5E、N5F、N6A、N6B、N6C‧‧‧N型電晶體
VthP2B、VthN2A、VthP6C、VthP6B、VthN6C、VthN6A‧‧‧臨界電壓
VP6C‧‧‧控制端電壓
T1‧‧‧第一時段
T2‧‧‧第二時段
第1圖為先前技術之驅動電路的示意圖。 第2圖為第1圖之驅動電路的操作時序圖。 第3圖為本發明一實施例之電壓位準移位驅動電路的示意圖。 第4圖為第3圖之電壓位準移位驅動電路的操作時序圖。 第5圖為本發明另一實施例之電壓位準移位驅動電路的示意圖。 第6圖為本發明另一實施例之電壓位準移位驅動電路的示意圖。 第7圖為本發明另一實施例之電壓位準移位驅動電路的示意圖。 第8圖為第7圖之電壓位準移位驅動電路的操作時序圖。
500‧‧‧電壓位準移位驅動電路
410‧‧‧電壓位準移位電路
220、530‧‧‧驅動電路
SI1‧‧‧第一系統電壓端
SI2‧‧‧第二系統電壓端
IN‧‧‧第一輸入端
ZIN‧‧‧第二輸入端
SIN‧‧‧第一輸入訊號
SZIN‧‧‧第二輸入訊號
O1‧‧‧第一輸出端
O2‧‧‧第二輸出端
GP2A、GP2B、GN2A、GN2B‧‧‧電晶體之控制端
DP2A、DP2B‧‧‧電晶體之第二端
DN2A、DN2B‧‧‧電晶體之第一端
P2A、P2B、P2C、P2D、P5E、P5F‧‧‧P型電晶體
N2A、N2B、N2C、N2D、N5E、N5F‧‧‧N型電晶體
VPP‧‧‧驅動電壓
VSS‧‧‧系統基準電壓
VDD‧‧‧操作電壓
OUT、ZOUT‧‧‧驅動輸出端
Claims (13)
- 一種電壓位準移位驅動電路,包含: 一電壓位準移位電路,包含: 一第一系統電壓端,用以接收一驅動電壓; 一第二系統電壓端,用以接收一系統基準電壓; 一第一輸入端,用以接收一第一輸入訊號; 一第二輸入端,用以接收一第二輸入訊號,其中該第二輸入訊號係與該第一輸入訊號反向;及 一第一輸出端;及 一第一驅動電路,包含: 一第一P型電晶體,具有一第一端耦接於該第一系統電壓端,一第二端,及一控制端耦接於該第一輸出端; 一第二P型電晶體,具有一第一端耦接於該第一P型電晶體之該第二端,一第二端,及一控制端; 一第一N型電晶體,具有一第一端耦接於該第二P型電晶體之該第二端,一第二端,及一控制端用以接收一操作電壓;及 一第二N型電晶體,具有一第一端耦接於該第一N型電晶體之該第二端,一第二端耦接於該第二系統電壓端,及一控制端耦接於該第一輸出端; 其中: 當該第一輸入訊號處於該操作電壓時,該第一輸出端之電壓係處於該系統基準電壓;及 當該第一輸入訊號處於該系統基準電壓時,該第一輸出端之電壓係處於該驅動電壓。
- 如請求項1所述之電壓位準移位驅動電路,其中該驅動電壓係大於該操作電壓。
- 如請求項1所述之電壓位準移位驅動電路,其中該第二P型電晶體之該控制端係耦接於該第二輸入端。
- 如請求項1所述之電壓位準移位驅動電路,其中該第二P型電晶體之該控制端係接收該操作電壓。
- 如請求項1所述之電壓位準移位驅動電路,其中該電壓位準移位電路包含: 一第三P型電晶體,具有一第一端耦接於該第一系統電壓端,一第二端耦接於該第一輸出端,及一控制端; 一第四P型電晶體,具有一第一端耦接於該第一系統電壓端,一第二端耦接於該第三P型電晶體之該控制端,及一控制端耦接於該第一輸出端; 一第三N型電晶體,具有一第一端耦接於該第一輸出端,一第二端耦接於該第二系統電壓端,及一控制端耦接於該第一輸入端;及 一第四N型電晶體,具有一第一端耦接於該第四P型電晶體之該第二端,一第二端耦接於該第二系統電壓端,及一控制端耦接於該第二輸入端。
- 如請求項5所述之電壓位準移位驅動電路,其中該第一P型電晶體及該第二P型電晶體的寬度係大於該第三P型電晶體及該第四P型電晶體的寬度。
- 如請求項5所述之電壓位準移位驅動電路,其中該第一P型電晶體及該第二P型電晶體的長度係小於該第三P型電晶體及該第四P型電晶體的長度。
- 如請求項5所述之電壓位準移位驅動電路,其中: 該電壓位準移位電路另包含一第二輸出端,耦接於該第四P型電晶體之該第二端;及 該電壓位準移位驅動電路另包含一第二驅動電路,包含: 一第五P型電晶體,具有一第一端耦接於該第一系統電壓端,一第二端,及一控制端耦接於該第二輸出端;及 一第五N型電晶體,具有一第一端耦接於該第五P型電晶體之該第二端,一第二端耦接於該第二系統電壓端,及一控制端耦接於該第二輸出端。
- 如請求項5所述之電壓位準移位驅動電路,其中: 該電壓位準移位電路另包含一第二輸出端,耦接於該第四P型電晶體之該第二端;及 該電壓位準移位驅動電路另包含一第二驅動電路,包含: 一第五P型電晶體,具有一第一端耦接於該第一系統電壓端,一第二端,及一控制端耦接於該第二輸出端; 一第六P型電晶體,具有一第一端耦接於該第五P型電晶體之該第二端,一第二端,及一控制端耦接於該第一輸入端或用以接收該操作電壓; 一第五N型電晶體,具有一第一端耦接於該第六P型電晶體之該第二端,一第二端,及一控制端用以接收該操作電壓;及 一第六N型電晶體,具有一第一端耦接於該第五N型電晶體之該第二端,一第二端耦接於該第二系統電壓端,及一控制端耦接於該第二輸出端。
- 如請求項1所述之電壓位準移位驅動電路,其中該第一驅動電路另包含至少一第三P型電晶體,串聯於該第一P型電晶體及該第二P型電晶體之間。
- 如請求項10所述之電壓位準移位驅動電路,其中每一第三P型電晶體之一控制端的電壓係介於該驅動電壓及該第二P型電晶體之該控制端的電壓之間。
- 如請求項1所述之電壓位準移位驅動電路,其中該第一驅動電路另包含至少一第三N型電晶體,串聯於該第二P型電晶體及該第一N型電晶體之間。
- 如請求項12所述之電壓位準移位驅動電路,其中每一第三N型電晶體之一控制端的電壓係介於該驅動電壓及該操作電壓之間。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462022166P | 2014-07-08 | 2014-07-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201603489A true TW201603489A (zh) | 2016-01-16 |
TWI561010B TWI561010B (en) | 2016-12-01 |
Family
ID=52015968
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104108332A TWI553645B (zh) | 2014-07-08 | 2015-03-16 | 非揮發性記憶體及其行解碼器 |
TW104108466A TWI578326B (zh) | 2014-07-08 | 2015-03-17 | 一次編程的記憶胞及其陣列結構與操作方法 |
TW104119498A TWI576965B (zh) | 2014-07-08 | 2015-06-17 | 可高度微縮的單層多晶矽非揮發性記憶胞 |
TW104120280A TWI561010B (en) | 2014-07-08 | 2015-06-24 | Level shift driver circuit |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104108332A TWI553645B (zh) | 2014-07-08 | 2015-03-16 | 非揮發性記憶體及其行解碼器 |
TW104108466A TWI578326B (zh) | 2014-07-08 | 2015-03-17 | 一次編程的記憶胞及其陣列結構與操作方法 |
TW104119498A TWI576965B (zh) | 2014-07-08 | 2015-06-17 | 可高度微縮的單層多晶矽非揮發性記憶胞 |
Country Status (5)
Country | Link |
---|---|
US (4) | US9431111B2 (zh) |
EP (2) | EP2966685B1 (zh) |
JP (2) | JP6181037B2 (zh) |
CN (3) | CN105321570B (zh) |
TW (4) | TWI553645B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI623199B (zh) * | 2016-08-05 | 2018-05-01 | Arm股份有限公司 | 用於通用高範圍位準移位之裝置及方法 |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9214933B2 (en) | 2014-02-25 | 2015-12-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Input/output circuit |
US9508396B2 (en) * | 2014-04-02 | 2016-11-29 | Ememory Technology Inc. | Array structure of single-ploy nonvolatile memory |
US10109364B2 (en) * | 2015-10-21 | 2018-10-23 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Non-volatile memory cell having multiple signal pathways to provide access to an antifuse of the memory cell |
US10014066B2 (en) * | 2015-11-30 | 2018-07-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Anti-fuse cell structure including reading and programming devices with different gate dielectric thickness |
US9847133B2 (en) * | 2016-01-19 | 2017-12-19 | Ememory Technology Inc. | Memory array capable of performing byte erase operation |
US9613714B1 (en) * | 2016-01-19 | 2017-04-04 | Ememory Technology Inc. | One time programming memory cell and memory array for physically unclonable function technology and associated random code generating method |
JP6200983B2 (ja) * | 2016-01-25 | 2017-09-20 | 力旺電子股▲ふん▼有限公司eMemory Technology Inc. | ワンタイムプログラマブルメモリセル、該メモリセルを含むメモリアレイのプログラム方法及び読み込み方法 |
KR102359372B1 (ko) * | 2016-02-17 | 2022-02-09 | 에스케이하이닉스 주식회사 | 싱글-폴리 불휘발성 메모리 셀 |
US10115682B2 (en) * | 2016-04-13 | 2018-10-30 | Ememory Technology Inc. | Erasable programmable non-volatile memory |
US9633734B1 (en) * | 2016-07-14 | 2017-04-25 | Ememory Technology Inc. | Driving circuit for non-volatile memory |
US9921598B1 (en) * | 2017-01-03 | 2018-03-20 | Stmicroelectronics S.R.L. | Analog boost circuit for fast recovery of mirrored current |
US10158354B2 (en) * | 2017-02-10 | 2018-12-18 | Silicon Laboratories Inc. | Apparatus with electronic circuitry having reduced leakage current and associated methods |
TWI618074B (zh) * | 2017-03-06 | 2018-03-11 | 力旺電子股份有限公司 | 一次編程非揮發性記憶體及其讀取感測方法 |
US10090309B1 (en) * | 2017-04-27 | 2018-10-02 | Ememory Technology Inc. | Nonvolatile memory cell capable of improving program performance |
US10360958B2 (en) * | 2017-06-08 | 2019-07-23 | International Business Machines Corporation | Dual power rail cascode driver |
TWI629684B (zh) * | 2017-07-28 | 2018-07-11 | 華邦電子股份有限公司 | 記憶體裝置的行解碼器 |
US11087207B2 (en) * | 2018-03-14 | 2021-08-10 | Silicon Storage Technology, Inc. | Decoders for analog neural memory in deep learning artificial neural network |
WO2019124356A1 (ja) * | 2017-12-20 | 2019-06-27 | パナソニック・タワージャズセミコンダクター株式会社 | 半導体装置及びその動作方法 |
US11245004B2 (en) | 2019-12-11 | 2022-02-08 | Ememory Technology Inc. | Memory cell with isolated well region and associated non-volatile memory |
CN112992213B (zh) * | 2019-12-16 | 2023-09-22 | 上海磁宇信息科技有限公司 | 存储器的列译码器 |
US11663455B2 (en) * | 2020-02-12 | 2023-05-30 | Ememory Technology Inc. | Resistive random-access memory cell and associated cell array structure |
TWI707350B (zh) * | 2020-02-13 | 2020-10-11 | 大陸商北京集創北方科技股份有限公司 | 一次性編程唯讀記憶體之操作方法、處理器晶片及資訊處理裝置 |
CN111276485A (zh) * | 2020-02-14 | 2020-06-12 | 上海华虹宏力半导体制造有限公司 | Mtp器件的制造方法及mtp器件 |
CN111900172B (zh) * | 2020-07-29 | 2022-10-25 | 杰华特微电子股份有限公司 | 多次可编程存储单元及存储装置 |
CN111968975A (zh) * | 2020-08-07 | 2020-11-20 | 长江存储科技有限责任公司 | 电路芯片、三维存储器以及制备三维存储器的方法 |
US11557338B2 (en) * | 2020-10-13 | 2023-01-17 | Ememory Technology Inc. | Non-volatile memory with multi-level cell array and associated program control method |
KR20220157055A (ko) * | 2021-05-20 | 2022-11-29 | 삼성전자주식회사 | 오티피 메모리 장치 및 오티피 메모리 장치의 동작 방법 |
CN115581068A (zh) * | 2021-07-06 | 2023-01-06 | 成都锐成芯微科技股份有限公司 | 反熔丝型一次编程的非易失性存储单元及其存储器 |
CN115910143B (zh) * | 2021-08-20 | 2024-06-21 | 长鑫存储技术有限公司 | 驱动电路、存储设备及驱动电路控制方法 |
CN115910144B (zh) * | 2021-08-20 | 2024-06-21 | 长鑫存储技术有限公司 | 驱动电路、存储设备及驱动电路控制方法 |
CN118553294A (zh) * | 2024-07-30 | 2024-08-27 | 四川凯路威科技有限公司 | 全共字线otp存储器电路 |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6240698A (ja) | 1985-08-16 | 1987-02-21 | Fujitsu Ltd | 半導体記憶装置 |
JPH0721790A (ja) * | 1993-07-05 | 1995-01-24 | Mitsubishi Electric Corp | 半導体集積回路 |
JP3173247B2 (ja) | 1993-09-29 | 2001-06-04 | ソニー株式会社 | レベルシフタ |
US5469384A (en) * | 1994-09-27 | 1995-11-21 | Cypress Semiconductor Corp. | Decoding scheme for reliable multi bit hot electron programming |
US5717635A (en) * | 1996-08-27 | 1998-02-10 | International Business Machines Corporation | High density EEPROM for solid state file |
US6137723A (en) * | 1998-04-01 | 2000-10-24 | National Semiconductor Corporation | Memory device having erasable Frohmann-Bentchkowsky EPROM cells that use a well-to-floating gate coupled voltage during erasure |
JP3560480B2 (ja) * | 1998-10-05 | 2004-09-02 | シャープ株式会社 | スタティック・ランダム・アクセスメモリ |
US6744294B1 (en) | 1999-05-12 | 2004-06-01 | Telefonaktiebolaget Lm Ericsson (Publ) | Cascode signal driver with low harmonic content |
US6841821B2 (en) * | 1999-10-07 | 2005-01-11 | Monolithic System Technology, Inc. | Non-volatile memory cell fabricated with slight modification to a conventional logic process and methods of operating same |
US6798693B2 (en) | 2001-09-18 | 2004-09-28 | Kilopass Technologies, Inc. | Semiconductor memory cell and memory array using a breakdown phenomena in an ultra-thin dielectric |
WO2003025944A1 (en) | 2001-09-18 | 2003-03-27 | Kilopass Technologies, Inc. | Semiconductor memory cell and memory array using a breakdown phenomena in an ultra-thin dielectric |
US6621745B1 (en) * | 2002-06-18 | 2003-09-16 | Atmel Corporation | Row decoder circuit for use in programming a memory device |
US6801064B1 (en) | 2002-08-27 | 2004-10-05 | Cypress Semiconductor, Corp | Buffer circuit using low voltage transistors and level shifters |
US6649453B1 (en) | 2002-08-29 | 2003-11-18 | Micron Technology, Inc. | Contactless uniform-tunneling separate p-well (CUSP) non-volatile memory array architecture, fabrication and operation |
US20050030827A1 (en) * | 2002-09-16 | 2005-02-10 | Impinj, Inc., A Delaware Corporation | PMOS memory cell |
JP2004260242A (ja) * | 2003-02-24 | 2004-09-16 | Toshiba Corp | 電圧レベルシフタ |
JP4331966B2 (ja) * | 2003-04-14 | 2009-09-16 | 株式会社ルネサステクノロジ | 半導体集積回路 |
KR100711108B1 (ko) | 2004-07-16 | 2007-04-24 | 삼성전자주식회사 | 레벨 쉬프터 및 레벨 쉬프팅 방법 |
US7087953B2 (en) * | 2004-12-03 | 2006-08-08 | Aplus Flash Technology, Inc. | Unified non-volatile memory device and method for integrating NOR and NAND-type flash memory and EEPROM device on a single substrate |
US7183817B2 (en) | 2005-06-29 | 2007-02-27 | Freescale Semiconductor, Inc. | High speed output buffer with AC-coupled level shift and DC level detection and correction |
JP4547313B2 (ja) * | 2005-08-01 | 2010-09-22 | 株式会社日立製作所 | 半導体記憶装置 |
KR100801059B1 (ko) | 2006-08-02 | 2008-02-04 | 삼성전자주식회사 | 누설 전류를 감소시키기 위한 반도체 메모리 장치의드라이버 회로 |
CN100517653C (zh) * | 2006-12-08 | 2009-07-22 | 中芯国际集成电路制造(上海)有限公司 | 用于dram单元和外围晶体管的方法及所产生的结构 |
CN101047381B (zh) * | 2007-04-02 | 2010-04-14 | 威盛电子股份有限公司 | 电压电平转换电路、方法及初始电压提供的方法 |
TWI430275B (zh) * | 2008-04-16 | 2014-03-11 | Magnachip Semiconductor Ltd | 用於程式化非揮發性記憶體裝置之方法 |
US7768865B2 (en) | 2008-04-21 | 2010-08-03 | Vikram Bollu | Address decoder and/or access line driver and method for memory devices |
ITTO20080647A1 (it) | 2008-08-29 | 2010-02-28 | St Microelectronics Srl | Decodificatore di colonna per dispositivi di memoria non volatili, in particolare del tipo a cambiamento di fase |
US7830721B2 (en) * | 2008-09-29 | 2010-11-09 | Macronix International Co., Ltd | Memory and reading method thereof |
US7876612B2 (en) | 2008-10-08 | 2011-01-25 | Nanya Technology Corp. | Method for reducing leakage current of a memory and related device |
US7989875B2 (en) | 2008-11-24 | 2011-08-02 | Nxp B.V. | BiCMOS integration of multiple-times-programmable non-volatile memories |
CN101887756A (zh) * | 2009-05-12 | 2010-11-17 | 杭州士兰集成电路有限公司 | 一次性可编程单元和阵列及其编程和读取方法 |
JP2011009454A (ja) | 2009-06-25 | 2011-01-13 | Renesas Electronics Corp | 半導体装置 |
US9013910B2 (en) * | 2009-07-30 | 2015-04-21 | Ememory Technology Inc. | Antifuse OTP memory cell with performance improvement prevention and operating method of memory |
JP2011130162A (ja) * | 2009-12-17 | 2011-06-30 | Elpida Memory Inc | 半導体装置 |
US8441299B2 (en) * | 2010-01-28 | 2013-05-14 | Peregrine Semiconductor Corporation | Dual path level shifter |
US8330189B2 (en) * | 2010-06-21 | 2012-12-11 | Kilopass Technology, Inc. | One-time programmable memory and method for making the same |
JP5596467B2 (ja) * | 2010-08-19 | 2014-09-24 | ルネサスエレクトロニクス株式会社 | 半導体装置及びメモリ装置への書込方法 |
US8339831B2 (en) * | 2010-10-07 | 2012-12-25 | Ememory Technology Inc. | Single polysilicon non-volatile memory |
KR101787758B1 (ko) * | 2011-06-09 | 2017-10-19 | 매그나칩 반도체 유한회사 | 레벨 쉬프터 |
ITTO20120192A1 (it) * | 2012-03-05 | 2013-09-06 | St Microelectronics Srl | Architettura e metodo di decodifica per dispositivi di memoria non volatile a cambiamento di fase |
US8941167B2 (en) * | 2012-03-08 | 2015-01-27 | Ememory Technology Inc. | Erasable programmable single-ploy nonvolatile memory |
JP2013187534A (ja) | 2012-03-08 | 2013-09-19 | Ememory Technology Inc | 消去可能プログラマブル単一ポリ不揮発性メモリ |
US8658495B2 (en) * | 2012-03-08 | 2014-02-25 | Ememory Technology Inc. | Method of fabricating erasable programmable single-poly nonvolatile memory |
US8779520B2 (en) * | 2012-03-08 | 2014-07-15 | Ememory Technology Inc. | Erasable programmable single-ploy nonvolatile memory |
EP2639817A1 (en) * | 2012-03-12 | 2013-09-18 | eMemory Technology Inc. | Method of fabricating a single-poly floating-gate memory device |
-
2014
- 2014-10-16 US US14/515,902 patent/US9431111B2/en active Active
- 2014-12-09 EP EP14196974.1A patent/EP2966685B1/en active Active
- 2014-12-18 JP JP2014255978A patent/JP6181037B2/ja active Active
-
2015
- 2015-01-08 US US14/592,477 patent/US9312009B2/en active Active
- 2015-03-16 TW TW104108332A patent/TWI553645B/zh active
- 2015-03-17 TW TW104108466A patent/TWI578326B/zh active
- 2015-03-25 CN CN201510132987.7A patent/CN105321570B/zh active Active
- 2015-05-13 US US14/711,765 patent/US9548122B2/en active Active
- 2015-05-22 US US14/719,342 patent/US9640262B2/en active Active
- 2015-06-09 EP EP15171183.5A patent/EP2966686B1/en active Active
- 2015-06-17 TW TW104119498A patent/TWI576965B/zh active
- 2015-06-24 TW TW104120280A patent/TWI561010B/zh active
- 2015-06-30 JP JP2015131817A patent/JP6092315B2/ja active Active
- 2015-07-07 CN CN201510394082.7A patent/CN105262474B/zh active Active
- 2015-07-07 CN CN201510394078.0A patent/CN105244352B/zh active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI623199B (zh) * | 2016-08-05 | 2018-05-01 | Arm股份有限公司 | 用於通用高範圍位準移位之裝置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105262474A (zh) | 2016-01-20 |
JP2016018987A (ja) | 2016-02-01 |
JP2016018992A (ja) | 2016-02-01 |
US9548122B2 (en) | 2017-01-17 |
CN105321570B (zh) | 2019-06-21 |
JP6181037B2 (ja) | 2017-08-16 |
TW201603199A (zh) | 2016-01-16 |
US20160012894A1 (en) | 2016-01-14 |
US20160013776A1 (en) | 2016-01-14 |
US9431111B2 (en) | 2016-08-30 |
EP2966686B1 (en) | 2020-12-23 |
US20160013193A1 (en) | 2016-01-14 |
CN105262474B (zh) | 2018-05-25 |
CN105280644A (zh) | 2016-01-27 |
TWI553645B (zh) | 2016-10-11 |
JP6092315B2 (ja) | 2017-03-08 |
EP2966686A1 (en) | 2016-01-13 |
EP2966685A1 (en) | 2016-01-13 |
TWI576965B (zh) | 2017-04-01 |
US9640262B2 (en) | 2017-05-02 |
CN105244352A (zh) | 2016-01-13 |
CN105244352B (zh) | 2018-07-27 |
TW201603033A (zh) | 2016-01-16 |
TW201603025A (zh) | 2016-01-16 |
EP2966685B1 (en) | 2020-02-19 |
TWI561010B (en) | 2016-12-01 |
CN105321570A (zh) | 2016-02-10 |
TWI578326B (zh) | 2017-04-11 |
US9312009B2 (en) | 2016-04-12 |
US20160013199A1 (en) | 2016-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201603489A (zh) | 電壓位準移位驅動電路 | |
US8718223B2 (en) | Semiconductor device and display device | |
US20160006349A1 (en) | Four-phase charge pump circuit | |
JP5752659B2 (ja) | 半導体回路 | |
US9054577B2 (en) | Charge pump and method of biasing deep N-well in charge pump | |
JP2016143428A (ja) | シフトレジスタ回路 | |
US20090302924A1 (en) | Level shifter capable of improving current drivability | |
US7777548B2 (en) | Level shifter | |
US20240088896A1 (en) | Stress reduction on stacked transistor circuits | |
KR20120061564A (ko) | 전압 공급 회로 및 방법 | |
CN104124951B (zh) | 用于驱动晶体管的电路 | |
US20120007662A1 (en) | High voltage control circuit of semiconductor device | |
TWI734940B (zh) | 位準偏移電路及顯示裝置驅動器 | |
JP5576248B2 (ja) | 電源スイッチ回路 | |
JP2004072829A5 (zh) | ||
US20090237147A1 (en) | VPP pumping circuit and VPP pumping method using the same | |
JP2018019333A (ja) | 半導体スイッチング回路 | |
TWI470600B (zh) | 移位暫存器及顯示裝置 | |
JP6730213B2 (ja) | 半導体回路及び半導体装置 | |
KR100943708B1 (ko) | 레벨 시프트 회로 | |
US20120133415A1 (en) | Level shifter | |
US9065437B2 (en) | Circuit for driving high-side transistor utilizing voltage boost circuits | |
KR101725208B1 (ko) | 인버터 | |
KR100452636B1 (ko) | 반도체 메모리 장치용 클럭 발생기 | |
KR20090104361A (ko) | 직류-직류 변환기 |